1
|
Rosen ML, Li A, Mikkelsen CA, Aslin RN. Neural hyperscanning in caregiver-child dyads: A paradigm for studying the long-term effects of facilitated vs. disrupted attention on working memory and executive functioning in young children. DEVELOPMENTAL REVIEW 2025; 75:101170. [PMID: 39802123 PMCID: PMC11720965 DOI: 10.1016/j.dr.2024.101170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Parent-child interactions shape children's cognitive outcomes such that caregivers can guide attention and facilitate learning opportunities. These interactions provide infants and toddlers with rich, naturalistic experiences that engage complex cognitive functions and lay the groundwork for the development of mature executive functions. Although most caregivers seek to engage children optimally, they can unintentionally impede this developmental process by being under-engaged or intrusive. When caregivers are under engaged, children do not have the proper scaffolding to know what to attend to in a complex environment. When parents are intrusive, they inadvertently disrupt the child's attention and direct learning to information that the parent deems important, but the child may find uninteresting or irrelevant. This disruption can impede the learning process even if the child's behavior does not appear to be negatively affected during the unfolding parent-child interaction. Understanding the moment-to-moment neural basis of these processes is critical to uncover the role that caregivers play in the development of attention and learning, which in turn impacts the development of working memory and executive function. Simultaneous brain recording, called hyperscanning, is a burgeoning method that measures brain synchrony across parent-child dyads when engaged in a shared task. In this opinion piece, we first review existing literature that highlights the important role caregivers play in guiding attention and learning in infants and toddlers and how these interactions contribute to the development of working memory and executive function in young children. Next, we review the existing literature using hyperscanning and dual eye tracking paradigms to uncover the patterning of interactions when caregivers guide attention in a manner that either matches the expectations of the child or over- or under-directs the child's attention. We provide best-practices for employing hyperscanning techniques to uncover how caregivers optimally engage infant and toddlers' attention in the moment, and how children's developing memory of these patterns of interaction build their executive function abilities, both with their caregivers and with other adults and children.
Collapse
Affiliation(s)
- Maya L Rosen
- Smith College, Program in Neuroscience, 44 College Lane, Northampton, MA 01073, USA
| | - Annabelle Li
- Smith College, Program in Neuroscience, 44 College Lane, Northampton, MA 01073, USA
| | | | - Richard N Aslin
- Child Study Center, Yale School of Medicine, 230 S Frontage Rd, New Haven, CT 06519, USA
- Department of Psychology, Yale University, 100 College St, New Haven, CT 06511, USA
| |
Collapse
|
2
|
Fan W, Trobaugh JW, Zhang C, Yang D, Culver JP, Eggebrecht AT. Fundamental effects of array density and modulation frequency on image quality of diffuse optical tomography. Med Phys 2025; 52:1045-1057. [PMID: 39494917 DOI: 10.1002/mp.17491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Diffuse optical tomography (DOT) provides three-dimensional image reconstruction of chromophore perturbations within a turbid volume. Two leading strategies to optimize DOT image quality include, (i) arrays of regular, interlacing, high-density (HD) grids of sources and detectors with closest spacing less than 15 mm, or (ii) source modulated light of order ∼100 MHz. PURPOSE However, the general principles for how these crucial design parameters of array density and modulation frequency may interact to provide an optimal system design have yet to be elucidated. METHODS Herein, we systematically evaluated how these design parameters effect image quality via multiple key metrics. Specifically, we simulated 32 system designs with realistic measurement noise and quantified localization error, spatial resolution, signal-to-noise, and localization depth of field for each of ∼85 000 point spread functions in each model. RESULTS We found that array density had a far stronger effect on image quality metrics than modulation frequency. Additionally, model fits for image quality metrics revealed that potential improvements diminish with regular arrays denser than 9 mm closest spacing. Further, for a given array density, 300 MHz source modulation provided the deepest reliable imaging compared to other frequencies. CONCLUSIONS Our results indicate that both array density and modulation frequency affect the spatial sampling of tissue, which asymptotically saturates due to photon diffusivity within a turbid volume. In summary, our results provide comprehensive perspectives for optimizing future DOT system designs in applications from wearable functional brain imaging to breast tumor detection.
Collapse
Affiliation(s)
- Weihao Fan
- Department of Physics, Washington University, St. Louis, Missouri, USA
| | - Jason W Trobaugh
- Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, USA
| | - Chengfeng Zhang
- Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, USA
| | - Dalin Yang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph P Culver
- Department of Physics, Washington University, St. Louis, Missouri, USA
- Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Department of Neuroscience, Washington University, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Adam T Eggebrecht
- Department of Physics, Washington University, St. Louis, Missouri, USA
- Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Department of Neuroscience, Washington University, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Yan D, Fang T, He W, Xu M. Syntactic development and its interplay with word processing and working memory in preschoolers' brain: An fNIRS longitudinal study. Neuroimage 2025; 305:120987. [PMID: 39730064 DOI: 10.1016/j.neuroimage.2024.120987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024] Open
Abstract
Understanding how children acquire syntactic structures from a limited set of grammatical rules and use them creatively to convey meaning has been a longstanding interest for scientific communities. Previous studies on syntactic development have revealed its close correlation with the development of vocabulary and working memory. Our study sought to elucidate how the relations between syntactic processing, word processing, and working memory were instantiated in the brain, and how earlier neural patterns might predict language abilities one year later. We employed functional near-infrared spectroscopy to examine among preschool children (N=50, Mage=61.5 months) the neural activation associated with processing sentences of varying syntactic complexities, as well as tasks assessing word comprehension and working memory. The results revealed greater brain activation in the left inferior frontal gyrus (IFG) for syntactically complex as compared to simple sentences, and the activation magnitude was correlated with working memory. There was also a link between neural activity for sentence comprehension and word comprehension in bilateral superior temporal regions (STG). Moreover, the inter-regional and inter-hemispheric connectivity of IFG and STG/MTG could successfully predict children's future language comprehension one year later. The findings provide new insights into how the brain supports syntactic development and its interplay with word processing and working memory.
Collapse
Affiliation(s)
- Dongsu Yan
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Tongfu Fang
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Wei He
- School of Studies in Fundamental Education, Guangzhou Sport University, Guangzhou, China
| | - Min Xu
- School of Psychology, Shenzhen University, Shenzhen, China.
| |
Collapse
|
4
|
Aitken A, Jounghani AR, Carbonell LM, Kumar A, Crawford S, Bowden AK, Hosseini SH. The Effect of Social Media Consumption on Emotion and Executive Functioning in College Students: an fNIRS Study in Natural Environment. RESEARCH SQUARE 2024:rs.3.rs-5604862. [PMID: 39764144 PMCID: PMC11703342 DOI: 10.21203/rs.3.rs-5604862/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
As of 2023, 69% of adults and 81% of teens in the U.S. use social media. This study explores the immediate effects of social media consumption on executive functioning (EF) and emotion in college students, using a wearable fNIRS system to monitor brain activity in a naturalistic setting. Twenty participants were assessed pre- and post-social media use through EF tasks and emotion questionnaires. Results revealed 55% of participants were classified as addicted, with an average Instagram usage of 5 hours per week. Following social media exposure, significant impairments were observed in tasks like n-back and Go/No-Go, alongside altered brain activity. Specifically, increased medial prefrontal cortex (mPFC) activity indicated heightened cognitive effort and performance monitoring, while decreased dorsolateral prefrontal cortex (dlPFC) and ventrolateral prefrontal cortex (vlPFC) activity were associated with impaired working memory and response inhibition. Inferior frontal gyrus (IFG) activity reductions correlated with difficulties in inhibiting motor responses to No-Go stimuli. Emotional changes were minimal, except for reduced happiness in the control group. These findings highlight the negative impact of social media on EF, emphasizing the need for interventions promoting healthier digital habits.
Collapse
Affiliation(s)
- Anna Aitken
- Computational Brain Research and Intervention (C-BRAIN) Laboratory, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, California, USA
- These authors have equally contributed to this work
| | - Ali Rahimpour Jounghani
- Computational Brain Research and Intervention (C-BRAIN) Laboratory, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, California, USA
- These authors have equally contributed to this work
| | - Laura Moreno Carbonell
- Computational Brain Research and Intervention (C-BRAIN) Laboratory, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Anupam Kumar
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Seth Crawford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Audrey K. Bowden
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - S.M. Hadi Hosseini
- Computational Brain Research and Intervention (C-BRAIN) Laboratory, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
5
|
Eulau K, Hirsh-Pasek K. From behavioral synchrony to language and beyond. Front Integr Neurosci 2024; 18:1488977. [PMID: 39723335 PMCID: PMC11668775 DOI: 10.3389/fnint.2024.1488977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/30/2024] [Indexed: 12/28/2024] Open
Abstract
Decades of research on joint attention, coordinated joint engagement, and social contingency identify caregiver-child interaction in infancy as a foundation for language. These patterns of early behavioral synchrony contribute to the structure and connectivity of the brain in the temporoparietal regions typically associated with language skills. Thus, children attune to their communication partner and subsequently build cognitive skills directly relating to comprehension and production of language, literacy skills, and beyond. This has yielded marked interest in measuring this contingent, synchronous social behavior neurally. Neurological measures of early social interactions between caregiver and child have become a hotbed for research. In this paper, we review that research and suggest that these early neural couplings between adults and children lay the foundation for a broader cognitive system that includes attention, problem solving, and executive function skills. This review describes the role of behavioral synchrony in language development, asks what the relationship is between neural synchrony and language growth, and how neural synchrony may play a role in the development of a broader cognitive system founded in a socially-gated brain. We address the known neural correlates of these processes with an emphasis on work that examines the tight temporal contingency between communicative partners during these rich social interactions, with a focus on EEG and fNIRS and brief survey of MRI and MEG.
Collapse
Affiliation(s)
- Katherine Eulau
- Temple Infant and Child Laboratory, Temple University, Philadelphia, PA, United States
| | - Kathy Hirsh-Pasek
- Temple Infant and Child Laboratory, Temple University, Philadelphia, PA, United States
- The Brookings Institution, Washington, DC, United States
| |
Collapse
|
6
|
Gao J, Ke X, Huang D, Wu Y, Xu X, Ren H, Zhang A, Song W. Effects of Baduanjin on motor function in children with developmental coordination disorders: study protocol for a randomised controlled trial. BMJ Open 2024; 14:e084061. [PMID: 39622562 PMCID: PMC11624779 DOI: 10.1136/bmjopen-2024-084061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 10/21/2024] [Indexed: 12/09/2024] Open
Abstract
INTRODUCTION Children diagnosed with developmental coordination disorder (DCD) exhibit a range of challenges in both gross and fine motor skills, characterised by sluggish and awkward movements. Additionally, they experience deficits in balance and coordination. Without appropriate intervention, these difficulties may endure into adolescence and adulthood, impacting various facets of their daily lives, including learning, social interactions and recreational activities. METHODS AND ANALYSIS Employing a randomised controlled trial design, 60 children diagnosed with DCD will be randomly assigned to two groups. The experimental group will receive Baduanjin training in addition to health education, while the control group will undergo health education alone. Following an 8-week intervention period, assessments using motor assessment battery for children-second edition, ProKin 254 Balance Test System will be conducted to evaluate the impact of Baduanjin on the motor coordination and balance in children with DCD. Furthermore, functional near-infrared spectroscopy will be employed to capture haemodynamic data from the children's brain movement-related cortex during functional activities. These data will be analysed to assess the level of cortical activation, strength of functional connectivity and their correlation with changes in motor function, with the goal of investigating the cerebral blood oxygenation mechanisms underlying the effectiveness of the Baduanjin intervention. ETHICS AND DISSEMINATION This study has been submitted for approval and has received ethical clearance from the Medical Ethics Committee of Shanghai Fourth People's Hospital (2023080-001). The results of the study will be published in a peer-reviewed scientific journal. TRIAL REGISTRATION NUMBER ChiCTR2300078980.
Collapse
Affiliation(s)
- Jiaxin Gao
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Xiaohua Ke
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Dunbing Huang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Yangxin Wu
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Xiaqing Xu
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Hongfei Ren
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Wei Song
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
7
|
Scholkmann F, Haslbeck F, Oba E, Restin T, Ostojic D, Kleiser S, Verbiest BCH, Zohdi H, Wolf U, Bassler D, Bucher HU, Wolf M, Karen T. Creative music therapy in preterm infants effects cerebrovascular oxygenation and perfusion. Sci Rep 2024; 14:28249. [PMID: 39548130 PMCID: PMC11568197 DOI: 10.1038/s41598-024-75282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/03/2024] [Indexed: 11/17/2024] Open
Abstract
Creative music therapy (CMT) has been shown to promote the development of brain function and structure in preterm infants. We aimed to investigate the effect of CMT on cerebral oxygenation and perfusion to examine how the brain reacts to CMT. Absolute levels of cerebrovascular oxygen saturation (StO2) were measured in clinically stable preterm-born neonates (n = 20, gestational age: ≥30 weeks and < 37 weeks) using two near-infrared spectroscopy (NIRS)-based tissue oximeters over the right prefrontal cortex and left auditory cortex. We applied the systemic physiology augmented functional NIRS approach. Each CMT session lasted 55 min and involved 9 intervals, including two 10-minute intervals during which the music therapist hummed and held the neonate. We found that CMT-induced changes in cerebrovascular StO2, perfusion and systemic physiology (i) could be classified into two groups (group 1: increase in StO2 during the first singing interval, group 2: decrease in StO2), (ii) differed in female neonates compared to male neonates, and (iii) correlated with individual blood haematocrit levels. Our exploratory study (i) demonstrates the impact of CMT on the neonate's physiology and (ii) highlights the need to analyze functional NIRS measurements in neonates separately according to their response pattern to avoid erroneous conclusions, e.g. when only the group average of the signal change is determined.
Collapse
Affiliation(s)
- Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Neurophotonics and Biosignal Processing Research Group, Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Newborn Research Zurich, Department of Neonatology, University Hospital Zurich, Zurich, Switzerland.
- Institute of Complementary and Integrative Medicine, University of Bern, Bern, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Friederike Haslbeck
- Newborn Research Zurich, Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
| | - Emily Oba
- Newborn Research Zurich, Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
| | - Tanja Restin
- Newborn Research Zurich, Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | | | | | - Hamoon Zohdi
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Institute of Complementary and Integrative Medicine, University of Bern, Bern, Switzerland
| | - Ursula Wolf
- Institute of Complementary and Integrative Medicine, University of Bern, Bern, Switzerland
| | - Dirk Bassler
- Newborn Research Zurich, Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
| | - Hans Ulrich Bucher
- Newborn Research Zurich, Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
| | - Martin Wolf
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Tanja Karen
- Newborn Research Zurich, Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
- Lucerne Cantonal Hospital, Lucerne, Switzerland
| |
Collapse
|
8
|
Ye Y, Zhou T, Zhu Q, Vann W, Du J. Brain functional connectivity under teleoperation latency: a fNIRS study. Front Neurosci 2024; 18:1416719. [PMID: 39605793 PMCID: PMC11599268 DOI: 10.3389/fnins.2024.1416719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Long-distance robot teleoperation faces high latencies that pose cognitive challenges to human operators. Latency between command, execution, and feedback in teleoperation can impair performance and affect operators' mental state. The neural underpinnings of these effects are not well understood. Methods This study aims to understand the cognitive impact of latency in teleoperation and the related mitigation methods, using functional Near-Infrared Spectroscopy (fNIRS) to analyze functional connectivity. A human subject experiment (n = 41) of a simulated remote robot manipulation task was performed. Three conditions were tested: no latency, with visual and haptic latency, with visual latency and no haptic latency. fNIRS and performance data were recorded and analyzed. Results The presence of latency in teleoperation significantly increased functional connectivity within and between prefrontal and motor cortexes. Maintaining visual latency while providing real-time haptic feedback reduced the average functional connectivity in all cortical networks and showed a significantly different connectivity ratio within prefrontal and motor cortical networks. The performance results showed the worst performance in the all-delayed condition and best performance in no latency condition, which echoes the neural activity patterns. Conclusion The study provides neurological evidence that latency in teleoperation increases cognitive load, anxiety, and challenges in motion planning and control. Real-time haptic feedback, however, positively influences neural pathways related to cognition, decision-making, and sensorimotor processes. This research can inform the design of ergonomic teleoperation systems that mitigate the effects of latency.
Collapse
Affiliation(s)
- Yang Ye
- ICIC Lab, Engineering School of Sustainable Infrastructure & Environment, University of Florida, Gainesville, FL, United States
| | - Tianyu Zhou
- ICIC Lab, Engineering School of Sustainable Infrastructure & Environment, University of Florida, Gainesville, FL, United States
| | - Qi Zhu
- National Institute of Standards and Technology, Boulder, CO, United States
| | - William Vann
- ICIC Lab, Engineering School of Sustainable Infrastructure & Environment, University of Florida, Gainesville, FL, United States
| | - Jing Du
- ICIC Lab, Engineering School of Sustainable Infrastructure & Environment, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Stern JA, Kelsey CM, Yancey H, Grossmann T. Love on the developing brain: Maternal sensitivity and infants' neural responses to emotion in the dorsolateral prefrontal cortex. Dev Sci 2024; 27:e13497. [PMID: 38511516 PMCID: PMC11415551 DOI: 10.1111/desc.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
Infancy is a sensitive period of development, during which experiences of parental care are particularly important for shaping the developing brain. In a longitudinal study of N = 95 mothers and infants, we examined links between caregiving behavior (maternal sensitivity observed during a mother-infant free-play) and infants' neural response to emotion (happy, angry, and fearful faces) at 5 and 7 months of age. Neural activity was assessed using functional Near-Infrared Spectroscopy (fNIRS) in the dorsolateral prefrontal cortex (dlPFC), a region involved in cognitive control and emotion regulation. Maternal sensitivity was positively correlated with infants' neural responses to happy faces in the bilateral dlPFC and was associated with relative increases in such responses from 5 to 7 months. Multilevel analyses revealed caregiving-related individual differences in infants' neural responses to happy compared to fearful faces in the bilateral dlPFC, as well as other brain regions. We suggest that variability in dlPFC responses to emotion in the developing brain may be one correlate of early experiences of caregiving, with implications for social-emotional functioning and self-regulation. RESEARCH HIGHLIGHTS: Infancy is a sensitive period of brain development, during which experiences with caregivers are especially important. This study examined links between sensitive maternal care and infants' neural responses to emotion at 5-7 months of age, using functional near-infrared spectroscopy (fNIRS). Experiences of sensitive care were associated with infants' neural responses to emotion-particularly happy faces-in the dorsolateral prefrontal cortex.
Collapse
Affiliation(s)
- Jessica A Stern
- Psychology, University of Virginia, Charlottesville, Virginia, USA
| | - Caroline M Kelsey
- Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Heath Yancey
- Psychology, University of Virginia, Charlottesville, Virginia, USA
| | - Tobias Grossmann
- Psychology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
10
|
O’Brien WJ, Carlton L, Muhvich J, Kura S, Ortega-Martinez A, Dubb J, Duwadi S, Hazen E, Yücel MA, von Lühmann A, Boas DA, Zimmermann BB. ninjaNIRS: an open hardware solution for wearable whole-head high-density functional near-infrared spectroscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:5625-5644. [PMID: 39421779 PMCID: PMC11482177 DOI: 10.1364/boe.531501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024]
Abstract
Functional near-infrared spectroscopy (fNIRS) technology has been steadily advancing since the first measurements of human brain activity over 30 years ago. Initially, efforts were focused on increasing the channel count of fNIRS systems and then to moving from sparse to high density arrays of sources and detectors, enhancing spatial resolution through overlapping measurements. Over the last ten years, there have been rapid developments in wearable fNIRS systems that place the light sources and detectors on the head as opposed to the original approach of using fiber optics to deliver the light between the hardware and the head. The miniaturization of the electronics and increased computational power continues to permit impressive advances in wearable fNIRS systems. Here we detail our design for a wearable fNIRS system that covers the whole head of an adult human with a high-density array of 56 sources and up to 192 detectors. We provide characterization of the system showing that its performance is among the best in published systems. Additionally, we provide demonstrative images of brain activation during a ball squeezing task. We have released the hardware design to the public, with the hope that the community will build upon our foundational work and drive further advancements.
Collapse
Affiliation(s)
- W. Joseph O’Brien
- Neurophotonics Center, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Laura Carlton
- Neurophotonics Center, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Johnathan Muhvich
- Neurophotonics Center, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Sreekanth Kura
- Neurophotonics Center, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | | | - Jay Dubb
- Neurophotonics Center, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Sudan Duwadi
- Neurophotonics Center, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Eric Hazen
- Neurophotonics Center, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Meryem A. Yücel
- Neurophotonics Center, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Alexander von Lühmann
- BIFOLD – Berlin Institute for the Foundations of Learning and Data, Ernst-Reuter Platz 7, 10587 Berlin, Germany
- Intelligent Biomedical Sensing (IBS) Lab, Machine Learning Department, Technical University of Berlin, Marchstr. 23, 10587 Berlin, Germany
| | - David A. Boas
- Neurophotonics Center, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | | |
Collapse
|
11
|
Vasconcelos ICD, Oliveira TDS, Santos AB, Lima MTA, Brazorotto JS, Araujo ADDSN, Morya E, Balen SA. Analysis of brain activity for speech stimuli and child development of an infant with neurosyphilis: case report. Codas 2024; 36:e20230303. [PMID: 39292018 PMCID: PMC11404838 DOI: 10.1590/2317-1782/20242023303pt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/30/2024] [Indexed: 09/19/2024] Open
Abstract
Neurosyphilis is an infection of the central nervous system caused by Treponema pallidum and may be symptomatic or asymptomatic in children with congenital syphilis. This study aims to describe the cortical activation pattern of a four-month-old infant with neurosyphilis using functional near-infrared spectroscopy (fNIRS). Born at term weighing 3,475 kg, she presented a Venereal Disease Research Laboratory (VDRL) test of 1:32 and changes in the cerebrospinal fluid test. She underwent treatment with crystalline penicillin for 10 days before discharge from the hospital. In the audiological evaluation, she presented normal tympanometry, otoacoustic emissions evoked by transient stimulus, brainstem auditory evoked potential with click stimulus at 80 and 30 dB nHL bilaterally. The Bayley III Scale was applied to assess language, cognition and motor development, showing delays in expressive language and broad motor skills. In the fNIRS acquisition, data were collected through 20 channels divided between the cerebral hemispheres. The /ba/ and /da/ stimuli were presented at 40 dB HL with the Psychopy software through a headphone. Data analysis used the MNE and MNE-NIRS toolboxes in the Spyder environment. The average by channel, ROI, and condition was exported for analysis. A similar theta coefficient was observed between the conditions and channels evaluated in both cerebral hemispheres, with a greater amplitude of oxyhemoglobin (HbO) being observed in the anterior position when compared to the posterior region of the temporal lobe. Therefore, this case report highlights the need to monitor the child development of babies with neurosyphilis.
Collapse
Affiliation(s)
- Isabelle Costa de Vasconcelos
- Programa Associado de Pós-graduação em Fonoaudiologia, Universidade Federal do Rio Grande do Norte - UFRN - Natal (RN), Brasil, Universidade Federal da Paraíba - UFPB - João Pessoa (PB), Brasil, Universidade Estadual de Ciências da Saúde de Alagoas - UNCISAL, Maceió (AL), Brasil
| | - Thalita da Silva Oliveira
- Unidade de Atenção à Saúde da Criança e Adolescente - UASCA, Hospital Universitário Onofre Lopes - EBSERH - Natal (RN), Brasil
| | - Ana Beatriz Santos
- Programa Associado de Pós-graduação em Fonoaudiologia, Universidade Federal do Rio Grande do Norte - UFRN - Natal (RN), Brasil, Universidade Federal da Paraíba - UFPB - João Pessoa (PB), Brasil, Universidade Estadual de Ciências da Saúde de Alagoas - UNCISAL, Maceió (AL), Brasil
| | - Mylena Taise Azevedo Lima
- Unidade de Atenção à Saúde da Criança e Adolescente - UASCA, Hospital Universitário Onofre Lopes - EBSERH - Natal (RN), Brasil
- Laboratório de Inovação Tecnológica em Saúde - LAIS, Universidade Federal do Rio Grande do Norte - UFRN - Natal (RN), Brasil
| | - Joseli Soares Brazorotto
- Programa Associado de Pós-graduação em Fonoaudiologia, Universidade Federal do Rio Grande do Norte - UFRN - Natal (RN), Brasil, Universidade Federal da Paraíba - UFPB - João Pessoa (PB), Brasil, Universidade Estadual de Ciências da Saúde de Alagoas - UNCISAL, Maceió (AL), Brasil
- Laboratório de Inovação Tecnológica em Saúde - LAIS, Universidade Federal do Rio Grande do Norte - UFRN - Natal (RN), Brasil
- Programa de Pós-graduação em Gestão e Inovação em Saúde - PPgGIS, Universidade Federal do Rio Grande do Norte - UFRN - Natal (RN), Brasil
- Departamento de Fonoaudiologia, Universidade Federal do Rio Grande do Norte - UFRN - Natal (RN), Brasil
| | - Aryelly Dayane da Silva Nunes Araujo
- Laboratório de Inovação Tecnológica em Saúde - LAIS, Universidade Federal do Rio Grande do Norte - UFRN - Natal (RN), Brasil
- Departamento de Fonoaudiologia, Universidade Federal do Rio Grande do Norte - UFRN - Natal (RN), Brasil
| | - Edgard Morya
- Instituto Internacional de Neurociências Edmond e Lily Safra, Instituto Santos Dumont - ISD - Macaíba (RN), Brasil
| | - Sheila Andreoli Balen
- Programa Associado de Pós-graduação em Fonoaudiologia, Universidade Federal do Rio Grande do Norte - UFRN - Natal (RN), Brasil, Universidade Federal da Paraíba - UFPB - João Pessoa (PB), Brasil, Universidade Estadual de Ciências da Saúde de Alagoas - UNCISAL, Maceió (AL), Brasil
- Laboratório de Inovação Tecnológica em Saúde - LAIS, Universidade Federal do Rio Grande do Norte - UFRN - Natal (RN), Brasil
- Departamento de Fonoaudiologia, Universidade Federal do Rio Grande do Norte - UFRN - Natal (RN), Brasil
| |
Collapse
|
12
|
Manuweera T, Karunakaran K, Baechler C, Rosales J, Kleckner AS, Rosenblatt P, Ciner A, Kleckner IR. Barriers and Facilitators for Participation in Brain Magnetic Resonance Imaging (MRI) Scans in Cancer Research: A Feasibility and Acceptability Analysis. RESEARCH SQUARE 2024:rs.3.rs-4595719. [PMID: 39070661 PMCID: PMC11276008 DOI: 10.21203/rs.3.rs-4595719/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Purpose A growing body of research suggests that the brain is implicated in cognitive impairment, fatigue, neuropathy, pain, nausea, sleep disturbances, distress, and other prevalent and burdensome symptoms of cancer and its treatments. Despite anecdotal evidence of difficulties using gold-standard magnetic resonance imaging (MRI) to study the brain, no studies have systematically reported reasons that patients with cancer do or do not complete research MRI scans, making it difficult to understand the role of the brain related to these symptoms. The goal of this study was to investigate these reasons and to suggest possible solutions. Methods We analyzed data from 72 patients with cancer (mostly breast and gastrointestinal) from 3 studies: MRI was mandatory in Study 1; MRI was optional in Studies 2-3. Patients provided reasons for completing or not completing optional research MRI scans. Results The percentage of scans completed when MRI was mandatory was 76%, and when optional, it was 36%. The most common reasons for not completing optional scans were claustrophobia (40%), safety contraindications (11%), discomfort (5%), a busy MRI schedule (5%), and the scanner being too far away (4%). Older patients were more likely to complete at least one scan (log(odds) = 0.09/year, p = 0.02). Conclusion Although brain MRI is feasible for many patients with cancer, it can be difficult or not feasible for patients with claustrophobia, safety issues, busy schedules, or transportation issues. Improving communication, comfort, and access to a scanner may help. Reducing inequities related to study participation can improve research supportive care research.
Collapse
|
13
|
Xu E, Vanegas M, Mireles M, Dementyev A, McCann A, Yücel M, Carp SA, Fang Q. Flexible circuit-based spatially aware modular optical brain imaging system for high-density measurements in natural settings. NEUROPHOTONICS 2024; 11:035002. [PMID: 38975286 PMCID: PMC11224775 DOI: 10.1117/1.nph.11.3.035002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024]
Abstract
Significance Functional near-infrared spectroscopy (fNIRS) presents an opportunity to study human brains in everyday activities and environments. However, achieving robust measurements under such dynamic conditions remains a significant challenge. Aim The modular optical brain imaging (MOBI) system is designed to enhance optode-to-scalp coupling and provide a real-time probe three-dimensional (3D) shape estimation to improve the use of fNIRS in everyday conditions. Approach The MOBI system utilizes a bendable and lightweight modular circuit-board design to enhance probe conformity to head surfaces and comfort for long-term wearability. Combined with automatic module connection recognition, the built-in orientation sensors on each module can be used to estimate optode 3D positions in real time to enable advanced tomographic data analysis and motion tracking. Results Optical characterization of the MOBI detector reports a noise equivalence power of 8.9 and 7.3 pW / Hz at 735 and 850 nm, respectively, with a dynamic range of 88 dB. The 3D optode shape acquisition yields an average error of 4.2 mm across 25 optodes in a phantom test compared with positions acquired from a digitizer. Results for initial in vivo validations, including a cuff occlusion and a finger-tapping test, are also provided. Conclusions To the best of our knowledge, the MOBI system is the first modular fNIRS system featuring fully flexible circuit boards. The self-organizing module sensor network and automatic 3D optode position acquisition, combined with lightweight modules ( 18 g / module ) and ergonomic designs, would greatly aid emerging explorations of brain function in naturalistic settings.
Collapse
Affiliation(s)
- Edward Xu
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Morris Vanegas
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Miguel Mireles
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Artem Dementyev
- Massachusetts Institute of Technology, Media Lab, Cambridge, Massachusetts, United States
| | - Ashlyn McCann
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Meryem Yücel
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, United States
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| |
Collapse
|
14
|
Shali RK, Setarehdan SK, Seifi B. Functional near-infrared spectroscopy based blood pressure variations and hemodynamic activity of brain monitoring following postural changes: A systematic review. Physiol Behav 2024; 281:114574. [PMID: 38697274 DOI: 10.1016/j.physbeh.2024.114574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/03/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
Postural change from supine or sitting to standing up leads to displacement of 300 to 1000 mL of blood from the central parts of the body to the lower limb, which causes a decrease in venous return to the heart, hence decrease in cardiac output, causing a drop in blood pressure. This may lead to falling down, syncope, and in general reducing the quality of daily activities, especially in the elderly and anyone suffering from nervous system disorders such as Parkinson's or orthostatic hypotension (OH). Among different modalities to study brain function, functional near-infrared spectroscopy (fNIRS) is a neuroimaging method that optically measures the hemodynamic response in brain tissue. Concentration changes in oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin (HHb) are associated with brain neural activity. fNIRS is significantly more tolerant to motion artifacts compared to fMRI, PET, and EEG. At the same time, it is portable, has a simple structure and usage, is safer, and much more economical. In this article, we systematically reviewed the literature to examine the history of using fNIRS in monitoring brain oxygenation changes caused by sudden changes in body position and its relationship with the blood pressure changes. First, the theory behind brain hemodynamics monitoring using fNIRS and its advantages and disadvantages are presented. Then, a study of blood pressure variations as a result of postural changes using fNIRS is described. It is observed that only 58 % of the references concluded a positive correlation between brain oxygenation changes and blood pressure changes. At the same time, 3 % showed a negative correlation, and 39 % did not show any correlation between them.
Collapse
Affiliation(s)
- Roya Kheyrkhah Shali
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Seyed Kamaledin Setarehdan
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Behjat Seifi
- Faculty of Medical Science, University of Tehran, Tehran, Iran
| |
Collapse
|
15
|
Zhao YN, Han PP, Zhang XY, Bi X. Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging During Rehabilitation Following Stroke: A Review. Med Sci Monit 2024; 30:e943785. [PMID: 38879751 PMCID: PMC11188690 DOI: 10.12659/msm.943785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/17/2024] [Indexed: 06/22/2024] Open
Abstract
Stroke is a cerebrovascular disease that impairs blood supply to localized brain tissue regions due to various causes. This leads to ischemic and hypoxic lesions, necrosis of the brain tissue, and a variety of functional disorders. Abnormal cortical activation and functional connectivity occur in the brain after a stroke, but the activation patterns and functional reorganization are not well understood. Rehabilitation interventions can enhance functional recovery in stroke patients. However, clinicians require objective measures to support their practice, as outcome measures for functional recovery are based on scale scores. Furthermore, the most effective rehabilitation measures for treating patients are yet to be investigated. Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging method that detects changes in cerebral hemodynamics during task performance. It is widely used in neurological research and clinical practice due to its safety, portability, high motion tolerance, and low cost. This paper briefly introduces the imaging principle and the advantages and disadvantages of fNIRS to summarize the application of fNIRS in post-stroke rehabilitation.
Collapse
Affiliation(s)
- Yi-Ning Zhao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, PR China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, PR China
| | - Ping-Ping Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, PR China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, PR China
| | - Xing-Yu Zhang
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, PR China
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, PR China
| |
Collapse
|
16
|
Bjerkan J, Kobal J, Lancaster G, Šešok S, Meglič B, McClintock PVE, Budohoski KP, Kirkpatrick PJ, Stefanovska A. The phase coherence of the neurovascular unit is reduced in Huntington's disease. Brain Commun 2024; 6:fcae166. [PMID: 38938620 PMCID: PMC11210076 DOI: 10.1093/braincomms/fcae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/07/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024] Open
Abstract
Huntington's disease is a neurodegenerative disorder in which neuronal death leads to chorea and cognitive decline. Individuals with ≥40 cytosine-adenine-guanine repeats on the interesting transcript 15 gene develop Huntington's disease due to a mutated huntingtin protein. While the associated structural and molecular changes are well characterized, the alterations in neurovascular function that lead to the symptoms are not yet fully understood. Recently, the neurovascular unit has gained attention as a key player in neurodegenerative diseases. The mutant huntingtin protein is known to be present in the major parts of the neurovascular unit in individuals with Huntington's disease. However, a non-invasive assessment of neurovascular unit function in Huntington's disease has not yet been performed. Here, we investigate neurovascular interactions in presymptomatic (N = 13) and symptomatic (N = 15) Huntington's disease participants compared to healthy controls (N = 36). To assess the dynamics of oxygen transport to the brain, functional near-infrared spectroscopy, ECG and respiration effort were recorded. Simultaneously, neuronal activity was assessed using EEG. The resultant time series were analysed using methods for discerning time-resolved multiscale dynamics, such as wavelet transform power and wavelet phase coherence. Neurovascular phase coherence in the interval around 0.1 Hz is significantly reduced in both Huntington's disease groups. The presymptomatic Huntington's disease group has a lower power of oxygenation oscillations compared to controls. The spatial coherence of the oxygenation oscillations is lower in the symptomatic Huntington's disease group compared to the controls. The EEG phase coherence, especially in the α band, is reduced in both Huntington's disease groups and, to a significantly greater extent, in the symptomatic group. Our results show a reduced efficiency of the neurovascular unit in Huntington's disease both in the presymptomatic and symptomatic stages of the disease. The vasculature is already significantly impaired in the presymptomatic stage of the disease, resulting in reduced cerebral blood flow control. The results indicate vascular remodelling, which is most likely a compensatory mechanism. In contrast, the declines in α and γ coherence indicate a gradual deterioration of neuronal activity. The results raise the question of whether functional changes in the vasculature precede the functional changes in neuronal activity, which requires further investigation. The observation of altered dynamics paves the way for a simple method to monitor the progression of Huntington's disease non-invasively and evaluate the efficacy of treatments.
Collapse
Affiliation(s)
- Juliane Bjerkan
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Jan Kobal
- Department of Neurology, University Medical Centre, 1525 Ljubljana, Slovenia
| | - Gemma Lancaster
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Sanja Šešok
- Department of Neurology, University Medical Centre, 1525 Ljubljana, Slovenia
| | - Bernard Meglič
- Department of Neurology, University Medical Centre, 1525 Ljubljana, Slovenia
| | | | - Karol P Budohoski
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Peter J Kirkpatrick
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | | |
Collapse
|
17
|
Piatti A, Van der Paelt S, Warreyn P, Roeyers H. Neural correlates of response to joint attention in 2-to-5-year-olds in relation to ASD and social-communicative abilities: An fNIRS and behavioral study. Autism Res 2024; 17:1106-1125. [PMID: 38780020 DOI: 10.1002/aur.3149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Autism spectrum disorder (ASD) is associated with life-long challenges with social cognition, and one of its earliest and most common manifestations is atypical joint attention, which is a pivotal skill in social-cognitive and linguistic development. Early interventions for ASD children often focus on training initiation of joint attention (IJA) and response to joint attention bids (RJA), which are important for social communication and cognition. Here, we used functional near-infrared spectroscopy and behavioral measures to test typically developing (TD, n = 17) and ASD children (n = 18), to address the relationship between the neural correlates of RJA and social-communicative behavior. Group-level differences were present for RJA-specific activation over right temporal sites, where TD children showed higher levels of activation during RJA than ASD children, whereas the two groups did not differ in the control condition. Correlations between neural activation and behavioral traits suggest that, in ASD children, neural activation during RJA is related to the frequency of RJA behavior when the former is measured over left temporal sites, and to social affect symptoms when considered for right temporal sites. Possible implications of the evidenced correlations are discussed.
Collapse
Affiliation(s)
- Alessandra Piatti
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Sara Van der Paelt
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Petra Warreyn
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Herbert Roeyers
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Clemente L, La Rocca M, Paparella G, Delussi M, Tancredi G, Ricci K, Procida G, Introna A, Brunetti A, Taurisano P, Bevilacqua V, de Tommaso M. Exploring Aesthetic Perception in Impaired Aging: A Multimodal Brain-Computer Interface Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:2329. [PMID: 38610540 PMCID: PMC11014209 DOI: 10.3390/s24072329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
In the field of neuroscience, brain-computer interfaces (BCIs) are used to connect the human brain with external devices, providing insights into the neural mechanisms underlying cognitive processes, including aesthetic perception. Non-invasive BCIs, such as EEG and fNIRS, are critical for studying central nervous system activity and understanding how individuals with cognitive deficits process and respond to aesthetic stimuli. This study assessed twenty participants who were divided into control and impaired aging (AI) groups based on MMSE scores. EEG and fNIRS were used to measure their neurophysiological responses to aesthetic stimuli that varied in pleasantness and dynamism. Significant differences were identified between the groups in P300 amplitude and late positive potential (LPP), with controls showing greater reactivity. AI subjects showed an increase in oxyhemoglobin in response to pleasurable stimuli, suggesting hemodynamic compensation. This study highlights the effectiveness of multimodal BCIs in identifying the neural basis of aesthetic appreciation and impaired aging. Despite its limitations, such as sample size and the subjective nature of aesthetic appreciation, this research lays the groundwork for cognitive rehabilitation tailored to aesthetic perception, improving the comprehension of cognitive disorders through integrated BCI methodologies.
Collapse
Affiliation(s)
- Livio Clemente
- Translational Biomedicine and Neuroscience (DiBraiN) Department, University of Bari, 70124 Bari, Italy; (L.C.); (G.P.); (M.D.); (G.T.); (K.R.); (G.P.); (A.I.); (P.T.)
| | - Marianna La Rocca
- Interateneo Department of Fisica ‘M. Merlin’, University of Bari, 70125 Bari, Italy;
- Laboratory of Neuroimaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Giulia Paparella
- Translational Biomedicine and Neuroscience (DiBraiN) Department, University of Bari, 70124 Bari, Italy; (L.C.); (G.P.); (M.D.); (G.T.); (K.R.); (G.P.); (A.I.); (P.T.)
| | - Marianna Delussi
- Translational Biomedicine and Neuroscience (DiBraiN) Department, University of Bari, 70124 Bari, Italy; (L.C.); (G.P.); (M.D.); (G.T.); (K.R.); (G.P.); (A.I.); (P.T.)
| | - Giusy Tancredi
- Translational Biomedicine and Neuroscience (DiBraiN) Department, University of Bari, 70124 Bari, Italy; (L.C.); (G.P.); (M.D.); (G.T.); (K.R.); (G.P.); (A.I.); (P.T.)
| | - Katia Ricci
- Translational Biomedicine and Neuroscience (DiBraiN) Department, University of Bari, 70124 Bari, Italy; (L.C.); (G.P.); (M.D.); (G.T.); (K.R.); (G.P.); (A.I.); (P.T.)
| | - Giuseppe Procida
- Translational Biomedicine and Neuroscience (DiBraiN) Department, University of Bari, 70124 Bari, Italy; (L.C.); (G.P.); (M.D.); (G.T.); (K.R.); (G.P.); (A.I.); (P.T.)
| | - Alessandro Introna
- Translational Biomedicine and Neuroscience (DiBraiN) Department, University of Bari, 70124 Bari, Italy; (L.C.); (G.P.); (M.D.); (G.T.); (K.R.); (G.P.); (A.I.); (P.T.)
| | - Antonio Brunetti
- Electrical and Information Engineering Department, Polytechnic of Bari, 70125 Bari, Italy; (A.B.); (V.B.)
| | - Paolo Taurisano
- Translational Biomedicine and Neuroscience (DiBraiN) Department, University of Bari, 70124 Bari, Italy; (L.C.); (G.P.); (M.D.); (G.T.); (K.R.); (G.P.); (A.I.); (P.T.)
| | - Vitoantonio Bevilacqua
- Electrical and Information Engineering Department, Polytechnic of Bari, 70125 Bari, Italy; (A.B.); (V.B.)
| | - Marina de Tommaso
- Translational Biomedicine and Neuroscience (DiBraiN) Department, University of Bari, 70124 Bari, Italy; (L.C.); (G.P.); (M.D.); (G.T.); (K.R.); (G.P.); (A.I.); (P.T.)
| |
Collapse
|
19
|
Ren Y, Cui G, Feng K, Zhang X, Yu C, Liu P. A scoping review of utilization of the verbal fluency task in Chinese and Japanese clinical settings with near-infrared spectroscopy. Front Psychiatry 2024; 15:1282546. [PMID: 38525251 PMCID: PMC10957746 DOI: 10.3389/fpsyt.2024.1282546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/08/2024] [Indexed: 03/26/2024] Open
Abstract
This review targets the application of the Verbal Fluency Task (VFT) in conjunction with functional near-infrared spectroscopy (fNIRS) for diagnosing psychiatric disorders, specifically in the contexts of China and Japan. These two countries are at the forefront of integrating fNIRS with VFT in clinical psychiatry, often employing this combination as a complementary tool alongside traditional psychiatric examinations. Our study aims to synthesize research findings on the hemodynamic responses elicited by VFT task in clinical settings of the two countries, analyzing variations in task design (phonological versus semantic), stimulus modality (auditory versus visual), and the impact of language typology. The focus on China and Japan is crucial, as it provides insights into the unique applications and adaptations of VFT in these linguistically and culturally distinct environments. By exploring these specific cases, our review underscores the importance of tailoring VFT to fit the linguistic and cultural context, thereby enhancing its validity and utility in cross-cultural psychiatric assessments.
Collapse
Affiliation(s)
- Yufei Ren
- Department of Foreign Languages and Literatures, Tsinghua University, Beijing, China
| | - Gang Cui
- Department of Foreign Languages and Literatures, Tsinghua University, Beijing, China
| | - Kun Feng
- Department of Psychiatry, Yuquan Hospital, Tsinghua University, Beijing, China
| | - Xiaoqian Zhang
- Department of Psychiatry, Yuquan Hospital, Tsinghua University, Beijing, China
| | | | - Pozi Liu
- Department of Psychiatry, Yuquan Hospital, Tsinghua University, Beijing, China
- School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
20
|
Khan H, Khadka R, Sultan MS, Yazidi A, Ombao H, Mirtaheri P. Unleashing the potential of fNIRS with machine learning: classification of fine anatomical movements to empower future brain-computer interface. Front Hum Neurosci 2024; 18:1354143. [PMID: 38435744 PMCID: PMC10904609 DOI: 10.3389/fnhum.2024.1354143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
In this study, we explore the potential of using functional near-infrared spectroscopy (fNIRS) signals in conjunction with modern machine-learning techniques to classify specific anatomical movements to increase the number of control commands for a possible fNIRS-based brain-computer interface (BCI) applications. The study focuses on novel individual finger-tapping, a well-known task in fNIRS and fMRI studies, but limited to left/right or few fingers. Twenty-four right-handed participants performed the individual finger-tapping task. Data were recorded by using sixteen sources and detectors placed over the motor cortex according to the 10-10 international system. The event's average oxygenated Δ HbO and deoxygenated Δ HbR hemoglobin data were utilized as features to assess the performance of diverse machine learning (ML) models in a challenging multi-class classification setting. These methods include LDA, QDA, MNLR, XGBoost, and RF. A new DL-based model named "Hemo-Net" has been proposed which consists of multiple parallel convolution layers with different filters to extract the features. This paper aims to explore the efficacy of using fNRIS along with ML/DL methods in a multi-class classification task. Complex models like RF, XGBoost, and Hemo-Net produce relatively higher test set accuracy when compared to LDA, MNLR, and QDA. Hemo-Net has depicted a superior performance achieving the highest test set accuracy of 76%, however, in this work, we do not aim at improving the accuracies of models rather we are interested in exploring if fNIRS has the neural signatures to help modern ML/DL methods in multi-class classification which can lead to applications like brain-computer interfaces. Multi-class classification of fine anatomical movements, such as individual finger movements, is difficult to classify with fNIRS data. Traditional ML models like MNLR and LDA show inferior performance compared to the ensemble-based methods of RF and XGBoost. DL-based method Hemo-Net outperforms all methods evaluated in this study and demonstrates a promising future for fNIRS-based BCI applications.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Mechanical, Electronics and Chemical Engineering, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Rabindra Khadka
- Department of Information Technology, Oslomet - Oslo Metropolitan University, Oslo, Norway
| | - Malik Shahid Sultan
- Department of Computer, Electrical and Mathematical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Anis Yazidi
- Department of Information Technology, Oslomet - Oslo Metropolitan University, Oslo, Norway
| | - Hernando Ombao
- Department of Computer, Electrical and Mathematical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Peyman Mirtaheri
- Department of Mechanical, Electronics and Chemical Engineering, OsloMet - Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
21
|
Shin JH, Kang MJ, Lee SA. Wearable functional near-infrared spectroscopy for measuring dissociable activation dynamics of prefrontal cortex subregions during working memory. Hum Brain Mapp 2024; 45:e26619. [PMID: 38339822 PMCID: PMC10858338 DOI: 10.1002/hbm.26619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The prefrontal cortex (PFC) has been extensively studied in relation to various cognitive abilities, including executive function, attention, and memory. Nevertheless, there is a gap in our scientific knowledge regarding the functionally dissociable neural dynamics across the PFC during a cognitive task and their individual differences in performance. Here, we explored this possibility using a delayed match-to-sample (DMTS) working memory (WM) task using NIRSIT, a high-density, wireless, wearable functional near-infrared spectroscopy (fNIRS) system. First, upon presentation of the sample stimulus, we observed an immediate signal increase in the ventral (orbitofrontal) region of the anterior PFC, followed by activity in the dorsolateral PFC. After the DMTS test stimulus appeared, the orbitofrontal cortex activated once again, while the rest of the PFC showed overall disengagement. Individuals with higher accuracy showed earlier and sustained activation of the PFC across the trial. Furthermore, higher network efficiency and functional connectivity in the PFC were correlated with individual WM performance. Our study sheds new light on the dynamics of PFC subregional activity during a cognitive task and its potential applicability in explaining individual differences in experimental, educational, or clinical populations. PRACTITIONER POINTS: Wearable functional near-infrared spectroscopy (fNIRS) captured dissociable temporal dynamics across prefrontal subregions during a delayed match-to-sample task. Anterior regions of the orbitofrontal cortex (OFC) activated first during the delay period, followed by the dorsolateral prefrontal cortex (PFC). PFC disengaged overall after the delay, but the OFC reactivated to the test stimulus. Earlier and sustained activation of PFC was associated with better accuracy. Functional connectivity and network efficiency also varied with task performance.
Collapse
Affiliation(s)
- Jung Han Shin
- Program of Brain and Cognitive EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonSouth Korea
- Department of Brain and Cognitive SciencesSeoul National UniversitySeoulSouth Korea
| | - Min Jun Kang
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonSouth Korea
| | - Sang Ah Lee
- Department of Brain and Cognitive SciencesSeoul National UniversitySeoulSouth Korea
| |
Collapse
|
22
|
Gao C, Li T. Gender specificity of frontal activity based on fNIRS in distinguishing bipolar depression population from health control. JOURNAL OF BIOPHOTONICS 2024; 17:e202300346. [PMID: 37934196 DOI: 10.1002/jbio.202300346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023]
Abstract
Bipolar depression (BD) is a chronic psychiatric disorder characterized by recurring bouts of bipolar mania or hypomania followed by depression. In this essay, we used the functional near-infrared spectroscopy to investigate the frontal function of BD in males and females, which included a total of 43 BD patients and 28 healthy subjects. The hemodynamic response associated with the task was estimated using the generalized linear model (GLM) approach. Wavelet transforms coherence and Granger causality (GC) methods were employed to calculate brain connectivity. GLM and GC results revealed that female patients were more distinguishable from healthy controls than males. Additionally, the correlation between BD scores and GLM results showed that the brain activation of male subjects was affected by their anxiety levels. This study suggests that traditional diagnostic methods for BD may not be as sensitive in men as in women.
Collapse
Affiliation(s)
- Chenyang Gao
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ting Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
23
|
Aquino G, Benz F, Dressle RJ, Gemignani A, Alfì G, Palagini L, Spiegelhalder K, Riemann D, Feige B. Towards the neurobiology of insomnia: A systematic review of neuroimaging studies. Sleep Med Rev 2024; 73:101878. [PMID: 38056381 DOI: 10.1016/j.smrv.2023.101878] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
Insomnia disorder signifies a major public health concern. The development of neuroimaging techniques has permitted to investigate brain mechanisms at a structural and functional level. The present systematic review aims at shedding light on functional, structural, and metabolic substrates of insomnia disorder by integrating the available published neuroimaging data. The databases PubMed, PsycARTICLES, PsycINFO, CINAHL and Web of Science were searched for case-control studies comparing neuroimaging data from insomnia patients and healthy controls. 85 articles were judged as eligible. For every observed finding of each study, the effect size was calculated from standardised mean differences, statistic parameters and figures, showing a marked heterogeneity that precluded a comprehensive quantitative analysis. From a qualitative point of view, considering the findings of significant group differences in the reported regions across the articles, this review highlights the major involvement of the anterior cingulate cortex, thalamus, insula, precuneus and middle frontal gyrus, thus supporting some central themes in the debate on the neurobiology of and offering interesting insights into the psychophysiology of sleep in this disorder.
Collapse
Affiliation(s)
- Giulia Aquino
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine - University of Pisa, Pisa, Italy.
| | - Fee Benz
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Raphael J Dressle
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Angelo Gemignani
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine - University of Pisa, Pisa, Italy
| | - Gaspare Alfì
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine - University of Pisa, Pisa, Italy
| | - Laura Palagini
- Department of Experimental and Clinic Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Kai Spiegelhalder
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Feige
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
24
|
Fu S, Liu F, Zhi X, Wang Y, Liu Y, Chen H, Wang Y, Luo M. Applications of functional near-infrared spectroscopy in non-drug therapy of traditional Chinese medicine: a review. Front Neurosci 2024; 17:1329738. [PMID: 38333602 PMCID: PMC10851877 DOI: 10.3389/fnins.2023.1329738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/31/2023] [Indexed: 02/10/2024] Open
Abstract
Non-drug therapies of traditional Chinese medicine (TCM), including acupuncture, massage, tai chi chuan, and Baduanjin, have emerged as widespread interventions for the treatment of various diseases in clinical practice. In recent years, preliminary studies on the mechanisms of non-drug therapies of TCM have been mostly based on functional near-infrared spectroscopy (fNIRS) technology. FNIRS is an innovative, non-invasive tool to monitor hemodynamic changes in the cerebral cortex. Our review included clinical research conducted over the last 10 years, establishing fNIRS as a reliable and stable neuroimaging technique. This review explores new applications of this technology in the field of neuroscience. First, we summarize the working principles of fNIRS. We then present preventive research on the use of fNIRS in healthy individuals and therapeutic research on patients undergoing non-drug therapies of TCM. Finally, we emphasize the potential for encouraging future advancements in fNIRS studies to establish a theoretical framework for research in related fields.
Collapse
Affiliation(s)
- Shifang Fu
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fanqi Liu
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoyu Zhi
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Wang
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yijia Liu
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Chen
- Department of Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanguo Wang
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingchi Luo
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
25
|
Khaksari K, Chen WL, Chanvanichtrakool M, Taylor A, Kotla R, Gropman AL. Applications of near-infrared spectroscopy in epilepsy, with a focus on mitochondrial disorders. Neurotherapeutics 2024; 21:e00323. [PMID: 38244258 PMCID: PMC10903079 DOI: 10.1016/j.neurot.2024.e00323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
Mitochondrial diseases are inherited disorders that impede the mitochondria's ability to produce sufficient energy for the cells. They can affect different parts of the body, notably the brain. Neurological symptoms and epilepsy are prevalent in patients with mitochondrial disorders. The epileptogenicity of mitochondrial disorder is a complex process involving the intricate interplay between abnormal energy metabolism and neuronal activity. Several modalities have been used to detect seizures in different disorders including mitochondrial disorders. EEG serve as the gold standard for diagnosis and localization, commonly complemented by additional imaging modalities to enhance source localization. In the current work, we propose the use of functional near-infrared spectroscopy (fNIRS) to identify the occurrence of epilepsy and seizure in patients with mitochondrial disorders. fNIRS proves an advantageous imaging technique due to its portability and insensitivity to motion especially for imaging infants and children. It has added a valuable factor to our understanding of energy metabolism and neuronal activity. Its real-time monitoring with high spatial resolution supplements traditional diagnostic tools such as EEG and provides a comprehensive understanding of seizure and epileptogenesis. The utility of fNIRS extends to its ability to detect changes in Cytochrome c oxidase (CcO) which is a crucial enzyme in cellular respiration. This facet enhances our insight into the metabolic dimension of epilepsy related to mitochondrial dysfunction. By providing valuable insights into both energy metabolism and neuronal activity, fNIRS emerges as a promising imaging technique for unveiling the complexities of mitochondrial disorders and their neurological manifestations.
Collapse
Affiliation(s)
- Kosar Khaksari
- Division of Neurogenetics and Developmental Pediatrics, Children's National Health System, Washington, DC, USA; Department of Neurology, George Washington University, Washington, DC, USA.
| | - Wei-Liang Chen
- Division of Neurogenetics and Developmental Pediatrics, Children's National Health System, Washington, DC, USA; Department of Neurology, George Washington University, Washington, DC, USA
| | - Mongkol Chanvanichtrakool
- Division of Neurogenetics and Developmental Pediatrics, Children's National Health System, Washington, DC, USA
| | - Alexa Taylor
- Division of Neurogenetics and Developmental Pediatrics, Children's National Health System, Washington, DC, USA
| | - Rohan Kotla
- Division of Neurogenetics and Developmental Pediatrics, Children's National Health System, Washington, DC, USA; Thomas Jefferson High School for Science and Technology, Alexandria, VA, USA
| | - Andrea L Gropman
- Division of Neurogenetics and Developmental Pediatrics, Children's National Health System, Washington, DC, USA; Department of Neurology, George Washington University, Washington, DC, USA
| |
Collapse
|
26
|
Shu Z, Wu J, Lu J, Li H, Liu J, Lin J, Liang S, Wu J, Han J, Yu N. Effective DBS treatment improves neural information transmission of patients with disorders of consciousness: an fNIRS study. Physiol Meas 2023; 44:125011. [PMID: 38086065 DOI: 10.1088/1361-6579/ad14ab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 12/12/2023] [Indexed: 12/30/2023]
Abstract
Objective.Deep brain stimulation (DBS) is a potential treatment that promotes the recovery of patients with disorders of consciousness (DOC). This study quantified the changes in consciousness and the neuromodulation effect of DBS on patients with DOC.Approach.Eleven patients were recruited for this study which consists of three conditions: 'Pre' (two days before DBS surgery), 'Post-On' (one month after surgery with stimulation), and 'Post-Off' (one month after surgery without stimulation). Functional near-infrared spectroscopy (fNIRS) was recorded from the frontal lobe, parietal lobe, and occipital lobe of patients during the experiment of auditory stimuli paradigm, in parallel with the coma recovery scale-revised (CRS-R) assessment. The brain hemodynamic states were defined and state transition acceleration was taken to quantify the information transmission strength of the brain network. Linear regression analysis was conducted between the changes in regional and global indicators and the changes in the CRS-R index.Main results.Significant correlation was observed between the changes in the global transition acceleration indicator and the changes in the CRS-R index (slope = 55.910,p< 0.001,R2= 0.732). For the regional indicators, similar correlations were found between the changes in the frontal lobe and parietal lobe indicators and the changes in the CRS-R index (slope = 46.612,p< 0.01,R2= 0.694; slope = 47.491,p< 0.01,R2= 0.676).Significance.Our study suggests that fNIRS-based brain hemodynamics transition analysis can signify the neuromodulation effect of DBS treatment on patients with DOC, and the transition acceleration indicator is a promising brain functional marker for DOC.
Collapse
Affiliation(s)
- Zhilin Shu
- College of Artificial Intelligence, Nankai University, Tianjin 300350, People's Republic of China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin 300350, People's Republic of China
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, People's Republic of China
| | - Jingchao Wu
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, People's Republic of China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Jiewei Lu
- College of Artificial Intelligence, Nankai University, Tianjin 300350, People's Republic of China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin 300350, People's Republic of China
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, People's Republic of China
| | - Haitao Li
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, People's Republic of China
| | - Jinrui Liu
- College of Artificial Intelligence, Nankai University, Tianjin 300350, People's Republic of China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin 300350, People's Republic of China
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, People's Republic of China
| | - Jianeng Lin
- College of Artificial Intelligence, Nankai University, Tianjin 300350, People's Republic of China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin 300350, People's Republic of China
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, People's Republic of China
| | - Siquan Liang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, People's Republic of China
| | - Jialing Wu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, People's Republic of China
- Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, People's Republic of China
| | - Jianda Han
- College of Artificial Intelligence, Nankai University, Tianjin 300350, People's Republic of China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin 300350, People's Republic of China
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, People's Republic of China
| | - Ningbo Yu
- College of Artificial Intelligence, Nankai University, Tianjin 300350, People's Republic of China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin 300350, People's Republic of China
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, People's Republic of China
| |
Collapse
|
27
|
Nakazawa K, Hirabayashi K, Kawai W, Kyutoku Y, Kawabata Duncan K, Dan I. Assessing functional impulsivity using functional near-infrared spectroscopy. FRONTIERS IN NEUROERGONOMICS 2023; 4:1207484. [PMID: 38234501 PMCID: PMC10790886 DOI: 10.3389/fnrgo.2023.1207484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/22/2023] [Indexed: 01/19/2024]
Abstract
Introduction In neuromarketing, a recently developing, inter-disciplinary field combining neuroscience and marketing, neurophysiological responses have been applied to understand consumers' behaviors. While many studies have focused on explicit attitudes, few have targeted implicit aspects. To explore the possibility of measuring implicit desire for a product, we focused on functional impulsivity related to obtaining a product as a reward and devised a product-rewarded traffic light task (PRTLT). The PRTLT requires participants to take risks under time pressure in order for them to maximize rewards in the form of commercial products, with the brand of products being an independent variable. Thus, we explored the feasibility of applying a PRTLT in a neuromarketing context to implicitly differentiate between the perceived value of products and supported our data with neurophysiological evidence obtained using fNIRS to concurrently monitor cortical activation. Methods Thirty healthy students were asked to perform the PRTLT. We compared participants' functional impulsivity toward two different chocolate products that had obviously different values. Along with their behavioral responses, participants' cerebral hemodynamic responses during the PRTLT were measured using fNIRS covering the lateral prefrontal cortices and the neighboring regions. We conducted adaptive general linear model (GLM) analysis for hemodynamic responses. First, we identified the regions involved in the PRTLT. Second, we compared activation patterns between expensive and inexpensive conditions. Results Behavioral analysis confirmed that the expensive condition trended toward producing a higher PRTLT score than did the inexpensive condition. fNIRS neuroimaging analysis showed task-derived activation in the bilateral dorsolateral prefrontal cortex (DLPFC) and frontopolar cortex (FPC). Moreover, we found significant differences between expensive and inexpensive conditions in the cortical activations in the FPC and the left-DLPFC. Conclusion These results imply that the two products evoked different functional impulsivity, and the hemodynamic responses reflect that. Thus, we concluded that it is possible to observe differences in demand for products using a PRTLT that evokes functional impulsivity. The current study presents a new possibility in neuromarketing research of observing differences between consumers' covert attitudes toward commercially available products, possibly providing a neural basis related to hidden needs for some products.
Collapse
Affiliation(s)
- Kenta Nakazawa
- Applied Cognitive Neuroscience Laboratory, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | | | - Wakana Kawai
- Applied Cognitive Neuroscience Laboratory, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Yasushi Kyutoku
- Applied Cognitive Neuroscience Laboratory, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | | | - Ippeita Dan
- Applied Cognitive Neuroscience Laboratory, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| |
Collapse
|
28
|
Compagne C, Mayer JT, Gabriel D, Comte A, Magnin E, Bennabi D, Tannou T. Adaptations of the balloon analog risk task for neuroimaging settings: a systematic review. Front Neurosci 2023; 17:1237734. [PMID: 37790591 PMCID: PMC10544912 DOI: 10.3389/fnins.2023.1237734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/16/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction The Balloon Analog Risk Task (BART), a computerized behavioral paradigm, is one of the most common tools used to assess the risk-taking propensity of an individual. Since its initial behavioral version, the BART has been adapted to neuroimaging technique to explore brain networks of risk-taking behavior. However, while there are a variety of paradigms adapted to neuroimaging to date, no consensus has been reached on the best paradigm with the appropriate parameters to study the brain during risk-taking assessed by the BART. In this review of the literature, we aimed to identify the most appropriate BART parameters to adapt the initial paradigm to neuroimaging and increase the reliability of this tool. Methods A systematic review focused on the BART versions adapted to neuroimaging was performed in accordance with PRISMA guidelines. Results A total of 105 articles with 6,879 subjects identified from the PubMed database met the inclusion criteria. The BART was adapted in four neuroimaging techniques, mostly in functional magnetic resonance imaging or electroencephalography settings. Discussion First, to adapt the BART to neuroimaging, a delay was included between each trial, the total number of inflations was reduced between 12 and 30 pumps, and the number of trials was increased between 80 and 100 balloons, enabling us to respect the recording constraints of neuroimaging. Second, explicit feedback about the balloon burst limited the decisions under ambiguity associated with the first trials. Third, employing an outcome index that provides more informative measures than the standard average pump score, along with a model incorporating an exponential monotonic increase in explosion probability and a maximum explosion probability between 50 and 75%, can yield a reliable estimation of risk profile. Additionally, enhancing participant motivation can be achieved by increasing the reward in line with the risk level and implementing payment based on their performance in the BART. Although there is no universal adaptation of the BART to neuroimaging, and depending on the objectives of a study, an adjustment of parameters optimizes its evaluation and clinical utility in assessing risk-taking.
Collapse
Affiliation(s)
- Charline Compagne
- UR LINC, Université de Franche-Comté, Besançon, France
- CIC-1431 INSERM, Centre Hospitalier Universitaire, Besançon, France
| | - Juliana Teti Mayer
- UR LINC, Université de Franche-Comté, Besançon, France
- Centre Département de Psychiatrie de l’Adulte, Centre Hospitalier Universitaire, Besançon, France
| | - Damien Gabriel
- UR LINC, Université de Franche-Comté, Besançon, France
- CIC-1431 INSERM, Centre Hospitalier Universitaire, Besançon, France
- Plateforme de Neuroimagerie Fonctionnelle Neuraxess, Besançon, France
| | - Alexandre Comte
- UR LINC, Université de Franche-Comté, Besançon, France
- Centre Département de Psychiatrie de l’Adulte, Centre Hospitalier Universitaire, Besançon, France
| | - Eloi Magnin
- UR LINC, Université de Franche-Comté, Besançon, France
- CHU Département de Neurologie, Centre Hospitalier Universitaire, Besançon, France
| | - Djamila Bennabi
- UR LINC, Université de Franche-Comté, Besançon, France
- Centre Département de Psychiatrie de l’Adulte, Centre Hospitalier Universitaire, Besançon, France
- Centre Expert Dépression Résistante Fondamentale, Centre Hospitalier Universitaire, Besançon, France
| | - Thomas Tannou
- UR LINC, Université de Franche-Comté, Besançon, France
- Plateforme de Neuroimagerie Fonctionnelle Neuraxess, Besançon, France
- CIUSS Centre-Sud de l’Ile de Montréal, Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| |
Collapse
|
29
|
Tillmann B, Graves JE, Talamini F, Lévêque Y, Fornoni L, Hoarau C, Pralus A, Ginzburg J, Albouy P, Caclin A. Auditory cortex and beyond: Deficits in congenital amusia. Hear Res 2023; 437:108855. [PMID: 37572645 DOI: 10.1016/j.heares.2023.108855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/14/2023] [Accepted: 07/21/2023] [Indexed: 08/14/2023]
Abstract
Congenital amusia is a neuro-developmental disorder of music perception and production, with the observed deficits contrasting with the sophisticated music processing reported for the general population. Musical deficits within amusia have been hypothesized to arise from altered pitch processing, with impairments in pitch discrimination and, notably, short-term memory. We here review research investigating its behavioral and neural correlates, in particular the impairments at encoding, retention, and recollection of pitch information, as well as how these impairments extend to the processing of pitch cues in speech and emotion. The impairments have been related to altered brain responses in a distributed fronto-temporal network, which can be observed also at rest. Neuroimaging studies revealed changes in connectivity patterns within this network and beyond, shedding light on the brain dynamics underlying auditory cognition. Interestingly, some studies revealed spared implicit pitch processing in congenital amusia, showing the power of implicit cognition in the music domain. Building on these findings, together with audiovisual integration and other beneficial mechanisms, we outline perspectives for training and rehabilitation and the future directions of this research domain.
Collapse
Affiliation(s)
- Barbara Tillmann
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, Université Claude Bernard Lyon 1, UMR5292, U1028, F-69500, Bron, France; Laboratory for Research on Learning and Development, Université de Bourgogne, LEAD - CNRS UMR5022, Dijon, France; LEAD-CNRS UMR5022; Université Bourgogne Franche-Comté; Pôle AAFE; 11 Esplanade Erasme; 21000 Dijon, France.
| | - Jackson E Graves
- Laboratoire des systèmes perceptifs, Département d'études cognitives, École normale supérieure, PSL University, Paris 75005, France
| | | | - Yohana Lévêque
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, Université Claude Bernard Lyon 1, UMR5292, U1028, F-69500, Bron, France
| | - Lesly Fornoni
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, Université Claude Bernard Lyon 1, UMR5292, U1028, F-69500, Bron, France
| | - Caliani Hoarau
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, Université Claude Bernard Lyon 1, UMR5292, U1028, F-69500, Bron, France
| | - Agathe Pralus
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, Université Claude Bernard Lyon 1, UMR5292, U1028, F-69500, Bron, France
| | - Jérémie Ginzburg
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, Université Claude Bernard Lyon 1, UMR5292, U1028, F-69500, Bron, France
| | - Philippe Albouy
- CERVO Brain Research Center, School of Psychology, Laval University, Québec, G1J 2G3; International Laboratory for Brain, Music and Sound Research (BRAMS), CRBLM, Montreal QC, H2V 2J2, Canada
| | - Anne Caclin
- CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, Université Claude Bernard Lyon 1, UMR5292, U1028, F-69500, Bron, France.
| |
Collapse
|
30
|
Powers S, Han X, Martinez J, Dufford AJ, Metz TD, Yeh T, Kim P. Cannabis use during pregnancy and hemodynamic responses to infant cues in pregnancy: an exploratory study. Front Psychiatry 2023; 14:1180947. [PMID: 37743996 PMCID: PMC10512021 DOI: 10.3389/fpsyt.2023.1180947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Cannabis is one of the most commonly used substances during pregnancy and has the potential to negatively impact parent-infant relationships. The prefrontal cortex (PFC) response to infant cues during pregnancy has been associated with subsequent positive parenting behaviors. However, PFC activation is altered in individuals who use cannabis. As the potency of cannabis has changed over the years, little is known about the specific role of cannabis use on gestational parent brain responses to infant cues. Materials and methods Using functional Near-Infrared Spectroscopy (fNIRS) in the second trimester of pregnancy, we measured hemodynamic responses to an infant cry task and an infant faces task among individuals who were using cannabis (N = 14) and compared them with those who were not using cannabis (N = 45). For the infant cry task, pregnant individuals listened to cry sounds and matched white noise. For the infant faces task, they viewed happy, sad, and neutral faces. Results There was no significant difference between the two groups after adjusting for multiple comparisons. Without adjusting for multiple comparisons, we found preliminary evidence for the differences in the dorsomedial PFC associated with heightened response to infant cry among individuals who use cannabis. The groups were also different in the dorsolateral PFC associated with decreased response to infant sad faces among individuals who use cannabis. Discussion Our preliminary data suggests that cannabis use during pregnancy was associated with brain activation in the regions involved in the emotional regulation and information processes. However, the results did not survive after adjustment for multiple comparisons, thus future research with larger sample sizes is needed to confirm potential differences in brain function among cannabis-using pregnant individuals.
Collapse
Affiliation(s)
- Shannon Powers
- University of Denver, Psychology, Denver, CO, United States
| | - Xu Han
- University of Colorado, Computer Science, Boulder, CO, United States
| | | | - Alexander John Dufford
- Department of Medical Social Sciences and Institute for Innovations in Developmental Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Torri D. Metz
- University of Utah Health, Obstetrics/Gynecology, Salt Lake City, UT, United States
| | - Tom Yeh
- University of Colorado, Computer Science, Boulder, CO, United States
| | - Pilyoung Kim
- University of Denver, Psychology, Denver, CO, United States
- Department of Psychology, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
31
|
Mateo Santana A, Grabell AS. Incongruent affect in early childhood: Neurobiological markers and links to psychopathology. Emotion 2023; 23:1562-1574. [PMID: 36355672 PMCID: PMC10169541 DOI: 10.1037/emo0001180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Researchers have long investigated emotion-related facial expressions, such as smiling and frowning, to further the field's understanding of behavior, emotions, and psychopathology. Fewer studies have examined incongruent affect; facial expressions that do not match internal emotional experiences (e.g., smiling during frustration). Although not extensive, current accounts of incongruent affect in early childhood have assumed that these expressions indicate masking, an active regulatory process. Thus, many researchers contend that incongruent affect represents an adaptive emotion regulation strategy. However, little attention has been paid to incongruent affect, and its neurobiological correlates in early childhood. The present study examined complete versus partial incongruent smiling in preschool-aged children (3.5- to 5-years-old) who completed a frustration-eliciting task. We examined simultaneous neurobiological markers of incongruent smiles using functional near-infrared spectroscopy (fNIRS) and galvanic skin response (GSR) and tested links to parent-rated emotion regulation and psychopathology. Neutral and negative expressions were assessed as comparison expressions. Results revealed that complete incongruent smiling predicted poor effortful control, whereas partial incongruent smiling was not a significant predictor of regulation, neurobiological changes, or psychopathology. Neutral expressions predicted better effortful control skills and adaptive physiological response patterns. Results suggest that incongruent affect may signal poor regulation of positive affectivity in low-interpersonal contexts, while neutral expressions may act as masking expressions. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Adam S Grabell
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst
| |
Collapse
|
32
|
Subramanian A, Najafizadeh L. Hierarchical Classification Strategy for Mitigating the Impact of The Presence of Pain in fNIRS-based BCIs. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083794 DOI: 10.1109/embc40787.2023.10341152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Brain computer interfaces (BCIs) can find applications in assistive systems for patients who experience conditions that impede their motor abilities. A BCI uses signals acquired from the brain to control external devices. As physical pain influences cortical signals, the presence of pain can negatively impact the performance of the BCI. In this work, we propose a strategy to mitigate this negative impact. Cortical signals are acquired from test subjects while they performed two mental arithmetic tasks, in the presence and the absence of painful stimuli. The task of the BCI is to reliably classify the two mental arithmetic tasks from the cortical recordings, irrespective of the presence or the absence of pain. We propose to do this classification, hierarchically, in two levels. In the first level, the data is classified into those captured in the presence and the absence of pain. Depending on the results of the classification from the first level, in the second level, the BCI performs the classification of tasks using a classifier trained either in the presence or the absence of pain. A 1-dimensional convolutional neural network (1D-CNN) is used for classification at both levels. It is observed that using this hierarchical strategy, the BCI is able to classify the tasks with an accuracy greater than 90%, irrespective of the presence or the absence of pain. Given that the presence of physical pain has shown previously to reduce the classification accuracy of a BCI to almost chance levels, this mitigation strategy will be a significant step towards enhancing the performance of BCIs when they are used in assistive systems for patients.
Collapse
|
33
|
Zeng X, Tang W, Yang J, Lin X, Du M, Chen X, Yuan Z, Zhang Z, Chen Z. Diagnosis of Chronic Musculoskeletal Pain by Using Functional Near-Infrared Spectroscopy and Machine Learning. Bioengineering (Basel) 2023; 10:669. [PMID: 37370599 DOI: 10.3390/bioengineering10060669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic pain (CP) has been found to cause significant alternations of the brain's structure and function due to changes in pain processing and disrupted cognitive functions, including with respect to the prefrontal cortex (PFC). However, until now, no studies have used a wearable, low-cost neuroimaging tool capable of performing functional near-infrared spectroscopy (fNIRS) to explore the functional alternations of the PFC and thus automatically achieve a clinical diagnosis of CP. In this case-control study, the pain characteristics of 19 chronic pain patients and 32 healthy controls were measured using fNIRS. Functional connectivity (FC), FC in the PFC, and spontaneous brain activity of the PFC were examined in the CP patients and compared to those of healthy controls (HCs). Then, leave-one-out cross-validation and machine learning algorithms were used to automatically achieve a diagnosis corresponding to a CP patient or an HC. The current study found significantly weaker FC, notably higher small-worldness properties of FC, and increased spontaneous brain activity during resting state within the PFC. Additionally, the resting-state fNIRS measurements exhibited excellent performance in identifying the chronic pain patients via supervised machine learning, achieving F1 score of 0.8229 using only seven features. It is expected that potential FC features can be identified, which can thus serve as a neural marker for the detection of CP using machine learning algorithms. Therefore, the present study will open a new avenue for the diagnosis of chronic musculoskeletal pain by using fNIRS and machine learning techniques.
Collapse
Affiliation(s)
- Xinglin Zeng
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang 421000, China
- Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China
| | - Wen Tang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Jiajia Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Xiange Lin
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Meng Du
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Xueli Chen
- School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi'an 710126, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China
| | - Zhou Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Zhiyi Chen
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang 421000, China
| |
Collapse
|
34
|
Nguyen T, Behrens M, Broscheid KC, Bielitzki R, Weber S, Libnow S, Malczewski V, Baldauf L, Milberger X, Jassmann L, Wustmann A, Meiler K, Drange S, Franke J, Schega L. Associations between gait performance and pain intensity, psychosocial factors, executive functions as well as prefrontal cortex activity in chronic low back pain patients: A cross-sectional fNIRS study. Front Med (Lausanne) 2023; 10:1147907. [PMID: 37215712 PMCID: PMC10196398 DOI: 10.3389/fmed.2023.1147907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/13/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Activities of daily living, such as walking, are impaired in chronic low back pain (CLBP) patients compared to healthy individuals. Thereby, pain intensity, psychosocial factors, cognitive functioning and prefrontal cortex (PFC) activity during walking might be related to gait performance during single and dual task walking (STW, DTW). However, to the best of our knowledge, these associations have not yet been explored in a large sample of CLBP patients. Method Gait kinematics (inertial measurement units) and PFC activity (functional near-infrared spectroscopy) during STW and DTW were measured in 108 CLBP patients (79 females, 29 males). Additionally, pain intensity, kinesiophobia, pain coping strategies, depression and executive functioning were quantified and correlation coefficients were calculated to determine the associations between parameters. Results The gait parameters showed small correlations with acute pain intensity, pain coping strategies and depression. Stride length and velocity during STW and DTW were (slightly to moderately) positively correlated with executive function test performance. Specific small to moderate correlations were found between the gait parameters and dorsolateral PFC activity during STW and DTW. Conclusion Patients with higher acute pain intensity and better coping skills demonstrated slower and less variable gait, which might reflect a pain minimization strategy. Psychosocial factors seem to play no or only a minor role, while good executive functions might be a prerequisite for a better gait performance in CLBP patients. The specific associations between gait parameters and PFC activity during walking indicate that the availability and utilization of brain resources are crucial for a good gait performance.
Collapse
Affiliation(s)
- Toan Nguyen
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Behrens
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Kim-Charline Broscheid
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Robert Bielitzki
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Saskia Weber
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Saskia Libnow
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Victoria Malczewski
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Lukas Baldauf
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Xenia Milberger
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Lena Jassmann
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Anne Wustmann
- Department of Orthopaedic Surgery, Klinikum Magdeburg gGmbH, Magdeburg, Germany
| | - Katharina Meiler
- Department of Orthopaedic Surgery, Klinikum Magdeburg gGmbH, Magdeburg, Germany
| | - Steffen Drange
- Department of Orthopaedic Surgery, Klinikum Magdeburg gGmbH, Magdeburg, Germany
| | - Jörg Franke
- Department of Orthopaedic Surgery, Klinikum Magdeburg gGmbH, Magdeburg, Germany
| | - Lutz Schega
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
35
|
Figeys M, Loucks TM, Leung AWS, Kim ES. Transcranial direct current stimulation over the right dorsolateral prefrontal cortex increases oxyhemoglobin concentration and cognitive performance dependent on cognitive load. Behav Brain Res 2023; 443:114343. [PMID: 36787866 DOI: 10.1016/j.bbr.2023.114343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/20/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Transcranial direct current stimulation (tDCS) has been explored as a potential method for cognitive enhancement. tDCS may induce a cascade of neurophysiological changes including alterations in cerebral oxygenation. However, the effects of tDCS on the cognitive-cerebral oxygenation interaction remains unclear. Further, oxygenation variability across individuals remains minimally controlled for. The purpose of this sham-controlled study was to test the effects of anodal tDCS over the right dorsolateral prefrontal cortex (DLPFC) on the interaction between working memory and cerebral oxygenation while controlling for individual oxygenation variability. Thirty-three adults received resting-state functional near-infrared spectroscopy (fNIRS) recordings over bilateral prefrontal cortices. Following this, working memory was tested using a Toulouse n-back task concurrently paired with fNIRS, with measurements taken before and after 20 min of anodal or sham tDCS at 1.5 mA. With individual oxygenation controlled for, anodal tDCS was found to increase the oxyhemoglobin concentration over the right DLPFC during the 2-back (q = .015) and 3-back (q = .008) conditions. Additionally, anodal tDCS was found to improve accuracy during the 3-back task by 13.4 % (p = .028) and decrease latency by 250 ms (p = .013). The increase in oxyhemoglobin was strongly correlated with increases in accuracy (p = .041) and decreases in latency during the 3-back span (p = .017). Taken together, anodal tDCS over the right DLPFC was found to regionally increase oxyhemoglobin concentrations and improve working memory performance in higher cognitive load conditions.
Collapse
Affiliation(s)
- Mathieu Figeys
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton T6G 2G4, Alberta, Canada.
| | - Torrey M Loucks
- Department of Communication Sciences and Disorders, School of Applied Health Sciences, Brooks Rehabilitation College of Healthcare Sciences, Jacksonville University - Palm Coast Campus, FL, United States
| | - Ada W S Leung
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton T6G 2G4, Alberta, Canada; Department of Occupational Therapy, University of Alberta, Edmonton T6G 2G4, Alberta, Canada
| | - Esther S Kim
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton T6G 2G4, Alberta, Canada; Department of Communication Sciences and Disorders, University of Alberta, Edmonton T6G 2G4, Alberta, Canada
| |
Collapse
|
36
|
Akın Öztürk G, Ermiş G, Eskicioğlu E, Güdücü Ç. The Pitfalls and Perspectives of Assessing Olfactory Function via Optical Brain Imaging. Turk Arch Otorhinolaryngol 2023; 61:37-42. [PMID: 37583975 PMCID: PMC10424587 DOI: 10.4274/tao.2023.2023-1-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/02/2023] [Indexed: 08/17/2023] Open
Abstract
Olfaction is critical for maintaining daily life activities. It is crucial to measure olfactory performance for the diagnosis and treatment of certain neurodegenerative diseases. Moreover, impairments and a lack of quality in the olfactory system may indicate the early diagnosis of some diseases such as Parkinson's. In this context, there are several imaging methods available for evaluating olfactory function. In addition to the conventional methods used in measuring the brain's responsiveness to olfactory stimuli, this article presents a systematic review of the current applicability of optical brain imaging (i.e., functional near-infrared spectroscopy) in the evaluation of olfactory function. A database literature search was conducted in PubMed, Scopus, the Web of Science, and ScienceDirect. This review excluded animal studies, clinical studies, pathology- or neurodegenerative disease-related studies, newborn-related studies, cross-modal- and dual-task-related studies, and non-original research studies. Thus, seven studies were examined to discuss the pitfalls and perspectives of the use of optical brain imaging under olfactory stimulation. As for this conclusion, they can be used to evaluate olfactory performance in healthy individuals through the interpretation of hemodynamic changes. Further studies are needed to standardize the applicability of these optical imaging techniques.
Collapse
Affiliation(s)
- Güliz Akın Öztürk
- Department of Biophysics, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Gizem Ermiş
- Department of Biophysics, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Emre Eskicioğlu
- Department of Biophysics, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Çağdaş Güdücü
- Department of Biophysics, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| |
Collapse
|
37
|
Doherty EJ, Spencer CA, Burnison J, Čeko M, Chin J, Eloy L, Haring K, Kim P, Pittman D, Powers S, Pugh SL, Roumis D, Stephens JA, Yeh T, Hirshfield L. Interdisciplinary views of fNIRS: Current advancements, equity challenges, and an agenda for future needs of a diverse fNIRS research community. Front Integr Neurosci 2023; 17:1059679. [PMID: 36922983 PMCID: PMC10010439 DOI: 10.3389/fnint.2023.1059679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
Functional Near-Infrared Spectroscopy (fNIRS) is an innovative and promising neuroimaging modality for studying brain activity in real-world environments. While fNIRS has seen rapid advancements in hardware, software, and research applications since its emergence nearly 30 years ago, limitations still exist regarding all three areas, where existing practices contribute to greater bias within the neuroscience research community. We spotlight fNIRS through the lens of different end-application users, including the unique perspective of a fNIRS manufacturer, and report the challenges of using this technology across several research disciplines and populations. Through the review of different research domains where fNIRS is utilized, we identify and address the presence of bias, specifically due to the restraints of current fNIRS technology, limited diversity among sample populations, and the societal prejudice that infiltrates today's research. Finally, we provide resources for minimizing bias in neuroscience research and an application agenda for the future use of fNIRS that is equitable, diverse, and inclusive.
Collapse
Affiliation(s)
- Emily J. Doherty
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| | - Cara A. Spencer
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| | | | - Marta Čeko
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| | - Jenna Chin
- College of Arts, Humanities, and Social Sciences, Psychology, University of Denver, Denver, CO, United States
| | - Lucca Eloy
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| | - Kerstin Haring
- Department of Computer Science, University of Denver, Denver, CO, United States
| | - Pilyoung Kim
- College of Arts, Humanities, and Social Sciences, Psychology, University of Denver, Denver, CO, United States
| | - Daniel Pittman
- Department of Computer Science, University of Denver, Denver, CO, United States
| | - Shannon Powers
- College of Arts, Humanities, and Social Sciences, Psychology, University of Denver, Denver, CO, United States
| | - Samuel L. Pugh
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| | | | - Jaclyn A. Stephens
- Department of Occupational Therapy, Colorado State University, Fort Collins, CO, United States
| | - Tom Yeh
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States
| | - Leanne Hirshfield
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
38
|
Poliakova E, Conrad AL, Schieltz KM, O'Brien MJ. Using fNIRS to evaluate ADHD medication effects on neuronal activity: A systematic literature review. FRONTIERS IN NEUROIMAGING 2023; 2:1083036. [PMID: 37033327 PMCID: PMC10078617 DOI: 10.3389/fnimg.2023.1083036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023]
Abstract
Background Functional near infrared spectroscopy (fNIRS) is a relatively non-invasive and inexpensive functional neuroimaging technique that has shown promise as a method for understanding the differences in neuronal activity associated with various neurodevelopmental conditions, including ADHD. Additionally, fNIRS has been suggested as a possible tool to understand the impact of psychotropic medications on brain activity in individuals with ADHD, but this approach is still in its infancy. Objective The purpose of this systematic literature review was to synthesize the extant research literature on the use of fNIRS to assess the effects of ADHD medications on brain activity in children and adolescents with ADHD. Methods A literature search following Preferred Reporting Items for Systematic Literature Reviews and Meta-Analyses (PRISMA) guidelines was conducted for peer-reviewed articles related to ADHD, medication, and fNIRS in PsychInfo, Scopus, and PubMed electronic databases. Results The search yielded 23 published studies meeting inclusion criteria. There was a high degree of heterogeneity in terms of the research methodology and procedures, which is explained in part by the distinct goals and approaches of the studies reviewed. However, there was also relative consistency in outcomes among a select group of studies that demonstrated a similar research focus. Conclusion Although fNIRS has great potential to further our understanding of the effects of ADHD medications on the neuronal activity of children and adolescents with ADHD, the current research base is still relatively small and there are limitations and methodological inconsistencies that should be addressed in future studies.
Collapse
Affiliation(s)
- Eva Poliakova
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, United States
| | - Amy L. Conrad
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, United States
- Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Kelly M. Schieltz
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, United States
- Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Matthew J. O'Brien
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, United States
- Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
39
|
Real-time cerebral response of two classic acupuncture manipulations: Protocol for a randomized crossover fNIRS trial 两种不同古典针刺手法的实时中枢整合特征研究:一项基于近红外光谱成像技术的随机交叉试验研究方案. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2022. [DOI: 10.1016/j.wjam.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Harada T, Iwabuchi T, Senju A, Nakayasu C, Nakahara R, Tsuchiya KJ, Hoshi Y. Neural mechanisms underlying rule selection based on response evaluation: a near-infrared spectroscopy study. Sci Rep 2022; 12:20696. [PMID: 36450790 PMCID: PMC9712370 DOI: 10.1038/s41598-022-25185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
The ability of humans to use rules for organizing action demands a high level of executive control. Situational complexity mediates rule selection, from the adoption of a given rule to the selection of complex rules to achieve an appropriate response. Several rules have been proposed to be superordinate to human behavior in a cognitive hierarchy and mediated by different brain regions. In the present study, using a novel rule-selection task based on pre-response evaluations that require several cognitive operations, we examined whether the task is mediated by a specific region of the prefrontal cortex using near-infrared spectroscopy. We showed that the selection of rules, including prior evaluation of a stimulus, activates broader areas of the prefrontal and premotor regions than response selection based on a given rule. The results are discussed in terms of hierarchical cognitive models, the functional specialization of multiple-cognitive operations in the prefrontal cortex, and their contribution to a novel cognitive task.
Collapse
Affiliation(s)
- Taeko Harada
- grid.505613.40000 0000 8937 6696Research Center for Child Mental Development, Hamamatsu University School of Medicine, Japan, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192 Japan ,grid.505613.40000 0000 8937 6696United Graduate School of Child Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192 Japan
| | - Toshiki Iwabuchi
- grid.505613.40000 0000 8937 6696Research Center for Child Mental Development, Hamamatsu University School of Medicine, Japan, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192 Japan ,grid.505613.40000 0000 8937 6696United Graduate School of Child Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192 Japan
| | - Atsushi Senju
- grid.505613.40000 0000 8937 6696Research Center for Child Mental Development, Hamamatsu University School of Medicine, Japan, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192 Japan ,grid.505613.40000 0000 8937 6696United Graduate School of Child Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192 Japan
| | - Chikako Nakayasu
- grid.505613.40000 0000 8937 6696Research Center for Child Mental Development, Hamamatsu University School of Medicine, Japan, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192 Japan
| | - Ryuji Nakahara
- grid.471903.80000 0004 0373 1079Early Childhood Education, Okazaki Women’s Junior College, 1-8-4 Nakamachi, Okazaki, Aichi 444-0015 Japan
| | - Kenji J Tsuchiya
- grid.505613.40000 0000 8937 6696Research Center for Child Mental Development, Hamamatsu University School of Medicine, Japan, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192 Japan ,grid.505613.40000 0000 8937 6696United Graduate School of Child Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192 Japan
| | - Yoko Hoshi
- grid.505613.40000 0000 8937 6696Department of Biomedical Optics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192 Japan
| |
Collapse
|
41
|
Purohit R, Bhatt T. Mobile Brain Imaging to Examine Task-Related Cortical Correlates of Reactive Balance: A Systematic Review. Brain Sci 2022; 12:1487. [PMID: 36358413 PMCID: PMC9688648 DOI: 10.3390/brainsci12111487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 02/18/2024] Open
Abstract
This systematic review examined available findings on spatial and temporal characteristics of cortical activity in response to unpredicted mechanical perturbations. Secondly, this review investigated associations between cortical activity and behavioral/biomechanical measures. Databases were searched from 1980-2021 and a total of 35 cross-sectional studies (31 EEG and 4 fNIRS) were included. Majority of EEG studies assessed perturbation-evoked potentials (PEPs), whereas other studies assessed changes in cortical frequencies. Further, fNIRS studies assessed hemodynamic changes. The PEP-N1, commonly identified at sensorimotor areas, was most examined and was influenced by context prediction, perturbation magnitude, motor adaptation and age. Other PEPs were identified at frontal, parietal and sensorimotor areas and were influenced by task position. Further, changes in cortical frequencies were observed at prefrontal, sensorimotor and parietal areas and were influenced by task difficulty. Lastly, hemodynamic changes were observed at prefrontal and frontal areas and were influenced by task prediction. Limited studies reported associations between cortical and behavioral outcomes. This review provided evidence regarding the involvement of cerebral cortex for sensory processing of unpredicted perturbations, error-detection of expected versus actual postural state, and planning and execution of compensatory stepping responses. There is still limited evidence examining cortical activity during reactive balance tasks in populations with high fall-risk.
Collapse
Affiliation(s)
- Rudri Purohit
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Ph.D. Program in Rehabilitation Sciences, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Tanvi Bhatt
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
42
|
Zhong H, Wang J, Li H, Tian J, Fang J, Xu Y, Jiao W, Li G. Reorganization of Brain Functional Network during Task Switching before and after Mental Fatigue. SENSORS (BASEL, SWITZERLAND) 2022; 22:8036. [PMID: 36298387 PMCID: PMC9611295 DOI: 10.3390/s22208036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Mental fatigue is a widely studied topic on account of its serious negative effects. But how the neural mechanism of task switching before and after mental fatigue remains a question. To this end, this study aims to use brain functional network features to explore the answer to this question. Specifically, task-state EEG signals were recorded from 20 participants. The tasks include a 400-s 2-back-task (2-BT), followed by a 6480-s of mental arithmetic task (MAT), and then a 400-s 2-BT. Network features and functional connections were extracted and analyzed based on the selected task switching states, referred to from Pre_2-BT to Pre_MAT before mental fatigue and from Post_MAT to Post_2-BT after mental fatigue. The results showed that mental fatigue has been successfully induced by long-term MAT based on the significant changes in network characteristics and the high classification accuracy of 98% obtained with Support Vector Machines (SVM) between Pre_2-BT and Post_2-BT. when the task switched from Pre_2-BT to Pre_MAT, delta and beta rhythms exhibited significant changes among all network features and the selected functional connections showed an enhanced trend. As for the task switched from Post_MAT to Post_2-BT, the network features and selected functional connectivity of beta rhythm were opposite to the trend of task switching before mental fatigue. Our findings provide new insights to understand the neural mechanism of the brain in the process of task switching and indicate that the network features and functional connections of beta rhythm can be used as neural markers for task switching before and after mental fatigue.
Collapse
Affiliation(s)
- Hongyang Zhong
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Provincial, Zhejiang Normal University, Jinhua 321004, China
- College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jie Wang
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Provincial, Zhejiang Normal University, Jinhua 321004, China
- College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China
| | - Huayun Li
- College of Teacher Education, Zhejiang Normal University, Jinhua 321004, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua 321004, China
| | - Jinghong Tian
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Provincial, Zhejiang Normal University, Jinhua 321004, China
- College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Jiaqi Fang
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Provincial, Zhejiang Normal University, Jinhua 321004, China
- College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Yanting Xu
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Provincial, Zhejiang Normal University, Jinhua 321004, China
- College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Weidong Jiao
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Provincial, Zhejiang Normal University, Jinhua 321004, China
- College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Gang Li
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Provincial, Zhejiang Normal University, Jinhua 321004, China
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
43
|
Loriette C, Amengual JL, Ben Hamed S. Beyond the brain-computer interface: Decoding brain activity as a tool to understand neuronal mechanisms subtending cognition and behavior. Front Neurosci 2022; 16:811736. [PMID: 36161174 PMCID: PMC9492914 DOI: 10.3389/fnins.2022.811736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
One of the major challenges in system neurosciences consists in developing techniques for estimating the cognitive information content in brain activity. This has an enormous potential in different domains spanning from clinical applications, cognitive enhancement to a better understanding of the neural bases of cognition. In this context, the inclusion of machine learning techniques to decode different aspects of human cognition and behavior and its use to develop brain-computer interfaces for applications in neuroprosthetics has supported a genuine revolution in the field. However, while these approaches have been shown quite successful for the study of the motor and sensory functions, success is still far from being reached when it comes to covert cognitive functions such as attention, motivation and decision making. While improvement in this field of BCIs is growing fast, a new research focus has emerged from the development of strategies for decoding neural activity. In this review, we aim at exploring how the advanced in decoding of brain activity is becoming a major neuroscience tool moving forward our understanding of brain functions, providing a robust theoretical framework to test predictions on the relationship between brain activity and cognition and behavior.
Collapse
Affiliation(s)
- Célia Loriette
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon 1, Bron, France
| | | | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon 1, Bron, France
| |
Collapse
|
44
|
Fiske A, de Klerk C, Lui KYK, Collins-Jones L, Hendry A, Greenhalgh I, Hall A, Scerif G, Dvergsdal H, Holmboe K. The neural correlates of inhibitory control in 10-month-old infants: A functional near-infrared spectroscopy study. Neuroimage 2022; 257:119241. [PMID: 35537598 PMCID: PMC7616317 DOI: 10.1016/j.neuroimage.2022.119241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Inhibitory control, a core executive function, emerges in infancy and develops rapidly across childhood. Methodological limitations have meant that studies investigating the neural correlates underlying inhibitory control in infancy are rare. Employing functional near-infrared spectroscopy alongside a novel touchscreen task that measures response inhibition, this study aimed to uncover the neural underpinnings of inhibitory control in 10-month-old infants (N = 135). We found that when inhibition was required, the right prefrontal and parietal cortices were more activated than when there was no inhibitory demand. This demonstrates that inhibitory control in infants as young as 10 months of age is supported by similar brain areas as in older children and adults. With this study we have lowered the age-boundary for localising the neural substrates of response inhibition to the first year of life.
Collapse
Affiliation(s)
- Abigail Fiske
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom.
| | - Carina de Klerk
- Department of Psychology, University of Essex, Essex, United Kingdom
| | - Katie Y K Lui
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - Liam Collins-Jones
- Department of Medical Physics & Biomedical Engineering, University College London, London, United Kingdom
| | - Alexandra Hendry
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Isobel Greenhalgh
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Anna Hall
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom; Institute of Mental Health, University College London, London, United Kingdom
| | - Gaia Scerif
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Henrik Dvergsdal
- Nord University Business School, Department of Entrepreneurship, Innovation and Organisation, Bodø, Norway
| | - Karla Holmboe
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom; School of Psychological Science, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
45
|
Qiu L, Zhong Y, He Z, Pan J. Improved classification performance of EEG-fNIRS multimodal brain-computer interface based on multi-domain features and multi-level progressive learning. Front Hum Neurosci 2022; 16:973959. [PMID: 35992956 PMCID: PMC9388144 DOI: 10.3389/fnhum.2022.973959] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) have potentially complementary characteristics that reflect the electrical and hemodynamic characteristics of neural responses, so EEG-fNIRS-based hybrid brain-computer interface (BCI) is the research hotspots in recent years. However, current studies lack a comprehensive systematic approach to properly fuse EEG and fNIRS data and exploit their complementary potential, which is critical for improving BCI performance. To address this issue, this study proposes a novel multimodal fusion framework based on multi-level progressive learning with multi-domain features. The framework consists of a multi-domain feature extraction process for EEG and fNIRS, a feature selection process based on atomic search optimization, and a multi-domain feature fusion process based on multi-level progressive machine learning. The proposed method was validated on EEG-fNIRS-based motor imagery (MI) and mental arithmetic (MA) tasks involving 29 subjects, and the experimental results show that multi-domain features provide better classification performance than single-domain features, and multi-modality provides better classification performance than single-modality. Furthermore, the experimental results and comparison with other methods demonstrated the effectiveness and superiority of the proposed method in EEG and fNIRS information fusion, it can achieve an average classification accuracy of 96.74% in the MI task and 98.42% in the MA task. Our proposed method may provide a general framework for future fusion processing of multimodal brain signals based on EEG-fNIRS.
Collapse
|
46
|
Lu H, Zhang Y, Huang P, Zhang Y, Cheng S, Zhu X. Transcranial Electrical Stimulation Offers the Possibility of Improving Teamwork Among Military Pilots: A Review. Front Neurosci 2022; 16:931265. [PMID: 35911997 PMCID: PMC9327643 DOI: 10.3389/fnins.2022.931265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Effective teamwork among military pilots is key to successful mission completion. The underlying neural mechanism of teamwork is thought to be inter-brain synchronization (IBS). IBS could also be explained as an incidental phenomenon of cooperative behavior, but the causality between IBS and cooperative behavior could be clarified by directly producing IBS through extra external stimuli applied to functional brain regions. As a non-invasive technology for altering brain function, transcranial electrical stimulation might have the potential to explore whether top-down enhancement of the synchronization of multiple brains can change cooperative behavioral performance among members of a team. This review focuses on the characteristic features of teamwork among military pilots and variations in neuroimaging obtained by hyper-scanning. Furthermore, we discuss the possibility that transcranial electrical stimulation could be used to improve teamwork among military pilots, try to provide a feasible design for doing so, and emphasize crucial aspects to be addressed by future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Xia Zhu
- Faculty of Medical Psychology, Air Force Medical University, Xi’an, China
| |
Collapse
|
47
|
Haemodynamic Signatures of Temporal Integration of Visual Mirror Symmetry. Symmetry (Basel) 2022. [DOI: 10.3390/sym14050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
EEG, fMRI and TMS studies have implicated the extra-striate cortex, including the Lateral Occipital Cortex (LOC), in the processing of visual mirror symmetries. Recent research has found that the sustained posterior negativity (SPN), a symmetry specific electrophysiological response identified in the region of the LOC, is generated when temporally displaced asymmetric components are integrated into a symmetric whole. We aim to expand on this finding using dynamic dot-patterns with systematically increased intra-pair temporal delay to map the limits of temporal integration of visual mirror symmetry. To achieve this, we used functional near-infrared spectroscopy (fNIRS) which measures the changes in the haemodynamic response to stimulation using near infrared light. We show that a symmetry specific haemodynamic response can be identified following temporal integration of otherwise meaningless dot-patterns, and the magnitude of this response scales with the duration of temporal delay. These results contribute to our understanding of when and where mirror symmetry is processed in the visual system. Furthermore, we highlight fNIRS as a promising but so far underutilised method of studying the haemodynamics of mid-level visual processes in the brain.
Collapse
|
48
|
Jezierska K, Sękowska-Namiotko A, Pala B, Lietz-Kijak D, Gronwald H, Podraza W. Searching for the Mechanism of Action of Extremely Low Frequency Electromagnetic Field-The Pilot fNIRS Research. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074012. [PMID: 35409695 PMCID: PMC8998243 DOI: 10.3390/ijerph19074012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022]
Abstract
There is an ongoing debate on the benefits of magnetic stimulation in neurological disorders. Objectives: We aimed to evaluate the influence of magnetic stimulation on blood oxygenation of the motor cortex using functional near-infrared spectroscopy (fNIRS). Methods: A total of 16 healthy volunteer participants were subjected to four protocols. In the first two protocols, the participants remained at rest without (and then with) magnetic stimulation. In the next two protocols, motor cortex stimulation was achieved using a finger-tapping task, with and without magnetic stimulation. Changes in blood oxygenation levels within the motor cortex were recorded and analysed. Results: No characteristic changes in the blood oxygenation level-dependent responses were observed in resting participants after magnetic stimulation. No statistically significant difference was observed in the amplitude of the fNIRS signal before and after magnetic stimulation. We observed characteristic blood oxygenation level-dependent responses after the finger-tapping task in the second protocol, but not after magnetic stimulation. Conclusions: Although we did not observe any measurable effect of the magnetic field on the haemodynamic response of the motor cortex, understanding the mechanism(s) of magnetic stimulation may be important. Additional, detailed studies are needed to prove or negate the potential of this medical procedure.
Collapse
Affiliation(s)
- Karolina Jezierska
- Department of Medical Physics, Pomeranian Medical University, 71-073 Szczecin, Poland; (K.J.); (A.S.-N.); (B.P.)
| | - Anna Sękowska-Namiotko
- Department of Medical Physics, Pomeranian Medical University, 71-073 Szczecin, Poland; (K.J.); (A.S.-N.); (B.P.)
| | - Bartłomiej Pala
- Department of Medical Physics, Pomeranian Medical University, 71-073 Szczecin, Poland; (K.J.); (A.S.-N.); (B.P.)
| | - Danuta Lietz-Kijak
- Department of Propaedeutic, Physical Diagnostics and Dental Physiotherapy, Pomeranian Medical University, 70-204 Szczecin, Poland; (D.L.-K.); (H.G.)
| | - Helena Gronwald
- Department of Propaedeutic, Physical Diagnostics and Dental Physiotherapy, Pomeranian Medical University, 70-204 Szczecin, Poland; (D.L.-K.); (H.G.)
| | - Wojciech Podraza
- Department of Medical Physics, Pomeranian Medical University, 71-073 Szczecin, Poland; (K.J.); (A.S.-N.); (B.P.)
- Correspondence:
| |
Collapse
|
49
|
Namiranian R, Rahimi Malakshan S, Abrishami Moghaddam H, Khadem A, Jafari R. Normal development of the brain: a survey of joint structural-functional brain studies. Rev Neurosci 2022; 33:745-765. [PMID: 35304982 DOI: 10.1515/revneuro-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/15/2022]
Abstract
Joint structural-functional (S-F) developmental studies present a novel approach to address the complex neuroscience questions on how the human brain works and how it matures. Joint S-F biomarkers have the inherent potential to model effectively the brain's maturation, fill the information gap in temporal brain atlases, and demonstrate how the brain's performance matures during the lifespan. This review presents the current state of knowledge on heterochronous and heterogeneous development of S-F links during the maturation period. The S-F relationship has been investigated in early-matured unimodal and prolonged-matured transmodal regions of the brain using a variety of structural and functional biomarkers and data acquisition modalities. Joint S-F unimodal studies have employed auditory and visual stimuli, while the main focus of joint S-F transmodal studies has been resting-state and cognitive experiments. However, nonsignificant associations between some structural and functional biomarkers and their maturation show that designing and developing effective S-F biomarkers is still a challenge in the field. Maturational characteristics of brain asymmetries have been poorly investigated by the joint S-F studies, and the results were partially inconsistent with previous nonjoint ones. The inherent complexity of the brain performance can be modeled using multifactorial and nonlinear techniques as promising methods to simulate the impact of age on S-F relations considering their analysis challenges.
Collapse
Affiliation(s)
- Roxana Namiranian
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 16317-14191, Iran
| | - Sahar Rahimi Malakshan
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 16317-14191, Iran
| | - Hamid Abrishami Moghaddam
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 16317-14191, Iran.,Inserm UMR 1105, Université de Picardie Jules Verne, 80054 Amiens, France
| | - Ali Khadem
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 16317-14191, Iran
| | - Reza Jafari
- Department of Electrical and Computer Engineering, Thompson Engineering Building, University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
50
|
Baek S, Jaffe-Dax S, Bejjanki VR, Emberson L. Temporal Predictability Modulates Cortical Activity and Functional Connectivity in the Frontoparietal Network in 6-Month-Old Infants. J Cogn Neurosci 2022; 34:766-775. [PMID: 35139200 DOI: 10.1162/jocn_a_01828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Despite the abundance of behavioral evidence showing the interaction between attention and prediction in infants, the neural underpinnings of this interaction are not yet well-understood. The endogenous attentional function in adults have been largely localized to the frontoparietal network. However, resting-state and neuroanatomical investigations have found that this frontoparietal network exhibits a protracted developmental trajectory and involves weak and unmyelinated long-range connections early in infancy. Can this developmentally nascent network still be modulated by predictions? Here, we conducted the first investigation of infant frontoparietal network engagement as a function of the predictability of visual events. Using functional near-infrared spectroscopy, the hemodynamic response in the frontal, parietal, and occipital lobes was analyzed as infants watched videos of temporally predictable or unpredictable sequences. We replicated previous findings of cortical signal attenuation in the frontal and sensory cortices in response to predictable sequences and extended these findings to the parietal lobe. We also estimated background functional connectivity (i.e., by regressing out task-evoked responses) to reveal that frontoparietal functional connectivity was significantly greater during predictable sequences compared to unpredictable sequences, suggesting that this frontoparietal network may underlie how the infant brain communicates predictions. Taken together, our results illustrate that temporal predictability modulates the activation and connectivity of the frontoparietal network early in infancy, supporting the notion that this network may be functionally available early in life despite its protracted developmental trajectory.
Collapse
Affiliation(s)
| | | | | | - Lauren Emberson
- Princeton University, NJ.,University of British Columbia, Vancouver, Canada
| |
Collapse
|