1
|
Tilg H, Ianiro G, Gasbarrini A, Adolph TE. Adipokines: masterminds of metabolic inflammation. Nat Rev Immunol 2025; 25:250-265. [PMID: 39511425 DOI: 10.1038/s41577-024-01103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Adipose tissue is an immunologically active organ that controls host physiology, partly through the release of mediators termed adipokines. In obesity, adipocytes and infiltrating leukocytes produce adipokines, which include the hormones adiponectin and leptin and cytokines such as tumour necrosis factor and IL-1β. These adipokines orchestrate immune responses that are collectively referred to as metabolic inflammation. Consequently, metabolic inflammation characterizes metabolic disorders and promotes distinct disease aspects, such as insulin resistance, metabolic dysfunction-associated liver disease and cardiovascular complications. In this unifying concept, adipokines participate in the immunological cross-talk that occurs between metabolically active organs in metabolic diseases, highlighting the fundamental role of adipokines in obesity and their potential for therapeutic intervention. Here, we summarize how adipokines shape metabolic inflammation in mice and humans, focusing on their contribution to metabolic disorders in the setting of obesity and discussing their value as therapeutic targets.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Gianluca Ianiro
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
2
|
Miyake G, Nagasaka A, Bando Y, Sakiyama K, Iseki S, Sakashita H, Amano O. Expression and localization of adiponectin in myoepithelial cells in sublingual glands of normal and diabetic rats. J Oral Biosci 2025; 67:100590. [PMID: 39613095 DOI: 10.1016/j.job.2024.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
OBJECTIVES Adiponectin is a hormone produced by adipocytes with anti-atherosclerotic and anti-diabetic properties. We previously discovered that adiponectin is specifically localized in the myoepithelial cells of rat sublingual glands. This study aims to investigate the localization of adiponectin and its receptors, AdipoR1 and AdipoR2, in adult rats, postnatally developing rats, and diabetic model rats. METHODS We examined the localization and expression of adiponectin and its receptors by immunohistochemistry and RT-PCR in the sublingual glands of adult rats and in two diabetic rat models: Streptozotocin (STZ)-treated rats for type 1 diabetes and GK rats for type 2 diabetes. RESULTS In rat sublingual glands, adiponectin was localized in the cytoplasm of myoepithelial cells, while AdipoR1 and AdipoR2 were localized in the basolateral membrane of mucous acinar cells. In GK rats, there was a significant decrease in the immunoreactivity and mRNA levels of adiponectin, while both AdipoR1 and AdipoR2 expression levels were upregulated. In STZ-treated rats, both adiponectin and its receptors showed reduced expression. CONCLUSIONS Adiponectin acts as a paracrine factor in sublingual myoepithelial cells, influencing salivary secretion through upregulated receptors in acinar cells, particularly in type 2 diabetes. This process is associated with a reduction in myoepithelial adiponectin levels.
Collapse
MESH Headings
- Animals
- Adiponectin/metabolism
- Rats
- Receptors, Adiponectin/metabolism
- Receptors, Adiponectin/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Male
- Sublingual Gland/metabolism
- Sublingual Gland/pathology
- Epithelial Cells/metabolism
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/genetics
- Immunohistochemistry
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/genetics
- Rats, Wistar
Collapse
Affiliation(s)
- Genki Miyake
- Division of Histology, Meikai University School of Dentistry, Sakado, Saitama, Japan; Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Arata Nagasaka
- Division of Histology, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Yasuhiko Bando
- Division of Histology, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Koji Sakiyama
- Division of Anatomy, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Shoichi Iseki
- Faculty of Health Sciences Department of Clinical Engineering, Komatsu University, Komatsu, Ishikawa, Japan
| | - Hideaki Sakashita
- Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, Sakado, Saitama, Japan; Department of Oral and Maxillofacial Surgery, Abiko Seijinkai Hospital, Abiko, Chiba, Japan
| | - Osamu Amano
- Division of Histology, Meikai University School of Dentistry, Sakado, Saitama, Japan.
| |
Collapse
|
3
|
Sasaoka M, Kakino A, Villalobos-Labra R, Yamashita Y, Spaans F, Joshita S, Hosoda H, Uehara T, Chen CH, Davidge ST, Sawamura T. A Novel ELISA System for Measuring Modified LDL-Adiponectin Complex. J Atheroscler Thromb 2025:65377. [PMID: 39993736 DOI: 10.5551/jat.65377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Abstract
AIM Adiponectin is an anti-diabetic and anti-atherogenic protein secreted primarily from adipose tissue. Adiponectin and modified LDL (mLDL) form a complex to modulate their biological activity. To elucidate the significance of the complex formation, we analyzed its effects on vascular tissue and developed and verified novel quantifying methods for adiponectin. METHODS To study the significance of the mLDL-adiponectin complex (MAC) formation, we used the wire-myography method on rat mesenteric artery. We developed a method to measure MAC by using LOX-1 as the capture protein and anti-adiponectin antibody for detection. We compared serum MAC levels between hemodialysis patients and control subjects. RESULTS Administering mLDL alone to rat mesenteric artery impaired endothelium-dependent vasorelaxation, whereas simultaneously administering adiponectin with mLDL protected rat mesenteric artery from the mLDL-induced impairment of vasorelaxation. This finding indicates MAC formation prevents endothelium from mLDL-induced dysfunction in tissue. Using our novel ELISA for MAC, we found that MAC was increasingly detectable depending on the doses of mLDL and adiponectin in vitro. In serum, hemodialysis patients showed a significantly higher ratio of MAC-high patients (higher than the median level of MAC) than did healthy controls. Furthermore, the MAC-high hemodialysis group had lower mLDL activity measured as LOX-1 ligand containing apoB. CONCLUSION Using our ELISA, we detected MAC in human serum that protected blood vessels from the deleterious effects of oxidized LDL.
Collapse
Affiliation(s)
- Mai Sasaoka
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University
- Department of Laboratory Medicine, Shinshu University Hospital
| | - Akemi Kakino
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University
- Institute for Biomedical Sciences, Shinshu University
| | - Roberto Villalobos-Labra
- Department of Obstetrics and Gynecology, University of Alberta
- School of Medicine, Faculty of Medicine, San Felipe Campus, Universidad de Valparaíso
| | - Yuki Yamashita
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, Shinshu University
| | - Floor Spaans
- Department of Obstetrics and Gynecology, University of Alberta
| | - Satoru Joshita
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, Shinshu University
| | - Hiroshi Hosoda
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University
- Institute for Biomedical Sciences, Shinshu University
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University Hospital
| | - Chu-Huang Chen
- Vascular and Medicinal Research, The Texas Heart Institute
| | | | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University
- Institute for Biomedical Sciences, Shinshu University
| |
Collapse
|
4
|
Nagasaka H, Sato S, Suzuki A, Terao H, Nakamura Y, Yoshihara M, Okubo Y, Washimi K, Yokose T, Kishida T, Miyagi Y. Clinicopathological Significance of Extranodal Adipose Tissue Invasion in Metastatic Lymph Nodes in Patients With Prostate Cancer. Prostate 2025; 85:283-293. [PMID: 39567857 DOI: 10.1002/pros.24825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Lymph node (LN) metastasis is a poor prognostic factor in patients with prostate cancer. Elucidating the mechanisms underlying cancer progression in the metastatic microenvironment of LNs is crucial to establishing novel therapies. Adipocytes interact with cancer cells and regulate cancer progression. In this study, we aimed to clarify the clinicopathological significance of extranodal adipose tissue invasion in metastatic LNs and preoperative adipokine concentration in patients with prostate cancer exhibiting metastatic LNs. METHODS We examined the pathological findings of primary and metastatic nodes and clinical information of 66 specimens from 46 patients with prostate cancer. A sub-analysis was performed to assess the relationship between preoperative adiponectin/leptin concentrations and clinical/pathological findings in the blood samples of 56 patients with prostate cancer who either did or did not show LN metastasis. RESULTS The number of metastatic LNs in patients correlated with the involvement of adipose tissue and lymphovascular invasion (p = 0.039 and < 0.001, respectively). Preoperative adiponectin concentration was lower in patients with resected margin-positive and extraprostatic extension-positive primary cancers (p = 0.0071 and 0.02, respectively). Preoperative adiponectin concentrations were significantly lower in patients with metastatic LNs than in patients without LN metastasis (p < 0.001). Moreover, leptin concentrations were significantly higher in patients with metastatic LNs than in patients without LN metastasis (p < 0.001). In patients with metastatic LNs, preoperative adiponectin concentrations were significantly lower in patients with biochemical recurrence than in patients without biochemical recurrence (p = 0.031). There was no correlation between biochemical recurrence and pathological findings. CONCLUSIONS This is the first report on the detailed histopathological characteristics of prostate cancer with LN metastases and the significance of preoperative adiponectin concentration in predicting the pathological features of primary cancers. Also, adipokines are a significant prediction factor of LN metastases for prostate cancer patients. Adipose tissue and adipose-secreting factors may be involved in the progression of metastatic and primary prostate cancer.
Collapse
Affiliation(s)
- Hirotaka Nagasaka
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Shinya Sato
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Atsuto Suzuki
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Hideyuki Terao
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yoshiyasu Nakamura
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Mitsuyo Yoshihara
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Yoichiro Okubo
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Kota Washimi
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Takeshi Kishida
- Department of Urology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yohei Miyagi
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| |
Collapse
|
5
|
Wang N, Zhu S, Chen S, Zou J, Zeng P, Tan S. Neurological mechanism-based analysis of the role and characteristics of physical activity in the improvement of depressive symptoms. Rev Neurosci 2025:revneuro-2024-0147. [PMID: 39829004 DOI: 10.1515/revneuro-2024-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
Depression is a common mental disorder characterized by a high prevalence and significant adverse effects, making the searching for effective interventions an urgent priority. In recent years, physical activity (PA) has increasingly been recognized as a standard adjunctive treatment for mental disorders owing to its low cost, easy application, and high efficiency. Epidemiological data shows positive preventive and therapeutic effects of PA on mental illnesses such as depression. This article systematically describes the prophylactic and therapeutic effects of PA on depression and its biological basis. A comprehensive literature analysis reveals that PA significantly improves depressive symptoms by upregulating the expression of "exerkines" such as irisin, adiponectin, and BDNF to positively impacting neuropsychiatric conditions. In particular, lactate could also play a critical role in the ameliorating effects of PA on depression due to the findings about protein lactylation as a novel protein post-transcriptional modification. The literature also suggests that in terms of brain structure, PA may improve hippocampal volume, basal ganglia (neostriatum, caudate-crustal nucleus) and PFC density in patients with MDD. In summary, this study elucidates the multifaceted positive effects of PA on depression and its potential biological mechanisms with a particular emphasis on the roles of various exerkines. Future research may further investigate the effects of different types, intensities, and durations of PA on depression, as well as how to better integrate PA interventions into existing treatment strategies to achieve optimal outcomes in mental health interventions.
Collapse
Affiliation(s)
- Nan Wang
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Shanshan Zhu
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Shuyang Chen
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Ju Zou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Peng Zeng
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Sijie Tan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China
| |
Collapse
|
6
|
Huang K, Wu L, Xu D, Zhang H, Liu Q, Xie Y. Downregulation of CTRP1 reduces radio-resistance in glioblastoma cells by inhibiting the expression of CD133 after X-ray and carbon ion irradiation. Exp Cell Res 2025; 444:114292. [PMID: 39515408 DOI: 10.1016/j.yexcr.2024.114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Glioblastomas (GBMs), the most prevalent primary malignant brain tumors, present significant challenges due to their invasive nature, high recurrence rates, and limited treatment options. Radiotherapy is a cornerstone in the management of GBMs; however, resistance to treatment poses a substantial obstacle. This study investigates the role of adipokine C1q/TNF-related protein 1 (CTRP1) in the radio-sensitivity of GBMs, utilizing both X-ray and carbon ion irradiation. Expression analyses revealed elevated CTRP1 and CD133 levels in GBMs tissues, which were associated with poor patient survival. Carbon ion irradiation demonstrated superior growth inhibition compared to X-ray, particularly in U87 (high CD133) cells. Moreover, CTRP1 expression increased following radiation exposure, especially after X-ray treatment. Knockdown of CTRP1 enhanced radio-sensitivity by reducing cell proliferation and increasing apoptosis, while exacerbating oxidative stress. Bioinformatics analysis revealed CTRP1's involvement in DNA damage repair pathways. Our findings establish a novel connection between CTRP1 and cellular radio-sensitivity. Targeting CTRP1, especially in U87 (high CD133) cells, enhances GBMs radio-sensitivity, offering potential therapeutic avenues.
Collapse
Affiliation(s)
- Ke Huang
- School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China; School/Hospital of Stomatology, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Luyao Wu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, PR China; Graduate School of the Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100049, PR China
| | - Dan Xu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, PR China; School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, PR China.
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 238 Baidi Road, Nankai District, Tianjin, 300192, PR China.
| | - Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, PR China.
| |
Collapse
|
7
|
Abubakar M, Irfan U, Abdelkhalek A, Javed I, Khokhar MI, Shakil F, Raza S, Salim SS, Altaf MM, Habib R, Ahmed S, Ahmed F. Comprehensive Quality Analysis of Conventional and Novel Biomarkers in Diagnosing and Predicting Prognosis of Coronary Artery Disease, Acute Coronary Syndrome, and Heart Failure, a Comprehensive Literature Review. J Cardiovasc Transl Res 2024; 17:1258-1285. [PMID: 38995611 DOI: 10.1007/s12265-024-10540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Coronary artery disease (CAD), acute coronary syndrome (ACS), and heart failure (HF) are major global health issues with high morbidity and mortality rates. Biomarkers like cardiac troponins (cTn) and natriuretic peptides (NPs) are crucial tools in cardiology, but numerous new biomarkers have emerged, proving increasingly valuable in CAD/ACS. These biomarkers are classified based on their mechanisms, such as fibrosis, metabolism, inflammation, and congestion. The integration of established and emerging biomarkers into clinical practice is an ongoing process, and recognizing their strengths and limitations is crucial for their accurate interpretation, incorporation into clinical settings, and improved management of CVD patients. We explored established biomarkers like cTn, NPs, and CRP, alongside newer biomarkers such as Apo-A1, IL-17E, IgA, Gal-3, sST2, GDF-15, MPO, H-FABP, Lp-PLA2, and ncRNAs; provided evidence of their utility in CAD/ACS diagnosis and prognosis; and empowered clinicians to confidently integrate these biomarkers into clinical practice based on solid evidence.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan.
| | - Umema Irfan
- Department of Internal Medicine, Deccan College of Medical Sciences, Hyderabad, India
| | - Ahmad Abdelkhalek
- Department of Internal Medicine, Zhejiang University, Zhejiang, China
| | - Izzah Javed
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan
| | | | - Fraz Shakil
- Department of Emergency Medicine, Mayo Hospital, Lahore, Pakistan
| | - Saud Raza
- Department of Anesthesia, Social Security Teaching Hospital, Lahore, Punjab, Pakistan
| | - Siffat Saima Salim
- Department of Surgery, Holy Family Red Crescent Medical College Hospital, Dhaka, Bangladesh
| | - Muhammad Mahran Altaf
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan
| | - Rizwan Habib
- Department of Internal Medicine and Emergency, Indus Hospital, Lahore, Pakistan
| | - Simra Ahmed
- Department of Internal Medicine, Ziauddin Medical College, Karachi, Pakistan
| | - Farea Ahmed
- Department of Internal Medicine, Ziauddin Medical College, Karachi, Pakistan
| |
Collapse
|
8
|
Han R, Huang H, Zhu J, Jin X, Wang Y, Xu Y, Xia Z. Adipokines and their potential impacts on susceptibility to myocardial ischemia/reperfusion injury in diabetes. Lipids Health Dis 2024; 23:372. [PMID: 39538244 PMCID: PMC11558907 DOI: 10.1186/s12944-024-02357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Coronary artery disease has a high mortality rate and is a striking public health concern, affecting a substantial portion of the global population. On the early onset of myocardial ischemia, thrombolytic therapy and coronary revascularization could promptly restore the bloodstream and nutrient supply to the ischemic tissue, efficiently preserving less severely injured myocardium. However, the abrupt re-establishment of blood flow triggers the significant discharge of previously accumulated oxidative substances and inflammatory cytokines, leading to further harm referred to as ischemia/reperfusion (I/R) injury. Diabetes significantly raises the vulnerability of the heart to I/R injury due to disrupted glucose and lipid processing, impaired insulin sensitivity and metabolic signaling, and increased inflammatory responses. Numerous studies have indicated that adipokines are crucial in the etiology and pathogenesis of obesity, diabetes, hyperlipidemia, hypertension, and coronary artery disease. Adipokines such as adiponectin, adipsin, visfatin, chemerin, omentin, and apelin, which possess protective properties against inflammatory activity and insulin resistance, have been shown to confer myocardial protection in conditions such as atherosclerosis, myocardial hypertrophy, myocardial I/R injury, and diabetic complications. On the other hand, adipokines such as leptin and resistin, known for their pro-inflammatory characteristics, have been linked to elevated cardiac lipid deposition, insulin resistance, and fibrosis. Meteorin-like (metrnl) exhibits opposite effects in various pathological conditions. However, the data on adipokines in myocardial I/R, especially in diabetes, is still incomplete and controversial. This review focuses on recent research regarding the categorization and function of adipokines in the heart muscle, and the identification of different signaling pathways involved in myocardial I/R injury under diabetic conditions, aiming to facilitate the exploration of therapeutic strategies against myocardial I/R injury in diabetes.
Collapse
Affiliation(s)
- Ronghui Han
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Hemeng Huang
- Department of Emergency, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Jianyu Zhu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Xiaogao Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Yongyan Wang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China.
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Hengqin, Zhuhai, People's Republic of China.
- Faculty of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, People's Republic of China.
| | - Zhengyuan Xia
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China.
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Miracle CE, McCallister CL, Egleton RD, Salisbury TB. Mechanisms by which obesity regulates inflammation and anti-tumor immunity in cancer. Biochem Biophys Res Commun 2024; 733:150437. [PMID: 39074412 PMCID: PMC11455618 DOI: 10.1016/j.bbrc.2024.150437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Obesity is associated with an increased risk for 13 different cancers. The increased risk for cancer in obesity is mediated by obesity-associated changes in the immune system. Obesity has distinct effects on different types of inflammation that are tied to tumorigenesis. For example, obesity promotes chronic inflammation in adipose tissue that is tumor-promoting in peripheral tissues. Conversely, obesity inhibits acute inflammation that rejects tumors. Obesity therefore promotes cancer by differentially regulating chronic versus acute inflammation. Given that obesity is chronic, the initial inflammation in adipose tissue will lead to systemic inflammation that could induce compensatory anti-inflammatory reactions in peripheral tissues to suppress chronic inflammation. The overall effect of obesity in peripheral tissues is therefore dependent on the duration and severity of obesity. Adipose tissue is a complex tissue that is composed of many cell types in addition to adipocytes. Further, adipose tissue cellularity is different at different anatomical sites throughout the body. Consequently, the sensitivity of adipose tissue to obesity is dependent on the anatomical location of the adipose depot. For example, obesity induces more inflammation in visceral than subcutaneous adipose tissue. Based on these studies, the mechanisms by which obesity promotes tumorigenesis are multifactorial and immune cell type-specific. The objective of our paper is to discuss the cellular mechanisms by which obesity promotes tumorigenesis by regulating distinct types of inflammation in adipose tissue and the tumor microenvironment.
Collapse
Affiliation(s)
- Cora E Miracle
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Chelsea L McCallister
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Richard D Egleton
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Travis B Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| |
Collapse
|
10
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
11
|
Chen SM, Huang TY, Lee WJ, Chuang LM, Chang TJ. Positive correlation of ANGPTL8 expression in human visceral adipose tissue with body mass index. J Formos Med Assoc 2024; 123:860-865. [PMID: 38191275 DOI: 10.1016/j.jfma.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Angiopoietin-like protein 8 (ANGPTL8) is an important regulator of lipid metabolism. We aimed to investigate the difference of ANGPTL8 expression in different depots of adipose tissues between individuals with and without obesity, and its correlation with various metabolic parameters. METHODS Subcutaneous (SAT) and visceral adipose tissue (VAT) samples were collected from patients who underwent bariatric or intra-abdominal surgery. Expression levels of ANGPTL8, monoglyceride lipase (MGL), monocyte chemoattractant protein-1 (MCP-1), leptin and adiponectin (APM1) were determined using real-time quantitative polymerase chain reaction. The correlation of ANGPTL8 expression with various metabolic parameters and other gene expression levels was analyzed using Person's correlation analysis. Logistic regression was used to establish a prediction model of obesity. RESULTS Totally 330 subjects (obese: 281, non-obese: 49) were recruited. ANGPTL8 expression in VAT was significantly higher in the obesity group than in the non-obesity group (P = 0.0096). ANGPTL8 expression in VAT was positively correlated with body mass index (BMI) (r = 0.1169, P < 0.05) and was independently associated with obesity (O.R., 1.246; 95 % C.I. 1.013-21.533, P = 0.038). We also found the gene expression of ANGPTL8 in SAT and VAT was negatively correlated with APM1 expression in respective SAT and VAT. CONCLUSION ANGPTL8 expression levels in VAT were higher in subjects with obesity, and positively correlated with BMI. This suggests a role of ANGPTL8 in the pathophysiology of obesity and may pave the way for novel treatment target of obesity.
Collapse
Affiliation(s)
- Shiau-Mei Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tse-Ying Huang
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Taiwan
| | - Wei-Jei Lee
- Department of Surgery, Taoyuan Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; School of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tien-Jyun Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; School of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
12
|
Li Y, Onodera T, Scherer PE. Adiponectin. Trends Endocrinol Metab 2024; 35:674-675. [PMID: 38981443 PMCID: PMC11374108 DOI: 10.1016/j.tem.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 07/11/2024]
Affiliation(s)
- Yan Li
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Toshiharu Onodera
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Adipose Management, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
13
|
Gandhi S, Sweeney G, Perry CGR. Recent Advances in Pre-Clinical Development of Adiponectin Receptor Agonist Therapies for Duchenne Muscular Dystrophy. Biomedicines 2024; 12:1407. [PMID: 39061981 PMCID: PMC11274162 DOI: 10.3390/biomedicines12071407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by genetic mutations in the cytoskeletal-sarcolemmal anchor protein dystrophin. Repeated cycles of sarcolemmal tearing and repair lead to a variety of secondary cellular and physiological stressors that are thought to contribute to weakness, atrophy, and fibrosis. Collectively, these stressors can contribute to a pro-inflammatory milieu in locomotor, cardiac, and respiratory muscles. Given the many unwanted side effects that accompany current anti-inflammatory steroid-based approaches for treating DMD (e.g., glucocorticoids), there is a need to develop new therapies that address inflammation and other cellular dysfunctions. Adiponectin receptor (AdipoR) agonists, which stimulate AdipoR1 and R2 isoforms on various cell types, have emerged as therapeutic candidates for DMD due to their anti-inflammatory, anti-fibrotic, and pro-myogenic properties in pre-clinical human and rodent DMD models. Although these molecules represent a new direction for therapeutic intervention, the mechanisms through which they elicit their beneficial effects are not yet fully understood, and DMD-specific data is limited. The overarching goal of this review is to investigate how adiponectin signaling may ameliorate pathology associated with dystrophin deficiency through inflammatory-dependent and -independent mechanisms and to determine if current data supports their future progression to clinical trials.
Collapse
Affiliation(s)
- Shivam Gandhi
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
| | - Gary Sweeney
- Department of Biology and Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
| | - Christopher G. R. Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
| |
Collapse
|
14
|
Xiang X, Wang D, Leng J, Li N, Wei C. Association of adiponectin and its receptor gene polymorphisms with the risk of coronary heart disease in northern Guangxi. Cytokine 2024; 178:156567. [PMID: 38489870 DOI: 10.1016/j.cyto.2024.156567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/06/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024]
Abstract
OBJECTIVE To investigate the association of circulating adiponectin (APN) level and single nucleotide polymorphisms (rs1501299 and rs266729) of the APN gene in the coronary heart disease (CHD) population of Northern Guangxi Province. METHODS Two hundred and sixty-three CHD patients and 235 healthy controls from our hospital from August 2018 to October 2020 were included in this study. ELISA was used to determine the serum APN concentration. PCR-RFLP and direct DNA sequencing were used to analyze the genotypes of APN gene rs1501299 G/T and rs266729 C/G single-nucleotide loci, their distribution differences between the two groups were compared and their correlation with APN concentration was analyzed. RESULTS The serum APN concentration in the CHD group was significantly lower than the control group (14.40(1.42-52.26) μg/mL vs. 29.40 (3.18-90.31) μg/mL, P < 0.001). There were statistically significant differences in the rs266729 genotype of APN single nucleotide locus between the two groups (P < 0.001). The dominant model and recessive model of rs266729 genotype showed that mutant homozygous GG genotype carriers significantly increased the risk of CHD in comparison with C allele carriers (CG + CC) (OR = 2.156, 95 %CI: 1.004-4.631, P = 0.049), and this effect was still significant after adjusting gender and age (OR = 2.695, 95 %CI 1.110-6.540, P = 0.028). In both the dominant and recessive models for rs1501299, ORs before and after adjustment for age and sex revealed no significant association with CHD, with ORs of 0.765 (95 % CI: 0.537-1.091, P = 0.139) and 0.718 (95 % CI: 0.466-1.106, P = 0.133) in the Dominant model, and ORs of 0.960 (95 % CI: 0.442-2.087, P = 0.918) and 0.613 (95 % CI: 0.239-1.570, P = 0.308) in the Recessive model, respectively. No statistically significant differences in APN concentrations across genotypes in both groups (P > 0.05), with chi-square values of 1.633 (control group) and 0.823 (CHD group) for rs1501299, and 1.354 (control group) and 0.618 (CHD group) for rs266729. CONCLUSIONS APN gene of rs266729 C/G single-nucleotide loci gene mutation can significantly increase the risk of CHD. There was no significant correlation between rs1501299 G/T single-nucleotide loci and CHD in Northern Guangxi populations.
Collapse
Affiliation(s)
- Xiaohua Xiang
- Department of Laboratory Medicine, Shenzhen Guangming District People's Hospital, Shenzhen 518106, Guangdong Province, China; Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, Guangxi Province, China.
| | - Di Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, Guangxi Province, China
| | - Jun Leng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, Guangxi Province, China
| | - Ning Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, Guangxi Province, China
| | - Chuandong Wei
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, Guangxi Province, China.
| |
Collapse
|
15
|
Shen H, He Y, Lu F, Lu X, Yang B, Liu Y, Guo Q. Association of ratios of visceral fat area/subcutaneous fat area and muscle area/standard body weight at T12 CT level with the prognosis of acute respiratory distress syndrome. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:106-118. [PMID: 39169930 PMCID: PMC11332858 DOI: 10.1016/j.pccm.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Indexed: 08/23/2024]
Abstract
Background It is well-known that body composition metrics can influence the prognosis of various diseases. This study investigated how body composition metrics predict acute respiratory distress syndrome (ARDS) prognosis, focusing on the ratio of visceral fat area (VFA) to subcutaneous fat area (SFA), SFA to standard body weight (SBW), VFA to SBW, and muscle area (MA) to SBW. These metrics were assessed at the level of the twelfth thoracic vertebra (T12 computed tomography [CT] level) to determine their correlation with the outcomes of ARDS. The goal was to utilize these findings to refine and personalize treatment strategies for ARDS. Methods Patients with ARDS admitted to the intensive care units (ICUs) of three hospitals from January 2016 to July 2023 were enrolled in this study. Within 24 hours of ARDS onset, we obtained chest CT scans to measure subcutaneous fat, visceral fat, and muscle area at the T12 level. We then compared these ratios between survivors and non-survivors. Logistic regression was employed to identify prognostic risk factors. Receiver operating characteristic (ROC) curve analysis was utilized to determine the optimal cutoff for predictors of in-hospital mortality. Based on this cutoff, patients with ARDS were stratified. To reduce confounding factors, 1:1 propensity score matching (PSM) was applied. We conducted analyses of clinical feature and prognostic differences pre- and post-PSM between the stratified groups. Additionally, Kaplan-Meier survival curves were generated to compare the survival outcomes of these groups. Results Of 258 patients with ARDS, 150 survived and 108 did not. Non-survivors had a higher VFA/SFA ratio (P <0.001) and lower SFA/SBW and MA/SBW ratios (both P <0.001). Key risk factors were high VFA/SFA ratio (OR=2.081; P=0.008), age, acute physiology and chronic health evaluation (APACHE) II score, and lactate levels, while MA/SBW and albumin were protective. Patients with a VFA/SFA ratio ≥0.73 were associated with increased mortality, while those with an MA/SBW ratio >1.55 cm²/kg had lower mortality, both pre- and post-PSM (P=0.001 and P <0.001, respectively). Among 170 patients with pulmonary-origin ARDS, 87 survived and 83 did not. The non-survivor group showed a higher VFA/SFA ratio (P <0.001) and lower SFA/SBW and MA/SBW (P=0.003, P <0.001, respectively). Similar risk and protective factors were observed in this cohort. For VFA/SFA, a value above the cutoff of 1.01 predicted higher mortality, while an MA/SBW value below the cutoff of 1.48 cm²/kg was associated with increased mortality (both P <0.001 pre-/post-PSM). Conclusions Among all patients with ARDS, the VFA to SFA ratio, MA to SBW ratio at the T12 level, age, APACHE II score, and lactate levels emerged as independent risk factors for mortality.
Collapse
Affiliation(s)
- Hui Shen
- Department of Emergency, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu 215000, China
| | - Ying He
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu 215000, China
| | - Fan Lu
- Department of Emergency, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu 215000, China
| | - Xiaoting Lu
- Department of Emergency, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu 215000, China
| | - Bining Yang
- Department of Emergency, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu 215000, China
| | - Yi Liu
- Department of Emergency, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu 215000, China
| | - Qiang Guo
- Department of Emergency, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu 215000, China
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu 215000, China
- Institute of Critical Care Medicine, Soochow University, Suzhou, Jiangsu 215000, China
- Medical Center of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| |
Collapse
|
16
|
Ozcan M, Ayar A. Endocrine Aspects of Pain Pathophysiology: Focus on Adipose Tissue. Neuroendocrinology 2024; 114:894-906. [PMID: 38801814 DOI: 10.1159/000539531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Multiple factors, including neurobiological, hormonal, psychological, and social/cultural norms, influence the manner in which individuals experience pain. Adipose tissue, once considered solely an energy storage site, has been recognized as a significant endocrine organ that produces and releases a range of hormones and cytokines. In recent years, research has highlighted the role of adipose tissue and its endocrine factors in the pathophysiology of pain. SUMMARY This narrative review aimed to provide a comprehensive overview of the current knowledge on the endocrine aspects of pain pathophysiology, with a specific focus on adipose tissue. We examine the role of adipokines released by adipose tissue, such as leptin, adiponectin, resistin, visfatin, asprosin in pain perception and response. We also explore the clinical implications of these findings, including the potential for personalized pain management based on endocrine factors and adipose tissue. KEY MESSAGES Overall, given this background, this review intended to highlight the importance of understanding the endocrine aspects of pain pathophysiology, particularly focusing on the role of adipose tissue, in the development of chronic pain and adipokines. Better understanding the role of adipokines in pain modulation might have therapeutic implications by providing novel targets for addressing underlying mechanism rather than directly focusing on symptoms for chronic pain, particularly in obese individuals.
Collapse
Affiliation(s)
- Mete Ozcan
- Department of Biophysics, Firat University Medical Faculty, Elazig, Turkey
| | - Ahmet Ayar
- Department of Physiology, Karadeniz Technical University Medical Faculty, Trabzon, Turkey
| |
Collapse
|
17
|
Zhao YQ, Ren YF, Li BB, Wei C, Yu B. The mysterious association between adiponectin and endometriosis. Front Pharmacol 2024; 15:1396616. [PMID: 38813109 PMCID: PMC11133721 DOI: 10.3389/fphar.2024.1396616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Adiponectin is a pleiotropic cytokine predominantly derived from adipose tissue. In addition to its role in regulating energy metabolism, adiponectin may also be related to estrogen-dependent diseases, and many studies have confirmed its involvement in mediating diverse biological processes, including apoptosis, autophagy, inflammation, angiogenesis, and fibrosis, all of which are related to the pathogenesis of endometriosis. Although many researchers have reported low levels of adiponectin in patients with endometriosis and suggested that it may serve as a protective factor against the development of the disease. Therefore, the purpose of this review was to provide an up-to-date summary of the roles of adiponectin and its downstream cytokines and signaling pathways in the aforementioned biological processes. Further systematic studies on the molecular and cellular mechanisms of action of adiponectin may provide novel insights into the pathophysiology of endometriosis as well as potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Bing-Bing Li
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong Province, China
| | | | | |
Collapse
|
18
|
Dawid M, Pich K, Mlyczyńska E, Respekta-Długosz N, Wachowska D, Greggio A, Szkraba O, Kurowska P, Rak A. Adipokines in pregnancy. Adv Clin Chem 2024; 121:172-269. [PMID: 38797542 DOI: 10.1016/bs.acc.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Reproductive success consists of a sequential events chronology, starting with the ovum fertilization, implantation of the embryo, placentation, and cellular processes like proliferation, apoptosis, angiogenesis, endocrinology, or metabolic changes, which taken together finally conduct the birth of healthy offspring. Currently, many factors are known that affect the regulation and proper maintenance of pregnancy in humans, domestic animals, or rodents. Among the determinants of reproductive success should be distinguished: the maternal microenvironment, genes, and proteins as well as numerous pregnancy hormones that regulate the most important processes and ensure organism homeostasis. It is well known that white adipose tissue, as the largest endocrine gland in our body, participates in the synthesis and secretion of numerous hormones belonging to the adipokine family, which also may regulate the course of pregnancy. Unfortunately, overweight and obesity lead to the expansion of adipose tissue in the body, and its excess in both women and animals contributes to changes in the synthesis and release of adipokines, which in turn translates into dramatic changes during pregnancy, including those taking place in the organ that is crucial for the proper progress of pregnancy, i.e. the placenta. In this chapter, we are summarizing the current knowledge about levels of adipokines and their role in the placenta, taking into account the physiological and pathological conditions of pregnancy, e.g. gestational diabetes mellitus, preeclampsia, or intrauterine growth restriction in humans, domestic animals, and rodents.
Collapse
Affiliation(s)
- Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Natalia Respekta-Długosz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Dominka Wachowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Aleksandra Greggio
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Oliwia Szkraba
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
19
|
Gan HW, Cerbone M, Dattani MT. Appetite- and Weight-Regulating Neuroendocrine Circuitry in Hypothalamic Obesity. Endocr Rev 2024; 45:309-342. [PMID: 38019584 PMCID: PMC11074800 DOI: 10.1210/endrev/bnad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Since hypothalamic obesity (HyOb) was first described over 120 years ago by Joseph Babinski and Alfred Fröhlich, advances in molecular genetic laboratory techniques have allowed us to elucidate various components of the intricate neurocircuitry governing appetite and weight regulation connecting the hypothalamus, pituitary gland, brainstem, adipose tissue, pancreas, and gastrointestinal tract. On a background of an increasing prevalence of population-level common obesity, the number of survivors of congenital (eg, septo-optic dysplasia, Prader-Willi syndrome) and acquired (eg, central nervous system tumors) hypothalamic disorders is increasing, thanks to earlier diagnosis and management as well as better oncological therapies. Although to date the discovery of several appetite-regulating peptides has led to the development of a range of targeted molecular therapies for monogenic obesity syndromes, outside of these disorders these discoveries have not translated into the development of efficacious treatments for other forms of HyOb. This review aims to summarize our current understanding of the neuroendocrine physiology of appetite and weight regulation, and explore our current understanding of the pathophysiology of HyOb.
Collapse
Affiliation(s)
- Hoong-Wei Gan
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Manuela Cerbone
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Mehul Tulsidas Dattani
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
20
|
Meyer M, Schwärzler J, Jukic A, Tilg H. Innate Immunity and MASLD. Biomolecules 2024; 14:476. [PMID: 38672492 PMCID: PMC11048298 DOI: 10.3390/biom14040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as the most common liver disease worldwide in recent years. MASLD commonly presents as simple hepatic steatosis, but ~25% of patients develop liver inflammation, progressive fibrosis, liver cirrhosis and related hepatocellular carcinoma. Liver inflammation and the degree of fibrosis are key determinants of the prognosis. The pathophysiology of liver inflammation is incompletely understood and involves diverse factors and specifically innate and adaptive immune responses. More specifically, diverse mediators of innate immunity such as proinflammatory cytokines, adipokines, inflammasomes and various cell types like mononuclear cells, macrophages and natural killer cells are involved in directing the inflammatory process in MASLD. The activation of innate immunity is driven by various factors including excess lipids and lipotoxicity, insulin resistance and molecular patterns derived from gut commensals. Targeting pathways of innate immunity might therefore appear as an attractive therapeutic strategy in the future management of MASLD and possibly its complications.
Collapse
Affiliation(s)
| | | | | | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.M.); (A.J.)
| |
Collapse
|
21
|
Shin SM, Park JS, Kim SB, Cho YH, Seo H, Lee HS. A 12-Week, Single-Centre, Randomised, Double-Blind, Placebo-Controlled, Parallel-Design Clinical Trial for the Evaluation of the Efficacy and Safety of Lactiplantibacillus plantarum SKO-001 in Reducing Body Fat. Nutrients 2024; 16:1137. [PMID: 38674828 PMCID: PMC11053414 DOI: 10.3390/nu16081137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
There is growing evidence linking gut microbiota to overall health, including obesity risk and associated diseases. Lactiplantibacillus plantarum SKO-001, a probiotic strain isolated from Angelica gigas, has been reported to reduce obesity by controlling the gut microbiome. In this double-blind, randomised clinical trial, we aimed to evaluate the efficacy and safety of SKO-001 in reducing body fat. We included 100 participants randomised into SKO-001 or placebo groups (1:1) for 12 weeks. Dual-energy X-ray absorptiometry was used to objectively evaluate body fat reduction. Body fat percentage (p = 0.016), body fat mass (p = 0.02), low-density lipoprotein-cholesterol levels (p = 0.025), and adiponectin levels (p = 0.023) were lower in the SKO-001 group than in the placebo group after 12 weeks of SKO-001 consumption. In the SKO-001 group, the subcutaneous fat area (p = 0.003), total cholesterol levels (p = 0.003), and leptin levels (p = 0.014) significantly decreased after 12 weeks of SKO-001 consumption compared with baseline values. Additionally, SKO-001 did not cause any severe adverse reactions. In conclusion, SKO-001 is safe and effective for reducing body fat and has the potential for further clinical testing in humans.
Collapse
Affiliation(s)
- Seon Mi Shin
- Department of Internal Medicine, College of Korean Medicine, Semyung University, Semyeong-ro 65, Jecheon-si 27136, Republic of Korea
| | - Jeong-Su Park
- Department of Preventive Medicine, College of Korean Medicine, Semyung University, Semyeong-ro 65, Jecheon-si 27136, Republic of Korea;
| | - Sang Back Kim
- Food Science R&D Center, Kolmar BNH Co., Ltd., 61, Heolleung-ro 8-gil, Seocho-gu, Seoul 06800, Republic of Korea; (S.B.K.); (Y.H.C.); (H.S.); (H.S.L.)
| | - Young Hee Cho
- Food Science R&D Center, Kolmar BNH Co., Ltd., 61, Heolleung-ro 8-gil, Seocho-gu, Seoul 06800, Republic of Korea; (S.B.K.); (Y.H.C.); (H.S.); (H.S.L.)
| | - Hee Seo
- Food Science R&D Center, Kolmar BNH Co., Ltd., 61, Heolleung-ro 8-gil, Seocho-gu, Seoul 06800, Republic of Korea; (S.B.K.); (Y.H.C.); (H.S.); (H.S.L.)
| | - Hak Sung Lee
- Food Science R&D Center, Kolmar BNH Co., Ltd., 61, Heolleung-ro 8-gil, Seocho-gu, Seoul 06800, Republic of Korea; (S.B.K.); (Y.H.C.); (H.S.); (H.S.L.)
| |
Collapse
|
22
|
Liu S, Ezran C, Wang MFZ, Li Z, Awayan K, Long JZ, De Vlaminck I, Wang S, Epelbaum J, Kuo CS, Terrien J, Krasnow MA, Ferrell JE. An organism-wide atlas of hormonal signaling based on the mouse lemur single-cell transcriptome. Nat Commun 2024; 15:2188. [PMID: 38467625 PMCID: PMC10928088 DOI: 10.1038/s41467-024-46070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Hormones mediate long-range cell communication and play vital roles in physiology, metabolism, and health. Traditionally, endocrinologists have focused on one hormone or organ system at a time. Yet, hormone signaling by its very nature connects cells of different organs and involves crosstalk of different hormones. Here, we leverage the organism-wide single cell transcriptional atlas of a non-human primate, the mouse lemur (Microcebus murinus), to systematically map source and target cells for 84 classes of hormones. This work uncovers previously-uncharacterized sites of hormone regulation, and shows that the hormonal signaling network is densely connected, decentralized, and rich in feedback loops. Evolutionary comparisons of hormonal genes and their expression patterns show that mouse lemur better models human hormonal signaling than mouse, at both the genomic and transcriptomic levels, and reveal primate-specific rewiring of hormone-producing/target cells. This work complements the scale and resolution of classical endocrine studies and sheds light on primate hormone regulation.
Collapse
Affiliation(s)
- Shixuan Liu
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Camille Ezran
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Michael F Z Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Zhengda Li
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kyle Awayan
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford, CA, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Sheng Wang
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Jacques Epelbaum
- Adaptive Mechanisms and Evolution (MECADEV), UMR 7179, National Center for Scientific Research, National Museum of Natural History, Brunoy, France
| | - Christin S Kuo
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jérémy Terrien
- Adaptive Mechanisms and Evolution (MECADEV), UMR 7179, National Center for Scientific Research, National Museum of Natural History, Brunoy, France
| | - Mark A Krasnow
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford, CA, USA.
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
23
|
Kobori T, Iwabu M, Okada-Iwabu M, Ohuchi N, Kikuchi A, Yamauchi N, Kadowaki T, Yamauchi T, Kasuga M. Decreased AdipoR1 signaling and its implications for obesity-induced male infertility. Sci Rep 2024; 14:5701. [PMID: 38459078 PMCID: PMC10923778 DOI: 10.1038/s41598-024-56290-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
Obesity is among the risk factors for male infertility. Although several mechanisms underlying obesity-induced male subfertility have been reported, the entire mechanism of obesity-induced male infertility still remains unclear. Here, we show that sperm count, sperm motility and sperm fertilizing ability were decreased in male mice fed a high-fat diet and that the expression of the AdipoR1 gene and protein was decreased, and the expression of pro-apoptotic genes and protein increased, in the testis from mice fed a high-fat diet. Moreover, we demonstrate that testes weight, sperm count, sperm motility and sperm fertilizing ability were significantly decreased in AdipoR1 knockout mice compared to those in wild-type mice; furthermore, the phosphorylation of AMPK was decreased, and the expression of pro-apoptotic genes and proteins, caspase-6 activity and pathologically apoptotic seminiferous tubules were increased, in the testis from AdipoR1 knockout mice. Furthermore, study findings show that orally administrated AdipoRon decreased caspase-6 activity and apoptotic seminiferous tubules in the testis, thus ameliorating sperm motility in male mice fed a high-fat diet. This was the first study to demonstrate that decreased AdipoR1/AMPK signaling led to increased caspase-6 activity/increased apoptosis in the testis thus likely accounting for male infertility.
Collapse
Affiliation(s)
- Toshiko Kobori
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Chuo-Ku, Tokyo, 103-0002, Japan
| | - Masato Iwabu
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan.
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Miki Okada-Iwabu
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
- Laboratory for Advanced Research on Pathophysiology of Metabolic Diseases, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Nozomi Ohuchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Akiko Kikuchi
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Chuo-Ku, Tokyo, 103-0002, Japan
| | - Naoko Yamauchi
- Digital Pathology Center, Asahi General Hospital, Asahi-Shi, Chiba, 289-2511, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Toranomon Hospital, Minato-Ku, Tokyo, 105-8470, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Masato Kasuga
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Chuo-Ku, Tokyo, 103-0002, Japan
| |
Collapse
|
24
|
Athar F, Karmani M, Templeman N. Metabolic hormones are integral regulators of female reproductive health and function. Biosci Rep 2024; 44:BSR20231916. [PMID: 38131197 PMCID: PMC10830447 DOI: 10.1042/bsr20231916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
The female reproductive system is strongly influenced by nutrition and energy balance. It is well known that food restriction or energy depletion can induce suppression of reproductive processes, while overnutrition is associated with reproductive dysfunction. However, the intricate mechanisms through which nutritional inputs and metabolic health are integrated into the coordination of reproduction are still being defined. In this review, we describe evidence for essential contributions by hormones that are responsive to food intake or fuel stores. Key metabolic hormones-including insulin, the incretins (glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1), growth hormone, ghrelin, leptin, and adiponectin-signal throughout the hypothalamic-pituitary-gonadal axis to support or suppress reproduction. We synthesize current knowledge on how these multifaceted hormones interact with the brain, pituitary, and ovaries to regulate functioning of the female reproductive system, incorporating in vitro and in vivo data from animal models and humans. Metabolic hormones are involved in orchestrating reproductive processes in healthy states, but some also play a significant role in the pathophysiology or treatment strategies of female reproductive disorders. Further understanding of the complex interrelationships between metabolic health and female reproductive function has important implications for improving women's health overall.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Muskan Karmani
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M. Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
25
|
Tadiotto MC, Corazza PRP, de Menezes-Junior FJ, Tozo TAA, de Moraes-Junior FB, Brand C, Purim KSM, Mota J, Leite N. Moderating role of 1-minute abdominal test in the relationship between cardiometabolic risk factors and adiponectin concentration in adolescents. BMC Pediatr 2024; 24:75. [PMID: 38263075 PMCID: PMC10804517 DOI: 10.1186/s12887-024-04554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Adiponectin is an anti-inflammatory cytokine secreted by adipose tissue, has been associated with adiposity and cardiometabolic risk, and has controversial results with muscular fitness. The aim of this study was to analyze the interaction of 1-minute abdominal test in the relationship between adiposity, body composition, cardiometabolic risk and adiponectin concentration in adolescents. METHODS This is a cross-sectional study conducted with 62 adolescents of both sexes, aged 11 to 16 years, approved by the Ethics Committee of Research in Humans (CAEE: 62963916.0.0000.5223). Body mass, height, abdominal circumference (AC), waist circumference (WC), fat mass (FM), fat-free mass (FFM), high density lipoprotein (HDL-c), low density lipoprotein (LDL-c), triglycerides (TG), adiponectin, systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean blood pressure (MBP), 1-minute abdominal test (ABD) were measured. Body mass index (BMI), z-score BMI (BMI-z), triponderal mass index (TMI), and waist-to-height ratio (WHtR) were calculated. The macro PROCESS for SPSS v.24.0 was used for moderation analyses, with linear regression models. RESULTS Inverse interactions were found for adiposity (BMI, BMI-z, TMI, AC, WC, WHtR), body composition (FM, FFM) and CMRF (SBP, DBP, MBP, TG) versus 1-minute abdominal test with adiponectin concentration, demonstrating that abdominal test is a moderator in these relationships. CONCLUSION We conclude that 1-minute abdominal test may play an important role in the relationship between obesity and cardiometabolic risk. We found that muscular fitness can confer a protective effect on adolescents with high levels of abdominal test.
Collapse
Affiliation(s)
- Maiara Cristina Tadiotto
- Department of Physical Education, Federal University of Paraná, Street Col. Francisco H. dos Santos, 100, Jardim das Americas, Curitiba, Paraná, 81531-980, Brazil.
| | - Patricia Ribeiro Paes Corazza
- Department of Physical Education, Federal University of Paraná, Street Col. Francisco H. dos Santos, 100, Jardim das Americas, Curitiba, Paraná, 81531-980, Brazil
| | - Francisco José de Menezes-Junior
- Department of Physical Education, Federal University of Paraná, Street Col. Francisco H. dos Santos, 100, Jardim das Americas, Curitiba, Paraná, 81531-980, Brazil
| | - Tatiana Aparecida Affornali Tozo
- Department of Physical Education, Federal University of Paraná, Street Col. Francisco H. dos Santos, 100, Jardim das Americas, Curitiba, Paraná, 81531-980, Brazil
| | - Frederico Bento de Moraes-Junior
- Department of Physical Education, Federal University of Paraná, Street Col. Francisco H. dos Santos, 100, Jardim das Americas, Curitiba, Paraná, 81531-980, Brazil
| | - Caroline Brand
- Physical Education School, IRyS Group, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Jorge Mota
- Faculty of Sport, University of Porto, Porto, Portugal
| | - Neiva Leite
- Department of Physical Education, Federal University of Paraná, Street Col. Francisco H. dos Santos, 100, Jardim das Americas, Curitiba, Paraná, 81531-980, Brazil
- Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
26
|
Kaminska B, Kurowicka B, Kiezun M, Dobrzyn K, Kisielewska K, Gudelska M, Kopij G, Szymanska K, Zarzecka B, Koker O, Zaobidna E, Smolinska N, Kaminski T. The Role of Adipokines in the Control of Pituitary Functions. Animals (Basel) 2024; 14:353. [PMID: 38275812 PMCID: PMC10812442 DOI: 10.3390/ani14020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The pituitary gland is a key endocrine gland in all classes of vertebrates, including mammals. The pituitary gland is an important component of hypothalamus-pituitary-target organ hormonal regulatory axes and forms a functional link between the nervous system and the endocrine system. In response to hypothalamic stimuli, the pituitary gland secretes a number of hormones involved in the regulation of metabolism, stress reactions and environmental adaptation, growth and development, as well as reproductive processes and lactation. In turn, hormones secreted by target organs at the lowest levels of the hormonal regulatory axes regulate the functions of the pituitary gland in the process of hormonal feedback. The pituitary also responds to other peripheral signals, including adipose-tissue-derived factors. These substances are a broad group of peptides known as adipocytokines or adipokines that act as endocrine hormones mainly involved in energy homeostasis. Adipokines, including adiponectin, resistin, apelin, chemerin, visfatin, and irisin, are also expressed in the pituitary gland, and they influence the secretory functions of this gland. This review is an overview of the existing knowledge of the relationship between chosen adipose-derived factors and endocrine functions of the pituitary gland, with an emphasis on the pituitary control of reproductive processes.
Collapse
Affiliation(s)
- Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Beata Kurowicka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Katarzyna Kisielewska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (K.K.); (M.G.)
| | - Marlena Gudelska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (K.K.); (M.G.)
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Karolina Szymanska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Barbara Zarzecka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Oguzhan Koker
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.K.); (B.K.); (M.K.); (G.K.); (K.S.); (B.Z.); (O.K.); (N.S.)
| |
Collapse
|
27
|
Sato S. Adipo-oncology: adipocyte-derived factors govern engraftment, survival, and progression of metastatic cancers. Cell Commun Signal 2024; 22:52. [PMID: 38238841 PMCID: PMC10797898 DOI: 10.1186/s12964-024-01474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
Conventional therapies for metastatic cancers have limited efficacy. Recently, cancer therapies targeting noncancerous cells in tumor microenvironments have shown improved clinical outcomes in patients. However, further advances in our understanding of the metastatic tumor microenvironment are required to improve treatment outcomes. Adipocytes are distributed throughout the body, and as a part of the metastatic tumor microenvironment, they interact with cancer cells in almost all organs. Adipocytes secrete various factors that are reported to exert clinical effects on cancer progression, including engraftment, survival, and expansion at the metastatic sites. However, only a few studies have comprehensively examined their impact on cancer cells. In this review, we examined the impact of adipocytes on cancer by describing the adipocyte-secreted factors that are involved in controlling metastatic cancer, focusing on adipokines, such as adiponectin, leptin, visfatin, chemerin, resistin, apelin, and omentin. Adipocyte-secreted factors promote cancer metastasis and contribute to various biological functions of cancer cells, including migration, invasion, proliferation, immune evasion, and drug resistance at the metastatic sites. We propose the establishment and expansion of "adipo-oncology" as a research field to enhance the comprehensive understanding of the role of adipocytes in metastatic cancers and the development of more robust metastatic cancer treatments.
Collapse
Affiliation(s)
- Shinya Sato
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, 2-3-2, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
- Department of Pathology, Kanagawa Cancer Center Hospital, 2-3-2, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
| |
Collapse
|
28
|
Baka RD, Kuleš J, Beletić A, Farkaš V, Rešetar Maslov D, Ljubić BB, Rubić I, Mrljak V, McLaughlin M, Eckersall D, Polizopoulou Z. Quantitative serum proteome analysis using tandem mass tags in dogs with epilepsy. J Proteomics 2024; 290:105034. [PMID: 37879566 DOI: 10.1016/j.jprot.2023.105034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023]
Abstract
This study included four groups of dogs (group A: healthy controls, group B: idiopathic epilepsy receiving antiepileptic medication (AEM), group C: idiopathic epilepsy without AEM, group D: structural epilepsy). Comparative quantitative proteomic analysis of serum samples among the groups was the main target of the study. Samples were analyzed by a quantitative Tandem-Mass-Tags approach on the Q-Exactive-Plus Hybrid Quadrupole-Orbitrap mass-spectrometer. Identification and relative quantification were performed in Proteome Discoverer. Data were analyzed using R. Gene ontology terms were analyzed based on Canis lupus familiaris database. Data are available via ProteomeXchange with identifier PXD041129. Eighty-one proteins with different relative adundance were identified in the four groups and 25 were master proteins (p < 0.05). Clusterin (CLU), and apolipoprotein A1 (APOA1) had higher abundance in the three groups of dogs (groups B, C, D) compared to controls. Amine oxidase (AOC3) was higher in abundance in group B compared to groups C and D, and lower in group A. Adiponectin (ADIPOQ) had higher abundance in groups C compared to group A. ADIPOQ and fibronectin (FN1) had higher abundance in group B compared to group C and D. Peroxidase activity assay was used to quantify HP abundance change, validating and correlating with proteomic analysis (r = 0.8796). SIGNIFICANCE: The proteomic analysis of serum samples from epileptic dogs indicated potential markers of epilepsy (CLU), proteins that may contribute to nerve tissue regeneration (APOA1), and contributing factors to epileptogenesis (AOC3). AEM could alter extracellular matrix proteins (FN1). Illness (epilepsy) severity could influence ADIPOQ abundance.
Collapse
Affiliation(s)
- Rania D Baka
- Diagnostic Laboratory, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Josipa Kuleš
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Anđelo Beletić
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Farkaš
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Dina Rešetar Maslov
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Blanka Beer Ljubić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivana Rubić
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Mrljak
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia; Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Marκ McLaughlin
- Institute of Biodiversity, Animal Health & Comparative Medicine and School of Veterinary Medicine, College of Medicine, Veterinary Medicine and Life Sciences,University of Glasgow, Glasgow G61 1QH, UK
| | - David Eckersall
- Institute of Biodiversity, Animal Health & Comparative Medicine and School of Veterinary Medicine, College of Medicine, Veterinary Medicine and Life Sciences,University of Glasgow, Glasgow G61 1QH, UK
| | - Zoe Polizopoulou
- Diagnostic Laboratory, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
29
|
Karna S, Kang KW. An Overview of the Mechanism behind Excessive Volume of Pericardial Fat in Heart Failure. J Obes Metab Syndr 2023; 32:322-329. [PMID: 38036419 PMCID: PMC10786210 DOI: 10.7570/jomes23042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023] Open
Abstract
Heart failure (HF) is a clinical syndrome characterized by myocardial dysfunction leading to inefficient blood filling or ejection. Regardless of the etiology, various mechanisms, including adipokine hypersecretion, proinflammatory cytokines, stem cell proliferation, oxidative stress, hyperglycemic toxicity, and autonomic nervous system dysregulation in the pericardial fat (PCF), contribute to the development of HF. PCF has been directly associated with cardiovascular disease, and an increased PCF volume is associated with HF. The PCF acts as neuroendocrine tissue that is closely linked to myocardial function and acts as an energy reservoir. This review aims to summarize each mechanism associated with PCF in HF.
Collapse
Affiliation(s)
- Sandeep Karna
- Division of Cardiology, Cardiovascular Arrhythmia Center, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Ki-Woon Kang
- Division of Cardiology, Cardiovascular Arrhythmia Center, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Al Zein M, Zein O, Diab R, Dimachkie L, Sahebkar A, Al-Asmakh M, Kobeissy F, Eid AH. Intermittent fasting favorably modulates adipokines and potentially attenuates atherosclerosis. Biochem Pharmacol 2023; 218:115876. [PMID: 37871879 DOI: 10.1016/j.bcp.2023.115876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Adipose tissue is now recognized as an endocrine organ that secretes bioactive molecules called adipokines. These biomolecules regulate key physiological functions, including insulin sensitivity, energy metabolism, appetite regulation, endothelial function and immunity. Dysregulated secretion of adipokines is intimately associated with obesity, and translates into increased risk of obesity-related cardiovasculo-metabolic diseases. In particular, emerging evidence suggests that adipokine imbalance contributes to the pathogenesis of atherosclerosis. One of the promising diet regimens that is beneficial in the fight against obesity and cardiometabolic disorders is intermittent fasting (IF). Indeed, IF robustly suppresses inflammation, meditates weight loss and mitigates many aspects of the cardiometabolic syndrome. In this paper, we review the main adipokines and their role in atherosclerosis, which remains a major contributor to cardiovascular-associated morbidity and mortality. We further discuss how IF can be employed as an effective management modality for obesity-associated atherosclerosis. By exploring a plethora of the beneficial effects of IF, particularly on inflammatory markers, we present IF as a possible intervention to help prevent atherosclerosis.
Collapse
Affiliation(s)
- Mohammad Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Omar Zein
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rawan Diab
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Lina Dimachkie
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar
| | - Firas Kobeissy
- Department of Neurobiology and Neuroscience, Morehouse School of Medicine, Atlanta, GA, USA
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
31
|
Choubey M, Tirumalasetty MB, Bora NS, Bora PS. Linking Adiponectin and Its Receptors to Age-Related Macular Degeneration (AMD). Biomedicines 2023; 11:3044. [PMID: 38002042 PMCID: PMC10668948 DOI: 10.3390/biomedicines11113044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/26/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, there has been a captivating focus of interest in elucidating the intricate crosstalk between adiponectin (APN), a versatile fat-associated adipokine and ocular pathologies. Unveiling the intricate relationship between adipocytokine APN and its receptors (AdipoRs) with aging eye disorders has emerged as a fascinating frontier in medical research. This review article delves into this connection, illuminating the hidden influence of APN on retinal health. This comprehensive review critically examines the latest findings and breakthroughs that underscore the pivotal roles of APN/AdipoRs signaling in maintaining ocular homeostasis and protecting against eye ailments. Here, we meticulously explore the intriguing mechanisms by which APN protein influences retinal function and overall visual acuity. Drawing from an extensive array of cutting-edge studies, the article highlights APN's multifaceted functions, ranging from anti-inflammatory properties and oxidative stress reduction to angiogenic regulation within retinal and macula tissues. The involvement of APN/AdipoRs in mediating these effects opens up novel avenues for potential therapeutic interventions targeting prevalent aging eye conditions. Moreover, this review unravels the interplay between APN signaling pathways and age-related macular degeneration (AMD). The single-cell RNA-seq results validate the expression of both the receptor isoforms (AdipoR1/R2) in retinal cells. The transcriptomic analysis showed lower expression of AdipoR1/2 in dry AMD pathogenesis compared to healthy subjects. The inhibitory adiponectin peptide (APN1) demonstrated over 75% suppression of CNV, whereas the control peptide did not exert any inhibitory effect on choroidal neovascularization (CNV). The elucidation of these relationships fosters a deeper understanding of adipose tissue's profound influence on ocular health, presenting new prospects for personalized treatments and preventative measures. Because APN1 inhibits CNV and leakage, it can be used to treat human AMD, although the possibility to treat human AMD is in the early stage and more clinical research is needed. In conclusion, this review provides a captivating journey into the enthralling world of APN, intertwining the realms of adipose biology and ophthalmology in aging.
Collapse
Affiliation(s)
- Mayank Choubey
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (M.C.); (M.B.T.)
| | - Munichandra B. Tirumalasetty
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (M.C.); (M.B.T.)
| | - Nalini S. Bora
- Department of Ophthalmology, Jones Eye Institute, Pat & Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA;
| | - Puran S. Bora
- Department of Ophthalmology, Jones Eye Institute, Pat & Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA;
| |
Collapse
|
32
|
Asahara N, Okada-Iwabu M, Iwabu M, Wada K, Oka K, Yamauchi T, Kadowaki T. A monoclonal antibody activating AdipoR for type 2 diabetes and nonalcoholic steatohepatitis. SCIENCE ADVANCES 2023; 9:eadg4216. [PMID: 37948516 PMCID: PMC10637737 DOI: 10.1126/sciadv.adg4216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Adiponectin receptors, AdipoR1 and AdipoR2 are promising targets for the prevention and treatment of metabolic diseases. In this study, we aimed to establish agonistic antibodies against AdipoR1 and AdipoR2 with a long enough half-life to provide a means of improving poor medication adherence associated with preclinical small-molecule AdipoR agonists or existing antidiabetic drugs. Monoclonal antibodies were obtained by immunizing AdipoR knockout mice with human AdipoR-expressing cells. Of the antibodies shown to bind to both, an agonist antibody was obtained, which exhibited adenosine 5'-monophosphate-activated protein kinase-activating properties such as adiponectin and was named AdipoR-activating monoclonal antibody (AdipoRaMab). AdipoRaMab ameliorated glucose intolerance in high-fat diet-fed mice, which was not observed in AdipoR1·AdipoR2 double knockout mice. AdipoRaMab exhibited anti-inflammatory and antifibrotic effects in the nonalcoholic steatohepatitis (NASH) model, indicating its therapeutic potential in diabetes and in NASH. In addition, the results of this study indicated that AdipoRaMab may exert therapeutic effects even in a once-monthly dosing regimen through its humanization.
Collapse
Affiliation(s)
- Naomi Asahara
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Miki Okada-Iwabu
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Laboratory for Advanced Research on Pathophysiology of Metabolic Diseases, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masato Iwabu
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Kouichi Wada
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Kozo Oka
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Laboratory for Advanced Research on Pathophysiology of Metabolic Diseases, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Laboratory for Advanced Research on Pathophysiology of Metabolic Diseases, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan
| |
Collapse
|
33
|
Zheng Y, Ye C, He M, Ko WKW, Chan YW, Wong AOL. Goldfish adiponectin: (I) molecular cloning, tissue distribution, recombinant protein expression, and novel function as a satiety factor in fish model. Front Endocrinol (Lausanne) 2023; 14:1283298. [PMID: 38027109 PMCID: PMC10643153 DOI: 10.3389/fendo.2023.1283298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Adiponectin (AdipoQ) is an adipokine involved in glucose homeostasis and lipid metabolism. In mammals, its role in appetite control is highly controversial. To shed light on the comparative aspects of AdipoQ in lower vertebrates, goldfish was used as a model to study feeding regulation by AdipoQ in fish species. As a first step, goldfish AdipoQ was cloned and found to be ubiquitously expressed at the tissue level. Using sequence alignment, protein modeling, phylogenetic analysis and comparative synteny, goldfish AdipoQ was shown to be evolutionarily related to its fish counterparts and structurally comparable with AdipoQ in higher vertebrates. In our study, recombinant goldfish AdipoQ was expressed in E. coli, purified by IMAC, and confirmed to be bioactive via activation of AdipoQ receptors expressed in HepG2 cells. Feeding in goldfish revealed that plasma levels of AdipoQ and its transcript expression in the liver and brain areas involved in appetite control including the telencephalon, optic tectum, and hypothalamus could be elevated by food intake. In parallel studies, IP and ICV injection of recombinant goldfish AdipoQ in goldfish was effective in reducing foraging behaviors and food consumption. Meanwhile, transcript expression of orexigenic factors (NPY, AgRP, orexin, and apelin) was suppressed with parallel rises in anorexigenic factors (POMC, CART, CCK, and MCH) in the telencephalon, optic tectum and/or hypothalamus. In these brain areas, transcript signals for leptin receptor were upregulated with concurrent drops in the NPY receptor and ghrelin receptors. In the experiment with IP injection of AdipoQ, transcript expression of leptin was also elevated with a parallel drop in ghrelin mRNA in the liver. These findings suggest that AdipoQ can act as a novel satiety factor in goldfish. In this case, AdipoQ signals (both central and peripheral) can be induced by feeding and act within the brain to inhibit feeding behaviors and food intake via differential regulation of orexigenic/anorexigenic factors and their receptors. The feeding inhibition observed may also involve the hepatic action of AdipoQ by modulation of feeding regulators expressed in the liver.
Collapse
Affiliation(s)
| | | | | | | | | | - Anderson O. L. Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
34
|
Fazlıoğlu N, Uysal P, Durmus S, Yurt S, Gelisgen R, Uzun H. Significance of Plasma Irisin, Adiponectin, and Retinol Binding Protein-4 Levels as Biomarkers for Obstructive Sleep Apnea Syndrome Severity. Biomolecules 2023; 13:1440. [PMID: 37892122 PMCID: PMC10604585 DOI: 10.3390/biom13101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
OBJECTIVE Obstructive sleep apnea syndrome (OSAS) is a common sleep disorder that is caused by the reduction or cessation of airflow in the upper airway. Irisin, retinol-binding protein-4 (RBP-4), and adiponectin are the three significant factors in the metabolic process of the human body. The objective of this study was to investigate whether plasma irisin, RBP-4, and adiponectin levels are associated with the severity of OSAS. METHODS According to inclusion and exclusion criteria, 125 patients with OSAS and 46 healthy, gender-matched controls were included in this study. The patients were classified according to the apnea hypopnea index (AHI) as 14 mild cases (5 < AHI < 15), 23 moderate OSAS cases (15 < AHI < 30), and 88 severe OSAS cases (AHI > 30). The plasma irisin, RBP-4, and adiponectin levels were measured and compared between groups. RESULTS RBP-4 levels were higher in severe OSAS compared to other groups, and irisin levels were significantly lower in severe OSAS compared to other groups. There was a negative correlation between irisin and RBP-4 (r = -0.421; p < 0.001), and irisin and AHI (r = -0.834; p < 0.001), and a positive correlation between irisin and adiponectin (r = 0.240; p = 0.002). There was a negative correlation between RBP-4 and adiponectin (r = -0.507; p < 0.001) and a positive correlation between RBP-4 and AHI (r = 0.473; p < 0.001). As a predictor of OSAS, adiponectin showed the highest specificity (84.8%) and RBP-4 the highest sensitivity (92.0%). CONCLUSION Circulating adiponectin, irisin, and RBP-4 may be new biomarkers in OSAS patients in addition to risk factors such as diabetes, obesity, and hypertension. When polysomnography is not available, these parameters and clinical data can be used to diagnose the disease. As a result, patients with an AHI score greater than thirty should be closely monitored for metabolic abnormalities.
Collapse
Affiliation(s)
- Nevin Fazlıoğlu
- Department of Pulmonary Medicine, Namık Kemal University, 59010 Tekirdag, Turkey;
| | - Pelin Uysal
- Maslak Hospital, Faculty of Medicine, Department of Pulmonary Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
| | - Sinem Durmus
- Department of Biochemistry, School of Medicine, Istanbul University-Cerrahpasa, 34320 Istanbul, Turkey; (S.D.); (R.G.)
| | - Sibel Yurt
- Basaksehir Cam and Sakura State Hospital, Department of Pulmonary Medicine, University of Health Sciences, 34480 Istanbul, Turkey;
| | - Remise Gelisgen
- Department of Biochemistry, School of Medicine, Istanbul University-Cerrahpasa, 34320 Istanbul, Turkey; (S.D.); (R.G.)
| | - Hafize Uzun
- Department of Biochemistry, Faculty of Medicine, İstanbul Atlas University, 34403 Istanbul, Turkey
| |
Collapse
|
35
|
Kim J, Oh CM, Kim H. The Interplay of Adipokines and Pancreatic Beta Cells in Metabolic Regulation and Diabetes. Biomedicines 2023; 11:2589. [PMID: 37761031 PMCID: PMC10526203 DOI: 10.3390/biomedicines11092589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
The interplay between adipokines and pancreatic beta cells, often referred to as the adipo-insular axis, plays a crucial role in regulating metabolic homeostasis. Adipokines are signaling molecules secreted by adipocytes that have profound effects on several physiological processes. Adipokines such as adiponectin, leptin, resistin, and visfatin influence the function of pancreatic beta cells. The reciprocal communication between adipocytes and beta cells is remarkable. Insulin secreted by beta cells affects adipose tissue metabolism, influencing lipid storage and lipolysis. Conversely, adipokines released from adipocytes can influence beta cell function and survival. Chronic obesity and insulin resistance can lead to the release of excess fatty acids and inflammatory molecules from the adipose tissue, contributing to beta cell dysfunction and apoptosis, which are key factors in developing type 2 diabetes. Understanding the complex interplay of the adipo-insular axis provides insights into the mechanisms underlying metabolic regulation and pathogenesis of metabolic disorders. By elucidating the molecular mediators involved in this interaction, new therapeutic targets and strategies may emerge to reduce the risk and progression of diseases, such as type 2 diabetes and its associated complications. This review summarizes the interactions between adipokines and pancreatic beta cells, and their roles in the pathogenesis of diabetes and metabolic diseases.
Collapse
Affiliation(s)
- Joon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Hyeongseok Kim
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35105, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35105, Republic of Korea
| |
Collapse
|
36
|
Choubey M, Bora P. Emerging Role of Adiponectin/AdipoRs Signaling in Choroidal Neovascularization, Age-Related Macular Degeneration, and Diabetic Retinopathy. Biomolecules 2023; 13:982. [PMID: 37371562 DOI: 10.3390/biom13060982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/15/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Age-related macular degeneration (AMD), a leading cause of irreversible blindness in adults, may result in poor central vision, making it difficult to see, read, and drive. AMD is generally classified in either dry or wet types. Milder cases of dry AMD may progress to geographic atrophy (GA), leading to significant visual disability; wet, or neovascular AMD, which involves choroidal neovascularization (CNV), can lead to complete loss of central vision. Adiponectin (APN) discovery in the mid-1990's and, subsequently, its two cognate receptors (AdipoRs) in the early 2000s have led to a remarkable progress in better understanding metabolic disorders, as well as metabolism-associated ocular pathology. APN/AdipoRs signaling plays a central role in a variety of molecular and cellular physiological events, including glucose and lipid metabolism, whole-body energy regulation, immune and inflammation responses, insulin sensitivity and retinal cell biological functions. This review is an amalgamation of recent information related to APN/AdipoRs in the pathophysiology of retinal diseases and furthers its association with AMD and diabetic retinopathy. Additionally, we present our original research, where we designed control peptide and CNV inhibitory peptide from the globular region of APN to see the effect of these peptides on the mouse model of laser-induced CNV. The inhibitory peptide (APN1) inhibited CNV by more than 75% while the control peptide did not inhibit CNV.
Collapse
Affiliation(s)
- Mayank Choubey
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA
| | - Puran Bora
- Pat & Willard Walker Eye Research Center, Department of Ophthalmology, Jones Eye Institute, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA
| |
Collapse
|
37
|
Dadkhah M, Jafarzadehgharehziaaddin M, Molaei S, Akbari M, Gholizadeh N, Fathi F. Major depressive disorder: biomarkers and biosensors. Clin Chim Acta 2023:117437. [PMID: 37315724 DOI: 10.1016/j.cca.2023.117437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Depressive disorders belong to highly heterogeneous psychiatric diseases. Loss of in interest in previously enjoyed activities and a depressed mood are the main characteristics of major depressive disorder (MDD). Moreover, due to significant heterogeneity in clinical presentation and lack of applicable biomarkers, diagnosis and treatment remains challenging. Identification of relevant biomarkers would allow for improved disease classification and more personalized treatment strategies. Herein, we review the current state of these biomarkers and then discuss diagnostic techniques of aimed to specifically target these analytes using state of the art biosensor technology.
Collapse
Affiliation(s)
- Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Soheila Molaei
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Morteza Akbari
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neghin Gholizadeh
- Students Research Committee, Health School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Fathi
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
38
|
Shnayder NA, Grechkina VV, Trefilova VV, Efremov IS, Dontceva EA, Narodova EA, Petrova MM, Soloveva IA, Tepnadze LE, Reznichenko PA, Al-Zamil M, Altynbekova GI, Strelnik AI, Nasyrova RF. Valproate-Induced Metabolic Syndrome. Biomedicines 2023; 11:biomedicines11051499. [PMID: 37239168 DOI: 10.3390/biomedicines11051499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Valproic acid (VPA) and its salts (sodium calcium magnesium and orotic) are psychotropic drugs that are widely used in neurology and psychiatry. The long-term use of VPA increases the risk of developing adverse drug reactions (ADRs), among which metabolic syndrome (MetS) plays a special role. MetS belongs to a cluster of metabolic conditions such as abdominal obesity, high blood pressure, high blood glucose, high serum triglycerides, and low serum high-density lipoprotein. Valproate-induced MetS (VPA-MetS) is a common ADR that needs an updated multidisciplinary approach to its prevention and diagnosis. In this review, we consider the results of studies of blood (serum and plasma) and the urinary biomarkers of VPA-MetS. These metabolic biomarkers may provide the key to the development of a new multidisciplinary personalized strategy for the prevention and diagnosis of VPA-MetS in patients with neurological diseases, psychiatric disorders, and addiction diseases.
Collapse
Affiliation(s)
- Natalia A Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Violetta V Grechkina
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Vera V Trefilova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Ilya S Efremov
- Department of Psychiatry and Narcology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Evgenia A Dontceva
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Federal Centre for Neurosurgery, 630087 Novosibirsk, Russia
| | - Ekaterina A Narodova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Marina M Petrova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Irina A Soloveva
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Liia E Tepnadze
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Polina A Reznichenko
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | - Gulnara I Altynbekova
- Department of Psychiatry and Narcology, S.D. Asfendiarov Kazakh National Medical University, Almaty 050022, Kazakhstan
| | - Anna I Strelnik
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| | - Regina F Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
39
|
Sain J, Scanarotti IG, Gerstner CD, Fariña AC, Lavandera JV, Bernal CA. Enriched functional milk fat ameliorates glucose intolerance and triacylglycerol accumulation in skeletal muscle of rats fed high-fat diets. Eur J Nutr 2023; 62:1535-1550. [PMID: 36708376 DOI: 10.1007/s00394-023-03098-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/18/2023] [Indexed: 01/29/2023]
Abstract
PURPOSE We examined the effect of a functional milk fat (FMF) on the glucose metabolism and its association with the intramuscular triacylglycerol (TAG) content in rats fed high-fat diets. METHODS Male Wistar rats were fed for 60 days with S7 (soybean oil 7%), S30 (soybean oil 30%), MF30 (soybean oil 3% + milk fat 27%), or FMF30 (soybean oil 3% + FMF 27%) diets. An oral glucose tolerance test was performed. The levels of key metabolites in gastrocnemius muscle and mRNA levels of genes involved in glucose and lipid metabolism in muscle, epididymal white adipose tissue (EWAT), and serum were assessed. RESULTS The S30 diet induced glucose intolerance and led to TAG, citrate, and glucose accumulation in muscle. Moreover, we observed a downregulation of uncoupling proteins (Ucp2 and Ucp3) and insulin receptor substrate-1 (Irs1) genes, lower carnitine palmitoyl transferase-1b (CPT-1b), and phosphofructokinase-1 (PFK1) activities in muscle and lower expression of adiponectin (Adipoq) in EWAT. The FMF30 diet ameliorated the glucose intolerance and normalized the glucose and TAG levels in muscle, preventing the accumulation of citrate and enhancing glucose utilization by the PFK1. The beneficial effects might also be related to the higher expression of Adipoq in EWAT, its receptor in muscle (Adipor1), and the expression of Ucp2, Ucp3, and Irs1 in muscle, restoring the alterations observed with the S30 diet. CONCLUSIONS FMF30 modulated key genes involved in glucose and lipid metabolism in skeletal muscle, improving the glucose utilization and preventing TAG, glucose, and citrate accumulation.
Collapse
Affiliation(s)
- Juliana Sain
- Cátedra de Bromatología Y Nutrición, Departamento de Ciencias Biológicas, Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242. (3000), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Santa Fe, Argentina
| | - Ignacio Gabriel Scanarotti
- Cátedra de Bromatología Y Nutrición, Departamento de Ciencias Biológicas, Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242. (3000), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Santa Fe, Argentina
| | - Carolina Daniela Gerstner
- Cátedra de Bromatología Y Nutrición, Departamento de Ciencias Biológicas, Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242. (3000), Santa Fe, Argentina
| | - Ana Clara Fariña
- Cátedra de Bromatología Y Nutrición, Departamento de Ciencias Biológicas, Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242. (3000), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Santa Fe, Argentina
| | - Jimena Verónica Lavandera
- Cátedra de Bromatología Y Nutrición, Departamento de Ciencias Biológicas, Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242. (3000), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Santa Fe, Argentina
| | - Claudio Adrián Bernal
- Cátedra de Bromatología Y Nutrición, Departamento de Ciencias Biológicas, Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242. (3000), Santa Fe, Argentina.
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Santa Fe, Argentina.
| |
Collapse
|
40
|
Kiełbowski K, Bakinowska E, Ostrowski P, Pala B, Gromowska E, Gurazda K, Dec P, Modrzejewski A, Pawlik A. The Role of Adipokines in the Pathogenesis of Psoriasis. Int J Mol Sci 2023; 24:ijms24076390. [PMID: 37047363 PMCID: PMC10094354 DOI: 10.3390/ijms24076390] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Psoriasis is a chronic and immune-mediated skin condition characterized by pro-inflammatory cytokines and keratinocyte hyperproliferation. Dendritic cells, T lymphocytes, and keratinocytes represent the main cell subtypes involved in the pathogenesis of psoriasis, while the interleukin-23 (IL-23)/IL-17 pathway enhances the disease progression. Human adipose tissue is an endocrine organ, which secretes multiple proteins, known as adipokines, such as adiponectin, leptin, visfatin, or resistin. Current evidence highlights the immunomodulatory roles of adipokines, which may contribute to the progression or suppression of psoriasis. A better understanding of the complexity of psoriasis pathophysiology linked with adipokines could result in developing novel diagnostic or therapeutic strategies. This review aims to present the pathogenesis of psoriasis and the roles of adipokines in this process.
Collapse
|
41
|
Tokunaga K, Nakamura H, Toue S, Kato Y, Ida Y, Miyoshi S, Yoneyama R, Ohnishi H, Hisamatsu T, Okamoto S. Plasma free amino acid profiles are associated with serum high molecular weight adiponectin levels in Japanese medical check-up population without type 2 diabetes mellitus. Amino Acids 2023:10.1007/s00726-023-03257-6. [PMID: 36930326 DOI: 10.1007/s00726-023-03257-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
To prevent the progression of type 2 diabetes mellitus (T2DM), early detection and intervention are important. Several studies have already shown that the serum adiponectin level could be useful for evaluating the future risk of T2DM. Recently, plasma free amino acid (PFAA) concentrations have also emerged as potential biomarkers that predict the future onset of T2DM. In this study, we aimed to further characterise PFAA profiles by elucidating the association with the serum high molecular weight (HMW) adiponectin level in this cross-sectional study. A total of 1000 Japanese subjects who underwent medical check-ups were enrolled, and their plasma concentrations of 21 amino acids and clinical parameters were measured. The subjects without T2DM were divided into quartiles (Q1-4) by serum HMW adiponectin level, and the association with between PFAA concentrations was analysed. Concentrations of glutamate, alanine, proline, tyrosine, histidine, methionine, lysine, branched-chain amino acids (BCAAs) and tryptophan varied significantly according to the adiponectin quartile. Furthermore, serum adiponectin levels showed significant inverse correlations with these amino acids. The change in the PFAA profile in the group with the lowest adiponectin concentrations (Q1) was similar to that of T2DM patients. Although both adiponectin levels and PFAA concentrations are known to be altered by the accumulation of visceral fat and insulin resistance, the levels of glutamate, BCAA, lysine and tryptophan remain significantly associated with adiponectin level after adjustment for age, body mass index and homeostasis model assessment of insulin resistance, showing the direct association between PFAA concentrations and the serum HMW adiponectin level. Registration number: University Hospital Medical Information Network Clinical Trials Registry (UMIN-CTR) UMIN000029920, registered on Nov 13th 2017 (prospectively registered).
Collapse
Affiliation(s)
- Kengo Tokunaga
- Department of General Medicine, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| | - Hidehiro Nakamura
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, 210-8681, Japan.
| | - Sakino Toue
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, 210-8681, Japan
| | - Yumiko Kato
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, 210-8681, Japan
| | - Yosuke Ida
- Department of General Medicine, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| | - Sawako Miyoshi
- Department of General Medicine, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| | - Rika Yoneyama
- Clinical Laboratory, Kyorin University Hospital, Mitaka-shi, Tokyo, Japan
| | - Hiroaki Ohnishi
- Clinical Laboratory, Kyorin University Hospital, Mitaka-shi, Tokyo, Japan
| | - Tadakazu Hisamatsu
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka-shi, Tokyo, Japan
| | - Susumu Okamoto
- Department of General Medicine, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan.
| |
Collapse
|
42
|
Souza-Silva IM, Steckelings UM, Assersen KB. The role of vasoactive peptides in skin homeostasis-focus on adiponectin and the kallikrein-kinin system. Am J Physiol Cell Physiol 2023; 324:C741-C756. [PMID: 36745527 DOI: 10.1152/ajpcell.00269.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vasoactive peptides often serve a multitude of functions aside from their direct effects on vasodynamics. This article will review the existing literature on two vasoactive peptides and their involvement in skin homeostasis: adiponectin and-as the main representative of the kallikrein-kinin system-bradykinin. Adiponectin is the most abundantly expressed adipokine in the human organism, where it is mainly localized in fat depots including subcutaneous adipose tissue, from where adiponectin can exert paracrine effects. The involvement of adiponectin in skin homeostasis is supported by a number of studies reporting the effects of adiponectin in isolated human keratinocytes, sebocytes, fibroblasts, melanocytes, and immune cells. Regarding skin pathology, the potential involvement of adiponectin in psoriasis, atopic dermatitis, scleroderma, keloid, and melanogenesis is discussed in this article. The kallikrein-kinin system is composed of a variety of enzymes and peptides, most of which have been identified to be expressed in the skin. This also includes the expression of bradykinin receptors on most skin cells. Bradykinin is one of the very few hormones that is targeted by treatment in routine clinical use in dermatology-in this case for the treatment of hereditary angioedema. The potential involvement of bradykinin in wound healing, psoriasis, and melanoma is further discussed in this article. This review concludes with a call for additional preclinical and clinical studies to further explore the therapeutic potential of adiponectin supplementation (for psoriasis, atopic dermatitis, wound healing, scleroderma, and keloid) or pharmacological interference with the kallikrein-kinin system (for wound healing, psoriasis, and melanoma).
Collapse
Affiliation(s)
- Igor M Souza-Silva
- Department of Cardiovascular & Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - U Muscha Steckelings
- Department of Cardiovascular & Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kasper Bostlund Assersen
- Department of Cardiovascular & Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Dermatology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
43
|
|
44
|
Li R, Dong F, Zhang L, Ni X, Lin G. Role of adipocytokines in endometrial cancer progression. Front Pharmacol 2022; 13:1090227. [PMID: 36578551 PMCID: PMC9791063 DOI: 10.3389/fphar.2022.1090227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Endometrial cancer is considered a significant barrier to increasing life expectancy and remains one of the most common malignant cancers among women in many countries worldwide. The increasing mortality rates are potentially proportional to the increasing obesity incidence. Adipose tissue secretes numerous adipocytokines, which may play important roles in endometrial cancer progression. In this scenario, we describe the role of adipocytokines in cell proliferation, cell invasion, cell adhesion, inflammation, angiogenesis, and anti-apoptotic action. A better understanding of the mechanisms of these adipocytokines may open up new therapeutic avenues for women with endometrial cancer. In the future, larger prospective studies focusing on adipocytokines and specific inhibitors should be directed at preventing the rapidly increasing prevalence of gynecological malignancies.
Collapse
Affiliation(s)
- Ran Li
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Fang Dong
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Ling Zhang
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Xiuqin Ni
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Guozhi Lin
- Department of Obstetrics and Gynecology, Second Affiliated Hospital to Shandong First Medical University, Taian, China,*Correspondence: Guozhi Lin,
| |
Collapse
|
45
|
Tseng SY, Chang HY, Li YH, Chao TH. Effects of Cilostazol on Angiogenesis in Diabetes through Adiponectin/Adiponectin Receptors/Sirtuin1 Signaling Pathway. Int J Mol Sci 2022; 23:14839. [PMID: 36499166 PMCID: PMC9739574 DOI: 10.3390/ijms232314839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Cilostazol is an antiplatelet agent with vasodilating effects that functions by increasing the intracellular concentration of cyclic adenosine monophosphate. We have previously shown that cilostazol has favorable effects on angiogenesis. However, there is no study to evaluate the effects of cilostazol on adiponectin. We investigated the effects of cilostazol on angiogenesis in diabetes in vitro and in vivo through adiponectin/adiponectin receptors (adipoRs) and the sirtuin 1 (SIRT1)/AMP-activated protein kinase (AMPK) signaling pathway. Human umbilical vein endothelial cells (HUVECs) and human aortic smooth muscle cells (HASMCs) were cocultured under high glucose (HG) conditions. Adiponectin concentrations in the supernatants were significantly increased when HASMCs were treated with cilostazol but not significantly changed when only HUVECs were treated with cilostazol. Cilostazol treatment enhanced the expression of SIRT1 and upregulated the phosphorylation of AMPK in HG-treated HUVECs. By sequential knockdown of adipoRs, SIRT1, and AMPK, our data demonstrated that cilostazol prevented apoptosis and stimulated proliferation, chemotactic motility, and capillary-like tube formation in HG-treated HUVECs through the adipoRs/SIRT1/AMPK signaling pathway. The phosphorylation of downstream signaling molecules, including acetyl-CoA carboxylase (ACC) and endothelial nitric oxide synthase (eNOS), was downregulated when HUVECs were treated with a SIRT1 inhibitor. In streptozotocin-induced diabetic mice, cilostazol treatment could improve blood flow recovery 21-28 days after inducing hindlimb ischemia as well as increase the circulating of CD34+CD45dim cells 14-21 days after operation; moreover, these effects were significantly attenuated by the knockdown of adipoR1 but not adipoR2. The expression of SIRT1 and phosphorylation of AMPK/ACC and Akt/eNOS in ischemic muscles were significantly attenuated by the gene knockdown of adipoRs. Cilostazol improves HG-induced endothelial dysfunction in vascular endothelial cells and enhances angiogenesis in diabetic mice by upregulating the expression of adiponectin/adipoRs and its SIRT1/AMPK downstream signaling pathway.
Collapse
Affiliation(s)
- Shih-Ya Tseng
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Hsien-Yuan Chang
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yi-Heng Li
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ting-Hsing Chao
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Health Management Center, National Cheng Kung University Hospital, Tainan 704, Taiwan
| |
Collapse
|
46
|
Lazar-Poloczek E, Romuk E, Jacheć W, Stanek W, Stanek B, Szołtysik M, Techmański T, Hasterok M, Wojciechowska C. Levels of TNF-α and Soluble TNF Receptors in Normal-Weight, Overweight and Obese Patients with Dilated Non-Ischemic Cardiomyopathy: Does Anti-TNF Therapy Still Have Potential to Be Used in Heart Failure Depending on BMI? Biomedicines 2022; 10:biomedicines10112959. [PMID: 36428528 PMCID: PMC9687112 DOI: 10.3390/biomedicines10112959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Background. We sought to measure the levels of adipokines, TNF-α and soluble receptors (sTNFr1, sTNFr2) in heart failure patients with reduced ejection fraction (HFrEF) due to non-ischemic cardiomyopathy (nDCM). Methods. A total of 123 patients with HFrEF due to nDCM were divided into three groups according to BMI: 34 (27.6%) normal weight, 56 (45.5%) overweight and 33 (26.8%) obese. A six-minute walk test, echocardiography and right heart catheterization were performed. Serum concentrations of adiponectin, leptin, NT-proBNP, blood hemoglobin, sodium, creatinine, ALAT, AspAT, bilirubin, CRP, lipids, TNF-α, sTNFr1 and sTNFr2 receptors were measured. Results. Obese patients had the lowest NT-proBNP concentrations, significantly higher leptin levels and higher leptin/adiponectin ratios. The concentration of sTNFr1 was higher in normal-weight patients. In all groups, TNF-α concentrations correlated positively with sTNFr1 (p < 0.001). Higher levels of sTNFr1 were associated with higher sTNFr2 (p < 0.001) and CRP (p < 0.001). Moreover, the concentration of sTNFr2 positively correlated with CRP (p < 0.05) and adiponectin (p < 0.001). Levels of TNF-α were not associated with elevated CRP. Conclusion: This study demonstrated that changes in the concentrations of TNF and its receptors differ between groups of patients with different BMI. These findings suggest that the effective use of anti-TNF therapy is dependent not only on BMI, but also on concentrations of TNF-α receptors and other laboratory parameters.
Collapse
Affiliation(s)
- Elżbieta Lazar-Poloczek
- Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland
- Correspondence:
| | - Ewa Romuk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-808 Zabrze, Poland
| | - Wojciech Jacheć
- Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland
| | - Wiktoria Stanek
- Student Research Team at the Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-800 Zabrze, Poland
| | - Bartosz Stanek
- Student Research Team at the Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-800 Zabrze, Poland
| | - Monika Szołtysik
- Student Research Team at the Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-800 Zabrze, Poland
| | - Tomasz Techmański
- Student Research Team at the Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-800 Zabrze, Poland
| | - Maja Hasterok
- Student Research Team at the Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-800 Zabrze, Poland
| | - Celina Wojciechowska
- Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland
| |
Collapse
|
47
|
Adipokines as Regulators of Autophagy in Obesity-Linked Cancer. Cells 2022; 11:cells11203230. [PMID: 36291097 PMCID: PMC9600294 DOI: 10.3390/cells11203230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Excess body weight and obesity have become significant risk factors for cancer development. During obesity, adipose tissue alters its biological function, deregulating the secretion of bioactive factors such as hormones, cytokines, and adipokines that promote an inflammatory microenvironment conducive to carcinogenesis and tumor progression. Adipokines regulate tumor processes such as apoptosis, proliferation, migration, angiogenesis, and invasion. Additionally, it has been found that they can modulate autophagy, a process implicated in tumor suppression in healthy tissue and cancer progression in established tumors. Since the tumor-promoting role of autophagy has been well described, the process has been suggested as a therapeutic target in cancer. However, the effects of targeting autophagy might depend on the tumor type and microenvironmental conditions, where circulating adipokines could influence the role of autophagy in cancer. Here, we review recent evidence related to the role of adipokines in cancer cell autophagy in an effort to understand the tumor response in the context of obesity under the assumption of an autophagy-targeting treatment.
Collapse
|
48
|
Yoshimoto M, Sakuma Y, Ogino J, Iwai R, Watanabe S, Inoue T, Takahashi H, Suzuki Y, Kinoshita D, Takemura K, Takahashi H, Shimura H, Babazono T, Yoshida S, Hashimoto N. Sex differences in predictive factors for onset of type 2 diabetes in Japanese individuals: A 15-year follow-up study. J Diabetes Investig 2022; 14:37-47. [PMID: 36200977 PMCID: PMC9807159 DOI: 10.1111/jdi.13918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/25/2022] [Accepted: 09/19/2022] [Indexed: 02/07/2023] Open
Abstract
AIMS/INTRODUCTION The increase in the number of patients with type 2 diabetes mellitus is an important concern worldwide. The goal of this study was to investigate factors involved in the onset of type 2 diabetes mellitus, and sex differences in long-term follow up of people with normal glucose tolerance. MATERIALS AND METHODS Of 1,309 individuals who underwent screening at our facility in 2004, 748 individuals without diabetes were enrolled. Correlations of metabolic markers including serum adiponectin (APN) with onset of type 2 diabetes mellitus were examined over 15 years in these individuals. RESULTS The Kaplan-Meier curve for onset of type 2 diabetes mellitus for 15 years in the decreased APN group was examined. Hazard ratios for the APN concentration for onset of diabetes were 1.78 (95% confidence interval [CI] 1.20-2.63, P = 0.004) in all participants, 1.48 (95% CI 0.96-2.29, P = 0.078) for men and 3.01 (95% CI 1.37-6.59, P = 0.006) for women. During the follow-up period of 15 years, body mass index, estimated glomerular filtration rate, fatty liver, C-reactive protein and alanine aminotransferase in men were significant in univariate analysis, but only estimated glomerular filtration rate and fatty liver were significantly related to onset of type 2 diabetes mellitus in multivariate analysis. In women, body mass index, systolic blood pressure, triglyceride, fatty liver and APN were significant in univariate analysis, and APN was the only significant risk factor in multivariate analysis (P < 0.05). CONCLUSIONS There are differences between men and women with regard to targets for intervention to prevent the onset of type 2 diabetes mellitus. Individuals requiring intensive intervention should be selected with this finding to maximize the use of limited social and economic resources.
Collapse
Affiliation(s)
- Mei Yoshimoto
- Department of Diabetes, Endocrine and Metabolic Diseases, Yachiyo Medical CenterTokyo Women's Medical UniversityYachiyo, ChibaJapan
| | - Yukie Sakuma
- Clinical Research Support CenterAsahi General HospitalAsahi, ChibaJapan
| | - Jun Ogino
- Department of Diabetes and Metabolic DiseasesAsahi General HospitalAsahi, ChibaJapan
| | - Rie Iwai
- Department of Clinical LaboratoryAsahi General HospitalAsahi, ChibaJapan
| | - Saburo Watanabe
- Clinical Research Support CenterAsahi General HospitalAsahi, ChibaJapan
| | - Takeshi Inoue
- Clinical Research Support CenterAsahi General HospitalAsahi, ChibaJapan
| | - Haruo Takahashi
- Clinical Research Support CenterAsahi General HospitalAsahi, ChibaJapan
| | - Yoshifumi Suzuki
- Department of Diabetes and Metabolic DiseasesAsahi General HospitalAsahi, ChibaJapan
| | - Daisuke Kinoshita
- Department of Diabetes and Metabolic DiseasesAsahi General HospitalAsahi, ChibaJapan
| | - Koji Takemura
- Department of Diabetes and Metabolic DiseasesAsahi General HospitalAsahi, ChibaJapan
| | - Hidenori Takahashi
- Preventive Medicine Research CenterAsahi General HospitalAsahi, ChibaJapan
| | - Haruhisa Shimura
- Preventive Medicine Research CenterAsahi General HospitalAsahi, ChibaJapan,Department of Internal MedicineAsahi General HospitalAsahi, ChibaJapan
| | - Tetsuya Babazono
- Department of Medicine, Diabetes Center, School of MedicineTokyo Women's Medical UniversityTokyoJapan
| | - Shouji Yoshida
- Department of Internal MedicineAsahi General HospitalAsahi, ChibaJapan
| | - Naotake Hashimoto
- Preventive Medicine Research CenterAsahi General HospitalAsahi, ChibaJapan
| |
Collapse
|
49
|
Adiponectin affects uterine steroidogenesis during early pregnancy and the oestrous cycle: An in vitro study. Anim Reprod Sci 2022; 245:107067. [PMID: 36113273 DOI: 10.1016/j.anireprosci.2022.107067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022]
Abstract
Reproduction in females is an energetically demanding process. We assumed that adiponectin (ADPN), known for its role in energy balance maintenance, is also engaged in the regulation of uterine steroidogenesis in the pig. We determined the impact of ADPN alone or in combination with insulin (INS) on testosterone (T), estrone (E1) and estradiol (E2) secretion by porcine endometrium and myometrium, uterine expression of CYP17A1 and CYP19A3 genes, and endometrial abundance of P450C17 and P450AROM proteins during the peri-implantation period and the oestrous cycle, using radioimmunoassay, qPCR, and Western Blot, respectively. During pregnancy, in the endometrial explants from days 10-11, ADPN decreased CYP17A1 gene expression, P450C17 protein abundance and T secretion, whereas increased E1 secretion. On days 12-13 of pregnancy, ADPN decreased CYP17A1 and CYP19A3 expression, P450C17 and P450AROM protein abundance and E1 secretion, but stimulated T secretion. On days 15-16 of pregnancy, ADPN decreased P450C17 protein accumulation but enhanced CYP19A3 expression and E1 secretion. On days 27-28 of pregnancy, ADPN increased CYP17A1 and CYP19A3 mRNA content and T secretion in this tissue and decreased P450C17 content. ADPN effect on myometrial explants was dependent on stage of gestation or oestrous cycle. Moreover, INS treatment modulated basal and ADPN-affected steroidogenic enzymes gene and protein expression and steroids secretion. The results obtained indicate that ADPN may affect processes required for successful implantation such as steroidogenesis. ADPN and INS were also shown to modulate each other action, which indicates that the proper course of uterine steroidogenesis may be dependent on both hormones' interaction.
Collapse
|
50
|
Moga TD, Moga I, Sabău M, Venter AC, Romanescu D, Bimbo-Szuhai E, Costas LM, Huniadi A, Rahota DM. Evaluation of Geriatric Sarcopenia and Nutrition in the Case of Cachexia before Exitus: An Observational Study for Health Professionals. Geriatrics (Basel) 2022; 7:geriatrics7050102. [PMID: 36286205 PMCID: PMC9602337 DOI: 10.3390/geriatrics7050102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
It is important to assess the physical and nutritional status of the body using a bioelectrical impedance analyzer (BIA) in patients with cachexia; however, the correlation between cachexia and nutritional evaluations remains unclear. The objective of this study is to follow the effects of diet therapy in patients with cachexia/sarcopenia, using parameters measured by BIA, clinical parameters, and other nutrition-related assessments in patients with osteoporosis. This study aims to clarify the correlation between BIA-measured parameters, clinical parameters, and other nutrition-related assessments. Methods: Measurements of body composition, a clinical assessment of the sarcopenia/cachexia, and nutritional goal setting/a nutrition care process were performed. Results: The number of subjects was 200, of which 15 people (7.5%) were diagnosed with sarcopenia/cachexia. Univariate analyses showed that participants with a high body-fat mass tend to develop sarcopenic obesity (p = 0.029), those who lost a significant and progressive amount of muscle mass tend to develop sarcopenia (p = 0.001), as well as those with malnutrition (p < 0.001). The regression study shows not only the correlation but also the cause of the correlation, as is the case with obesity. As obesity increases, so does the sarcopenic index (this can explain sarcopenic obesity), and as fat mass decreases it leads to muscle mass loss, increasing the risk of cachexia with age. Conclusions: There was an improvement, but statistically insignificant, in cachexia and the nutritional objectives (p > 0.05); at the same time, correlations were established between the independent parameters (sex, age) and malnutrition parameters (hemoglobin and amylase) with the parameters of the research.
Collapse
Affiliation(s)
- Titus David Moga
- Departmen of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Ioana Moga
- Departmen of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (I.M.); (M.S.)
| | - Monica Sabău
- Department of Psycho Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (I.M.); (M.S.)
| | - Alina Cristiana Venter
- Departmen of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Dana Romanescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Erika Bimbo-Szuhai
- Departmen of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Lavinia Mihaela Costas
- Departmen of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Anca Huniadi
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Diana Maria Rahota
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|