1
|
Sakatoku A, Suzuki T, Hatano K, Seki M, Tanaka D, Nakamura S, Suzuki N, Isshiki T. Inhibitors of LAMP used to detect Tenacibaculum sp. strain Pbs-1 associated with black-spot shell disease in Akoya pearl oysters, and additives to reduce the effect of the inhibitors. J Microbiol Methods 2024; 223:106986. [PMID: 38969181 DOI: 10.1016/j.mimet.2024.106986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Black-spot shell disease is an unresolved disease that decreases pearl quality and threatens pearl oyster survival. In previous studies, the bacterium Tenacibaculum sp. strain Pbs-1 was isolated from diseased Akoya pearl oysters Pinctada fucata, and a rapid, specific, and sensitive loop-mediated isothermal amplification (LAMP) assay for detecting this pathogen was established. This technology has considerable potential for routine diagnosis of strain Pbs-1 in oyster hatcheries and/or pearl farms; therefore, it is vital to identify substances in environmental samples that might inhibit LAMP and to find additives that can reduce the inhibition. In this study, we investigated the effects of six chemicals or proteins, otherwise known as conventional PCR inhibitors, on LAMP, using the DNA of strain Pbs-1 as template: humic acid, urea, iron (III) chloride hexahydrate, melanin, myoglobin, and Ethylenediamine-N,N,N',N'-tetraacetic acid, disodium salt, dihydrate (EDTA; pH 6.5). Next, to reduce the effects of identified inhibitors, we tested the addition of bovine serum albumin (BSA) or T4 gene 32 protein (gp32) to the LAMP assay. When 50 ng of DNA template was used, 4 ng/μL of humic acid, 0.05% melanin, and 10 mM of EDTA (pH 6.5) inhibited the LAMP reaction, whereas myoglobin, urea, and FeCl3 had no effect. When 50 pg of DNA template was used, 4 ng/μL of humic acid, 0.05% melanin, 4 μg/μL of myoglobin, 10 μg/μL of urea, and 10 mM of EDTA inhibited the LAMP reaction. Thus, it was shown that the gene-amplification inhibitory effect of melanin, humic acid, and urea could be reduced by adding BSA or gp32 to the LAMP reaction mixture. This technique could be applied as part of a protocol to prevent mass mortalities of pearl oysters; moreover, the results enhance our knowledge about substances that inhibit LAMP and methods to reduce the inhibition, which have rarely been reported.
Collapse
Affiliation(s)
- Akihiro Sakatoku
- School of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan.
| | - Takaya Suzuki
- School of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| | - Kaito Hatano
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan
| | - Makoto Seki
- School of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| | - Daisuke Tanaka
- School of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| | - Shogo Nakamura
- School of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan
| | - Tadashi Isshiki
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan
| |
Collapse
|
2
|
Van Caenegem W, Haelewaters D. New insights into the DNA extraction and PCR amplification of minute ascomycetes in the genus Laboulbenia (Pezizomycotina, Laboulbeniales). IMA Fungus 2024; 15:14. [PMID: 38863065 PMCID: PMC11167896 DOI: 10.1186/s43008-024-00146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
Molecular studies of fungi within the order Laboulbeniales (Ascomycota, Pezizomycotina) have been hampered for years because of their minute size, inability to grow in axenic culture, and lack of reliable and cost-efficient DNA extraction protocols. In particular, the genus Laboulbenia is notorious for low success with DNA extraction and polymerase chain reaction (PCR) amplification. This is attributed to the presence of melanin, a molecule known to inhibit PCR, in the cells. We evaluated the efficacy of a standard single cell-based DNA extraction protocol by halving the recommended amount of reagents to reduce the cost per extraction and adding bovine serum albumin (BSA) during the multiple displacement amplification step to reverse the effect of melanin. A total of 196 extractions were made, 111 of which were successful. We found that halving the reagents used in the single cell-based extraction kit did not significantly affect the probability of successful DNA extraction. Using the halved protocol reduces cost and resource consumption. Moreover, there was no significant difference in the probability of successfully extracting DNA based on whether BSA was added or not, suggesting that the amount of melanin present in cells of the thallus has no major inhibitory effect on PCR. We generated 277 sequences from five loci, but amplification of the internal transcribed spacer region, the mitochondrial small subunit rDNA, and protein-coding genes remains challenging. The probability of successfully extracting DNA from Laboulbeniales was also impacted by specimen storage methods, with material preserved in > 95% ethanol yielding higher success rates compared to material stored in 70% ethanol and dried material. We emphasize the importance of proper preservation of material and propose the design of Laboulbeniales-specific primers to overcome the problems of primer mismatches and contaminants. Our new insights apply not only to the genus Laboulbenia; Laboulbeniales generally are understudied, and the vast majority of species remain unsequenced. New and approachable molecular developments will benefit the study of Laboulbeniales, helping to elucidate the true diversity and evolutionary relationships of these peculiar microfungi.
Collapse
Affiliation(s)
- Warre Van Caenegem
- Research Group Mycology, Department of Biology, Ghent University, Ghent, 9000, Belgium.
| | - Danny Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, Ghent, 9000, Belgium.
- Meise Botanic Garden, Meise, 1860, Belgium.
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic.
| |
Collapse
|
3
|
Alex-Sanders N, Woodhall N, Farkas K, Scott G, Jones DL, Walker DI. Development and validation of a duplex RT-qPCR assay for norovirus quantification in wastewater samples. J Virol Methods 2023; 321:114804. [PMID: 37643662 DOI: 10.1016/j.jviromet.2023.114804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 08/31/2023]
Abstract
Norovirus (NoV) is a highly contagious enteric virus that causes widespread outbreaks and a substantial number of deaths across communities. As clinical surveillance is often insufficient, wastewater-based epidemiology (WBE) may provide novel pathways of tracking outbreaks. To utilise WBE, it is important to use accurate and sensitive methods for viral quantification. In this study, we developed a one-step duplex RT-qPCR assay to simultaneously test the two main human pathogenic NoV genogroups, GI and GII, in wastewater samples. The assay had low limits of detection (LOD), namely 0.52 genome copies (gc)/µl for NoVGI and 1.37 gc/µl for NoVGII. No significant concentration-dependent interactions were noted for both NoVGI and for NoVGII when the two targets were mixed at different concentrations in the samples. When tested on wastewater-derived RNA eluents, no significant difference between duplex and singleplex concentrations were found for either target. Low levels of inhibition (up to 32 %) were noted due to organic matter present in the wastewater extracts. From these results we argue that the duplex RT-qPCR assay developed enables the sensitive detection of both NoVGI and NoVGII in wastewater-derived RNA eluents, in a time and cost-effective way and may be used for surveillance to monitor public and environmental health.
Collapse
Affiliation(s)
| | - Nick Woodhall
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kata Farkas
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - George Scott
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| | - Davey L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - David I Walker
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| |
Collapse
|
4
|
Vajpayee K, Dash HR, Parekh PB, Shukla RK. PCR inhibitors and facilitators - Their role in forensic DNA analysis. Forensic Sci Int 2023; 349:111773. [PMID: 37399774 DOI: 10.1016/j.forsciint.2023.111773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/01/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
Since its inception, DNA typing technology has been practiced as a robust tool in criminal investigations. Experts usually utilize STR profiles to identify and individualize the suspect. However, mtDNA and Y STR analyses are also considered in some sample-limiting conditions. Based on DNA profiles thus generated, forensic scientists often opine the results as Inclusion, exclusion, and inconclusive. Inclusion and exclusion were defined as concordant results; the inconclusive opinions create problems in conferring justice in a trial- since nothing concrete can be interpreted from the profile generated. The presence of inhibitor molecules in the sample is the primary factor behind these indefinite results. Recently, researchers have been emphasizing studying the sources of PCR inhibitors and their mechanism of inhibition. Furthermore, several mitigation strategies- to facilitate the DNA amplification reaction -have now found their place in the routine DNA typing assays with compromised biological samples. The present review paper attempts to provide a comprehensive review of PCR inhibitors, their source, mechanism of inhibition, and ways to mitigate their effect using PCR facilitators.
Collapse
Affiliation(s)
- Kamayani Vajpayee
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, India
| | - Hirak Ranjan Dash
- National Forensic Science University, New Delhi Campus, New Delhi, India
| | - Prakshal B Parekh
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, India
| | - Ritesh K Shukla
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, India.
| |
Collapse
|
5
|
Yuan G, Czajka JJ, Dai Z, Hu D, Pomraning KR, Hofstad BA, Kim J, Robles AL, Deng S, Magnuson JK. Rapid and robust squashed spore/colony PCR of industrially important fungi. Fungal Biol Biotechnol 2023; 10:15. [PMID: 37422681 DOI: 10.1186/s40694-023-00163-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/18/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Fungi have been utilized for centuries in medical, agricultural, and industrial applications. Development of systems biology techniques has enabled the design and metabolic engineering of these fungi to produce novel fuels, chemicals, and enzymes from renewable feedstocks. Many genetic tools have been developed for manipulating the genome and creating mutants rapidly. However, screening and confirmation of transformants remain an inefficient step within the design, build, test, and learn cycle in many industrial fungi because extracting fungal genomic DNA is laborious, time-consuming, and involves toxic chemicals. RESULTS In this study we developed a rapid and robust technique called "Squash-PCR" to break open the spores and release fungal genomic DNA as a template for PCR. The efficacy of Squash-PCR was investigated in eleven different filamentous fungal strains. Clean PCR products with high yields were achieved in all tested fungi. Spore age and type of DNA polymerase did not affect the efficiency of Squash-PCR. However, spore concentration was found to be the crucial factor for Squash-PCR in Aspergillus niger, with the dilution of starting material often resulting in higher PCR product yield. We then further evaluated the applicability of the squashing procedure for nine different yeast strains. We found that Squash-PCR can be used to improve the quality and yield of colony PCR in comparison to direct colony PCR in the tested yeast strains. CONCLUSION The developed technique will enhance the efficiency of screening transformants and accelerate genetic engineering in filamentous fungi and yeast.
Collapse
Affiliation(s)
- Guoliang Yuan
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Jeffrey J Czajka
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Ziyu Dai
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Dehong Hu
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kyle R Pomraning
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Beth A Hofstad
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Joonhoon Kim
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Ana L Robles
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Shuang Deng
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA.
| | - Jon K Magnuson
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA.
| |
Collapse
|
6
|
Schröder HM, Niebergall-Roth E, Norrick A, Esterlechner J, Ganss C, Frank MH, Kluth MA. Drug Regulatory-Compliant Validation of a qPCR Assay for Bioanalysis Studies of a Cell Therapy Product with a Special Focus on Matrix Interferences in a Wide Range of Organ Tissues. Cells 2023; 12:1788. [PMID: 37443822 PMCID: PMC10340683 DOI: 10.3390/cells12131788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Quantitative polymerase chain reaction (qPCR) has emerged as an important bioanalytical method for assessing the pharmacokinetics of human-cell-based medicinal products after xenotransplantation into immunodeficient mice. A particular challenge in bioanalytical qPCR studies is that the different tissues of the host organism can affect amplification efficiency and amplicon detection to varying degrees, and ignoring these matrix effects can easily cause a significant underestimation of the true number of target cells in a sample. Here, we describe the development and drug regulatory-compliant validation of a TaqMan® qPCR assay for the quantification of mesenchymal stromal cells in the range of 125 to 20,000 cells/200 µL lysate via the amplification of a human-specific, highly repetitive α-satellite DNA sequence of the chromosome 17 centromere region HSSATA17. An assessment of matrix effects in 14 different mouse tissues and blood revealed a wide range of spike recovery rates across the different tissue types, from 11 to 174%. Based on these observations, we propose performing systematic spike-and-recovery experiments during assay validation and correcting for the effects of the different tissue matrices on cell quantification in subsequent bioanalytical studies by multiplying the back-calculated cell number by tissue-specific factors derived from the inverse of the validated percent recovery rate.
Collapse
Affiliation(s)
| | | | | | | | | | - Markus H. Frank
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
| | | |
Collapse
|
7
|
Muñoz-Barrera A, Rubio-Rodríguez LA, Díaz-de Usera A, Jáspez D, Lorenzo-Salazar JM, González-Montelongo R, García-Olivares V, Flores C. From Samples to Germline and Somatic Sequence Variation: A Focus on Next-Generation Sequencing in Melanoma Research. Life (Basel) 2022; 12:1939. [PMID: 36431075 PMCID: PMC9695713 DOI: 10.3390/life12111939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Next-generation sequencing (NGS) applications have flourished in the last decade, permitting the identification of cancer driver genes and profoundly expanding the possibilities of genomic studies of cancer, including melanoma. Here we aimed to present a technical review across many of the methodological approaches brought by the use of NGS applications with a focus on assessing germline and somatic sequence variation. We provide cautionary notes and discuss key technical details involved in library preparation, the most common problems with the samples, and guidance to circumvent them. We also provide an overview of the sequence-based methods for cancer genomics, exposing the pros and cons of targeted sequencing vs. exome or whole-genome sequencing (WGS), the fundamentals of the most common commercial platforms, and a comparison of throughputs and key applications. Details of the steps and the main software involved in the bioinformatics processing of the sequencing results, from preprocessing to variant prioritization and filtering, are also provided in the context of the full spectrum of genetic variation (SNVs, indels, CNVs, structural variation, and gene fusions). Finally, we put the emphasis on selected bioinformatic pipelines behind (a) short-read WGS identification of small germline and somatic variants, (b) detection of gene fusions from transcriptomes, and (c) de novo assembly of genomes from long-read WGS data. Overall, we provide comprehensive guidance across the main methodological procedures involved in obtaining sequencing results for the most common short- and long-read NGS platforms, highlighting key applications in melanoma research.
Collapse
Affiliation(s)
- Adrián Muñoz-Barrera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Luis A. Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Ana Díaz-de Usera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - David Jáspez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Rafaela González-Montelongo
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Víctor García-Olivares
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando de Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
8
|
Bermúdez-Cova MA, Cruz-Laufer AJ, Piepenbring M. Hyperparasitic Fungi on Black Mildews (Meliolales, Ascomycota): Hidden Fungal Diversity in the Tropics. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:885279. [PMID: 37746226 PMCID: PMC10512288 DOI: 10.3389/ffunb.2022.885279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/21/2022] [Indexed: 09/26/2023]
Abstract
Hyperparasitism on plant-parasitic fungi is a widespread but rarely studied phenomenon. Here, for the first time, we compile in a checklist information provided by peer-reviewed literature for fungi growing on colonies of black mildews (Meliolales, Ascomycota), a species-rich group of tropical and subtropical plant-parasitic microfungi. The checklist contains information on 189 species of contact-biotrophic microfungi in 82 genera. They belong to seven morphological groups: dematiaceous hyphomycetes, moniliaceous hyphomycetes, pycnidioid, perithecioid, catathecioid, and apothecioid fungi. By the fact that species accumulation curves do not reach saturation for any tropical country, it is evident that the knowledge of the diversity of hyperparasitic fungi on Meliolales is incomplete. A network analysis of records of hyperparasitic fungi, their host fungi and host plants shows that genera of hyperparasitic fungi are generalists concerning genera of Meliolales. However, most species of hyperparasitic fungi are restricted to meliolalean hosts. In addition to hyperparasitic fungi, diverse further microorganisms use meliolalean colonies as ecological niche. Systematic positions of most species are unknown because DNA sequence data are lacking for species of fungi hyperparasitic on Meliolales. We discuss the specific challenges of obtaining DNA sequence data from hyperparasitic fungi. In order to better understand the diversity, evolution and biology of hyperparasitic fungi, it is necessary to increase sampling efforts and to undertake further morphological, molecular, and ecological studies.
Collapse
Affiliation(s)
- Miguel A. Bermúdez-Cova
- Mycology Research Group, Faculty of Biological Sciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- Departamento de Biología de Organismos, División de Ciencias Biológicas, Universidad Simón Bolívar, Caracas, Venezuela
| | - Armando J. Cruz-Laufer
- Centre for Environmental Sciences, Faculty of Sciences, Hasselt University, Diepenbeek, Belgium
| | - Meike Piepenbring
- Mycology Research Group, Faculty of Biological Sciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
9
|
Long S. In pursuit of sensitivity: Lessons learned from viral nucleic acid detection and quantification on the Raindance ddPCR platform. Methods 2022; 201:82-95. [PMID: 33839286 PMCID: PMC8501152 DOI: 10.1016/j.ymeth.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Sensitive PCR detection of viral nucleic acids plays a critical role in infectious disease research, diagnosis and monitoring. In the context of SARS-CoV-2 detection, recent reports indicate that digital PCR-based tests are significantly more sensitive than traditional qPCR tests. Numerous factors can influence digital PCR reaction sensitivity. In this review, using a model for human HIV infection and the Raindance ddPCR platform as an example, we describe technical aspects that contribute to sensitive viral signal detection in DNA and RNA from tissue samples, which often harbor viral reservoirs and serve as better predictors of disease outcome and indicators of treatment efficacy.
Collapse
Affiliation(s)
- Samuel Long
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States.
| |
Collapse
|
10
|
Comparison of Two Rapid Assays for the Detection of BRAF V600 Mutations in Metastatic Melanoma including Positive Sentinel Lymph Nodes. Diagnostics (Basel) 2022; 12:diagnostics12030751. [PMID: 35328303 PMCID: PMC8947166 DOI: 10.3390/diagnostics12030751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Testing for the BRAF mutation is mandatory for the management of patients with locally advanced or metastatic melanoma. Molecular analysis based on DNA sequencing remains the gold-standard method for the screening of the different BRAF mutations. These methods must be rapid, sensitive, and specific enough to allow optimal therapeutic management in daily practice and also to include patients in clinical trials. Here, we compared the Idylla BRAF Mutation Test and the anti-BRAF V600E (clone VE1) immunohistochemistry (IHC) in 90 melanoma samples, with a focus on a challenging cohort of 32 positive sentinel lymph nodes. The BRAF status was assessed with both methods independently of the percentage of tumor cells. The concordance rate was calculated excluding both non-contributory analyses and BRAFV600K/R/M mutants due to the specific V600E-IHC test design. The incidence of the BRAFV600E mutation was 33% with both BRAF Idylla and BRAF IHC. The agreement rate was 91% (72/79). Although the agreement rate was high, we suggest that the use of IHC is more suitable for rapid BRAF testing on sentinel lymph node biopsies when associated with a low percentage and scattered tumor cells, which gave a high risk of non-contributory analysis and/or false negative results with the IdyllaTMBRAF Mutation Test.
Collapse
|
11
|
PCR enhancers: Types, mechanisms, and applications in long-range PCR. Biochimie 2022; 197:130-143. [DOI: 10.1016/j.biochi.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/06/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022]
|
12
|
Dronina J, Samukaite-Bubniene U, Ramanavicius A. Advances and insights in the diagnosis of viral infections. J Nanobiotechnology 2021; 19:348. [PMID: 34717656 PMCID: PMC8556785 DOI: 10.1186/s12951-021-01081-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Viral infections are the most common among diseases that globally require around 60 percent of medical care. However, in the heat of the pandemic, there was a lack of medical equipment and inpatient facilities to provide all patients with viral infections. The detection of viral infections is possible in three general ways such as (i) direct virus detection, which is performed immediately 1-3 days after the infection, (ii) determination of antibodies against some virus proteins mainly observed during/after virus incubation period, (iii) detection of virus-induced disease when specific tissue changes in the organism. This review surveys some global pandemics from 1889 to 2020, virus types, which induced these pandemics, and symptoms of some viral diseases. Non-analytical methods such as radiology and microscopy also are overviewed. This review overlooks molecular analysis methods such as nucleic acid amplification, antibody-antigen complex determination, CRISPR-Cas system-based viral genome determination methods. Methods widely used in the certificated diagnostic laboratory for SARS-CoV-2, Influenza A, B, C, HIV, and other viruses during a viral pandemic are outlined. A comprehensive overview of molecular analytical methods has shown that the assay's sensitivity, accuracy, and suitability for virus detection depends on the choice of the number of regions in the viral open reading frame (ORF) genome sequence and the validity of the selected analytical method.
Collapse
Affiliation(s)
- Julija Dronina
- Laboratory of Nanotechnology, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Sauletekio av. 3, Vilnius, Lithuania
- Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania
| | - Urte Samukaite-Bubniene
- Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania.
| |
Collapse
|
13
|
Schaettler MO, Richters MM, Wang AZ, Skidmore ZL, Fisk B, Miller KE, Vickery TL, Kim AH, Chicoine MR, Osbun JW, Leuthardt EC, Dowling JL, Zipfel GJ, Dacey RG, Lu HC, Johanns TM, Griffith OL, Mardis ER, Griffith M, Dunn GP. Characterization of the Genomic and Immunological Diversity of Malignant Brain Tumors Through Multi-Sector Analysis. Cancer Discov 2021; 12:154-171. [PMID: 34610950 DOI: 10.1158/2159-8290.cd-21-0291] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/19/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
Despite some success in secondary brain metastases, targeted or immune-based therapies have shown limited efficacy against primary brain malignancies such as glioblastoma (GBM). While the intratumoral heterogeneity of GBM is implicated in treatment resistance, it remains unclear whether this diversity is observed within brain metastases and to what extent cancer-cell intrinsic heterogeneity sculpts the local immune microenvironment. Here, we profiled the immunogenomic state of 93 spatially distinct regions from 30 malignant brain tumors through whole exome, RNA, and TCR-sequencing. Our analyses identified differences between primary and secondary malignancies with gliomas displaying more spatial heterogeneity at the genomic and neoantigen level. Additionally, this spatial diversity was recapitulated in the distribution of T cell clones where some gliomas harbored highly expanded but spatially restricted clonotypes. This study defines the immunogenomic landscape across a cohort of malignant brain tumors and contains implications for the design of targeted and immune-based therapies against intracranial malignancies.
Collapse
Affiliation(s)
| | - Megan M Richters
- Department of Medicine, McDonnell Genome Institute, Washington University in St. Louis School of Medicine
| | - Anthony Z Wang
- Department of Neurological Surgery, Washington University in St. Louis School of Medicine
| | - Zachary L Skidmore
- The Genome Institute, Washington University in St. Louis School of Medicine
| | - Bryan Fisk
- McDonnell Genome Institute, Washington University in St. Louis School of Medicine
| | | | - Tammi L Vickery
- Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis School of Medicine
| | - Albert H Kim
- Neurosurgery, Washington University in St. Louis School of Medicine
| | - Michael R Chicoine
- Department of Neurological Surgery, Washington University in St. Louis School of Medicine
| | - Joshua W Osbun
- Neurological Surgery, Washington University in St. Louis
| | - Eric C Leuthardt
- Department of Neurological Surgery, Washington University in St. Louis School of Medicine
| | - Joshua L Dowling
- Department of Neurological Surgery, Washington University in St. Louis School of Medicine
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University in St. Louis School of Medicine
| | - Ralph G Dacey
- Department of Neurological Surgery, Washington University in St. Louis School of Medicine
| | - Hsiang-Chih Lu
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine
| | - Tanner M Johanns
- Division of Oncology, Washington University in St. Louis School of Medicine
| | - Obi L Griffith
- McDonnell Genome Institute, Washington University in St. Louis School of Medicine
| | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital
| | - Malachi Griffith
- Department of Medicine, McDonnell Genome Institute, Washington University in St. Louis School of Medicine
| | - Gavin P Dunn
- Department of Neurological Surgery, Washington University in St. Louis School of Medicine
| |
Collapse
|
14
|
Chik AHS, Glier MB, Servos M, Mangat CS, Pang XL, Qiu Y, D'Aoust PM, Burnet JB, Delatolla R, Dorner S, Geng Q, Giesy JP, McKay RM, Mulvey MR, Prystajecky N, Srikanthan N, Xie Y, Conant B, Hrudey SE. Comparison of approaches to quantify SARS-CoV-2 in wastewater using RT-qPCR: Results and implications from a collaborative inter-laboratory study in Canada. J Environ Sci (China) 2021; 107:218-229. [PMID: 34412784 PMCID: PMC7929783 DOI: 10.1016/j.jes.2021.01.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 05/20/2023]
Abstract
Detection of SARS-CoV-2 RNA in wastewater is a promising tool for informing public health decisions during the COVID-19 pandemic. However, approaches for its analysis by use of reverse transcription quantitative polymerase chain reaction (RT-qPCR) are still far from standardized globally. To characterize inter- and intra-laboratory variability among results when using various methods deployed across Canada, aliquots from a real wastewater sample were spiked with surrogates of SARS-CoV-2 (gamma-radiation inactivated SARS-CoV-2 and human coronavirus strain 229E [HCoV-229E]) at low and high levels then provided "blind" to eight laboratories. Concentration estimates reported by individual laboratories were consistently within a 1.0-log10 range for aliquots of the same spiked condition. All laboratories distinguished between low- and high-spikes for both surrogates. As expected, greater variability was observed in the results amongst laboratories than within individual laboratories, but SARS-CoV-2 RNA concentration estimates for each spiked condition remained mostly within 1.0-log10 ranges. The no-spike wastewater aliquots provided yielded non-detects or trace levels (<20 gene copies/mL) of SARS-CoV-2 RNA. Detections appear linked to methods that included or focused on the solids fraction of the wastewater matrix and might represent in-situ SARS-CoV-2 to the wastewater sample. HCoV-229E RNA was not detected in the no-spike aliquots. Overall, all methods yielded comparable results at the conditions tested. Partitioning behavior of SARS-CoV-2 and spiked surrogates in wastewater should be considered to evaluate method effectiveness. A consistent method and laboratory to explore wastewater SARS-CoV-2 temporal trends for a given system, with appropriate quality control protocols and documented in adequate detail should succeed.
Collapse
Affiliation(s)
- Alex H S Chik
- Consultant to Canadian Water Network Inc., Kitchener, Canada; Presently at Ontario Clean Water Agency, Mississauga, Canada
| | - Melissa B Glier
- Environmental Microbiology, BC Centre for Disease Control, Vancouver, Canada
| | - Mark Servos
- Department of Biology, University of Waterloo, Waterloo, Canada
| | - Chand S Mangat
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Xiao-Li Pang
- Public Health Laboratory, Alberta Precision Laboratory, Edmonton, Canada; Department of Laboratory Medicine & Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Yuanyuan Qiu
- Department of Laboratory Medicine & Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | | | - Jean-Baptiste Burnet
- Département des génies civil, géologique et des mines, Polytechnique Montréal, Montréal, Canada
| | | | - Sarah Dorner
- Département des génies civil, géologique et des mines, Polytechnique Montréal, Montréal, Canada
| | - Qiudi Geng
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Canada
| | - John P Giesy
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| | - Robert Mike McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Canada
| | - Michael R Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Natalie Prystajecky
- Environmental Microbiology, BC Centre for Disease Control, Vancouver, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | | | - Yuwei Xie
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| | | | - Steve E Hrudey
- Department of Laboratory Medicine & Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.
| |
Collapse
|
15
|
Yang Q, Yu H, Qu Y, Zhang X, Xia R, Wang Z, Tan R, Xiong L, Xi S, Wu J, Gao Y, Zhang S, Li C. Developmental validation of the novel six-dye Goldeneye TM DNA ID System 35InDel kit for forensic application. Forensic Sci Res 2021; 7:673-684. [PMID: 36817233 PMCID: PMC9930762 DOI: 10.1080/20961790.2021.1945723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Insertion/deletion polymorphisms (InDels) have been treated as a prospective and helpful genetic marker in the fields of forensic human identification, anthropology and population genetics for the past few years. In this study, we developed a six-dye multiplex typing system consisting of 34 autosomal InDels and Amelogenin for forensic application. The contained InDels were specifically selected for Chinese population with the MAF ≥ 0.25 in East Asia, which do not overlap with the markers of Investigator® DIPplex kit. The typing system was named as GoldeneyeTM DNA ID System 35InDel Kit, and a series of developmental validation studies including repeatability/reproducibility, concordance, accuracy, sensitivity, stability, species specificity and population genetics were conducted on this kit. We confirmed that the 35InDel kit is precise, sensitive, species specific and robust for forensic practice. Moreover, the 35InDel kit is capable of typing DNA extracted from forensic routine case-type samples as well as degraded samples and mixture samples. All markers are proved to be highly polymorphic with an average observed heterozygosity (He) of 0.4582. The combined power of discrimination (CPD) is 0.999 999 999 999 978 and the combined power of exclusion in duos (CPED) and trios (CPET) are 0.978 837 and 0.999573, respectively, which are higher than those of the Investigator® DIPplex kit. Thus, the GoldeneyeTM DNA ID System 35InDel kit is suitable for forensic human identification and could serve as a supplementary typing system for paternity testing. Supplemental data for this article is available online at https://doi.org/10.1080/20961790.2021.1945723 .
Collapse
Affiliation(s)
- Qi Yang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China,Department of Forensic Science, Medical School of Soochow University, Suzhou, China
| | - Huan Yu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China,Department of Forensic Science, Medical School of Soochow University, Suzhou, China
| | - Yiling Qu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China,Department of Forensic Science, Medical School of Soochow University, Suzhou, China
| | - Xiaochun Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China,Department of Forensic Science, Medical School of Soochow University, Suzhou, China
| | - Ruocheng Xia
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China,Department of Forensic Medicine, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Ziwei Wang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China,Department of Forensic Science, Medical School of Soochow University, Suzhou, China
| | - Rui Tan
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China,Department of Forensic Science, Medical School of Soochow University, Suzhou, China
| | - Lei Xiong
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China,School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Shihan Xi
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China,Clinical Medical School, Inner Mongolia University for the Nationalities, Tongliao, China
| | - Jun Wu
- PEOPLESPOTINC, Beijing, China
| | - Yuzhen Gao
- Department of Forensic Science, Medical School of Soochow University, Suzhou, China
| | - Suhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China,CONTACT Suhua Zhang ; Chengtao Li
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China,Department of Forensic Science, Medical School of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Kaishian P, Weir A. New species of Laboulbenia (Laboulbeniales, Ascomycota) on Heteroptera (Hemiptera, Insecta) from South America. Mycologia 2021; 113:988-994. [PMID: 34348087 DOI: 10.1080/00275514.2021.1926170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Four new species of Laboulbenia are described, adding substantially to the known species recorded from Heteroptera hosts. Previously, only 12 species of Laboulbenia and only 96 of the approximate 2325 known species of Laboulbeniales have been recorded on the Heteroptera. The addition of these four new species of Laboulbenia, occurring on two genera within Veliidae, brings the total number to 100 species. These species are recorded on the genera Paravelia and Oiovelia collected from Brazil, Suriname, and Peru.
Collapse
Affiliation(s)
- Patricia Kaishian
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, 241 Illick Hall, 1 Forestry Drive, Syracuse, New York 13210.,Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, Indiana 47907
| | - Alex Weir
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, 241 Illick Hall, 1 Forestry Drive, Syracuse, New York 13210
| |
Collapse
|
17
|
Gutierrez R, LaRue B, Houston R. Novel extraction chemistry and alternative amplification strategies for use with rootless hair shafts. J Forensic Sci 2021; 66:1929-1936. [PMID: 34057738 DOI: 10.1111/1556-4029.14763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 11/28/2022]
Abstract
Rootless hair shafts are often considered unsuitable for STR genotyping due to the known high failure rate. The same samples can be reliably processed with mitochondrial sequencing. However, the minimal discriminatory power of widely implemented control region mitochondrial sequencing techniques limits its utility in some forensic casework. In this research, multiple variables were tested to provide information on rootless hair shaft sample genotyping success. Results showed external decontamination procedures decreased drop-in alleles but also greatly reduced profile recovery. The novel InnoXtract™ chemistry was comparable to automated EZ1 DNA Investigator extraction. With thoroughly decontaminated hairs, InnoTyper® 21 amplification generated random match probabilities higher than STR chemistry in 71.875% of samples and 18.75% of samples benefitted from the use of InnoTyper® 21 amplification compared with estimated mtDNA profile rarity. Compared with the capillary electrophoresis-based amplification chemistries tested, the ForenSeq™ DNA Signature Prep chemistry paired with massively parallel sequencing was the most discriminatory amplification strategy tested.
Collapse
Affiliation(s)
- Ryan Gutierrez
- Department of Forensic Science, Sam Houston State University, Huntsville, TX, USA
| | | | - Rachel Houston
- Department of Forensic Science, Sam Houston State University, Huntsville, TX, USA
| |
Collapse
|
18
|
Qu Y, Tao R, Yu H, Yang Q, Wang Z, Tan R, Zhang X, Xia R, Xiong L, Xi S, Wu J, Gao Y, Zhang S, Li C. Development and validation of a forensic six-dye multiplex assay with 29 STR loci. Electrophoresis 2021; 42:1419-1430. [PMID: 33864289 DOI: 10.1002/elps.202100019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/05/2021] [Accepted: 04/10/2021] [Indexed: 11/10/2022]
Abstract
This paper describes the development and validation of a novel 31-locus, six-dye STR multiplex system, which is designed to meet the needs of the rapidly growing Chinese forensic database. This new assay combines 20 extended-CODIS core loci (D3S1358, D5S818, TPOX, CSF1PO, TH01, vWA, D7S820, D21S11, D8S1179, D18S51, D16S539, D13S317, FGA, D1S1656, D2S441, D2S1338, D10S1248, D12S391, D19S433, and D22S1045), nine highly polymorphic loci in Chinese Han population (D3S3045, D6S1043, D6S477, D8S1132, D10S1435, D15S659, D19S253, Penta D, and Penta E), and two gender determining markers, amelogenin and Y-Indel, which could amplify DNA from extracts, as well as direct amplification from substrates. To demonstrate the suitability for forensic applications, this system was validated by precision and accuracy evaluation, concordance tests, case sample tests, sensitivity, species specificity, stability, stutter calculation, and DNA mixtures, according to the guidelines described by the Scientific Working Group on DNA Analysis Methods (SWGDAM) and regulations published by the China Ministry of Public Security. The validation results indicate the robustness and reliability of this new system, and it could be a potentially helpful tool for human identification and paternity testing in the Chinese population, as well as facilitating global forensic DNA data sharing.
Collapse
Affiliation(s)
- Yiling Qu
- Department of Forensic Science, Medical School of Soochow University, Suzhou, P. R. China.,Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, P. R. China
| | - RuiYang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, P. R. China
| | - Huan Yu
- Department of Forensic Science, Medical School of Soochow University, Suzhou, P. R. China.,Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, P. R. China
| | - Qi Yang
- Department of Forensic Science, Medical School of Soochow University, Suzhou, P. R. China.,Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, P. R. China
| | - Ziwei Wang
- Department of Forensic Science, Medical School of Soochow University, Suzhou, P. R. China.,Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, P. R. China
| | - Rui Tan
- Department of Forensic Science, Medical School of Soochow University, Suzhou, P. R. China.,Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, P. R. China
| | - Xiaochun Zhang
- Department of Forensic Science, Medical School of Soochow University, Suzhou, P. R. China.,Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, P. R. China
| | - Ruocheng Xia
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, P. R. China.,Department of Forensic Medicine, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, P. R. China
| | - Lei Xiong
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, P. R. China.,School of Basic Medicine, Inner Mongolia Medical University, Hohhot, P. R. China
| | - Shihan Xi
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, P. R. China.,Clinical Medical School of Inner Mongolia University for the Nationalities, Tongliao, P. R. China
| | - Jun Wu
- PeopleSpot Inc., Beijing, P. R. China
| | - Yuzhen Gao
- Department of Forensic Science, Medical School of Soochow University, Suzhou, P. R. China
| | - Suhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, P. R. China
| | - Chengtao Li
- Department of Forensic Science, Medical School of Soochow University, Suzhou, P. R. China.,Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, P. R. China
| |
Collapse
|
19
|
Comparison of polymerases used for amplification of mitochondrial DNA from challenging hairs and hairs of various treatments. Forensic Sci Int Genet 2021; 52:102484. [PMID: 33662687 DOI: 10.1016/j.fsigen.2021.102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/20/2022]
Abstract
Forensic DNA analysis of hair evidence typically involves the amplification and sequencing of the control region (CR) of the mitochondrial genome (mtgenome). In compromised hair samples, such as shed hairs, the number of mtgenome copies could be low; thus, it is imperative that the polymerase used in PCR is efficient to ensure maximum amplification. Considering this, the first phase of this study compared the yields obtained from 12 polymerases (sourced from a range of commercial companies) when amplifying the CR, hypervariable (HV) region II (HV2), and hypervariable subregion II-B (HV2B). This initial assessment was performed using mitochondrial DNA (mtDNA) extracted from 2 cm of hair adjacent to the root from three donors of different self-reported ancestries and hair color/texture. PrimeSTAR HS and KAPA HiFi HotStart consistently generated significantly higher amplicon yields (p < 0.05, ~5-fold increase) for most regions than AmpliTaq Gold DNA polymerase (the polymerase validated for use in most forensic laboratories). The second phase of this project was focused on assessing the broad utility of these top two performing polymerases for amplifying two regions of the mtgenome (CR and HV2B) from hair samples representing diverse self-reported ancestral origins (European, Latin American, African American, Asian, and Native American), characteristics/treatments (bleached, dyed, and chemically straightened), and anatomical origins (e.g., head and pubic region) (n = 41). These regions were chosen as they are the most challenging to amplify and sequence in compromised hair samples due to length (i.e., the CR is ~1.2 kb) and repeat structure (i.e., the polycytosine stretch within HV2B). The results indicated that regardless of sample type, PrimeSTAR HS and KAPA HiFi HotStart polymerases outperformed (p < 0.05) AmpliTaq Gold DNA polymerase (averaging 11- and 8-fold increased yields, respectively). The results from this study highlight that enhanced commercially available polymerases appear to significantly improve the amplification of mtDNA from challenging hair samples.
Collapse
|
20
|
KIT Somatic Mutations and Immunohistochemical Expression in Canine Oral Melanoma. Animals (Basel) 2020; 10:ani10122370. [PMID: 33321993 PMCID: PMC7764140 DOI: 10.3390/ani10122370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Malignant melanomas arising from mucosal sites are very aggressive neoplastic entities which affect both humans and dogs. The family of tyrosine kinase receptors has been increasingly studied in humans for this type of neoplasm, especially the gene coding for the proto-oncogene KIT, and tyrosine kinase inhibitors are actually available as treatment. However, KIT alteration status in canine oral melanoma still lacks characterization. In this study, we investigated the mutational status and the tissue expression of KIT through DNA sequencing and immunohistochemical analysis, respectively. A homogeneous cohort of 14 canine oral melanomas has been collected, and while tissue expression of the protein was detected, no mutations were identifiable, most likely attributing the dysregulation of this oncogene to a more complex pattern of genomic aberration. Abstract Canine oral melanoma (COM) is an aggressive neoplasm with a low response to therapies, sharing similarities with human mucosal melanomas. In the latter, significant alterations of the proto-oncogene KIT have been shown, while in COMs only its exon 11 has been adequately investigated. In this study, 14 formalin-fixed, paraffin-embedded COMs were selected considering the following inclusion criteria: unequivocal diagnosis, presence of healthy tissue, and a known amplification status of the gene KIT (seven samples affected and seven non-affected by amplification). The DNA was extracted and KIT target exons 13, 17, and 18 were amplified by PCR and sequenced. Immunohistochemistry (IHC) for KIT and Ki67 was performed, and a quantitative index was calculated for each protein. PCR amplification and sequencing was successful in 97.62% of cases, and no single nucleotide polymorphism (SNP) was detected in any of the exons examined, similarly to exon 11 in other studies. The immunolabeling of KIT was positive in 84.6% of the samples with a mean value of 3.1 cells in positive cases, yet there was no correlation with aberration status. Our findings confirm the hypothesis that SNPs are not a frequent event in KIT activation in COMs, with the pathway activation relying mainly on amplification.
Collapse
|
21
|
Assurian A, Murphy H, Shipley A, Cinar HN, DA Silva A, Almeria S. Assessment of Commercial DNA Cleanup Kits for Elimination of Real-Time PCR Inhibitors in the Detection of Cyclospora cayetanensis in Cilantro. J Food Prot 2020; 83:1863-1870. [PMID: 32722800 DOI: 10.4315/jfp-20-139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/09/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Inhibited reactions have occasionally been observed when cilantro samples were processed for the detection of Cyclospora cayetanensis using quantitative real-time PCR (qPCR). Partial or total inhibition of PCR reactions, including qPCR, can occur, leading to decreased sensitivity or false-negative results. If inhibition occurs, this implies the need for additional purification or cleanup treatments of the extracted DNA to remove inhibitors prior to molecular detection. Our objective was to evaluate the performance of five commercial DNA cleanup kits (QIAquick purification kit from Qiagen [kit 1], OneStep PCR inhibitor removal by Zymo Research [kit 2], NucleoSpin genomic DNA cleanup XS from Macherey-Nagel [kit 3], DNA IQ system by Promega [kit 4], and DNeasy PowerPlant pro kit from Qiagen [5]) to minimize qPCR inhibition using the U.S. Food and Drug Administration-validated Bacteriological Analytical Manual (BAM) Chapter 19b method for detection of C. cayetanensis in cilantro samples containing soil. Each of the five commercial DNA cleanup kits evaluated was able to reduce the qPCR internal amplification control cycle threshold values to those considered to be normal for noninhibited samples, allowing unambiguous interpretation of results in cilantro samples seeded at both a high oocyst level (200 oocysts) and a low oocyst level (10 oocysts). Of the five kits compared, kits 1, 2, and 3 did not show significant differences in the detection of C. cayetanensis, while significantly higher cycle threshold values, indicating lower recovery of the target DNA, were observed from kits 4 and/or 5 in samples seeded with 200 and 10 oocysts (P < 0.05). This comparative study provides recommendations on the use of commercial cleanup kits which could be implemented when inhibition is observed in the detection of C. cayetanensis in cilantro samples using the BAM Chapter 19b method. HIGHLIGHTS
Collapse
Affiliation(s)
- Angela Assurian
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, Maryland 20740
| | - Helen Murphy
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, 8301 Muirkirk Road, Laurel, Maryland 20805, USA
| | - Alicia Shipley
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, Maryland 20740
| | - Hediye Nese Cinar
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, 8301 Muirkirk Road, Laurel, Maryland 20805, USA
| | - Alexandre DA Silva
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, 8301 Muirkirk Road, Laurel, Maryland 20805, USA
| | - Sonia Almeria
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, 8301 Muirkirk Road, Laurel, Maryland 20805, USA.,(ORCID: https://orcid.org/0000-0002-0558-5488 [S.A.])
| |
Collapse
|
22
|
Malapelle U, Rossi G, Pisapia P, Barberis M, Buttitta F, Castiglione F, Cecere FL, Grimaldi AM, Iaccarino A, Marchetti A, Massi D, Medicina D, Mele F, Minari R, Orlando E, Pagni F, Palmieri G, Righi L, Russo A, Tommasi S, Vermi W, Troncone G. BRAF as a positive predictive biomarker: Focus on lung cancer and melanoma patients. Crit Rev Oncol Hematol 2020; 156:103118. [PMID: 33038627 DOI: 10.1016/j.critrevonc.2020.103118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
In the era of personalized medicine, BRAF mutational assessment is mandatory in advanced-stage melanoma and non-small cell lung cancer (NSCLC) patients. The identification of actionable mutations is crucial for the adequate management of these patients. To date various drugs have been implemented in clinical practice. Similarly, various methods may be adopted for the identification of BRAF mutations. Here, we briefly review the current literature on BRAF in melanoma and NSCLC, focusing attention in particular on the different methods and drugs adopted in these patients. In addition, an overview of the real-world practice in different Italian laboratories with high expertise in molecular predictive pathology testing is provided.
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giulio Rossi
- Pathology Unit, Azienda USL Romagna, St. Maria delle Croci Hospital, Ravenna, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Massimo Barberis
- Unit of Histopathology and Molecular Diagnostics, European Institute of Oncology IRCCS, Milano, Italy
| | - Fiamma Buttitta
- Center for Advanced Studies and Technology (CAST) - Department of Medical, Oral and Biotechnological Sciences, University of Chieti, Italy
| | - Francesca Castiglione
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | | | - Antonio Maria Grimaldi
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Antonio Marchetti
- Center for Advanced Studies and Technology (CAST) - Department of Medical, Oral and Biotechnological Sciences, University of Chieti, Italy
| | - Daniela Massi
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Daniela Medicina
- Section of Pathology, Asst Spedali Civili di Brescia, Brescia, Italy
| | - Fabio Mele
- Pathology Department, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Elisabetta Orlando
- Department of Health Promotion, Mother and Child care, Internal Medicine and Medical Specialties (ProMISE), Unit of Anatomic Pathology, University of Palermo, Palermo, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, University Milan Bicocca, Milan, Italy
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | - Luisella Righi
- Department of Oncology, San Luigi Hospital, University of Turin, Turin, Italy
| | | | - Stefania Tommasi
- Pathology Department, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - William Vermi
- Section of Pathology, Asst Spedali Civili di Brescia, Brescia, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
23
|
Michael-Kordatou I, Karaolia P, Fatta-Kassinos D. Sewage analysis as a tool for the COVID-19 pandemic response and management: the urgent need for optimised protocols for SARS-CoV-2 detection and quantification. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2020; 8:104306. [PMID: 32834990 PMCID: PMC7384408 DOI: 10.1016/j.jece.2020.104306] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 05/02/2023]
Abstract
COVID-19 is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of July 29th 2020, more than 16,6 million cases have been reported in more than 188 countries/territories, leading to more than 659000 deaths. One of the main challenges facing health authorities has been testing for the virus on a sufficiently comprehensive scale. The pandemic has been an impetus for the wastewater community as it has inspired scientists to look to wastewater to help fill in the gap of measuring the prevalence of SARS-CoV-2 within a given community. Testing the wastewater may serve as an early warning system allowing timely interventions. Although viral shedding varies among individuals and over the course of their infection, the sewage system can blend these variations into an average that represents the wider studied community. The urgent need has led to a lack of coherent reporting of data regarding the analysis, as these huge and remarkable efforts by the wastewater scientific community were made in a very short time. Important information on the analytical approach is often lacking, while there is still no optimisation of the methodology, including sampling, sample storage and concentration, RNA extraction and detection/quantification. This review aims at identifying the main issues for consideration, relating to the development of validated methodological protocols for the virus quantitative analysis in wastewater. Their inclusion will enable the methodological optimisation of SARS-CoV-2 wastewater analyses, transforming the wastewater infrastructure into a source of useful information for the health sector.
Collapse
Affiliation(s)
- I Michael-Kordatou
- Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus
| | - P Karaolia
- Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus
| | - D Fatta-Kassinos
- Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus
- Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus
| |
Collapse
|
24
|
Fatnassi-Mersni G, Arfaoui AT, Cherni M, Jones M, Zeglaoui F, Ouzari HI, Rammeh S. Molecular and immunohistochemical analysis of BRAF gene in primary cutaneous melanoma: Discovery of novel mutations. J Cutan Pathol 2020; 47:794-799. [PMID: 32285462 DOI: 10.1111/cup.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Determination of BRAF status is mandatory for targeted therapy but it is not currently available in most developing countries. AIM We aimed to analyze BRAF mutations in a series of cutaneous melanoma of Tunisian patients and to compare BRAF V600E mutation detection by immunohistochemistry to DNA sequencing. PATIENTS AND METHODS Archival formalin fixed paraffin embedded tissues from 28 patients with primary cutaneous melanoma were evaluated for the BRAF mutations by Sanger sequencing and immunohistochemistry. RESULTS BRAF mutations were detected in 19/28 (68%) of analyzed tumors. The sensitivity and specificity of immunohistochemistry compared to DNA sequencing for identification of the BRAF V600E mutation were 100%. We found five novel mutations, one of them had deleterious effect. CONCLUSION The present study shows an intermediate frequency of mutations of the BRAF gene in cutaneous melanoma of Tunisian patients, and supports the use of immunohistochemistry as a screening test for the assessment of the BRAF V600E status in the management of melanoma in clinical practice.
Collapse
Affiliation(s)
- Ghaya Fatnassi-Mersni
- Department of Biology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
- Department of Pathology, Charles Nicolle Hospital, Bab Souika, Tunis, Tunisia
- Université de Tunis El Manar, Faculté de Médecine de Tunis, UR17ES15, Tunis, Tunisia
| | - Amira Toumi Arfaoui
- Department of Pathology, Charles Nicolle Hospital, Bab Souika, Tunis, Tunisia
- Université de Tunis El Manar, Faculté de Médecine de Tunis, UR17ES15, Tunis, Tunisia
| | - Marwa Cherni
- Laboratory of Microorganisms and Actives Biomolecules, LR03ES03, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Mariem Jones
- Department of Dermatology, Charles Nicolle Hospital, Bab Souika, Tunis, Tunisia
| | - Faten Zeglaoui
- Department of Dermatology, Charles Nicolle Hospital, Bab Souika, Tunis, Tunisia
| | - Hadda Imen Ouzari
- Laboratory of Microorganisms and Actives Biomolecules, LR03ES03, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Soumaya Rammeh
- Department of Pathology, Charles Nicolle Hospital, Bab Souika, Tunis, Tunisia
- Université de Tunis El Manar, Faculté de Médecine de Tunis, UR17ES15, Tunis, Tunisia
| |
Collapse
|
25
|
Petty DR, Hassan OA, Barker CS, O'Neill SS. Rapid BRAF Mutation Testing in Pigmented Melanomas. Am J Dermatopathol 2020; 42:343-348. [PMID: 31833840 DOI: 10.1097/dad.0000000000001592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BRAF mutations are present in ∼40%-60% of melanomas, and targeted therapy in advanced-stage melanoma is associated with improvement in overall and progression-free survival. Accordingly, BRAF mutation determination is standard-of-care in metastatic melanoma, and a rapid, accurate assay is desirable. Melanin can present unique challenges due to inhibition of the polymerase chain reaction. The novel cartridge-based Idylla platform offers rapid molecular oncology testing; however, a formal evaluation of the impact of melanin on testing heretofore has not been explored. In this study, we evaluated the performance of Idylla BRAF mutation detection in 23 melanomas including resections, small biopsies, and cytology cell blocks. Pathologists assigned each case a pigment score from 0 to 2 based on extent of melanin content. Samples with a pigment score of 2 were successfully resulted, thus demonstrating that high melanin content did not inhibit the assay. Sensitivity and specificity of BRAF mutation detection were 100% compared with reference laboratory testing. Tissue input requirements were low, with the Idylla successfully detecting a BRAF mutation in cell block material containing only ∼400 tumor cells. The assay was simple and quick to perform, with total hands-on time of 5-10 minutes and instrument time ∼90 minutes. In summary, the Idylla BRAF mutation assay provides rapid, robust testing for melanomas with high melanin content, including samples with limited material. The assay requires minimal technical expertise, making mutation status determination accessible in a range of clinical laboratory settings. The total assay time of <2 hours facilitates prompt results to guide patient care decisions.
Collapse
Affiliation(s)
- Danielle R Petty
- Department of Pathology, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | | | | | | |
Collapse
|
26
|
Haelewaters D, De Kesel A, Gorczak M, Bao K, Gort G, Zhao SY, Pfister DH. Laboulbeniales (Ascomycota) of the Boston Harbor Islands II (and Other Localities): Species Parasitizing Carabidae, and the Laboulbenia flagellata Species Complex. Northeast Nat (Steuben) 2019. [DOI: 10.1656/045.025.s906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Udar N, Iyer A, Porter M, Haigis R, Smith S, Dhillon S, Meier K, Ward D, Lu J, Wenz P, Buchner L, Dunn T, Wise A, Mueller A, Gutekunst K. Development and Analytical Validation of a DNA Dual-Strand Approach for the US Food and Drug Administration-Approved Next-Generation Sequencing-Based Praxis Extended RAS Panel for Metastatic Colorectal Cancer Samples. J Mol Diagn 2019; 22:159-178. [PMID: 31837434 DOI: 10.1016/j.jmoldx.2019.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 09/03/2019] [Accepted: 09/27/2019] [Indexed: 12/28/2022] Open
Abstract
A next-generation sequencing method was developed that can distinguish single-stranded modifications from low-frequency somatic mutations present on both strands of DNA in formalin-fixed paraffin-embedded colorectal cancer samples. We applied this method for analytical validation of the Praxis Extended RAS Panel, a US Food and Drug Administration-approved companion diagnostic for panitumumab, on the Illumina MiSeqDx platform. With the use of the TruSeq amplicon workflow, both strands of DNA from the starting material were interrogated independently. Mutations were reported only if found on both strands; artifacts usually present on only one strand would not be reported. A total of 56 mutations were targeted within the KRAS and NRAS genes. A minimum read depth of 1800× per amplicon is required per sample but averaged >30,000× at maximum multiplexing levels. Analytical validation studies were performed to determine the simultaneous detection of mutations on both strands, reproducibility, assay detection level, precision of the assay across various factors, and the impact of interfering substances. In conclusion, this assay can clearly distinguish single-stranded artifacts from low-frequency mutations. Furthermore, the assay is accurate, precise, and reproducible, can achieve consistent detection of a mutation at 5% mutation frequency, exhibits minimal impact from tested interfering substances, and can simultaneously detect 56 mutations in a single run using 10 samples plus controls.
Collapse
Affiliation(s)
- Nitin Udar
- Department of Clinical Genomics Assay Development and Oncology, Illumina, Inc., San Diego, California
| | - Anita Iyer
- Department of Clinical Genomics Assay Development and Oncology, Illumina, Inc., San Diego, California.
| | - Margaret Porter
- Department of Clinical Genomics Assay Development and Oncology, Illumina, Inc., San Diego, California
| | - Robert Haigis
- Department of Clinical Genomics Assay Development and Oncology, Illumina, Inc., San Diego, California
| | - Shannon Smith
- Department of Clinical Genomics Assay Development and Oncology, Illumina, Inc., San Diego, California
| | - Shivani Dhillon
- Department of Clinical Genomics Assay Development and Oncology, Illumina, Inc., San Diego, California
| | - Kristen Meier
- Department of Biostatistics, Illumina, Inc., San Diego, California
| | - Diane Ward
- Department of Biostatistics, Illumina, Inc., San Diego, California
| | - Jing Lu
- Department of Biostatistics, Illumina, Inc., San Diego, California
| | - Paul Wenz
- Department of Biostatistics, Illumina, Inc., San Diego, California
| | - Leonard Buchner
- Department of Biostatistics, Illumina, Inc., San Diego, California
| | - Tamsen Dunn
- Department of Bioinformatics, Illumina, Inc., San Diego, California
| | - Aaron Wise
- Department of Bioinformatics, Illumina, Inc., San Diego, California
| | - Amy Mueller
- Department of Medical Affairs, Illumina, Inc., San Diego, California
| | - Karen Gutekunst
- Department of Clinical Genomics Assay Development and Oncology, Illumina, Inc., San Diego, California
| |
Collapse
|
28
|
Tao R, Chen C, Sheng X, Xia R, Zhang X, Zhang J, Yang Z, Zhang S, Li C. Validation of the Investigator 24plex QS Kit: a 6-dye multiplex PCR assay for forensic application in the Chinese Han population. Forensic Sci Res 2019; 7:172-180. [PMID: 35784410 PMCID: PMC9246015 DOI: 10.1080/20961790.2019.1665160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Investigator 24plex QS Kit (QIAGEN, Hilden, Germany) is a 6-dye fluorescent chemistry short tandem repeat (STR) polymerase chain reaction (PCR) amplification system that simultaneously amplifies 20 of the expanded Combined DNA Index System (CODIS) core STR loci, SE33, DYS391, and the standard sex-determining locus, amelogenin, as well as two special internal performance quality sensor controls (QS1 and QS2), which are included in the primer mix to check the PCR performance. This study was designed to be a pilot evaluation of this STR-PCR kit in a Chinese Han population regarding the PCR conditions, sensitivity, precision, accuracy, repeatability, reproducibility, and concordance; tolerance to PCR inhibitors; applicability to real “forensic-type” samples; species specificity; mixture, balance and stutter analyses, and utility in a population investigation. The exhaustive validation studies demonstrated that the Investigator 24plex QS system is accurate, sensitive and robust for STR genotyping. In addition, these genetic markers in the population data in our study indicated that they can also be useful for forensic identification and paternity testing in the Chinese Han population.
Collapse
Affiliation(s)
- Ruiyang Tao
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Chong Chen
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
- College of Medicine and Forensics, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | | | - Ruocheng Xia
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
- Department of Forensic Medicine, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Xiaochun Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
- Department of Forensic Science, Medical School of Soochow University, Suzhou, China
| | - Jingyi Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
- Department of Forensic Science, Medical School of Soochow University, Suzhou, China
| | - Zihao Yang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
- Department of Forensic Medicine, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Suhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Chengtao Li
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
| |
Collapse
|
29
|
Zheng H, Han F, Lin H, Cao L, Pavase TR, Sui J. Preparation of a novel polyethyleneimine functionalized sepharose-boronate affinity material and its application in selective enrichment of food borne pathogenic bacteria. Food Chem 2019; 294:468-476. [DOI: 10.1016/j.foodchem.2019.05.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 04/10/2019] [Accepted: 05/05/2019] [Indexed: 11/25/2022]
|
30
|
The Role of Melanin in Fungal Pathogenesis for Animal Hosts. Curr Top Microbiol Immunol 2019; 422:1-30. [PMID: 31278515 DOI: 10.1007/82_2019_173] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Melanins are a class of pigments that are ubiquitous throughout biology. They play incredibly diverse and important roles ranging from radiation protection to immune defense, camouflage, and virulence. Fungi have evolved to use melanin to be able to persist in the environment and within organisms. Fungal melanins are often located within the cell well and are able to neutralize reactive oxygen species and other radicals, defend against UV radiation, bind and sequester non-specific peptides and compounds, and produce a physical barrier that defends the cell. For this reason, melanized fungi are often well-suited to be human pathogens-melanin allows fungi to neutralize the microbicidal oxidative bursts of our innate immune system, bind and inactivate to antimicrobial peptides and enzymes, sequester antifungal pharmaceuticals, and create a shield to block immune recognition of the fungus. Due to the importance and pervasiveness of melanin in fungal virulence, mammalian immune systems have evolved antifungal strategies that involve directly detecting and binding to fungal melanins. Such strategies include the use of melanin-specific antibody responses and C-type lectins like the newly discovered melanin-specific MelLec receptor.
Collapse
|
31
|
Zheng H, Tao R, Zhang J, Zhang J, Wang S, Yang Z, Xu Q, Gao Y, Zhang S, Li C. Development and validation of a novel SiFaSTR
TM
23‐plex system. Electrophoresis 2019; 40:2644-2654. [DOI: 10.1002/elps.201900045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/22/2019] [Accepted: 05/23/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Hancheng Zheng
- Department of Forensic ScienceMedical School of Soochow University Suzhou P. R. China
- Shanghai Key Laboratory of Forensic MedicineShanghai Forensic Service PlatformAcademy of Forensic Sciences Shanghai P. R. China
| | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic MedicineShanghai Forensic Service PlatformAcademy of Forensic Sciences Shanghai P. R. China
- Institute of Forensic MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan University Chengdu P. R. China
| | - Jingyi Zhang
- Department of Forensic ScienceMedical School of Soochow University Suzhou P. R. China
- Shanghai Key Laboratory of Forensic MedicineShanghai Forensic Service PlatformAcademy of Forensic Sciences Shanghai P. R. China
| | - Jiashuo Zhang
- Department of Forensic ScienceMedical School of Soochow University Suzhou P. R. China
- Shanghai Key Laboratory of Forensic MedicineShanghai Forensic Service PlatformAcademy of Forensic Sciences Shanghai P. R. China
| | - Shouyu Wang
- Institute of Forensic MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan University Chengdu P. R. China
| | - Zihao Yang
- Shanghai Key Laboratory of Forensic MedicineShanghai Forensic Service PlatformAcademy of Forensic Sciences Shanghai P. R. China
- Department of Forensic MedicineSchool of Basic Medical ScienceWenzhou Medical University Wenzhou P. R. China
| | - Qiannan Xu
- Shanghai Key Laboratory of Forensic MedicineShanghai Forensic Service PlatformAcademy of Forensic Sciences Shanghai P. R. China
- Department of Forensic MedicineSchool of Basic Medical ScienceWenzhou Medical University Wenzhou P. R. China
| | - Yuzhen Gao
- Department of Forensic ScienceMedical School of Soochow University Suzhou P. R. China
| | - Suhua Zhang
- Shanghai Key Laboratory of Forensic MedicineShanghai Forensic Service PlatformAcademy of Forensic Sciences Shanghai P. R. China
| | - Chengtao Li
- Department of Forensic ScienceMedical School of Soochow University Suzhou P. R. China
- Shanghai Key Laboratory of Forensic MedicineShanghai Forensic Service PlatformAcademy of Forensic Sciences Shanghai P. R. China
| |
Collapse
|
32
|
Avoiding non-contributive molecular results in cancer samples: proposal of a score-based approach for sample choice. Pathology 2019; 51:524-528. [PMID: 31227255 DOI: 10.1016/j.pathol.2019.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/05/2019] [Accepted: 03/17/2019] [Indexed: 01/22/2023]
Abstract
Mutational analyses have become crucial for therapeutic choices in patients with advanced lung cancer, colorectal cancer and melanoma. Short turnaround times for molecular analyses are necessary to match the patient's therapeutic management. Non-contributive molecular analyses may increase the delay in reaching a relevant mutational status. We attempted to identify criteria in samples associated with non-contributive molecular results to better anticipate them and select samples with contributive analyses. We compared several criteria such as cancer type, sample type, organ of origin and percentage of tumour cells between samples with non-contributive or contributive EGFR, KRAS, NRAS and BRAF mutation analyses. Among two sets of 3367 and 554 tumour samples analysed in 2015-2017 and 2018, respectively, 11.7% and 15.7% of sample analyses were non-contributive for at least one oncogene. Lung cancer and melanoma cancer subtypes [odds ratio (OR)=7.2], cytological (OR=1.8) or bone samples (OR=8.5) and a percentage of tumour cells ≤20% (OR=41.4) were significantly associated with non-contributive results. By combining these parameters in a scoring system, we were able to predict the contributive or non-contributive result of a molecular analysis with sensitivity and specificity higher than 80% in a validation set of samples. Predicting the contributive or non-contributive result of a molecular analysis is feasible in samples on the basis of simple features. A combination of these features could be used to better choose samples to analyse in order to reduce the rate of non-contributive molecular results and related treatment delays and costs in patients with advanced cancers.
Collapse
|
33
|
Filia A, Droop A, Harland M, Thygesen H, Randerson-Moor J, Snowden H, Taylor C, Diaz JMS, Pozniak J, Nsengimana J, Laye J, Newton-Bishop JA, Bishop DT. High-Resolution Copy Number Patterns From Clinically Relevant FFPE Material. Sci Rep 2019; 9:8908. [PMID: 31222134 PMCID: PMC6586881 DOI: 10.1038/s41598-019-45210-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/07/2019] [Indexed: 11/09/2022] Open
Abstract
Systematic tumour profiling is essential for biomarker research and clinically for assessing response to therapy. Solving the challenge of delivering informative copy number (CN) profiles from formalin-fixed paraffin embedded (FFPE) material, the only likely readily available biospecimen for most cancers, involves successful processing of small quantities of degraded DNA. To investigate the potential for analysis of such lesions, whole-genome CNVseq was applied to 300 FFPE primary tumour samples, obtained from a large-scale epidemiological study of melanoma. The quality and the discriminatory power of CNVseq was assessed. Libraries were successfully generated for 93% of blocks, with input DNA quantity being the only predictor of success (success rate dropped to 65% if <20 ng available); 3% of libraries were dropped because of low sequence alignment rates. Technical replicates showed high reproducibility. Comparison with targeted CN assessment showed consistency with the Next Generation Sequencing (NGS) analysis. We were able to detect and distinguish CN changes with a resolution of ≤10 kb. To demonstrate performance, we report the spectrum of genomic CN alterations (CNAs) detected at 9p21, the major site of CN change in melanoma. This successful analysis of CN in FFPE material using NGS provides proof of principle for intensive examination of population-based samples.
Collapse
Affiliation(s)
- Anastasia Filia
- Section of Epidemiology and Biostatistics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
- Centre for Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Alastair Droop
- MRC Medical Bioinformatics Centre, Leeds Institute of Data Analytics, University of Leeds, Leeds, United Kingdom
| | - Mark Harland
- Section of Epidemiology and Biostatistics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Helene Thygesen
- Section of Epidemiology and Biostatistics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Juliette Randerson-Moor
- Section of Epidemiology and Biostatistics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Helen Snowden
- Section of Epidemiology and Biostatistics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Claire Taylor
- Section of Epidemiology and Biostatistics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Joey Mark S Diaz
- Section of Epidemiology and Biostatistics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Joanna Pozniak
- Section of Epidemiology and Biostatistics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Jérémie Nsengimana
- Section of Epidemiology and Biostatistics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Jon Laye
- Section of Epidemiology and Biostatistics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Julia A Newton-Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - D Timothy Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
34
|
Identification of gene expression levels in primary melanoma associated with clinically meaningful characteristics. Melanoma Res 2019; 28:380-389. [PMID: 29975213 DOI: 10.1097/cmr.0000000000000473] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Factors influencing melanoma survival include sex, age, clinical stage, lymph node involvement, as well as Breslow thickness, presence of tumor-infiltrating lymphocytes based on histological analysis of primary melanoma, mitotic rate, and ulceration. Identification of genes whose expression in primary tumors is associated with these key tumor/patient characteristics can shed light on molecular mechanisms of melanoma survival. Here, we show results from a gene expression analysis of formalin-fixed paraffin-embedded primary melanomas with extensive clinical annotation. The Cancer Genome Atlas data on primary melanomas were used for validation of nominally significant associations. We identified five genes that were significantly associated with the presence of tumor-infiltrating lymphocytes in the joint analysis after adjustment for multiple testing: IL1R2, PPL, PLA2G3, RASAL1, and SGK2. We also identified two genes significantly associated with melanoma metastasis to the regional lymph nodes (PIK3CG and IL2RA), and two genes significantly associated with sex (KDM5C and KDM6A). We found that LEF1 was significantly associated with Breslow thickness and CCNA2 and UBE2T with mitosis. RAD50 was the gene most significantly associated with survival, with a higher level of expression associated with worse survival.
Collapse
|
35
|
Haelewaters D, Hiller T, Dick CW. Bats, Bat Flies, and Fungi: A Case of Hyperparasitism. Trends Parasitol 2019; 34:784-799. [PMID: 30097262 DOI: 10.1016/j.pt.2018.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/08/2018] [Accepted: 06/22/2018] [Indexed: 12/28/2022]
Abstract
Bats are parasitized by numerous lineages of arthropods, of which bat flies (Diptera, Nycteribiidae and Streblidae) are the most conspicuous. Bat flies themselves can be parasitized by Laboulbeniales, fungal biotrophs of arthropods. This is known as hyperparasitism, a severely understudied phenomenon. Three genera of Laboulbeniales occur on bat flies: Arthrorhynchus on Nycteribiidae, Gloeandromyces and Nycteromyces on Streblidae. In this review we introduce the parasitic partners in this tripartite system and discuss their diversity, ecology, and specificity patterns, alongside some important life history traits. Furthermore, we cover recent advances in the study of the associations between bat flies and Laboulbeniales, which were neglected for decades. Among the most immediate needs for further studies are detailed tripartite field surveys. The vermin only teaze and pinch Their foes superior by an inch So, naturalists observe, a flea Has smaller fleas that on him prey; And these have smaller still to bite 'em, And so proceed ad infinitum. Jonathan Swift (On Poetry: A Rhapsody, 1733).
Collapse
Affiliation(s)
- Danny Haelewaters
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Panama; Current affiliation: Department of Zoology, University of South Bohemia, České Budejovice, Czech Republic.
| | - Thomas Hiller
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Panama; Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Carl W Dick
- Department of Biology, Western Kentucky University, Bowling Green, KY, USA; Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| |
Collapse
|
36
|
Tam I, Dzierżęga-Lęcznar A, Stępień K. Differential expression of inflammatory cytokines and chemokines in lipopolysaccharide-stimulated melanocytes from lightly and darkly pigmented skin. Exp Dermatol 2019; 28:551-560. [PMID: 30801846 DOI: 10.1111/exd.13908] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/11/2019] [Indexed: 01/02/2023]
Abstract
Increasing evidence suggests that human epidermal melanocytes play an important role in the skin immune system; however, a role of their pigmentation in immune and inflammatory responses is poorly examined. In the study, the expression of Toll-like receptor 4 (TLR4) and inflammatory cytokines and chemokines by cultured normal melanocytes derived from lightly and darkly pigmented skin was investigated after cell stimulation with lipopolysaccharide (LPS). The basal TLR4 mRNA level in heavily pigmented cells was higher as compared to their lightly pigmented counterparts. Melanocyte exposure to LPS upregulated the expression of TLR4 mRNA and enhanced the DNA-binding activity of NF-κB p50 and p65. We found substantial differences in the LPS-stimulated expression of numerous genes encoding inflammatory cytokines and chemokines between the cells with various melanin contents. In lightly pigmented melanocytes, the most significantly upregulated genes were nicotinamide phosphoribosyltransferase (NAMPT/visfatin), the chemokines CCL2 and CCL20, and IL6, while the genes for CXCL12, IL-16 and the chemokine receptor CCR4 were the most significantly upregulated in heavily pigmented cells. Moreover, the lightly pigmented melanocytes secreted much more NAMPT, CCL2 and IL-6. The results of our study suggest modulatory effect of melanogenesis on the immune properties of normal epidermal melanocytes.
Collapse
Affiliation(s)
- Irena Tam
- Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Anna Dzierżęga-Lęcznar
- Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Krystyna Stępień
- Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia in Katowice, Sosnowiec, Poland
| |
Collapse
|
37
|
3D Engineering of Ocular Tissues for Disease Modeling and Drug Testing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1186:171-193. [DOI: 10.1007/978-3-030-28471-8_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Haelewaters D, Page RA, Pfister DH. Laboulbeniales hyperparasites (Fungi, Ascomycota) of bat flies: Independent origins and host associations. Ecol Evol 2018; 8:8396-8418. [PMID: 30250711 PMCID: PMC6145224 DOI: 10.1002/ece3.4359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/23/2018] [Accepted: 06/13/2018] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to explore the diversity of ectoparasitic fungi (Ascomycota, Laboulbeniales) that use bat flies (Diptera, Hippoboscoidea) as hosts. Bat flies themselves live as ectoparasites on the fur and wing membranes of bats (Mammalia, Chiroptera); hence this is a tripartite parasite system. Here, we collected bats, bat flies, and Laboulbeniales, and conducted phylogenetic analyses of Laboulbeniales to contrast morphology with ribosomal sequence data. Parasitism of bat flies by Laboulbeniales arose at least three times independently, once in the Eastern Hemisphere (Arthrorhynchus) and twice in the Western Hemisphere (Gloeandromyces, Nycteromyces). We hypothesize that the genera Arthrorhynchus and Nycteromyces evolved independently from lineages of ectoparasites of true bugs (Hemiptera). We assessed phylogenetic diversity of the genus Gloeandromyces by considering the LSU rDNA region. Phenotypic plasticity and position-induced morphological adaptations go hand in hand. Different morphotypes belong to the same phylogenetic species. Two species, G. pageanus and G. streblae, show divergence by host utilization. In our assessment of coevolution, we only observe congruence between the Old World clades of bat flies and Laboulbeniales. The other associations are the result of the roosting ecology of the bat hosts. This study has considerably increased our knowledge about bats and their associated ectoparasites and shown the necessity of including molecular data in Laboulbeniales taxonomy.
Collapse
Affiliation(s)
- Danny Haelewaters
- Department of Organismic and Evolutionary BiologyFarlow Reference Library and Herbarium of Cryptogramic BotanyHarvard UniversityCambridgeMassachusetts
- Smithsonian Tropical Research InstituteBalboaPanama
| | | | - Donald H. Pfister
- Department of Organismic and Evolutionary BiologyFarlow Reference Library and Herbarium of Cryptogramic BotanyHarvard UniversityCambridgeMassachusetts
| |
Collapse
|
39
|
Comparison of various RNA extraction methods, cDNA preparation and isolation of calmodulin gene from a highly melanized isolate of apple leaf blotch fungus Marssonina coronaria. J Microbiol Methods 2018; 151:7-15. [DOI: 10.1016/j.mimet.2018.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 11/19/2022]
|
40
|
Chat-Uthai N, Vejvisithsakul P, Udommethaporn S, Meesiri P, Danthanawanit C, Wongchai Y, Teerapakpinyo C, Shuangshoti S, Poungvarin N. Development of ultra-short PCR assay to reveal BRAF V600 mutation status in Thai colorectal cancer tissues. PLoS One 2018; 13:e0198795. [PMID: 29879227 PMCID: PMC5991739 DOI: 10.1371/journal.pone.0198795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/25/2018] [Indexed: 02/06/2023] Open
Abstract
The protein kinase BRAF is one of the key players in regulating cellular responses to extracellular signals. Somatic mutations of the BRAF gene, causing constitutive activation of BRAF, have been found in various types of human cancers such as malignant melanoma, and colorectal cancer. BRAF V600E and V600K, most commonly observed mutations in these cancers, may predict response to targeted therapies. Many techniques suffer from a lack of diagnostic sensitivity in mutation analysis in clinical samples with a low cancer cell percentage or poor-quality fragmented DNA. Here we present allele-specific real-time PCR assay for amplifying 35- to 45-base target sequences in BRAF gene. Forward primer designed for BRAF V600E detection is capable of recognizing both types of BRAF V600E mutation, i.e. V600E1 (c.1799T>A) and V600E2 (c.1799_1800delTGinsAA), as well as complex tandem mutation caused by nucleotide changes in codons 600 and 601. We utilized this assay to analyze Thai formalin-fixed paraffin-embedded tissues. Forty-eight percent of 178 Thai colorectal cancer tissues has KRAS mutation detected by highly sensitive commercial assays. Although these DNA samples contain low overall yield of amplifiable DNA, our newly-developed assay successfully revealed BRAF V600 mutations in 6 of 93 formalin-fixed paraffin-embedded colorectal cancer tissues which KRAS mutation was not detected. Ultra-short PCR assay with forward mutation-specific primers is potentially useful to detect BRAF V600 mutations in highly fragmented DNA specimens from cancer patients.
Collapse
Affiliation(s)
- Nunthawut Chat-Uthai
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Sutthirat Udommethaporn
- Clinical Molecular Pathology Laboratory, Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Puttarakun Meesiri
- Clinical Molecular Pathology Laboratory, Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chetiya Danthanawanit
- Clinical Molecular Pathology Laboratory, Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yannawan Wongchai
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chinachote Teerapakpinyo
- Chulalongkorn GenePRO Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Shanop Shuangshoti
- Chulalongkorn GenePRO Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Naravat Poungvarin
- Clinical Molecular Pathology Laboratory, Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
41
|
Effects of PCR inhibitors on mRNA expression for human blood identification. Leg Med (Tokyo) 2018; 32:113-119. [DOI: 10.1016/j.legalmed.2018.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/21/2018] [Accepted: 04/08/2018] [Indexed: 11/20/2022]
|
42
|
Prognostic Role of BRAF V600E Cellular Localization in Melanoma. J Am Coll Surg 2018; 226:526-537. [PMID: 29369798 DOI: 10.1016/j.jamcollsurg.2017.12.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 01/27/2023]
Abstract
BACKGROUND Approximately half of cutaneous melanoma tissues harbor BRAFV600E mutations, resulting in a constitutive activation of the mitogen-activated protein kinase (MAPK) pathway. Nuclear-cytoplasmic transport machinery is dysregulated in neoplastic cells and alters the key regulatory proteins that can lead to tumor progression and drug resistance. The significance of nuclear localization of BRAFV600E has not been fully understood. We examined the clinical significance of intracellular localization of BRAFV600E in cutaneous melanoma. STUDY DESIGN Immunohistochemical analysis of BRAFV600E was performed on formalin-fixed, paraffin-embedded specimens of cutaneous melanoma (n = 91). Staining intensity was graded in a blinded manner. Correlations to clinical factors were analyzed by Fisher's exact test and 2-tailed t-test. Localization of BRAFV600E was determined in melanoma cells, and we investigated their resistance to BRAFV600E-specific inhibitor according to nuclear localization in both in vitro and in vivo models. RESULTS We included 91 patients, of whom 32% (29 of 91) had cytoplasmic BRAFV600E. Nuclear BRAFV600E was observed in 30% (27 of 91). Overall, BRAFV600E expression correlated with TNM stage (p = 0.011), mitotic activity (p = 0.010), and ulceration (p = 0.045). Nuclear BRAFV600E expression correlated with overall clinical stage (p < 0.001), tumor size (p < 0.001), regional lymph node (p < 0.017), depth of invasion (p = 0.005), Clark level (p < 0.001), mitotic activity (p < 0.001), ulceration (p < 0.001), and margin status (p = 0.017). On a cellular level, BRAFV600E was identified in the nucleus, and its translocation was serum dependent. Our in vitro and in vivo data revealed sequestration of BRAFV600E in the cytosol-sensitized resistant cells to vemurafenib; nuclear retention of BRAFV600E was associated with aggressiveness and drug resistance. CONCLUSIONS Nuclear localization of BRAFV600E is associated with melanoma aggressiveness. Further multi-institutional studies are warranted to confirm the clinical relevance of nuclear localization of BRAFV600E.
Collapse
|
43
|
Abstract
Abstract
The main reasons for wildlife forensic research are animal poaching, illegal trade, and falsified game meat products. Small trace amounts, old and degraded materials present the most common samples in revealing criminal activities in this field. This is the reason why it is crucial to use adequate and reliable methods and samples to identify animal species killed outside the hunting season or species protected by law. In this study, different endpoint PCR and real-time PCR protocols were compared in the identification of three Cervidae species (Capreolus capreolus, Cervus elaphus, Dama dama) from old and damaged material found in an enclosed area where the animals were kept. From a total of 129 samples, end point PCR provided results for 119 samples, while real-time PCR was successful in all cases. Also, we created and tested a protocol for simultaneous analyses of different types of samples, which is of great importance as when the amplification is carried out simultaneously it is more cost efficient and speeds up the process.
Collapse
|
44
|
Influence of mucinous and necrotic tissue in colorectal cancer samples on KRAS mutation analysis. Pathol Res Pract 2017; 213:606-611. [DOI: 10.1016/j.prp.2017.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 12/21/2022]
|
45
|
Oldoni F, Castella V, Grosjean F, Hall D. Sensitive DIP-STR markers for the analysis of unbalanced mixtures from “touch” DNA samples. Forensic Sci Int Genet 2017; 28:111-117. [DOI: 10.1016/j.fsigen.2017.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/27/2017] [Accepted: 02/09/2017] [Indexed: 01/31/2023]
|
46
|
O'Brien O, Lyons T, Murphy S, Feeley L, Power D, Heffron CCBB. BRAF V600 mutation detection in melanoma: a comparison of two laboratory testing methods. J Clin Pathol 2017; 70:935-940. [DOI: 10.1136/jclinpath-2017-204367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/24/2017] [Indexed: 12/19/2022]
Abstract
AimsThe assessment of B-raf proto-oncogene, serine/threonine kinase (BRAF) gene status is now standard practice in patients diagnosed with metastatic melanoma with its presence predicting a clinical response to treatment with BRAF inhibitors. The gold standard in determining BRAF status is currently by DNA-based methods. More recently, a BRAF V600E antibody has been developed. We aim to investigate whether immunohistochemical detection of BRAF mutation is a suitable alternative to molecular testing by polymerase chain reaction (PCR).MethodsWe assessed the incidence of BRAF mutation in our cohort of 132 patients, as determined by PCR, as well as examining clinical and histopathological features. We investigated the sensitivity and specificity of the anti-BRAF V600E VE1 clone antibody in detecting the presence of the BRAF V600E mutation in 122 cases deemed suitable for testing.ResultsThe incidence of BRAF mutation in our cohort was 28.8% (38/132). Patients with the BRAF mutation were found to be significantly younger at age of diagnosis. BRAF-mutated melanomas tended to be thinner and more mitotically active. The antibody showed a sensitivity of 86.1% with a specificity of 96.9%. The positive predictive value was 96.9%; the negative predictive value was 94.4%. The concordance rate between PCR and immunohistochemical BRAF status was 95.1% (116/122).ConclusionsThe rate of BRAF mutation in our cohort (28.8%) was lower than international published rates of 40%–60%. This may reflect ethnic or geographic differences within population cohorts. The high concordance rate of PCR and immunohistochemical methods in determining BRAF status suggests that immunohistochemistry is potentially a viable, cost-effective alternative to PCR testing and suitable as a screening test for the BRAF mutation.
Collapse
|
47
|
Acharya KR, Dhand NK, Whittington RJ, Plain KM. PCR Inhibition of a Quantitative PCR for Detection of Mycobacterium avium Subspecies Paratuberculosis DNA in Feces: Diagnostic Implications and Potential Solutions. Front Microbiol 2017; 8:115. [PMID: 28210245 PMCID: PMC5288348 DOI: 10.3389/fmicb.2017.00115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/17/2017] [Indexed: 01/05/2023] Open
Abstract
Molecular tests such as polymerase chain reaction (PCR) are increasingly being applied for the diagnosis of Johne's disease, a chronic intestinal infection of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Feces, as the primary test sample, presents challenges in terms of effective DNA isolation, with potential for PCR inhibition and ultimately for reduced analytical and diagnostic sensitivity. However, limited evidence is available regarding the magnitude and diagnostic implications of PCR inhibition for the detection of MAP in feces. This study aimed to investigate the presence and diagnostic implications of PCR inhibition in a quantitative PCR assay for MAP (High-throughput Johne's test) to investigate the characteristics of samples prone to inhibition and to identify measures that can be taken to overcome this. In a study of fecal samples derived from a high prevalence, endemically infected cattle herd, 19.94% of fecal DNA extracts showed some evidence of inhibition. Relief of inhibition by a five-fold dilution of the DNA extract led to an average increase in quantification of DNA by 3.3-fold that consequently increased test sensitivity of the qPCR from 55 to 80% compared to fecal culture. DNA extracts with higher DNA and protein content had 19.33 and 10.94 times higher odds of showing inhibition, respectively. The results suggest that the current test protocol is sensitive for herd level diagnosis of Johne's disease but that test sensitivity and individual level diagnosis could be enhanced by relief of PCR inhibition, achieved by five-fold dilution of the DNA extract. Furthermore, qualitative and quantitative parameters derived from absorbance measures of DNA extracts could be useful for prediction of inhibitory fecal samples.
Collapse
Affiliation(s)
- Kamal R. Acharya
- Sydney School of Veterinary Science, Faculty of Science, University of SydneyCamden, NSW, Australia
- Department of Livestock Services, Regional Veterinary Diagnostic LaboratoryDhangadhi, Nepal
| | - Navneet K. Dhand
- Sydney School of Veterinary Science, Faculty of Science, University of SydneyCamden, NSW, Australia
| | - Richard J. Whittington
- Sydney School of Veterinary Science, School of Life and Environmental Sciences, University of SydneyCamden, NSW, Australia
| | - Karren M. Plain
- Sydney School of Veterinary Science, Faculty of Science, University of SydneyCamden, NSW, Australia
| |
Collapse
|
48
|
Sidstedt M, Romsos EL, Hedell R, Ansell R, Steffen CR, Vallone PM, Rådström P, Hedman J. Accurate Digital Polymerase Chain Reaction Quantification of Challenging Samples Applying Inhibitor-Tolerant DNA Polymerases. Anal Chem 2017; 89:1642-1649. [PMID: 28118703 DOI: 10.1021/acs.analchem.6b03746] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Digital PCR (dPCR) enables absolute quantification of nucleic acids by partitioning of the sample into hundreds or thousands of minute reactions. By assuming a Poisson distribution for the number of DNA fragments present in each chamber, the DNA concentration is determined without the need for a standard curve. However, when analyzing nucleic acids from complex matrixes such as soil and blood, the dPCR quantification can be biased due to the presence of inhibitory compounds. In this study, we evaluated the impact of varying the DNA polymerase in chamber-based dPCR for both pure and impure samples using the common PCR inhibitor humic acid (HA) as a model. We compared the TaqMan Universal PCR Master Mix with two alternative DNA polymerases: ExTaq HS and Immolase. By using Bayesian modeling, we show that there is no difference among the tested DNA polymerases in terms of accuracy of absolute quantification for pure template samples, i.e., without HA present. For samples containing HA, there were great differences in performance: the TaqMan Universal PCR Master Mix failed to correctly quantify DNA with more than 13 pg/nL HA, whereas Immolase (1 U) could handle up to 375 pg/nL HA. Furthermore, we found that BSA had a moderate positive effect for the TaqMan Universal PCR Master Mix, enabling accurate quantification for 25 pg/nL HA. Increasing the amount of DNA polymerase from 1 to 5 U had a strong effect for ExTaq HS, elevating HA-tolerance four times. We also show that the average Cq values of positive reactions may be used as a measure of inhibition effects, e.g., to determine whether or not a dPCR quantification result is reliable. The statistical models developed to objectively analyze the data may also be applied in quality control. We conclude that the choice of DNA polymerase in dPCR is crucial for the accuracy of quantification when analyzing challenging samples.
Collapse
Affiliation(s)
- Maja Sidstedt
- Applied Microbiology, Department of Chemistry, Lund University , SE-221 00 Lund, Sweden.,Swedish National Forensic Centre , SE-581 94 Linköping, Sweden
| | - Erica L Romsos
- Materials Measurement Laboratory, National Institute of Standards and Technology , Gaithersburg, Maryland 20899-8314, United States
| | - Ronny Hedell
- Swedish National Forensic Centre , SE-581 94 Linköping, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg , SE-412 96 Gothenburg, Sweden
| | - Ricky Ansell
- Swedish National Forensic Centre , SE-581 94 Linköping, Sweden.,Department of Physics, Chemistry and Biology, IFM, Linköping University , SE-581 83 Linköping, Sweden
| | - Carolyn R Steffen
- Materials Measurement Laboratory, National Institute of Standards and Technology , Gaithersburg, Maryland 20899-8314, United States
| | - Peter M Vallone
- Materials Measurement Laboratory, National Institute of Standards and Technology , Gaithersburg, Maryland 20899-8314, United States
| | - Peter Rådström
- Applied Microbiology, Department of Chemistry, Lund University , SE-221 00 Lund, Sweden
| | - Johannes Hedman
- Applied Microbiology, Department of Chemistry, Lund University , SE-221 00 Lund, Sweden.,Swedish National Forensic Centre , SE-581 94 Linköping, Sweden
| |
Collapse
|
49
|
Methods for In Vivo/Ex Vivo Analysis of Antimicrobial Peptides in Bacterial Keratitis: siRNA Knockdown, Colony Counts, Myeloperoxidase, Immunostaining, and RT-PCR Assays. Methods Mol Biol 2016. [PMID: 28013522 DOI: 10.1007/978-1-4939-6737-7_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Antimicrobial peptides (AMPs) are essential components of the innate immune response. They have direct killing ability as well as immunomodulatory functions. Here, we describe techniques to identify specific AMPs involved in the protection against microbial keratitis, a vision threatening infection of the cornea of the eye which is the most serious complication of contact lens wear. Specifically we detail the use of siRNA technology to temporarily knockdown AMP expression at the murine ocular surface in vivo and then describe ex vivo assays to determine the level of bacteria, relative number of neutrophils, and levels of cytokines, chemokines, and AMPs in infected corneas.
Collapse
|
50
|
A melanin-bleaching methodology for molecular and histopathological analysis of formalin-fixed paraffin-embedded tissue. J Transl Med 2016; 96:1116-27. [PMID: 27548802 PMCID: PMC7781076 DOI: 10.1038/labinvest.2016.90] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 01/28/2023] Open
Abstract
Removal of excessive melanin from heavily pigmented formalin-fixed paraffin-embedded (FFPE) melanoma tissues is essential for histomorphological and molecular diagnostic assessments. Although there have been efforts to address this issue, current methodologies remain complex and time-consuming, and are not suitable for multiple molecular applications. Herein, we have developed a robust and rapid melanin-bleaching methodology for FFPE tissue specimens. Our approach is based on quick bleaching (15 min) at high temperature (80 °C) with 0.5% diluted hydrogen peroxide (H2O2) in Tris-HCl, PBS, or Tris/Tricine/SDS buffer. Immunostaining for Ki-67 and HMB45 was enhanced by bleaching with 0.5% H2O2 in Tris/Tricine/SDS and Tris-HCl, respectively. In addition to histopathological applications, our approach also facilitates recovery of protein and nucleic acid from archival melanin-rich FFPE tissue sections. Protein extracted from bleached FFPE tissues was compatible with western blotting using anti-human GAPDH and AKT antibodies. Our bleaching condition significantly improved RNA quality compared with unbleached tissues without compromising the yield. Notably, the RNA/DNA obtained from bleached tissues was suitable for end point PCR and real-time quantitative RT-PCR. In conclusion, this improved melanin-bleaching method enhances and simplifies immunostaining procedures, and facilitates the use of melanin-rich FFPE tissues for histomorphological and PCR amplification-based molecular assays.
Collapse
|