1
|
Jain A, Ni Y, Zhang D, Simonsick EM, Metter EJ, Ogbureke KU, Fisher LW, Fedarko NS. Small Integrin binding Ligand N-linked Glycoproteins, prostate-specific antigen and time to prostate cancer diagnosis. Matrix Biol Plus 2025; 26:100171. [PMID: 40230486 PMCID: PMC11995099 DOI: 10.1016/j.mbplus.2025.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/01/2025] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Small Integrin Binding Ligand N-linked Glycoproteins (SIBLINGs1) were associated with cancer in cross-sectional studies. Whether SIBLINGs associate with preclinical disease is unknown. METHODS A retrospective longitudinal case control study was performed to determine the association of SIBLINGs and prostate-specific antigen (PSA) with preclinical disease. Paired serum samples from 109 cancer-free Baltimore Longitudinal Study on Aging participants were divided into those that were either most distal or proximal to diagnosis (cases) or censored (controls). Dentin sialophosphoprotein (DSPP), bone sialoprotein (BSP), osteopontin (OPN), and PSA were measured by immunoassay and dichotomized into low or high based on their respective cut-off values. Associations of time to diagnosis or death, modeled as disease-free survival (DFS) or overall survival (OS), were assessed using Kaplan Meier and Cox proportional hazard survival estimates on individual and aggregated biomarkers in distal or proximal sets separately. Models were adjusted for relevant covariates. A false discovery rate analysis assessed significance of hazard ratios (HRs) in sets. RESULTS Biomarkers/aggregates identified as true discoveries for DFS included DSPP + PSA, OPN + PSA, DSPP + BSP + PSA, DSPP + OPN + PSA, where unadjusted distal HRs ranged between 11 and 27 and after adjusting for age from 7 to 15, while proximal HRs ranged between 6 and 10 unadjusted and 5 to 12 after adjusting for age. For proximal OS, true discoveries included DSPP + BSP, DSPP + OPN, DSPP + BSP + OPN, and DSPP + OPN + PSA where unadjusted HRs ranged between 6 and 20 while age-adjusted HRs ranged between 5 and 12. CONCLUSIONS These observations support SIBLINGs as biomarkers that associate with DFS and OS in prediagnosis samples.
Collapse
Affiliation(s)
- Alka Jain
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
- Staff Scientist, ThermoFisher Scientific, Middletown, VA 22645, USA
| | - Ying Ni
- Research Laboratory Core, Institute for Clinical and Translational Research, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Daisy Zhang
- Research Laboratory Core, Institute for Clinical and Translational Research, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Eleanor M. Simonsick
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21225, USA
| | - E. Jeffrey Metter
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21225, USA
- Department of Neurology, University of Tennessee Health Science Center Memphis, TN 38163, USA
| | - Kalu U. Ogbureke
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Larry W. Fisher
- Matrix Biochemistry Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neal S. Fedarko
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| |
Collapse
|
2
|
Buss DJ, Deering J, Reznikov N, McKee MD. Understanding the structural biology of osteomalacia through multiscale 3D X-ray and electron tomographic imaging: a review of X-linked hypophosphatemia, the Hyp mouse model, and imaging methods. JBMR Plus 2025; 9:ziae176. [PMID: 39896117 PMCID: PMC11783288 DOI: 10.1093/jbmrpl/ziae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/10/2024] [Accepted: 12/28/2024] [Indexed: 02/04/2025] Open
Abstract
Biomineralization in bones and teeth is a highly regulated extracellular event. In the skeleton, mineralization at the tissue level is controlled within the collagenous extracellular matrix by both circulating and local factors. While systemic regulation of mineral ion homeostasis has been well-studied over many decades, much less is known about the regulation of mineralization at the local level directly within the extracellular matrix. Some local regulators have been identified, such as tissue-nonspecific alkaline phosphatase (TNAP), phosphate-regulating endopeptidase homolog X-linked (PHEX), pyrophosphate, and osteopontin, and others are currently under investigation. Dysregulation of the actions of enzyme-inhibitor substrate pairs engaged in mineralization (as we describe by the Stenciling Principle for extracellular matrix mineralization) leads to osteomalacic "soft bone" diseases, such as hypophosphatasia (HPP) and X-linked hypophosphatemia (XLH). This review addresses how advances in 3D imaging tools and software now allow contextual and correlative viewing and interpretation of mineralized tissue structure across most length scales. Contextualized and integrated 3D multiscale data obtained from these imaging modalities have afforded an unprecedented structural biology view of bone from the macroscale to the nanoscale. Such correlated volume imaging data is highly quantitative, providing not only an integrated view of the skeleton in health, but also a means to observe alterations that occur in disease. In the context of the many hierarchical levels of skeletal organization, here we summarize structural features of bone over multiple length scales, with a focus on nano- and microscale features as viewed by X-ray and electron tomography imaging methods (submicron μCT and FIB-SEM). We additionally summarize structural changes observed after dysregulation of the mineralization pathway, focusing here on the Hyp mouse model for XLH. More specifically, we summarize how mineral patterns/packs at the microscale (3D crossfibrillar mineral tessellation), and how this is defective in Hyp mouse bone and Hyp enthesis fibrocartilage.
Collapse
Affiliation(s)
- Daniel J Buss
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Joseph Deering
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Natalie Reznikov
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Marc D McKee
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
3
|
Rodríguez LH, Vázquez MS, Ramírez González LF, Ayala GM, Letayf SL, Narayanan AS, Arzate H. Cementum attachment protein-derived peptide induces cementum formation. FASEB Bioadv 2025; 7:e1483. [PMID: 39917396 PMCID: PMC11795276 DOI: 10.1096/fba.2024-00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 12/05/2024] [Indexed: 02/09/2025] Open
Abstract
A pentapeptide AVIFM (CAP-p5) derived from the carboxy-terminus end of cementum attachment protein was examined for its role on proliferation, differentiation, and mineralization of human periodontal ligament cells (HPLC), and for its potential to induce cementum deposition in vivo. CAP-p5 capability to induce hydroxyapatite crystal formation on demineralized dentin blocks was characterized by scanning electron microscopy, μRAMAN, and high-resolution transmission electron microscopy. The results revealed that CAP-p5 promoted cell proliferation and cell differentiation and increases alkaline phosphatase activity of HPLC and mineralization at an optimal concentration of 10 μg/mL. It induced the expression of cementum molecular markers BSP, CAP, CEMP1, and ALP at the protein level. In a cell-free system, human demineralized dentin blocks coated with CAP-p5 induced the deposition of a homogeneous and continuous mineralized layer, intimately integrated with the underlying dentin indicating new cementum formation. Physicochemical characterization of this mineral layer showed that it is composed of hydroxyapatite crystals. Demineralized dentin blocks coated with CAP-p5 implanted subcutaneously in BALB/cAnNCrl were analyzed histologically; the results disclosed that CAP-p5 could induce the deposition of a cementum layer intimately integrated with the subjacent dentin with cementocytes embedded into the cementum matrix. Immunostaining showed the expression of cementum molecular markers; v.gr. BSP, CAP, CEMP1 and ALP, validating the molecular identity of the newly deposited cementum. We conclude that CAP-p5 is a new biomolecule with the potential of therapeutic application to contribute to the regeneration of cementum and periodontal structures lost in periodontal disease.
Collapse
Affiliation(s)
- Lía Hoz Rodríguez
- Laboratorio de Biología Periodontal, Facultad de OdontologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Maricela Santana Vázquez
- Laboratorio de Biología Periodontal, Facultad de OdontologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | | | - Gonzalo Montoya Ayala
- Laboratorio de Biología Periodontal, Facultad de OdontologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Sonia López Letayf
- Laboratorio de Biología Periodontal, Facultad de OdontologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | | | - Higinio Arzate
- Laboratorio de Biología Periodontal, Facultad de OdontologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| |
Collapse
|
4
|
Morice A, de La Seiglière A, Kany A, Khonsari RH, Bensidhoum M, Puig-Lombardi ME, Legeai Mallet L. FGFR antagonists restore defective mandibular bone repair in a mouse model of osteochondrodysplasia. Bone Res 2025; 13:12. [PMID: 39837840 PMCID: PMC11751307 DOI: 10.1038/s41413-024-00385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 01/30/2025] Open
Abstract
Gain-of-function mutations in fibroblast growth factor receptor (FGFR) genes lead to chondrodysplasia and craniosynostoses. FGFR signaling has a key role in the formation and repair of the craniofacial skeleton. Here, we analyzed the impact of Fgfr2- and Fgfr3-activating mutations on mandibular bone formation and endochondral bone repair after non-stabilized mandibular fractures in mouse models of Crouzon syndrome (Crz) and hypochondroplasia (Hch). Bone mineralization of the calluses was abnormally high in Crz mice and abnormally low in Hch mice. The latter model presented pseudarthrosis and impaired chondrocyte differentiation. Spatial transcriptomic analyses of the Hch callus revealed abnormally low expression of Col11, Col1a, Dmp1 genes in mature chondrocytes. We found that the expression of genes involved in autophagy and apoptosis (Smad1, Comp, Birc2) was significantly perturbed and that the Dusp3, Dusp9, and Socs3 genes controlling the mitogen-activated protein kinase pathway were overexpressed. Lastly, we found that treatment with a tyrosine kinase inhibitor (BGJ398, infigratinib) or a C-type natriuretic peptide (BMN111, vosoritide) fully rescued the defective endochondral bone repair observed in Hch mice. Taken as a whole, our findings show that FGFR3 is a critical orchestrator of bone repair and provide a rationale for the development of potential treatments for patients with FGFR3-osteochondrodysplasia.
Collapse
Affiliation(s)
- Anne Morice
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France
| | - Amélie de La Seiglière
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France
| | - Alexia Kany
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France
| | - Roman H Khonsari
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France
| | | | - Maria-Emilia Puig-Lombardi
- Bioinformatics Core Platform, Imagine Institute, INSERM UMR1163 and Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Université Paris Cité, Paris, France
| | - Laurence Legeai Mallet
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France.
| |
Collapse
|
5
|
Colasante C, Jednakowski J, Valerius KP, Li X, Baumgart-Vogt E. Peroxisomal dysfunction interferes with odontogenesis and leads to developmentally delayed teeth and defects in distinct dental cells in Pex11b-deficient mice. PLoS One 2024; 19:e0313445. [PMID: 39652567 PMCID: PMC11627416 DOI: 10.1371/journal.pone.0313445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/23/2024] [Indexed: 12/12/2024] Open
Abstract
Human peroxisomal biogenesis disorders of the Zellweger syndrome spectrum affect skeletal development and induce tooth malformations. Whereas several peroxisomal knockout mouse studies elucidated the pathogenesis of skeletal defects, little information is available on how dental pathologies arise in peroxisomal biogenesis disorder patients. To understand the impact of severe peroxisomal dysfunction on early odontogenesis, here we performed morphometric studies on developing molars of new-born Pex11b knockout mice. Immunofluorescence analysis revealed reduced peroxisome number and mistargeting of the peroxisomal matrix enzyme catalase to the cytoplasm in several dental cell types of the Pex11b knockout animals. We also observed secondary mitochondrial alterations, comprising decreased staining of mitochondrial superoxide dismutase and of complex IV in cells of the developing molar. The peroxisomal defect caused by the PEX11b knockout also decreased the staining of cytokeratin intermediate filaments and of the secretory proteins amelogenin, osteopontin and osteocalcin. Interestingly, the staining of the gap junction protein connexin 43, an important modulator of tissue development, was also decreased, possibly causing the observed cellular disarrangement within the inner enamel epithelium and the odontoblast palisade. Taken together, our results show that the severe phenotype associated with the PEX11b knockout results in a reduction of the number of peroxisomes in dental cells and causes a delay odontogenesis. This adds a new component to the already described symptomatic spectrum induced by severe peroxisomal defects.
Collapse
Affiliation(s)
- Claudia Colasante
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Julia Jednakowski
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Klaus-Peter Valerius
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Xiaoling Li
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina, United States of America
| | | |
Collapse
|
6
|
Foster BL. The role of bone sialoprotein in bone healing. J Struct Biol 2024; 216:108132. [PMID: 39369971 PMCID: PMC11645215 DOI: 10.1016/j.jsb.2024.108132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Bone sialoprotein (BSP) is a multi-functional extracellular matrix (ECM) protein associated with mineralized tissues, particularly bone and cementum. The amino acid sequence of BSP includes three evolutionarily conserved sequences which contribute to functions of the protein: an N-terminal collagen-binding domain, polyglutamic acid (polyE) sequences involved in hydroxyapatite nucleation and crystal growth, and a C-terminal arginine-glycine-aspartic acid (RGD) integrin-binding domain. BSP promotes attachment and differentiation of osteogenic and osteoclastic cells. Genetic ablation of BSP in mice results in skeletal and dental developmental defects and impaired bone healing in both appendicular bone and alveolar bone of the jaw. Several studies demonstrated positive effects of BSP on bone healing in rodent models, though other experiments show negligible results. Native (harvested from rat bones) BSP cross-linked to collagen induced slight improvements in calvarial bone healing in rats. Recombinant BSP and collagen delivered in a polylactide (PLA) cylinder improved bone defect healing in rat femurs. Both native and recombinant BSP delivered in a collagen gel improved alveolar bone healing in wild-type and BSP-deficient mice. These advances suggest BSP is a new player in bone healing that has potential to be an alternative or complimentary to other bioactive factors. Future studies are necessary to understand mechanisms of how BSP influences bone healing and optimize delivery and dose in different types of bone defects and injuries.
Collapse
Affiliation(s)
- B L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Yue B, Xiong D, Chen J, Yang X, Zhao J, Shao J, Wei D, Gao F, Huang M, Chen J. SPP1 induces idiopathic pulmonary fibrosis and NSCLC progression via the PI3K/Akt/mTOR pathway. Respir Res 2024; 25:362. [PMID: 39369217 PMCID: PMC11456247 DOI: 10.1186/s12931-024-02989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND The prevalence of non-small cell lung cancer (NSCLC) is notably elevated in individuals diagnosed with idiopathic pulmonary fibrosis (IPF). Secreted phosphoprotein 1 (SPP1), known for its involvement in diverse physiological processes, including oncogenesis and organ fibrosis, has an ambiguous role at the intersection of IPF and NSCLC. Our study sought to elucidate the function of SPP1 within the pathogenesis of IPF and its subsequent impact on NSCLC progression. METHODS Four GEO datasets was analyzed for common differential genes and TCGA database was used to analyze the prognosis. The immune infiltration was analyzed by TIMER database. SPP1 expression was examined in human lung tissues, the IPF fibroblasts and the BLM-induced mouse lung fibrosis model. Combined with SPP1 gene gain- and loss-of-function, qRT-PCR, Western blot, EdU and CCK-8 experiments were performed to evaluate the effects and mechanisms of SPP1 in IPF progression. Effect of SPP1 on NSCLC was detected by co-cultured IPF fibroblasts and NSCLC cells. RESULTS Through bioinformatics analysis, we observed a significant overexpression of SPP1 in both IPF and NSCLC patient datasets, correlating with enhanced immune infiltration of cancer-associated fibroblasts in NSCLC. Elevated levels of SPP1 were detected in lung tissue samples from IPF patients and bleomycin-induced mouse models, with partial colocalization observed with α-smooth muscle actin. Knockdown of SPP1 inhibits TGF-β1-induced differentiation of fibroblasts to myofibroblasts and the proliferation of IPF fibroblasts. Conversely, SPP1 overexpression promoted IPF fibroblast proliferation via PI3K/Akt/mTOR pathway. Furthermore, IPF fibroblasts promoted NSCLC cell proliferation and activated the PI3K/Akt/mTOR pathway; these effects were attenuated by SPP1 knockdown in IPF fibroblasts. CONCLUSIONS Our findings suggest that SPP1 functions as a molecule promoting both fibrosis and tumorigenesis, positioning it as a prospective therapeutic target for managing the co-occurrence of IPF and NSCLC.
Collapse
Affiliation(s)
- Bingqing Yue
- Department of lung transplantation, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Dian Xiong
- Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214000, China
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330000, China
| | - Juan Chen
- Department of General Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Xiucheng Yang
- Department of lung transplantation, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Jin Zhao
- Department of lung transplantation, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Jingbo Shao
- Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214000, China
| | - Dong Wei
- Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214000, China
| | - Fei Gao
- Department of Emergency, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214000, China
| | - Man Huang
- Department of lung transplantation, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Department of General Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Multiple Organ Failure, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingyu Chen
- Department of lung transplantation, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
- Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214000, China.
| |
Collapse
|
8
|
Zheng H, Bian M, Zhou Z, Shi Y, Shen M, Wang M, Jiang W, Shao C, Tang R, Pan H, He J, Fu B, Wu Z. Small Charged Molecule-Mediated Fibrillar Mineralization: Implications for Ectopic Calcification. ACS NANO 2024; 18:23537-23552. [PMID: 39133543 DOI: 10.1021/acsnano.4c07378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Numerous small biomolecules exist in the human body and play roles in various biological and pathological processes. Small molecules are believed not to induce intrafibrillar mineralization alone. They are required to work in synergy with noncollagenous proteins (NCPs) and their analogs, e.g. polyelectrolytes, for inducing intrafibrillar mineralization, as the polymer-induced liquid-like precursor (PILP) process has been well-documented. In this study, we demonstrate that small charged molecules alone, such as sodium tripolyphosphate, sodium citrate, and (3-aminopropyl) triethoxysilane, could directly mediate fibrillar mineralization. We propose that small charged molecules might be immobilized in collagen fibrils to form the polyelectrolyte-like collagen complex (PLCC) via hydrogen bonds. The PLCC could attract CaP precursors along with calcium and phosphate ions for inducing mineralization without any polyelectrolyte additives. The small charged molecule-mediated mineralization process was evidenced by Cryo-TEM, AFM, SEM, FTIR, ICP-OES, etc., as the PLCC exhibited both characteristic features of collagen fibrils and polyelectrolyte with increased charges, hydrophilicity, and density. This might hint at one mechanism of pathological biomineralization, especially for understanding the ectopic calcification process.
Collapse
Affiliation(s)
- Haiyan Zheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Mengyao Bian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Zihuai Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Ying Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Minjian Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Manting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Wenxiang Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Changyu Shao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Haihua Pan
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jianxiang He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Zhifang Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
9
|
Inubushi T, Nag P, Sasaki JI, Shiraishi Y, Yamashiro T. The significant role of glycosaminoglycans in tooth development. Glycobiology 2024; 34:cwae024. [PMID: 38438145 PMCID: PMC11031142 DOI: 10.1093/glycob/cwae024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/07/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
This review delves into the roles of glycosaminoglycans (GAGs), integral components of proteoglycans, in tooth development. Proteoglycans consist of a core protein linked to GAG chains, comprised of repeating disaccharide units. GAGs are classified into several types, such as hyaluronic acid, heparan sulfate, chondroitin sulfate, dermatan sulfate, and keratan sulfate. Functioning as critical macromolecular components within the dental basement membrane, these GAGs facilitate cell adhesion and aggregation, and play key roles in regulating cell proliferation and differentiation, thereby significantly influencing tooth morphogenesis. Notably, our recent research has identified the hyaluronan-degrading enzyme Transmembrane protein 2 (Tmem2) and we have conducted functional analyses using mouse models. These studies have unveiled the essential role of Tmem2-mediated hyaluronan degradation and its involvement in hyaluronan-mediated cell adhesion during tooth formation. This review provides a comprehensive summary of the current understanding of GAG functions in tooth development, integrating insights from recent research, and discusses future directions in this field.
Collapse
Affiliation(s)
- Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Priyanka Nag
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Jun-Ichi Sasaki
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuki Shiraishi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Sawada K, Shimomura J, Takedachi M, Murata M, Morimoto C, Kawasaki K, Kawakami K, Iwayama T, Murakami S. Activation of periodontal ligament cell cytodifferentiation by juxtacrine signaling from cementoblasts. J Periodontol 2024; 95:256-267. [PMID: 37492992 DOI: 10.1002/jper.23-0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/12/2023] [Accepted: 07/22/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND New cementum forms from existing cementum during periodontal tissue regeneration, indicating that cementoblasts may interact with progenitor cells in the periodontal ligament to enhance cementogenesis. However, the molecular mechanisms of this process are currently unknown. This study aims to clarify the role of cell-cell interactions between cementoblasts and periodontal ligament cells in differentiation into cementoblasts. METHODS To analyze the role of human cementoblast-like cells (HCEMs) on human periodontal ligament cells (HPDLs), we mixed cell suspensions of enhanced green fluorescent protein-tagged HPDLs and HCEMs, and then seeded and cultured them in single wells (direct co-cultures). We sorted co-cultured HPDLs and analyzed their characteristics, including the expression of cementum-related genes. In addition, we cultured HPDLs and HCEMs in a non-contact environment using a culture system composed of an upper insert and a lower well separated by a semi-permeable membrane (indirect co-cultures), and similar analysis was performed. Gene expression of integrin-binding sialoprotein (IBSP) in cementoblasts was confirmed in mouse periodontal tissues. We also investigated the effect of Wingless-type (Wnt) signaling on the differentiation of HPDLs into cementoblasts. RESULTS Direct co-culture of HPDLs with HCEMs significantly upregulated the expression of cementoblast-related genes in HPDLs, whereas indirect co-culture exerted no effect. Wnt3A stimulation significantly upregulated IBSP expression in HPDLs, whereas inhibition of canonical Wnt signaling suppressed the effects of co-culture. CONCLUSION Our results suggest that direct cell interactions with cementoblasts promote periodontal ligament cell differentiation into cementoblasts. Juxtacrine signaling via the canonical Wnt pathway plays a role in this interaction.
Collapse
Affiliation(s)
- Keigo Sawada
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Junpei Shimomura
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masahide Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Mari Murata
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Chiaki Morimoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Kohsuke Kawasaki
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Kazuma Kawakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Tomoaki Iwayama
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
11
|
Pajic P, Landau L, Gokcumen O, Ruhl S. Emergence of saliva protein genes in the secretory calcium-binding phosphoprotein (SCPP) locus and accelerated evolution in primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580359. [PMID: 38405690 PMCID: PMC10888740 DOI: 10.1101/2024.02.14.580359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Genes within the secretory calcium-binding phosphoprotein (SCPP) family evolved in conjunction with major evolutionary milestones: the formation of a calcified skeleton in vertebrates, the emergence of tooth enamel in fish, and the introduction of lactation in mammals. The SCPP gene family also contains genes expressed primarily and abundantly in human saliva. Here, we explored the evolution of the saliva-related SCPP genes by harnessing currently available genomic and transcriptomic resources. Our findings provide insights into the expansion and diversification of SCPP genes, notably identifying previously undocumented convergent gene duplications. In primate genomes, we found additional duplication and diversification events that affected genes coding for proteins secreted in saliva. These saliva-related SCPP genes exhibit signatures of positive selection in the primate lineage while the other genes in the same locus remain conserved. We found that regulatory shifts and gene turnover events facilitated the accelerated gain of salivary expression. Collectively, our results position the SCPP gene family as a hotbed of evolutionary innovation, suggesting the potential role of dietary and pathogenic pressures in the adaptive diversification of the saliva composition in primates, including humans.
Collapse
Affiliation(s)
- Petar Pajic
- Department of Biological Sciences, University at Buffalo, The State University of New York, NY 14260, USA
| | - Luane Landau
- Department of Biological Sciences, University at Buffalo, The State University of New York, NY 14260, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York, NY 14260, USA
| | - Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, NY 14214, USA
| |
Collapse
|
12
|
Komaru Y, Bai YZ, Kreisel D, Herrlich A. Interorgan communication networks in the kidney-lung axis. Nat Rev Nephrol 2024; 20:120-136. [PMID: 37667081 DOI: 10.1038/s41581-023-00760-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/06/2023]
Abstract
The homeostasis and health of an organism depend on the coordinated interaction of specialized organs, which is regulated by interorgan communication networks of circulating soluble molecules and neuronal connections. Many diseases that seemingly affect one primary organ are really multiorgan diseases, with substantial secondary remote organ complications that underlie a large part of their morbidity and mortality. Acute kidney injury (AKI) frequently occurs in critically ill patients with multiorgan failure and is associated with high mortality, particularly when it occurs together with respiratory failure. Inflammatory lung lesions in patients with kidney failure that could be distinguished from pulmonary oedema due to volume overload were first reported in the 1930s, but have been largely overlooked in clinical settings. A series of studies over the past two decades have elucidated acute and chronic kidney-lung and lung-kidney interorgan communication networks involving various circulating inflammatory cytokines and chemokines, metabolites, uraemic toxins, immune cells and neuro-immune pathways. Further investigations are warranted to understand these clinical entities of high morbidity and mortality, and to develop effective treatments.
Collapse
Affiliation(s)
- Yohei Komaru
- Department of Medicine, Division of Nephrology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Yun Zhu Bai
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Andreas Herrlich
- Department of Medicine, Division of Nephrology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- VA Saint Louis Health Care System, John Cochran Division, St. Louis, MO, USA.
| |
Collapse
|
13
|
Kimak A, Woźniacka A. The Role of Osteopontin in Psoriasis-A Scoping Review. J Clin Med 2024; 13:655. [PMID: 38337350 PMCID: PMC10856165 DOI: 10.3390/jcm13030655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Psoriasis is a chronic systemic disease with an immunological basis and a complex pathophysiology. The chronic inflammatory status of psoriasis is associated with several comorbidities, such as metabolic syndrome, obesity, and cardiovascular disease. The development of psoriasis is influenced by osteopontin, a glycoprotein that influences physiological and pathological reactions by modulating Th1 and Th17 cellular responses, stimulating keratinocyte proliferation, regulating cellular apoptosis, and promoting angiogenesis. The recent identification of immune pathways involved in psoriasis development has facilitated the development of biological treatments; however, a better understanding of the intricate relationship between underlying inflammatory processes, psoriasis development, and accompanying comorbidities is needed for improved disease management.
Collapse
Affiliation(s)
| | - Anna Woźniacka
- Department of Dermatology and Venereology, Medical University of Lodz, Hallera 1, 90-647 Lodz, Poland;
| |
Collapse
|
14
|
Mahmoudi A, Butler AE, De Vincentis A, Jamialahmadi T, Sahebkar A. Microarray-based Detection of Critical Overexpressed Genes in the Progression of Hepatic Fibrosis in Non-alcoholic Fatty Liver Disease: A Protein-protein Interaction Network Analysis. Curr Med Chem 2024; 31:3631-3652. [PMID: 37194229 DOI: 10.2174/0929867330666230516123028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a prevalent cause of chronic liver disease and encompasses a broad spectrum of disorders, including simple steatosis, steatohepatitis, fibrosis, cirrhosis, and liver cancer. However, due to the global epidemic of NAFLD, where invasive liver biopsy is the gold standard for diagnosis, it is necessary to identify a more practical method for early NAFLD diagnosis with useful therapeutic targets; as such, molecular biomarkers could most readily serve these aims. To this end, we explored the hub genes and biological pathways in fibrosis progression in NAFLD patients. METHODS Raw data from microarray chips with GEO accession GSE49541 were downloaded from the Gene Expression Omnibus database, and the R package (Affy and Limma) was applied to investigate differentially expressed genes (DEGs) involved in the progress of low- (mild 0-1 fibrosis score) to high- (severe 3-4 fibrosis score) fibrosis stage NAFLD patients. Subsequently, significant DEGs with pathway enrichment were analyzed, including gene ontology (GO), KEGG and Wikipathway. In order to then explore critical genes, the protein-protein interaction network (PPI) was established and visualized using the STRING database, with further analysis undertaken using Cytoscape and Gephi software. Survival analysis was undertaken to determine the overall survival of the hub genes in the progression of NAFLD to hepatocellular carcinoma. RESULTS A total of 311 significant genes were identified, with an expression of 278 being upregulated and 33 downregulated in the high vs. low group. Gene functional enrichment analysis of these significant genes demonstrated major involvement in extracellular matrix (ECM)-receptor interaction, protein digestion and absorption, and the AGE-RAGE signaling pathway. The PPI network was constructed with 196 nodes and 572 edges with PPI enrichment using a p-value < 1.0 e-16. Based on this cut-off, we identified 12 genes with the highest score in four centralities: Degree, Betweenness, Closeness, and Eigenvector. Those twelve hub genes were CD34, THY1, CFTR, COL3A1, COL1A1, COL1A2, SPP1, THBS1, THBS2, LUM, VCAN, and VWF. Four of these hub genes, namely CD34, VWF, SPP1, and VCAN, showed significant association with the development of hepatocellular carcinoma. CONCLUSION This PPI network analysis of DEGs identified critical hub genes involved in the progression of fibrosis and the biological pathways through which they exert their effects in NAFLD patients. Those 12 genes offer an excellent opportunity for further focused research to determine potential targets for therapeutic applications.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Antonio De Vincentis
- Unit of Internal Medicine and Geriatrics, Università Campus Bio-Medico di Roma, Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, Rome 00128, Italy
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Tang Z, Xia Z, Wang X, Liu Y. The critical role of osteopontin (OPN) in fibrotic diseases. Cytokine Growth Factor Rev 2023; 74:86-99. [PMID: 37648616 DOI: 10.1016/j.cytogfr.2023.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Fibrosis is a pathological condition characterized by the excessive deposition of extracellular matrix components in tissues and organs, leading to progressive architectural remodelling and contributing to the development of various diseases. Osteopontin (OPN), a highly phosphorylated glycoprotein, has been increasingly recognized for its involvement in the progression of tissue fibrosis. This review provides a comprehensive overview of the genetic and protein structure of OPN and focuses on our current understanding of the role of OPN in the development of fibrosis in the lungs and other tissues. Additionally, special attention is given to the potential of OPN as a biomarker and a novel therapeutic target in the treatment of fibrosis.
Collapse
Affiliation(s)
- Ziyi Tang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zijing Xia
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiangpeng Wang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100000, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Rajeshwari HRS, Kishen A. Periodontal Fibroblasts-Macrophage Crosstalk in External Inflammatory Root Resorption. J Endod 2023; 49:1145-1153.e3. [PMID: 37268291 DOI: 10.1016/j.joen.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
INTRODUCTION This study aimed to understand the influence of periodontal fibroblasts (PDLFs) on clastic differentiation of macrophages (Mφ) in different resorptive environments. METHODS PDLF-Mφ direct coculture (juxtacrine) was seeded on dentin, cementum, and polystyrene with/without lipopolysaccharide, macrophage colony-stimulating factor, and receptor activator of nuclear factor kappa beta ligand for 7 and 14 days and stained for tartrate-resistant acid phosphatase (TRAP) activity. PDLF-Mφ cocultured on polystyrene were immunostained for CD80, CD206, NFATc1, STAT6, and periostin, and cell culture supernatants were assessed for cytokines on days 2 and 7. Mφ grown in conditioned media of PDLFs (paracrine) and Mφ monoculture were used as controls. Data was analyzed using Student t test and one-way analysis of variance with the Tukey multiple comparisons test (P < .05). RESULTS PDLF-Mφ coculture showed a higher number of TRAP-positive multinucleated cells than Mφ monoculture on dentin and polystyrene. No TRAP-positive multinucleated cells were observed in paracrine and cementum. The expression of CD80 and CD206 in PDLF-Mφ was similar at day 2, whereas CD206 was greater than CD80 at day 7. The expression of STAT6 was greater than NFATc1 at both days 2 and 7 (P < .05). Periostin expression in the presence of the lipopolysaccharide, macrophage colony-stimulating factor, and receptor activator of nuclear factor kappa beta ligand combination was down-regulated in PDLF monoculture, whereas it was up-regulated in PDLF-Mφ coculture. The cytokine profile of PDLF-Mφ on day 2 was predominated by interleukin (IL)-1β, tumor necrosis factor alpha, and MMP9 and MMP2 on day 7. IL-6 and IL-8 showed steady expression at both days 2 and 7. CONCLUSIONS The study highlights the juxtacrine effect of PDLFs on the clastic differentiation of Mφ with a difference in clastic activity between dentin and cementum. The study also emphasizes the temporal effect of tumor necrosis factor alpha, MMP2, MMP9, and IL-1β on intercellular crosstalk in resorptive environments.
Collapse
Affiliation(s)
| | - Anil Kishen
- The Kishen Lab, Dental Research Institute, University of Toronto, Toronto, Ontario, Canada; Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; School of Graduate Studies, University of Toronto, Toronto, Ontario, Canada; Department of Dentistry, Mount Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Solorzano A, Brady M, Bhatt N, Johnson A, Burgess B, Leyva H, Puangmalai N, Jerez C, Wood R, Kayed R, Deane R. Central and peripheral tau retention modulated by an anti-tau antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553682. [PMID: 37645819 PMCID: PMC10462070 DOI: 10.1101/2023.08.17.553682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Tau protein blood levels dependent on its distribution to peripheral organs and possible elimination from the body. Thus, the peripheral distribution of CSF-derived tau protein was explored, especially since there is a transition to blood-based biomarkers and the emerging idea that tau pathology may spread beyond brain. Near infrared fluorescence (NIRF) was mainly used to analyze tau (tau-NIRF) distribution after its intracisternal or intravenous injection. There was a striking uptake of blood- or CSF-derived tau-NIRF protein by the skeletal structures, liver, small intestine (duodenum), gall bladder, kidneys, urinary bladder, lymph nodes, heart, and spleen. In aging and in older APP/PS1 mice, tau uptake in regions, such as the brain, liver, and skeleton, was increased. In bone (femur) injected tau protein was associated with integrin-binding sialoprotein (IBSP), a major non-collagenous glycoprotein that is associated with mineralization. Tau-NIRF was cleared slowly from CSF via mainly across the cribriform plate, and cervical lymph nodes. In brain, some of the CSF injected tau protein was associated with NeuN-positive and PDGFRý-positive cells, which may explain its retention. The presence of tau in the bladders suggested excretion routes of tau. CSF anti-tau antibody increased CSF tau clearance, while blood anti-tau antibody decreased tau accumulation in the femur but not in liver, kidney, and spleen. Thus, the data show a body-wide distribution and retention of CSF-derived tau protein, which increased with aging and in older APP/PS1 mice. Further work is needed to elucidate the relevance of tau accumulation in each organ to tauopathy.
Collapse
|
18
|
Leung LL, Myles T, Morser J. Thrombin Cleavage of Osteopontin and the Host Anti-Tumor Immune Response. Cancers (Basel) 2023; 15:3480. [PMID: 37444590 PMCID: PMC10340489 DOI: 10.3390/cancers15133480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Osteopontin (OPN) is a multi-functional protein that is involved in various cellular processes such as cell adhesion, migration, and signaling. There is a single conserved thrombin cleavage site in OPN that, when cleaved, yields two fragments with different properties from full-length OPN. In cancer, OPN has tumor-promoting activity and plays a role in tumor growth and metastasis. High levels of OPN expression in cancer cells and tumor tissue are found in various types of cancer, including breast, lung, prostate, ovarian, colorectal, and pancreatic cancer, and are associated with poor prognosis and decreased survival rates. OPN promotes tumor progression and invasion by stimulating cell proliferation and angiogenesis and also facilitates the metastasis of cancer cells to other parts of the body by promoting cell adhesion and migration. Furthermore, OPN contributes to immune evasion by inhibiting the activity of immune cells. Thrombin cleavage of OPN initiates OPN's tumor-promoting activity, and thrombin cleavage fragments of OPN down-regulate the host immune anti-tumor response.
Collapse
Affiliation(s)
- Lawrence L. Leung
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Timothy Myles
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - John Morser
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| |
Collapse
|
19
|
Mae T, Hasegawa T, Hongo H, Yamamoto T, Zhao S, Li M, Yamazaki Y, Amizuka N. Immunolocalization of Enzymes/Membrane Transporters Related to Bone Mineralization in the Metaphyses of the Long Bones of Parathyroid-Hormone-Administered Mice. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1179. [PMID: 37374382 DOI: 10.3390/medicina59061179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
The present study aimed to demonstrate the immunolocalization and/or gene expressions of the enzymes and membrane transporters involved in bone mineralization after the intermittent administration of parathyroid hormone (PTH). The study especially focused on TNALP, ENPP1, and PHOSPHO1, which are involved in matrix vesicle-mediated mineralization, as well as PHEX and the SIBLING family, which regulate mineralization deep inside bone. Six-week-old male mice were subcutaneously injected with 20 μg/kg/day of human PTH (1-34) two times per day (n = 6) or four times per day (n = 6) for two weeks. Additionally, control mice (n = 6) received a vehicle. Consistently with an increase in the volume of the femoral trabeculae, the mineral appositional rate increased after PTH administration. The areas positive for PHOSPHO1, TNALP, and ENPP1 in the femoral metaphyses expanded, and the gene expressions assessed by real-time PCR were elevated in PTH-administered specimens when compared with the findings in control specimens. The immunoreactivity and/or gene expressions of PHEX and the SIBLING family (MEPE, osteopontin, and DMP1) significantly increased after PTH administration. For example, MEPE immunoreactivity was evident in some osteocytes in PTH-administered specimens but was hardly observed in control specimens. In contrast, mRNA encoding cathepsin B was significantly reduced. Therefore, the bone matrix deep inside might be further mineralized by PHEX/SIBLING family after PTH administration. In summary, it is likely that PTH accelerates mineralization to maintain a balance with elevated matrix synthesis, presumably by mediating TNALP/ENPP1 cooperation and stimulating PHEX/SIBLING family expression.
Collapse
Affiliation(s)
- Takahito Mae
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Department of Gerontology, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Hiromi Hongo
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Tomomaya Yamamoto
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Northern Army Medical Unit, Camp Makomanai, Japan Ground Self-Defense Forces, Sapporo 005-8543, Japan
| | - Shen Zhao
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Minqi Li
- Center of Osteoporosis and Bone Mineral Research, Department of Bone Metabolism, School of Stomatology, Shandong University, Jinan 250012, China
| | - Yutaka Yamazaki
- Department of Gerontology, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| |
Collapse
|
20
|
Roth CE, Niederau C, Radermacher C, Rizk M, Neuss S, Jankowski J, Apel C, Craveiro RB, Wolf M. Knockout of Bone Sialoprotein in Cementoblasts Cell Lines Affects Specific Gene Expression in Unstimulated and Mechanically Stimulated Conditions. Ann Anat 2023; 249:152102. [PMID: 37150306 DOI: 10.1016/j.aanat.2023.152102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023]
Abstract
One of the major components in cementum extracellular matrix is bone sialoprotein (BSP). BSP knockout (Ibsp) mice were reported to have a nonfunctional hypo-mineralized cementum, as well as detachment and disorganization of the periodontal ligament tissue. However, studies investigating the influence of Ibsp in cementoblasts are missing yet. This study investigates the influences of Bsp in three cementoblasts cell lines (OCCM.30-WT,IbspΔNterm, and IbspKAE). The mRNA expression of cementoblast and osteoclast markers (Col1a1, Alpl, Ocn, Runx2, Ctsk, Rankl and Opg) and the cell morphology were compared. Additionally, a functional monocyte adhesion assay was performed. To understand the influence of external stimuli, the effect of Ibsp was investigated under static compressive force, mimicking the compression side of orthodontic tooth movement. Cementoblasts with genotype IbspΔNterm and IbspKAE showed slight differences in cell morphology compared to OCCM.30-WT, as well as different gene expression. Under compressive force, the Ibsp cell lines presented expression pattern markers similar to the OCCM.30-WT cell line. However, Cathepsin K was strongly upregulated in IbspΔNterm cementoblasts under compressive force. This study provides insight into the role of BSP in cementoblasts and explores the influence of BSP on periodontal ligament tissues. BSP markers in cementoblasts seem to be involved in the regulation of cementum organization as an important factor for a functional periodontium. In summary, our findings provide a basis for investigations regarding molecular biology interactions of BSP in cementoblasts, and a supporting input for understanding the periodontal and cellular cementum remodeling.
Collapse
Affiliation(s)
- Charlotte E Roth
- Department of Orthodontics, Dental Clinic, University of Aachen, 52074 Aachen, Germany; Correspondence to: Pauwelsstr. 30, 52074 Aachen, Germany. E-mail:
| | - Christian Niederau
- Department of Orthodontics, Dental Clinic, University of Aachen, 52074 Aachen, Germany
| | - Chloé Radermacher
- Department of Orthodontics, Dental Clinic, University of Aachen, 52074 Aachen, Germany; Helmholtz Institute for Biomedical Engineering, Bionterface Group, RWTH Aachen University, 52056 Aachen, Germany; Institute of Pathology, RWTH Aachen University Hospital, 52074, Germany
| | - Marta Rizk
- Department of Orthodontics, Dental Clinic, University of Aachen, 52074 Aachen, Germany
| | - Sabine Neuss
- Helmholtz Institute for Biomedical Engineering, Bionterface Group, RWTH Aachen University, 52056 Aachen, Germany; Institute of Pathology, RWTH Aachen University Hospital, 52074, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Germany
| | - Christian Apel
- Department of Biohybrid & Medical Textiles (BioTex), Institut of Applied Medical Engineering, RWTH Aachen University & Hospital, Germany
| | - Rogerio B Craveiro
- Department of Orthodontics, Dental Clinic, University of Aachen, 52074 Aachen, Germany; Correspondence to: Pauwelsstr. 30, 52074 Aachen, Germany. E-mail:
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, University of Aachen, 52074 Aachen, Germany
| |
Collapse
|
21
|
Nakamura T, Honda S, Ito S, Mizoguchi T, Yamamoto T, Kasahara M, Kabe Y, Matsuo K, Suematsu M. Generation of bicistronic Dmp1-Cre knock-in mice using a self-cleaving 2A peptide. J Bone Miner Metab 2023:10.1007/s00774-023-01425-y. [PMID: 37036533 DOI: 10.1007/s00774-023-01425-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 03/23/2023] [Indexed: 04/11/2023]
Abstract
INTRODUCTION The conditional manipulation of genes using the Cre recombinase-locus of crossover in P1 (Cre/loxP) system is an important tool for revealing gene functions and cell lineages in vivo. The outcome of this method is dependent on the performance of Cre-driver mouse strains. In most cases, Cre knock-in mice show better specificity than randomly inserted Cre transgenic mice. However, following knock-in, the expression of the original gene replaced by Cre is lost. MATERIALS AND METHODS We generated a new differentiated osteoblast- and osteocyte-specific Cre knock-in mouse line that carries the viral T2A sequence encoding a 2A self-cleaving peptide at the end of the coding region of the dentin matrix protein 1 (Dmp1) gene accompanied by the Cre gene. RESULTS We confirmed that Dmp1-T2A-Cre mice showed high Cre expression in osteoblasts, osteocytes, odontoblasts, and periodontal ligament cells and that the 2A self-cleaving peptide efficiently produced both Dmp1 and Cre proteins. Furthermore, unlike the Dmp1 knockout mice, homozygous Dmp1-T2A-Cre mice showed no skeletal abnormalities. Analysis using the Cre reporter strain confirmed differentiated osteoblast- and osteocyte-specific Cre-mediated recombination in the skeleton. Furthermore, recombination was also detected in some nuclei of skeletal muscle cells, spermatocytes, and intestinal cells. CONCLUSION 2A-Cre functions effectively in vivo, and Dmp1-T2A-Cre knock-in mice are a useful tool for studying the functioning of various genes in hard tissues.
Collapse
Affiliation(s)
- Takashi Nakamura
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Suematsu Gas Biology Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama, 332-0012, Japan.
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan.
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan.
| | - Sayako Honda
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shinichirou Ito
- Department of Pharmacology, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Toshihide Mizoguchi
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Takehiro Yamamoto
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Suematsu Gas Biology Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama, 332-0012, Japan
| | - Masataka Kasahara
- Department of Pharmacology, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Suematsu Gas Biology Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama, 332-0012, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Suematsu Gas Biology Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama, 332-0012, Japan.
- WPI-Bio2Q and AMED Moonshot Project, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
22
|
Negri AL, Spivacow FR. Kidney stone matrix proteins: Role in stone formation. World J Nephrol 2023; 12:21-28. [PMID: 37035509 PMCID: PMC10075018 DOI: 10.5527/wjn.v12.i2.21] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/18/2023] [Accepted: 03/17/2023] [Indexed: 03/21/2023] Open
Abstract
Stone formation is induced by an increased level of urine crystallization promoters and reduced levels of its inhibitors. Crystallization inhibitors include citrate, magnesium, zinc, and organic compounds such as glycosaminoglycans. In the urine, there are various proteins, such as uromodulin (Tamm-Horsfall protein), calgranulin, osteopontin, bikunin, and nephrocalcin, that are present in the stone matrix. The presence of several carboxyl groups in these macromolecules reduces calcium oxalate monohydrate crystal adhesion to the urinary epithelium and could potentially protect against lithiasis. Proteins are the most abundant component of kidney stone matrix, and their presence may reflect the process of stone formation. Many recent studies have explored the proteomics of urinary stones. Among the stone matrix proteins, the most frequently identified were uromodulin, S100 proteins (calgranulins A and B), osteopontin, and several other proteins typically engaged in inflammation and immune response. The normal level and structure of these macromolecules may constitute protection against calcium salt formation. Paradoxically, most of them may act as both promoters and inhibitors depending on circumstances. Many of these proteins have other functions in modulating oxidative stress, immune function, and inflammation that could also influence stone formation. Yet, the role of these kidney stone matrix proteins needs to be established through more studies comparing urinary stone proteomics between stone formers and non-stone formers.
Collapse
Affiliation(s)
- Armando Luis Negri
- Department of Physiology and Biophysics, Universidad del Salvador, Instituto de Investigaciones Metabólicas, Buenos Aires 1012, Argentina
| | | |
Collapse
|
23
|
Liao Y, Wang R, Wen F. Diagnostic and prognostic value of secreted phosphoprotein 1 for idiopathic pulmonary fibrosis: a systematic review and meta-analysis. Biomarkers 2023; 28:87-96. [PMID: 36377416 DOI: 10.1080/1354750x.2022.2148744] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BackgroundThere is an increasing number of studies on the diagnostic and prognostic biomarkers associated with IPF. The purpose of this study was to explore the diagnostic and prognostic value of secreted phosphoprotein 1 (SPP1) in IPF.MethodsUsing five database, appropriate studies were included. Pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and 95% confidence intervals (CIs) were calculated. Pooled hazard ratios (HRs) and 95% CIs related to prognosis were calculated.ResultsThirteen studies were included in the meta-analyses. The pooled sensitivity, specificity, PLR, NLR and DOR were 0.84 (95% CI 0.72-0.91), 0.89 (95% CI 0.83-0.94), 7.94 (95% CI 4.63-13.62), 0.18 (95% CI 0.10-0.33), 43.08 (95% CI 15.88-116.84) for SPP1 in the differential diagnosis of IPF and healthy people. The pooled sensitivity, specificity, PLR, NLR and DOR were 0.97 (95% CI 0.57-1.00), 0.93 (95% CI 0.73-0.98), 13.87 (95% CI 3.26-58.99), 0.03 (95% CI 0-0.68), 446.91 (95% CI 21.02-9504.41) for SPP1 to differentiate IPF and lung cancer patients. High SPP1 expression predicts poor prognosis for IPF patients (HR= 1.42, 95% CI = 1.27 and 1.58, P < 0.001).ConclusionsSPP1 is a potential diagnostic and prognostic biomarker for IPF patients.
Collapse
Affiliation(s)
- Yi Liao
- Laboratory of Pulmonary Disease, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China school of Medicine, Sichuan University, Chengdu, China
| | - Ran Wang
- Laboratory of Pulmonary Disease, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China school of Medicine, Sichuan University, Chengdu, China
| | - Fuqiang Wen
- Laboratory of Pulmonary Disease, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China school of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Farlay D, Falgayrac G, Ponçon C, Rizzo S, Cortet B, Chapurlat R, Penel G, Badoud I, Ammann P, Boivin G. Material and nanomechanical properties of bone structural units of cortical and trabecular iliac bone tissues from untreated postmenopausal osteoporotic women. Bone Rep 2022; 17:101623. [PMID: 36213624 PMCID: PMC9535279 DOI: 10.1016/j.bonr.2022.101623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
The differences in bone nanomechanical properties between cortical (Ct) and trabecular (Tb) bone remain uncertain, whereas knowing the respective contribution of each compartment is critical to understand the origin of bone strength. Our purpose was to compare bone mechanical and intrinsic properties of Ct and Tb compartments, at the bone structural unit (BSU) level, in iliac bone taken from a homogeneous untreated human population. Among 60 PMMA-embedded transiliac bone biopsies from untreated postmenopausal osteoporotic women (64 ± 7 year-old), >2000 BSUs were analysed by nanoindentation in physiological wet conditions [indentation modulus (elasticity), hardness, dissipated energy], by Fourier transform infrared (FTIRM) and Raman microspectroscopy (mineral and organic characteristics), and by X-ray microradiography (degree of mineralization of bone, DMB). BSUs were categorized based on tissue age, osteonal (Ost) and interstitial (Int) tissues location and bone compartments (Ct and Tb). Indentation modulus was higher in Ct than in Tb BSUs, both in Ost and Int. dissipated energy was higher in Ct than Tb, in Int BSUs. Hardness was not different between Ct and Tb BSUs. In Ost or Int BSUs, mineral maturity (conversion of non-apatitic into apatitic phosphates) was higher in Ct than in Tb, as well as for collagen maturity (Ost). Mineral content assessed as mineral/matrix (FTIRM and Raman) or as DMB, was lower in Ct than in Tb. Crystallinity (FTIRM) was similar in BSUs from Ct and Tb, and slightly lower in Ct than in Tb when measured by Raman, indicating that the crystal size/perfection was quite similar between Ct and Tb BSUs. The differences found between Ost and Int tissues were much higher than the difference found between Ct and Tb for all those bone material properties. Multiple regression analysis showed that Indentation modulus and dissipated energy were mainly explained by mineral maturity in Ct and by collagen maturity in Tb, and hardness by mineral content in both Ct and Tb. In conclusion, in untreated human iliac bone, Ct and Tb BSUs exhibit different characteristics. Ct BSUs have higher indentation modulus, dissipated energy (Int), mineral and organic maturities than Tb BSUs, without difference in hardness. Although those differences are relatively small compared to those found between Ost and Int BSUs, they may influence bone strength at macroscale.
Collapse
|
25
|
Cárdenas-León CG, Mäemets-Allas K, Klaas M, Lagus H, Kankuri E, Jaks V. Matricellular proteins in cutaneous wound healing. Front Cell Dev Biol 2022; 10:1073320. [PMID: 36506087 PMCID: PMC9730256 DOI: 10.3389/fcell.2022.1073320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous wound healing is a complex process that encompasses alterations in all aspects of the skin including the extracellular matrix (ECM). ECM consist of large structural proteins such as collagens and elastin as well as smaller proteins with mainly regulative properties called matricellular proteins. Matricellular proteins bind to structural proteins and their functions include but are not limited to interaction with cell surface receptors, cytokines, or protease and evoking a cellular response. The signaling initiated by matricellular proteins modulates differentiation and proliferation of cells having an impact on the tissue regeneration. In this review we give an overview of the matricellular proteins that have been found to be involved in cutaneous wound healing and summarize the information known to date about their functions in this process.
Collapse
Affiliation(s)
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,Dermatology Clinic, Tartu University Clinics, Tartu, Estonia,*Correspondence: Viljar Jaks,
| |
Collapse
|
26
|
He Y, Wang W, Luo P, Wang Y, He Z, Dong W, Jia M, Yu X, Yang B, Wang J. Mettl3 regulates hypertrophic differentiation of chondrocytes through modulating Dmp1 mRNA via Ythdf1-mediated m 6A modification. Bone 2022; 164:116522. [PMID: 35981698 DOI: 10.1016/j.bone.2022.116522] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 11/02/2022]
Abstract
As the main cells in endochondral osteogenesis, chondrocytes have limited self-repair ability due to weak proliferation activity, low density, and dedifferentiation tendency. Here, a thorough inquiry about the effect and underlying mechanisms of methyltransferase like-3 (Mettl3) on chondrocytes was made. Functionally, it was indicated that Mettl3 promoted the proliferation and hypertrophic differentiation of chondrocytes. Mechanically, Dmp1 (dentin matrix protein 1) was proved to be the downstream direct target of Mettl3 for m6A modification to regulate the differentiation of chondrocytes through bioinformatics analysis and correlated experiments. The Reader protein Ythdf1 mediated Dmp1 mRNA catalyzed by Mettl3. In vivo, the formation of subcutaneous ectopic cartilage-like tissue further supported the in vitro results. In conclusion, the gene regulation of Mettl3/m6A/Ythdf1/Dmp1 axis in hypertrophic differentiation of chondrocytes for the development of endochondral osteogenesis may supply a promising treatment strategy for the repair and regeneration of bone defects.
Collapse
Affiliation(s)
- Ying He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Wang
- Department of Hepatobiliary Surgery in East Hospital, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ping Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Yan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Zhenru He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Meie Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xijie Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Beining Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
27
|
Bahraminejad E, Paliwal D, Sunde M, Holt C, Carver JA, Thorn DC. Amyloid fibril formation by α S1- and β-casein implies that fibril formation is a general property of casein proteins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140854. [PMID: 36087849 DOI: 10.1016/j.bbapap.2022.140854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Caseins are a diverse family of intrinsically disordered proteins present in the milks of all mammals. A property common to two cow paralogues, αS2- and κ-casein, is their propensity in vitro to form amyloid fibrils, the highly ordered protein aggregates associated with many age-related, including neurological, diseases. In this study, we explored whether amyloid fibril-forming propensity is a general feature of casein proteins by examining the other cow caseins (αS1 and β) as well as β-caseins from camel and goat. Small-angle X-ray scattering measurements indicated that cow αS1- and β-casein formed large spherical aggregates at neutral pH and 20°C. Upon incubation at 65°C, αS1- and β-casein underwent conversion to amyloid fibrils over the course of ten days, as shown by thioflavin T binding, transmission electron microscopy, and X-ray fibre diffraction. At the lower temperature of 37°C where fibril formation was more limited, camel β-casein exhibited a greater fibril-forming propensity than its cow or goat orthologues. Limited proteolysis of cow and camel β-casein fibrils and analysis by mass spectrometry indicated a common amyloidogenic sequence in the proline, glutamine-rich, C-terminal region of β-casein. These findings highlight the persistence of amyloidogenic sequences within caseins, which likely contribute to their functional, heterotypic self-assembly; in all mammalian milks, at least two caseins coalesce to form casein micelles, implying that caseins diversified partly to avoid dysfunctional amyloid fibril formation.
Collapse
Affiliation(s)
- Elmira Bahraminejad
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Devashi Paliwal
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Margaret Sunde
- School of Medical Sciences, Faculty of Medicine and Health, and Sydney Nano, The University of Sydney, Sydney, NSW 2006, Australia
| | - Carl Holt
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - David C Thorn
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia.
| |
Collapse
|
28
|
Yim A, Smith C, Brown AM. Osteopontin/secreted phosphoprotein-1 harnesses glial-, immune-, and neuronal cell ligand-receptor interactions to sense and regulate acute and chronic neuroinflammation. Immunol Rev 2022; 311:224-233. [PMID: 35451082 PMCID: PMC9790650 DOI: 10.1111/imr.13081] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/31/2022]
Abstract
Osteopontin (OPN) also known by its official gene designation secreted phosphoprotein-1 (SPP1) is a fascinating, multifunctional protein expressed in a number of cell types that functions not only in intercellular communication, but also in the extracellular matrix (ECM). OPN/SPP1 possesses cytokine, chemokine, and signal transduction functions by virtue of modular structural motifs that provide interaction surfaces for integrins and CD44-variant receptors. In humans, there are three experimentally verified splice variants of OPN/SPP1 and CD44's ten exons are also alternatively spiced in a cell/tissue-specific manner, although very little is known about how this is regulated in the central nervous system (CNS). Post-translational modifications of phosphorylation, glycosylation, and localized cleavage by specific proteases in the cells and tissues where OPN/SPP1 functions, provides additional layers of specificity. However, the former make elucidating the exact molecular mechanisms of OPN/SPP1 function more complex. Flexibility in OPN/SPP1 structure and its engagement with integrins having the ability to transmit signals in inside-out and outside-in direction, is likely why OPN/SPP1 can serve as an early detector of inflammation and ongoing tissue damage in response to cancer, stroke, traumatic brain injury, pathogenic infection, and neurodegeneration, processes that impair tissue homeostasis. This review will focus on what is currently known about OPN/SPP1 function in the brain.
Collapse
Affiliation(s)
- Ashley Yim
- NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Christian Smith
- NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Amanda M. Brown
- NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
29
|
Huang C, Liang Y, Dong Y, Huang L, Li A, Du R, Huang H. Novel prognostic matrisome-related gene signature of head and neck squamous cell carcinoma. Front Cell Dev Biol 2022; 10:884590. [PMID: 36081907 PMCID: PMC9445128 DOI: 10.3389/fcell.2022.884590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/21/2022] [Indexed: 12/09/2022] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is a common malignancy of the mucosal epithelium of the oral cavity, pharynx, and larynx. Laryngeal squamous cell carcinoma (LSCC) and oral squamous cell carcinoma are common HNSCC subtypes. Patients with metastatic HNSCC have a poor prognosis. Therefore, identifying molecular markers for the development and progression of HNSCC is essential for improving early diagnosis and predicting patient outcomes. Methods: Gene expression RNA-Seq data and patient clinical traits were obtained from The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma (TCGA-HNSC) and Gene Expression Omnibus databases. Differentially expressed gene (DEG) screening was performed using the TCGA-HNSC dataset. Intersection analysis between the DEGs and a list of core matrisome genes obtained from the Matrisome Project was used to identify differentially expressed matrisome genes. A prognostic model was established using univariate and multivariate Cox regression analyses, least absolute shrinkage, and selection operator (LASSO) regression analysis. Immune landscape analysis was performed based on the single-sample gene set enrichment analysis algorithm, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, prognostic value, receiver operating characteristic curve analysis, and gene mutation analyses. Immunohistochemical results regarding prognostic protein levels were obtained from the Human Protein Atlas. Single-gene RNA-sequencing data were obtained from GSE150321 and GSE172577 datasets. CCK-8 and Transwell assays were used to confirm cell proliferation and migration. Results: A total of 1,779 DEGs, including 939 upregulated and 840 downregulated genes, between tumor and normal samples were identified using the TCGA-HNSC microarray data. Intersection analysis revealed 52 differentially expressed matrisome-related genes. After performing univariate and multivariate Cox regression and LASSO analyses, a novel prognostic model based on six matrisome genes (FN1, LAMB4, LAMB3, DMP1, CHAD, and MMRN1) for HNSCC was established. This risk model can successfully predict HNSCC survival. The high-risk group had worse prognoses and higher enrichment of pathways related to cancer development than the low-risk group. Silencing LAMB4 in HNSCC cell lines promoted cell proliferation and migration. Conclusion: This study provides a novel prognostic model for HNSCC. Thus, FN1, LAMB4, LAMB3, DMP1, CHAD, and MMRN1 may be the promising biomarkers for clinical practice.
Collapse
Affiliation(s)
- Chao Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun Liang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Yi Dong
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Li Huang
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Anlei Li
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Ran Du
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Hao Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Hao Huang,
| |
Collapse
|
30
|
Characterization of SIBLING Proteins in the Mineralized Tissues. Dent J (Basel) 2022; 10:dj10080144. [PMID: 36005242 PMCID: PMC9406783 DOI: 10.3390/dj10080144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
The SIBLING proteins are a family of non-collagenous proteins (NCPs) previously thought to be expressed only in dentin but have been demonstrated in other mineralized and non-mineralized tissues. They are believed to play vital roles in both osteogenesis and dentinogenesis. Since they are tightly regulated lifelong processes and involve a peak of mineralization, three different age groups were investigated. Fifteen wild-type (WT) mice were euthanized at ages 1, 3, and 6 months. Hematoxylin and eosin staining (H&E) was performed to localize various microscopic structures in the mice mandibles and tibias. The immunostaining pattern was compared using antibodies for dentin sialoprotein (DSP), dentin matrix protein 1 (DMP1), bone sialoprotein (BSP), and osteopontin (OPN). Immunostaining of DSP in tibia showed its most noticeable staining in the 3-month age group. DSP was expressed in alveolar bone, cellular cementum, and PDL. A similar expression of DMP1 was seen in the tibia and dentin. BSP was most noticeably detected in the tibia and acellular cementum. OPN was mainly expressed in the bone. A lower level of OPN was observed at all age groups in the teeth. The immunostaining intensity was the least detected for all proteins in the 6-month tibia sample. The expression patterns of the four SIBLING proteins showed variations in their staining intensity and temporospatial patterning concordant with skeletal and dental maturity. These findings suggest some role in this tightly regulated mineralization process.
Collapse
|
31
|
Nagasaki K, Gavrilova O, Hajishengallis G, Somerman MJ. Does the RGD region of certain proteins affect metabolic activity? FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.974862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A better understanding of the role of mineralized tissues and their associated factors in governing whole-body metabolism should be of value toward informing clinical strategies to treat mineralized tissue and metabolic disorders, such as diabetes and obesity. This perspective provides evidence suggesting a role for the arginine-glycine-aspartic acid (RGD) region, a sequence identified in several proteins secreted by bone cells, as well as other cells, in modulating systemic metabolic activity. We focus on (a) two of the SIBLING (small integrin-binding ligand, N-linked glycoprotein) family genes/proteins, bone sialoprotein (BSP) and osteopontin (OPN), (b) insulin-like growth factor-binding protein-1 & 2 (IGFBP-1, IGFBP-2) and (c) developmental endothelial locus 1 (DEL1) and milk fat globule–EGF factor-8 (MFG-E8). In addition, for our readers to appreciate the mounting evidence that a multitude of bone secreted factors affect the activity of other tissues, we provide a brief overview of other proteins, to include fibroblast growth factor 23 (FGF23), phosphatase orphan 1 (PHOSPHO1), osteocalcin (OCN/BGLAP), tissue non-specific alkaline phosphatase (TNAP) and acidic serine aspartic-rich MEPE-associated motif (ASARM), along with known/suggested functions of these factors in influencing energy metabolism.
Collapse
|
32
|
Kang KJ, Choi MJ, Min TJ, You TM, Lee G, Ko SY, Jang YJ. Cell surface accumulation of intracellular leucine proline-enriched proteoglycan 1 enhances odontogenic potential of human dental pulp stem cells. Stem Cells Dev 2022; 31:684-695. [PMID: 35859453 DOI: 10.1089/scd.2022.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Primary dental pulp cells can be differentiated into odontoblast-like cells, which are responsible for dentin formation and mineralization. Successful differentiation of primary dental pulp cells can be verified using a few markers. However, odontoblast-specific cell surface markers have not been fully studied yet. LEucine PRoline-Enriched Proteoglycan 1 (LEPRE1) is a basement membrane-associated proteoglycan. LEPRE1 protein levels are increased during odontoblastic differentiation of human dental pulp cells. Intracellular and cell surface accumulation of this protein completely disappeared during dentin maturation and mineralization. Cell surface binding of an anti-LEPRE1 monoclonal antibody that could recognize an extracellular region was gradually increased in the odontoblastic stage. Overexpression and knock-down experiments showed that accumulation of intracellular LEPRE1 could lead to inefficient odontoblastic differentiation and that the movement of LEPRE1 from intracellular region to the cell surface was required for odontoblastic differentiation. Indeed, when LEPRE1 already located on the cell surface was blocked by the anti-LEPRE1 monoclonal antibody, odontoblastic differentiation of human dental pulp cells was inhibited. In this study, we looked at other aspects of LEPRE1 function as a cell surface molecule rather than its known intracellular hydroxylase activity. Our results indicate that this protein has potential as a specific cell surface marker in odontoblastic differentiation.
Collapse
Affiliation(s)
- Kyung-Jung Kang
- Dankook University - Cheonan Campus, Cheonan, Chungnam, Korea (the Republic of);
| | - Min-Jeong Choi
- Dankook University - Cheonan Campus, Cheonan, Chungnam, Korea (the Republic of);
| | - Tae-Jun Min
- Dankook University - Cheonan Campus, Cheonan, Chungnam, Korea (the Republic of);
| | - Tae Min You
- Dankook University College of Dentistry, School of Dentistry, Cheonan, Korea (the Republic of);
| | - Gyutae Lee
- Yonsei Wooil Dental Hospital, Cheonan, Korea (the Republic of);
| | - Seon-Yle Ko
- Dankook University - Cheonan Campus, Cheonan, Chungnam, Korea (the Republic of);
| | - Young-Joo Jang
- Dankook University - Cheonan Campus, Dept. Nanobiomedical Science, Cheonan, Chungnam, Korea (the Republic of).,Dankook University College of Dentistry, Cheonan, Korea (the Republic of);
| |
Collapse
|
33
|
Elias J, Angelini T, Martindale MQ, Gower L. Assessment of Optimal Conditions for Marine Invertebrate Cell-Mediated Mineralization of Organic Matrices. Biomimetics (Basel) 2022; 7:biomimetics7030086. [PMID: 35892356 PMCID: PMC9326593 DOI: 10.3390/biomimetics7030086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022] Open
Abstract
Cellular strategies and regulation of their crystallization mechanisms are essential to the formation of biominerals, and harnessing these strategies will be important for the future creation of novel non-native biominerals that recapitulate the impressive properties biominerals possess. Harnessing these biosynthetic strategies requires an understanding of the interplay between insoluble organic matrices, mineral precursors, and soluble organic and inorganic additives. Our long-range goal is to use a sea anemone model system (Nematostella vectensis) to examine the role of intrinsically disordered proteins (IDPs) found in native biomineral systems. Here, we study how ambient temperatures (25–37 °C) and seawater solution compositions (varying NaCl and Mg ratios) will affect the infiltration of organic matrices with calcium carbonate mineral precursors generated through a polymer-induced liquid-precursor (PILP) process. Fibrillar collagen matrices were used to assess whether solution conditions were suitable for intrafibrillar mineralization, and SEM with EDS was used to analyze mineral infiltration. Conditions of temperatures 30 °C and above and with low Mg:Ca ratios were determined to be suitable conditions for calcium carbonate infiltration. The information obtained from these observations may be useful for the manipulation and study of cellular secreted IDPs in our quest to create novel biosynthetic materials.
Collapse
Affiliation(s)
- Jeremy Elias
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Thomas Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Mark Q. Martindale
- Whitney Laboratory of Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA;
| | - Laurie Gower
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA;
- Correspondence:
| |
Collapse
|
34
|
Figueredo CA, Abdelhay N, Gibson MP. The Roles of SIBLING Proteins in Dental, Periodontal and Craniofacial Development. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.898802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The majority of dental, periodontal, and craniofacial tissues are derived from the neural crest cells and ectoderm. Neural crest stem cells are pluripotent, capable of differentiating into a variety of cells. These cells can include osteoblasts, odontoblasts, cementoblasts, chondroblasts, and fibroblasts which are responsible for forming some of the tissues of the oral and craniofacial complex. The hard tissue forming cells deposit a matrix composed of collagen and non-collagenous proteins (NCPs) that later undergoes mineralization. The NCPs play a role in the mineralization of collagen. One such category of NCPs is the small integrin-binding ligand, N-linked glycoprotein (SIBLING) family of proteins. This family is composed of dentin sialophosphosprotein (DSPP), osteopontin (OPN), dentin matrix protein 1 (DMP1), bone sialoprotein (BSP), and matrix extracellular phosphoglycoprotein (MEPE). The SIBLING family is known to have regulatory effects in the mineralization process of collagen fibers and the maturation of hydroxyapatite crystals. It is well established that SIBLING proteins have critical roles in tooth development. Recent literature has described the expression and role of SIBLING proteins in other areas of the oral and craniofacial complex as well. The objective of the present literature review is to summarize and discuss the different roles the SIBLING proteins play in the development of dental, periodontal, and craniofacial tissues.
Collapse
|
35
|
Tamma G, Di Mise A, Ranieri M, Centrone M, Venneri M, D'Agostino M, Ferrulli A, Šimunič B, Narici M, Pisot R, Valenti G. Early Biomarkers of Altered Renal Function and Orthostatic Intolerance During 10-day Bedrest. Front Physiol 2022; 13:858867. [PMID: 35514354 PMCID: PMC9065601 DOI: 10.3389/fphys.2022.858867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Exposure to actual or simulated microgravity results in alterations of renal function, fluid redistribution, and bone loss, which is coupled to a rise of urinary calcium excretion. We provided evidence that high calcium delivery to the collecting duct reduces local Aquaporin 2 (AQP2)-mediated water reabsorption under vasopressin action, thus limiting the maximal urinary concentration to reduce calcium saturation. To investigate early renal adaptation into simulated microgravity, we investigated the effects of 10 days of strict bedrest in 10 healthy volunteers. We report here that 10 days of inactivity are associated with a transient, significant decrease (day 5) in vasopressin (copeptin) paralleled by a decrease in AQP2 excretion, consistent with an increased central volume to the heart, resulting in reduced water reabsorption. Moreover, bedrest caused a significant increase in calciuria secondary to bone demineralization paralleled by a decrease in PTH. Urinary osteopontin, a glycoprotein exerting a protective effect on stone formation, was significantly reduced during bedrest. Moreover, a significant increase in adrenomedullin (day 5), a peptide with vasodepressor properties, was observed at day 5, which may contribute to the known reduced orthostatic capacity post-bedrest. We conclude that renal function is altered in simulated microgravity and is associated with an early increase in the risk of stone formation and reduced orthostatic capacity post-bedrest within a few days of inactivity.
Collapse
Affiliation(s)
- Grazia Tamma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Annarita Di Mise
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Marianna Ranieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Mariangela Centrone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Maria Venneri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Mariagrazia D'Agostino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Angela Ferrulli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Boštjan Šimunič
- Institute of Kinesiology Research, Science and Research Centre, Koper, Slovenia
| | - Marco Narici
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Rado Pisot
- Institute of Kinesiology Research, Science and Research Centre, Koper, Slovenia
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
36
|
The Role of Process-Directing Agents on Enamel Lesion Remineralization: Fluoride Boosters. Biomimetics (Basel) 2022; 7:biomimetics7020054. [PMID: 35645181 PMCID: PMC9149830 DOI: 10.3390/biomimetics7020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to investigate the effects of two process-directing agents (polyaspartic acid and osteopontin) used in a polymer-induced liquid-precursor (PILP) process on the remineralization of bacteria-induced enamel demineralization. Enamel demineralization lesions (depths of about 180–200 µm) were created and exposed to Streptococcus mutans, cultured with a 10% sucrose solution for 21 days, and remineralized using a PILP process (pH = 7.4, 14 days) with a calcium phosphate solution containing either polyaspartic acid or osteopontin in the presence or absence of fluoride (0.5 ppm). The specimens were examined under scanning electron microscopy. The fluoride was successfully incorporated into the PILP remineralization process for both polyaspartic acid and osteopontin. When the fluoride was added to the PILP remineralization solution, there was more uniform remineralization throughout the lesion than with either polyaspartic acid or osteopontin alone. However, in the absence of these process-directing agents, fluoride alone showed less remineralization with the formation of a predominantly surface-only layer. The PILP remineralization process relies on the ability of process-directing agents to stabilize calcium phosphate ions and holds promise for enamel lesion remineralization, and these agents, in the presence of fluoride, seem to play an important role as a booster or supplement in the continuation of remineralization by reducing the mineral gains at the surface layer.
Collapse
|
37
|
Banerjee S, Nara R, Chakraborty S, Chowdhury D, Haldar S. Integrin Regulated Autoimmune Disorders: Understanding the Role of Mechanical Force in Autoimmunity. Front Cell Dev Biol 2022; 10:852878. [PMID: 35372360 PMCID: PMC8971850 DOI: 10.3389/fcell.2022.852878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
The pathophysiology of autoimmune disorders is multifactorial, where immune cell migration, adhesion, and lymphocyte activation play crucial roles in its progression. These immune processes are majorly regulated by adhesion molecules at cell–extracellular matrix (ECM) and cell–cell junctions. Integrin, a transmembrane focal adhesion protein, plays an indispensable role in these immune cell mechanisms. Notably, integrin is regulated by mechanical force and exhibit bidirectional force transmission from both the ECM and cytosol, regulating the immune processes. Recently, integrin mechanosensitivity has been reported in different immune cell processes; however, the underlying mechanics of these integrin-mediated mechanical processes in autoimmunity still remains elusive. In this review, we have discussed how integrin-mediated mechanotransduction could be a linchpin factor in the causation and progression of autoimmune disorders. We have provided an insight into how tissue stiffness exhibits a positive correlation with the autoimmune diseases’ prevalence. This provides a plausible connection between mechanical load and autoimmunity. Overall, gaining insight into the role of mechanical force in diverse immune cell processes and their dysregulation during autoimmune disorders will open a new horizon to understand this physiological anomaly.
Collapse
|
38
|
Stenhouse C, Cortes-Araya Y, Donadeu FX, Ashworth CJ. Associations between testicular development and fetal size in the pig. J Anim Sci Biotechnol 2022; 13:24. [PMID: 35287733 PMCID: PMC8922848 DOI: 10.1186/s40104-022-00678-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/09/2022] [Indexed: 12/02/2022] Open
Abstract
Background Impaired reproductive performance is the largest contributing factor for the removal of boars from commercial systems. Intrauterine growth restricted piglets represent 25% of the total number of piglets born and have impaired reproductive performance. This study aimed to improve the understanding of temporal changes in testicular gene expression during testes development in fetuses of different size. The lightest and closest to mean litter weight (CTMLW) male Large White × Landrace littermates were collected at gestational days (GD) 45, 60 and 90 (n = 5–6 litters/GD). Results Testes weight and testes weight as a percentage of fetal weight were not associated with fetal size at GD60 or 90. Fetal plasma testosterone was not associated with fetal size at GD90. There was no association between fetal size and seminiferous tubule area and number, number of germ or Sertoli cells per tubule. The lightest fetuses tended to have wider seminiferous tubules compared to the CTMLW fetuses at GD90 (P = 0.077). The testicular expression of KI67 (P ≤ 0.01) and BAX:BCL2 ratio (P = 0.058) mRNAs decreased as gestation progressed. Greater SPP1 mRNA expression was observed at GD60 when compared with GD45 and 90 (P ≤ 0.05). Lower expression of DMRT1 and SPP1 (P < 0.01) mRNAs was observed in testes associated with the lightest fetuses compared to the CTMLW fetuses at GD90. Conclusions These findings provide novel insights into the expression profiles of genes associated with testicular development and function. Further, these data suggest that programming of reproductive potential in IUGR boars occurs late in gestation, providing a platform for further mechanistic investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00678-3.
Collapse
Affiliation(s)
- Claire Stenhouse
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK. .,Department of Animal Science, Texas A&M University, 440 Kleberg Center, College Station, TX, 77843-2471, USA.
| | - Yennifer Cortes-Araya
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - F Xavier Donadeu
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Cheryl J Ashworth
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
39
|
Xu C, Wu Y, Liu N. Osteopontin in autoimmune disorders: current knowledge and future perspective. Inflammopharmacology 2022; 30:385-396. [PMID: 35235108 DOI: 10.1007/s10787-022-00932-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/03/2022] [Indexed: 11/30/2022]
Abstract
Osteopontin (OPN) is a multifunctional cytokine and adhesion molecule, as well as an unusual regulator for both innate and adaptive immune responses. Several immune cells can produce OPN, including dendritic cells (DCs), macrophages, and T lymphocytes. OPN expression is reported to be increased in a wide range of disorders, including autoimmunity, cancer, and allergy. The overexpression of OPN in several autoimmune disorders, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), Type 1 diabetes (T1D), inflammatory bowel disease (IBD), Sjögren's, and myasthenia gravis, have been shown to be correlated with disease severity. Regarding the important regulatory roles of OPN in the immune system, this study aimed to review the role of this molecule in autoimmune disorders and to provide a complete view of the current knowledge in this field.
Collapse
Affiliation(s)
- Canhua Xu
- Department of Spine Surgery, Ganzhou People's Hospital, No. 16, Meiguan Avenue, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| | - Yaohong Wu
- Department of Spine Surgery, Ganzhou People's Hospital, No. 16, Meiguan Avenue, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| | - Ning Liu
- Department of Spine Surgery, Ganzhou People's Hospital, No. 16, Meiguan Avenue, Zhanggong District, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
40
|
Khamissi FZ, Ning L, Kefaloyianni E, Dun H, Arthanarisami A, Keller A, Atkinson JJ, Li W, Wong B, Dietmann S, Lavine K, Kreisel D, Herrlich A. Identification of kidney injury released circulating osteopontin as causal agent of respiratory failure. SCIENCE ADVANCES 2022; 8:eabm5900. [PMID: 35213222 PMCID: PMC8880785 DOI: 10.1126/sciadv.abm5900] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/30/2021] [Indexed: 05/08/2023]
Abstract
Tissue injury can drive secondary organ injury; however, mechanisms and mediators are not well understood. To identify interorgan cross-talk mediators, we used acute kidney injury (AKI)-induced acute lung injury (ALI) as a clinically important example. Using kidney and lung single-cell RNA sequencing after AKI in mice followed by ligand-receptor pairing analysis across organs, kidney ligands to lung receptors, we identify kidney-released circulating osteopontin (OPN) as a novel AKI-ALI mediator. OPN release from kidney tubule cells triggered lung endothelial leakage, inflammation, and respiratory failure. Pharmacological or genetic OPN inhibition prevented AKI-ALI. Transplantation of ischemic wt kidneys caused AKI-ALI, but not of ischemic OPN-global knockout kidneys, identifying kidney-released OPN as necessary interorgan signal to cause AKI-ALI. We show that OPN serum levels are elevated in patients with AKI and correlate with kidney injury. Our results demonstrate feasibility of using ligand-receptor analysis across organs to identify interorgan cross-talk mediators and may have important therapeutic implications in human AKI-ALI and multiorgan failure.
Collapse
Affiliation(s)
| | | | | | - Hao Dun
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | | | - Amy Keller
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Jeffrey J. Atkinson
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Wenjun Li
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Brian Wong
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Sabine Dietmann
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Kory Lavine
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Daniel Kreisel
- Washington University School in St. Louis School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|
41
|
Saxena N, Mizels J, Cremer MA, Guarnizo V, Rodriguez DE, Gower LB. Comparison of Synthetic vs. Biogenic Polymeric Process-Directing Agents for Intrafibrillar Mineralization of Collagen. Polymers (Basel) 2022; 14:polym14040775. [PMID: 35215688 PMCID: PMC8879695 DOI: 10.3390/polym14040775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
With the aging population, there is a growing need for mineralized tissue restoration and synthetic bone substitutes. Previous studies have shown that a polymer-induced liquid-precursor (PILP) process can successfully mineralize collagen substrates to achieve compositions found in native bone and dentin. This process also leads to intrafibrillar apatitic crystals with their [001] axes aligned roughly parallel to the long axis of the collagen fibril, emulating the nanostructural organization found in native bone and dentin. When demineralized bovine bone was remineralized via the PILP process using osteopontin (OPN), the samples were able to activate mouse marrow-derived osteoclasts to similar levels to those of native bone, suggesting a means for fabricating bioactive bone substitutes that could trigger remodeling through the native bone multicellular unit (BMU). In order to determine if OPN derived from bovine milk could be a cost-effective process-directing agent, the mineralization of type I collagen scaffolds using this protein was compared to the benchmark polypeptide of polyaspartic acid (sodium salt; pAsp). In this set of experiments, we found that OPN led to much faster and more uniform mineralization when compared with pAsp, making it a cheaper and commercially attractive alternative for mineralized tissue restorations.
Collapse
Affiliation(s)
- Neha Saxena
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA; (N.S.); (J.M.); (M.A.C.); (V.G.); (D.E.R.)
- Bio-Therapeutics Drug Product Development, Janssen Pharmaceuticals, Inc., Malvern, PA 19355, USA
| | - Joshua Mizels
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA; (N.S.); (J.M.); (M.A.C.); (V.G.); (D.E.R.)
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT 84112, USA
| | - Maegan A. Cremer
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA; (N.S.); (J.M.); (M.A.C.); (V.G.); (D.E.R.)
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Vanessa Guarnizo
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA; (N.S.); (J.M.); (M.A.C.); (V.G.); (D.E.R.)
- Quality Engineering, Medtronic ENT, Jacksonville, FL 32611, USA
| | - Douglas E. Rodriguez
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA; (N.S.); (J.M.); (M.A.C.); (V.G.); (D.E.R.)
- R&D, Novabone Products LLC, Alachua, FL 32611, USA
| | - Laurie B. Gower
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA; (N.S.); (J.M.); (M.A.C.); (V.G.); (D.E.R.)
- Correspondence:
| |
Collapse
|
42
|
Danesi AL, Athanasiadou D, Aderinto AO, Rasie P, Chou LYT, Carneiro KMM. Peptide-Decorated DNA Nanostructures Promote Site-Specific Hydroxyapatite Growth. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1692-1698. [PMID: 34957820 DOI: 10.1021/acsami.1c19271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The guiding principle for mineralized tissue formation is that mineral growth occurs through the interaction of Ca2+ and phosphate ions with extracellular matrix (ECM) proteins. Recently, nanoengineered DNA structures have been proposed as mimics to ECM scaffolds. However, these principles have not been applied to mineralized tissues. Here, we describe DNA nanostructures, namely, a DNA nanotube and a DNA origami rectangle that are site specifically functionalized with a mineral-promoting "SSEE" peptide derived from ECM proteins present in mineralized tissues. In the presence of Ca2+ and phosphate ions (mineralizing conditions), site-specific calcium phosphate formation occurred on the DNA nanostructures. Amorphous calcium phosphate or hydroxyapatite was formed depending on the incubation time, shape of the DNA nanostructure, and amount of Ca2+ and phosphate ions present. The ability to design and control the growth of hydroxyapatite through nanoengineered scaffolds provides insights into the mechanisms that may occur during crystal nucleation and growth of mineralized tissues and can inspire mineralized tissue regeneration strategies.
Collapse
Affiliation(s)
- Alexander L Danesi
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | | | - Abdulmateen O Aderinto
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Prakash Rasie
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Leo Y T Chou
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Karina M M Carneiro
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
43
|
Regulation of TNF-Induced Osteoclast Differentiation. Cells 2021; 11:cells11010132. [PMID: 35011694 PMCID: PMC8750957 DOI: 10.3390/cells11010132] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
Increased osteoclast (OC) differentiation and activity is the critical event that results in bone loss and joint destruction in common pathological bone conditions, such as osteoporosis and rheumatoid arthritis (RA). RANKL and its decoy receptor, osteoprotegerin (OPG), control OC differentiation and activity. However, there is a specific concern of a rebound effect of denosumab discontinuation in treating osteoporosis. TNFα can induce OC differentiation that is independent of the RANKL/RANK system. In this review, we discuss the factors that negatively and positively regulate TNFα induction of OC formation, and the mechanisms involved to inform the design of new anti-resorptive agents for the treatment of bone conditions with enhanced OC formation. Similar to, and being independent of, RANKL, TNFα recruits TNF receptor-associated factors (TRAFs) to sequentially activate transcriptional factors NF-κB p50 and p52, followed by c-Fos, and then NFATc1 to induce OC differentiation. However, induction of OC formation by TNFα alone is very limited, since it also induces many inhibitory proteins, such as TRAF3, p100, IRF8, and RBP-j. TNFα induction of OC differentiation is, however, versatile, and Interleukin-1 or TGFβ1 can enhance TNFα-induced OC formation through a mechanism which is independent of RANKL, TRAF6, and/or NF-κB. However, TNFα polarized macrophages also produce anabolic factors, including insulin such as 6 peptide and Jagged1, to slow down bone loss in the pathological conditions. Thus, the development of novel approaches targeting TNFα signaling should focus on its downstream molecules that do not affect its anabolic effect.
Collapse
|
44
|
Herrlich A. Interorgan crosstalk mechanisms in disease: the case of acute kidney injury-induced remote lung injury. FEBS Lett 2021; 596:620-637. [PMID: 34932216 DOI: 10.1002/1873-3468.14262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/07/2022]
Abstract
Homeostasis and health of multicellular organisms with multiple organs depends on interorgan communication. Tissue injury in one organ disturbs this homeostasis and can lead to disease in multiple organs, or multiorgan failure. Many routes of interorgan crosstalk during homeostasis are relatively well known, but interorgan crosstalk in disease still lacks understanding. In particular, how tissue injury in one organ can drive injury at remote sites and trigger multiorgan failure with high mortality is poorly understood. As examples, acute kidney injury can trigger acute lung injury and cardiovascular dysfunction; pneumonia, sepsis or liver failure conversely can cause kidney failure; lung transplantation very frequently triggers acute kidney injury. Mechanistically, interorgan crosstalk after tissue injury could involve soluble mediators and their target receptors, cellular mediators, in particular immune cells, as well as newly identified neuro-immune connections. In this review, I will focus the discussion of deleterious interorgan crosstalk and its mechanistic concepts on one example, acute kidney injury-induced remote lung injury.
Collapse
Affiliation(s)
- Andreas Herrlich
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, MO, USA
| |
Collapse
|
45
|
Ibis F, Yu TW, Penha FM, Ganguly D, Nuhu MA, van der Heijden AEDM, Kramer HJM, Eral HB. Nucleation kinetics of calcium oxalate monohydrate as a function of pH, magnesium, and osteopontin concentration quantified with droplet microfluidics. BIOMICROFLUIDICS 2021; 15:064103. [PMID: 34853626 PMCID: PMC8610605 DOI: 10.1063/5.0063714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/31/2021] [Indexed: 05/02/2023]
Abstract
A droplet-based microfluidic platform is presented to study the nucleation kinetics of calcium oxalate monohydrate (COM), the most common constituent of kidney stones, while carefully monitoring the pseudo-polymorphic transitions. The precipitation kinetics of COM is studied as a function of supersaturation and pH as well as in the presence of inhibitors of stone formation, magnesium ions (Mg2+), and osteopontin (OPN). We rationalize the trends observed in the measured nucleation rates leveraging a solution chemistry model validated using isothermal solubility measurements. In equimolar calcium and oxalate ion concentrations with different buffer solutions, dramatically slower kinetics is observed at pH 6.0 compared to pHs 3.6 and 8.6. The addition of both Mg2+ and OPN to the solution slows down kinetics appreciably. Interestingly, complete nucleation inhibition is observed at significantly lower OPN, namely, 3.2 × 10-8 M, than Mg2+ concentrations, 0.875 × 10-4 M. The observed inhibition effect of OPN emphasizes the often-overlooked role of macromolecules on COM nucleation due to their low concentration presence in urine. Moreover, analysis of growth rates calculated from observed lag times suggests that inhibition in the presence of Mg2+ cannot be explained solely on altered supersaturation. The presented study highlights the potential of microfluidics in overcoming a major challenge in nephrolithiasis research, the overwhelming physiochemical complexity of urine.
Collapse
Affiliation(s)
- Fatma Ibis
- Complex Fluid Processing, Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Tsun Wang Yu
- Complex Fluid Processing, Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Frederico Marques Penha
- Department of Chemical Engineering, KTH Royal Institute of Technology, Teknikringen 42, SE100-44 Stockholm, Sweden
| | - Debadrita Ganguly
- Complex Fluid Processing, Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Manzoor Alhaji Nuhu
- Complex Fluid Processing, Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Antoine E. D. M. van der Heijden
- Complex Fluid Processing, Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Herman J. M. Kramer
- Complex Fluid Processing, Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | | |
Collapse
|
46
|
Ana ID, Barlian A, Hidajah AC, Wijaya CH, Notobroto HB, Kencana Wungu TD. Challenges and strategy in treatment with exosomes for cell-free-based tissue engineering in dentistry. Future Sci OA 2021; 7:FSO751. [PMID: 34840808 PMCID: PMC8609983 DOI: 10.2144/fsoa-2021-0050] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
In dentistry, problems of craniofacial, osteochondral, periodontal tissue, nerve, pulp or endodontics injuries, and osteoarthritis need regenerative therapy. The use of stem cells in dental tissue engineering pays a lot of increased attention, but there are challenges for its clinical applications. Therefore, cell-free-based tissue engineering using exosomes isolated from stem cells is regarded an alternative approach in regenerative dentistry. However, practical use of exosome is restricted by limited secretion capability of cells. For future regenerative treatment with exosomes, efficient strategies for large-scale clinical applications are being studied, including the use of ceramics-based scaffold to enhance exosome production and secretion which can resolve limited exosome secretory from the cells when compared with the existing methods available. Indeed, more research needs to be done on these strategies going forward.
Collapse
Affiliation(s)
- Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Anggraini Barlian
- School of Life Sciences & Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Atik Choirul Hidajah
- Department of Epidemiology, Biostatistics, Population Studies, & Health Promotion, Faculty of Public Health, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Christofora Hanny Wijaya
- Department of Food Science & Technology, Faculty of Agricultural Engineering & Technology, IPB University, Bogor, 16002, Indonesia
| | - Hari Basuki Notobroto
- Department of Epidemiology, Biostatistics, Population Studies, & Health Promotion, Faculty of Public Health, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Triati Dewi Kencana Wungu
- Department of Physics, Faculty of Mathematics & Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| |
Collapse
|
47
|
Kaleta B, Lachota M, Łukaszkiewicz J, Woźniacka A, Bogaczewicz J. Osteopontin Gene Polymorphisms rs1126616 C>T and rs1126772 A>G are Associated with Atopic Dermatitis in Polish Population. APPLICATION OF CLINICAL GENETICS 2021; 14:417-425. [PMID: 34675603 PMCID: PMC8502056 DOI: 10.2147/tacg.s323735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022]
Abstract
Purpose Atopic dermatitis (AD) is a chronic, relapsing inflammatory disease, caused by environmental and genetic factors, which lead to immunological abnormalities. Osteopontin (OPN), also named secreted phosphoprotein 1 (SPP1), is a protein involved in the pathogenesis of numerous autoimmune and inflammatory conditions. However, its role in AD has not been fully elucidated. Therefore, we aim to gain an insight into the role of OPN in AD pathogenesis through investigating its gene single nucleotide polymorphisms (SNPs) and their possible associations with disease clinical features. Patients and Methods A total of 182 Caucasian participants (45 AD patients and 137 gender- and age-matched controls) were studied. Genomic DNA was isolated from peripheral blood samples. Genotyping for the rs1126616 C>T, rs1126772 A>G, rs9138 A>C, and rs3841116 T>G SNPs was performed by real time polymerase chain reaction (RT-PCR). Results The frequency of the minor TT genotype and the T allele of rs1126616 C>T was higher in AD patients compared to controls (P = 0.019, OD = 4.86, 95% CI = 1.46–16.20, and P = 0.047, OR = 1.77, 95% CI = 1.04–3.00, respectively) and was associated with the higher prevalence of asthma (P = 0.017, OR = 3.73, 95% CI = 0.71–19.67, and P = 0.004, OR = 3.96, 95% CI = 1.53–10.25, respectively). Likewise, the minor GG genotype and the G allele of rs1126772 A>G were more frequent in AD patients (P = 0.026, OR = 3.27, 95% CI = 1.29–8.33, and P = 0.013, OR = 1.94, 95% CI = 1.18–3.21, respectively) and were associated with the increased incidence of asthma (P = 0.016, OR = 5.06, 95% CI = 1.14–22.49, and P = 0.002, OR = 4.40, 95% CI = 1.71–11.35, respectively). Furthermore, haplotype frequency estimation determined the four-loci haplotype TGCT, as a significant risk factor for AD compared to controls (P = 0.031, OR = 9.48, 95% CI = 1.23–71.91). Conclusion Our results suggest that the variation in the OPN gene might be associated with AD and increased incidence of asthma in Caucasians. Further studies should be conducted to look into the possible role of OPN as a biomarker for AD.
Collapse
Affiliation(s)
- Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Mieszko Lachota
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland.,Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Jacek Łukaszkiewicz
- Department of Biochemistry and Clinical Chemistry, Medical University of Warsaw, Warsaw, Poland
| | - Anna Woźniacka
- Department of Dermatology and Venereology, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
48
|
Wang X, Nie Z, Chang J, Lu ML, Kang Y. Multiple channels with interconnected pores in a bioceramic scaffold promote bone tissue formation. Sci Rep 2021; 11:20447. [PMID: 34650074 PMCID: PMC8516977 DOI: 10.1038/s41598-021-00024-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Insufficient nutrition exchange and limited transportation of blood supply in a porous only scaffold often hinder bone formation, even though the porous scaffold is loaded with cells or growth factors. To overcome these issues, we developed a cell- and growth factor-free approach to induce bone formation in a critical-size bone defect by using an interconnected porous beta-tricalcium phosphate (β-TCP) scaffold with multiple channels. In vitro cell experimental results showed that multiple channels significantly promoted cell attachment and proliferation of human bone marrow mesenchymal stem cells, stimulated their alkaline phosphatase activity, and up-regulated the osteogenic gene expression. Multiple channels also considerably stimulated the expression of various mechanosensing markers of the cells, such as focal adhesion kinase, filamentous actin, and Yes-associated protein-1 at both static and dynamic culturing conditions. The in vivo bone defect implantation results demonstrated more bone formation inside multiple-channeled scaffolds compared to non-channeled scaffolds. Multiple channels prominently accelerated collagen type I, bone sialoprotein and osteocalcin protein expression. Fluorochrome images and angiogenic marker CD31 staining exhibited more mineral deposition and longer vasculature structures in multiple-channeled scaffolds, compared to non-channeled scaffolds. All the findings suggested that the creation of interconnected multiple channels in the porous β-TCP scaffold is a very promising approach to promote bone tissue regeneration.
Collapse
Affiliation(s)
- Xuesong Wang
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Ziyan Nie
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Jia Chang
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, 32610, USA
| | - Michael L Lu
- Department of Biomedical Science, College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA.,Department of Biological Science, Faculty of Integrative Biology Program, College of Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Yunqing Kang
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, 33431, USA. .,Department of Biomedical Science, College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA. .,Department of Biological Science, Faculty of Integrative Biology Program, College of Science, Florida Atlantic University, Boca Raton, FL, 33431, USA.
| |
Collapse
|
49
|
Liang T, Xu Q, Zhang H, Wang S, Diekwisch TGH, Qin C, Lu Y. Enamel Defects Associated With Dentin Sialophosphoprotein Mutation in Mice. Front Physiol 2021; 12:724098. [PMID: 34630144 PMCID: PMC8497714 DOI: 10.3389/fphys.2021.724098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/31/2021] [Indexed: 12/04/2022] Open
Abstract
Dentin sialophosphoprotein (DSPP) is an extracellular matrix protein that is highly expressed in odontoblasts, but only transiently expressed in presecretory ameloblasts during tooth development. We previously generated a knockin mouse model expressing a mouse equivalent (DSPP, p.P19L) of human mutant DSPP (p.P17L; referred to as “DsppP19L/+”), and reported that DsppP19L/+ and DsppP19L/P19L mice manifested a dentin phenotype resembling human dentinogenesis imperfecta (DGI). In this study, we analyzed pathogenic effects of mutant P19L-DSPP on enamel development in DsppP19L/+ and DsppP19L/P19L mice. Micro-Computed Tomography (μCT) analyses of 7-week-old mouse mandibular incisors showed that DsppP19L/P19L mice had significantly decreased enamel volume and/or enamel density at different stages of amelogenesis examined. Acid-etched scanning electron microscopy (SEM) analyses of mouse incisors demonstrated that, at the mid-late maturation stage of amelogenesis, the enamel of wild-type mice already had apparent decussating pattern of enamel rods, whereas only minute particulates were found in DsppP19L/+ mice, and no discernible structures in DsppP19L/P19L mouse enamel. However, by the time that incisor enamel was about to erupt into oral cavity, distinct decussating enamel rods were evident in DsppP19L/+ mice, but only poorly-defined enamel rods were revealed in DsppP19L/P19L mice. Moreover, μCT analyses of the mandibular first molars showed that DsppP19L/+ and DsppP19L/P19L mice had a significant reduction in enamel volume and enamel density at the ages of 2, 3, and 24weeks after birth. Backscattered and acid-etched SEM analyses revealed that while 3-week-old DsppP19L/+ mice had similar pattern of enamel rods in the mandibular first molars as age-matched wild-type mice, no distinct enamel rods were observed in DsppP19L/P19L mice. Yet neither DsppP19L/+ nor DsppP19L/P19L mice showed well-defined enamel rods in the mandibular first molars by the age of 24weeks, as judged by backscattered and acid-etched SEM. In situ hybridization showed that DSPP mRNA level was markedly reduced in the presecretory ameloblasts, but immunohistochemistry revealed that DSP/DSPP immunostaining signals were much stronger within the presecretory ameloblasts in Dspp mutant mice than in wild-type mice. These results suggest that mutant P19L-DSPP protein caused developmental enamel defects in mice, which may be associated with intracellular retention of mutant DSPP in the presecretory ameloblasts.
Collapse
Affiliation(s)
- Tian Liang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Qian Xu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Hua Zhang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Suzhen Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Thomas G H Diekwisch
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Chunlin Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Yongbo Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Chronic kidney disease-mineral and bone disorder (CKD-MBD) has become a global health crisis with very limited therapeutic options. Dentin matrix protein 1 (DMP1) is a matrix extracellular protein secreted by osteocytes that has generated recent interest for its possible involvement in CKD-MBD pathogenesis. This is a review of DMP1 established regulation and function, and early studies implicating DMP1 in CKD-MBD. RECENT FINDINGS Patients and mice with CKD show perturbations of DMP1 expression in bone, associated with impaired osteocyte maturation, mineralization, and increased fibroblast growth factor 23 (FGF23) production. In humans with CKD, low circulating DMP1 levels are independently associated with increased cardiovascular events. We recently showed that DMP1 supplementation lowers circulating FGF23 levels and improves bone mineralization and cardiac outcomes in mice with CKD. Mortality rates are extremely high among patients with CKD and have only marginally improved over decades. Bone disease and FGF23 excess contribute to mortality in CKD by increasing the risk of bone fractures and cardiovascular disease, respectively. Previous studies focused on DMP1 loss-of-function mutations have established its role in the regulation of FGF23 and bone mineralization. Recent studies show that DMP1 supplementation may fill a crucial therapeutic gap by improving bone and cardiac health in CKD.
Collapse
Affiliation(s)
- Aline Martin
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA.
| | - Dominik Kentrup
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|