1
|
Sales BCP, Pereira LC, Quintaneiro C, da Maia Soares AMV, Monteiro MS. Effects of diuron and two of its metabolites in biochemical markers and behavior of zebrafish larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35291-6. [PMID: 39460864 DOI: 10.1007/s11356-024-35291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) is an herbicide used in many crops, including sugar cane cultivation. It is commonly found in aquatic ecosystem and is of high concern due to its ability to persist in the environment. Diuron metabolites include DCA (3,4-dichloroaniline) and DCPMU (3-(3,4-dichlorophenyl-1-methylurea). The objective of this study was to evaluate the effects of diuron and two of its metabolites in zebrafish (Danio rerio) developing embryos, from biochemical to individual level. Activities of the enzymes acetylcholinesterase (AChE), catalase (CAT), glutathione-S-transferase (GST), and lactate dehydrogenase (LDH) and the levels of lipid peroxidation (LPO), swimming activity, and body length were investigated after an exposure of 120 h, and the heart rate was determined after 48 h of exposure. The range of concentrations tested was 0.003-3.000 mg/L diuron, 0.020-1.500 mg/L DCA, and 0.020-2.100 mg/L DCPMU. Results showed that AChE activity was inhibited by diuron (3.000 mg/L) and DCPMU (0.326, 0.828 mg/L). However, the swimming activity of fish larvae exposed to diuron or its metabolites was not affected. The CAT was induced by DCPMU, and GST was induced by diuron. This suggests that CAT is acting to cope with oxidative stress induced by DCPMU and GST might have a role in the detoxification of diuron. In addition, larvae exposed to DCA (0.633 and 1.500 mg/L) had a reduction in their length, and larvae exposed to diuron (0.754 and 3.000 mg/L) and DCA (0.267, 0.633, and 1.500 mg/L) presented bradycardia, suggesting cardiotoxicity. Overall, results indicate that diuron, DCA, or DCPMU induces adverse effects during the early phases of zebrafish development, such as the impairment of neurotransmission and cardiovascular function and alterations in antioxidant enzymes and growth. Diuron appeared as more toxic than its metabolites since the lowest LOEC (0.012 mg/L) and higher integrated biomarker response (IBR) values were obtained with exposure to this herbicide. Furthermore, as it is fast degraded into DCA and DCPMU, which also affected the zebrafish developing embryos at environmentally relevant concentrations, its use might be of concern in ecosystems that receive agriculture runoff due to their potential adverse effects to aquatic biota.
Collapse
Affiliation(s)
- Bianca Camargo Penteado Sales
- Department of Pathology, Center for the Evaluation of the Environmental Impact On Human Health (TOXICAM), Botucatu Medical School, UNESP - São Paulo State University, UNIPEX-Block-5, Botucatu, São Paulo, 18618-687, Brazil.
| | - Lilian Cristina Pereira
- Department of Pathology, Center for the Evaluation of the Environmental Impact On Human Health (TOXICAM), Botucatu Medical School, UNESP - São Paulo State University, UNIPEX-Block-5, Botucatu, São Paulo, 18618-687, Brazil
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, UNESP - São Paulo State University, Botucatu Campus, Botucatu, São Paulo, 18610307, Brazil
| | - Carla Quintaneiro
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | | | - Marta Sofia Monteiro
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
2
|
Ganguly A, Nag S, Bhowmick TK, Gayen K. Phycoremediation of As(III) and Cr(VI) by Desmodesmus subspicatus: Impact on growth and biomolecules (carbohydrate, protein, chlorophyll and lipid) - A dual mode investigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48545-48560. [PMID: 39031311 DOI: 10.1007/s11356-024-34390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/11/2024] [Indexed: 07/22/2024]
Abstract
Microalgae are under research focus for the simultaneous production of biomolecules (e.g., carbohydrates, proteins, pigments and lipids) and bioremediation of toxic substances from wastewater. The current study explores the capability of indigenously isolated microalgae (Desmodesmus subspicatus) for the phycoremediation of As(III) and Cr(VI). Variation of biomolecules (carbohydrate, protein, lipid and chlorophyll) was investigated during phycoremediation. D. subspicatus survived up to the toxicity level of 10 mg/L for As(III) and 0.8 mg/L for Cr(VI). A 70% decline in carbohydrate accumulation was observed at 10 mg/L of As(III). An increased content of proteins (+ 28%) and lipids (+ 32%) within the cells was observed while growing in 0.5 and 0.2 mg/L of As(III) and Cr(VI) respectively. A decrease in carbohydrate accumulation was noted with increasing Cr(VI) concentration, and the lowest (- 44%) was recorded at 0.8 mg/L Cr(VI). D. subspicatus showed an excellent maximum removal efficiency for Cr(VI) and As(III) as 77% and 90% respectively.
Collapse
Affiliation(s)
- Anisha Ganguly
- Department of Chemical Engineering, National Institute of Technology Agartala, West Tripura, Agartala, Tripura, 799046, India
| | - Soma Nag
- Department of Chemical Engineering, National Institute of Technology Agartala, West Tripura, Agartala, Tripura, 799046, India
| | - Tridib Kumar Bhowmick
- Department of Bioengineering, National Institute of Technology Agartala, West Tripura, Agartala, Tripura, 799046, India
| | - Kalyan Gayen
- Department of Chemical Engineering, National Institute of Technology Agartala, West Tripura, Agartala, Tripura, 799046, India.
| |
Collapse
|
3
|
Ramamurthy K, Priya PS, Murugan R, Arockiaraj J. Hues of risk: investigating genotoxicity and environmental impacts of azo textile dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33190-33211. [PMID: 38676865 DOI: 10.1007/s11356-024-33444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
The textile industry, with its extensive use of dyes and chemicals, stands out as a significant source of water pollution. Exposure to certain textile dyes, such as azo dyes and their breakdown products like aromatic amines, has been associated with health concerns like skin sensitization, allergic reactions, and even cancer in humans. Annually, the worldwide production of synthetic dyes approximates 7 × 107 tons, of which the textile industry accounts for over 10,000 tons. Inefficient dyeing procedures result in the discharge of 15-50% of azo dyes, which do not adequately bind to fibers, into wastewater. This review delves into the genotoxic impact of azo dyes, prevalent in the textile industry, on aquatic ecosystems and human health. Examining different families of textile dye which contain azo group in their structure such as Sudan I and Sudan III Sudan IV, Basic Red 51, Basic Violet 14, Disperse Yellow 7, Congo Red, Acid Red 26, and Acid Blue 113 reveals their carcinogenic potential, which may affect both industrial workers and aquatic life. Genotoxic and carcinogenic characteristics, chromosomal abnormalities, induced physiological and neurobehavioral changes, and disruptions to spermatogenesis are evident, underscoring the harmful effects of these dyes. The review calls for comprehensive investigations into the toxic profile of azo dyes, providing essential insights to safeguard the aquatic ecosystem and human well-being. The importance of effective effluent treatment systems is underscored to mitigate adverse impacts on agricultural lands, water resources, and the environment, particularly in regions heavily reliant on wastewater irrigation for food production.
Collapse
Affiliation(s)
- Karthikeyan Ramamurthy
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulatur, 603203, Tamil Nadu, India
| | - Peter Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulatur, 603203, Tamil Nadu, India
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulatur, 603203, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulatur, 603203, Tamil Nadu, India.
| |
Collapse
|
4
|
Moraes B, Martins R, Lopes C, Martins R, Arcanjo A, Nascimento J, Konnai S, da Silva Vaz I, Logullo C. G6PDH as a key immunometabolic and redox trigger in arthropods. Front Physiol 2023; 14:1287090. [PMID: 38046951 PMCID: PMC10693429 DOI: 10.3389/fphys.2023.1287090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
The enzyme glucose-6-phosphate dehydrogenase (G6PDH) plays crucial roles in glucose homeostasis and the pentose phosphate pathway (PPP), being also involved in redox metabolism. The PPP is an important metabolic pathway that produces ribose and nicotinamide adenine dinucleotide phosphate (NADPH), which are essential for several physiologic and biochemical processes, such as the synthesis of fatty acids and nucleic acids. As a rate-limiting step in PPP, G6PDH is a highly conserved enzyme and its deficiency can lead to severe consequences for the organism, in particular for cell growth. Insufficient G6PDH activity can lead to cell growth arrest, impaired embryonic development, as well as a reduction in insulin sensitivity, inflammation, diabetes, and hypertension. While research on G6PDH and PPP has historically focused on mammalian models, particularly human disorders, recent studies have shed light on the regulation of this enzyme in arthropods, where new functions were discovered. This review will discuss the role of arthropod G6PDH in regulating redox homeostasis and immunometabolism and explore potential avenues for further research on this enzyme in various metabolic adaptations.
Collapse
Affiliation(s)
- Bruno Moraes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Renato Martins
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Cintia Lopes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Ronald Martins
- Programa de Computação Científica, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
| | - Angélica Arcanjo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Jhenifer Nascimento
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Itabajara da Silva Vaz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carlos Logullo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Yoo JW, Bae HJ, Jeon MJ, Jeong TY, Lee YM. Metabolomic analysis of combined exposure to microplastics and methylmercury in the brackish water flea Diaphanosoma celebensis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6807-6822. [PMID: 36445536 DOI: 10.1007/s10653-022-01435-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Owing to their widespread distribution and high bioaccumulation, microplastics (MPs) and mercury (Hg) are considered major threats to the ocean. MP interacts with Hg because of its high adsorption properties. However, their toxicological interactions with marine organisms, especially combined effects at the molecular level, are poorly understood. This study investigated the single and combined effects of MP and Hg on the metabolic profile of the brackish water flea Diaphanosoma celebensis. A total of 238 metabolites were significantly affected by MP, Hg, or MP + Hg. Metabolite perturbation patterns showed that toxicity of Hg and MP + Hg was similar and that of MP was not significant. Among the 223 metabolites affected by Hg, profiles of 32 unannotated metabolites were significantly different from those of MP + Hg, and combined effects of MP + Hg decreased the effect of Hg on 25 of these metabolites. Only 11 annotated metabolites were significantly affected by Hg or MP + Hg and were related to carbohydrate, lipid, vitamin, and ecdysteroid metabolism. Ten metabolites were decreased by Hg and MP + Hg and were not significantly different between the exposure groups. Enrichment analysis showed that galactose, starch, and sucrose metabolism were the most affected pathways. These findings suggest that MP has negligible toxic effect, and Hg can induce energy depletion, membrane damage, and disruption of growth, development, and reproduction. Although the impact of MP was negligible, the combined effects of MP + Hg could be metabolite specific. This study provides better understanding of the combined effects of MP and Hg on marine organisms.
Collapse
Affiliation(s)
- Je-Won Yoo
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Hyeon-Jeong Bae
- Department of Environmental Science, Hankuk University of Foreign Studies, 81 Oedae-Ro, Mohyeon-Eup, Cheoin-Gu, Yongin-Si, 17035, Republic of Korea
| | - Min Jeong Jeon
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Tae-Yong Jeong
- Department of Environmental Science, Hankuk University of Foreign Studies, 81 Oedae-Ro, Mohyeon-Eup, Cheoin-Gu, Yongin-Si, 17035, Republic of Korea.
| | - Young-Mi Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul, 03016, Republic of Korea.
| |
Collapse
|
6
|
De Felice B, Parolini M. Exposure to 3,4-methylenedioxymethamphetamine (MDMA) induced biochemical but not behavioral effects in Daphnia magna. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104163. [PMID: 37257268 DOI: 10.1016/j.etap.2023.104163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Among amphetamine like stimulants (ATS), the 3,4-methylenedioxymethamphetamine (MDMA) is often detected in sewage and surface waters, representing a potential threat for organisms because of its peculiar mechanism of action (i.e., stimulatory and hallucinogenic). The present study aimed at investigating biochemical (i.e., oxidative stress and energetic biomarkers) and behavioral (i.e., swimming activity) effects induced by a 21-days exposure to two concentrations (50 ng/L and 500 ng/L) of MDMA towards Daphnia magna. The amount of reactive oxygen species (ROS), the activity of antioxidant (SOD, CAT, GPx) and detoxifying (GST) enzymes and lipid peroxidation were measured as oxidative stress-related endpoints. Total energy content was estimated from the measurement of protein, carbohydrate and lipid content to assess energy reserves. The modulation of swimming activity was assessed as behavioral endpoint. Slight effects of MDMA exposure on oxidative stress responses and energy reserves were observed, while no alterations of the swimming behavior was noted.
Collapse
Affiliation(s)
- Beatrice De Felice
- University of Milan, Department of Environmental Science and Policy, Via Celoria 26, I-20133 Milan, Italy.
| | - Marco Parolini
- University of Milan, Department of Environmental Science and Policy, Via Celoria 26, I-20133 Milan, Italy
| |
Collapse
|
7
|
Diogo BS, Antunes SC, Rodrigues S. Are biopesticides safe for the environment? Effects of pyrethrum extract on the non-target species Daphnia magna. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104114. [PMID: 37001686 DOI: 10.1016/j.etap.2023.104114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Biopesticides are natural compounds considered more safe and sustainable for the environment. However, it is also important to evaluate the potential risk in non-target organisms. Pyrethrum extract (PE) is a biopesticide, widely used for agriculture, veterinary, and aquaculture. This work aimed to evaluate acute (0.6 - 40.0 µg/L; 96 h; E(L)C50 toxicity) and sub-chronic (0.7 - 1.1 µg/L; 10 d; life-history parameters) effects of PE on Daphnia magna. Moreover, a biomarkers approach using antioxidant and biotransformation capacity, lipid peroxidation (LPO), neurotoxicity, and energy reserves content were evaluated. Acute effects (mortality, changes in swimming behavior, oxidative stress, lipid peroxidation, neurotoxicity) were recorded with the increase in PE concentration. Sub-chronic assay showed an increase in energy reserves content, antioxidant parameters, and LPO demonstrating that PE unbalances oxidative metabolism. This study can conclude that PE potentiates toxic effects in D. magna and demonstrates the vulnerability of a non-target organism to PE that is considered environmentally safe.
Collapse
Affiliation(s)
- B S Diogo
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - S C Antunes
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal; CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - S Rodrigues
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal; CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal.
| |
Collapse
|
8
|
Salesa B, Sancho E, Ferrando-Rodrigo MD, Torres-Gavilá J. The prochloraz chronic exposure to Daphnia magna derived in biochemical alterations of F0 generation daphnids and malformed F1 progeny. CHEMOSPHERE 2022; 307:135848. [PMID: 35948089 DOI: 10.1016/j.chemosphere.2022.135848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
In the present study, D. magna individuals were exposed to several sublethal prochloraz concentrations (87, 130, 170, 230 and 380 μg/L) for 21 days according to; the previous acute toxicity results. The fungicide effects on reproduction, survival, individual size, and growth population rate were evaluated after an exposure of 21 days, and no changes were observed compared to the control group. On the other hand, F1 generation neonates were collected and their external morphology evaluated; to estimate if the fungicide concentrations used induced effects during oogenesis and; embryogenesis processes. Neonates from parents which were previously exposed to 170 μg/L and higher concentrations were malformed since 16-d of exposure onward. All animals presented the same malformation: asymmetrical shell morphology and separated valves that did not cover the complete animal body regardless of the; concentration. The biochemical parameters tested in the broodstock were cholesterol, triglycerides, glucose and LDH activity. At the end of the chronic exposure experiment, cholesterol and triglycerides remained unaltered while glucose and the LDH enzyme levels increased significantly. The results of the present work showed a direct effect of; prochloraz on D. magna individual growth, along with mobilization of some; biochemical intermediate metabolism. A daphnid stress response as a result of the fungicide presence in the medium could be an explanation for the metabolic disorders. On the other hand, the F1 malformed neonates found in the present study suggested an effect of prochloraz among different daphnid generations and more studies would be necessary in this field.
Collapse
Affiliation(s)
- Beatriz Salesa
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001, Valencia, Spain.
| | - Encarnación Sancho
- Laboratory of Ecotoxicology, Dept. Functional Biology and Physical Anthropology. Faculty of Biology. University of Valencia, Dr. Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - María Dolores Ferrando-Rodrigo
- Laboratory of Ecotoxicology, Dept. Functional Biology and Physical Anthropology. Faculty of Biology. University of Valencia, Dr. Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - Javier Torres-Gavilá
- Instituto de Investigación en Medio Ambiente y Ciencia Marina (IMEDMAR-UCV). C/Guillem de Castro 94, 46001, Valencia, Spain
| |
Collapse
|
9
|
Evaluation of Toxicity of Crude Phlorotannins and Phloroglucinol Using Different Model Organisms. Toxins (Basel) 2022; 14:toxins14050312. [PMID: 35622559 PMCID: PMC9148043 DOI: 10.3390/toxins14050312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Phlorotannins have been proven to contain numerous bioactive compounds that have potential to be applied in variety industries, including cosmetics, functional foods, nutraceuticals, environmental management, and medicine. The larvicidal and growth-inhibiting properties of phlorotannins have been extensively studied in various organisms. However, the toxicity of the phloroglucinol oligomer of phlorotannin is unclear, especially in Artemia salina, Daphnia magna, Lactuca sativa, and Chlorella vulgaris, which are commonly used in many bioassays. Therefore, research using these four organisms should be designed to provide basic information about the toxic effects of phlorotannins and phloroglucinol. This study aimed to evaluate the larvicidal and inhibitory properties of phlorotannins and phloroglucinol on A. salina, D. magna, L. sativa, and C. vulgaris. Phlorotannin extract and phloroglucinol were administered at various concentrations to each test organism. The survival rate of A. salina nauplii and D. magna neonates was observed every 24 h to 72 h, whereas the L. sativa seed germination and inhibition rate of C. vulgaris were observed up to 96 h. The results showed that the 24 h LC50 of phlorotannin on A. salina and D. magna were 10.67 and 1.32 mg/mL, respectively. The germination inhibition of L. sativa was 53.3% with a seed growth of less than 4 mm after 96 h upon exposure to 1 mg/mL of phlorotannin. Freshwater and seawater C. vulgaris experienced yield inhibition of 39.47 and 43.46%, respectively, when 2 mg/mL of phlorotanin was added. These results indicate that phlorotannin affects the survival and growth of the test organisms, so its use as a pesticide, herbicide, and algaecide agent for environmental and aquaculture applications can be further studied.
Collapse
|
10
|
Jovanović Glavaš O, Stjepanović N, Hackenberger BK. Influence of nano and bulk copper on agile frog development. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:357-365. [PMID: 35001260 DOI: 10.1007/s10646-021-02506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Nanotechnology, as one of the fastest-growing industries, offers many benefits in various fields. However, properties that contribute to its positive effects, in other context, can cause adverse effects to various organisms, such as amphibians. Identifying possible negative effects on its survival is crucial since amphibians are the most threatened group of vertebrates. In that context, we investigated the influence of both nano and bulk copper on embryonic development of agile frog, Rana dalmatina. The embryos were exposed to various concentrations (0.01 mg/L, 0.075 mg/L, 0.15 mg/L or 0.3 mg/L) of either nano (CuO, declared size 40-80 nm) or bulk form (CuSO4·5H2O) for 16 days. Upon the experiment, tadpoles were measured and weighted, then homogenized and their protein, lipid, and carbohydrates content determined, as well as the activity of LDH. Our results suggest stronger negative influence of nano copper to size and weight of tadpoles, and bulk copper on lipid content, while both had strong negative effect on carbohydrates content, and LDH activity. In addition, our results suggest agile frog to be more susceptible to negative influence of both, nano and bulk copper, than commonly used Xenopus laevis.
Collapse
Affiliation(s)
- Olga Jovanović Glavaš
- Department of Biology, University of Osijek, Cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - Nikolina Stjepanović
- Department of Biology, University of Osijek, Cara Hadrijana 8/A, 31000, Osijek, Croatia
| | | |
Collapse
|
11
|
Fajana HO, Hogan NS, Siciliano SD. Does habitat quality matter to soil invertebrates in metal-contaminated soils? JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124969. [PMID: 33418293 DOI: 10.1016/j.jhazmat.2020.124969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
This study investigated the influence of habitat quality (HQ) on the reproduction and bioenergetics (energy reserve and metabolic enzyme activities) of the oribatid mite, Oppia nitens, in response to cadmium (Cd). In the baseline toxicity test, Cd elevated the carbohydrate reserve of adult mites at intermediate Cd concentrations (88 and 175 mg Cd kg-1) but without a change in lipid and protein reserve across 0-700 mg Cd kg-1. The activities of glucose metabolism enzymes, glucose-6-phosphate dehydrogenase (G6PDH) and pyruvate kinase (PK) were inhibited in the mites at 700 mg Cd kg-1. Adult mites reared in high HQ soils had higher reproduction relative to mites from low HQ soils when exposed to Cd in OECD soil, but there was no difference in bioenergetics between mites from low and high HQ soils. Hence, HQ significantly (p = 0.024) influenced the reproduction of mites (i.e., juvenile production) irrespective of the Cd concentration in the OECD soil but did not significantly affect the bioenergetics of the mites. We suggest that habitat quality's effect could be more significant than metal concentration on the biological fitness (juvenile production) of O. nitens in metal-contaminated soils.
Collapse
Affiliation(s)
- Hamzat O Fajana
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Natacha S Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Steven D Siciliano
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada.
| |
Collapse
|
12
|
Tkaczyk A, Bownik A, Dudka J, Kowal K, Ślaska B. Daphnia magna model in the toxicity assessment of pharmaceuticals: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143038. [PMID: 33127157 DOI: 10.1016/j.scitotenv.2020.143038] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/16/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Daphnia magna is one of the most commonly used model organism to assess toxicity of wide range of pharmaceuticals such as antibiotics, anticancer drugs, antidepressants, anti-inflammatory drugs, beta-blockers and lipid-regulating agents. Currently, daphnia toxicity tests based on immobilisation and lethality standardised by OECD, acute immobilisation test and reproduction test, are mainly used in toxicological studies. Detailed analysis of Daphnia biology allows distinguishing the swimming behaviour and physiological endpoints such as swimming speed, distance travelled, hopping frequency, heart rate, ingestion rate, feeding rate, oxygen consumption, thoracic limb activity which could be also useful in assessment of toxic effects. The advantage of behavioural and physiological parameters is the possibility to observe sublethal effects induced by lower concentrations of pharmaceuticals which would not be possible to notice by using OECD tests. Additionally, toxic effects of tested drugs could be assessed using enzymatic and non-enzymatic biomarkers of daphnia toxicity. This review presents scientific data considering characteristics of D. magna, analysis of immobilisation, lethality, reproductive, behavioural, physiological and biochemical parameters used in the toxicity assessment of pharmaceuticals. The aim of this paper is also to emphasize usefulness, advantages and disadvantages of these invertebrate model organisms to assess toxicity of different therapeutic classes of pharmaceuticals. Also, various examples of application of D. magna in studies on pharmaceutical toxicity are presented.
Collapse
Affiliation(s)
- Angelika Tkaczyk
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-62 Lublin, Poland.
| | - Jarosław Dudka
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Krzysztof Kowal
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Brygida Ślaska
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| |
Collapse
|
13
|
Gismondi E, Daneels L, Damseaux F, Lehnert K, Siebert U, Das K. Preliminary study of oxidative stress biomarkers and trace elements in North Sea Harbour Seals. MARINE POLLUTION BULLETIN 2021; 163:111905. [PMID: 33360729 DOI: 10.1016/j.marpolbul.2020.111905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
This preliminary study investigated the potential correlations between trace elements (mercury, zinc, cadmium, copper, selenium, lead, nickel, chromium, lithium and vanadium) concentrations, measured in red blood cells, and oxidative stress biomarkers (total thiols, total glutathione, total and selenium-dependent glutathione peroxidases, triglycerides, malondialdehyde) assessed in the respective serum, in males and females P. vitulina, sampled in the Wadden Sea in spring and autumn 2015. Only concentrations of total mercury and zinc showed significant differences by sex, and only lipid peroxidation was different by season. Moreover, significant positive and negative correlations were observed between biomarkers (triglycerides, thiols, malondialdehyde, glutathione) and trace element concentrations (copper, lead, mercury, nickel, zinc). These findings suggest that the studied biomarkers could be useful for the assessment of oxidative stress in harbour seals exposed to trace elements, but further research with larger sample sizes is needed to better understand their specific associations.
Collapse
Affiliation(s)
- Eric Gismondi
- Laboratory of Animal Ecology and Ecotoxicology (LEAE), Freshwater and Oceanic Sciences Unit of ReSearch (FOCUS), University of Liège B6c, 11 allée du 6 Août, 4000 Liège, Belgium.
| | - Lucienne Daneels
- Laboratory of Animal Ecology and Ecotoxicology (LEAE), Freshwater and Oceanic Sciences Unit of ReSearch (FOCUS), University of Liège B6c, 11 allée du 6 Août, 4000 Liège, Belgium; Laboratory of Oceanology, Freshwater and Oceanic Sciences Unit of ReSearch (FOCUS), University of Liège B6c, 11 Allée du 6 Août, 4000 Liège, Belgium
| | - France Damseaux
- Laboratory of Oceanology, Freshwater and Oceanic Sciences Unit of ReSearch (FOCUS), University of Liège B6c, 11 Allée du 6 Août, 4000 Liège, Belgium
| | - Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 25761 Büsum, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 25761 Büsum, Germany
| | - Krishna Das
- Laboratory of Oceanology, Freshwater and Oceanic Sciences Unit of ReSearch (FOCUS), University of Liège B6c, 11 Allée du 6 Août, 4000 Liège, Belgium
| |
Collapse
|
14
|
Kafel A, Babczyńska A, Zawisza-Raszka A, Tarnawska M, Płachetka-Bożek A, Augustyniak M. Energy reserves, oxidative stress and development traits of Spodoptera exigua Hübner individuals from cadmium strain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115366. [PMID: 33035914 DOI: 10.1016/j.envpol.2020.115366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Cadmium as a common environmental stressor may exert highly toxic effects on herbivorous insects. The question was whether possible elevation of an oxidative stress and imbalance of energetic reserves in insects may depend on developmental stage, sex and insect population's multigenerational history of exposure to cadmium. So, the aim of this study was to compare of the development traits, total antioxidant capacity, lipid peroxidation, RSSR to RSH ratio and the concentration of carbohydrates, glycogen, lipids and proteins in whole individuals (larvae or pupae) of Spodoptera exigua originating from two strains: control and selected over 120 generations with sublethal metal concentration (44 Cd mg per dry weight of diet). Generally, the increase of the protein, carbohydrates, glycogen concentration and lipid peroxidation decrease with age of the larvae were found. Revealed cases of a higher mobilisation of carbohydrates and proteins, and changes in total antioxidant capacity or lipid peroxidation, in individuals being under metal exposure, occurred in strain-depended mode. Short-term Cd exposure effect was connected with possible higher engagement of proteins and glycogen in detoxification processes, but also higher concentration of lipid peroxidation. In turn, for long-term Cd exposure effect lower lipids concentration and higher thiols usage seemed to be more specific.
Collapse
Affiliation(s)
- Alina Kafel
- University of Silesia in Katowice, Department of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, PL 40-007, Katowice, Poland.
| | - Agnieszka Babczyńska
- University of Silesia in Katowice, Department of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, PL 40-007, Katowice, Poland
| | - Agnieszka Zawisza-Raszka
- University of Silesia in Katowice, Department of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, PL 40-007, Katowice, Poland; Municipal Botanical Garden in Zabrze, Piłsudskiego 60, PL 41-800, Zabrze, Poland
| | - Monika Tarnawska
- University of Silesia in Katowice, Department of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, PL 40-007, Katowice, Poland
| | - Anna Płachetka-Bożek
- University of Silesia in Katowice, Department of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, PL 40-007, Katowice, Poland
| | - Maria Augustyniak
- University of Silesia in Katowice, Department of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, PL 40-007, Katowice, Poland
| |
Collapse
|
15
|
Luo P, Wang N, Lu M, Chen X, Ji Y, Wang W, Xu Z, Jiang J, Zhang C, Xiao X. Acute and subchronic toxicity of Ag +-laden liposomes on Daphnia magna: the effect of encapsulation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1349-1358. [PMID: 32693685 DOI: 10.1080/10934529.2020.1794444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
The toxic effects of various substances on Daphnia magna (D. magna) observed through traditional waterborne uptake may involve alterations to the nutritional quality of the contaminated algae and culture media. It is essential to find an alternative delivery method that will not affect the nutritional quality of D. magna's diet in order to elucidate the mechanisms of dietary metal toxicity. Therefore, this study examined the application of liposome encapsulation on the dietary toxicity of D. magna. Ag+-laden liposomes were prepared and the Ag encapsulation efficiency and inhibition effect on algae growth were examined. Then, acute and 14-day subchronic studies were performed to examine the effect of Ag+-laden liposomes on D. magna. The EC50 for the 24 h immobilization test was 10.59 µg/L for Ag+-laden liposomes and 3.07 µg/L for Ag+. In terms of subchronic effects, the estimated ECx values under the Ag+-laden liposome condition were always higher than the direct exposure condition. Furthermore, the bioaccumulation of Ag+-laden liposomes was about 1.68 times lower than direct exposure. Generally, Ag+-laden liposomes produced less efficient toxicity than direct exposure, e.g., lower D. magna mortality, production of more neonates, higher intrinsic rate of natural increase (rm), earlier time to first brood, and higher enzyme activities.
Collapse
Affiliation(s)
- Ping Luo
- School of Environment and Geo-informatics, China University of Mining and Technology, Xuzhou, China
| | - Na Wang
- School of Environment and Geo-informatics, China University of Mining and Technology, Xuzhou, China
| | - Mengtian Lu
- School of Environment and Geo-informatics, China University of Mining and Technology, Xuzhou, China
| | - Xiaoqu Chen
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Youqing Ji
- School of Environment and Geo-informatics, China University of Mining and Technology, Xuzhou, China
| | - Wenxuan Wang
- School of Environment and Geo-informatics, China University of Mining and Technology, Xuzhou, China
| | - Zhaona Xu
- School of Environment and Geo-informatics, China University of Mining and Technology, Xuzhou, China
| | - Jiachao Jiang
- School of Environment and Geo-informatics, China University of Mining and Technology, Xuzhou, China
| | - Chenglong Zhang
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai, China
| | - Xin Xiao
- School of Environment and Geo-informatics, China University of Mining and Technology, Xuzhou, China
| |
Collapse
|
16
|
Kim HJ, Lee D, Won CH, Kim HW. Statistical correlation of ecotoxicity and water quality parameters in slaughterhouse wastewater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1671-1680. [PMID: 31087230 DOI: 10.1007/s10653-019-00314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
The major causes of toxicity in slaughterhouse wastewater are identified by analyzing the relationship between representative pollutants and the acute toxicity of Daphnia magna. Experimental results demonstrate that organic matters are strongly associated with the acute toxicity. Among many organic pollutants, proteins and carbohydrates were found to be the main toxicity inducers that cause metabolic transformation of D. magna. Statistical correlation between biodegradable soluble organics and the acute toxicity further explains how principal pollutants play potential toxin roles. Also, this study verifies that the variations of biochemical oxygen demand over total chemical oxygen demand (BOD TCOD-1) as well as total organic carbon over total carbon (TOC TC-1) can be indirect indicators explaining the acute toxicity of D. magna because the removal of non-degradable and non-soluble organic matters is connected to the toxicity removal. Overall, these results provide how the acute toxicity of D. magna is attributed to pollutants and what is the potential source of threats to society in slaughterhouse wastewater.
Collapse
Affiliation(s)
- Hee-Jun Kim
- Division of Environmental Engineering, Soil Environment Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Korea
| | - Donggwan Lee
- Division of Environmental Engineering, Soil Environment Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Korea
| | - Chan-Hee Won
- Division of Environmental Engineering, Soil Environment Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Korea
| | - Hyun-Woo Kim
- Division of Environmental Engineering, Soil Environment Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Korea.
| |
Collapse
|
17
|
Liaghati Mobarhan Y, Soong R, Lane D, Simpson AJ. In vivo comprehensive multiphase NMR. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:427-444. [PMID: 32239574 DOI: 10.1002/mrc.4832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 06/11/2023]
Abstract
Traditionally, due to different hardware requirements, nuclear magnetic resonance (NMR) has developed as two separate fields: one dealing with solids, and one with solutions. Comprehensive multiphase (CMP) NMR combines all electronics and hardware (magic angle spinning [MAS], gradients, high power Radio Frequency (RF) handling, lock, susceptibility matching) into a universal probe that permits a comprehensive study of all phases (i.e., liquid, gel-like, semisolid, and solid), in intact samples. When applied in vivo, it provides unique insight into the wide array of bonds in a living system from the most mobile liquids (blood, fluids) through gels (muscle, tissues) to the most rigid (exoskeleton, shell). In this tutorial, the practical aspects of in vivo CMP NMR are discussed including: handling the organisms, rotor preparation, sample spinning, water suppression, editing experiments, and finishes with a brief look at the potential of other heteronuclei (2 H, 15 N, 19 F, 31 P) for in vivo research. The tutorial is aimed as a general resource for researchers interested in developing and applying MAS-based approaches to living organisms. Although the focus here is CMP NMR, many of the approaches can be adapted (or directly applied) using conventional high-resolution magic angle spinning, and in some cases, even standard solid-state NMR probes.
Collapse
Affiliation(s)
- Yalda Liaghati Mobarhan
- Environmental NMR Center, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Ronald Soong
- Environmental NMR Center, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Lane
- Environmental NMR Center, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Andre J Simpson
- Environmental NMR Center, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Anaraki MT, Lysak DH, Soong R, Simpson MJ, Spraul M, Bermel W, Heumann H, Gundy M, Boenisch H, Simpson AJ. NMR assignment of the in vivo daphnia magna metabolome. Analyst 2020; 145:5787-5800. [DOI: 10.1039/d0an01280g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Daphnia (freshwater fleas) are among the most widely used organisms in regulatory aquatic toxicology/ecology, while their recent listing as an NIH model organism is stimulating research for understanding human diseases and processes.
Collapse
Affiliation(s)
| | | | - Ronald Soong
- Department of Physical and Environmental Sciences
- University of Toronto Scarborough
- Toronto
- Canada
| | - Myrna J. Simpson
- Department of Physical and Environmental Sciences
- University of Toronto Scarborough
- Toronto
- Canada
- Department of Chemistry
| | | | | | | | | | | | - André J. Simpson
- Department of Physical and Environmental Sciences
- University of Toronto Scarborough
- Toronto
- Canada
- Department of Chemistry
| |
Collapse
|
19
|
Jegede OO, Awuah KF, Fajana HO, Owojori OJ, Hale BA, Siciliano SD. The forgotten role of toxicodynamics: How habitat quality alters the mite, Oppia nitens, susceptibility to zinc, independent of toxicokinetics. CHEMOSPHERE 2019; 227:444-454. [PMID: 31003129 DOI: 10.1016/j.chemosphere.2019.04.090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Soil habitat quality is thought to influence metal toxicity via changes in speciation and thereby toxicokinetics. Here, we assessed the toxicokinetic and toxicodynamic effects of habitat quality on mite, Oppia nitens when exposed to zinc (Zn) contaminated soils. Forty-seven soils were ranked into three habitat qualities; high, medium, and low based on biological reproduction of Folsomia candida, Enchytraeus crypticus, and Elymus lanceolatus. From the 47 soils, eighteen soils (comprising of six soils from each habitat quality) were randomly selected and dosed with field relevant concentrations of Zn. Mite survival and reproduction were assessed after 28 days. Total Zn, bioaccessible Zn, Zn bioavailability, Zn body burden, lactate dehydrogenase activity (LDH) and glucose-6-phosphate dehydrogenase (G6PDH) activities of the mites were determined. Zinc toxicity and potency were much less in the high compared to low quality soils and the mites in the high habitat quality soils tolerated higher zinc body burdens (2040 ± 130 μg/g b.w) than the lower habitat quality (1180 ± 310 μg/g b.w). Lower LDH activity (20 ± 2 μU mg-1) in the high quality soils compared to lower quality soils (50 ± 8 μU mg-1) suggested that there was less stress in the high habitat quality mites. Despite changes in speciation across habitat qualities, bioavailability of zinc was similar (∼20%) irrespective of habitat quality. Our results suggest that the influence of soil properties on survival is modulated by toxicodynamics rather than toxicokinetics. Restoring habitat quality may be more important for soil invertebrate protection than metal concentration at contaminated sites.
Collapse
Affiliation(s)
- Olukayode O Jegede
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5B3.
| | - Kobby F Awuah
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5B3
| | - Hamzat O Fajana
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5B3
| | - Olugbenga J Owojori
- Department of Soil Science, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5A8
| | - Beverley A Hale
- Department of Land Resource Science, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Steven D Siciliano
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5B3; Department of Soil Science, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5A8
| |
Collapse
|
20
|
Jenne A, Soong R, Bermel W, Sharma N, Masi A, Tabatabaei Anaraki M, Simpson A. Focusing on “the important” through targeted NMR experiments: an example of selective13C–12C bond detection in complex mixtures. Faraday Discuss 2019; 218:372-394. [DOI: 10.1039/c8fd00213d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here, a targeted NMR experiment is introduced which selectively detects the formation of13C–12C bonds in mixtures.
Collapse
Affiliation(s)
- Amy Jenne
- Environmental NMR Centre
- University of Toronto
- Toronto
- Canada
| | - Ronald Soong
- Environmental NMR Centre
- University of Toronto
- Toronto
- Canada
| | | | - Nisha Sharma
- Department of Agronomy, Food, Natural Resources, Animals and the Environment
- University of Padova
- Padova
- Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and the Environment
- University of Padova
- Padova
- Italy
| | | | - Andre Simpson
- Environmental NMR Centre
- University of Toronto
- Toronto
- Canada
| |
Collapse
|
21
|
Rodrigues S, Antunes SC, Correia AT, Nunes B. Oxytetracycline effects in specific biochemical pathways of detoxification, neurotransmission and energy production in Oncorhynchus mykiss. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:100-108. [PMID: 30098505 DOI: 10.1016/j.ecoenv.2018.07.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/04/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Oxytetracycline (OTC) is a tetracycline antibiotic, widely used in human and veterinary medicines, including in aquaculture. Given this use, OTC has been detected in different aquatic environments. Some recent works have demonstrated unintentional biological activity of OTC in non-target aquatic organisms. This study investigated the acute and chronic effects of OTC on the physiology of the fish species Oncorhynchus mykiss (rainbow trout), namely through the quantification of the activity of enzymes involved in different biochemical pathways, such as detoxification (phase II - glutathione S-transferases - GSTs, uridine-diphosphate-glucuronosyltransferases - UGTs), neurotransmission (acetylcholinesterase - AChE) and energy production (lactate dehydrogenase - LDH). The here-obtained data demonstrated the induction of GSTs activity in gills, and inhibition of AChE activity in eyes tissue, in chronically exposed organisms, as well as alterations in LDH activity following both exposures. Considering this set of results, we can infer that OTC exposure may have induced the glutathione pathway of detoxification in gills with the involvement of GSTs, or indirectly due to the metabolites that may have been produced. In turn, these metabolites may have interfered with the mechanism of neurotransmission, also causing physiological and biochemical disturbances in rainbow trout after OTC exposure, namely disturbances in energetic metabolism. In addition, it is important to stress that such occurrences took place at low, environmentally realistic levels of OTC, suggesting that organisms exposed in the wild may be putative targets of toxic effects by commonly used drugs such as antibiotics.
Collapse
Affiliation(s)
- S Rodrigues
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - S C Antunes
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - A T Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - B Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
22
|
Pigneret M, Roussel D, Hervant F. Anaerobic end-products and mitochondrial parameters as physiological biomarkers to assess the impact of urban pollutants on a key bioturbator. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:27225-27234. [PMID: 30030757 DOI: 10.1007/s11356-018-2756-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
The impact of long-term exposure (6 months) to highly or slightly polluted sediments on the energy metabolism of an ecosystem engineer (the oligochaete Limnodrilus hoffmeisteri) was investigated in laboratory conditions. We evaluated some mitochondrial parameters (respiratory chain activity and ATP production rate) and the accumulation of anaerobic end-products (lactate, alanine, succinate, and propionate). The sediments were collected from stormwater infiltration basins and presented high levels of heavy metals and polycyclic aromatic hydrocarbons (PAHs). These compounds had been drained by the runoff water on impervious surfaces of urban areas during rainfall events. A decrease in the activity of the mitochondrial electron transport chain was observed in worms exposed to the most polluted sediment. Urban contaminants disrupted both aerobic metabolism and mitochondrial functioning, forcing organisms to shift from aerobic to anaerobic metabolism (which is characteristic of a situation of functional hypoxia). Although L. hoffmeisteri is very tolerant to urban pollutants, long-term exposure to high concentrations can cause disruption in mitochondrial activity and therefore energy production. Finally, this study demonstrated that anaerobic end-products could be used as biomarkers to evaluate the impact of a mixture of urban pollutants on invertebrates.
Collapse
Affiliation(s)
- Mathilde Pigneret
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), UMR CNRS 5023, Université de Lyon, Université Lyon 1, ENTPE, 6 rue Raphael Dubois, 69622, Villeurbanne, France.
| | - Damien Roussel
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), UMR CNRS 5023, Université de Lyon, Université Lyon 1, ENTPE, 6 rue Raphael Dubois, 69622, Villeurbanne, France
| | - Frédéric Hervant
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), UMR CNRS 5023, Université de Lyon, Université Lyon 1, ENTPE, 6 rue Raphael Dubois, 69622, Villeurbanne, France
| |
Collapse
|
23
|
Tabatabaei Anaraki M, Dutta Majumdar R, Wagner N, Soong R, Kovacevic V, Reiner EJ, Bhavsar SP, Ortiz Almirall X, Lane D, Simpson MJ, Heumann H, Schmidt S, Simpson AJ. Development and Application of a Low-Volume Flow System for Solution-State in Vivo NMR. Anal Chem 2018; 90:7912-7921. [DOI: 10.1021/acs.analchem.8b00370] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Maryam Tabatabaei Anaraki
- Department of Physical and Environment Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Rudraksha Dutta Majumdar
- Department of Physical and Environment Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Nicole Wagner
- Department of Physical and Environment Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Ronald Soong
- Department of Physical and Environment Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Vera Kovacevic
- Department of Physical and Environment Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Eric J. Reiner
- Department of Physical and Environment Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
- Ministry of Environment and Climate Change, Toronto, Ontario M9P 3V6, Canada
| | | | | | - Daniel Lane
- Department of Physical and Environment Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Myrna J. Simpson
- Department of Physical and Environment Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | | | | | - André J. Simpson
- Department of Physical and Environment Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| |
Collapse
|
24
|
Fidder BN, Reátegui-Zirena EG, Salice CJ. Diet quality affects chemical tolerance in the freshwater snail Lymnaea stagnalis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1158-1167. [PMID: 29266349 DOI: 10.1002/etc.4064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/14/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
Organisms generally select high-quality diets to obtain maximal energy while devoting the least amount of time and energy. Diets, however, can vary in natural systems. In ecotoxicological testing, the effect of diet type on organismal responses to toxicants has not been explored despite the potential for dietary effects to influence toxicological endpoints. We first evaluated diet quality using growth rate and sensitivity to the fungicide pyraclostrobin of Lymnaea stagnalis fed lettuce (common laboratory diet), turtle pellets (high nutrient composition), and a combination diet of both food items. We also measured the macronutrient content of snails raised on the multiple diets to determine how diet may have impacted energy allocation patterns. Finally, we evaluated whether snails discernibly preferred a particular diet. Snails fed high-nutrient and combination diets grew larger overall than snails fed a lettuce-only diet. Snails fed the high-nutrient and combination diets, both juvenile and adult, were significantly more tolerant to pyraclostrobin than snails fed lettuce. When measured for macronutrient content, snails raised on high-nutrient and combination diets had significantly higher carbohydrate content than snails fed lettuce. Despite the strong effects of diet type, snails did not exhibit a clear diet choice in preference trials. Dietary composition clearly influences growth rate, sensitivity, and macronutrient content of Lymnaea stagnalis. These results suggest that the nutritional environment has potentially strong impacts on toxicant sensitivity. Environ Toxicol Chem 2018;37:1158-1167. © 2017 SETAC.
Collapse
Affiliation(s)
- Bridgette N Fidder
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, USA
| | - Evelyn G Reátegui-Zirena
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, USA
| | - Christopher J Salice
- Environmental Science and Studies Program, Towson University, Towson, Maryland, USA
| |
Collapse
|
25
|
Doyle JJ, Ward JE, Wikfors GH. Acute exposure to TiO 2 nanoparticles produces minimal apparent effects on oyster, Crassostrea virginica (Gmelin), hemocytes. MARINE POLLUTION BULLETIN 2018; 127:512-523. [PMID: 29475691 DOI: 10.1016/j.marpolbul.2017.12.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 06/08/2023]
Abstract
The response of oyster (Crassostrea virginica) hemocytes was studied following exposure to anatase nanoparticles (ca. 7.4nm), surface-coated rutile nanocomposites (UV-Titan M212, ca. 86nm) and bulk titanium dioxide (TiO2) particles (anatase and rutile crystalline forms; 0.4-0.5μm). Hemocytes were collected from oysters and exposed to one of the four particle types at concentrations of 0.1, 0.5, and 1.0mg/L under dark and environmentally-relevant light conditions for periods of two and four hours. Hemocyte mortality, phagocytosis, and reactive oxygen species (ROS) production were then evaluated using flow-cytometric assays. Bulk and nanoparticulate TiO2 had little effect on viability of oyster hemocytes or on production of ROS. Significant changes in phagocytosis occurred after exposure to anatase nanoparticles for 4h under dark conditions, and UV-Titan for 2h under light conditions. Results demonstrate that TiO2 particles (bulk or nanoscale) produce minimal effects on hemocyte biomarkers examined following acute, in vitro exposures.
Collapse
Affiliation(s)
- John J Doyle
- Gloucester Marine Genomics Institute, 55 Blackburn Center, Gloucester, MA 01930, USA.
| | - J Evan Ward
- University of Connecticut, Department of Marine Sciences, 1080 Shennecossett Road, Groton, CT 06340, USA.
| | - Gary H Wikfors
- National Oceanic and Atmospheric Administration, Northeast Fisheries Science Center, 212 Rogers Avenue, Milford, CT 06460, USA.
| |
Collapse
|
26
|
da Silva Aires M, Paganini CL, Bianchini A. Biochemical and physiological effects of nickel in the euryhaline crab Neohelice granulata (Dana, 1851) acclimated to different salinities. Comp Biochem Physiol C Toxicol Pharmacol 2018; 204:51-62. [PMID: 29191712 DOI: 10.1016/j.cbpc.2017.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 11/30/2022]
Abstract
The estuarine crab Neohelice granulata was maintained under control condition or exposed to sublethal concentrations of dissolved Ni (measured: 128 and 1010μg/L) for 96h at different salinities (2 and 30ppt). After metal exposure, whole-body oxygen consumption was measured and tissue (hemolymph, gills, hepatopancreas and muscle) samples were collected. Control crabs acclimated to 2ppt salinity showed lower hemolymph concentrations of Na+ (33%), Mg2+ (19%) and K+ (30%), as well as increased LPO levels in anterior gills (379%), posterior gills (457%) and hepatopancreas (35%) with respect to those acclimated to 30ppt salinity. In crabs acclimated to 2ppt salinity, Ni exposure increased whole-body oxygen consumption (75%), hemolymph K+ concentration (52%), hemolymph (135%) and hepatopancreas (62%) LDH activity. Also, it reduced hemolymph Cl- concentration (16%) and muscle LDH activity (33%). In crabs acclimated to 30ppt salinity, Ni exposure increased LDH activity in hemolymph (195%), hepatopancreas (126%) and muscle (53%), as well as hemolymph osmolality (10%), Cl- (26%) and Ca2+ (20%) concentration. It also reduced hepatopancreas lipid peroxidation (20%) and hemolymph Mg2+ (29%) and K+ (31%) concentration. These findings indicate that N. granulata is hyper-osmoregulating in 2ppt salinity and hypo-regulating in 30ppt salinity, showing adjustments of hemolymph ionic composition and metabolic rates, with consequent higher oxidative damage to lipids in low salinity (2ppt). Ni effects are associated with metabolic (aerobic and anaerobic) disturbances in crabs acclimated to 2ppt salinity, while osmotic and ionoregulatory disturbances were more evident in crabs acclimated to 30ppt salinity.
Collapse
Affiliation(s)
- Michele da Silva Aires
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, 96.201-900 Rio Grande, Rio Grande do Sul, Brazil
| | - Christianne Lorea Paganini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, 96.201-900 Rio Grande, Rio Grande do Sul, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, 96.201-900 Rio Grande, Rio Grande do Sul, Brazil.
| |
Collapse
|
27
|
Ni FJ, Kelly NE, Arhonditsis GB. Towards the development of an ecophysiological Daphnia model to examine effects of toxicity and nutrition. ECOL INFORM 2017. [DOI: 10.1016/j.ecoinf.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Martins D, Monteiro MS, Soares AMVM, Quintaneiro C. Effects of 4-MBC and triclosan in embryos of the frog Pelophylax perezi. CHEMOSPHERE 2017; 178:325-332. [PMID: 28334672 DOI: 10.1016/j.chemosphere.2017.03.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 06/06/2023]
Abstract
The widespread and increasing use of personal care products (PCPs) have led to environmental contamination by substances included in these products. These substances have been detected in aquatic compartments and shown to cause adverse effects on non-target aquatic organisms. In this work toxicity of the antimicrobial triclosan (TCS) and of the UV-filter 3-(4-methylbenzylidene) camphor (4-MBC) was assessed in the embryos of Perez' frog Pelophylax perezi. Lethal and sub-lethal parameters were evaluated in embryos in Gosner stage 8-9 exposed to 0.00013-1.3 mg/l of 4-MBC and 0.25-2.50 mg/l of TCS during 144 h. Survival, malformations, length and hatching were evaluated as apical endpoints. Biomarkers of neurotransmission, oxidative stress, energy metabolism and estrogenicity were determined at the biochemical level through the activities of cholinesterase (ChE), catalase (CAT), glutathione S-transferase (GST), lactate dehydrogenase (LDH) and levels of lipid peroxidation (LPO) and vitellogenin (Vtg). Embryo exposure to 4-MBC led to few developmental malformations (up to 3%) and a GST induction at 0.013 mg/l. Triclosan exposure reduced survival, delayed hatching (at 72 h) and development and induced malformations. In addiction ChE was inhibited in the highest concentrations tested and GST and LDH were induced at 0.79 mg/l, the LOEC registered for TCS in Perez' frogs. Overall, our study showed that TCS might exert adverse effects on P. perezi early life stages, but only at four orders of magnitude above the concentrations found in environment. Furthermore, our results highlight the need to assess PCPs toxicity at different levels of biological organization.
Collapse
Affiliation(s)
- Diana Martins
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marta S Monteiro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Quintaneiro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
29
|
Quintaneiro C, Patrício D, Novais SC, Soares AMVM, Monteiro MS. Endocrine and physiological effects of linuron and S-metolachlor in zebrafish developing embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:390-400. [PMID: 28209406 DOI: 10.1016/j.scitotenv.2016.11.153] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
Evaluation of the effects of linuron and S-metolachlor on apical, biochemical and transcriptional endpoints in zebrafish (Danio rerio) early life stages was the main purpose of this work. Embryos were exposed for 96h to a range of concentrations of each herbicide to determine lethal and sub-lethal effects on apical (e.g. malformations, hatching) and biochemical parameters (cholinesterase, ChE; catalase, CAT; glutathione S-transferase, GST; lipid peroxidation, LPO and lactate dehydrogenase, LDH). To evaluate endocrine disruption effects, embryos were exposed during 96h to 0.88mg/L linuron and 9.66mg/L S-metolachlor, isolated or in binary mixture. Expression of a suite of genes involved in HPT, HPG and HPA-axis was then assessed. Highest concentration of linuron (5.0mg/L) decreased hatching rate to 5% and 70.0mg/L S-metolachlor completely inhibited hatching, about 100%. Both herbicides impaired development by inducing several malformations (100% in 5.0mg/L linuron and 70.0mg/L S-metolachlor). Linuron only affected GST and CAT at concentrations of 0.25 and 0.0025mg/L, respectively. S-metolachlor induced GST (to 256%), inhibited ChE (to 61%) and LDH (to 60%) and reduced LPO levels (to 63%). Linuron isolated treatment seems to have an estrogenic mode of action due to the observed induction of vtg1. Exposure to S-metolachlor seems to interfere with steroidogenesis and with HPT and HPA-axis, since it has inhibited cyp19a2, TSHβ and CRH gene expression. In addition to vtg1 induction and CRH inhibition, herbicide combination also induced sox9b that has a role in regulation of sexual development in zebrafish. This study pointed out adverse effects of linuron and S-metolachlor, namely impairment of neurotransmission and energy production, induction of steroidogenesis, and interference with HPT and HPA-axis. These results contributed to elucidate modes of action of linuron and S-metolachlor in zebrafish embryo model. Furthermore, gene expression patterns obtained are indicative of endocrine disruption action of these herbicides.
Collapse
Affiliation(s)
- C Quintaneiro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - D Patrício
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - S C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal
| | - A M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M S Monteiro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
30
|
Bessa da Silva M, Abrantes N, Rocha-Santos TAP, Duarte AC, Freitas AC, Gomes AM, Carvalho AP, Marques JC, Gonçalves F, Pereira R. Effects of dietary exposure to herbicide and of the nutritive quality of contaminated food on the reproductive output of Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 179:1-7. [PMID: 27541481 DOI: 10.1016/j.aquatox.2016.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/02/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
Risk assessment of pesticides has been based on direct toxic effects on aquatic organisms. Indirect effects data are taken into account but with limitations, as it is frequently difficult to predict their real impacts in the ecosystems. In this context the main aim of this work was to assess how the exposure to the herbicide pendimethalin (Prowl(®)), under environmentally relevant concentrations, may compromise the nutritional composition of food for a relevant group of primary consumers of freshwater food webs-the daphnids, thus affecting their reproduction performance and subsequently the long-term sustainability of active populations of this grazer. Therefore, Daphnia magna individuals were chronically exposed in a clean medium to a control diet (NCF - i.e., non-contaminated green algae Raphidocelis subcapitata) and to a contaminated diet (CF - i.e., the same monoalgal culture grown in a medium enriched with pendimethalin in a concentration equivalent to the EC20 for growth inhibition of algae), during which reproductive endpoints were assessed. The algae were analysed for protein, carbohydrate and fatty acid content. The chemical composition of R. subcapitata in the CF revealed a slight decrease on total fatty acid levels, with a particular decrease of essential ω9 monounsaturated fatty acids. In contrast, the protein content was high in the CF. D. magna exposed to CF experienced a 16% reduction in reproduction, measured as the total number of offspring produced per female. Additionally, an internal pendimethalin body burden of 4.226μgg(-1) was accumulated by daphnids fed with CF. Hence, although it is difficult to discriminate the contribution of the pesticide (as a toxic agent transferred through the food web) from that of the food with a poor quality-compromised by the same pesticide, there are no doubts that, under environmentally relevant concentrations of pesticides, both pathways may compromise the populations of freshwater grazers in the long term, with consequences in the control of the primary productivity of these systems.
Collapse
Affiliation(s)
- M Bessa da Silva
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; CESAM (Centre of Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - N Abrantes
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; CESAM (Centre of Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - T A P Rocha-Santos
- CESAM (Centre of Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Departament of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - A C Duarte
- CESAM (Centre of Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Departament of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - A C Freitas
- CESAM (Centre of Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Departament of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - A M Gomes
- Center of Biotechnology and Fine Chemistry, Portuguese Catholic University, Rua Arquiteto Lobão Vital, 2511, 4202-401 Porto, Portugal
| | - A P Carvalho
- Instituto Superior de Engenharia do Porto, Porto Polytechnic Institute, REQUIMTE/LAQV, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - J C Marques
- MARE (Marine and Environmental Sciences Centre), Faculty of Science and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - F Gonçalves
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; CESAM (Centre of Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - R Pereira
- CIIMAR (Interdisciplinary Centre of Marine and Environmental Research), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; Departament of Biology & GreenUP/CITAB-UP, Faculty of Science, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
31
|
Matyja K, Małachowska-Jutsz A, Mazur AK, Grabas K. Assessment of toxicity using dehydrogenases activity and mathematical modeling. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:924-939. [PMID: 27021434 DOI: 10.1007/s10646-016-1650-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
Dehydrogenase activity is frequently used to assess the general condition of microorganisms in soil and activated sludge. Many studies have investigated the inhibition of dehydrogenase activity by various compounds, including heavy metal ions. However, the time after which the measurements are carried out is often chosen arbitrarily. Thus, it can be difficult to estimate how the toxic effects of compounds vary during the reaction and when the maximum of the effect would be reached. Hence, the aim of this study was to create simple and useful mathematical model describing changes in dehydrogenase activity during exposure to substances that inactivate enzymes. Our model is based on the Lagergrens pseudo-first-order equation, the rate of chemical reactions, enzyme activity, and inactivation and was created to describe short-term changes in dehydrogenase activity. The main assumption of our model is that toxic substances cause irreversible inactivation of enzyme units. The model is able to predict the maximum direct toxic effect (MDTE) and the time to reach this maximum (TMDTE). In order to validate our model, we present two examples: inactivation of dehydrogenase in microorganisms in soil and activated sludge. The model was applied successfully for cadmium and copper ions. Our results indicate that the predicted MDTE and TMDTE are more appropriate than EC50 and IC50 for toxicity assessments, except for long exposure times.
Collapse
Affiliation(s)
- Konrad Matyja
- Environmental Engineering Faculty, Department of Ecologistics and Environmental Risk Management, Wrocław University of Technology, Wroclaw, Poland.
| | - Anna Małachowska-Jutsz
- Environmental Biotechnology Department, Silesian University of Technology, Gliwice, Poland
| | - Anna K Mazur
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Technology, Wrocław, Poland
| | - Kazimierz Grabas
- Environmental Engineering Faculty, Department of Ecologistics and Environmental Risk Management, Wrocław University of Technology, Wroclaw, Poland
| |
Collapse
|
32
|
Rivero-Wendt CLG, Oliveira R, Monteiro MS, Domingues I, Soares AMVM, Grisolia CK. Steroid androgen 17α-methyltestosterone induces malformations and biochemical alterations in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 44:107-113. [PMID: 27137108 DOI: 10.1016/j.etap.2016.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/20/2016] [Accepted: 04/23/2016] [Indexed: 06/05/2023]
Abstract
The synthetic androgen 17α-methyltestosterone is widely used in fish aquaculture for sex reversion of female individuals. Little is known about the amount of MT residues reaching the aquatic environment and further impacts in non-target organisms, including fish early-life stages. Thus, in this work, zebrafish embryos were exposed to two forms of 17α-methyltestosterone: the pure compound (MT) and a formulation commonly used in Brazil (cMT). For MT, a 96h-LC50 of 10.09mg/l was calculated. MT also affected embryo development inducing tail malformations, edemas, abnormal development of the head, and hatching delay. At biochemical level MT inhibited vitellogenin (VTG) and inhibited cholinesterase and lactate dehydrogenase. cMT elicited similar patterns of toxicity as the pure compound (MT). Effects reported in this study suggest a potential environmental risk of MT, especially since the VTG effects occurred at environmental relevant concentrations (0.004mg/l).
Collapse
Affiliation(s)
- Carla Letícia Gediel Rivero-Wendt
- Departament of Biology, University Anhanguera-Uniderp, Campus Agrárias, R. Alexandre Herculano, 1400, Taquaral Bosque, CEP 79035-470 Campo Grande, MS, Brazil; Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Asa Norte, CEP 70910-900 Brasília, DF, Brazil.
| | - Rhaul Oliveira
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Asa Norte, CEP 70910-900 Brasília, DF, Brazil.
| | - Marta Sofia Monteiro
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Inês Domingues
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Amadeu Mortágua Velho Maia Soares
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus de Gurupi. Rua Badejós, Zona Rural, Cx. Postal 66, CEP 77402-970 Gurupi, TO, Brazil.
| | - Cesar Koppe Grisolia
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Asa Norte, CEP 70910-900 Brasília, DF, Brazil.
| |
Collapse
|
33
|
Karami A, Romano N, Hamzah H, Simpson SL, Yap CK. Acute phenanthrene toxicity to juvenile diploid and triploid African catfish (Clarias gariepinus): Molecular, biochemical, and histopathological alterations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:155-165. [PMID: 26845363 DOI: 10.1016/j.envpol.2016.01.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Information on the biological responses of polyploid animals towards environmental contaminants is scarce. This study aimed to compare reproductive axis-related gene expressions in the brain, plasma biochemical responses, and the liver and gill histopathological alterations in diploid and triploid full-sibling juvenile African catfish (Clarias gariepinus). Fish were exposed for 96 h to one of the two waterborne phenanthrene (Phe) concentrations [mean measured (SD): 6.2 (2.4) and 76 (4.2) μg/L]. In triploids, exposure to 76 μg/L Phe increased mRNA level of fushi tarazu-factor 1 (ftz-f1). Expression of tryptophan hydroxylase2 (tph2) was also elevated in both ploidies following the exposure to 76 μg/L Phe compared to the solvent control. In triploids, 76 μg/L Phe increased plasma alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) levels compared to the other Phe-exposed group. It also elevated lactate and glucose contents relative to the other groups. In diploids, however, biochemical biomarkers did not change. Phenanthrene exposures elevated glycogen contents and the prevalence of histopathological lesions in the liver and gills of both ploidies. This study showed substantial differences between diploids and triploids on biochemical and molecular biomarker responses, but similar histopathological alterations following acute Phe exposures.
Collapse
Affiliation(s)
- Ali Karami
- Laboratory of Aquatic Toxicology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Selangor, Malaysia.
| | - Nicholas Romano
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Selangor, Malaysia
| | - Hazilawati Hamzah
- Haematology & Clinical Biochemistry Laboratory, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Selangor, Malaysia
| | - Stuart L Simpson
- Centre for Environmental Contaminants Research, CSIRO Land and Water, Locked Bag 2007, Kirrawee, NSW 2234, Australia
| | - Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 Selangor, Malaysia
| |
Collapse
|
34
|
Lalouette L, Pottier MA, Wycke MA, Boitard C, Bozzolan F, Maria A, Demondion E, Chertemps T, Lucas P, Renault D, Maibeche M, Siaussat D. Unexpected effects of sublethal doses of insecticide on the peripheral olfactory response and sexual behavior in a pest insect. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:3073-3085. [PMID: 26686856 DOI: 10.1007/s11356-015-5923-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
Pesticides have long been used as the main solution to limit agricultural pests, but their widespread use resulted in chronic or diffuse environmental pollutions, development of insect resistances, and biodiversity reduction. The effects of low residual doses of these chemical products on organisms that affect both targeted species (crop pests) but also beneficial insects became a major concern, particularly because low doses of pesticides can induce unexpected positive--also called hermetic--effects on insects, leading to surges in pest population growth at greater rate than what would have been observed without pesticide application. The present study aimed to examine the effects of sublethal doses of deltamethrin, one of the most used synthetic pyrethroids, known to present a residual activity and persistence in the environment, on the peripheral olfactory system and sexual behavior of a major pest insect, the cotton leafworm Spodoptera littoralis. We highlighted here a hormetic effect of sublethal dose of deltamethrin on the male responses to sex pheromone, without any modification of their response to host-plant odorants. We also identified several antennal actors potentially involved in this hormetic effect and in the antennal detoxification or antennal stress response of/to deltamethrin exposure.
Collapse
Affiliation(s)
- Lisa Lalouette
- Sorbonne Université, UPMC-Paris 6, Institute of Ecology and Environnemental Sciences of Paris-Sensory Ecology Department, 7 Quai Saint Bernard, F-75005, Paris, France
| | - Marie-Anne Pottier
- Sorbonne Université, UPMC-Paris 6, Institute of Ecology and Environnemental Sciences of Paris-Sensory Ecology Department, 7 Quai Saint Bernard, F-75005, Paris, France
| | - Marie-Anne Wycke
- Sorbonne Université, UPMC-Paris 6, Institute of Ecology and Environnemental Sciences of Paris-Sensory Ecology Department, 7 Quai Saint Bernard, F-75005, Paris, France
| | - Constance Boitard
- Sorbonne Université, UPMC-Paris 6, Institute of Ecology and Environnemental Sciences of Paris-Sensory Ecology Department, 7 Quai Saint Bernard, F-75005, Paris, France
| | - Françoise Bozzolan
- Sorbonne Université, UPMC-Paris 6, Institute of Ecology and Environnemental Sciences of Paris-Sensory Ecology Department, 7 Quai Saint Bernard, F-75005, Paris, France
| | - Annick Maria
- Sorbonne Université, UPMC-Paris 6, Institute of Ecology and Environnemental Sciences of Paris-Sensory Ecology Department, 7 Quai Saint Bernard, F-75005, Paris, France
| | - Elodie Demondion
- Institute of Ecology and Environnemental Sciences of Paris-Sensory Ecology Department, INRA, Route de Saint-Cyr, F-78000, Versailles, France
| | - Thomas Chertemps
- Sorbonne Université, UPMC-Paris 6, Institute of Ecology and Environnemental Sciences of Paris-Sensory Ecology Department, 7 Quai Saint Bernard, F-75005, Paris, France
| | - Philippe Lucas
- Institute of Ecology and Environnemental Sciences of Paris-Sensory Ecology Department, INRA, Route de Saint-Cyr, F-78000, Versailles, France
| | - David Renault
- Université de Rennes 1, UMR CNRS 6553 Ecobio, 263 Avenue du Gal Leclerc, CS 74205, 35042, Rennes, France
| | - Martine Maibeche
- Sorbonne Université, UPMC-Paris 6, Institute of Ecology and Environnemental Sciences of Paris-Sensory Ecology Department, 7 Quai Saint Bernard, F-75005, Paris, France
| | - David Siaussat
- Sorbonne Université, UPMC-Paris 6, Institute of Ecology and Environnemental Sciences of Paris-Sensory Ecology Department, 7 Quai Saint Bernard, F-75005, Paris, France.
| |
Collapse
|
35
|
Lee BY, Kim HS, Hwang DS, Won EJ, Choi BS, Choi IY, Park HG, Rhee JS, Lee JS. Whole transcriptome analysis of the monogonont rotifer Brachionus koreanus provides molecular resources for developing biomarkers of carbohydrate metabolism. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 14:33-41. [PMID: 25746681 DOI: 10.1016/j.cbd.2015.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/05/2015] [Accepted: 02/13/2015] [Indexed: 11/28/2022]
Abstract
Rotifers (phylum Rotifera) are the most common non-arthropod animal. Species in the monogonont rotifer Brachionus are widely distributed in coastal areas and play an important role in aquatic food webs as secondary producers. Brachionus koreanus is currently being developed as a model system for ecotoxicological research. We sequenced the whole transcriptome of B. koreanus using RNA-seq technology. De novo sequence assembly by Trinity integrated with TransDecoder produced 36,918 contigs, including putative alternatively spliced variants. A total of 13,784 genes were identified based on Blast analysis. KEGG pathway analysis detected transcripts annotated as coding for enzymes involved in metabolic pathways, the immune system, translation, and signal transduction. Most identified enzymes and pathways were involved in carbohydrate metabolism, such as the tricarboxylic acid (TCA) cycle and glycolysis. We anticipate that the availability of whole transcriptome data for B. koreanus will provide insights into rotifer biology and physiology and facilitate the development of biomarkers for ecotoxicology studies.
Collapse
Affiliation(s)
- Bo-Young Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Eun-Ji Won
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Beom-Soon Choi
- National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Ik-Young Choi
- National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 210-702, South Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 406-772, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea.
| |
Collapse
|
36
|
Reyes CA, Ramos-Jiliberto R, González-Barrientos J. Temporal variability of food determines the outcome of pesticide exposure in Daphnia. Ecol Res 2015. [DOI: 10.1007/s11284-014-1240-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Baillon L, Pierron F, Coudret R, Normendeau E, Caron A, Peluhet L, Labadie P, Budzinski H, Durrieu G, Sarraco J, Elie P, Couture P, Baudrimont M, Bernatchez L. Transcriptome profile analysis reveals specific signatures of pollutants in Atlantic eels. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:71-84. [PMID: 25258179 DOI: 10.1007/s10646-014-1356-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/19/2014] [Indexed: 06/03/2023]
Abstract
Identifying specific effects of contaminants in a multi-stress field context remain a challenge in ecotoxicology. In this context, "omics" technologies, by allowing the simultaneous measurement of numerous biological endpoints, could help unravel the in situ toxicity of contaminants. In this study, wild Atlantic eels were sampled in 8 sites presenting a broad contamination gradient in France and Canada. The global hepatic transcriptome of animals was determined by RNA-Seq. In parallel, the contamination level of fish to 8 metals and 25 organic pollutants was determined. Factor analysis for multiple testing was used to identify genes that are most likely to be related to a single factor. Among the variables analyzed, arsenic (As), cadmium (Cd), lindane (γ-HCH) and the hepato-somatic index (HSI) were found to be the main factors affecting eel's transcriptome. Genes associated with As exposure were involved in the mechanisms that have been described during As vasculotoxicity in mammals. Genes correlated with Cd were involved in cell cycle and energy metabolism. For γ-HCH, genes were involved in lipolysis and cell growth. Genes associated with HSI were involved in protein, lipid and iron metabolisms. Our study proposes specific gene signatures of pollutants and their impacts in fish exposed to multi-stress conditions.
Collapse
Affiliation(s)
- Lucie Baillon
- Univ. Bordeaux, UMR EPOC CNRS 5805, 33400, Talence, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cabecinhas AS, Novais SC, Santos SC, Rodrigues ACM, Pestana JLT, Soares AMVM, Lemos MFL. Sensitivity of the sea snail Gibbula umbilicalis to mercury exposure--linking endpoints from different biological organization levels. CHEMOSPHERE 2015; 119:490-497. [PMID: 25112574 DOI: 10.1016/j.chemosphere.2014.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/24/2014] [Accepted: 07/04/2014] [Indexed: 06/03/2023]
Abstract
Mercury contamination is a common phenomenon in the marine environment and for this reason it is important to develop cost-effective and relevant tools to assess its toxic effects on a number of different species. To evaluate the possible effects of Hg in the sea snail Gibbula umbilicalis, animals were exposed to increasing concentrations of the contaminant in the ionic form for 96 h. After this exposure period, mortality, feeding and flipping behavior, the activity of the biomarkers glutathione S-transferase, superoxide dismutase, catalase, lactate dehydrogenase and cholinesterase, the levels of lipid peroxidation and cellular energy allocation were measured. After 96 h of exposure to the highest Hg concentration (≈LC20), there was a significant inhibition of the cholinesterase activity as well as impairment in the flipping behavior and post-exposure feeding of the snails. Cholinesterase inhibition was correlated with the impairment of behavioral responses also caused by exposure to Hg. These endpoints, including the novel flipping test, revealed sensitivity to Hg and might be used as relevant early warning indicators of prospective effects at higher biological organization levels, making these parameters potential tools for environmental risk assessment. The proposed test species showed sensitivity to Hg and proved to be a suitable and resourceful species to be used in ecotoxicological testing to assess effects of other contaminants in marine ecosystems.
Collapse
Affiliation(s)
| | - Sara C Novais
- ESTM, GIRM, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal; Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sílvia C Santos
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - João L T Pestana
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marco F L Lemos
- ESTM, GIRM, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| |
Collapse
|
39
|
Rodrigues AP, Santos LHMLM, Ramalhosa MJ, Delerue-Matos C, Guimarães L. Sertraline accumulation and effects in the estuarine decapod Carcinus maenas: importance of the history of exposure to chemical stress. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:350-358. [PMID: 25305364 DOI: 10.1016/j.jhazmat.2014.08.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 06/04/2023]
Abstract
Sertraline is widely prescribed worldwide and frequently detected in aquatic systems. There is, however, a remarkable gap of information on its potential impact on estuarine and coastal invertebrates. This study investigated sertraline accumulation and effects in Carcinus maenas. Crabs from a moderately contaminated (Lima) and a low-impacted (Minho) estuary were exposed to environmental and high levels of sertraline (0.05, 5, 500 μg L(-1)). A battery of biomarkers related to sertraline mode of action was employed to assess neurotransmission, energy metabolism, biotransformation and oxidative stress pathways. After a seven-day exposure, sertraline accumulation in crabs' soft tissues was found in Lima (5 μg L(-1): 15.3 ng L(-1) ww; 500 μg L(-1): 1010 ng L(-1) ww) and Minho (500 μg L(-1): 605 ng L(-1) ww) animals. Lima crabs were also more sensitive to sertraline than those from Minho, exhibiting decreased acetylcholinesterase activity, indicative of ventilatory and locomotory dysfunction, inhibition of anti-oxidant enzymes and increased oxidative damage at ≥ 0.05 μg L(-1). The Integrated Biomarker Response (IBR) index indicated their low health status. In addition, Minho crabs showed non-monotonic responses of acetylcholinesterase suggestive of hormesis. The results pointed an influence of the exposure history on differential sensitivity to sertraline and the need to perform evaluations with site-specific ecological receptors to increase relevance of risk estimations when extrapolating from laboratory to field conditions.
Collapse
Affiliation(s)
- Aurélie P Rodrigues
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Lúcia H M L M Santos
- REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Maria João Ramalhosa
- REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Laura Guimarães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| |
Collapse
|
40
|
Kim HY, Yu S, Jeong TY, Kim SD. Relationship between trans-generational effects of tetracycline on Daphnia magna at the physiological and whole organism level. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 191:111-118. [PMID: 24832921 DOI: 10.1016/j.envpol.2014.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
The effects of pharmaceuticals have been underestimated during single generation exposure. Therefore, in this study, we investigated toxic responses at the physiological and whole organism level in tetracycline-exposed Daphnia magna over four consecutive generational lifecycles. The results showed that tetracycline affected energy-related physiological functions in concentration- and generation-dependent manners, and especially maintenance costs increased. Consequently, multigenerational exposure to tetracycline induced changes in energy balance, resulting in the change of higher levels of biological responses. In contrast, D. magna acclimated to tetracycline exposure over multiple generations, as evidenced by the increased LC50 values. Transgenerational adaptation was related to the neonatal sensitivity and energy reserves of the organism. The results also emphasized the idea that the number of generation is an important factor for toxicity. The present study confirmed that toxic stress induces metabolic changes in an organism, thereby leading to increased energy consumption that results in adverse effects on reproduction.
Collapse
Affiliation(s)
- Hyun Young Kim
- Advanced Radiation Technology Institute, Korean Atomic Energy Research Institute, Jeongeup, Jeonbuk 580-185, Republic of Korea; School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Seungho Yu
- Advanced Radiation Technology Institute, Korean Atomic Energy Research Institute, Jeongeup, Jeonbuk 580-185, Republic of Korea
| | - Tae-Yong Jeong
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Sang Don Kim
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea.
| |
Collapse
|
41
|
Dai L, Qian X, Nan X, Zhang Y. Effect of cardiac glycosides from Nerium indicum on feeding rate, digestive enzymes activity and ultrastructural alterations of hepatopancreas in Pomacea canaliculata. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:220-227. [PMID: 24361644 DOI: 10.1016/j.etap.2013.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 11/04/2013] [Accepted: 11/10/2013] [Indexed: 06/03/2023]
Abstract
Cardiac glycosides from Nerium indicum showed potent molluscicide activity against Pomacea canaliculata (GAS), but the toxicological mechanism is still far less understood. Effects of sublethal treatments of cardiac glycosides on feeding rate, digestive enzymes and ultrastructural alterations of the hepatopancreas in GAS were evaluated in this study. Exposure of GAS to sublethal concentrations of cardiac glycosides resulted in a significant reduction of feeding rate of GAS. The amylase, cellulose and protease activity were increase significantly at the end of 24 h followed by significant inhibition after 48 h of exposure while lipase activity was not affected significantly at the end of 24 h followed by a significant inhibition after 48 h of exposure during experimental period. The main ultrastructural alterations of hepatopancreas observed in snails under cardiac glycosides treatment comprised disruption of nuclear membrane, increased vesiculation and dilatation of endoplasmic reticulum, and vacuolization and swelling of mitochondrial compared to the untreated GAS. These results, for the first time, provide systematic evidences showing that cardiac glycosides seriously impairs the hepatopancreas tissues of GAS, resulting in inhibition of digestive enzymes activity and feeding rate and cause GAS death in the end.
Collapse
Affiliation(s)
- Lingpeng Dai
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China.
| | - Xiaowei Qian
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China
| | - Xuyang Nan
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China
| | - Yejian Zhang
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China
| |
Collapse
|
42
|
Rodrigues AP, Gravato C, Guimarães L. Involvement of the antioxidant system in differential sensitivity of Carcinus maenas to fenitrothion exposure. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:1938-1948. [PMID: 24056931 DOI: 10.1039/c3em00367a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Carcinus maenas is an invertebrate with worldwide distribution and high ability to adapt to different environments, which is frequently used in environmental monitoring. Despite this, it is not clear how historical exposure to moderate contamination may influence sensitivity to further chemical stress in this important decapod species. This study investigated differential responses to organophosphate fenitrothion of C. maenas from a moderately contaminated estuary and a low impacted one, using in vitro and in vivo biomarker assays. To clarify potential differences in sensitivity, a biochemical characterisation of muscle cholinesterases was first performed. The results indicated acetylcholinesterase (AChE) as the main form present in C. maenas muscle. Exposure assays revealed that crabs from the moderately contaminated site were less sensitive to fenitrothion showing lower AChE inhibition than those from the low impacted site. Other biomarker changes detected in these animals were: increased anaerobic metabolism (muscle lactate dehydrogenase), enhanced phase II biotransformation (glutathione S-transferases in the digestive gland) and antioxidant defences (i.e., activities of glutathione reductase, glutathione peroxidase and catalase, and levels of total glutathiones in the digestive gland). Altogether, the results pointed out a role for the glutathione redox system towards tolerance to fenitrothion exposure.
Collapse
Affiliation(s)
- A P Rodrigues
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | | | | |
Collapse
|
43
|
Villarroel MJ, Sancho E, Andreu-Moliner E, Ferrando MD. Caloric content of Daphnia magna as reflect of propanil stress during a short-term exposure and its relationship to long-term responses. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 35:465-472. [PMID: 23501607 DOI: 10.1016/j.etap.2013.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 02/01/2013] [Accepted: 02/02/2013] [Indexed: 06/01/2023]
Abstract
The present study investigates energy stores changes in the aquatic invertebrate Daphnia magna following a 5-d exposure to propanil. Juveniles of D. magna were exposed to sublethal propanil concentrations (0.07, 0.10, 0.21 and 0.55 mgl(-1)) which were used previously to test their effect on reproduction, growth and survival (21 days test) of D. magna. Glycogen, total lipids, proteins, and dry weight were determined in control and exposed daphnids at 24, 48, 72, 96 and 120 h. Data were used to calculate caloric content as biomarker of propanil exposure. Results showed a depletion of energy reserves in D. magna exposed to the herbicide. At 120 h of exposure to the highest propanil concentration (0.5 mgl(-1)), the reduction in daphnid reserves were glycogen (28%), proteins (28%) and lipids (31%), and caloric content was reduced in 27%. On the other hand, we found a positive correlation between caloric content and the chronic parameters intrinsic rate of natural increase and offspring per female when daphnids were exposed for 120 h to the herbicide.
Collapse
Affiliation(s)
- M José Villarroel
- Laboratory of Ecotoxicology, Department of Functional Biology and Physical Anthropology, Faculty of Biology, University of Valencia, Dr. Moliner 50, E-46100 Burjassot, Valencia, Spain
| | | | | | | |
Collapse
|
44
|
Jiang JL, Wang GZ, Mao MG, Wang KJ, Li SJ, Zeng CS. Differential gene expression profile of the calanoid copepod, Pseudodiaptomus annandalei, in response to nickel exposure. Comp Biochem Physiol C Toxicol Pharmacol 2013; 157:203-11. [PMID: 23164661 DOI: 10.1016/j.cbpc.2012.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 11/01/2012] [Accepted: 11/10/2012] [Indexed: 11/30/2022]
Abstract
To better understand the underlying mechanisms of reactions of copepods exposed to elevated level of nickel, the suppression subtractive hybridization (SSH) was used to elucidate the response of the copepod Pseudodiaptomus annandalei to nickel exposure at the gene level. P. annandale is one of a few copepod species that can be cultured relatively easy under laboratory condition, and it is considered to be a potential model species for toxicity study. In the present study, P. annandalei were exposed to nickel at a concentration of 8.86 mgL(-1) for 24h, after which the RNA was prepared for SSH using unexposed P. annandalei as drivers. A total of 474 clones on the middle scale in the SSH library were sequenced. Among these genes, 129 potential functional genes were recognized based on the BLAST searches in NCBI and Uniprot databases. These genes were then categorized into nine groups in association with different biological processes using AmiGO against the Gene Ontology database. Of the 129 genes, 127 translatable DNA sequences were predicted to be proteins, and the putative amino acid sequences were searched for conserved domains (CD) and proteins using the CD-Search service and BLASTp. Among 129 genes, 119 (92.2%) were annotated to be involved in different biological processes, while 10 genes (7.8%) were classified as an unknown-function gene group. To further confirm the up-regulation of differentially expressed genes, the quantitative real time PCR were performed to test eight randomly selected genes, in which five of them, i.e. α-tubulin, ribosomal protein L13, ferritin, separase and Myohemerythrin-1, exhibited clear up-regulation after nickel exposure. In addition, MnSOD was further studied for the differential expression pattern after nickel exposure and the results showed that MnSOD had a time- and dose-dependent expression pattern in the copepod after nickel exposure. To the best of our knowledge, this is the first attempt to investigate the toxicity effects of nickel on a copepod at molecular level.
Collapse
Affiliation(s)
- Jie-Lan Jiang
- College of Ocean & Earth Sciences, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, PR China
| | | | | | | | | | | |
Collapse
|
45
|
Oliveira C, Almeida JR, Guilhermino L, Soares AMVM, Gravato C. Swimming velocity, avoidance behavior and biomarkers in Palaemon serratus exposed to fenitrothion. CHEMOSPHERE 2013; 90:936-44. [PMID: 22824733 DOI: 10.1016/j.chemosphere.2012.06.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/17/2012] [Accepted: 06/27/2012] [Indexed: 05/20/2023]
Abstract
The aim of this study was to develop two behavioral tests (swimming velocity and avoidance behavior) specific for the common prawn, Palaemon serratus, and to investigate the effects of sublethal concentrations of fenitrothion on behavior and on several biomarkers. In a first bioassay, mortality was investigated in prawns exposed during 96 h to concentrations of fenitrothion ranging from 39 to 40000 ng L(-1). The effects on swimming velocity and biomarkers were determined in prawns exposed to the sub-lethal concentrations of fenitrothion (from 39 to 625 ng L(-1)). A specific newly bioassay was developed to assess the capability of prawns to avoid the toxicant (avoidance test). Finally, in order to determine the effects on biomarkers during the avoidance test, prawns were collected at different times of exposure (30, 60, 90 and 120 min). Results showed that prawns exposed to the sub-lethal concentrations of fenitrothion exhibited a significant inhibition of swimming velocity with a LOEC of 313 ng L(-1). A significant inhibition of both eye AChE (LOEC=78 ng L(-1)) and muscle ChE (LOEC=156 ng L(-1)) activities were also observed. Results from the avoidance test indicated that animals significantly avoided fenitrothion (78 ng L(-1)). However, this capability was not observed in prawns exposed to 156 ng L(-1) fenitrothion. Prawns exposed to fenitrothion showed alterations in enzymes involved in the production of energy (LDH and IDH) possibly in an attempt to cope with additional energetic demands. Impairment of locomotion and avoidance may lead to alterations at the population level. Thus, the present behavioral tests can be useful as ecologically relevant tools for ecological risk assessment.
Collapse
Affiliation(s)
- Cristiana Oliveira
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Laboratório de Ecotoxicologia e Ecologia, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal.
| | | | | | | | | |
Collapse
|
46
|
Arzate-Cárdenas MA, Martínez-Jerónimo F. Energy reserve modification in different age groups of Daphnia schoedleri (Anomopoda: Daphniidae) exposed to hexavalent chromium. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:106-116. [PMID: 22481114 DOI: 10.1016/j.etap.2012.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 02/29/2012] [Accepted: 03/03/2012] [Indexed: 05/31/2023]
Abstract
Caloric content is a reliable biomaker of effect since it is modified by exposure to toxicants that can alter basal metabolism. Since organisms' age modifies how energy resources are allocated and modifies the activity of antioxidant enzymes, the response to toxic agents could be altered with age. Seven age groups of Daphnia schoedleri (0, 3, 5, 7, 14, 21, and 28-day-old) were exposed for 24h to two sublethal concentrations of Cr(VI): 1/25 and 1/5 of the 48 h EC(50) of each age group, to determine the age at which susceptibility to Cr(VI) is highest. To evaluate energy content, carbohydrate, protein and lipid reserves were quantified and antioxidant enzymes activity was assessed (SOD, CAT, GPx, and GR). Furthermore, an integrative approach was applied to evaluate both sets of responses and interpret them as a whole in a simply visual way, achieved by the integrated biomarker response approach. Results indicate that Cr(VI) induced significant differences in all age groups. Seven and 14-day-old organisms were exposed to the highest concentrations (based on their EC50) and showed greater tolerance to this metal. Susceptibility to the toxicant was highest in younger specimens in which energy requirements are greater due to high growth rates (basal metabolism), as a result of which more energy reserves are expended to satisfy demands in terms of growth and response to toxicants.
Collapse
Affiliation(s)
- Mario Alberto Arzate-Cárdenas
- Laboratorio de Hidrobiología Experimental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Col. Santo Tomás, Mexico, DF, Mexico
| | | |
Collapse
|
47
|
Wang X, Wang L, Yao C, Qiu L, Zhang H, Zhi Z, Song L. Alternation of immune parameters and cellular energy allocation of Chlamys farreri under ammonia-N exposure and Vibrio anguillarum challenge. FISH & SHELLFISH IMMUNOLOGY 2012; 32:741-749. [PMID: 22326939 DOI: 10.1016/j.fsi.2012.01.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/20/2012] [Accepted: 01/29/2012] [Indexed: 05/31/2023]
Abstract
The complex interactions among host, pathogen and environment are believed to be the main causes for the mass mortality of cultured scallops. In the present study, the temporal variations of immune parameters and cellular energy allocation (CEA) of Chlamys farreri under ammonia-N, Vibrio anguillarum as well as their combined treatment were investigated to better understand the energetic mechanisms of scallop in immune defense. After 1 d exposure to ammonia-N, V. anguillarum and their combination, the superoxide anion level and superoxide dismutase (SOD) activity in the serum of scallops increased substantially. At 24 d post exposure, the mRNA expression levels of isocitrate dehydrogenase (IDH), heat shock protein 70 (HSP 70), HSP 90 and glutamine synthetase (GS), as well as the malondialdehyde content remarkably increased, while SOD activity was depressed significantly (P < 0.05). The glycogen reserved in the tissues from scallops exposed to the combined stress for 1 d, 12 d and 24 d were significantly lower than those in the control (P < 0.05). The CEA values in all the examined tissues including gonad, gill, hepatopancreas and adductor muscle were significantly lower than those of control (P < 0.05) when exposure to ammonia-N, V. anguillarum and their combined treatment for 12 and 24 d. Furthermore, the combined stress also had a significant impact upon CEA in all the examined tissues in scallops post 1 d exposure (P < 0.05). The above results demonstrated that SOD, IDH, HSPs and GS in hemolymph of treated scallops are necessary, but not sufficient to the complete protection against stress-induced cellular damage along with the treatment duration. Immune defense against the combination of pathogen invasion and environmental stress can impose greater costs on scallop's energy expenditure than a single stressor, and the combined treatment preferentially consumed more available glycogen in scallops for immune defense. Hence, in addition to be used in immunological evaluation, CEA is also a powerful tool to provide valuable insights into possible mechanisms of mass mortalities in cultured scallops.
Collapse
Affiliation(s)
- Xingqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Bergman Filho TU, Soares AMVM, Loureiro S. Energy budget in Daphnia magna exposed to natural stressors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 18:655-662. [PMID: 21069573 DOI: 10.1007/s11356-010-0413-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 10/29/2010] [Indexed: 05/30/2023]
Abstract
BACKGROUND, AIM, AND SCOPE Climate changes are nowadays an important issue of concern, and it is expected that in the near future it will be intensified, leading to extreme environmental conditions. These changes are expected to originate additional sources of stress; therefore, the exposure of organisms to natural stressors is receiving an increased importance in risk assessment. Organisms tend to avoid extremely environmental conditions looking for optimum conditions. This work aimed to evaluate the effects of natural stressors on the energetic reserves of Daphnia magna using the quantification of lipids, proteins, and sugars. MATERIALS AND METHODS Daphnids were exposed to different temperature regimes (16, 18, 22, 24, and 26°C), food levels (2, 1.5, 1, 0.5, and 0 and 4, 4.5, 5, 5.5, and 6 × 10(5) cells/ml Pseudokirchneriella subcapitata) and oxygen depletion (2 to 6 mg DO/L) and their energy reserves quantified. Protein, lipid, and sugar contents where compared between daphnids exposed to control conditions and ones exposed to considered stress situations. RESULTS AND DISCUSSION Significant changes in energy reserves content after a 96-h exposure were observed in temperatures 16, 22, 24, and 26°C. In the exposure to different food levels, daphnids showed significant differences on their energetic reserves when exposed to higher or lower levels of algae when compared with the control. Oxygen depletion did not affect significantly their energy budget. CONCLUSIONS The results from this work demonstrate that the environmental alterations related mainly to temperatures variations and food availability produced changes in D. magna energetic reserves. These changes can be transposed to the population levels as they are a result of changes in the metabolic rate and physiological processes that are related to growth and maturation.
Collapse
|
49
|
Ortiz-Rodríguez R, Wiegand C. Age related acute effects of microcystin-LR on Daphnia magna biotransformation and oxidative stress. Toxicon 2010; 56:1342-9. [DOI: 10.1016/j.toxicon.2010.07.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/23/2010] [Accepted: 07/29/2010] [Indexed: 10/19/2022]
|
50
|
Gravato C, Guimarães L, Santos J, Faria M, Alves A, Guilhermino L. Comparative study about the effects of pollution on glass and yellow eels (Anguilla anguilla) from the estuaries of Minho, Lima and Douro Rivers (NW Portugal). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:524-533. [PMID: 20116101 DOI: 10.1016/j.ecoenv.2009.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 07/13/2009] [Accepted: 11/29/2009] [Indexed: 05/28/2023]
Abstract
The health status of eels (Anguilla anguilla) developing in three estuaries of the NW Portuguese coast with different types and levels of pollution was compared in relation to morphometric parameters, Fulton condition index (F index) and several biomarkers. Relatively to the reference population, glass eels from the Lima estuary had lower weight and length, cholinesterase (ChE) and lactate dehydrogenase (LDH) inhibition, and lower levels of some anti-oxidant parameters, while yellow eels also showed a decreased F index, and increased Na(+)/K(+)-ATPase and lipid peroxidation (LPO) levels. Relatively to the reference population, glass eels from the Douro estuary had increased Na(+)/K(+)-ATPase and glutathione-S-transferase activities and LDH inhibition, while yellow eels also had ChE inhibition and increased LPO. Overall, these results indicate that eels from polluted estuaries showed a poor health status than those from a reference estuary, and that adverse effects become more pronounced after spending several years in polluted estuaries.
Collapse
Affiliation(s)
- Carlos Gravato
- CIMAR-LA/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Laboratório de Ecotoxicologia, Rua dos Bragas, 289, 4050-123 Porto, Portugal.
| | | | | | | | | | | |
Collapse
|