1
|
Ghanbari M, Khosroshahi NS, Alamdar M, Abdi A, Aghazadeh A, Feizi MAH, Haghi M. An Updated Review on the Significance of DNA and Protein Methyltransferases and De-methylases in Human Diseases: From Molecular Mechanism to Novel Therapeutic Approaches. Curr Med Chem 2024; 31:3550-3587. [PMID: 37287285 DOI: 10.2174/0929867330666230607124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023]
Abstract
Epigenetic mechanisms are crucial in regulating gene expression. These mechanisms include DNA methylation and histone modifications, like methylation, acetylation, and phosphorylation. DNA methylation is associated with gene expression suppression; however, histone methylation can stimulate or repress gene expression depending on the methylation pattern of lysine or arginine residues on histones. These modifications are key factors in mediating the environmental effect on gene expression regulation. Therefore, their aberrant activity is associated with the development of various diseases. The current study aimed to review the significance of DNA and histone methyltransferases and demethylases in developing various conditions, like cardiovascular diseases, myopathies, diabetes, obesity, osteoporosis, cancer, aging, and central nervous system conditions. A better understanding of the epigenetic roles in developing diseases can pave the way for developing novel therapeutic approaches for affected patients.
Collapse
Affiliation(s)
- Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Negin Sadi Khosroshahi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Maryam Alamdar
- Department of Genetics Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Adel Abdi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Aida Aghazadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Mehdi Haghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
2
|
Wang T, Wang J, Hu X, Huang XJ, Chen GX. Current understanding of glucose transporter 4 expression and functional mechanisms. World J Biol Chem 2020; 11:76-98. [PMID: 33274014 PMCID: PMC7672939 DOI: 10.4331/wjbc.v11.i3.76] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/22/2020] [Accepted: 09/22/2020] [Indexed: 02/05/2023] Open
Abstract
Glucose is used aerobically and anaerobically to generate energy for cells. Glucose transporters (GLUTs) are transmembrane proteins that transport glucose across the cell membrane. Insulin promotes glucose utilization in part through promoting glucose entry into the skeletal and adipose tissues. This has been thought to be achieved through insulin-induced GLUT4 translocation from intracellular compartments to the cell membrane, which increases the overall rate of glucose flux into a cell. The insulin-induced GLUT4 translocation has been investigated extensively. Recently, significant progress has been made in our understanding of GLUT4 expression and translocation. Here, we summarized the methods and reagents used to determine the expression levels of Slc2a4 mRNA and GLUT4 protein, and GLUT4 translocation in the skeletal muscle, adipose tissues, heart and brain. Overall, a variety of methods such real-time polymerase chain reaction, immunohistochemistry, fluorescence microscopy, fusion proteins, stable cell line and transgenic animals have been used to answer particular questions related to GLUT4 system and insulin action. It seems that insulin-induced GLUT4 translocation can be observed in the heart and brain in addition to the skeletal muscle and adipocytes. Hormones other than insulin can induce GLUT4 translocation. Clearly, more studies of GLUT4 are warranted in the future to advance of our understanding of glucose homeostasis.
Collapse
Affiliation(s)
- Tiannan Wang
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, United States
| | - Jing Wang
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, Hubei Province, China
| | - Xinge Hu
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, United States
| | - Xian-Ju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, Hubei Province, China
| | - Guo-Xun Chen
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, United States
| |
Collapse
|
3
|
Yonamine CY, Alves-Wagner AB, Esteves JV, Okamoto MM, Correa-Giannella ML, Giannella-Neto D, Machado UF. Diabetes induces tri-methylation at lysine 9 of histone 3 at Slc2a4 gene in skeletal muscle: A new target to improve glycemic control. Mol Cell Endocrinol 2019; 481:26-34. [PMID: 30528377 DOI: 10.1016/j.mce.2018.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/05/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022]
Abstract
Expression of the glucose transporter GLUT4, encoded by Slc2a4 gene, is reduced in both type 1 and type 2 diabetes (T1D and T2D), contributing to glycemic impairment. The present study investigated epigenetic regulations at the Slc2a4 promoter in skeletal muscle of T1D- and T2D-like experimental models. Slc2a4/GLUT4 repression was observed in T1D and T2D and that was reversed by insulin and resveratrol treatments, respectively. In both T1D-like and T2D-like animals, tri-methylation at lysine 9 of histone 3 (H3K9me3) increased in the Slc2a4 enhancer segment, whereas MEF2A/D binding into this segment was reduced; all effects were reversed by respective treatments. This study reveals that increased H3K9me3 in the Slc2a4 promoter enhancer segment contributes to reduce GLUT4 expression in skeletal muscle and to worse glycemic control in diabetes, pointing to the H3K9me3 of Slc2a4 promoter as a potential target for development of new approaches for treating diabetes.
Collapse
Affiliation(s)
- Caio Y Yonamine
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Ana B Alves-Wagner
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - João V Esteves
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maristela M Okamoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria L Correa-Giannella
- Laboratório de Carboidratos e Radioimunoensaio, LIM-18, Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil; Programa de Pos-Graduaçao em Medicina, Universidade Nove de Julho (UNINOVE), Sao Paulo, Brazil
| | - Daniel Giannella-Neto
- Programa de Pos-Graduaçao em Medicina, Universidade Nove de Julho (UNINOVE), Sao Paulo, Brazil
| | - Ubiratan F Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
4
|
Collins HE, Pat BM, Zou L, Litovsky SH, Wende AR, Young ME, Chatham JC. Novel role of the ER/SR Ca 2+ sensor STIM1 in the regulation of cardiac metabolism. Am J Physiol Heart Circ Physiol 2018; 316:H1014-H1026. [PMID: 30575437 PMCID: PMC6580390 DOI: 10.1152/ajpheart.00544.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The endoplasmic reticulum/sarcoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1), a key mediator of store-operated Ca2+ entry, is expressed in cardiomyocytes and has been implicated in regulating multiple cardiac processes, including hypertrophic signaling. Interestingly, cardiomyocyte-restricted deletion of STIM1 (crSTIM1-KO) results in age-dependent endoplasmic reticulum stress, altered mitochondrial morphology, and dilated cardiomyopathy in mice. Here, we tested the hypothesis that STIM1 deficiency may also impact cardiac metabolism. Hearts isolated from 20-wk-old crSTIM1-KO mice exhibited a significant reduction in both oxidative and nonoxidative glucose utilization. Consistent with the reduction in glucose utilization, expression of glucose transporter 4 and AMP-activated protein kinase phosphorylation were all reduced, whereas pyruvate dehydrogenase kinase 4 and pyruvate dehydrogenase phosphorylation were increased, in crSTIM1-KO hearts. Despite similar rates of fatty acid oxidation in control and crSTIM1-KO hearts ex vivo, crSTIM1-KO hearts contained increased lipid/triglyceride content as well as increased fatty acid-binding protein 4, fatty acid synthase, acyl-CoA thioesterase 1, hormone-sensitive lipase, and adipose triglyceride lipase expression compared with control hearts, suggestive of a possible imbalance between fatty acid uptake and oxidation. Insulin-mediated alterations in AKT phosphorylation were observed in crSTIM1-KO hearts, consistent with cardiac insulin resistance. Interestingly, we observed abnormal mitochondria and increased lipid accumulation in 12-wk crSTIM1-KO hearts, suggesting that these changes may initiate the subsequent metabolic dysfunction. These results demonstrate, for the first time, that cardiomyocyte STIM1 may play a key role in regulating cardiac metabolism. NEW & NOTEWORTHY Little is known of the physiological role of stromal interaction molecule 1 (STIM1) in the heart. Here, we demonstrate, for the first time, that hearts lacking cardiomyocyte STIM1 exhibit dysregulation of both cardiac glucose and lipid metabolism. Consequently, these results suggest a potentially novel role for STIM1 in regulating cardiac metabolism.
Collapse
Affiliation(s)
- Helen E Collins
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Betty M Pat
- Division of Cardiovascular Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Luyun Zou
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Silvio H Litovsky
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Martin E Young
- Division of Cardiovascular Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
5
|
Amoasii L, Olson EN, Bassel-Duby R. Control of Muscle Metabolism by the Mediator Complex. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029843. [PMID: 28432117 DOI: 10.1101/cshperspect.a029843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exercise represents an energetic challenge to whole-body homeostasis. In skeletal muscle, exercise activates a variety of signaling pathways that culminate in the nucleus to regulate genes involved in metabolism and contractility; however, much remains to be learned about the transcriptional effectors of exercise. Mediator is a multiprotein complex that links signal-dependent transcription factors and other transcriptional regulators with the basal transcriptional machinery, thereby serving as a transcriptional "hub." In this article, we discuss recent studies highlighting the role of Mediator subunits in metabolic regulation and glucose metabolism, as well as exercise responsiveness. Elucidation of the roles of Mediator subunits in metabolic control has revealed new mechanisms and molecular targets for the modulation of metabolism and metabolic disorders.
Collapse
Affiliation(s)
- Leonela Amoasii
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 7539-9148
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 7539-9148
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 7539-9148
| |
Collapse
|
6
|
Bloise FF, Cordeiro A, Ortiga-Carvalho TM. Role of thyroid hormone in skeletal muscle physiology. J Endocrinol 2018; 236:R57-R68. [PMID: 29051191 DOI: 10.1530/joe-16-0611] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/19/2017] [Indexed: 12/31/2022]
Abstract
Thyroid hormones (TH) are crucial for development, growth, differentiation, metabolism and thermogenesis. Skeletal muscle (SM) contractile function, myogenesis and bioenergetic metabolism are influenced by TH. These effects depend on the presence of the TH transporters MCT8 and MCT10 in the plasma membrane, the expression of TH receptors (THRA or THRB) and hormone availability, which is determined either by the activation of thyroxine (T4) into triiodothyronine (T3) by type 2 iodothyronine deiodinases (D2) or by the inactivation of T4 into reverse T3 by deiodinases type 3 (D3). SM relaxation and contraction rates depend on T3 regulation of myosin expression and energy supplied by substrate oxidation in the mitochondria. The balance between D2 and D3 expression determines TH intracellular levels and thus influences the proliferation and differentiation of satellite cells, indicating an important role of TH in muscle repair and myogenesis. During critical illness, changes in TH levels and in THR and deiodinase expression negatively affect SM function and repair. This review will discuss the influence of TH action on SM contraction, bioenergetics metabolism, myogenesis and repair in health and illness conditions.
Collapse
Affiliation(s)
- Flavia F Bloise
- Institute of Biophysics Carlos Chagas FilhoLaboratory of Translational Endocrinology, Rio de Janeiro, Brazil
| | - Aline Cordeiro
- Institute of Biophysics Carlos Chagas FilhoLaboratory of Translational Endocrinology, Rio de Janeiro, Brazil
| | - Tania Maria Ortiga-Carvalho
- Institute of Biophysics Carlos Chagas FilhoLaboratory of Translational Endocrinology, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Hatem-Vaquero M, Griera M, García-Jerez A, Luengo A, Álvarez J, Rubio JA, Calleros L, Rodríguez-Puyol D, Rodríguez-Puyol M, De Frutos S. Peripheral insulin resistance in ILK-depleted mice by reduction of GLUT4 expression. J Endocrinol 2017; 234:115-128. [PMID: 28490443 DOI: 10.1530/joe-16-0662] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/10/2017] [Indexed: 12/15/2022]
Abstract
The development of insulin resistance is characterized by the impairment of glucose uptake mediated by glucose transporter 4 (GLUT4). Extracellular matrix changes are induced when the metabolic dysregulation is sustained. The present work was devoted to analyze the possible link between the extracellular-to-intracellular mediator integrin-linked kinase (ILK) and the peripheral tissue modification that leads to glucose homeostasis impairment. Mice with general depletion of ILK in adulthood (cKD-ILK) maintained in a chow diet exhibited increased glycemia and insulinemia concurrently with a reduction of the expression and membrane presence of GLUT4 in the insulin-sensitive peripheral tissues compared with their wild-type littermates (WT). Tolerance tests and insulin sensitivity indexes confirmed the insulin resistance in cKD-ILK, suggesting a similar stage to prediabetes in humans. Under randomly fed conditions, no differences between cKD-ILK and WT were observed in the expression of insulin receptor (IR-B) and its substrate IRS-1 expressions. The IR-B isoform phosphorylated at tyrosines 1150/1151 was increased, but the AKT phosphorylation in serine 473 was reduced in cKD-ILK tissues. Similarly, ILK-blocked myotubes reduced their GLUT4 promoter activity and GLUT4 expression levels. On the other hand, the glucose uptake capacity in response to exogenous insulin was impaired when ILK was blocked in vivo and in vitro, although IR/IRS/AKT phosphorylation states were increased but not different between groups. We conclude that ILK depletion modifies the transcription of GLUT4, which results in reduced peripheral insulin sensitivity and glucose uptake, suggesting ILK as a molecular target and a prognostic biomarker of insulin resistance.
Collapse
Affiliation(s)
- Marco Hatem-Vaquero
- Department of Systems BiologyPhysiology Unit, Universidad de Alcalá, Madrid, Spain
- Instituto Reina Sofía de Investigación Renal and REDinREN from Instituto de Salud Carlos IIIMadrid, Spain
| | - Mercedes Griera
- Department of Systems BiologyPhysiology Unit, Universidad de Alcalá, Madrid, Spain
- Instituto Reina Sofía de Investigación Renal and REDinREN from Instituto de Salud Carlos IIIMadrid, Spain
| | - Andrea García-Jerez
- Department of Systems BiologyPhysiology Unit, Universidad de Alcalá, Madrid, Spain
- Instituto Reina Sofía de Investigación Renal and REDinREN from Instituto de Salud Carlos IIIMadrid, Spain
| | - Alicia Luengo
- Department of Systems BiologyPhysiology Unit, Universidad de Alcalá, Madrid, Spain
- Instituto Reina Sofía de Investigación Renal and REDinREN from Instituto de Salud Carlos IIIMadrid, Spain
| | - Julia Álvarez
- Endocrinology and Nutrition DepartmentHospital Príncipe de Asturias, Madrid, Spain
| | - José A Rubio
- Endocrinology and Nutrition DepartmentHospital Príncipe de Asturias, Madrid, Spain
| | - Laura Calleros
- Department of Systems BiologyPhysiology Unit, Universidad de Alcalá, Madrid, Spain
- Instituto Reina Sofía de Investigación Renal and REDinREN from Instituto de Salud Carlos IIIMadrid, Spain
| | - Diego Rodríguez-Puyol
- Instituto Reina Sofía de Investigación Renal and REDinREN from Instituto de Salud Carlos IIIMadrid, Spain
- Biomedical Research Foundation and Nephrology DepartmentHospital Príncipe de Asturias, Madrid, Spain
- Department of Systems BiologyPhysiology Unit, Universidad de Alcalá, Madrid, Spain
| | - Manuel Rodríguez-Puyol
- Department of Systems BiologyPhysiology Unit, Universidad de Alcalá, Madrid, Spain
- Instituto Reina Sofía de Investigación Renal and REDinREN from Instituto de Salud Carlos IIIMadrid, Spain
| | - Sergio De Frutos
- Department of Systems BiologyPhysiology Unit, Universidad de Alcalá, Madrid, Spain
- Instituto Reina Sofía de Investigación Renal and REDinREN from Instituto de Salud Carlos IIIMadrid, Spain
| |
Collapse
|
8
|
Chanda D, Luiken JJFP, Glatz JFC. Signaling pathways involved in cardiac energy metabolism. FEBS Lett 2016; 590:2364-74. [PMID: 27403883 DOI: 10.1002/1873-3468.12297] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/09/2016] [Accepted: 07/11/2016] [Indexed: 11/09/2022]
Abstract
Various signaling pathways coordinate energy metabolism and contractile function in the heart. Myocardial uptake of long-chain fatty acids largely occurs by facilitated diffusion, involving the membrane-associated protein, CD36. Glucose uptake, the rate-limiting step in glucose utilization, is mediated predominantly by the glucose transporter protein, GLUT4. Insulin and contraction-mediated AMPK signaling each are implicated in tightly regulating these myocardial 'gate-keepers' of energy balance, that is, CD36 and GLUT4. The insulin and AMPK signaling cascades are complex and their cross-talk is only beginning to be understood. Moreover, transcriptional regulation of the CD36 and GLUT4 is significantly understudied. This review focuses on recent advances on the role of these signaling pathways and transcription factors involved in the regulation of CD36 and GLUT4.
Collapse
Affiliation(s)
- Dipanjan Chanda
- Department of Genetics and Cell Biology, CARIM School of Cardiovascular Diseases, Maastricht University, The Netherlands
| | - Joost J F P Luiken
- Department of Genetics and Cell Biology, CARIM School of Cardiovascular Diseases, Maastricht University, The Netherlands
| | - Jan F C Glatz
- Department of Genetics and Cell Biology, CARIM School of Cardiovascular Diseases, Maastricht University, The Netherlands
| |
Collapse
|
9
|
Amoasii L, Holland W, Sanchez-Ortiz E, Baskin KK, Pearson M, Burgess SC, Nelson BR, Bassel-Duby R, Olson EN. A MED13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism. Genes Dev 2016; 30:434-46. [PMID: 26883362 PMCID: PMC4762428 DOI: 10.1101/gad.273128.115] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amoasii et al. found that skeletal muscle-specific deletion of the Mediator subunit MED13 in mice conferred resistance to hepatic steatosis by activating a metabolic gene program that enhances muscle glucose uptake and storage as glycogen. MED13 suppressed expression of genes involved in glucose uptake and metabolism in skeletal muscle by inhibiting the nuclear receptor NURR1 and the MEF2 transcription factor. The Mediator complex governs gene expression by linking upstream signaling pathways with the basal transcriptional machinery. However, how individual Mediator subunits may function in different tissues remains to be investigated. Through skeletal muscle-specific deletion of the Mediator subunit MED13 in mice, we discovered a gene regulatory mechanism by which skeletal muscle modulates the response of the liver to a high-fat diet. Skeletal muscle-specific deletion of MED13 in mice conferred resistance to hepatic steatosis by activating a metabolic gene program that enhances muscle glucose uptake and storage as glycogen. The consequent insulin-sensitizing effect within skeletal muscle lowered systemic glucose and insulin levels independently of weight gain and adiposity and prevented hepatic lipid accumulation. MED13 suppressed the expression of genes involved in glucose uptake and metabolism in skeletal muscle by inhibiting the nuclear receptor NURR1 and the MEF2 transcription factor. These findings reveal a fundamental molecular mechanism for the governance of glucose metabolism and the control of hepatic lipid accumulation by skeletal muscle. Intriguingly, MED13 exerts opposing metabolic actions in skeletal muscle and the heart, highlighting the customized, tissue-specific functions of the Mediator complex.
Collapse
Affiliation(s)
- Leonela Amoasii
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - William Holland
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Efrain Sanchez-Ortiz
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kedryn K Baskin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Mackenzie Pearson
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Shawn C Burgess
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Benjamin R Nelson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
10
|
Abstract
The heart is adapted to utilize all classes of substrates to meet the high-energy demand, and it tightly regulates its substrate utilization in response to environmental changes. Although fatty acids are known as the predominant fuel for the adult heart at resting stage, the heart switches its substrate preference toward glucose during stress conditions such as ischemia and pathological hypertrophy. Notably, increasing evidence suggests that the loss of metabolic flexibility associated with increased reliance on glucose utilization contribute to the development of cardiac dysfunction. The changes in glucose metabolism in hypertrophied hearts include altered glucose transport and increased glycolysis. Despite the role of glucose as an energy source, changes in other nonenergy producing pathways related to glucose metabolism, such as hexosamine biosynthetic pathway and pentose phosphate pathway, are also observed in the diseased hearts. This article summarizes the current knowledge regarding the regulation of glucose transporter expression and translocation in the heart during physiological and pathological conditions. It also discusses the signaling mechanisms governing glucose uptake in cardiomyocytes, as well as the changes of cardiac glucose metabolism under disease conditions.
Collapse
Affiliation(s)
- Dan Shao
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Grubišić V, Parpura V. Diversity in the utilization of glucose and lactate in synthetic mammalian myotubes generated by engineered configurations of MyoD and E12 in otherwise non-differentiation growth conditions. Biomaterials 2014; 43:50-60. [PMID: 25591961 DOI: 10.1016/j.biomaterials.2014.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/03/2014] [Indexed: 12/21/2022]
Abstract
We previously used the expression of various combinations and configurations of MyoD and E12, two basic helix-loop-helix transcription factors (TF), to produce populations of myotubes assuming distinct morphology, myofibrillar development and Ca2+ dynamics, from mammalian C2C12 myoblasts in non-differentiation growth conditions. Here, we assessed the synthetically generated myotubes in terms of energetics, otherwise necessary to sustain their mechanical output as bio-actuators. We found that the myotubes exhibit changed expression of key regulators for the uptake and utilization of two major cellular fuels, glucose and lactate. Furthermore, while lactate transport was uniformly slowed in all the populations of myotubes, glucose uptake and utilization were modified by particular TF configuration. Our approach allows the production of a class of biomaterials with predetermined energetics that could be applied in biorobotics, where fuel of choice could be used, and also in reparative medicine where, for example, particular population of myotubes could be additionally employed as glucose sinks to mitigate effects of secondary metabolic syndrome.
Collapse
Affiliation(s)
- Vladimir Grubišić
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Vladimir Parpura
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia.
| |
Collapse
|
12
|
Gannon NP, Conn CA, Vaughan RA. Dietary stimulators of GLUT4 expression and translocation in skeletal muscle: a mini-review. Mol Nutr Food Res 2014; 59:48-64. [PMID: 25215442 DOI: 10.1002/mnfr.201400414] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/07/2014] [Accepted: 09/08/2014] [Indexed: 12/23/2022]
Abstract
Chronic insulin resistance can lead to type II diabetes mellitus, which is also directly influenced by an individual's genetics as well as their lifestyle. Under normal circumstances, insulin facilitates glucose uptake in skeletal muscle and adipose tissue by stimulating glucose transporter 4 (GLUT4) translocation and activity. GLUT4 activity is directly correlated with the ability to clear elevated blood glucose and insulin sensitivity. In diabetes, energy excess and prolonged hyperinsulinemia suppress muscle and adipose response to insulin, in part through reduced GLUT4 membrane levels. This work uniquely describes much of the experimental data demonstrating the effects of various dietary components on GLUT4 expression and translocation in skeletal muscle. These observations implicate several individual dietary chemicals as potential adjuvant therapies in the maintenance of diabetes and insulin resistance.
Collapse
Affiliation(s)
- Nicholas P Gannon
- Department of Biochemistry and Molecular Biology, University of New Mexico, Health Sciences Center, School of Medicine, Albuquerque, NM, USA
| | | | | |
Collapse
|
13
|
Martorell-Riera A, Segarra-Mondejar M, Muñoz JP, Ginet V, Olloquequi J, Pérez-Clausell J, Palacín M, Reina M, Puyal J, Zorzano A, Soriano FX. Mfn2 downregulation in excitotoxicity causes mitochondrial dysfunction and delayed neuronal death. EMBO J 2014; 33:2388-407. [PMID: 25147362 DOI: 10.15252/embj.201488327] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial fusion and fission is a dynamic process critical for the maintenance of mitochondrial function and cell viability. During excitotoxicity neuronal mitochondria are fragmented, but the mechanism underlying this process is poorly understood. Here, we show that Mfn2 is the only member of the mitochondrial fusion/fission machinery whose expression is reduced in in vitro and in vivo models of excitotoxicity. Whereas in cortical primary cultures, Drp1 recruitment to mitochondria plays a primordial role in mitochondrial fragmentation in an early phase that can be reversed once the insult has ceased, Mfn2 downregulation intervenes in a delayed mitochondrial fragmentation phase that progresses even when the insult has ceased. Downregulation of Mfn2 causes mitochondrial dysfunction, altered calcium homeostasis, and enhanced Bax translocation to mitochondria, resulting in delayed neuronal death. We found that transcription factor MEF2 regulates basal Mfn2 expression in neurons and that excitotoxicity-dependent degradation of MEF2 causes Mfn2 downregulation. Thus, Mfn2 reduction is a late event in excitotoxicity and its targeting may help to reduce excitotoxic damage and increase the currently short therapeutic window in stroke.
Collapse
Affiliation(s)
- Alejandro Martorell-Riera
- Department of Cell Biology, University of Barcelona, Barcelona, Spain CELLTEC-UB, University of Barcelona, Barcelona, Spain
| | - Marc Segarra-Mondejar
- Department of Cell Biology, University of Barcelona, Barcelona, Spain CELLTEC-UB, University of Barcelona, Barcelona, Spain
| | - Juan P Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Ginet
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland Clinic of Neonatology, Department of Pediatrics and Pediatric Surgery University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Jordi Olloquequi
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | | | - Manuel Palacín
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Manuel Reina
- Department of Cell Biology, University of Barcelona, Barcelona, Spain CELLTEC-UB, University of Barcelona, Barcelona, Spain
| | - Julien Puyal
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland Clinic of Neonatology, Department of Pediatrics and Pediatric Surgery University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Antonio Zorzano
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc X Soriano
- Department of Cell Biology, University of Barcelona, Barcelona, Spain CELLTEC-UB, University of Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Moraes PA, Yonamine CY, Pinto Junior DC, Esteves JVD, Machado UF, Mori RC. Insulin acutely triggers transcription of Slc2a4 gene: participation of the AT-rich, E-box and NFKB-binding sites. Life Sci 2014; 114:36-44. [PMID: 25123536 DOI: 10.1016/j.lfs.2014.07.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 11/16/2022]
Abstract
AIMS The insulin-sensitive glucose transporter protein GLUT4 (solute carrier family 2 member 4 (Slc2a4) gene) plays a key role in glycemic homeostasis. Decreased GLUT4 expression is a current feature in insulin resistant conditions such as diabetes, and the restoration of GLUT4 content improves glycemic control. This study investigated the effect of insulin upon Slc2a4/GLUT4 expression, focusing on the AT-rich element, E-box and nuclear factor NF-kappa-B (NFKB) site. MAIN METHODS Rat soleus muscles were incubated during 180 min with insulin, added or not with wortmannin (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma isoform (PI3K)-inhibitor), ML9 (serine/threonine protein kinase (AKT) inhibitor) and tumor necrosis factor (TNF, GLUT4 repressor), and processed for analysis of GLUT4 protein (Western blotting); Slc2a4, myocyte enhancer factor 2a/d (Mef2a/d), hypoxia inducible factor 1a (Hif1a), myogenic differentiation 1 (Myod1) and nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (Nfkb1) messenger ribonucleic acids (mRNAs) (polymerase chain reaction (PCR)); and AT-rich- (myocyte-specific enhancer factor 2 (MEF2)-binding site), E-box- (hypoxia inducible factor 1 alpha (HIF1A)- and myoblast determination protein 1 (MYOD1)-binding site), and NFKB-binding activity (electrophoretic mobility assay). KEY FINDINGS Insulin increased Slc2a4 mRNA expression (140%) and nuclear proteins binding to AT-rich and E-box elements (~90%), all effects were prevented by wortmannin and ML9. Insulin also increased Mef2a/d and Myod1 mRNA expression, suggesting the participation of these transcriptional factors in the Slc2a4 enhancing effect. Conversely, insulin decreased Nfkb1 mRNA expression and protein binding to the NFKB-site (~50%). Furthermore, TNF-induced inhibition of GLUT4 expression (~40%) was prevented by insulin in an NFKB-binding repressing mechanism. GLUT4 protein paralleled the Slc2a4 mRNA regulations. SIGNIFICANCE Insulin enhances the Slc2a4/GLUT4 expression in the skeletal muscle by activating AT-rich and E-box elements, in a PI3K/AKT-dependent mechanism, and repressing NFKB-site activity as well. These results unravel how post-prandial increase of insulin may guarantee GLUT4 expression, and how the insulin signaling impairment can participate in insulin resistance-induced repression of GLUT4.
Collapse
Affiliation(s)
- Paulo Alexandre Moraes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Caio Yogi Yonamine
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Danilo Correa Pinto Junior
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - João Victor DelConti Esteves
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Rosana Cristina Mori
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
15
|
Takahashi H, Sato K, Yamaguchi T, Miyake M, Watanabe H, Nagasawa Y, Kitagawa E, Terada S, Urakawa M, Rose MT, McMahon CD, Watanabe K, Ohwada S, Gotoh T, Aso H. Myostatin alters glucose transporter-4 (GLUT4) expression in bovine skeletal muscles and myoblasts isolated from double-muscled (DM) and normal-muscled (NM) Japanese shorthorn cattle. Domest Anim Endocrinol 2014; 48:62-8. [PMID: 24906930 DOI: 10.1016/j.domaniend.2014.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 01/15/2014] [Accepted: 01/18/2014] [Indexed: 12/23/2022]
Abstract
The purpose of this study was to determine whether myostatin alters glucose transporter-4 (GLUT4) expression in bovine skeletal muscles and myoblasts isolated from double-muscled (DM) and normal-muscled (NM) Japanese Shorthorn cattle. Plasma concentrations of glucose were lower in DM cattle than in NM cattle (P < 0.01). The expression of GLUT4 messenger RNA (mRNA) in the skeletal muscle ex vivo and in myoblasts at 72 h after differentiation in vitro was higher in DM cattle than in NM cattle (P < 0.01). In contrast, the NM and DM cattle did not differ with respect to skeletal muscle expression of GLUT1 and myocyte enhancer factor-2c (MEF2c), a transcription factor of GLUT4. In differentiated myoblasts, the expression of GLUT1, GLUT4, and MEF2c mRNAs was greater in DM cattle than in NM cattle (P < 0.01). In the presence and absence of insulin, glucose uptake in myoblasts was increased in DM cattle relative to that of NM cattle (P < 0.01). The addition of myostatin decreased the expression of GLUT4 and MEF2c mRNAs in DM myoblasts (P < 0.05). Results of the present study suggest that myostatin inhibits the expression of GLUT4 mRNA possibly via MEF2c and that the greater ability of the DM cattle to produce muscle relative to the NM cattle may be due to their greater sensitivity to insulin and greater use of glucose.
Collapse
Affiliation(s)
- H Takahashi
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai-shi, Japan; Faculty of Agriculture, Graduate school, Kuju Agricultural Research Center, Kyushu University, Kuju-cho, Taketa-shi, Japan
| | - K Sato
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai-shi, Japan
| | - T Yamaguchi
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai-shi, Japan
| | - M Miyake
- Genome Research, Tokushima University, Kuramoto-machi, Tokushima-shi, Japan
| | - H Watanabe
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai-shi, Japan
| | - Y Nagasawa
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai-shi, Japan
| | - E Kitagawa
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai-shi, Japan
| | - S Terada
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai-shi, Japan
| | - M Urakawa
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai-shi, Japan
| | - M T Rose
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Cardiganshire, SY23 3DA, UK
| | - C D McMahon
- Institute for Growth Physiology Group, AgResearch Ltd, Private Bag 3123, Hamilton, New Zealand
| | - K Watanabe
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai-shi, Japan
| | - S Ohwada
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai-shi, Japan
| | - T Gotoh
- Faculty of Agriculture, Graduate school, Kuju Agricultural Research Center, Kyushu University, Kuju-cho, Taketa-shi, Japan
| | - H Aso
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai-shi, Japan.
| |
Collapse
|
16
|
Raychaudhuri N, Thamotharan S, Srinivasan M, Mahmood S, Patel MS, Devaskar SU. Postnatal exposure to a high-carbohydrate diet interferes epigenetically with thyroid hormone receptor induction of the adult male rat skeletal muscle glucose transporter isoform 4 expression. J Nutr Biochem 2014; 25:1066-76. [PMID: 25086780 DOI: 10.1016/j.jnutbio.2014.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 05/09/2014] [Accepted: 05/18/2014] [Indexed: 12/19/2022]
Abstract
Early life nutritional intervention causes adult-onset insulin resistance and obesity in rats. Thyroid hormone receptor (TR), in turn, transcriptionally enhances skeletal muscle Glut4 expression. We tested the hypothesis that reduced circulating thyroid-stimulating hormone and T4 concentrations encountered in postnatal (PN4-PN24) high-carbohydrate (HC) milk formula-fed versus the mother-fed controls (MF) would epigenetically interfere with TR induction of adult (100 days) male rat skeletal muscle Glut4 expression, thereby providing a molecular mechanism mediating insulin resistance. We observed increased DNA methylation of the CpG island with enhanced recruitment of Dnmt3a, Dnmt3b and MeCP2 in the glut4 promoter region along with reduced acetylation of histone (H)2A.Z and H4 particularly at the H4.lysine (K)16 residue, which was predominantly mediated by histone deacetylase 4 (HDAC4). This was followed by enhanced recruitment of heterochromatin protein 1β to the glut4 promoter with increased Suv39H1 methylase concentrations. These changes reduced TR binding of the T3 response element of the glut4 gene (TREs; -473 to -450 bp) detected qualitatively in vivo (electromobility shift assay) and quantified ex vivo (chromatin immunoprecipitation). In addition, the recruitment of steroid receptor coactivator and CREB-binding protein to the glut4 promoter-protein complex was reduced. Co-immunoprecipitation experiments confirmed the interaction between TR and CBP to be reduced and HDAC4 to be enhanced in HC versus MF groups. These molecular changes were associated with diminished skeletal muscle Glut4 mRNA and protein concentrations. We conclude that early postnatal exposure to HC diet epigenetically reduced TR induction of adult male skeletal muscle Glut4 expression, uncovering novel molecular mechanisms contributing to adult insulin resistance and obesity.
Collapse
Affiliation(s)
- Nupur Raychaudhuri
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752, USA
| | - Shanthie Thamotharan
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752, USA
| | - Malathi Srinivasan
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Saleh Mahmood
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Mulchand S Patel
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Sherin U Devaskar
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752, USA.
| |
Collapse
|
17
|
Abstract
Glucose is an important fuel for contracting muscle, and normal glucose metabolism is vital for health. Glucose enters the muscle cell via facilitated diffusion through the GLUT4 glucose transporter which translocates from intracellular storage depots to the plasma membrane and T-tubules upon muscle contraction. Here we discuss the current understanding of how exercise-induced muscle glucose uptake is regulated. We briefly discuss the role of glucose supply and metabolism and concentrate on GLUT4 translocation and the molecular signaling that sets this in motion during muscle contractions. Contraction-induced molecular signaling is complex and involves a variety of signaling molecules including AMPK, Ca(2+), and NOS in the proximal part of the signaling cascade as well as GTPases, Rab, and SNARE proteins and cytoskeletal components in the distal part. While acute regulation of muscle glucose uptake relies on GLUT4 translocation, glucose uptake also depends on muscle GLUT4 expression which is increased following exercise. AMPK and CaMKII are key signaling kinases that appear to regulate GLUT4 expression via the HDAC4/5-MEF2 axis and MEF2-GEF interactions resulting in nuclear export of HDAC4/5 in turn leading to histone hyperacetylation on the GLUT4 promoter and increased GLUT4 transcription. Exercise training is the most potent stimulus to increase skeletal muscle GLUT4 expression, an effect that may partly contribute to improved insulin action and glucose disposal and enhanced muscle glycogen storage following exercise training in health and disease.
Collapse
Affiliation(s)
- Erik A Richter
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
18
|
Vatner DF, Weismann D, Beddow SA, Kumashiro N, Erion DM, Liao XH, Grover GJ, Webb P, Phillips KJ, Weiss RE, Bogan JS, Baxter J, Shulman GI, Samuel VT. Thyroid hormone receptor-β agonists prevent hepatic steatosis in fat-fed rats but impair insulin sensitivity via discrete pathways. Am J Physiol Endocrinol Metab 2013; 305:E89-100. [PMID: 23651850 PMCID: PMC3725564 DOI: 10.1152/ajpendo.00573.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liver-specific thyroid hormone receptor-β (TRβ)-specific agonists are potent lipid-lowering drugs that also hold promise for treating nonalcoholic fatty liver disease and hepatic insulin resistance. We investigated the effect of two TRβ agonists (GC-1 and KB-2115) in high-fat-fed male Sprague-Dawley rats treated for 10 days. GC-1 treatment reduced hepatic triglyceride content by 75%, but the rats developed fasting hyperglycemia and hyperinsulinemia, attributable to increased endogenous glucose production (EGP) and diminished hepatic insulin sensitivity. GC-1 also increased white adipose tissue lipolysis; the resulting increase in glycerol flux may have contributed to the increase in EGP. KB-2115, a more TRβ- and liver-specific thyromimetic, also prevented hepatic steatosis but did not induce fasting hyperglycemia, increase basal EGP rate, or diminish hepatic insulin sensitivity. Surprisingly, insulin-stimulated peripheral glucose disposal was diminished because of a decrease in insulin-stimulated skeletal muscle glucose uptake. Skeletal muscle insulin signaling was unaffected. Instead, KB-2115 treatment was associated with a decrease in GLUT4 protein content. Thus, although both GC-1 and KB-2115 potently treat hepatic steatosis in fat-fed rats, they each worsen insulin action via specific and discrete mechanisms. The development of future TRβ agonists must consider the potential adverse effects on insulin sensitivity.
Collapse
Affiliation(s)
- Daniel F Vatner
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Newman SA, Mezentseva NV, Badyaev AV. Gene loss, thermogenesis, and the origin of birds. Ann N Y Acad Sci 2013; 1289:36-47. [PMID: 23550607 DOI: 10.1111/nyas.12090] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Compared to related taxa, birds have exceptionally enlarged and diversified skeletal muscles, features that are closely associated with skeletal diversification and are commonly explained by a diversity of avian ecological niches and locomotion types. The thermogenic muscle hypothesis (TMH) for the origin of birds proposes that such muscle hyperplasia and the associated skeletal innovations are instead the consequence of the avian clade originating from an ancestral population that underwent several successive episodes of loss of genes associated with thermogenesis, myogenesis, and skeletogenesis. Direct bird ancestors met this challenge with a combination of behavioral strategies (e.g., brooding of nestlings) and acquisition of a variety of adaptations for enhanced nonshivering thermogenesis in skeletal muscle. The latter include specific biochemical alterations promoting muscle heat generation and dramatic expansion of thigh and breast muscle mass. The TMH proposes that such muscle hyperplasia facilitated bipedality, freeing upper limbs for new functions (e.g., flight, swimming), and, by altering the mechanical environment of embryonic development, generated skeletal novelties, sometimes abruptly, that became distinctive features of the avian body plan.
Collapse
Affiliation(s)
- Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York 10595, USA.
| | | | | |
Collapse
|
20
|
Protein restriction during gestation alters histone modifications at the glucose transporter 4 (GLUT4) promoter region and induces GLUT4 expression in skeletal muscle of female rat offspring. J Nutr Biochem 2012; 23:1064-71. [DOI: 10.1016/j.jnutbio.2011.05.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 12/15/2010] [Accepted: 05/25/2011] [Indexed: 01/07/2023]
|
21
|
Ojuka EO, Goyaram V, Smith JAH. The role of CaMKII in regulating GLUT4 expression in skeletal muscle. Am J Physiol Endocrinol Metab 2012; 303:E322-31. [PMID: 22496345 DOI: 10.1152/ajpendo.00091.2012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Contractile activity during physical exercise induces an increase in GLUT4 expression in skeletal muscle, helping to improve glucose transport capacity and insulin sensitivity. An important mechanism by which exercise upregulates GLUT4 is through the activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in response to elevated levels of cytosolic Ca(2+) during muscle contraction. This review discusses the mechanism by which Ca(2+) activates CaMKII, explains research techniques currently used to alter CaMK activity in cells, and highlights various exercise models and pharmacological agents that have been used to provide evidence that CaMKII plays an important role in regulating GLUT4 expression. With regard to transcriptional mechanisms, the key research studies that identified myocyte enhancer factor 2 (MEF2) and GLUT4 enhancer factor as the major transcription factors regulating glut4 gene expression, together with their binding domains, are underlined. Experimental evidence showing that CaMK activation induces hyperacetylation of histones in the vicinity of the MEF2 domain and increases MEF2 binding to its cis element to influence MEF2-dependent Glut4 gene expression are also given along with data suggesting that p300 might be involved in acetylating histones on the Glut4 gene. Finally, an appraisal of the roles of other calcium- and non-calcium-dependent mechanisms, including the major HDAC kinases in GLUT4 expression, is also given.
Collapse
Affiliation(s)
- Edward O Ojuka
- University of Capetown/Medical Research Center Research Unit for Exercise Science & Sports Medicine, Department of Human Biology, Univeristy of Cape Town, Cape Town, South Africa.
| | | | | |
Collapse
|
22
|
Jahagirdar V, McNay EC. Thyroid hormone's role in regulating brain glucose metabolism and potentially modulating hippocampal cognitive processes. Metab Brain Dis 2012; 27:101-11. [PMID: 22437199 PMCID: PMC3348399 DOI: 10.1007/s11011-012-9291-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 02/08/2012] [Indexed: 12/25/2022]
Abstract
Cognitive performance is dependent on adequate glucose supply to the brain. Insulin, which regulates systemic glucose metabolism, has been recently shown both to regulate hippocampal metabolism and to be a mandatory component of hippocampally-mediated cognitive performance. Thyroid hormones (TH) regulate systemic glucose metabolism and may also be involved in regulation of brain glucose metabolism. Here we review potential mechanisms for such regulation. Importantly, TH imbalance is often encountered in combination with metabolic disorders such as diabetes, and may cause additional metabolic dysregulation and hence worsening of disease states. TH's potential as a regulator of brain glucose metabolism is heightened by interactions with insulin signaling, but there have been relatively few studies on this topic or on the actions of TH in a mature brain. This review discusses evidence for mechanistic links between TH, insulin, cognitive function, and brain glucose metabolism, and reaches the conclusion that TH may modulate memory processes, likely at least in part by modulation of central insulin signaling and glucose metabolism.
Collapse
Affiliation(s)
- V Jahagirdar
- Office of Outcomes Assessment and Institutional Research, Excelsior College, Albany, NY 12203, USA.
| | | |
Collapse
|
23
|
Zhao FQ, Keating AF. Functional properties and genomics of glucose transporters. Curr Genomics 2011; 8:113-28. [PMID: 18660845 DOI: 10.2174/138920207780368187] [Citation(s) in RCA: 369] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 12/08/2006] [Accepted: 12/17/2007] [Indexed: 12/17/2022] Open
Abstract
Glucose is the major energy source for mammalian cells as well as an important substrate for protein and lipid synthesis. Mammalian cells take up glucose from extracellular fluid into the cell through two families of structurallyrelated glucose transporters. The facilitative glucose transporter family (solute carriers SLC2A, protein symbol GLUT) mediates a bidirectional and energy-independent process of glucose transport in most tissues and cells, while the NaM(+)/glucose cotransporter family (solute carriers SLC5A, protein symbol SGLT) mediates an active, Na(+)-linked transport process against an electrochemical gradient. The GLUT family consists of thirteen members (GLUT1-12 and HMIT). Phylogenetically, the members of the GLUT family are split into three classes based on protein similarities. Up to now, at least six members of the SGLT family have been cloned (SGLT1-6). In this review, we report both the genomic structure and function of each transporter as well as intra-species comparative genomic analysis of some of these transporters. The affinity for glucose and transport kinetics of each transporter differs and ranges from 0.2 to 17mM. The ability of each protein to transport alternative substrates also differs and includes substrates such as fructose and galactose. In addition, the tissue distribution pattern varies between species. There are different regulation mechanisms of these transporters. Characterization of transcriptional control of some of the gene promoters has been investigated and alternative promoter usage to generate different protein isoforms has been demonstrated. We also introduce some pathophysiological roles of these transporters in human.
Collapse
Affiliation(s)
- Feng-Qi Zhao
- Lactation and Mammary Gland Biology Group, Department of Animal Science, University of Vermont, Burlington, VT, USA
| | | |
Collapse
|
24
|
Jensen EB, Zheng D, Russell RA, Bassel-Duby R, Williams RS, Olson AL, Dohm GL. Regulation of GLUT4 expression in denervated skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1820-8. [PMID: 19321702 DOI: 10.1152/ajpregu.90651.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Denervation by sciatic nerve resection causes decreased muscle glucose transporter 4 (GLUT4) expression, but little is known about the signaling events that cause this decrease. Experiments were designed to test the hypothesis that decreased GLUT4 expression in denervated muscle occurs because of decreased calcium/CaMK activity, which would then lead to decreased activation of the transcription factors myocyte enhancer factor 2 (MEF2) and GLUT4 enhancer factor (GEF), which are required for normal GLUT4 expression. GLUT4 mRNA was elevated in mice expressing constitutively active CaMK isoform IV (CaMKIV) and decreased by denervation. Denervation decreased GEF binding to the promoter and the content of GEF in the nucleus, but there was no change in either MEF2 binding or MEF2 protein content. Expression of a MEF2-dependent reporter gene did not change in denervated skeletal muscle. To determine the domains of the GLUT4 promoter that respond to denervation, transgenic mice expressing the chloramphenicol acetyl transferase (CAT) reporter gene driven by different lengths of the human GLUT4 promoter were denervated. Using several different promoter/reporter gene constructs, we found that all areas of the GLUT4 promoter were truncated or missing, except for the MEF2 binding domain and the basal promoter. All of the GLUT4 promoter/CAT reporter constructs evaluated responded normally to denervation. Our data lead us to conclude that decreased CaMK activity is not the reason for decreased GLUT4 content in denervated muscle and that negative control of GLUT4 expression is not mediated through the MEF2 or GEF-binding domains. These findings indicate that withdrawal of a GEF- or MEF2-dependent signal is not likely a major determinant of the denervation effect on GLUT4 expression. Thus, the response to denervation may be mediated by other elements present in the basal promoter of the GLUT4 gene.
Collapse
Affiliation(s)
- Ellis B Jensen
- Department of Biology, Viterbo University, La Crosse, Wisconsin, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Lima GA, Anhê GF, Giannocco G, Nunes MT, Correa-Giannella ML, Machado UF. Contractile activity per se induces transcriptional activation of SLC2A4 gene in soleus muscle: involvement of MEF2D, HIF-1a, and TRalpha transcriptional factors. Am J Physiol Endocrinol Metab 2009; 296:E132-8. [PMID: 18957617 DOI: 10.1152/ajpendo.90548.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Skeletal muscle is a target tissue for approaches that can improve insulin sensitivity in insulin-resistant states. In muscles, glucose uptake is performed by the GLUT-4 protein, which is encoded by the SLC2A4 gene. SLC2A4 gene expression increases in response to conditions that improve insulin sensitivity, including chronic exercise. However, since chronic exercise improves insulin sensitivity, the increased SLC2A4 gene expression could not be clearly attributed to the muscle contractile activity per se and/or to the improved insulin sensitivity. The present study was designed to investigate the role of contractile activity per se in the regulation of SLC2A4 gene expression as well as in the participation of the transcriptional factors myocyte enhancer factor 2D (MEF2D), hypoxia inducible factor 1a (HIF-1a), and thyroid hormone receptor-alpha (TRalpha). The performed in vitro protocol excluded the interference of metabolic, hormonal, and neural effects. The results showed that, in response to 10 min of electrically induced contraction of soleus muscle, an early 40% increase in GLUT-4 mRNA (30 min) occurred, with a subsequent 65% increase (120 min) in GLUT-4 protein content. EMSA and supershift assays revealed that the stimulus rapidly increased the binding activity of MEF2D, HIF-1a, and TRalpha into the SLC2A4 gene promoter. Furthermore, chromatin immunoprecipitation assay confirmed, in native nucleosome, that contraction induced an approximate fourfold (P < 0.01) increase in MEF2D and HIF-1a-binding activity. In conclusion, muscle contraction per se enhances SLC2A4 gene expression and that involves MEF2D, HIF-1a, and TRalpha transcription factor activation. This finding reinforces the importance of physical activity to improve glycemic homeostasis independently of other additional insulin sensitizer approaches.
Collapse
Affiliation(s)
- Guilherme Alves Lima
- Dept. of Physiology and Biophysics, Institute of Biomedical Sciences, Univ. of Sao Paulo, Av. Prof. Lineu Prestes, 1524, 05508-900 Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Gaster M. Fibre Type Dependent Expression of Glucose Transporters in Human Skeletal Muscles. APMIS 2008. [DOI: 10.1111/j.1600-0463.2007.apmv115s121.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Karnieli E, Armoni M. Transcriptional regulation of the insulin-responsive glucose transporter GLUT4 gene: from physiology to pathology. Am J Physiol Endocrinol Metab 2008; 295:E38-45. [PMID: 18492767 DOI: 10.1152/ajpendo.90306.2008] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The insulin-responsive glucose transporter 4 (GLUT4) plays a key role in glucose uptake and metabolism in insulin target tissues. Being a rate-limiting step in glucose metabolism, the expression and function of the GLUT4 isoform has been extensively studied and found to be tightly regulated at both mRNA and protein levels. Adaptation to states of enhanced metabolic demand is associated with increased glucose metabolism and GLUT4 gene expression, whereas states of insulin resistance such as type 2 diabetes mellitus (DM2), obesity, and aging are associated with impaired regulation of GLUT4 gene expression and function. The present review focuses on the interplay among hormonal, nutritional, and transcription factors in the regulation of GLUT4 transcription in health and sickness.
Collapse
Affiliation(s)
- Eddy Karnieli
- Institute of Endocrinology, Diabetes and Metabolism, 12 Haliah St., PO Box 9602, Rambam Medical Center, Haifa 31096, Israel.
| | | |
Collapse
|
28
|
Girón MD, Sevillano N, Vargas AM, Domínguez J, Guinovart JJ, Salto R. The glucose-lowering agent sodium tungstate increases the levels and translocation of GLUT4 in L6 myotubes through a mechanism associated with ERK1/2 and MEF2D. Diabetologia 2008; 51:1285-95. [PMID: 18483800 DOI: 10.1007/s00125-008-1003-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 03/16/2008] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to investigate the action of the glucose-lowering compound sodium tungstate on glucose transport in muscle myotubes and to unravel the molecular events underlying the effects observed. METHODS We studied the effects of tungstate on 2-deoxy-D: -glucose uptake, levels and translocation of the glucose transporters GLUT4 and GLUT1, and Glut4 (also known as Slc2a4) promoter activity. We also measured the modifications of individual components of the signalling pathways involved in the effects observed. RESULTS Tungstate increased 2-deoxy-D: -glucose uptake in differentiated L6 myotubes through an increase in the total amount and translocation of GLUT4 transporter. The effects on glucose uptake were additive to those of insulin. Tungstate activated transcription of the Glut4 promoter, as shown by an increase in Glut4 mRNA, and by a promoter reporter assay. The assay of deletions of the Glut4 promoter indicated that the effect of tungstate is mediated by the myocyte enhancer factor 2 (MEF2)-binding domain. Accordingly, MEF2 levels and DNA binding activities were increased in response to the treatment. Tungstate-induced glucose uptake and GLUT4 transcriptional activation were dependent on the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), while no changes were observed in the phosphorylation state of the beta subunit of the insulin receptor, in the phosphatidylinositol 3-kinase pathway or in the activation of 5'AMP-activated protein kinase. CONCLUSIONS/INTERPRETATION Tungstate activates glucose uptake in myotubes through a novel ERK1/2-dependent mechanism. This effect is exerted by an increase in the content and translocation of the GLUT4 transporter. This is the first report of a glucose-lowering compound activating Glut4 transcription through an ERK1/2-dependent increase in MEF2 levels.
Collapse
Affiliation(s)
- M D Girón
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja sn, 18071, Granada, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Raychaudhuri N, Raychaudhuri S, Thamotharan M, Devaskar SU. Histone code modifications repress glucose transporter 4 expression in the intrauterine growth-restricted offspring. J Biol Chem 2008; 283:13611-26. [PMID: 18326493 PMCID: PMC2376250 DOI: 10.1074/jbc.m800128200] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/21/2008] [Indexed: 12/14/2022] Open
Abstract
We examined transcriptional and epigenetic mechanism(s) behind diminished skeletal muscle GLUT4 mRNA in intrauterine growth-restricted (IUGR) female rat offspring. An increase in MEF2D (inhibitor) with a decline in MEF2A (activator) and MyoD (co-activator) binding to the glut4 promoter in IUGR versus control was observed. The functional role of MEF2/MyoD-binding sites and neighboring three CpG clusters in glut4 gene transcription was confirmed in C2C12 muscle cells. No differential methylation of these three and other CpG clusters in the glut4 promoter occurred. DNA methyltransferase 1 (DNMT1) in postnatal, DNMT3a, and DNMT3b in adult was differentially recruited with increased MeCP2 (methyl CpG-binding protein) concentrations to bind the IUGR glut4 gene. Covalent modifications of the histone (H) code consisted of H3.K14 de-acetylation by recruitment of histone deacetylase (HDAC) 1 and enhanced association of HDAC4 enzymes. This set the stage for Suv39H1 methylase-mediated di-methylation of H3.K9 and increased recruitment of heterochromatin protein 1alpha, which partially inactivates postnatal and adult IUGR glut4 gene transcription. Further increased interactions in the adult IUGR between DNMT3a/DNMT3b and HDAC1 and MEF2D and HDAC1/HDAC4 and decreased association between MyoD and MEF2A existed. We conclude that epigenetic mechanisms consisting of histone code modifications repress skeletal muscle glut4 transcription in the postnatal period and persist in the adult female IUGR offspring.
Collapse
Affiliation(s)
- Nupur Raychaudhuri
- Division of Neonatology and Developmental Biology and the Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-1752, USA
| | | | | | | |
Collapse
|
30
|
Pantos C, Mourouzis I, Xinaris C, Papadopoulou-Daifoti Z, Cokkinos D. Thyroid hormone and “cardiac metamorphosis”: Potential therapeutic implications. Pharmacol Ther 2008; 118:277-94. [DOI: 10.1016/j.pharmthera.2008.02.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
|
31
|
McGee SL, van Denderen BJW, Howlett KF, Mollica J, Schertzer JD, Kemp BE, Hargreaves M. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 2008; 57:860-7. [PMID: 18184930 DOI: 10.2337/db07-0843] [Citation(s) in RCA: 319] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Insulin resistance associated with obesity and diabetes is ameliorated by specific overexpression of GLUT4 in skeletal muscle. The molecular mechanisms regulating skeletal muscle GLUT4 expression remain to be elucidated. The purpose of this study was to examine these mechanisms. RESEARCH DESIGN AND METHODS AND RESULTS Here, we report that AMP-activated protein kinase (AMPK) regulates GLUT4 transcription through the histone deacetylase (HDAC)5 transcriptional repressor. Overexpression of HDAC5 represses GLUT4 reporter gene expression, and HDAC inhibition in human primary myotubes increases endogenous GLUT4 gene expression. In vitro kinase assays, site-directed mutagenesis, and site-specific phospho-antibodies establish AMPK as an HDAC5 kinase that targets S259 and S498. Constitutively active but not dominant-negative AMPK and 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR) treatment in human primary myotubes results in HDAC5 phosphorylation at S259 and S498, association with 14-3-3 isoforms, and H3 acetylation. This reduces HDAC5 association with the GLUT4 promoter, as assessed through chromatin immunoprecipitation assays and HDAC5 nuclear export, concomitant with increases in GLUT4 gene expression. Gene reporter assays also confirm that the HDAC5 S259 and S498 sites are required for AICAR induction of GLUT4 transcription. CONCLUSIONS These data reveal a signal transduction pathway linking cellular energy charge to gene transcription directed at restoring cellular and whole-body energy balance and provide new therapeutic targets for the treatment and management of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Sean L McGee
- Department of Physiology, The University of Melbourne, 3010, Australia.
| | | | | | | | | | | | | |
Collapse
|
32
|
Baumgartner BG, Orpinell M, Duran J, Ribas V, Burghardt HE, Bach D, Villar AV, Paz JC, González M, Camps M, Oriola J, Rivera F, Palacín M, Zorzano A. Identification of a novel modulator of thyroid hormone receptor-mediated action. PLoS One 2007; 2:e1183. [PMID: 18030323 PMCID: PMC2065906 DOI: 10.1371/journal.pone.0001183] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 10/19/2007] [Indexed: 11/25/2022] Open
Abstract
Background Diabetes is characterized by reduced thyroid function and altered myogenesis after muscle injury. Here we identify a novel component of thyroid hormone action that is repressed in diabetic rat muscle. Methodology/Principal Findings We have identified a gene, named DOR, abundantly expressed in insulin-sensitive tissues such as skeletal muscle and heart, whose expression is highly repressed in muscle from obese diabetic rats. DOR expression is up-regulated during muscle differentiation and its loss-of-function has a negative impact on gene expression programmes linked to myogenesis or driven by thyroid hormones. In agreement with this, DOR enhances the transcriptional activity of the thyroid hormone receptor TRα1. This function is driven by the N-terminal part of the protein. Moreover, DOR physically interacts with TR α1 and to T3-responsive promoters, as shown by ChIP assays. T3 stimulation also promotes the mobilization of DOR from its localization in nuclear PML bodies, thereby indicating that its nuclear localization and cellular function may be related. Conclusions/Significance Our data indicate that DOR modulates thyroid hormone function and controls myogenesis. DOR expression is down-regulated in skeletal muscle in diabetes. This finding may be of relevance for the alterations in muscle function associated with this disease.
Collapse
Affiliation(s)
- Bernhard G. Baumgartner
- Institute for Research in Biomedicine (IRB Barcelona) and Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Meritxell Orpinell
- Institute for Research in Biomedicine (IRB Barcelona) and Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona) and Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Vicent Ribas
- Institute for Research in Biomedicine (IRB Barcelona) and Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Hans E. Burghardt
- Institute for Research in Biomedicine (IRB Barcelona) and Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Daniel Bach
- Institute for Research in Biomedicine (IRB Barcelona) and Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Ana Victoria Villar
- Institute for Research in Biomedicine (IRB Barcelona) and Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - José C. Paz
- Institute for Research in Biomedicine (IRB Barcelona) and Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Meritxell González
- Institute for Research in Biomedicine (IRB Barcelona) and Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Marta Camps
- Institute for Research in Biomedicine (IRB Barcelona) and Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Josep Oriola
- Servei Hormonal, Hospital Clinic i Provincial, Barcelona, Spain
| | | | - Manuel Palacín
- Institute for Research in Biomedicine (IRB Barcelona) and Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona) and Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Seraphim PM, Nunes MT, Giannocco G, Machado UF. Age related obesity-induced shortening of GLUT4 mRNA poly(A) tail length in rat gastrocnemius skeletal muscle. Mol Cell Endocrinol 2007; 276:80-7. [PMID: 17709177 DOI: 10.1016/j.mce.2007.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 06/12/2007] [Accepted: 07/09/2007] [Indexed: 11/19/2022]
Abstract
Obese insulin resistant animals and humans have shown reduced GLUT4 gene expression. Yet, in skeletal muscle, discrepancy between mRNA and protein regulation has been frequently observed, suggesting a post-transcriptional modulation. We investigated the GLUT4 expression in adipose tissue and muscle of obese 12-month-old (12-mo) rats, comparing with lean 2-month-old (2-mo) animals. Obesity was accompanied by insulin resistance, and 65% reduction (P<0.01) in GLUT4 mRNA and protein in adipose tissue. However, in muscle, despite increased (P<0.05) mRNA content, GLUT4 protein was unchanged. RNase H and poly(A) test assays showed a reduction (P<0.01) of approximately 80 adenines in the GLUT4 mRNA poly(A) tail of muscle from 12-mo rats, recognizing that the poly(A) tail length correlates with translation efficiency. Concluding, age related obesity of 12-mo rats involves suppression of GLUT4 expression in adipose tissue; however, in muscle, GLUT4 mRNA content increases, but with a shorter poly(A) tail, thus unchanging the protein content.
Collapse
|
34
|
Silvestri E, Burrone L, de Lange P, Lombardi A, Farina P, Chambery A, Parente A, Lanni A, Goglia F, Moreno M. Thyroid-State Influence on Protein-Expression Profile of Rat Skeletal Muscle. J Proteome Res 2007; 6:3187-96. [PMID: 17608400 DOI: 10.1021/pr0701299] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We analyzed the whole-cell protein content of gastrocnemius muscles from rats in different thyroid states. Twenty differentially expressed proteins were unambiguously identified. They were involved in substrates and energy metabolism, stress response, cell structure, and gene expression. This study represents the first systematic identification of thyroid state-induced changes in the skeletal muscle protein-expression profile and reveals new cellular pathways as targets for thyroid hormone action.
Collapse
Affiliation(s)
- Elena Silvestri
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- Michael Gaster
- Institute of Pathology and Department of Endocrinology, Odense University Hospital, 5000 Odense C
| |
Collapse
|
36
|
Abstract
Few physiological parameters are more tightly and acutely regulated in humans than blood glucose concentration. The major cellular mechanism that diminishes blood glucose when carbohydrates are ingested is insulin-stimulated glucose transport into skeletal muscle. Skeletal muscle both stores glucose as glycogen and oxidizes it to produce energy following the transport step. The principal glucose transporter protein that mediates this uptake is GLUT4, which plays a key role in regulating whole body glucose homeostasis. This review focuses on recent advances on the biology of GLUT4.
Collapse
Affiliation(s)
- Shaohui Huang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
37
|
Armoni M, Harel C, Karnieli E. Transcriptional regulation of the GLUT4 gene: from PPAR-gamma and FOXO1 to FFA and inflammation. Trends Endocrinol Metab 2007; 18:100-7. [PMID: 17317207 DOI: 10.1016/j.tem.2007.02.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Revised: 01/17/2007] [Accepted: 02/09/2007] [Indexed: 01/22/2023]
Abstract
The insulin-responsive glucose transporter 4 (GLUT4) has a major role in glucose uptake and metabolism in insulin target tissues (i.e. adipose and muscle cells). In these tissues, the peroxisome proliferator-activated receptor (PPAR) family of nuclear receptors and the winged-helix-forkhead box class O (FOXO) family of factors are two key families of transcription factors that regulate glucose homeostasis and insulin responsiveness. Type 2 diabetes mellitus and obesity are associated with impaired regulation of GLUT4 gene expression and elevated levels of free fatty acids and proinflammatory factors. Based on our studies of the interplay between PPAR-gamma, FOXO1 and free fatty acids, and inflammation in regulating GLUT4 transcription in sickness and in health, we suggest a novel paradigm to increase insulin sensitivity in bona fide insulin target cells.
Collapse
Affiliation(s)
- Michal Armoni
- Institute of Endocrinology, Diabetes and Metabolism, Rambam Medical Center, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | | | | |
Collapse
|
38
|
Ruiz-Torres MP, Perez-Rivero G, Diez-Marques ML, Griera M, Ortega R, Rodriguez-Puyol M, Rodríguez-Puyol D. Role of activator protein-1 on the effect of arginine-glycine-aspartic acid containing peptides on transforming growth factor-β1 promoter activity. Int J Biochem Cell Biol 2007; 39:133-45. [PMID: 16978906 DOI: 10.1016/j.biocel.2006.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 07/19/2006] [Accepted: 07/20/2006] [Indexed: 11/24/2022]
Abstract
While arginine-glycine-aspartic acid-based peptidomimetics have been employed for the treatment of cardiovascular disorders and cancer, their use in other contexts remains to be explored. Arginine-glycine-aspartic acid-serine induces Transforming growth factor-beta1 transcription in human mesangial cells, but the molecular mechanisms involved have not been studied extensively. We explored whether this effect could be due to Activator protein-1 activation and studied the potential pathways involved. Addition of arginine-glycine-aspartic acid-serine promoted Activator protein-1 binding to its cognate sequence within the Transforming growth factor-beta1 promoter as well as c-jun and c-fos protein abundance. Moreover, this effect was suppressed by curcumin, a c-Jun N terminal kinase inhibitor, and was absent when the Activator protein-1 cis-regulatory element was deleted. Activator protein-1 binding was dependent on the activity of integrin linked kinase, as transfection with a dominant negative mutant suppressed both Activator protein-1 binding and c-jun and c-fos protein increment. Integrin linked kinase was, in turn, dependent on Phosphoinositol-3 kinase activity. Arginine-glycine-aspartic acid-serine stimulated Phosphoinositol-3 kinase activity, and Transforming growth factor-beta1 promoter activation was abrogated by the use of Phosphoinositol-3 kinase specific inhibitors. In summary, we propose that arginine-glycine-aspartic acid-serine activates Integrin linked kinase via the Phosphoinositol-3 kinase pathway and this leads to activation of c-jun and c-fos and increased Activator protein-1 binding and Transforming growth factor-beta1 promoter activity. These data may contribute to understand the molecular mechanisms involved in the cellular actions of arginine-glycine-aspartic acid-related peptides and enhance their relevance as these products evolve into clinical therapeutic use.
Collapse
Affiliation(s)
- M P Ruiz-Torres
- Nephrology Section and Research Unit, Hospital Príncipe de Asturias, Alcalá de Henares, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
39
|
Hyyti OM, Portman MA. Molecular Mechanisms of Cross-talk between Thyroid Hormone and Peroxisome Proliferator Activated Receptors: Focus on the Heart. Cardiovasc Drugs Ther 2006; 20:463-9. [PMID: 17171294 DOI: 10.1007/s10557-006-0643-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Thyroid hormone receptors (TR) and peroxisome proliferator activated receptors (PPAR) regulate cardiac metabolism. Numerous studies have examined TR and PPAR function since PPAR was first discovered in the early 1990s, however few have evaluated TR and PPAR interactions. Although ligands for these members of the nuclear steroid receptor family are under evaluation for treatment of congestive heart failure and various metabolic diseases, their interactions have not been investigated in detail in heart. These interactions are remarkably complicated. Nevertheless, their identification and elucidation is extremely important for further development of specific drugs. We review here the fundamental ways TRs and PPARs are regulated and how their cross-talk patterns mediate transcription of their target genes.
Collapse
Affiliation(s)
- Outi M Hyyti
- Division of Cardiology, Department of Pediatrics, Childrens Hospital & Regional Medical Center, 4800 Sandpoint Way NE, 4G-1, Seattle, WA 98105, USA
| | | |
Collapse
|
40
|
Soriano FX, Liesa M, Bach D, Chan DC, Palacín M, Zorzano A. Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin 2. Diabetes 2006; 55:1783-91. [PMID: 16731843 DOI: 10.2337/db05-0509] [Citation(s) in RCA: 278] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mitofusin 2 (Mfn2) is a mitochondrial membrane protein that participates in mitochondrial fusion and regulates mitochondrial metabolism in mammalian cells. Here, we show that Mfn2 gene expression is induced in skeletal muscle and brown adipose tissue by conditions associated with enhanced energy expenditure, such as cold exposure or beta(3)-adrenergic agonist treatment. In keeping with the role of peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1 alpha on energy expenditure, we demonstrate a stimulatory effect of PGC-1 alpha on Mfn2 mRNA and protein expression in muscle cells. PGC-1 alpha also stimulated the activity of the Mfn2 promoter, which required the integrity of estrogen-related receptor-alpha (ERR alpha)-binding elements located at -413/-398. ERR alpha also activated the transcriptional activity of the Mfn2 promoter, and the effects were synergic with those of PGC-1 alpha. Mfn2 loss of function reduced the stimulatory effect of PGC-1 alpha on mitochondrial membrane potential. Exposure to cold substantially increased Mfn2 gene expression in skeletal muscle from heterozygous Mfn2 knock-out mice, which occurred in the presence of higher levels of PGC-1 alpha mRNA compared with control mice. Our results indicate the existence of a regulatory pathway involving PGC-1 alpha, ERR alpha, and Mfn2. Alterations in this regulatory pathway may participate in the pathophysiology of insulin-resistant conditions and type 2 diabetes.
Collapse
MESH Headings
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Animals
- Blotting, Western
- Cells, Cultured
- Chromatin Immunoprecipitation
- Cold Temperature
- Dioxoles/pharmacology
- Electrophoretic Mobility Shift Assay
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- GTP Phosphohydrolases
- Gene Expression/drug effects
- HeLa Cells
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/metabolism
- Humans
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mitochondria, Muscle/metabolism
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/physiology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
Collapse
Affiliation(s)
- Francesc X Soriano
- Institute for Research in Biomedicine (IRB), Scientífic Park of Barcelona, Departament of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barelona, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Hocquette JF, Sauerwein H, Higashiyama Y, Picard B, Abe H. Prenatal developmental changes in glucose transporters, intermediary metabolism and hormonal receptors related to the IGF/insulin-glucose axis in the heart and adipose tissue of bovines. ACTA ACUST UNITED AC 2006; 46:257-72. [PMID: 16733045 DOI: 10.1051/rnd:2006014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 02/28/2006] [Indexed: 11/14/2022]
Abstract
Glucose transporter ontogenesis is likely to play a key role in glucose uptake by foetal tissues in order to satisfy their energy requirements. We thus investigated developmental changes in the bovine heart and perirenal adipose tissue in two glucose transporter isoforms, namely GLUT1 and GLUT4, the latter being responsible for the regulation of glucose uptake by insulin. Other key players of the glucose/insulin axis were also assessed. Plasma glucose concentration in the foetus was lower at 8 and 8.5 months of age than previously. In the heart, GLUT1 protein level markedly decreased between 3 and 4 months of age, whereas the number of insulin and IGF-I binding sites continually decreased, especially between 7 and 8 or 8.5 months of age. On the contrary, the GLUT4 level increased until 8 months of age and remained high until 2 weeks after birth. The activities of enzymes of glucose metabolism (namely phosphofructokinase [PFK] and lactate dehydrogenase [LDH]) increased throughout gestation and reached a plateau at 6 and 8.5 months of age for PFK and LDH, respectively. The activities of enzymes involved in fatty acid metabolism increased especially at birth. In perirenal adipose tissue, high mitochondrial activity was detected before birth which is a characteristic of brown adipose tissue. Furthermore, lipoprotein lipase activity and GLUT4 protein level markedly increased to reach a maximum at 6-7 and 8 months of age, and sharply decreased thereafter, whereas GLUT1 protein level increased between 6 and 7 months of age. In conclusion, considerable changes in the regulation of the insulin/glucose axis were observed from 6 months onwards of foetal development in both the heart and adipose tissue of cattle, which probably alters the potential of these tissues to use glucose or fat as energy sources.
Collapse
Affiliation(s)
- Jean-François Hocquette
- INRA, Herbivore Research Unit, Muscle Growth and Metabolism Team, Theix, 63122 Saint-Genès-Champanelle, France.
| | | | | | | | | |
Collapse
|
42
|
McGee SL, Sparling D, Olson AL, Hargreaves M. Exercise increases MEF2- and GEF DNA-binding activity in human skeletal muscle. FASEB J 2005; 20:348-9. [PMID: 16368714 DOI: 10.1096/fj.05-4671fje] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Overexpression of GLUT4 exclusively in skeletal muscle enhances insulin action and improves glucose homeostasis. Transgenic studies have discovered two regions on the GLUT4 promoter conserved across several species that are required for normal GLUT4 expression in skeletal muscle. These regions contain binding motifs for the myocyte enhancer factor 2 (MEF2) family and GLUT4 enhancer factor (GEF). A single bout of exercise increases both GLUT4 transcription and mRNA abundance; however, the molecular mechanisms mediating this response remain largely unexplored. Thus, the aim of this study was to determine whether a single, acute bout of exercise increased the DNA-binding activities of MEF2 and GEF in human skeletal muscle. Seven subjects performed 60 min of cycling at approximately 70% of VO2peak. After exercise, the DNA-binding activities of both the MEF2A/D heterodimer and GEF were increased (P<0.05). There was no change in nuclear MEF2D or GEF abundance after exercise, but nuclear MEF2A abundance was increased (P<0.05). These data demonstrate that exercise increases MEF2 and GEF DNA binding and imply that these transcription factors could be potential targets for modulating GLUT4 expression in human skeletal muscle.
Collapse
Affiliation(s)
- Sean L McGee
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | | | | | | |
Collapse
|
43
|
Smith AG, Muscat GEO. Skeletal muscle and nuclear hormone receptors: implications for cardiovascular and metabolic disease. Int J Biochem Cell Biol 2005; 37:2047-63. [PMID: 15922648 DOI: 10.1016/j.biocel.2005.03.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 02/22/2005] [Accepted: 03/11/2005] [Indexed: 12/18/2022]
Abstract
Skeletal muscle is a major mass peripheral tissue that accounts for approximately 40% of the total body mass and a major player in energy balance. It accounts for >30% of energy expenditure, is the primary tissue of insulin stimulated glucose uptake, disposal, and storage. Furthermore, it influences metabolism via modulation of circulating and stored lipid (and cholesterol) flux. Lipid catabolism supplies up to 70% of the energy requirements for resting muscle. However, initial aerobic exercise utilizes stored muscle glycogen but as exercise continues, glucose and stored muscle triglycerides become important energy substrates. Endurance exercise increasingly depends on fatty acid oxidation (and lipid mobilization from other tissues). This underscores the importance of lipid and glucose utilization as an energy source in muscle. Consequently skeletal muscle has a significant role in insulin sensitivity, the blood lipid profile, and obesity. Moreover, caloric excess, obesity and physical inactivity lead to skeletal muscle insulin resistance, a risk factor for the development of type II diabetes. In this context skeletal muscle is an important therapeutic target in the battle against cardiovascular disease, the worlds most serious public health threat. Major risk factors for cardiovascular disease include dyslipidemia, hypertension, obesity, sedentary lifestyle, and diabetes. These risk factors are directly influenced by diet, metabolism and physical activity. Metabolism is largely regulated by nuclear hormone receptors which function as hormone regulated transcription factors that bind DNA and mediate the patho-physiological regulation of gene expression. Metabolism and activity, which directly influence cardiovascular disease risk factors, are primarily driven by skeletal muscle. Recently, many nuclear receptors expressed in skeletal muscle have been shown to improve glucose tolerance, insulin resistance, and dyslipidemia. Skeletal muscle and nuclear receptors are rapidly emerging as critical targets in the battle against cardiovascular disease risk factors. Understanding the function of nuclear receptors in skeletal muscle has enormous pharmacological utility for the treatment of cardiovascular disease. This review focuses on the molecular regulation of metabolism by nuclear receptors in skeletal muscle in the context of dyslipidemia and cardiovascular disease.
Collapse
MESH Headings
- Cardiovascular Diseases/metabolism
- Cholesterol/metabolism
- DNA-Binding Proteins/metabolism
- Dyslipidemias/metabolism
- Glucose/metabolism
- Humans
- Insulin Resistance/physiology
- Metabolic Diseases/metabolism
- Models, Biological
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Peroxisome Proliferator-Activated Receptors/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Glucocorticoid/metabolism
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/metabolism
- Transcription Factors/metabolism
- Tretinoin/metabolism
Collapse
Affiliation(s)
- Aaron G Smith
- Institute for Molecular Bioscience, University of Queensland, St Lucia, 4072 Qld, Australia
| | | |
Collapse
|
44
|
Holmes BF, Sparling DP, Olson AL, Winder WW, Dohm GL. Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase. Am J Physiol Endocrinol Metab 2005; 289:E1071-6. [PMID: 16105857 DOI: 10.1152/ajpendo.00606.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As the primary glucose transporter in skeletal muscle, GLUT4 is an important factor in the regulation of blood glucose. We previously reported that stimulation of AMP-activated protein kinase (AMPK) with 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) increased GLUT4 expression in muscle. GLUT4 enhancer factor (GEF) and myocyte enhancer factor 2 (MEF2) have been shown to be important for normal GLUT4 expression because deletion or truncation of the consensus sequences on the promoter causes depressed GLUT4 mRNA expression. This led to the current study to investigate possible roles for GEF and MEF2 in mediating the activation of GLUT4 gene transcription in response to AMPK. Here we show that, although AMPK does not appear to phosphorylate MEF2A, AMPK directly phosphorylates the GEF protein in vitro. MEF2 and GEF are activated in response to AMPK as we observed translocation of both to the nucleus after AICAR treatment. Nuclear MEF2 protein content was increased after 2 h, and GEF protein was increased in the nucleus 1 and 2 h post-AICAR treatment. Last, GEF and MEF2 increase in binding to the GLUT4 promoter within 2 h after AICAR treatment. Thus we conclude that GEF and MEF2 mediate the AMPK-induced increase in transcription of skeletal muscle GLUT4. AMPK can phosphorylate GEF and in response to AICAR, GEF, and MEF2 translocate to the nucleus and have increased binding to the GLUT4 promoter.
Collapse
Affiliation(s)
- Burton F Holmes
- Department of Exercise and Sport Science, Human Performance Laboratory, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | | | | | | | | |
Collapse
|
45
|
Ralphe JC, Nau PN, Mascio CE, Segar JL, Scholz TD. Regulation of myocardial glucose transporters GLUT1 and GLUT4 in chronically anemic fetal lambs. Pediatr Res 2005; 58:713-8. [PMID: 16189198 DOI: 10.1203/01.pdr.0000180546.42475.69] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Little is known about the chronic adaptations that take place in the fetal heart to allow for increased substrate delivery in response to chronic stress. Because glucose is an important fuel for the fetal cardiomyocytes, we hypothesized that myocardial glucose transporters 1 and 4 (GLUT1 and GLUT4, respectively) are up-regulated in the fetal sheep heart that is chronically stressed by anemia. Fetal sheep at 128 d gestation underwent daily isovolumic hemorrhage and determination of myocardial blood flow, oxygen consumption, and substrate utilization. At the end of 3 or 7 d of anemia, myocardial levels of GLUT1 and GLUT4 mRNA and protein were measured and subcellular localization was determined. Despite stable heart rate and blood pressure, anemia caused a nearly 4-fold increase in right and left ventricular (RV and LV) free wall blood flow. No significant change in myocardial glucose uptake was found and serum insulin levels remained stable. Both 3-d RV and LV and 7-d RV mRNA and protein levels of GLUT1 and GLUT4 were unchanged; 7-d LV GLUT1 and GLUT4 mRNA levels were also stable. However, LV GLUT1 protein levels declined significantly, whereas LV GLUT4 protein levels were increased. In the steady state, GLUT4 protein localized to the sarcolemma membrane. These findings suggest that the glucose transporters are post-transcriptionally regulated in myocardium of chronically anemic fetal sheep with changes that mimic normal postnatal development. Unlike the postnatal heart, localization of GLUT4 to the cell membrane suggests the importance of GLUT4 in basal glucose uptake in the stressed fetal heart.
Collapse
|
46
|
Silva JLT, Giannocco G, Furuya DT, Lima GA, Moraes PAC, Nachef S, Bordin S, Britto LRG, Nunes MT, Machado UF. NF-kappaB, MEF2A, MEF2D and HIF1-a involvement on insulin- and contraction-induced regulation of GLUT4 gene expression in soleus muscle. Mol Cell Endocrinol 2005; 240:82-93. [PMID: 16024167 DOI: 10.1016/j.mce.2005.05.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 05/13/2005] [Accepted: 05/20/2005] [Indexed: 02/07/2023]
Abstract
The GLUT4 gene transcriptional activity has a profound impact on the insulin-mediated glucose disposal and it is, therefore, important to understand the mechanisms underlying it. Insulin and exercise modulate GLUT4 expression in vivo, but the net control and involved mechanisms of each one have not been established yet. This paper sought to discriminate, in soleus muscle, the effects of insulin and muscle contraction on GLUT4 gene expression, and the involvement of transcriptional factors: myocite enhancer factor 2 (MEF2 A/C/D), hypoxia inducible factor 1-a (HIF1-a) and nuclear factor-kappa B (NF-kappaB). The GLUT4 mRNA was reduced by fasting (40%), and increased by in vitro incubation with insulin (25%) or insulin plus glucose (40%), which was accompanied by opposite regulations of NF-kappaB mRNA. Differently, in vitro, muscle contraction led to a rapid increase (35-80%) in GLUT4, MEF2A, MEF2D and HIF1-a mRNAs. Additionally, electrophoretic mobility shift assay confirmed changes in the binding activity of nuclear proteins to consensus NF-kappaB, GLUT4-Ebox and GLUT4-AT-rich element probes, parallel to the mRNA changes of their respective transcriptional factors NF-kappaB, HIF1-a and MEF2s. Concluding, insulin- and contraction-induced regulation of GLUT4 expression involves distinct transcriptional factors.
Collapse
Affiliation(s)
- Jose L T Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Thyroid hormone action has long been recognized as an important determinant of glucose homeostasis. Recent advances in the knowledge of the physiology of the deiodinases indicate that through tissue-specific regulation of thyroid hormone metabolism, leading to local specificity of thyroid hormone action and target gene transcription patterns, they may have an important function in the modulation of carbohydrate metabolism. This review briefly addresses the role of thyroid hormone action on glucose homeostasis with a specific focus on the significance of the peripheral metabolism of thyroid hormone in the regulation of glucose homeostasis and insulin sensitivity.
Collapse
Affiliation(s)
- A Chidakel
- Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
48
|
Zorzano A, Palacín M, Gumà A. Mechanisms regulating GLUT4 glucose transporter expression and glucose transport in skeletal muscle. ACTA ACUST UNITED AC 2005; 183:43-58. [PMID: 15654919 DOI: 10.1111/j.1365-201x.2004.01380.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Skeletal muscle is a major glucose-utilizing tissue in the absorptive state and the major glucose transporter expressed in muscle in adulthood is GLUT4. GLUT4 expression is exquisitely regulated in muscle and this seems important in the regulation of insulin-stimulated glucose uptake by this tissues. Thus, muscle GLUT4 overexpression in transgenic animals ameliorates insulin resistance associated with obesity or diabetes. Recent information indicates that glut4 gene transcription is regulated by a number of factors in skeletal muscle that include MEF2, MyoD myogenic proteins, thyroid hormone receptors, Kruppel-like factor KLF15, NF1, Olf-1/Early B cell factor and GEF/HDBP1. In addition, studies in vivo indicate that under normal conditions the activity of the muscle-specific GLUT4 enhancer is low in adult skeletal muscle compared with the maximal potential activity that it can attain at high levels of the MRF transcription factors, MEF2, and TRalpha1. This finding indicates that glut4 transcription may be greatly up-regulated via activation of this enhancer through an increase in the levels of expression or activity of these transcription factors. Understanding the molecular basis of the expression of glut4 will be useful for the appropriate therapeutic design of treatments for insulin-resistant states. The nature of the intracellular signals that mediate the stimulation of glucose transport in response to insulin or exercise is also reviewed.
Collapse
Affiliation(s)
- A Zorzano
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, and IRBB- Parc Científic de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
49
|
Kinugawa K, Jeong MY, Bristow MR, Long CS. Thyroid hormone induces cardiac myocyte hypertrophy in a thyroid hormone receptor alpha1-specific manner that requires TAK1 and p38 mitogen-activated protein kinase. Mol Endocrinol 2005; 19:1618-28. [PMID: 15831522 PMCID: PMC1237131 DOI: 10.1210/me.2004-0503] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alterations in TR [thyroid hormone (TH) receptor]1 isoform expression have been reported in models of both physiologic and pathologic cardiac hypertrophy as well as in patients with heart failure. In this report, we demonstrate that TH induces hypertrophy as a direct result of binding to the TRalpha1 isoform and, moreover, that overexpression of TRalpha1 alone is also associated with a hypertrophic phenotype, even in the absence of ligand. The mechanism of TH and TRalpha1-specific hypertrophy is novel for a nuclear hormone receptor and involves the transforming growth factor beta-activated kinase (TAK1) and p38. Mitigating TRalpha1 effects, both TRalpha2 and TRbeta1 attenuate TRalpha1-induced myocardial growth and gene expression by diminishing TAK1 and p38 activities, respectively. These findings refine our previous observations on TR expression in the hypertrophied and failing heart and suggest that manipulation of thyroid hormone signaling in an isoform-specific manner may be a relevant therapeutic target for altering the pathologic myocardial program.
Collapse
Affiliation(s)
- Koichiro Kinugawa
- Division of Cardiology, University of Colorado Health Sciences Center
| | | | | | - Carlin S. Long
- Division of Cardiology, University of Colorado Health Sciences Center
- Cardiology Section, Denver Health Medical Center
- Correspondence and reprint requests to; Carlin S. Long, MD, 777 Bannock St., Box 0960, Denver, Colorado 80204, PH 303-436-5498, FAX 303-436-7739,
| |
Collapse
|
50
|
Zorzano A. Intracellular Signaling Mechanisms Involved in Insulin Action. THE METABOLIC SYNDROME AT THE BEGINNING OF THE XXI CENTURY 2005:15-42. [DOI: 10.1016/b978-84-8174-892-5.50002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|