1
|
Abukhalaf D, Koerner R, Patel S, Duffy A, Prescott S. Exploring stress and depressive symptoms in pregnancy and the IL-1β, IL-6, and C-reactive protein pathway: Looking for possible biomarker targets. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2025; 21:100280. [PMID: 39877057 PMCID: PMC11773252 DOI: 10.1016/j.cpnec.2024.100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/26/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025] Open
Abstract
Background Individuals undergo significant stress throughout pregnancy and are at high risk for depressive symptoms. Elevated stress and depressive symptoms are associated with inflammatory processes and adverse maternal-infant outcomes. However, the biological processes associated with psychosocial outcomes and the maternal immune system remain unclear. As such, we aimed to examine associations among perceived stress, depressive symptoms, salivary IL-1β, IL-6, and CRP levels, and hair and salivary cortisol levels during the second and third trimesters of pregnancy. Methods We conducted an ancillary study consisting of 37 pregnant individuals. Participants collected salivary samples and measures of perceived stress and depression at 17-19 weeks, 25-27 weeks, and 32-34 weeks gestation. We collected a one-time hair sample between 36 and 40 weeks. Provided salivary samples were used to detect changes in cortisol, IL-1β, IL-6, and CRP levels. Hair was used to detect changes in cortisol levels throughout pregnancy. Results Elevated levels of perceived stress and depressive symptoms are associated with increased salivary CRP levels, respectively (p = 0.0142, p = 0.0008). Salivary and hair cortisol increased significantly throughout the second and third trimesters of pregnancy (p = 0.0004 and p < 0.0001). We also observed variations in IL-6 during pregnancy (p = 0.029) and significant increases between 25 and 27 weeks (p = 0.016). Conclusion Salivary samples may provide a non-invasive measurement of alterations in cytokine and cortisol levels in pregnant individuals reporting elevated stress and depressive symptoms. These may be candidate biomarkers for mechanistic study possibly aiding providers in early detection of deleterious immunological processes which could result in adverse maternal-infant outcomes.
Collapse
Affiliation(s)
| | - Rebecca Koerner
- University of South Florida, College of Nursing, United States
| | - Sapna Patel
- University of South Florida, College of Nursing, United States
| | - Allyson Duffy
- University of South Florida, College of Nursing, United States
| | - Stephanie Prescott
- University of South Florida, College of Nursing, United States
- Inova Health Services, United States
| |
Collapse
|
2
|
Tawfik MY, Amer SAAM, Fouad AM. Shiftwork and insulin resistance in professional drivers: exploring the association using non-insulin-based surrogate measures. BMC Public Health 2025; 25:191. [PMID: 39819581 PMCID: PMC11740691 DOI: 10.1186/s12889-024-21243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Previous research has made use of the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) index to explore the association between shiftwork (SW) and insulin resistance (IR). However, the limitations of the HOMA-IR index restrict its use. This study aimed to investigate the relationship between SW and IR in professional drivers using four alternative non-insulin-based IR surrogate measures (NIRS), and to determine the predictors of elevated NIRS. METHODS A comparative cross-sectional study was conducted on professional drivers at four Egyptian companies, where 187 SW were compared to 193 dayworkers (DW). Measurements included: sociodemographic, work, and clinical characteristics. Laboratory and NIRS data included: triglyceride glucose (TyG), triglyceride glucose-body mass index (TyG-BMI), triglyceride to high density lipoprotein cholesterol (TG/HDL-C), and metabolic score of insulin resistance (METS-IR). Further assessments included insomnia severity index (ISI), and perceived stress scale (PSS-10). RESULTS Shiftwork-drivers showed significantly higher levels of NIRS compared to DW-drivers. Shiftwork was significantly associated with elevated TyG (OR: 5.04, 95% CI: 1.98-12.84), TyG-BMI (OR: 4.50, 95% CI: 2.45-8.26), and METS-IR (OR: 6.30, 95% CI: 2.72-14.58). Significant interactions between SW and insomnia or meal-timing habits existed, where SW-drivers with clinically significant insomnia had 11 times higher odds of elevated TyG compared to DW drivers without insomnia. Likewise, SW-drivers experiencing poor meal timing habits had 5.5- and 6.8-times higher odds of elevated TG/HDL-C and METS-IR, respectively, compared to DW divers without poor meal timing habits. Other significant predictors for elevated NIRS included: age, income, stress, overweight/obesity, and poor meal timing habits. CONCLUSIONS This study demonstrates a significant association between shiftwork and elevated insulin resistance in professional drivers. Insomnia and poor meal timing habits significantly increases the odds of insulin resistance among professional drivers, suggesting interventions targeting sleep quality, meal timing, and stress management.
Collapse
Affiliation(s)
- Mirella Youssef Tawfik
- Department of Public health, Occupational and Environmental Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Shaimaa A A M Amer
- Department of Public health, Occupational and Environmental Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ahmed Mahmoud Fouad
- Department of Public health, Occupational and Environmental Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
3
|
Li YX, Li YL, Wang XP, Liu TW, Dong DJ, Wang JX, Zhao XF. The steroid hormone 20-hydroxyecdysone induces lipophagy via the brain-adipose tissue axis by promoting the adipokinetic hormone pathway. J Biol Chem 2025; 301:108179. [PMID: 39798879 DOI: 10.1016/j.jbc.2025.108179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
Lipophagy is a way to degrade lipids; however, the molecular mechanisms are not fully understood. Using the holometabolous lepidopteran insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that the larval fat body undergoes lipophagy during metamorphosis, and lipophagy is essential for metamorphosis. The steroid hormone 20-hydroxyecdysone (20E) induced lipophagy by promoting the expression of the peptide hormone adipokinetic hormone (AKH, the insect analog of glucagon) and the adipokinetic hormone receptor (AKHR). Akh was highly expressed in the brain and Akhr was expressed in various tissues. The 20E upregulated the expression of Akh and Akhr by its nuclear receptor EcR during metamorphosis. AKH and AKHR increased glucose levels via gluconeogenesis and promoted lipophagy. The high glucose level induced acetylation of FOXO and nuclear localization to promote the expression of lipases and autophagy genes. Thus, the steroid hormone 20E induced lipophagy via the brain-adipose tissue axis by promoting the AKH pathway, which presented nutrients and energy to pupal and adult development during insect metamorphosis after feeding stops.
Collapse
Affiliation(s)
- Yan-Xue Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yan-Li Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Pei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Tian-Wen Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Du-Juan Dong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
| |
Collapse
|
4
|
Mahboub HH, Yousefi M, Abdelgawad HA, Abdelwarith AA, Younis EM, Sakr E, Khamis T, Ismail SH, Abdel Rahman AN. Expression profiling of antimicrobial peptides and immune-related genes in Nile tilapia following Pseudomonas putida infection and nano-titanium dioxide gel exposure. FISH & SHELLFISH IMMUNOLOGY 2025; 156:110037. [PMID: 39577786 DOI: 10.1016/j.fsi.2024.110037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Pseudomonas putida is a virulent bacterium that prompts major losses in fish. Recently, there has been a noticeable direction for utilizing nanomaterials in the aquaculture industry for sustaining fish health and performance. Hence, the present study is the first trial to investigate the antibacterial influence of nano titanium dioxide gel (NTG) as a watery addition for combating P. putida infection in Nile tilapia (Oreochromis niloticus). Further, antioxidant-immune capacity, and gene expression in the spleen including antimicrobial peptides and immune-related genes are assessed. Fish (n = 200; 47.50 ± 1.32 g of body weight) were assigned into four groups for 10 days [control, NTG (0.9 mg/L), P. putida, and NTG + P. putida]. Findings demonstrated that the infection by P. putida induced a decline in antioxidant immune indicators including catalase, glutathione peroxidase, and nitric oxide. Furthermore, a noteworthy rise in lipid peroxide (malondialdehyde), tumor necrosis factor-alpha (TNF-α), and stress indicator (glucose) levels was noticed. P. putida infection induced remarkable alterations in the expression of antimicrobial peptides genes [tilapia piscidin (TP3 and TP4), colony-stimulating factor 1 receptor, hepcidin-2, beta-defensin1, and neutrophil cytosolic factor 4] and immune-relevant genes [transforming growth factor beta, tumor necrosis factor receptor-associated factor 6, TNF-α, interleukins (IL-10 and IL-11)]. Notably, applying NTG regenerated all the negative consequences of P. putida infection. Inclusive, this study underscores the crucial role of NTG as a potent antibacterial and immune-antioxidant agent, highlighting its potential in protecting O. niloticus from P. putida infection and improving immune-antioxidant response.
Collapse
Affiliation(s)
- Heba H Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| | - Morteza Yousefi
- Department of Veterinary Medicine, RUDN University, Miklukho-Maklaya St, Moscow, 117198, Russia.
| | - Hosny Ahmed Abdelgawad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Emad Sakr
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Sameh H Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, PO Box 12588, Egypt
| | - Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| |
Collapse
|
5
|
Compton SLE, Yang S, Madere J, Weltzien EK, Caan BJ, Meyerhardt JA, Schmitz KH, Brown JC. Dietary quality and chemotherapy-induced peripheral neuropathy in colon cancer. Cancer 2025; 131:e35599. [PMID: 39369275 DOI: 10.1002/cncr.35599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a common and dose-limiting chemotoxicity caused by oxaliplatin. This study investigated the relationship between dietary quality and the development of moderate and/or severe CIPN in colon cancer survivors using data from the Focus on Reducing Dose-Limiting Toxicities in Colon Cancer with Resistance Exercise trial (ClinicalTrials.gov identifier NCT03291951). METHODS Diet quality was collected using a 127-item food-frequency questionnaire and was scored using the Alternative Healthy Eating Index-2010 (AHEI-2010). CIPN was assessed with the Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events at each chemotherapy cycle. The association of dietary quality with time to the first moderate-to-severe (moderate-severe) or severe event of CIPN was estimated using Cox proportional hazards models. Only participants who received oxaliplatin were included in this analysis (n = 132). RESULTS Seventy-four participants (56.1%) reported moderate-severe CIPN. Higher dietary quality was associated with a significantly decreased risk of moderate-severe CIPN (hazard ratio [HR], 0.96; 95% confidence interval [CI], 0.93-0.99) and severe CIPN (HR, 0.91; 95% CI, 0.85-0.98). Consumption of red and processed meat (HR, 1.78; 95% CI, 1.07-2.83) and sugar-sweetened beverages (HR, 1.33; 95% CI, 1.10-1.59) was associated with an increased risk of moderate-severe CIPN. Consumption of sugar-sweetened beverages also was associated with an increased risk of severe CIPN (HR, 1.57; 95% CI, 1.14-2.18), whereas vegetable consumption was associated with a reduced risk of severe CIPN (HR, 0.29; 95% CI, 0.09-0.73). CONCLUSIONS Among patients with colon cancer who received oxaliplatin-based chemotherapy, higher baseline dietary quality was associated with a reduced risk of moderate-severe CIPN.
Collapse
Affiliation(s)
| | - Shengping Yang
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Joseph Madere
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Erin K Weltzien
- Kaiser Permanente Northern California, Oakland, California, USA
| | - Bette J Caan
- Kaiser Permanente Northern California, Oakland, California, USA
| | | | | | - Justin C Brown
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Lousiana State University Health Sciences Center, New Orleans School of Medicine, New Orleans, Louisiana, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
6
|
Pham K, Lazenby M, Yamada K, Lattin CR, Wada H. Zebra finches (Taeniopygia castanotis) display varying degrees of stress resilience in response to constant light. Gen Comp Endocrinol 2025; 361:114644. [PMID: 39592083 DOI: 10.1016/j.ygcen.2024.114644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
The ability for traits to recover after exposure to stress varies depending on the magnitude, duration, or type of stressor. One such stressor is circadian rhythm disruption stemming from exposure to light at night. Circadian rhythm disruption may lead to long-term physiological consequences; however, the capacity in which individuals recover and display stress resilience is not known. Here, we exposed zebra finches (Taeniopygia castanotis) to constant light (24L:0D) or a regular light/dark cycle (14L:10D) for 23 days, followed by a recovery period for 12 days. We measured body mass, corticosterone, and glucose levels at multiple timepoints, and relative protein expression of glucocorticoid receptors at euthanasia. Body mass significantly increased over time in light-exposed birds compared to controls, but a 12-day recovery period reversed this increase. Baseline levels of circulating glucose decreased in light-exposed birds compared to controls, but returned to pretreatment levels after the 12-day recovery period. In contrast, the glucose stress response did not show a similar recovery trend, suggesting longer recovery is needed or that this is a persistent effect in light-exposed birds. Surprisingly, we did not detect any differences in baseline corticosterone or reactivity of the hypothalamic-pituitiary-adrenal (HPA) axis between groups throughout the experiment. Moreover, we did not detect differences between relative protein expression of glucocorticoid receptors or a relationship with HPA axis reactivity. Yet, we found a positive relationship between glucocorticoid receptors and the glucose stress response, but only in the light group. Our results indicate that physiological and morphological traits differ in their ability to recover in response to constant light and warrants further investigation on the mechanisms driving stress resilience under a disrupted circadian rhythm.
Collapse
Affiliation(s)
- Kevin Pham
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA.
| | - Madeline Lazenby
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - KayLene Yamada
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Christine R Lattin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Haruka Wada
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
7
|
Johannesen J. Why study the T1D remission phase in the pediatric population? J Pediatr (Rio J) 2024:S0021-7557(24)00159-1. [PMID: 39701549 DOI: 10.1016/j.jped.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Affiliation(s)
- Jesper Johannesen
- Copenhagen University Hospital, Herlev, Denmark; Steno Diabetes Center Copenhagen, Copenhagen, Denmark; University of Copenhagen, Department of Clinical Medicine, Copenhagen, Denmark.
| |
Collapse
|
8
|
De Longis E, Kassis A, Rémond-Derbez N, Thota R, Darimont C, Donato-Capel L, Hudry J. Cognitive benefits of sleep: a narrative review to explore the relevance of glucose regulation. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 6:zpae095. [PMID: 39850251 PMCID: PMC11756301 DOI: 10.1093/sleepadvances/zpae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/16/2024] [Indexed: 01/25/2025]
Abstract
Sleep is essential for maintaining optimal health. Both sleep duration and quality have been linked to various physiological functions and physical and mental health outcomes. Nutrition has been shown to impact sleep parameters, from the nutrient composition of foods, such as tryptophan levels, to the physiological response to foods, such as the glucose response. However, the relationship between glycemic control and sleep, and its impact on next-day benefits, particularly on cognitive performance, remains complex and is not fully understood. This narrative review aims to explore the relationship between glycemia and sleep, and how it may affect cognitive performance the following day. The review includes data from observational and interventional studies, discussing mechanisms of action that may explain the modulating effect of glycemia on sleep and cognition. The evidence suggests that lower postprandial glucose and low variation of nocturnal glucose are associated with better sleep quality and shorter sleep onset latency. Good sleep quality, in turn, is positively associated with cognitive processes such as sustained attention and memory consolidation measured the next day after sleep. Future research opportunities lie in investigating the effects of modulating the glycemic and insulinemic responses through evening meals on sleep quality and next-day cognitive performance. Well-designed clinical trials involving healthy individuals are necessary to establish the effects of these interventions. Controlling glycemic and insulinemic profiles through the evening meal may have significant implications for improving sleep quality and cognitive performance, with potential impact on individual mental health, productivity, and overall well-being.
Collapse
Affiliation(s)
- Evelina De Longis
- Nestlé Institute of Health Sciences, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | | | - Noëla Rémond-Derbez
- Nestlé Institute of Health Sciences, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Rohith Thota
- Nestlé Institute of Health Sciences, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Christian Darimont
- Nestlé Institute of Health Sciences, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | | | - Julie Hudry
- Nestlé Institute of Health Sciences, Société des Produits Nestlé S.A., Lausanne, Switzerland
| |
Collapse
|
9
|
Li Q, Feng S, Zhang Y, Mou F, Guo T, Qin B, Liu Y. Potent Anti-Cancer Activity of 1-Dehydrodiosgenone from the Product of Microbial Transformation of Steroid Saponins. Int J Mol Sci 2024; 25:13118. [PMID: 39684828 DOI: 10.3390/ijms252313118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Steroids are extensively used in the pharmaceutical industry as industrial raw materials for the production of anti-inflammatory and anti-tumor drugs. Microbial transformation, an environmentally friendly method, displays the potential for preparing steroids on an industrial scale. In this study, four steroids, including Diosgenin, Smilagenone, Yamogenin, and 1-Dehydrodiosgenone, were isolated and identified from the solid-state fermentation (SSF) product of a novel Fusarium oxysporum strain, and their anti-tumor activities were investigated. The cytotoxicity assay showed that 1-Dehydrodiosgenone had significant inhibitory effects on three tumor cell lines, Hala, A549, and Mad-MB468 cells, with IC50s of 6.59 μM, 5.43 μM, and 4.81 μM, respectively. 1-Dehydrodiosgenone significantly induced apoptosis and necrosis of Hala, A549, and Mad-MB468 cells by upregulating the expressions of cleaved caspase-3, cleaved PARP, Bax, and Bad. Moreover, no significant organ damage was observed in mice based on safety tests. Therefore, 1-Dehydrodiosgenone is expected to be developed as a safe and broad-spectrum anti-cancer agent.
Collapse
Affiliation(s)
- Quanshun Li
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Shirong Feng
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Yuanyuan Zhang
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Fangyuan Mou
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Ting Guo
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Baofu Qin
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Yihan Liu
- College of Chemistry and Pharmacy, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
10
|
Armentrout BL, Ahmed BH, Waraphok S, Huynh J, Griggs S. Emotional Distress and Cardiovascular Health in Young Adults with Type 1 Diabetes. J Cardiovasc Dev Dis 2024; 11:391. [PMID: 39728281 DOI: 10.3390/jcdd11120391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Type 1 diabetes (T1D) is a complex chronic condition that places young adults aged 18-31 years at high risk for general and diabetes-related distress and poor cardiovascular health. Both general and diabetes distress are linked to higher A1C, a known risk factor for cardiovascular disease (CVD). The purpose of this cross-sectional quantitative descriptive study was to examine the associations between distress symptoms (general and diabetes) and cardiovascular health while considering covariates in young adults ages 18-31 years with T1D. One-hundred and sixty-five young adults with T1D, recruited from specialty clinics through two major health systems and online platforms, completed a demographic and clinical survey along with the 8-item PROMIS Emotional Distress Scale and 17-item Diabetes Distress Scale. Higher diabetes distress and higher general emotional distress were associated with lower cardiovascular health scores. Associations remained statistically significant after adjusting for age, T1D duration, sex at birth, race, and continuous subcutaneous insulin infusion. In young adults with type 1 diabetes, addressing both diabetes and general emotional distress may be important to improve cardiovascular health. However, longitudinal and experimental studies are needed to clarify underlying mechanisms and evaluate the effectiveness of interventions like cognitive behavioral therapy.
Collapse
Affiliation(s)
- Bethany L Armentrout
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bootan H Ahmed
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sineenat Waraphok
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Johnathan Huynh
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Stephanie Griggs
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
11
|
Wang Q, Bai W, Li C, Zhang X, Zhao A. Effect of low dose prednisone on glucose metabolism levels in patients with spontaneous abortion: A single-center, prospective cohort study. J Reprod Immunol 2024; 166:104395. [PMID: 39577058 DOI: 10.1016/j.jri.2024.104395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
In this single-center, prospective cohort study, we aimed to explore the effect of low dose prednisone treatment during pregnancy on blood glucose levels in patients with spontaneous abortion. Patients with a history of spontaneous abortion were enrolled and were assigned to two groups according to whether they were exposed to low dose prednisone during pregnancy. All patients received OGTT at early and late pregnancy. Fasting serum C-peptide and HbA1c levels were measured at the same time. We then analyzed the incidence of DM, impaired fasting glucose, impaired glucose tolerance and the incidence of GDM. A total of 355 patients were enrolled. No significant difference in OGTT between the two groups were observed in the first trimester (P=0.142). However, patients in the prednisone group showed a significant increase in fasting serum C-peptide (P<0.001). Regarding late pregnancy, patients in the prednisone group showed a significant increase in 2-h plasma glucose (P=0.010). Patients in the prednisone group also had a higher incidence of GDM (P=0.005). Furthermore, family history of DM and receiving low dose prednisone were significantly associated with higher risk of gestational glycometabolism abnormality in patients with spontaneous abortion. Therefore, our study suggested that long-term exposure of low dose prednisone during pregnancy could impair postprandial blood glucose and increase the incidence of GDM. Routine monitor of blood glucose and C-peptide levels should be recommended in patients who received prednisone treatment during pregnancy.
Collapse
Affiliation(s)
- Qiaohong Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenxin Bai
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Congcong Li
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxin Zhang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aimin Zhao
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Zuloaga R, Ahumada-Langer L, Aedo JE, Molina A, Valdés JA. Early metabolic and transcriptomic regulation in rainbow trout (Oncorhynchus mykiss) liver by 11-deoxycorticosterone through two corticosteroid receptors pathways. Comp Biochem Physiol A Mol Integr Physiol 2024; 298:111746. [PMID: 39304115 DOI: 10.1016/j.cbpa.2024.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Cortisol hormone is considered the main corticosteroid in fish stress, acting through glucocorticoid (GR) or mineralocorticoid (MR) receptor. The 11-deoxycorticosterone (DOC) corticosteroid is also secreted during stress and could complement the cortisol effects, but this still not fully understood. Hence, we evaluated the early transcriptomic response of rainbow trout (Oncorhynchus mykiss) liver by DOC through GR or MR. Thirty juvenile trout were pretreated with an inhibitor of endogenous cortisol synthesis (metyrapone) by intraperitoneal injection in presence or absence of GR (mifepristone) and MR (eplerenone) pharmacological antagonists for one hour. Then, fish were treated with a physiological DOC dose or vehicle (DMSO-PBS1X as control) for three hours (n = 5 per group). We measured several metabolic parameters in plasma, together with the liver glycogen content. Additionally, we constructed cDNA libraries from liver of each group, sequenced by HiseqX Illumina technology and then analyzed by RNA-seq. Plasma pyruvate and cholesterol levels decreased in DOC-administered fish and only reversed by eplerenone. Meanwhile, DOC increased liver glycogen contents depending on both corticosteroid receptor pathways. RNA-seq analysis revealed differential expressed transcripts induced by DOC through GR (448) and MR (1901). The enriched biological processes to both were mainly related to stress response, protein metabolism, innate immune response and carbohydrates metabolism. Finally, we selected sixteen genes from enriched biological process for qPCR validation, presenting a high Pearson correlation (0.8734 average). These results describe novel physiological effects of DOC related to early metabolic and transcriptomic responses in fish liver and differentially modulated by MR and GR.
Collapse
Affiliation(s)
- Rodrigo Zuloaga
- Programa de Doctorado en Biotecnología, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile
| | - Luciano Ahumada-Langer
- Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile
| | - Jorge Eduardo Aedo
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca 3466706, Chile
| | - Alfredo Molina
- Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile
| | - Juan Antonio Valdés
- Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile.
| |
Collapse
|
13
|
Patel S, Patel S, Kotadiya A, Patel S, Shrimali B, Patel T, Trivedi H, Patel V, Mahapatra J, Jain M. Establishment of reference intervals of haematology and biochemistry analytes in ICR mice of different ages. Lab Anim 2024; 58:565-578. [PMID: 39344748 DOI: 10.1177/00236772241260909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Outbred stocks of mice are widely used in pre-clinical research as these animals possess a diversified genetic background when compared with inbred strains of mice. It is crucial to assess particular alterations in the physiological and functional profiles of laboratory animals using haematological and biochemical indicators. These values can also differ between laboratories because they are influenced by many different factors. We aimed to provide normal values and reference intervals for selected haematology and biochemistry analytes of 570 ICR mice at three different ages: 6-8 weeks, 10-14 weeks and 6-9 months. Reference values were calculated by non-parametric methods. For comparisons between sexes, the independent-sample t-test and Mann-Whitney test were employed, and analysis of variance was used for age differences. The findings of the study revealed age-related declines in haemoglobin concentration, haematocrit, mean corpuscular volume and mean corpuscular haemoglobin concentrations. Mice aged 6-9 months had statistically higher platelet counts in their blood than mice of other ages. The white blood cell count had a significant age effect and progressively decreased with age. As mice get older, the percentage of neutrophils, monocytes and basophils increases, but the percentage of lymphocytes decreases. For the biochemical values, age-related significant differences in glucose, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and albumin concentrations were found. It was also found that creatinine concentrations were comparable across all age ranges. The values presented in the present work can be used as a reference to interpret clinical pathology data for other studies and to evaluate health status.
Collapse
Affiliation(s)
- Suresh Patel
- Animal Research Facility, Zydus Research Centre, Zydus Lifesciences Ltd, Ahmedabad, India
| | - Satish Patel
- Animal Research Facility, Zydus Research Centre, Zydus Lifesciences Ltd, Ahmedabad, India
| | - Ashvin Kotadiya
- Animal Research Facility, Zydus Research Centre, Zydus Lifesciences Ltd, Ahmedabad, India
| | - Samir Patel
- Animal Research Facility, Zydus Research Centre, Zydus Lifesciences Ltd, Ahmedabad, India
| | - Bhavesh Shrimali
- Animal Research Facility, Zydus Research Centre, Zydus Lifesciences Ltd, Ahmedabad, India
| | - Tushar Patel
- Department of Pharmacology & Toxicology, Zydus Research Centre, Zydus Lifesciences Ltd, Ahmedabad, India
| | - Harshida Trivedi
- Department of Pharmacology & Toxicology, Zydus Research Centre, Zydus Lifesciences Ltd, Ahmedabad, India
| | - Vishal Patel
- Department of Pharmacology & Toxicology, Zydus Research Centre, Zydus Lifesciences Ltd, Ahmedabad, India
| | - Jogeswar Mahapatra
- Department of Pharmacology & Toxicology, Zydus Research Centre, Zydus Lifesciences Ltd, Ahmedabad, India
| | - Mukul Jain
- Department of Pharmacology & Toxicology, Zydus Research Centre, Zydus Lifesciences Ltd, Ahmedabad, India
| |
Collapse
|
14
|
Attia A, Bertherat J. Cushing's syndrome and COVID-19. Pituitary 2024; 27:945-954. [PMID: 39541074 DOI: 10.1007/s11102-024-01466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE This review aims to present current data on the course of COVID-19 in patients with Cushing syndrome (CS) and discuss treatment for CS during to the pandemic. METHODS Literature review using PubMed (pubmed.ncbi.nlm.nih.gov). The search included the following terms: "COVID19" in combination with "Cushing syndrome", "Hypercortisolism" and "Glucocorticoid". RESULTS Chronic hypercortisolism has been reported to increase infectious risk and worsens prognostic of patients with COVID-19 potentially due to its direct impact on the immune system: lymphopenia, impairment of monocytes and neutrophils activity, diminution of complement activation. Main metabolic complications of CS - i.e. diabetes, hypertension and obesity - have been recognized as COVID-19 complications risk factors. Patients with CS treated with steroidogenesis inhibitors might experience adrenal insufficiency during COVID-19. Special attention should be paid to patients with CS and COVID-19. The pandemic has impacted - and delayed - care of chronic illnesses including CS. Specific recommendations had been provided during the pandemic: favor telemedicine consultations, limit in-hospital explorations and postpone surgery when feasible. CONCLUSION There are enough evidence for an increased prevalence and severity of COVID-19 to recommend a specific attention and caution in patients with CS.
Collapse
Affiliation(s)
- Amina Attia
- Université Paris-Cité, Paris, 75006, France.
- Department of Endocrinology, Center for Rare Adrenal Diseases, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Paris, 75014, France.
| | - Jérôme Bertherat
- Université Paris-Cité, Paris, 75006, France
- Department of Endocrinology, Center for Rare Adrenal Diseases, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Paris, 75014, France
- INSERM U1016, Institut Cochin, Paris, 75014, France
| |
Collapse
|
15
|
Fazio E, Bionda A, Attard G, Medica P, La Fauci D, Amato A, Liotta L, Lopreiato V. Effect of the Lactation Phases on the Amplitude of Variation in Blood Serum Steroid Hormones and Some Hematochemical Analytes in Three Dairy Cow Breeds. Animals (Basel) 2024; 14:3336. [PMID: 39595388 PMCID: PMC11591377 DOI: 10.3390/ani14223336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Lactation in dairy cows implies comprehensive endocrine and metabolic changes including a systemic electrolytic reaction. Previous studies have rarely considered these specific demands due to the influence of lactation periods. Therefore, this study aimed to assess the effects of early, middle, and late lactation phases on the dynamic changes in serum concentrations of progesterone (P4), 17β-oestradiol (E2), cortisol, and some electrolytes (Ca++, Mg++, Na+, K+, Cl-, Pi) and biochemical parameters (alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), creatine kinase (CK), total bilirubin, urea, and iron (Fe++) in 10 Holstein, 10 Brown Swiss, and 10 Modicana multiparous healthy dairy cows (4.2 ± 1.7 years of age) sampled at 60-day intervals throughout lactation. Lactation induced significant changes in the concentrations of P4, which peaked at >120-180 days, decreased at >240-300 days, and increased again after 300 days. Cortisol showed an opposite trend to P4, with concentrations progressively decreasing, except for the phase between >240 and 300 days, and a steep drop at >300 days compared to previous phases. Na+ concentrations showed the lowest values at 0-60 d and the highest ones at >180-240 days, whereas Mg++ showed the highest values at >60-120 d and the lowest at >300 d. Significant correlations were found between P4 with cortisol, Cl- and K+, and cortisol with Ca++ and LDH. Significant differences in average concentrations of AST, ALT, LDH, Ca++, Mg++, and Fe++ were observed among different dairy cow breeds. Understanding the dynamic changes in hormone levels, electrolytes, and biochemical parameters during different lactation phases, while considering breed differences in dairy cows, is crucial for improving herd health management and milk production in commercial dairy farms.
Collapse
Affiliation(s)
- Esterina Fazio
- Department of Veterinary Sciences, Messina University, Viale Palatucci 13, 98168 Messina, Italy; (P.M.); (D.L.F.); (A.A.); (L.L.); (V.L.)
| | - Arianna Bionda
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Milan University, Via Celoria 2, 20133 Milan, Italy;
| | - George Attard
- Department of Rural Sciences and Food Systems, University of Malta, 2080 Msida, Malta;
| | - Pietro Medica
- Department of Veterinary Sciences, Messina University, Viale Palatucci 13, 98168 Messina, Italy; (P.M.); (D.L.F.); (A.A.); (L.L.); (V.L.)
| | - Deborah La Fauci
- Department of Veterinary Sciences, Messina University, Viale Palatucci 13, 98168 Messina, Italy; (P.M.); (D.L.F.); (A.A.); (L.L.); (V.L.)
| | - Annalisa Amato
- Department of Veterinary Sciences, Messina University, Viale Palatucci 13, 98168 Messina, Italy; (P.M.); (D.L.F.); (A.A.); (L.L.); (V.L.)
| | - Luigi Liotta
- Department of Veterinary Sciences, Messina University, Viale Palatucci 13, 98168 Messina, Italy; (P.M.); (D.L.F.); (A.A.); (L.L.); (V.L.)
| | - Vincenzo Lopreiato
- Department of Veterinary Sciences, Messina University, Viale Palatucci 13, 98168 Messina, Italy; (P.M.); (D.L.F.); (A.A.); (L.L.); (V.L.)
| |
Collapse
|
16
|
Coutts VM, Pham K, Gilbert G, Wada H. Breeding zebra finches prioritize reproductive bout over self-maintenance under food restriction. Biol Open 2024; 13:bio060417. [PMID: 39400300 PMCID: PMC11556311 DOI: 10.1242/bio.060417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Reproduction requires high amounts of energy, and challenging environments during breeding can force parents to prioritize their current reproductive bout over self-maintenance or vice versa. However, little is known about how common stressors, such as food restriction, can influence these trade-offs during breeding, and the physiological mechanisms for these trade-off decisions. In this study, adult zebra finches (Taeniopygia castanotis) were subjected to a control diet (ad libitum) or a 40% food restriction while raising nestlings and fledglings, and we measured body mass, furculum fat, plasma corticosterone (CORT) and blood glucose levels of the parents at the time of pairing, when their offspring fledged, and when their offspring reached nutritional independence. We also measured body mass and growth rate in the offspring from hatching until the end of the treatment period. Food-restricted parents had lower body mass when their offspring fledged and reached nutritional independence and higher baseline CORT when their offspring fledged compared to controls. Offspring did not differ in body mass or growth rate between treatment groups. However, there was no effect of food restriction on parents' furculum fat, baseline glucose, the adrenocortical response, or the glucose response. Furthermore, path analysis results suggest that alterations in baseline glucose is the primary driver of changes in body mass in parents and offspring brood mass. Taken together, these results suggest that food restriction during chick rearing in a short-lived passerine drives parents to prioritize their current reproductive bout over self-maintenance, and glucose could potentially be a mechanism for diverting energy toward parental effort.
Collapse
Affiliation(s)
- Victoria M. Coutts
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Kevin Pham
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Gabriella Gilbert
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Haruka Wada
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
17
|
Li S, Zhang S, Rensen PCN, Meijer OC, Kooijman S, Kroon J. Out-of-phase treatment with the synthetic glucocorticoid betamethasone disturbs glucose metabolism in mice. Life Sci 2024; 357:123080. [PMID: 39332486 DOI: 10.1016/j.lfs.2024.123080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
OBJECTIVE Endogenous glucocorticoid levels display a strong circadian rhythm, which is often not considered when synthetic glucocorticoids are prescribed as anti-inflammatory drugs. In this study we evaluated the effect timing of glucocorticoid administration, i.e. in-phase (administered when endogenous glucocorticoid levels are high) versus out-of-phase (administered when endogenous glucocorticoid levels are low). We investigated the synthetic glucocorticoid betamethasone - which is extensively used in the clinic - and monitored the development of common metabolic side effects in mice upon prolonged treatment, with a particular focus on glucose metabolism. METHODS Male and female C57BL/6J mice were treated with the synthetic glucocorticoid betamethasone in-phase and out-of-phase, and the development of metabolic side effects was monitored. RESULTS We observed that, compared with in-phase treatment, out-of-phase treatment with betamethasone results in hyperinsulinemia in both male and female C57BL/6J mice. We additionally found that out-of-phase betamethasone treatment strongly reduced insulin sensitivity as compared to in-phase administration during morning measurements. Our study shows that the adverse effects of betamethasone are dependent on the time of treatment with generally less side effects on glucose metabolism with in-phase treatment. CONCLUSIONS This study highlights differences in glucocorticoid outcome based on the time of measurement, advocating that potential circadian variation should be taken into account when studying glucocorticoid biology.
Collapse
Affiliation(s)
- Sheng Li
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sen Zhang
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan Kroon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
18
|
de Almeida Prado DM, de Figueiredo AC, Lima AS, Gomes FR, Madelaire CB. Corticosterone treatment results in fat deposition and body mass maintenance without effects on feeding behaviour or immunity in female lizards (Tropidurus catalanensis). Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111712. [PMID: 39084515 DOI: 10.1016/j.cbpa.2024.111712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Throughout life, animals must maintain homeostasis while coping with challenging events. The period after reproduction can be challenging for oviparous females to maintain homeostasis since they direct most of their energy stores to vitellogenesis, possibly increasing the vulnerability to stressors. Changes in glucocorticoids' (GC) secretion promote various behavioural and physiological adjustments daily and to restore balance after facing stressors. However, when GC are elevated for extended periods, which usually occurs in response to chronic exposure to stressors, they can affect feeding behaviour and suppress the immune function. We aim to elucidate the effects of chronic corticosterone (CORT) exposure on feeding behaviour, body condition and immune function in female lizards, Tropidurus catalanensis, in the post-reproductive period. Thirty animals were divided into three groups: 1. Control (no experimental procedure performed); 2. Empty Implant (animals implanted with empty silastic tube); and 3. CORT Implant (animals implanted with silastic tube filled with CORT, with a chronic continuous release for at least a week). CORT plasma levels feeding behaviour, body condition (body index [BI] and fat index [FI]), leukocyte count, and several immune function variables (bacterial killing ability [BKA], hemagglutination titer, phytohemagglutinin [PHA] immune challenge and leukocyte count) were evaluated. After implantation, CORT treated animals maintained stable body mass through the experiment, while Control and Empty Implant groups displayed weight loss. In the CORT treated animals, there was also a positive relation between BI and FI, and higher FI when compared to groups 1 and 2. No effects of CORT were observed on feeding behaviour nor on the immune function.
Collapse
Affiliation(s)
- Débora Meyer de Almeida Prado
- USP - Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Rua do Matão, Travessa 14, n° 321, Cidade Universitária, São Paulo, SP 05508090, Brazil.
| | - Aymam Cobo de Figueiredo
- USP - Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Rua do Matão, Travessa 14, n° 321, Cidade Universitária, São Paulo, SP 05508090, Brazil
| | - Alan Siqueira Lima
- USP - Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Rua do Matão, Travessa 14, n° 321, Cidade Universitária, São Paulo, SP 05508090, Brazil
| | - Fernando Ribeiro Gomes
- USP - Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Rua do Matão, Travessa 14, n° 321, Cidade Universitária, São Paulo, SP 05508090, Brazil
| | - Carla Bonetti Madelaire
- Beckman Center for Conservation Research, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, United States. https://twitter.com/carlamadelaire
| |
Collapse
|
19
|
da C Pinaffi-Langley AC, Pinto CB, Mukli P, Peterfi A, Kaposzta Z, Owens CD, Szarvas Z, Muranyi M, Adams C, Shahriari A, Balasubramanian P, Ungvari Z, Csiszar A, Conley S, Hord NG, Anderson L, Tarantini S, Yabluchanskiy A. Energy metabolism dysregulation, cerebrovascular aging, and time-restricted eating: Current evidence and proof-of-concept findings. PNAS NEXUS 2024; 3:pgae505. [PMID: 39584020 PMCID: PMC11582367 DOI: 10.1093/pnasnexus/pgae505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024]
Abstract
Dysregulated energy metabolism is a hallmark of aging, including brain aging; thus, strategies to restore normal metabolic regulation are at the forefront of aging research. Intermittent fasting, particularly time-restricted eating (TRE), is one of these strategies. Despite its well-established effectiveness in improving metabolic outcomes in older adults, the effect of TRE on preserving or improving cerebrovascular health during aging remains underexplored. We explored how aging itself affects energy metabolism and contextualized these age-related changes to cerebrovascular health. We also conducted a literature search on PubMed and Scopus to identify and summarize current studies on TRE in older adults. Finally, we provided preliminary data from our proof-of-concept pilot trial on the effect of 6-month TRE on cerebrovascular health in older adults. Current evidence shows the potential of TRE to improve energy metabolism and physiological outcomes in older adults. TRE may improve cerebrovascular function indirectly due to its effect on glucose homeostasis. However, to date, direct evidence of the effect of TRE on cerebrovascular parameters is lacking. TRE is a well-tolerated and promising dietary intervention for promoting and maintaining cerebrovascular health in older adults. Further studies on TRE in older adults must be better controlled for energy balance to elucidate its independent effects from those of caloric restriction.
Collapse
Affiliation(s)
- Ana Clara da C Pinaffi-Langley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Camila B Pinto
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Peter Mukli
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest H-1085, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1085, Hungary
| | - Anna Peterfi
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest H-1085, Hungary
| | - Zalan Kaposzta
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest H-1085, Hungary
| | - Cameron D Owens
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Zsofia Szarvas
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest H-1085, Hungary
| | - Mihaly Muranyi
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Cheryl Adams
- Oklahoma Shared Clinical and Translational Resources, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Ali Shahriari
- Oklahoma Shared Clinical and Translational Resources, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Priya Balasubramanian
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Zoltan Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest H-1085, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Anna Csiszar
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Shannon Conley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Norman G Hord
- Department of Nutritional Sciences, College of Education and Human Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Leah Anderson
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest H-1085, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| |
Collapse
|
20
|
Waterman HL, Moore MC, Smith MS, Farmer B, Scott M, Edgerton DS, Cherrington AD. Duration of morning hyperinsulinemia determines hepatic glucose uptake and glycogen storage later in the day. Am J Physiol Endocrinol Metab 2024; 327:E655-E667. [PMID: 39259163 PMCID: PMC11559653 DOI: 10.1152/ajpendo.00170.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
The second-meal phenomenon refers to the improvement in glucose tolerance seen following a second identical meal. We previously showed that 4 h of morning hyperinsulinemia, but not hyperglycemia, enhanced hepatic glucose uptake (HGU) and glycogen storage during an afternoon hyperinsulinemic-hyperglycemic (HIHG) clamp. Our current aim was to determine if the duration or pattern of morning hyperinsulinemia is important for the afternoon response to a HIHG clamp. To determine this, the same total amount of insulin was administered either over 2 h in the first (Ins2h-A) or second (Ins2h-B) half of the morning or over the entire 4 h (Ins4h) of the morning. In the 4-h afternoon period, all three groups had 4x-basal insulin, 2x-basal glycemia, and portal glucose infusion to expose the liver to the primary postprandial regulators of hepatic glucose metabolism. During the afternoon clamp, there was a marked increase in HGU and hepatic glycogen synthesis in the Ins4h group compared with the Ins2h-A and Ins2h-B groups, despite matched hepatic glucose loads and total insulin infusion rates. Thus, the longer duration (Ins4h) of lower hyperinsulinemia in the morning seems to be the key to much greater liver glucose uptake during the afternoon clamp.NEW & NOTEWORTHY Morning insulin exposure primes the liver for increased hepatic glucose uptake and glycogen storage during a subsequent hyperinsulinemic-hyperglycemic clamp. This study addressed whether the pattern and/or duration of insulin delivery in the morning influences insulin's ensuing priming effect. We found that despite receiving equal total doses of insulin in the morning, a prolonged, lower rate of morning insulin delivery improved afternoon liver glucose metabolism more effectively than a shorter, higher rate of delivery.
Collapse
Affiliation(s)
- Hannah L Waterman
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Mary Courtney Moore
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Marta S Smith
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Ben Farmer
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Melanie Scott
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Dale S Edgerton
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Alan D Cherrington
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| |
Collapse
|
21
|
Laskin GR, Waddell DS, Vied C, Gordon BS. Contractile regulation of the glucocorticoid-sensitive transcriptome in young and aged skeletal muscle. Am J Physiol Endocrinol Metab 2024; 327:E636-E652. [PMID: 39259162 PMCID: PMC11559643 DOI: 10.1152/ajpendo.00223.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/13/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Elevated glucocorticoids alter the skeletal muscle transcriptome to induce a myopathy characterized by muscle atrophy, muscle weakness, and decreased metabolic function. These effects are more likely to occur and be more severe in aged muscles. Resistance exercise can blunt the development of glucocorticoid myopathy in young muscle, but the potential to oppose the signals initiating myopathy in aged muscle is unknown. To answer this, young (4-mo-old) and aged (24-to 25-mo-old) male C57BL/6 mice were randomized to receive either an intraperitoneal (IP) injection of dexamethasone (DEX; 2 mg/kg) or saline as a control. Two hours postinjections, the tibialis anterior (TA) muscles of mice were subjected to unilateral high-force contractions. Muscles were harvested 4 h later. The glucocorticoid- and contraction-sensitive genes were determined by RNA sequencing. The number of glucocorticoid-sensitive genes was similar between young and aged muscle. Contractions opposed changes to more glucocorticoid-sensitive genes in aged muscle, with this outcome primarily occurring when hormone levels were elevated. Glucocorticoid-sensitive gene programs opposed by contractions were primarily related to metabolism in young mice and muscle size regulation and inflammation in aged mice. In silico analysis implied peroxisome proliferator-activated receptor gamma-1 (PPARG) contributed to the contraction-induced opposition of glucocorticoid-sensitive genes in aged muscle. Increasing PPARG expression in the TA of aged mice using adeno-associated virus serotype 9 partially counteracted the glucocorticoid-induced reduction in runt-related transcription factor 1 (Runx1) mRNA content, recapitulating the effects observed by contractions. Overall, these data contribute to our understanding of the contractile regulation of the glucocorticoid transcriptome in aged skeletal muscle.NEW & NOTEWORTHY We establish the extent to which muscle contractions oppose changes to the glucocorticoid-sensitive transcriptome in both young and aged muscle. We also identify peroxisome proliferator-activated receptor gamma (PPARG) as a transcription factor likely contributing to contraction-induced opposition to the glucocorticoid transcriptome in aged muscle. Overall, these data contribute to our understanding of the contractile regulation of the glucocorticoid transcriptome.
Collapse
Affiliation(s)
- Grant R Laskin
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - David S Waddell
- Department of Biology, University of North Florida, Jacksonville, Florida, United States
| | - Cynthia Vied
- Translational Science Laboratory, Florida State University College of Medicine, Tallahassee, Florida, United States
| | - Bradley S Gordon
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
22
|
Dobrovinskaya O, Alamilla J, Olivas-Aguirre M. Impact of Modern Lifestyle on Circadian Health and Its Contribution to Adipogenesis and Cancer Risk. Cancers (Basel) 2024; 16:3706. [PMID: 39518143 PMCID: PMC11545514 DOI: 10.3390/cancers16213706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Recent research underscores a crucial connection between circadian rhythm disruption and cancer promotion, highlighting an urgent need for attention. OBJECTIVES Explore the molecular mechanisms by which modern lifestyle factors-such as artificial light exposure, shift work, and dietary patterns-affect cortisol/melatonin regulation and cancer risk. METHODS Employing a narrative review approach, we synthesized findings from Scopus, Google Scholar, and PubMed to analyze lifestyle impacts on circadian health, focusing on cortisol and melatonin chronobiology as molecular markers. We included studies that documented quantitative changes in these markers due to modern lifestyle habits, excluding those lacking quantitative data or presenting inconclusive results. Subsequent sections focused solely on articles that quantified the effects of circadian disruption on adipogenesis and tumor microenvironment modifications. RESULTS This review shows how modern habits lead to molecular changes in cortisol and melatonin, creating adipose microenvironments that support cancer development. These disruptions facilitate immune evasion, chemotherapy resistance, and tumor growth, highlighting the critical roles of cortisol dysregulation and melatonin imbalance. CONCLUSIONS Through the presented findings, we establish a causal link between circadian rhythm dysregulation and the promotion of certain cancer types. By elucidating this relationship, the study emphasizes the importance of addressing lifestyle factors that contribute to circadian misalignment, suggesting that targeted interventions could play a crucial role in mitigating cancer risk and improving overall health outcomes.
Collapse
Affiliation(s)
- Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima 28040, Mexico;
| | - Javier Alamilla
- Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT), Programa de Investigadores e Investigadoras por México, México City 03940, Mexico;
- Centro Universitario de Investigaciones Biomédicas (CUIB), Universidad de Colima, Colima 28040, Mexico
| | - Miguel Olivas-Aguirre
- Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT), Programa de Investigadores e Investigadoras por México, México City 03940, Mexico;
- Laboratory of Cancer Pathophysiology, University Center for Biomedical Research, University of Colima, Colima 28040, Mexico
| |
Collapse
|
23
|
Ho QV, Young MJ. Mineralocorticoid receptors, macrophages and new mechanisms for cardiovascular disease. Mol Cell Endocrinol 2024; 593:112340. [PMID: 39134137 DOI: 10.1016/j.mce.2024.112340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Affiliation(s)
- Quoc Viet Ho
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Australia
| | - Morag J Young
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Australia; Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia.
| |
Collapse
|
24
|
Zhou F, Sheng C, Ma X, Li T, Ming X, Wang S, Tan J, Yang Y, Sun H, Lu J, Liu J, Deng R, Wang X, Zhou L. BCKDH kinase promotes hepatic gluconeogenesis independent of BCKDHA. Cell Death Dis 2024; 15:736. [PMID: 39389936 PMCID: PMC11467410 DOI: 10.1038/s41419-024-07071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Elevated circulating branched-chain amino acids (BCAAs) are tightly linked to an increased risk in the development of type 2 diabetes mellitus. The rate limiting enzyme of BCAA catabolism branched-chain α-ketoacid dehydrogenase (BCKDH) is phosphorylated at E1α subunit (BCKDHA) by its kinase (BCKDK) and inactivated. Here, the liver-specific BCKDK or BCKDHA knockout mice displayed normal glucose tolerance and insulin sensitivity. However, knockout of BCKDK in the liver inhibited hepatic glucose production as well as the expression of key gluconeogenic enzymes. No abnormal gluconeogenesis was found in mice lacking hepatic BCKDHA. Consistent with the vivo results, BT2-mediated inhibition or genetic knockdown of BCKDK decreased hepatic glucose production and gluconeogenic gene expressions in primary mouse hepatocytes while BCKDK overexpression exhibited an opposite effect. Whereas, gluconeogenic gene expressions were not altered in BCKDHA-silenced hepatocytes. Mechanistically, BT2 treatment attenuated the interaction of cAMP response element binding protein (CREB) with CREB-binding protein and promoted FOXO1 protein degradation by increasing its ubiquitination. Our findings suggest that BCKDK regulates hepatic gluconeogenesis through CREB and FOXO1 signalings, independent of BCKDHA-mediated BCAA catabolism.
Collapse
Affiliation(s)
- Feiye Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Endocrine and Metabolic Diseases, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Chunxiang Sheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoqin Ma
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tianjiao Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xing Ming
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shushu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jialin Tan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yulin Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haipeng Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Center for Cardiovascular Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianmin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ruyuan Deng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 200032, China; Shanghai Institute of Liver Disease, Shanghai, 200032, China.
| | - Xiao Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Libin Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
25
|
Roy S, Pokharel P, Piganelli JD. Decoding the immune dance: Unraveling the interplay between beta cells and type 1 diabetes. Mol Metab 2024; 88:101998. [PMID: 39069156 PMCID: PMC11342121 DOI: 10.1016/j.molmet.2024.101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease characterized by the specific destruction of insulin-producing beta cells in the pancreas by the immune system, including CD4 cells which orchestrate the attack and CD8 cells which directly destroy the beta cells, resulting in the loss of glucose homeostasis. SCOPE OF REVIEW This comprehensive document delves into the complex interplay between the immune system and beta cells, aiming to shed light on the mechanisms driving their destruction in T1D. Insights into the genetic predisposition, environmental triggers, and autoimmune responses provide a foundation for understanding the autoimmune attack on beta cells. From the role of viral infections as potential triggers to the inflammatory response of beta cells, an intricate puzzle starts to unfold. This exploration highlights the importance of beta cells in breaking immune tolerance and the factors contributing to their targeted destruction. Furthermore, it examines the potential role of autophagy and the impact of cytokine signaling on beta cell function and survival. MAJOR CONCLUSIONS This review collectively represents current research findings on T1D which offers valuable perspectives on novel therapeutic approaches for preserving beta cell mass, restoring immune tolerance, and ultimately preventing or halting the progression of T1D. By unraveling the complex dynamics between the immune system and beta cells, we inch closer to a comprehensive understanding of T1D pathogenesis, paving the way for more effective treatments and ultimately a cure.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Pravil Pokharel
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jon D Piganelli
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States.
| |
Collapse
|
26
|
Atsarina DM, Widyastiti NS, Muniroh M, Susilaningsih N, Maharani N. Combination of Metformin and Epigallocatechin-3-Gallate Lowers Cortisol, 11β-Hydroxysteroid Dehydrogenase Type 1, and Blood Glucose Levels in Sprague Dawley Rats with Obesity and Diabetes. J Obes Metab Syndr 2024; 33:261-269. [PMID: 39098053 PMCID: PMC11443325 DOI: 10.7570/jomes23080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/18/2024] [Accepted: 03/25/2024] [Indexed: 08/06/2024] Open
Abstract
Background The combined effects of metformin and epigallocatechin-3-gallate (EGCG) on cortisol, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), and blood glucose levels have not been investigated. This study evaluated the effectiveness of combining EGCG with metformin in regulating those levels in a rat model of diet-induced diabetes and obesity. Methods Thirty diabetic and obese rats on a high-fat diet were treated daily for 28 days with EGCG (100 mg/kg of body weight/day), metformin (200 mg/kg of body weight/day), or both. Control groups comprised lean rats, untreated obese diabetic rats, and metformin-only-treated rats. Blood samples were collected to measure cortisol and fasting blood glucose (FBG) levels and liver tissue samples were examined for 11β-HSD1 levels. Results Rats receiving combination therapy had significantly reduced cortisol levels (from 36.70±15.13 to 31.25±7.10 ng/mL) compared with the untreated obese diabetic rats but not the rats receiving monotherapy. Rats receiving combination therapy and EGCG monotherapy had significantly lower 11β-HSD1 levels compared with the untreated obese diabetic rats (92.68±10.82 and 93.74±18.11 ng/L vs. 120.66±14.00 ng/L). Combination therapy and metformin monotherapy significantly reduced FBG levels (440.83±133.30 to 140.50±7.36 mg/dL and 480.67±86.32 to 214.17±102.78 mg/dL, respectively) by approximately 68.1% and 55.4% compared with rats receiving EGCG monotherapy and untreated obese diabetic rats. Conclusion Combining EGCG with metformin exhibited synergistic effects compared with monotherapy for managing diabetes, leading to improved outcomes in reduction of baseline cortisol levels along with reduction in 11β-HSD1 and blood glucose levels.
Collapse
Affiliation(s)
- Diana Mazaya Atsarina
- Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| | - Nyoman Suci Widyastiti
- Department of Clinical Pathology, Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| | - Muflihatul Muniroh
- Department of Physiology, Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| | - Neni Susilaningsih
- Department of Anatomy and Histology, Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| | - Nani Maharani
- Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| |
Collapse
|
27
|
Pye KR, Lantier L, Ayala JE, Beall C, Ellacott KLJ. Validation of a refined protocol for mouse oral glucose tolerance testing without gavage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612859. [PMID: 39345490 PMCID: PMC11429937 DOI: 10.1101/2024.09.13.612859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
A glucose tolerance test (GTT) is routinely used to assess glucose homeostasis in clinical settings and in preclinical research studies using rodent models. The procedure assesses the ability of the body to clear glucose from the blood in a defined time after a bolus dose. In the human clinical setting, glucose is ingested via voluntary consumption of a glucose-sweetened drink. Typically, in the rodent GTT oral gavage (gavage-oGTT) or (more commonly) intraperitoneal injection (IPGTT) are used to administer the glucose bolus. Although used less frequently, likely due to investigator technical and experience barriers, the former is the more physiologically relevant as it integrates the gastrointestinal tract (GI), including release of key incretin hormones. However, orally gavaging glucose in the GTT is also not without its limitations: gavaging glucose straight into the stomach bypasses potentially critical early glucose-sensing via the mouth (cephalic phase) and associated physiological responses. Furthermore, gavaging is stressful on mice, and this by itself can increase blood glucose levels. We have developed and validated a refined protocol for mouse oral GTT which uses a voluntary oral glucose dosing method, micropipette-guided drug administration (MDA), without the need for water deprivation. This approach is simple and non-invasive. It is less stressful for the mice, as evidenced by lower circulating corticosterone levels 10 minutes after glucose-dosing compared to oral gavage. This is significant for animal and investigator welfare, and importantly minimising the confounding effect of stress on mouse glucose homeostasis. Using a randomised cross-over design, we have validated the MDA approach in the oGTT against oral gavage in male and female C57BL/6J and C57BL/6N mice. We show the ability of this method to detect changes in glucose tolerance in diet-induced obese animals. Compared to oral gavage there was lower inter-animal variation in the MDA-oGTT. In addition to being more representative of the human procedure, the MDA-oGTT is easy and has lower barriers to adoption than the gavage oGTT as it is non-invasive and requires no specialist equipment or operator training. The MDA-oGTT a more clinically representative, accessible, and refined replacement for the gavage-oGTT for mouse metabolic phenotyping, which is simple yet overcomes significant deficiencies in the current standard experimental approaches.
Collapse
|
28
|
Sic A, Cvetkovic K, Manchanda E, Knezevic NN. Neurobiological Implications of Chronic Stress and Metabolic Dysregulation in Inflammatory Bowel Diseases. Diseases 2024; 12:220. [PMID: 39329889 PMCID: PMC11431196 DOI: 10.3390/diseases12090220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Chronic stress is a significant factor affecting modern society, with profound implications for both physical and mental health. Central to the stress response is cortisol, a glucocorticoid hormone produced by the adrenal glands. While cortisol release is adaptive in acute stress, prolonged exposure to elevated levels can result in adverse effects. This manuscript explores the neurobiological implications of chronic stress and its impact on metabolic dysregulation, particularly in the context of inflammatory bowel diseases (IBDs). The hypothalamic-pituitary-adrenal (HPA) axis regulates cortisol production, which influences metabolism, immune response, and neurobiology. Elevated cortisol levels are associated with the development and exacerbation of metabolic disorders like IBD and contribute to neurodegenerative processes, including cognitive impairments and increased susceptibility to psychiatric conditions. The interaction between cortisol and its receptors, particularly glucocorticoid receptors, underscores the complexity of these effects. This review aims to elucidate the mechanisms through which chronic stress and cortisol dysregulation impact metabolic health and neurobiological function, providing insights into potential therapeutic strategies for mitigating these effects.
Collapse
Affiliation(s)
- Aleksandar Sic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Kiana Cvetkovic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA
| | - Eshanika Manchanda
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
29
|
Jacquay ET, Harris PA, Adams AA. The impact of short-term transportation stress on insulin and oral sugar responses in insulin dysregulated and non-insulin dysregulated horses. Equine Vet J 2024. [PMID: 39233387 DOI: 10.1111/evj.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND It is unknown whether short-term transportation affects endocrine responses similarly in horses with and without insulin dysregulation (ID). OBJECTIVES To characterise the effect of short-term transportation on stress parameters and insulin responses to an oral sugar test (OST) in horses with and without ID. STUDY DESIGN Longitudinal cohort study. METHODS Fourteen adult non-pregnant, non-PPID mares of mixed light breeds were grouped as either ID (n = 7) or non-ID (n = 7) based on endocrine testing. Over 2 weeks, horses were transported once, in groups of 3-4 in a horse trailer on a round-trip journey of ~1.5 h. Blood and saliva were collected 24 h and 1 h pre-transportation, directly after unloading and 15 min, 1 h, 3 h plus 24 h post-transportation. An OST was performed 24 h pre-transportation and 3 h post-transportation with a pre- (T0) and post-OST sample collected 60 min later (T60). Heart rates and rectal temperatures were also collected throughout the study. Serum insulin, serum cortisol, and plasma glucose were measured using validated assays. Repeated measures ANOVA were used to determine differences after transportation and between ID and non-ID horses. Non-normal data were log-transformed and multiple comparisons were adjusted using Bonferroni post hoc tests. RESULTS Mean insulin was higher in ID horses versus non-ID horses (mean = 109.9 μU/mL vs. 30.2 μU/mL, p < 0.001; 95% CI for mean difference = [55.6-107.7 μU/mL]). Mean serum insulin increased following OST at T60 in ID horses pre- (154.6 μU/mL, p = 0.04; 95% CI = [86.3-223.0 μU/mL]) and post-transportation (284.6 μU/mL, p = 0.03; 95% CI = [114.3-454.8 μU/mL]). Non-ID horses had a mean OST T60 insulin post-transportation of 56.6 μU/mL (95% CI = [29.1-84.1 μU/mL]); above recognised threshold [45 μU/mL] for ID diagnosis. MAIN LIMITATIONS Small number of horses, only mares used, and OST not performed immediately post-transportation. CONCLUSIONS Performing an OST 3 h following short-term transportation may result in inaccurate ID status.
Collapse
Affiliation(s)
- Erica T Jacquay
- M. H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Patricia A Harris
- Equine Studies Group, Waltham Petcare Science Institute, Waltham on the Wolds, Leicestershire, UK
| | - Amanda A Adams
- M. H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
30
|
Ikeda S, Ikeda A, Yamagishi K, Muraki I, Matsumura T, Kihara T, Sankai T, Takada M, Okada T, Kiyama M, Imano H, Iso H, Tanigawa T. Relationship between Ikigai and longitudinal changes in serum HDL cholesterol levels: the Circulatory Risk in Communities Study (CIRCS). Lipids Health Dis 2024; 23:270. [PMID: 39198821 PMCID: PMC11351031 DOI: 10.1186/s12944-024-02256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Having positive psychological well-being has been associated with serum high-density lipoprotein cholesterol (HDLC), but no longitudinal study to date has examined the association between Ikigai and serum HDLC. Therefore, we examined the association between Ikigai and change in serum HDLC over time using a cohort dataset spanning 2010-2018. METHODS The study included 471 men and 776 women aged 40-74 years who underwent a cardiovascular examination in 2010 and were asked their levels of Ikigai. We combined "definitely yes" and "yes" as "with Ikigai" and recorded "a little" as "with a little Ikigai" and "no" as "without Ikigai". We measured serum HDLC using direct methods. The association between Ikigai and serum HDLC levels at baseline, and changes in this relationship during an eight-year period, were analyzed using linear mixed-effect models. RESULTS At the baseline, relative to those without Ikigai, women with Ikigai had higher serum HDLC (baseline difference in those with a little Ikigai = 7.52 mg/dl, 95% confidence interval [CI]: 1.12 to 13.9 and in those with Ikigai = 8.11 mg/dl, 95% CI: 1.54 to 14.7). The difference in serum HDLC between women with and without Ikigai remained over the eight-year follow-up period. There were no similar Ikigai-associated differences in the serum HDLC of men. CONCLUSIONS Women with Ikigai showed differences in serum HDLC that were observed at baseline and persisted over time.
Collapse
Affiliation(s)
- Shiori Ikeda
- Department of Public Health, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Ai Ikeda
- Department of Public Health, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Faculty of International Liberal Arts, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Kazumasa Yamagishi
- Department of Public Health, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Public Health Medicine, Insitute of Medicine, and Health Services Research and Development Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- Ibaraki Western Medical Center, 555 Otsuka, Chikusei, Ibaraki, 308-0813, Japan
| | - Isao Muraki
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takumi Matsumura
- Department of Public health, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Tomomi Kihara
- Department of Public Health Medicine, Insitute of Medicine, and Health Services Research and Development Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Tomoko Sankai
- Department of Public Health and Nursing, Institute of Medicine, University of Tsukuba, 2 Amakubo, Tsukuba, Ibaraki, 305-0005, Japan
| | - Midori Takada
- Department of Public Health and Health Systems, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Takeo Okada
- Osaka Center for Cancer and Cardiovascular Disease Prevention, 1-6-107 Morinomiya, Jyoto-Ku, Osaka, Osaka, 536-8588, Japan
| | - Masahiko Kiyama
- Department of Public Health, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Hironori Imano
- Department of Public health, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Hiroyasu Iso
- Institute for Global Health Policy Research, Bureau of International Health Cooperation, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-Ku, Tokyo, 162-8655, Japan
| | - Takeshi Tanigawa
- Department of Public Health, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
31
|
Weiss GL, Harrison LM, Jiang Z, Nielsen AM, Feygin MS, Nguyen S, Tirrell PS, Tasker J. Glucocorticoids desensitize hypothalamic CRH neurons to norepinephrine and somatic stress activation via rapid nitrosylation-dependent regulation of α1 adrenoreceptor trafficking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605704. [PMID: 39211088 PMCID: PMC11360941 DOI: 10.1101/2024.07.29.605704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Noradrenergic afferents to hypothalamic corticotropin releasing hormone (CRH) neurons provide a major excitatory drive for somatic stress activation of the hypothalamic-pituitary-adrenal (HPA) axis. We showed that glucocorticoids rapidly desensitize CRH neurons to norepinephrine and suppress inflammation-induced HPA activation via a glucocorticoid receptor- and endocytosis-dependent mechanism. Here, we show that α1 adrenoreceptor (ARα1) trafficking is regulated by convergent glucocorticoid and nitric oxide synthase signaling mechanisms. Live-cell imaging of ARα1b-eGFP-expressing hypothalamic cells revealed rapid corticosterone-stimulated redistribution of internalized ARα1 from rapid recycling endosomes to late endosomes and lysosomes via a nitrosylation-regulated mechanism. Proximity assay demonstrated interaction of glucocorticoid receptors with ARα1b and β-arrestin, and showed corticosterone blockade of norepinephrine-stimulated ARα1b/β-arrestin interaction, which may prevent ARα1b from entering the rapid recycling endosomal pathway. These findings demonstrate a rapid glucocorticoid regulation of G protein-coupled receptor trafficking and provide a molecular mechanism for rapid glucocorticoid desensitization of noradrenergic signaling in CRH neurons.
Collapse
|
32
|
Salleh MFB, Lai YY, Mohamed Mokhtar NB, Thambiah SC, Samsudin IN. A Newborn With Ambiguous Genitalia and Persistent Hypoglycemia. Clin Pediatr (Phila) 2024:99228241271944. [PMID: 39180240 DOI: 10.1177/00099228241271944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Affiliation(s)
| | - Yin Ye Lai
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Subashini C Thambiah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Intan Nureslyna Samsudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
33
|
Waterman HL, Moore MC, Smith MS, Farmer B, Scott M, Edgerton DS, Cherrington AD. Duration of Morning Hyperinsulinemia Determines Hepatic Glucose Uptake and Glycogen Storage Later in the Day. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593551. [PMID: 38798653 PMCID: PMC11118521 DOI: 10.1101/2024.05.10.593551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The second meal phenomenon refers to the improvement in glucose tolerance seen following a second identical meal. We previously showed that 4 hours of morning hyperinsulinemia, but not hyperglycemia, enhanced hepatic glucose uptake (HGU) and glycogen storage during an afternoon hyperinsulinemic-hyperglycemic (HIHG) clamp. Our current aim was to determine if the duration or pattern of morning hyperinsulinemia is important for the afternoon response to a HIHG clamp. To determine this, we administered the same total amount of insulin either over 2h in the first (Ins2h-A) or second (Ins2h-B) half of the morning, or over the entire 4h (Ins4h) of the morning. In the 4h afternoon period, all three groups had 4x-basal insulin, 2x-basal glycemia, and portal glucose infusion to expose the liver to the primary postprandial regulators of hepatic glucose metabolism. During the afternoon clamp, there was a marked increase in HGU and hepatic glycogen synthesis in the Ins4h group compared to the Ins2h-A and Ins2h-B groups, despite matched hepatic glucose loads and total insulin infusion rates. Thus, the longer duration (Ins4h) of lower hyperinsulinemia in the morning seems to be the key to much greater liver glucose uptake during the afternoon clamp.
Collapse
Affiliation(s)
- Hannah L Waterman
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine
| | - Mary Courtney Moore
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine
| | - Marta S Smith
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine
| | - Ben Farmer
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine
| | - Melanie Scott
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine
| | - Dale S Edgerton
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine
| | - Alan D Cherrington
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine
| |
Collapse
|
34
|
Compton SLE, Heymsfield SB, Brown JC. Nutritional Mechanisms of Cancer Cachexia. Annu Rev Nutr 2024; 44:77-98. [PMID: 39207878 DOI: 10.1146/annurev-nutr-062122-015646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cancer cachexia is a complex systemic wasting syndrome. Nutritional mechanisms that span energy intake, nutrient metabolism, body composition, and energy balance may be impacted by, and may contribute to, the development of cachexia. To date, clinical management of cachexia remains elusive. Leaning on discoveries and novel methodologies from other fields of research may bolster new breakthroughs that improve nutritional management and clinical outcomes. Characteristics that compare and contrast cachexia and obesity may reveal opportunities for cachexia research to adopt methodology from the well-established field of obesity research. This review outlines the known nutritional mechanisms and gaps in the knowledge surrounding cancer cachexia. In parallel, we present how obesity may be a different side of the same coin and how obesity research has tackled similar research questions. We present insights into how cachexia research may utilize nutritional methodology to expand our understanding of cachexia to improve definitions and clinical care in future directions for the field.
Collapse
Affiliation(s)
- Stephanie L E Compton
- Cancer Energetics Unit, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| | - Steven B Heymsfield
- Metabolism and Body Composition Unit, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Justin C Brown
- Cancer Energetics Unit, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| |
Collapse
|
35
|
Villalobos E, Miguelez-Crespo A, Morgan RA, Ivatt L, Paul M, Simpson JP, Homer NZM, Kurian D, Aguilar J, Kline RA, Wishart TM, Morton NM, Stimson RH, Andrew R, Walker BR, Nixon M. ATP-binding cassette family C member 1 constrains metabolic responses to high-fat diet in male mice. J Endocrinol 2024; 262:e240024. [PMID: 38829241 PMCID: PMC11301423 DOI: 10.1530/joe-24-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Glucocorticoids modulate glucose homeostasis, acting on metabolically active tissues such as liver, skeletal muscle, and adipose tissue. Intracellular regulation of glucocorticoid action in adipose tissue impacts metabolic responses to obesity. ATP-binding cassette family C member 1 (ABCC1) is a transmembrane glucocorticoid transporter known to limit the accumulation of exogenously administered corticosterone in adipose tissue. However, the role of ABCC1 in the regulation of endogenous glucocorticoid action and its impact on fuel metabolism has not been studied. Here, we investigate the impact of Abcc1 deficiency on glucocorticoid action and high-fat-diet (HFD)-induced obesity. In lean male mice, deficiency of Abcc1 increased endogenous corticosterone levels in skeletal muscle and adipose tissue but did not impact insulin sensitivity. In contrast, Abcc1-deficient male mice on HFD displayed impaired glucose and insulin tolerance, and fasting hyperinsulinaemia, without alterations in tissue corticosterone levels. Proteomics and bulk RNA sequencing revealed that Abcc1 deficiency amplified the transcriptional response to an obesogenic diet in adipose tissue but not in skeletal muscle. Moreover, Abcc1 deficiency impairs key signalling pathways related to glucose metabolism in both skeletal muscle and adipose tissue, in particular those related to OXPHOS machinery and Glut4. Together, our results highlight a role for ABCC1 in regulating glucose homeostasis, demonstrating diet-dependent effects that are not associated with altered tissue glucocorticoid concentrations.
Collapse
Affiliation(s)
- Elisa Villalobos
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Allende Miguelez-Crespo
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ruth A Morgan
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Scotland’s Rural College, The Roslin Institute, Easter Bush Campus, United Kingdom
| | - Lisa Ivatt
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Mhairi Paul
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna P Simpson
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Natalie Z M Homer
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Dominic Kurian
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh, Easter Bush Campus, Edinburgh, United Kingdom
| | - Judit Aguilar
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh, Easter Bush Campus, Edinburgh, United Kingdom
| | - Rachel A Kline
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh, Easter Bush Campus, Edinburgh, United Kingdom
| | - Thomas M Wishart
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh, Easter Bush Campus, Edinburgh, United Kingdom
| | - Nicholas M Morton
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Systems Health and Integrated Metabolic Research, Nottingham Trent University, Nottingham, United Kingdom
| | - Roland H Stimson
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ruth Andrew
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian R Walker
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mark Nixon
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
36
|
Tran QA, Nakamura S, Watanabe K, Chei CL, Narimatsu H. The relationship between loneliness and blood glucose: a cross-sectional survey among Japanese. BMC Res Notes 2024; 17:201. [PMID: 39039524 PMCID: PMC11264398 DOI: 10.1186/s13104-024-06855-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/01/2024] [Indexed: 07/24/2024] Open
Abstract
Recently, researchers have uncovered a correlation between loneliness and both the development and management of diabetes. Nevertheless, previous studies employing an unvalidated loneliness questionnaire impair result accuracy. Furthermore, this aspect has not been researched in the Japanese population. Therefore, this cross-sectional study analyzed data from the Kanagawa prospective "ME-BYO" Cohort Study (ME-BYO cohort) to investigate the correlation between loneliness, as measured by 20 items on the UCLA Loneliness Scale, and blood glucose levels. A total of 666 participants were included in the analysis, with a mean age of 54.1 years and a mean BMI of 23 kg/m2. Half of the participants had obtained an education level beyond high school. The mean household income and physical activity level were reported as 6.83 million Japanese yen and 12.3 METs-h/day, respectively. Model 1 of the linear regression analysis determined that there was no significant association between the loneliness scale and HbA1c (p = 0.512). After adjusting for age, gender, BMI (model 2), sitting time, physical activity level (model 3), housemates, household income, and final education (model 4), and controlling for social support, quality of life, and depression (model 5), the results showed no significant association, with a p-value of 0.823, 0.791, 0.792, and 0.816, respectively. Thus, the study found no link between loneliness and HbA1c in the high SES population. This finding contradicts previous results and may be attributed to the impact of population characteristics, SES status, or genetic backgrounds.
Collapse
Affiliation(s)
- Quyen An Tran
- Graduate School of Health of Innovation, Kanagawa University of Human Services, Kawasaki, Kanagawa, Japan
- Cancer Prevention and Control Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Sho Nakamura
- Graduate School of Health of Innovation, Kanagawa University of Human Services, Kawasaki, Kanagawa, Japan
- Cancer Prevention and Control Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Kaname Watanabe
- Cancer Prevention and Control Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
- Department of Genetic Medicine, Kanagawa Cancer Center, Yokohama, Japan
| | - Choy-Lye Chei
- Cancer Prevention and Control Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
- Department of Genetic Medicine, Kanagawa Cancer Center, Yokohama, Japan
| | - Hiroto Narimatsu
- Graduate School of Health of Innovation, Kanagawa University of Human Services, Kawasaki, Kanagawa, Japan.
- Cancer Prevention and Control Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan.
- Department of Genetic Medicine, Kanagawa Cancer Center, Yokohama, Japan.
| |
Collapse
|
37
|
Arcadio F, Seggio M, Pitruzzella R, Zeni L, Bossi AM, Cennamo N. An Efficient Bio-Receptor Layer Combined with a Plasmonic Plastic Optical Fiber Probe for Cortisol Detection in Saliva. BIOSENSORS 2024; 14:351. [PMID: 39056627 PMCID: PMC11274917 DOI: 10.3390/bios14070351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Cortisol is a clinically validated stress biomarker that takes part in many physiological and psychological functions related to the body's response to stress factors. In particular, it has emerged as a pivotal tool for understanding stress levels and overall well-being. Usually, in clinics, cortisol levels are monitored in blood or urine, but significant changes are also registered in sweat and saliva. In this work, a surface plasmon resonance probe based on a D-shaped plastic optical fiber was functionalized with a glucocorticoid receptor exploited as a highly efficient bioreceptor specific to cortisol. The developed plastic optical fiber biosensor was tested for cortisol detection in buffer and artificial saliva. The biosensor response showed very good selectivity towards other hormones and a detection limit of about 59 fM and 96 fM in phosphate saline buffer and artificial saliva, respectively. The obtained detection limit, with a rapid detection time (about 5 min) and a low-cost sensor system, paved the way for determining the cortisol concentration in saliva samples without any extraction process or sample pretreatment via a point-of-care test.
Collapse
Affiliation(s)
- Francesco Arcadio
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (F.A.); (R.P.); (L.Z.)
| | - Mimimorena Seggio
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Rosalba Pitruzzella
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (F.A.); (R.P.); (L.Z.)
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (F.A.); (R.P.); (L.Z.)
| | - Alessandra Maria Bossi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (F.A.); (R.P.); (L.Z.)
| |
Collapse
|
38
|
Rigal S, Casas B, Kanebratt KP, Wennberg Huldt C, Magnusson LU, Müllers E, Karlsson F, Clausen M, Hansson SF, Leonard L, Cairns J, Jansson Löfmark R, Ämmälä C, Marx U, Gennemark P, Cedersund G, Andersson TB, Vilén LK. Normoglycemia and physiological cortisone level maintain glucose homeostasis in a pancreas-liver microphysiological system. Commun Biol 2024; 7:877. [PMID: 39025915 PMCID: PMC11258270 DOI: 10.1038/s42003-024-06514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Current research on metabolic disorders and diabetes relies on animal models because multi-organ diseases cannot be well studied with standard in vitro assays. Here, we have connected cell models of key metabolic organs, the pancreas and liver, on a microfluidic chip to enable diabetes research in a human-based in vitro system. Aided by mechanistic mathematical modeling, we demonstrate that hyperglycemia and high cortisone concentration induce glucose dysregulation in the pancreas-liver microphysiological system (MPS), mimicking a diabetic phenotype seen in patients with glucocorticoid-induced diabetes. In this diseased condition, the pancreas-liver MPS displays beta-cell dysfunction, steatosis, elevated ketone-body secretion, increased glycogen storage, and upregulated gluconeogenic gene expression. Conversely, a physiological culture condition maintains glucose tolerance and beta-cell function. This method was reproducible in two laboratories and was effective in multiple pancreatic islet donors. The model also provides a platform to identify new therapeutic proteins, as demonstrated with a combined transcriptome and proteome analysis.
Collapse
Affiliation(s)
| | - Belén Casas
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Kajsa P Kanebratt
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Charlotte Wennberg Huldt
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lisa U Magnusson
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Erik Müllers
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Fredrik Karlsson
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Maryam Clausen
- Translational Genomics, Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Sara F Hansson
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Louise Leonard
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Jonathan Cairns
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Rasmus Jansson Löfmark
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Carina Ämmälä
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Peter Gennemark
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Tommy B Andersson
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Liisa K Vilén
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
39
|
Trandafir AI, Ghemigian A, Ciobica ML, Nistor C, Gurzun MM, Nistor TVI, Petrova E, Carsote M. Diabetes Mellitus in Non-Functioning Adrenal Incidentalomas: Analysis of the Mild Autonomous Cortisol Secretion (MACS) Impact on Glucose Profile. Biomedicines 2024; 12:1606. [PMID: 39062179 PMCID: PMC11274780 DOI: 10.3390/biomedicines12071606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Non-functioning adrenal incidentalomas (NFAIs) have been placed in relationship with a higher risk of glucose profile anomalies, while the full-blown typical picture of Cushing's syndrome (CS) and associated secondary (glucocorticoid-induced) diabetes mellitus is not explicitly confirmed in this instance. Our objective was to highlight the most recent data concerning the glucose profile, particularly, type 2 diabetes mellitus (T2DM) in NFAIs with/without mild autonomous cortisol secretion (MACS). This was a comprehensive review of the literature; the search was conducted according to various combinations of key terms. We included English-published, original studies across a 5-year window of publication time (from January 2020 until 1 April 2024) on PubMed. We excluded case reports, reviews, studies on T1DM or secondary diabetes, and experimental data. We identified 37 studies of various designs (14 retrospective studies as well 13 cross-sectional, 4 cohorts, 3 prospective, and 2 case-control studies) that analysed 17,391 individuals, with a female-to-male ratio of 1.47 (aged between 14 and 96 years). T2DM prevalence in MACS (affecting 10 to 30% of NFAIs) ranged from 12% to 44%. The highest T2DM prevalence in NFAI was 45.2% in one study. MACS versus (non-MACS) NFAIs (n = 16) showed an increased risk of T2DM and even of prediabetes or higher fasting plasma glucose or HbA1c (no unanimous results). T2DM prevalence was analysed in NFAI (N = 1243, female-to-male ratio of 1.11, mean age of 60.42) versus (non-tumour) controls (N = 1548, female-to-male ratio of 0.91, average age of 60.22) amid four studies, and two of them were confirmatory with respect to a higher rate in NFAIs. Four studies included a sub-group of CS compared to NFAI/MACS, and two of them did not confirm an increased rate of glucose profile anomalies in CS versus NFAIs/ACS. The longest period of follow-up with concern to the glycaemic profile was 10.5 years, and one cohort showed a significant increase in the T2DM rate at 17.9% compared to the baseline value of 0.03%. Additionally, inconsistent data from six studies enrolling 1039 individuals that underwent adrenalectomy (N = 674) and conservative management (N = 365) pinpointed the impact of the surgery in NFAIs. The regulation of the glucose metabolism after adrenalectomy versus baseline versus conservative management (n = 3) was improved. To our knowledge, this comprehensive review included one of the largest recent analyses in the field of glucose profile amid the confirmation of MACS/NFAI. In light of the rising incidence of NFAI/AIs due to easier access to imagery scans and endocrine evaluation across the spectrum of modern medicine, it is critical to assess if these patients have an increased frequency of cardio-metabolic disorders that worsen their overall comorbidity and mortality profile, including via the confirmation of T2DM.
Collapse
Affiliation(s)
- Alexandra-Ioana Trandafir
- PhD Doctoral School of “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Clinical Endocrinology V, “C.I. Parhon” National Institute of Endocrinology, 011863 Bucharest, Romania; (A.G.); (E.P.); (M.C.)
| | - Adina Ghemigian
- Department of Clinical Endocrinology V, “C.I. Parhon” National Institute of Endocrinology, 011863 Bucharest, Romania; (A.G.); (E.P.); (M.C.)
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mihai-Lucian Ciobica
- Department of Internal Medicine and Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Internal Medicine I and Rheumatology, “Dr. Carol Davila” Central Military University Emergency Hospital, 010825 Bucharest, Romania
| | - Claudiu Nistor
- Department 4-Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Thoracic Surgery Department, “Dr. Carol Davila” Central Military University Emergency Hospital, 010242 Bucharest, Romania
| | - Maria-Magdalena Gurzun
- Cardiology Discipline, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Laboratory of Non-Invasive Cardiovascular Exploration, “Dr. Carol Davila” Central Military University Emergency Hospital, 010242 Bucharest, Romania
| | - Tiberiu Vasile Ioan Nistor
- Medical Biochemistry Discipline, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania;
| | - Eugenia Petrova
- Department of Clinical Endocrinology V, “C.I. Parhon” National Institute of Endocrinology, 011863 Bucharest, Romania; (A.G.); (E.P.); (M.C.)
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mara Carsote
- Department of Clinical Endocrinology V, “C.I. Parhon” National Institute of Endocrinology, 011863 Bucharest, Romania; (A.G.); (E.P.); (M.C.)
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
40
|
Schenk S, Sagendorf TJ, Many GM, Lira AK, de Sousa LGO, Bae D, Cicha M, Kramer KS, Muehlbauer M, Hevener AL, Rector RS, Thyfault JP, Williams JP, Goodyear LJ, Esser KA, Newgard CB, Bodine SC. Physiological Adaptations to Progressive Endurance Exercise Training in Adult and Aged Rats: Insights from the Molecular Transducers of Physical Activity Consortium (MoTrPAC). FUNCTION 2024; 5:zqae014. [PMID: 38984994 PMCID: PMC11245678 DOI: 10.1093/function/zqae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/31/2024] [Accepted: 03/19/2024] [Indexed: 07/11/2024] Open
Abstract
While regular physical activity is a cornerstone of health, wellness, and vitality, the impact of endurance exercise training on molecular signaling within and across tissues remains to be delineated. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) was established to characterize molecular networks underlying the adaptive response to exercise. Here, we describe the endurance exercise training studies undertaken by the Preclinical Animal Sites Studies component of MoTrPAC, in which we sought to develop and implement a standardized endurance exercise protocol in a large cohort of rats. To this end, Adult (6-mo) and Aged (18-mo) female (n = 151) and male (n = 143) Fischer 344 rats were subjected to progressive treadmill training (5 d/wk, ∼70%-75% VO2max) for 1, 2, 4, or 8 wk; sedentary rats were studied as the control group. A total of 18 solid tissues, as well as blood, plasma, and feces, were collected to establish a publicly accessible biorepository and for extensive omics-based analyses by MoTrPAC. Treadmill training was highly effective, with robust improvements in skeletal muscle citrate synthase activity in as little as 1-2 wk and improvements in maximum run speed and maximal oxygen uptake by 4-8 wk. For body mass and composition, notable age- and sex-dependent responses were observed. This work in mature, treadmill-trained rats represents the most comprehensive and publicly accessible tissue biorepository, to date, and provides an unprecedented resource for studying temporal-, sex-, and age-specific responses to endurance exercise training in a preclinical rat model.
Collapse
Affiliation(s)
- Simon Schenk
- Department of Orthopaedic Surgery, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Tyler J Sagendorf
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Gina M Many
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ana K Lira
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Luis G O de Sousa
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Dam Bae
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Michael Cicha
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kyle S Kramer
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Michael Muehlbauer
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - R Scott Rector
- Research Service,
Harry S. Truman Memorial Veterans’ Medical Center, Columbia, MO 65201, USA
- NextGen Precision Health,
University of Missouri, Columbia, MO 65201, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - John P Thyfault
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- KU Diabetes Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - John P Williams
- Division of Aging Biology, National Institute on Aging, National Institutes of Health, Bethesda, MD 20898, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism,
Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Christopher B Newgard
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - Sue C Bodine
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
41
|
Szczepanska-Sadowska E, Czarzasta K, Bogacki-Rychlik W, Kowara M. The Interaction of Vasopressin with Hormones of the Hypothalamo-Pituitary-Adrenal Axis: The Significance for Therapeutic Strategies in Cardiovascular and Metabolic Diseases. Int J Mol Sci 2024; 25:7394. [PMID: 39000501 PMCID: PMC11242374 DOI: 10.3390/ijms25137394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
A large body of evidence indicates that vasopressin (AVP) and steroid hormones are frequently secreted together and closely cooperate in the regulation of blood pressure, metabolism, water-electrolyte balance, and behavior, thereby securing survival and the comfort of life. Vasopressin cooperates with hormones of the hypothalamo-pituitary-adrenal axis (HPA) at several levels through regulation of the release of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and multiple steroid hormones, as well as through interactions with steroids in the target organs. These interactions are facilitated by positive and negative feedback between specific components of the HPA. Altogether, AVP and the HPA cooperate closely as a coordinated functional AVP-HPA system. It has been shown that cooperation between AVP and steroid hormones may be affected by cellular stress combined with hypoxia, and by metabolic, cardiovascular, and respiratory disorders; neurogenic stress; and inflammation. Growing evidence indicates that central and peripheral interactions between AVP and steroid hormones are reprogrammed in cardiovascular and metabolic diseases and that these rearrangements exert either beneficial or harmful effects. The present review highlights specific mechanisms of the interactions between AVP and steroids at cellular and systemic levels and analyses the consequences of the inappropriate cooperation of various components of the AVP-HPA system for the pathogenesis of cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | | | | | |
Collapse
|
42
|
Ribeiro G, Monge J, Postolache O, Pereira JMD. A Novel AI Approach for Assessing Stress Levels in Patients with Type 2 Diabetes Mellitus Based on the Acquisition of Physiological Parameters Acquired during Daily Life. SENSORS (BASEL, SWITZERLAND) 2024; 24:4175. [PMID: 39000954 PMCID: PMC11243842 DOI: 10.3390/s24134175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Stress is the inherent sensation of being unable to handle demands and occurrences. If not properly managed, stress can develop into a chronic condition, leading to the onset of additional chronic health issues, such as cardiovascular illnesses and diabetes. Various stress meters have been suggested in the past, along with diverse approaches for its estimation. However, in the case of more serious health issues, such as hypertension and diabetes, the results can be significantly improved. This study presents the design and implementation of a distributed wearable-sensor computing platform with multiple channels. The platform aims to estimate the stress levels in diabetes patients by utilizing a fuzzy logic algorithm that is based on the assessment of several physiological indicators. Additionally, a mobile application was created to monitor the users' stress levels and integrate data on their blood pressure and blood glucose levels. To obtain better performance metrics, validation experiments were carried out using a medical database containing data from 128 patients with chronic diabetes, and the initial results are presented in this study.
Collapse
Affiliation(s)
- Gonçalo Ribeiro
- Department of Information Science and Technology, Iscte-Instituto Universitário de Lisboa, Av. das Forças Armadas, 1649-026 Lisbon, Portugal
- Instituto de Telecomunicações (IT), Instituto Superior Técnico, North Tower, 10th Floor, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - João Monge
- Department of Information Science and Technology, Iscte-Instituto Universitário de Lisboa, Av. das Forças Armadas, 1649-026 Lisbon, Portugal
- Instituto de Telecomunicações (IT), Instituto Superior Técnico, North Tower, 10th Floor, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Octavian Postolache
- Department of Information Science and Technology, Iscte-Instituto Universitário de Lisboa, Av. das Forças Armadas, 1649-026 Lisbon, Portugal
- Instituto de Telecomunicações (IT), Instituto Superior Técnico, North Tower, 10th Floor, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - José Miguel Dias Pereira
- Instituto de Telecomunicações, 3810-193 Aveiro, Portugal
- Instituto Politécnico de Setúbal, Escola Superior de Tecnologia de Setúbal, 2910-761 Setúbal, Portugal
| |
Collapse
|
43
|
Ngema M, Xulu ND, Ngubane PS, Khathi A. A Review of Fetal Development in Pregnancies with Maternal Type 2 Diabetes Mellitus (T2DM)-Associated Hypothalamic-Pituitary-Adrenal (HPA) Axis Dysregulation: Possible Links to Pregestational Prediabetes. Biomedicines 2024; 12:1372. [PMID: 38927579 PMCID: PMC11201628 DOI: 10.3390/biomedicines12061372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Research has identified fetal risk factors for adult diseases, forming the basis for the Developmental Origins of Health and Disease (DOHaD) hypothesis. DOHaD suggests that maternal insults during pregnancy cause structural and functional changes in fetal organs, increasing the risk of chronic diseases like type 2 diabetes mellitus (T2DM) in adulthood. It is proposed that altered maternal physiology, such as increased glucocorticoid (GC) levels associated with a dysregulated hypothalamic-pituitary-adrenal (HPA) axis in maternal stress and T2DM during pregnancy, exposes the fetus to excess GC. Prenatal glucocorticoid exposure reduces fetal growth and programs the fetal HPA axis, permanently altering its activity into adulthood. This programmed HPA axis is linked to increased risks of hypertension, cardiovascular diseases, and mental disorders in adulthood. With the global rise in T2DM, particularly among young adults of reproductive age, it is crucial to prevent its onset. T2DM is often preceded by a prediabetic state, a condition that does not show any symptoms, causing many to unknowingly progress to T2DM. Studying prediabetes is essential, as it is a reversible stage that may help prevent T2DM-related pregnancy complications. The existing literature focuses on HPA axis dysregulation in T2DM pregnancies and its link to fetal programming. However, the effects of prediabetes on HPA axis function, specifically glucocorticoid in pregnancy and fetal outcomes, are not well understood. This review consolidates research on T2DM during pregnancy, its impact on fetal programming via the HPA axis, and possible links with pregestational prediabetes.
Collapse
Affiliation(s)
| | | | | | - Andile Khathi
- School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4001, South Africa; (M.N.); (N.D.X.); (P.S.N.)
| |
Collapse
|
44
|
Bilyalova A, Bilyalov A, Filatov N, Shagimardanova E, Kiyasov A, Vorontsova M, Gusev O. Non-classical animal models for studying adrenal diseases: advantages, limitations, and implications for research. Lab Anim Res 2024; 40:25. [PMID: 38898483 PMCID: PMC11186145 DOI: 10.1186/s42826-024-00212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
The study of adrenal disorders is a key component of scientific research, driven by the complex innervation, unique structure, and essential functions of the adrenal glands. This review explores the use of non-traditional animal models for studying congenital adrenal hyperplasia. It highlights the advantages, limitations, and relevance of these models, including domestic ferrets, dogs, guinea pigs, golden hamsters, pigs, and spiny mice. We provide a detailed analysis of the histological structure, steroidogenesis pathways, and genetic characteristics of these animal models. The morphological and functional similarities between the adrenal glands of spiny mice and humans highlight their potential as an important avenue for future research.
Collapse
Affiliation(s)
- Alina Bilyalova
- Institute of fundamental medicine and biology, Kazan Federal University, Kazan, 420008, Russia
| | - Airat Bilyalov
- Institute of fundamental medicine and biology, Kazan Federal University, Kazan, 420008, Russia
- Loginov Moscow Clinical Scientific Center, Moscow, 111123, Russia
| | - Nikita Filatov
- Institute of fundamental medicine and biology, Kazan Federal University, Kazan, 420008, Russia
| | - Elena Shagimardanova
- Loginov Moscow Clinical Scientific Center, Moscow, 111123, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, 121205, Russia
| | - Andrey Kiyasov
- Institute of fundamental medicine and biology, Kazan Federal University, Kazan, 420008, Russia
| | | | - Oleg Gusev
- Life Improvement by Future Technologies (LIFT) Center, Moscow, 121205, Russia.
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan.
- Endocrinology Research Center, Moscow, 117292, Russia.
| |
Collapse
|
45
|
Karimi R, Yanovich A, Elbarbry F, Cleven A. Adaptive Effects of Endocrine Hormones on Metabolism of Macronutrients during Fasting and Starvation: A Scoping Review. Metabolites 2024; 14:336. [PMID: 38921471 PMCID: PMC11205672 DOI: 10.3390/metabo14060336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Food deprivation can occur for different reasons. Fasting (<24 h duration) occurs to meet religious or well-being goals. Starvation (>1-day duration) occurs when there is intentional (hunger strike or treatment of a medical condition) or unintentional (anorexia nervosa, drought, epidemic famine, war, or natural disaster) food deprivation. A scoping review was undertaken using the PubMed database to explore 1805 abstracts and review 88 eligible full-text articles to explore the adaptive relationships that emerge between cortisol, insulin, glucagon, and thyroid hormones on the metabolic pathways of macronutrients in humans during fasting and starvation. The collected data indicate that fasting and starvation prime the human body to increase cortisol levels and decrease the insulin/glucagon ratio and triiodothyronine (T3) levels. During fasting, increased levels of cortisol and a decreased insulin/glucagon ratio enhance glycogenolysis and reduce the peripheral uptake of glucose and glycogenesis, whereas decreased T3 levels potentially reduce glycogenolysis. During starvation, increased levels of cortisol and a decreased insulin/glucagon ratio enhance lipolysis, proteolysis, fatty acid and amino acid oxidation, ketogenesis, and ureagenesis, and decreased T3 levels reduce thermogenesis. We present a potential crosstalk between T3 and the above hormones, including between T3 and leptin, to extend their adaptive roles in the metabolism of endogenous macronutrients during food deprivation.
Collapse
Affiliation(s)
- Reza Karimi
- Pacific University School of Pharmacy, 222 SE 8th Avenue, HPC-Ste 451, Hillsboro, OR 97123, USA; (A.Y.); (F.E.); (A.C.)
| | | | | | | |
Collapse
|
46
|
Ibello E, Saracino F, Delle Cave D, Buonaiuto S, Amoroso F, Andolfi G, Corona M, Guardiola O, Colonna V, Sainz B, Altucci L, De Cesare D, Cobellis G, Lonardo E, Patriarca EJ, D'Aniello C, Minchiotti G. Three-dimensional environment sensitizes pancreatic cancer cells to the anti-proliferative effect of budesonide by reprogramming energy metabolism. J Exp Clin Cancer Res 2024; 43:165. [PMID: 38877560 PMCID: PMC11177459 DOI: 10.1186/s13046-024-03072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/17/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer with an aggressive metastatic phenotype and very poor clinical prognosis. Interestingly, a lower occurrence of PDAC has been described in individuals with severe and long-standing asthma. Here we explored the potential link between PDAC and the glucocorticoid (GC) budesonide, a first-line therapy to treat asthma. METHODS We tested the effect of budesonide and the classical GCs on the morphology, proliferation, migration and invasiveness of patient-derived PDAC cells and pancreatic cancer cell lines, using 2D and 3D cultures in vitro. Furthermore, a xenograft model was used to investigate the effect of budesonide on PDAC tumor growth in vivo. Finally, we combined genome-wide transcriptome analysis with genetic and pharmacological approaches to explore the mechanisms underlying budesonide activities in the different environmental conditions. RESULTS We found that in 2D culture settings, high micromolar concentrations of budesonide reduced the mesenchymal invasive/migrating features of PDAC cells, without affecting proliferation or survival. This activity was specific and independent of the Glucocorticoid Receptor (GR). Conversely, in a more physiological 3D environment, low nanomolar concentrations of budesonide strongly reduced PDAC cell proliferation in a GR-dependent manner. Accordingly, we found that budesonide reduced PDAC tumor growth in vivo. Mechanistically, we demonstrated that the 3D environment drives the cells towards a general metabolic reprogramming involving protein, lipid, and energy metabolism (e.g., increased glycolysis dependency). This metabolic change sensitizes PDAC cells to the anti-proliferative effect of budesonide, which instead induces opposite changes (e.g., increased mitochondrial oxidative phosphorylation). Finally, we provide evidence that budesonide inhibits PDAC growth, at least in part, through the tumor suppressor CDKN1C/p57Kip2. CONCLUSIONS Collectively, our study reveals that the microenvironment influences the susceptibility of PDAC cells to GCs and provides unprecedented evidence for the anti-proliferative activity of budesonide on PDAC cells in 3D conditions, in vitro and in vivo. Our findings may explain, at least in part, the reason for the lower occurrence of pancreatic cancer in asthmatic patients and suggest a potential suitability of budesonide for clinical trials as a therapeutic approach to fight pancreatic cancer.
Collapse
Affiliation(s)
- Eduardo Ibello
- Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Federica Saracino
- Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy
| | | | - Silvia Buonaiuto
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Filomena Amoroso
- Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Gennaro Andolfi
- Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy
| | - Marco Corona
- Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy
| | - Ombretta Guardiola
- Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy
| | - Vincenza Colonna
- Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bruno Sainz
- Department of Cancer, Instituto de Investigaciones Biomedicas Sols-Morreale (IIBM), CSIC- UAM, Madrid, 28029, Spain
- Cancer, Area 3-Instituto Ramon Y Cajal de Investigacion Sanitaria (IRYCIS), Madrid, 28034, Spain
- Centro de Investigación Biomédica en Red, Área Cáncer, CIBERONC, ISCIII, Madrid, 28029, Spain
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- BIOGEM, Ariano Irpino, Ariano Irpino, AV, 83031, Italy
- IEOS-CNR, Naples, 80100, Italy
- Medical Epigenetics Program, AOU Vanvitelli, Naples, Italy
| | - Dario De Cesare
- Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy
| | - Gilda Cobellis
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Enza Lonardo
- Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy
| | | | - Cristina D'Aniello
- Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy.
| | - Gabriella Minchiotti
- Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy.
| |
Collapse
|
47
|
Ravi H, Das S, Devi Rajeswari V, Venkatraman G, Choudhury AA, Chakraborty S, Ramanathan G. Hormonal regulation in diabetes: Special emphasis on sex hormones and metabolic traits. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:257-291. [PMID: 39059988 DOI: 10.1016/bs.apcsb.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Diabetes constitutes a significant global public health challenge that is rapidly reaching epidemic proportions. Among the non-communicable diseases, the incidence of diabetes is rising at an alarming rate. The International Diabetes Federation has documented a 9.09% prevalence of diabetes among individuals aged between 20 and 79 years. The interplay of gonadal hormones and gender differences is critical in regulating insulin sensitivity and glucose tolerance, and this dynamic is particularly crucial because of the escalating incidence of diabetes. Variations in insulin sensitivity are observed across genders, levels of adiposity, and age groups. Both estrogen and testosterone are seen to influence glucose metabolism and insulin sensitivity. This chapter surveys the present knowledge of sex differences, sex hormones, and chromosomes on insulin imbalance and diabetes development. It further highlights the influence of metabolic traits in diabetes and changes in sex hormones during diabetic pregnancy. Notably, even stressful lifestyles have been acknowledged to induce hormonal imbalances. Furthermore, it discusses the potential of hormonal therapy to help stabilize sex hormones in diabetic individuals and focuses on the most recent research investigating the correlation between sex hormones and diabetes.
Collapse
Affiliation(s)
- Harini Ravi
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Soumik Das
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Abbas Alam Choudhury
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Shreya Chakraborty
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
48
|
Li S, Fan L, Viktoria U, Oleksandr P, Li Z, Zhang W, Deng B. Effect of resuscitation of cryopreserved porcine adrenal glands at 26 °C on their recovery and functioning under xenotransplantation. Cryobiology 2024; 115:104895. [PMID: 38616031 DOI: 10.1016/j.cryobiol.2024.104895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The study is devoted to the effect of lowered resuscitation temperature (26 °C) on cryopreserved porcine adrenal glands functional activity in vitro and in vivo under xenotransplantation. The adrenals were collected from newborn pigs, cryopreserved with 5 % DMSO at a rate of 1 °C/min, resuscitated at 26 or 37 °C for 48 h (5 % CO2, DMEM), embedded into small intestinal submucosa, and transplanted to bilaterally adrenalectomized rats. It has been shown that the glands resuscitated at 26 °C have suppressed free-radical processes and can produce cortisol and aldosterone in vitro, and may lead to elevated blood levels of these hormones. Moreover, the adrenal grafts maintain blood glucose levels and promote the formation of glycogen stores. Thus, the resuscitation at 26 °C can improve the quality of grafts and favor the introduction and application of the cryopreserved organs and tissues for transplantation in clinical and experimental practice.
Collapse
Affiliation(s)
- Shasha Li
- College of Basic Medical and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang City, China.
| | - Lingling Fan
- College of Basic Medical and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang City, China.
| | - Ustichenko Viktoria
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - Pakhomov Oleksandr
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - Zhongjie Li
- College of Basic Medical and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang City, China.
| | - Wenlu Zhang
- College of Basic Medical and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang City, China.
| | - Bo Deng
- College of Basic Medical and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang City, China.
| |
Collapse
|
49
|
Perez-Leighton C, Kerr B, Scherer PE, Baudrand R, Cortés V. The interplay between leptin, glucocorticoids, and GLP1 regulates food intake and feeding behaviour. Biol Rev Camb Philos Soc 2024; 99:653-674. [PMID: 38072002 DOI: 10.1111/brv.13039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 05/09/2024]
Abstract
Nutritional, endocrine, and neurological signals converge in multiple brain centres to control feeding behaviour and food intake as part of the allostatic regulation of energy balance. Among the several neuroendocrine systems involved, the leptin, glucocorticoid, and glucagon-like peptide 1 (GLP1) systems have been extensively researched. Leptin is at the top hierarchical level since its complete absence is sufficient to trigger severe hyperphagia. Glucocorticoids are key regulators of the energy balance adaptation to stress and their sustained excess leads to excessive adiposity and metabolic perturbations. GLP1 participates in metabolic adaptation to food intake, regulating insulin secretion and satiety by parallel central and peripheral signalling systems. Herein, we review the brain and peripheral targets of these three hormone systems that integrate to regulate food intake, feeding behaviour, and metabolic homeostasis. We examine the functional relationships between leptin, glucocorticoids, and GLP1 at the central and peripheral levels, including the cross-regulation of their circulating levels and their cooperative or antagonistic actions at different brain centres. The pathophysiological roles of these neuroendocrine systems in dysregulated intake are explored in the two extremes of body adiposity - obesity and lipodystrophy - and eating behaviour disorders.
Collapse
Affiliation(s)
- Claudio Perez-Leighton
- Departmento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina-CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Carmen Sylva 2444, Providencia, Santiago, Chile
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - René Baudrand
- Departmento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
- Centro Translacional de Endocrinología (CETREN), Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| | - Víctor Cortés
- Departmento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| |
Collapse
|
50
|
Martel-Duguech L, Poirier J, Bourdeau I, Lacroix A. Diagnosis and management of secondary adrenal crisis. Rev Endocr Metab Disord 2024; 25:619-637. [PMID: 38411891 DOI: 10.1007/s11154-024-09877-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2024] [Indexed: 02/28/2024]
Abstract
Adrenal crisis (AC) is a life threatening acute adrenal insufficiency (AI) episode which can occur in patients with primary AI but also secondary AI (SAI), tertiary AI (TAI) and iatrogenic AI (IAI). In SAI, TAI and IAI, AC may develop when the HPA axis is unable to mount an adequate glucocorticoid response to severe stress due to pituitary or hypothalamic disruption. It manifests as an acute deterioration in multi-organ homeostasis that, if untreated, leads to shock and death. Despite the availability of effective preventive strategies, its prevalence is increasing in patients with SAI, TAI and IAI due to more frequent exogenous steroid administration, pituitary immune-related effects of immune checkpoint inhibitors and opioid use in pain management. The delayed diagnosis of acute AI which remains infrequently suspected increases the risk of AC. Its main precipitating factors are infections, emotional distress, surgery, cessation or reduction in GC doses, pituitary infarction or surgical cure of endogenous Cushing's syndrome. In patients not known previously to have SAI/TAI/IAI, recognition of its symptoms, signs, and biochemical abnormalities can be challenging and cause delay in proper diagnosis and therapy. Effective therapy of AC is rapid intravenous administration of hydrocortisone (initial bolus of 100 mg followed by 200 mg/24 h as continuous infusion or bolus of 50 mg every 6 h) and 0.9% saline. In diagnosed patients, preventive education in sick-day rules adjustment of glucocorticoid replacement and hydrocortisone parenteral self-administration must be performed repeatedly by trained health care providers. Strategies to improve the adequate preventive education in patients at risk for secondary AI should be promoted in collaboration with various medical specialist societies and patients support associations.
Collapse
Affiliation(s)
- Luciana Martel-Duguech
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), 900 Saint-Denis Street, Montréal, QC H2X 0A9, Québec, Canada
| | - Jonathan Poirier
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), 900 Saint-Denis Street, Montréal, QC H2X 0A9, Québec, Canada
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), 900 Saint-Denis Street, Montréal, QC H2X 0A9, Québec, Canada
| | - André Lacroix
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), 900 Saint-Denis Street, Montréal, QC H2X 0A9, Québec, Canada.
| |
Collapse
|