1
|
Li Y, Xian H, Arnold LD, Jen Chang J. Associations Between Childhood ADHD and Lifestyle Risk Factors for Chronic Diseases From Adolescence to Early Adulthood. J Atten Disord 2025; 29:256-268. [PMID: 39722482 DOI: 10.1177/10870547241306570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
OBJECTIVE To examine the association between childhood ADHD and lifestyle risk factors (physical inactivity and high fast-food consumption) from adolescence to early adulthood. METHODS This retrospective cohort study used secondary data from Wave I to III of the National Longitudinal Study of Adolescent Health (Add Health) in a national representative sample of adolescents (n = 6,814). Multivariable Poisson regression and Generalized Estimating Equation were used to estimate adjusted relative risks (aRRs) and corresponding 95% confidence intervals (95% CIs), controlling for confounders. RESULTS Childhood ADHD was associated with an increased risk of high fast-food consumption (aRR = 1.49, 95% CI [1.23, 1.80]) in early adulthood, but not in adolescence (aRR = 1.11, 95% CI [0.90, 1.37]), after adjusting for confounders. The associations between childhood ADHD and physical inactivity were not statistically significant from adolescence to early adulthood. CONCLUSION Findings of this study extend the current understanding of the impact of childhood ADHD on greater risk of fast-food consumption, which underscores the importance to develop interventions for promoting healthy diet in children with ADHD.
Collapse
|
2
|
Masand PS, Clayton AH, Parikh M, Laliberté F, Germain G, Mahendran M, Martinez C, Nabulsi N. Healthcare resource utilization and costs of using Cariprazine as the first versus subsequent adjunctive therapy for major depressive disorder. J Med Econ 2025:1-17. [PMID: 39841541 DOI: 10.1080/13696998.2025.2457872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 01/24/2025]
Abstract
AIM Inadequate response to antidepressant therapy (ADT) is common in major depressive disorder (MDD); atypical antipsychotic (AA) adjunctive therapy may be effective for these patients. This study aimed to compare healthcare resource utilization (HRU) and costs between patients initiating the AA cariprazine as their first adjunctive therapy vs those initiating cariprazine subsequently. METHODS The MerativeTM MarketScan® Commercial Database (January 1, 2015, to June 30, 2021) was used to identify US adults with MDD and ≥1 pharmacy claim for cariprazine adjunctive to ADT in 2018 or after. Rates of mental health (MH)‑related and all‑cause HRU per patient-year (PPY) and mean healthcare costs per-patient-per-year (PPPY) were assessed after patients first initiated adjunctive therapy. HRU and costs were compared between cohorts using rate ratios (RRs) and mean cost differences, respectively, estimated from multivariable regression models. RESULTS Of 838 patients receiving cariprazine, 44.7% initiated cariprazine as their first adjunctive therapy to ADT, and 55.3% initiated it subsequently. Those initiating cariprazine first had significantly lower rates of MH‑related hospitalizations (RR [95% confidence interval] = 0.55 [0.30, 0.90], P = 0.020) and outpatient (OP) visits (0.67 [0.57, 0.82], P < 0.001) PPY than those initiating cariprazine subsequently. Moreover, patients initiating cariprazine as their first adjunctive therapy had lower annual total MH‑related healthcare costs (mean cost difference [95% confidence interval] -$2,182 [-$4,206, -$69], P = 0.040), driven primarily by lower OP visit costs (-$1,511 [-$2,330, -$615], P < 0.001). Similar trends were observed for all-cause HRU and costs. LIMITATIONS This was a retrospective analysis of secondary data with limited follow-up. Claims were a proxy for cariprazine use. CONCLUSIONS Results from this real‑world study of commercially insured US adults suggest that initiating cariprazine as the first adjunctive therapy rather than a subsequent therapy could help mitigate the considerable economic burden of MDD for appropriate patients.
Collapse
Affiliation(s)
| | - Anita H Clayton
- University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Vartanian M, Endres KJ, Lee YT, Friedrich S, Meemken MT, Schamarek I, Rohde-Zimmermann K, Schürfeld R, Eisenberg L, Hilbert A, Beyer F, Stumvoll M, Sacher J, Villringer A, Christensen JF, Witte AV. Investigating the impact of microbiome-changing interventions on food decision-making: MIFOOD study protocol. BMC Nutr 2025; 11:8. [PMID: 39806493 PMCID: PMC11727427 DOI: 10.1186/s40795-024-00971-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Obesity is a multifactorial disease reaching pandemic proportions with increasing healthcare costs, advocating the development of better prevention and treatment strategies. Previous research indicates that the gut microbiome plays an important role in metabolic, hormonal, and neuronal cross-talk underlying eating behavior. We therefore aim to examine the effects of prebiotic and neurocognitive behavioral interventions on food decision-making and to assay the underlying mechanisms in a Randomized Controlled Trial (RCT). METHOD This study uses a parallel arm RCT design with a 26-week intervention period. We plan to enroll 90 participants (male/diverse/female) living with overweight or obesity, defined as either a Waist-to-Hip Ratio (WHR) ≥ 0.9 (male)/0.85 (diverse, female) or a Body Mass Index (BMI) ≥ 25 kg/m2. Key inclusion criteria are 18-60 years of age and exclusion criteria are type 2 diabetes, psychiatric disease, and Magnetic Resonance Imaging (MRI) contraindications. The interventions comprise either a daily supplementary intake of 30 g soluble fiber (inulin), or weekly neurocognitive behavioral group sessions, compared to placebo (equicaloric maltodextrin). At baseline and follow-up, food decision-making is assessed utilizing task-based MRI. Secondary outcome measures include structural MRI, eating habits, lifestyle factors, personality traits, and mood. Further, we obtain fecal and blood samples to investigate gut microbiome composition and related metabolites. DISCUSSION This study relies on expanding research suggesting that dietary prebiotics could improve gut microbiome composition, leading to beneficial effects on gut-brain signaling and higher-order cognitive functions. In parallel, neurocognitive behavioral interventions have been proposed to improve unhealthy eating habits and metabolic status. However, causal evidence on how these "bottom-up" and "top-down" processes affect food decision-making and neuronal correlates in humans is still scarce. In addition, microbiome, and gut-brain-axis-related mediating mechanisms remain unclear. The present study proposes a comprehensive approach to assess the effects of these gut-brain-related processes influencing food decision-making in overweight and obesity. TRIAL REGISTRATION ClinicalTrials.gov NCT05353504. Retrospectively registered on 29 April 2022.
Collapse
Affiliation(s)
- Meghedi Vartanian
- Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Konrad Jakob Endres
- Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Yee Teng Lee
- Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Silke Friedrich
- Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Marie-Theres Meemken
- Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Imke Schamarek
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University of Leipzig and the University Hospital Leipzig, Leipzig, Germany
| | - Kerstin Rohde-Zimmermann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University of Leipzig and the University Hospital Leipzig, Leipzig, Germany
| | - Robin Schürfeld
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Leipzig, Germany
| | - Lina Eisenberg
- Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Anja Hilbert
- Integrated Research and Treatment Center AdiposityDiseases, Behavioral Medicine Research Unit, Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany
| | - Frauke Beyer
- Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Michael Stumvoll
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University of Leipzig and the University Hospital Leipzig, Leipzig, Germany
| | - Julia Sacher
- Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Center for Mental Health, Helios Park Clinic, Leipzig, Germany
| | - Arno Villringer
- Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Julia F Christensen
- Department of Cognitive Neuropsychology, Max Planck Institute for Empirical Aesthetics, Frankfurt/M, Germany
| | - A Veronica Witte
- Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany.
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
4
|
González-González S, Gutiérrez-Pérez M, Guzmán-Ruiz MA, Espitia-Bautista E, Pavón RM, Estrada-Rodríguez KP, Díaz-Infante R. A, Guadarrama Gándara CG, Escobar C, Guerrero-Vargas NN. Maternal exposure to dim light at night induces behavioral alterations in the adolescent and adult offspring Wistar rat. Front Physiol 2025; 15:1520160. [PMID: 39839527 PMCID: PMC11747224 DOI: 10.3389/fphys.2024.1520160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Access to electric light has exposed living organisms to varying intensities of light throughout the 24 h day. Dim light at night (DLAN) is an inappropriate signal for the biological clock, which is responsible for the circadian organization of physiology. During the gestational period, physiological adaptations occur to ensure a successful pregnancy and optimal fetal development. Environmental maternal conditions, such as disruptions of maternal circadian rhythms, could negatively affect offspring health. We have previously demonstrated that exposure of female Wistar rats to DLAN results in circadian, metabolic, and behavioral alterations. A relevant behavior during adolescence is social play, primarily regulated by the nucleus accumbens (NAc) which is crucial for the proper performance of important behaviors in adulthood. Throughout development, microglia are responsible for the remodeling of diverse brain regions via synaptic pruning. During adolescence, this process occurs within the NAc, where immune-mediated remodeling directly impacts social play behavior. Methods This study investigated the effects of maternal exposure to DLAN or a light-dark cycle (LD) before (5 weeks) and during the gestational period (21-23 days) on the metabolism and behavior of offspring in adolescence and adulthood. Body mass was measured every 5 days from postnatal day 1 (PN1) to PN25 and every 10 days from PN40 to PN90; food consumption was monitored weekly from PN40 to PN90. Social play behavior was evaluated at PN40. The quantification and morphology of microglia in the NAc were measured on PN30. An open field test was conducted at PN60, and anhedonia test was assessed at PN90. Results and discussion Male and female offspring from mothers exposed to DLAN showed increased body mass gain at PN25. DLAN male offspring had lower food consumption, while DLAN females exhibited increased food consumption. In social play behavior, no differences were found between DLAN and LD female offspring. In contrast, DLAN male offspring exhibited a significant decrease in social play behavior compared to LD animals, which was associated with higher numbers of microglia in the NAc that had more ramified morphology. Importantly, at PN90, DLAN offspring presented increased anxiety-like behaviors. These results demonstrate that DLAN exposure induces intergenerational behavioral alterations that persist until adulthood.
Collapse
Affiliation(s)
- Shellye González-González
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Mara A. Guzmán-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Rosa María Pavón
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Karla P. Estrada-Rodríguez
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | | | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Natalí N. Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
5
|
Shahani P, Abolghasemi H, Abtin S, Mozafari R, Barikrow N, Yekta BG, Haghparast A. The interaction effects between opioidergic and D1-like dopamine receptors in the nucleus accumbens on pain-related behaviors in the animal model of acute pain. Pharmacol Biochem Behav 2025; 246:173911. [PMID: 39586363 DOI: 10.1016/j.pbb.2024.173911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/02/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
The opioidergic and dopaminergic systems play an essential role in processing pain information in the nucleus accumbens (NAc). The present work examined the hypothesis that interaction between opioidergic and D1-like dopamine receptors in the NAc area may influence acute pain-related behaviors. One hundred sixty adult male Wistar rats unilaterally received different doses of the drug solution or vehicle. First, separate groups of animals received different doses of morphine (5, 10, and 25 mmol/0.5 μL) and various doses of SKF38393 (1.5, 3, 6, and 12 mmol/0.5 μL) as opioid and D1-like receptor agonists in the NAc region, respectively. In the second set of experiments, animals got different amounts (1.5, 3, 6, and 12 mmol/0.5 μL) of SCH23390, a D1-like receptor antagonist, before an effective dose of morphine (10 mmol/0.5 μL). In the last experiment, the animals were given naloxone (1.5, 5, and 15 mmol/0.5 μL) before they were given an effective dose of SKF38393 (3 mmol/0.5 μL). The tail-flick test was then used to measure their acute pain threshold. The main findings showed that intra-NAc injection of morphine and SKF38393 alone causes antinociceptive responses. However, the intra-accumbal injection of SCH23390 significantly reduced the antinociceptive responses elicited by intra-NAc morphine. Additionally, intra-NAc naloxone significantly reduced the antinociceptive effects elicited by intra-NAc SKF38393. Interestingly, SCH23390 was more effective in reversing the analgesic effects of morphine (η2 = 0.61) than naloxone in reversing the analgesic effects of SKF38393 (η2 = 0.49). The findings suggest that the opioidergic and dopamine systems in the NAc collaborate to produce pain-relieving effects. This insight could potentially enhance the effectiveness of lower doses of opioids for pain management, ultimately reducing their usage in clinical settings in the future.
Collapse
MESH Headings
- Animals
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Male
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D1/antagonists & inhibitors
- Rats, Wistar
- Rats
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Morphine/pharmacology
- Morphine/administration & dosage
- Acute Pain/drug therapy
- Acute Pain/metabolism
- Benzazepines/pharmacology
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/administration & dosage
- Naloxone/pharmacology
- Behavior, Animal/drug effects
- Dopamine Agonists/pharmacology
- Dopamine Agonists/administration & dosage
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Receptors, Opioid/metabolism
Collapse
Affiliation(s)
- Pariya Shahani
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedie Abolghasemi
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Abtin
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghayeh Mozafari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nooshin Barikrow
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Batool Ghorbani Yekta
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Applied Biotechnology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran 1949635881, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Alanezi AA. Metabolomic Profile Modification in the Cerebellum of Mice Repeatedly Exposed to Khat and Treated with β-Lactamase Inhibitor, Clavulanic Acid. Metabolites 2024; 14:726. [PMID: 39728507 DOI: 10.3390/metabo14120726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Catha edulis, commonly known as khat, is used for its psychoactive effects and is considered a natural amphetamine. The current study investigated the metabolomic profile in the cerebellum of mice after repeated exposure to khat and evaluated the effects of clavulanic acid on the metabolomic profile in the cerebellum in khat-treated mice. METHODS Male C67BL/6 mice that were 6-9 weeks old were recruited and divided into three groups: the control group was treated with 0.9% normal saline for 17 days; the khat group was given khat extract at a dose of 360 mg/kg via the intraperitoneal (i.p) route for 17 days; and another khat group was treated with khat for 17 days and clavulanic acid at a dose of 5 mg/kg for the last 7 days (days 11-17). At the end of the 17th day, the animals were sacrificed, and their brains were immediately collected and stored at -80 °C. The cerebellum region of the brain was isolated in each group by micropuncture using cryostat and underwent a metabolomics study via Gas Chromatography/Mass Spectroscopy (GC/MS). The total peak area ratios of the selected metabolites in the cerebellum after repeated exposure to the khat extract were significantly reduced (p < 0.05) and treatment of the khat group with clavulanic acid significantly increased (all p < 0.05) the total peak areas ratios of the selected metabolites when compared to their corresponding areas in the alternative khat group. These levels of selected metabolites were further confirmed by observing the metabolite peak area ratios and performing a heat map analysis and a principal compartment analysis of the samples in the cerebellum. RESULTS A network analysis of altered metabolites in the cerebellum showed a strong correlation between the different metabolites, which showed that an increase in one metabolite can modulate the levels of others. An analysis using the MetaboAnalyst software revealed the involvement of selected altered metabolites like lactic acid in many signaling pathways, like gluconeogenesis, while enrichment analysis data showed altered pathways for pyruvate metabolism and disease pathogenesis. Finally, a network analysis showed that selected metabolites were linked with other metabolites, indicating drug-drug interactions. CONCLUSIONS The present study showed that repeated exposure of mice to khat altered the levels of various metabolites in the cerebellum which are involved in the pathogenesis of different diseases, signaling pathways, and interactions with the pharmacokinetic profile of other therapeutic drugs. The treatment of khat-treated mice with clavulanic acid positively modified the metabolomics profile in the cerebellum and increased the levels of the altered metabolites.
Collapse
Affiliation(s)
- Abdulkareem A Alanezi
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia
| |
Collapse
|
7
|
Mohammadi M, Omidiani SE, Azizbeigi R, Haghparast A. Cannabidiol Plays a Modulatory Function on the Methamphetamine-Induced Reward Through Hippocampal D2-Like Dopamine Receptors. Neurochem Res 2024; 50:6. [PMID: 39540967 DOI: 10.1007/s11064-024-04256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Methamphetamine (METH), a stimulant that is extremely addictive, directly affects the central nervous system. METH's abuse and consumption are directly linked to mental illnesses, psychosis, and behavioral and cognitive impairments. It may disrupt the reward system and dopaminergic transmission. METH's rewarding qualities are associated with a rise in dopamine. Additionally, cannabidiol (CBD), one of the primary cannabinoid components of the cannabis plant, significantly affects dopaminergic transmission and may aid in reward- and addiction-related behaviors. To shed light on the role of the D2-like dopamine receptor (D2R) in the hippocampal dentate gyrus (DG), the present study examined the effects of CBD on the acquisition and expression of the conditioned place preference (CPP) induced by METH. The function of D2R was ascertained by delivering Sulpiride microinjections, as a D2R antagonist Sulpiride (0.25, 1, and 4 μg/0.5 μL DMSO12%) into the DG. Moreover, an intracerebroventricular injection of CBD at a dose of 10 μg/5 μL for CPP acquisition and 50 μg/5 μL for CPP expression was given to rats. According to the current research, CBD dramatically reduced the acquisition and expression of CPP resulting from METH. However, Sulpiride suppressed the effect of CBD on METH-induced CPP acquisition and expression, with a greater impact on expression experiments. Ultimately, this study proposed that the expression experiment of METH-induced CPP appears to be heavily dependent on D2R in the DG.
Collapse
Affiliation(s)
- Mahsa Mohammadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran
- Faculty of Veterinary Medicine, Department of Physiology, University of Tehran, Tehran, Iran
| | - Seyed Erfan Omidiani
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Ronak Azizbeigi
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran.
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran.
- Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Willis C, White JD, Minto MS, Quach BC, Han S, Tao R, Shin JH, Deep-Soboslay A, Hyde TM, Mayfield RD, Webb BT, Johnson EO, Kleinman JE, Bierut LJ, Hancock DB. Gene expression differences associated with alcohol use disorder in human brain. Mol Psychiatry 2024:10.1038/s41380-024-02777-1. [PMID: 39394458 DOI: 10.1038/s41380-024-02777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Excessive alcohol consumption is a leading cause of preventable death worldwide. To improve understanding of neurobiological mechanisms associated with alcohol use disorder (AUD) in humans, we compared gene expression data from deceased individuals with and without AUD across two addiction-relevant brain regions: the nucleus accumbens (NAc) and dorsolateral prefrontal cortex (DLPFC). Bulk RNA-seq data from NAc and DLPFC (N ≥50 with AUD, ≥46 non-AUD) were analyzed for differential gene expression using modified negative binomial regression adjusting for technical and biological covariates. The region-level results were meta-analyzed with those from an independent dataset (NNAc = 28 AUD, 29 non-AUD; NPFC = 66 AUD, 77 non-AUD). We further tested for heritability enrichment of AUD-related phenotypes, gene co-expression networks, gene ontology enrichment, and drug repurposing. We identified 176 differentially expressed genes (DEGs; 12 in both regions, 78 in NAc only, 86 in DLPFC only) for AUD in our new dataset. After meta-analyzing with published data, we identified 476 AUD DEGs (25 in both regions, 29 in NAc only, 422 in PFC only). Of these DEGs, 17 were significant when looked up in GWAS of problematic alcohol use or drinks per week. Gene co-expression analysis showed both concordant and unique gene networks across brain regions. We also identified 29 and 436 drug compounds that target DEGs from our meta-analysis in NAc and PFC, respectively. This study identified robust AUD-associated DEGs, contributing novel neurobiological insights into AUD and highlighting genes targeted by known drug compounds, generating opportunity for drug repurposing to treat AUD.
Collapse
Affiliation(s)
- Caryn Willis
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA.
| | - Julie D White
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Melyssa S Minto
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Bryan C Quach
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Shizhong Han
- Lieber Institute for Brain Development (LIBD), Baltimore, MD, USA
| | - Ran Tao
- Lieber Institute for Brain Development (LIBD), Baltimore, MD, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development (LIBD), Baltimore, MD, USA
| | | | - Thomas M Hyde
- Lieber Institute for Brain Development (LIBD), Baltimore, MD, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| | - Bradley T Webb
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Eric O Johnson
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
- Fellow Program, RTI International, Research Triangle Park, NC, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development (LIBD), Baltimore, MD, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Dana B Hancock
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
9
|
Svendsen SP, Svendsen CN. Cell therapy for neurological disorders. Nat Med 2024; 30:2756-2770. [PMID: 39407034 DOI: 10.1038/s41591-024-03281-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 10/18/2024]
Abstract
Cell therapies for neurological disorders are entering the clinic and present unique challenges and opportunities compared with conventional medicines. They have the potential to replace damaged nervous tissue and integrate into the brain or spinal cord to produce functional effects for the lifetime of the patient, which could revolutionize the way clinicians treat debilitating neurological disorders. The major challenge has been cell sourcing, which historically relied mainly on fetal brain tissue. This has largely been overcome with the advent of pluripotent stem cell technology and the ability to make almost any cell of the nervous system at scale. Furthermore, advances in gene editing now allow the generation of genetically modified cells that could perform better and evade the immune system. With all the remarkable new approaches to treat neurological disorders, we take a critical look at the state of current clinical trials and how challenges may be overcome with the evolving technology and innovation occurring in the stem cell field.
Collapse
Affiliation(s)
- Soshana P Svendsen
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
| | - Clive N Svendsen
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Georgakopoulou VE, Sklapani P, Trakas N, Reiter RJ, Spandidos DA. Exploring the association between melatonin and nicotine dependence (Review). Int J Mol Med 2024; 54:82. [PMID: 39092582 PMCID: PMC11315657 DOI: 10.3892/ijmm.2024.5406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
Due to the addictive qualities of tobacco products and the compulsive craving and dependence associated with their use, nicotine dependence continues to be a serious public health concern on a global scale. Despite awareness of the associated health risks, nicotine addiction contributes to numerous acute and chronic medical conditions, including cardiovascular disease, respiratory disorders and cancer. The nocturnal secretion of pineal melatonin, known as the 'hormone of darkness', influences circadian rhythms and is implicated in addiction‑related behaviors. Melatonin receptors are found throughout the brain, influencing dopaminergic neurotransmission and potentially attenuating nicotine‑seeking behavior. Additionally, the antioxidant properties of melatonin may mitigate oxidative stress from chronic nicotine exposure, reducing cellular damage and lowering the risk of nicotine‑related health issues. In addition to its effects on circadian rhythmicity, melatonin acting via specific neural receptors influences sleep and mood, and provides neuroprotection. Disruptions in melatonin signaling may contribute to sleep disturbances and mood disorders, highlighting the potential therapeutic role of melatonin in addiction and psychiatric conditions. Melatonin may influence neurotransmitter systems involved in addiction, such as the dopaminergic, glutamatergic, serotonergic and endogenous opioid systems. Preclinical studies suggest the potential of melatonin in modulating reward processing, attenuating drug‑induced hyperactivity and reducing opioid withdrawal symptoms. Chronotherapeutic approaches targeting circadian rhythms and melatonin signaling show promise in smoking cessation interventions. Melatonin supplementation during periods of heightened nicotine cravings may alleviate withdrawal symptoms and reduce the reinforcing effects of nicotine. Further research is required however, to examine the molecular mechanisms underlying the melatonin‑nicotine association and the optimization of therapeutic interventions. Challenges include variability in individual responses to melatonin, optimal dosing regimens and identifying biomarkers of treatment response. Understanding these complexities could lead to personalized treatment strategies and improve smoking cessation outcomes.
Collapse
Affiliation(s)
| | - Pagona Sklapani
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health Science Center, San Antonio, TX 78229, USA
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
11
|
Iwama T, Komatsu M, Inoue KY, Kubota K, Ito-Sasaki T, Shiku H. Bipolar electrochemical sensor with perylene diimide-based cathodic luminophore for dopamine detection and imaging. Talanta 2024; 278:126509. [PMID: 39003839 DOI: 10.1016/j.talanta.2024.126509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Bipolar electrochemical microscopy (BEM), which visualizes the concentration distribution of molecular species in biological systems by electrochemiluminescence (ECL), is expected to be applied to the high-spatiotemporal-resolution imaging of biomolecules, enabling the analysis of cellular functions. In the past, the molecular species that could be imaged by BEM were generally restricted to oxidized molecules due to the limitation derived from the ECL mechanism of the luminophore. Recently, the imaging of dopamine (DA), a reduced molecule, was achieved using Ru (bpy)32+/glutathione disulfide (GSSG) as a cathodic luminophore. However, a large driving voltage was required for ECL generation, resulting in a low S/N ratio. In this study, we employed N,N'-dimethyl-3,4,9,10-perylenetetracarboxylic diimide (PDI-CH3)/potassium peroxodisulfate (K2S2O8), which is a cathodic luminophore that can be reduced at a nobler potential to produce ECL than [Ru(bpy)3]2+/GSSG. First, the ECL mechanism of PDI-CH3/K2S2O8 was elucidated by using a PDI-CH3 drop-cast glassy carbon electrode (GCE) immersed in K2S2O8 solution as the working electrode in a 3-electrode system. The PDI-CH3 drop-casted GCE, a single closed bipolar electrode (c-BPE), was used as the cathode in the successful quantification of 50-500 μmol L-1 DA in a sample chamber in which a c-BPE anode was immersed, resulting in a high S/N. The selective detection of DA in the presence of ascorbic acid was achieved by modifying the anode with Nafion. Finally, DA imaging was demonstrated using a commercially available anisotropic conducting film with PDI-CH3 coating on the cathode surface as a c-BPE array. The change in the concentration distribution in the inflow of DA was successfully imaged based on the change in the ECL intensity at the c-BPE cathode. This BEM system is expected to be useful for DA imaging of the brain.
Collapse
Affiliation(s)
- Tomoki Iwama
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki Aoba, Aoba, Sendai, Miyagi, 980-8579, Japan
| | - Mayo Komatsu
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki Aoba, Aoba, Sendai, Miyagi, 980-8579, Japan
| | - Kumi Y Inoue
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki Aoba, Aoba, Sendai, Miyagi, 980-8579, Japan; Center for Basic Education, Faculty of Engineering, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, 400-8511, Japan.
| | - Koki Kubota
- Center for Basic Education, Faculty of Engineering, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, 400-8511, Japan
| | - Takahiro Ito-Sasaki
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki Aoba, Aoba, Sendai, Miyagi, 980-8579, Japan; Center for Basic Education, Faculty of Engineering, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, 400-8511, Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki Aoba, Aoba, Sendai, Miyagi, 980-8579, Japan; Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki Aoba, Aoba, Sendai, Miyagi, 980-8579, Japan.
| |
Collapse
|
12
|
Verma A, Kumar A, Chauhan S, Sharma N, Kalani A, Gupta PC. Interconnections of screen time with neuroinflammation. Mol Cell Biochem 2024:10.1007/s11010-024-05123-9. [PMID: 39316324 DOI: 10.1007/s11010-024-05123-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/14/2024] [Indexed: 09/25/2024]
Abstract
The increasing prevalence of screen time among modern citizens has raised concerns regarding its potential impact on neuroinflammation and overall brain health. This review examines the complex interconnections between screen time and neuroinflammatory processes, particularly in children and adolescents. We analyze existing literature that explores how excessive digital media use can lead to alterations in neurobiological pathways, potentially exacerbating inflammatory responses in the brain. Key findings suggest that prolonged exposure to screens may contribute to neuroinflammation through mechanisms such as disrupted sleep patterns, diminished cognitive engagement, and increased stress levels. Similarly, we discuss the implications of these findings for mental health and cognitive development, emphasizing the need for a balanced approach to screen time. This review highlights the necessity for further research to elucidate the causal relationships and underlying mechanisms linking screen time and neuroinflammation, thereby informing guidelines for healthy media consumption.
Collapse
Affiliation(s)
- Ashish Verma
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, 208024, India
| | - Anmol Kumar
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, 208024, India
| | - Satendra Chauhan
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, 208024, India
| | - Nisha Sharma
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, 208024, India
| | - Anuradha Kalani
- Disease Biology Lab, School of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, 208024, India
| | - Prakash Chandra Gupta
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, 208024, India.
| |
Collapse
|
13
|
Kniffin AR, Briand LA. Sex differences in glutamate transmission and plasticity in reward related regions. Front Behav Neurosci 2024; 18:1455478. [PMID: 39359325 PMCID: PMC11445661 DOI: 10.3389/fnbeh.2024.1455478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Disruptions in glutamate homeostasis within the mesolimbic reward circuitry may play a role in the pathophysiology of various reward related disorders such as major depressive disorders, anxiety, and substance use disorders. Clear sex differences have emerged in the rates and symptom severity of these disorders which may result from differing underlying mechanisms of glutamatergic signaling. Indeed, preclinical models have begun to uncover baseline sex differences throughout the brain in glutamate transmission and synaptic plasticity. Glutamatergic synaptic strength can be assessed by looking at morphological features of glutamatergic neurons including spine size, spine density, and dendritic branching. Likewise, electrophysiology studies evaluate properties of glutamatergic neurons to provide information of their functional capacity. In combination with measures of glutamatergic transmission, synaptic plasticity can be evaluated using protocols that induce long-term potentiation or long-term depression. This review will consider preclinical rodent literature directly comparing glutamatergic transmission and plasticity in reward related regions of males and females. Additionally, we will suggest which regions are exhibiting evidence for sexually dimorphic mechanisms, convergent mechanisms, or no sex differences in glutamatergic transmission and plasticity and highlight gaps in the literature for future investigation.
Collapse
Affiliation(s)
- Alyssa R. Kniffin
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, United States
| | - Lisa A. Briand
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, United States
- Neuroscience Program, Temple University, Philadelphia, PA, United States
| |
Collapse
|
14
|
Noruzi M, Behmadi H, Sabzevari O, Foroumadi A, Ghahremani MH, Pourahmad J, Hassani S, Baeeri M, Gholami M, Ghahremanian A, Seyfi S, Taghizadeh G, Sharifzadeh M. Liraglutide alleviated alpha-pyrrolidinovalerophenone (α-PVP) induced cognitive deficits in rats by modifying brain mitochondrial impairment. Eur J Pharmacol 2024; 978:176776. [PMID: 38936451 DOI: 10.1016/j.ejphar.2024.176776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The use of NPS compounds is increasing, and impairment in spatial learning and memory is a growing concern. Alpha-pyrrolidinovalerophenone (α-PVP) consumption, as a commonly used NPS, can impair spatial learning and memory via the brain mitochondrial dysfunction mechanism. Liraglutide isone of the most well-known Glucagon-Like Peptide 1 (GLP-1) agonists that is used as an anti-diabetic and anti-obesity drug. According to current research, Liraglutide likely ameliorates cognitive impairment in neurodegenerative conditions and substance use disorders. Hence, the purpose of this study is examining the effect of Liraglutide on α-PVP-induced spatial learning and memory problems due to brain mitochondrial dysfunction. Wistar rats (8 in each group) received α-PVP (20 mg/kg/d for 10 consecutive days, intraperitoneally (I.P.)). Then, Liraglutide was administered at 47 and 94 μg/kg/d, I.P., for 4 weeks following the α-PVP administration. The Morris Water Maze (MWM) task evaluated spatial learning and memory 24 h after Liraglutide treatment. Bedside, brain mitochondrial activity parameters, including reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), cytochrome c release, mitochondrial outer membrane damage and swelling, and brain ADP/ATP ratio, were studied. Our results showed that Liraglutide ameliorated α-PVP-induced spatial learning and memory impairments through alleviating brain mitochondrial dysfunction (which is indicated by increasing ROS formation, collapsed MMP, mitochondrial outer membrane damage, cytochrome c release, mitochondrial swelling, and increased brain ADP/ATP ratio). This study could be used as a starting point for future studies about the possible role of Liraglutide in ameliorating mitochondrial dysfunction leading to substance use disorder- induced cognitive impairment.
Collapse
Affiliation(s)
- Marzieh Noruzi
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
| | - Homayoon Behmadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Sabzevari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, and Toxicology & Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, and Toxicology & Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhosein Ghahremanian
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Drug and Poision Information Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Seyfi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorban Taghizadeh
- Rehabilitation Research Center, Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Badulescu S, Tabassum A, Le GH, Wong S, Phan L, Gill H, Llach CD, McIntyre RS, Rosenblat J, Mansur R. Glucagon-like peptide 1 agonist and effects on reward behaviour: A systematic review. Physiol Behav 2024; 283:114622. [PMID: 38945189 DOI: 10.1016/j.physbeh.2024.114622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION The roles of metabolic signals, including Glucagon-like peptide 1 (GLP-1), have been implicated in multiple domains outside metabolic regulation. There is a growing interest in repurposing Glucagon-like peptide 1 receptor agonists (GLP-1RAs) as therapeutics for motivation and reward-related behavioural disturbances. Herein, we aim to systematically review the extant evidence on the potential effects of GLP-1RAs on the reward system. METHODS The study followed PRISMA guidelines using databases such as OVID, PubMed, Scopus, and Google Scholar. The search focused on "Reward Behavior" and "Glucagon Like Peptide 1 Receptor Agonists" and was restricted to human studies. Quality assessment achieved by the NIH's Quality Assessment of Controlled Intervention Studies RESULTS: GLP-1RAs consistently reduced energy intake and influenced reward-related behaviour. These agents have been associated with decreased neurocortical activation in response to higher rewards and food cues, particularly high-calorie foods, and lowered caloric intake and hunger levels. DISCUSSION GLP-1RAs show promise in addressing reward dysfunction linked to food stimuli, obesity, and T2DM. They normalize insulin resistance, and might also modulate dopaminergic signalling and reduce anhedonia. Their effects on glycemic variability and cravings suggest potential applications in addiction disorders.
Collapse
Affiliation(s)
- Sebastian Badulescu
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada.
| | - Aniqa Tabassum
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Gia Han Le
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Sabrina Wong
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Lee Phan
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Hartej Gill
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Cristian-Daniel Llach
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Roger S McIntyre
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Joshua Rosenblat
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Rodrigo Mansur
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| |
Collapse
|
16
|
Tavakoli NS, Malone SG, Anderson TL, Neeley RE, Asadipooya A, Bardo MT, Ortinski PI. Astrocyte Ca 2+ in the dorsal striatum suppresses neuronal activity to oppose cue-induced reinstatement of cocaine seeking. Front Cell Neurosci 2024; 18:1347491. [PMID: 39280793 PMCID: PMC11393831 DOI: 10.3389/fncel.2024.1347491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Recent literature supports a prominent role for astrocytes in regulation of drug-seeking behaviors. The dorsal striatum, specifically, is known to play a role in reward processing with neuronal activity that can be influenced by astrocyte Ca2+. However, the manner in which Ca2+ in dorsal striatum astrocytes impacts neuronal signaling after exposure to self-administered cocaine remains unclear. We addressed this question following over-expression of the Ca2+ extrusion pump, hPMCA2w/b, in dorsal striatum astrocytes and the Ca2+ indicator, GCaMP6f, in dorsal striatum neurons of rats that were trained to self-administer cocaine. Following extinction of cocaine-seeking behavior, the rats over-expressing hMPCA2w/b showed a significant increase in cue-induced reinstatement of cocaine seeking. Suppression of astrocyte Ca2+ increased the amplitude of neuronal Ca2+ transients in brain slices, but only after cocaine self-administration. This was accompanied by decreased duration of neuronal Ca2+ events in the cocaine group and no changes in Ca2+ event frequency. Acute administration of cocaine to brain slices decreased amplitude of neuronal Ca2+ in both the control and cocaine self-administration groups regardless of hPMCA2w/b expression. These results indicated that astrocyte Ca2+ control over neuronal Ca2+ transients was enhanced by cocaine self-administration experience, although sensitivity to acutely applied cocaine remained comparable across all groups. To explore this further, we found that neither the hMPCA2w/b expression nor the cocaine self-administration experience altered regulation of neuronal Ca2+ events by NPS-2143, a Ca2+ sensing receptor (CaSR) antagonist, suggesting that plasticity of neuronal signaling after hPMCA2w/b over-expression was unlikely to result from elevated extracellular Ca2+. We conclude that astrocyte Ca2+ in the dorsal striatum impacts neurons via cell-intrinsic mechanisms (e.g., gliotransmission, metabolic coupling, etc.) and impacts long-term neuronal plasticity after cocaine self-administration differently from neuronal response to acute cocaine. Overall, astrocyte Ca2+ influences neuronal output in the dorsal striatum to promote resistance to cue-induced reinstatement of cocaine seeking.
Collapse
Affiliation(s)
- Navid S Tavakoli
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Samantha G Malone
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Tanner L Anderson
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Ryson E Neeley
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Artin Asadipooya
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Pavel I Ortinski
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
17
|
Swatek JL, Peterson BL. Drug Trends in the Teenage Postmortem Population From 2017 to 2021. Am J Forensic Med Pathol 2024:00000433-990000000-00209. [PMID: 39042063 DOI: 10.1097/paf.0000000000000977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
ABSTRACT The teenage population is highly vulnerable to drug exposure, use, and misuse due to the physical and emotional development that occurs at those ages. Social influences, like the isolation experienced during the COVID-19 pandemic and social media, can exacerbate this vulnerability. To better understand the potential impact of these influences on teenage drug use, postmortem results reported by a large reference laboratory from 2017 to 2021 corresponding to the teenage population were evaluated for various drugs of misuse. These data revealed a marked increase (385%) in reported fentanyl cases and a 13% increase in positivity rate. Methamphetamine- and cocaine-positive cases also increased 126% and 54%, with a net percent positivity of +0.6% and -0.5%, respectively. Conversely, heroin showed a consistent decline in reported cases (67%) and a net decrease of 1.0% in positivity rate. In addition to commonly misused drugs, trends for other substances that are prevalent in social media and therefore may disproportionally impact teens, MDMA/MDA, mitragynine, and diphenhydramine, were also assessed. A discussion of drug-related social media trends is presented to provide additional context for the data and trends reported herein, ultimately creating a framework through which social influences on teenage drug use can be better understood.
Collapse
|
18
|
Kiełbik P, Witkowska-Piłaszewicz O. The Relationship between Canine Behavioral Disorders and Gut Microbiome and Future Therapeutic Perspectives. Animals (Basel) 2024; 14:2048. [PMID: 39061510 PMCID: PMC11273744 DOI: 10.3390/ani14142048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Canine behavioral disorders have become one of the most common concerns and challenging issues among dog owners. Thus, there is a great demand for knowledge about various factors affecting dogs' emotions and well-being. Among them, the gut-brain axis seems to be particularly interesting, especially since in many instances the standard treatment or behavioral therapies insufficiently improve animal behavior. Therefore, to face this challenge, the search for novel therapeutic methods is highly required. Existing data show that mammals' gut microbiome, immune system, and nervous system are in continuous communication and influence animal physiology and behavior. This review aimed to summarize and discuss the most important scientific evidence on the relationship between mental disorders and gut microbiota in dogs, simultaneously presenting comparable outcomes in humans and rodent models. A comprehensive overview of crucial mechanisms of the gut-brain axis is included. This refers especially to the neurotransmitters crucial for animal behavior, which are regulated by the gut microbiome, and to the main microbial metabolites-short-chain fatty acids (SCFAs). This review presents summarized data on gut dysbiosis in relation to the inflammation process within the organism, as well as the activation of the hypothalamic-pituitary-adrenal (HPA) axis. All of the above mechanisms are presented in this review in strict correlation with brain and/or behavioral changes in the animal. Additionally, according to human and laboratory animal studies, the gut microbiome appears to be altered in individuals with mental disorders; thus, various strategies to manipulate the gut microbiota are implemented. This refers also to the fecal microbiome transplantation (FMT) method, based on transferring the fecal matter from a donor into the gastrointestinal tract of a recipient in order to modulate the gut microbiota. In this review, the possible effects of the FMT procedure on animal behavioral disorders are discussed.
Collapse
Affiliation(s)
- Paula Kiełbik
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | | |
Collapse
|
19
|
Bonanno M, Papa GA, Ruffoni P, Catalioto E, De Luca R, Maggio MG, Calabrò RS. The Effects of Osteopathic Manipulative Treatment on Brain Activity: A Scoping Review of MRI and EEG Studies. Healthcare (Basel) 2024; 12:1353. [PMID: 38998887 PMCID: PMC11241316 DOI: 10.3390/healthcare12131353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Osteopathic manipulative treatment (OMT) is a hands-on therapy aiming to achieve the global homeostasis of the patient. OMT focuses on treating the somatic dysfunctions characterized by tissue modifications, body asymmetry, and range-of-motion restrictions. The benefits related to OMT are thought to be associated with the interconnectedness of the body's systems and the inherent capacity for self-healing. However, whether OMT can influence brain activity, and, consequently, neurophysiological responses is an open research question. Our research investigates the literature to identify the effects of OMT on brain activity. The main purpose of the research question is: can OMT influence brain activity and consequently neurophysiological responses? A scoping review was conducted, searching the following databases: PubMed, Google Scholar, and OSTEOMED.DR (Osteopathic Medical Digital Repository), Scopus, Web of Science (WoS), and Science Direct. The initial search returned 114 articles, and after removing duplicates, 69 were considered eligible to be included in the final sample. In the end, eight studies (six randomized controlled trials, one pilot study, and one cross-over study) were finally included and analyzed in this review. In conclusion, OMT seems to have a role in influencing functional changes in brain activity in healthy individuals and even more in patients with chronic musculoskeletal pain. However, further RCT studies are needed to confirm these findings. Registration protocol: CRD42024525390.
Collapse
Affiliation(s)
- Mirjam Bonanno
- IRCCS Centro Neurolesi Bonino-Pulejo, Cda Casazza, SS 113, 98124 Messina, Italy
| | | | - Paola Ruffoni
- International College of Osteopathic Medicine, 20092 Milan, Italy
| | | | - Rosaria De Luca
- IRCCS Centro Neurolesi Bonino-Pulejo, Cda Casazza, SS 113, 98124 Messina, Italy
| | - Maria Grazia Maggio
- IRCCS Centro Neurolesi Bonino-Pulejo, Cda Casazza, SS 113, 98124 Messina, Italy
| | | |
Collapse
|
20
|
Mercante F, Micioni Di Bonaventura E, Pucci M, Botticelli L, Cifani C, D'Addario C, Micioni Di Bonaventura MV. Repeated binge-like eating episodes in female rats alter adenosine A 2A and dopamine D2 receptor genes regulation in the brain reward system. Int J Eat Disord 2024; 57:1433-1446. [PMID: 38650547 DOI: 10.1002/eat.24216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE Binge-eating disorder is an eating disorder characterized by recurrent binge-eating episodes, during which individuals consume excessive amounts of highly palatable food (HPF) in a short time. This study investigates the intricate relationship between repeated binge-eating episode and the transcriptional regulation of two key genes, adenosine A2A receptor (A2AAR) and dopamine D2 receptor (D2R), in selected brain regions of rats. METHOD Binge-like eating behavior on HPF was induced through the combination of food restrictions and frustration stress (15 min exposure to HPF without access to it) in female rats, compared to control rats subjected to only restriction or only stress or none of these two conditions. After chronic binge-eating episodes, nucleic acids were extracted from different brain regions, and gene expression levels were assessed through real-time quantitative PCR. The methylation pattern on genes' promoters was investigated using pyrosequencing. RESULTS The analysis revealed A2AAR upregulation in the amygdala and in the ventral tegmental area (VTA), and D2R downregulation in the nucleus accumbens in binge-eating rats. Concurrently, site-specific DNA methylation alterations at gene promoters were identified in the VTA for A2AAR and in the amygdala and caudate putamen for D2R. DISCUSSION The alterations on A2AAR and D2R genes regulation highlight the significance of epigenetic mechanisms in the etiology of binge-eating behavior, and underscore the potential for targeted therapeutic interventions, to prevent the development of this maladaptive feeding behavior. These findings provide valuable insights for future research in the field of eating disorders. PUBLIC SIGNIFICANCE Using an animal model with face, construct, and predictive validity, in which cycles of food restriction and frustration stress evoke binge-eating behavior, we highlight the significance of epigenetic mechanisms on adenosine A2A receptor (A2AAR) and dopamine D2 receptor (D2R) genes regulation. They could represent new potential targets for the pharmacological management of eating disorders characterized by this maladaptive feeding behavior.
Collapse
Affiliation(s)
- Francesca Mercante
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Mariangela Pucci
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Luca Botticelli
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
21
|
Bruno U, Rana D, Ausilio C, Mariano A, Bettucci O, Musall S, Lubrano C, Santoro F. An organic brain-inspired platform with neurotransmitter closed-loop control, actuation and reinforcement learning. MATERIALS HORIZONS 2024; 11:2865-2874. [PMID: 38698769 PMCID: PMC11182378 DOI: 10.1039/d3mh02202a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/25/2024] [Indexed: 05/05/2024]
Abstract
Organic neuromorphic platforms have recently received growing interest for the implementation and integration of artificial and hybrid neuronal networks. Here, achieving closed-loop and learning/training processes as in the human brain is still a major challenge especially exploiting time-dependent biosignalling such as neurotransmitter release. Here, we present an integrated organic platform capable of cooperating with standard silicon technologies, to achieve brain-inspired computing via adaptive synaptic potentiation and depression, in a closed-loop fashion. The microfabricated platform could be interfaced and control a robotic hand which ultimately was able to learn the grasping of differently sized objects, autonomously.
Collapse
Affiliation(s)
- Ugo Bruno
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125, Naples, Italy
- Dipartimento di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125, Naples, Italy
| | - Daniela Rana
- Institute of Biological Information Processing - Bioelectronics, IBI-3, Forschungszentrum Juelich, 52428, Germany
- Neuroelectronic Interfaces, Faculty of Electrical Engineering and IT, RWTH Aachen, 52074, Germany
| | - Chiara Ausilio
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125, Naples, Italy
- Dipartimento di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125, Naples, Italy
| | - Anna Mariano
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125, Naples, Italy
| | - Ottavia Bettucci
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125, Naples, Italy
| | - Simon Musall
- Institute of Biological Information Processing - Bioelectronics, IBI-3, Forschungszentrum Juelich, 52428, Germany
- Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Claudia Lubrano
- Institute of Biological Information Processing - Bioelectronics, IBI-3, Forschungszentrum Juelich, 52428, Germany
- Neuroelectronic Interfaces, Faculty of Electrical Engineering and IT, RWTH Aachen, 52074, Germany
| | - Francesca Santoro
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125, Naples, Italy
- Institute of Biological Information Processing - Bioelectronics, IBI-3, Forschungszentrum Juelich, 52428, Germany
- Neuroelectronic Interfaces, Faculty of Electrical Engineering and IT, RWTH Aachen, 52074, Germany
| |
Collapse
|
22
|
Arellano Perez AD, Kautzmann AS, de Oliveira Alvares L. Social interaction-induced fear memory reduction: exploring the influence of dopamine and oxytocin receptors on memory updating. Transl Psychiatry 2024; 14:242. [PMID: 38844463 PMCID: PMC11156639 DOI: 10.1038/s41398-024-02955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
It has been well established that a consolidated memory can be updated during the plastic state induced by reactivation. This updating process opens the possibility to modify maladaptive memory. In the present study, we evaluated whether fear memory could be updated to less-aversive level by incorporating hedonic information during reactivation. Thus, male rats were fear conditioned and, during retrieval, a female was presented as a social rewarding stimulus. We found that memory reactivation with a female (but not a male) reduces fear expression within-session and in the test, without presenting reinstatement or spontaneous recovery. Interestingly, this intervention impaired extinction. Finally, we demonstrated that this emotional remodeling to eliminate fear expression requires the activation of dopamine and oxytocin receptors during retrieval. Hence, these results shed new lights on the memory updating process and suggests that the exposure to natural rewarding information such as a female during retrieval reduces a previously consolidated fear memory.
Collapse
Affiliation(s)
- Angel David Arellano Perez
- Departamento de Biofísica, Laboratório de Neurobiologia da Memória, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa da Pós-Graduação em Neurociências. Instituto de Ciências Básicas da Saúde (ICBS). Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Aline Sartori Kautzmann
- Departamento de Biofísica, Laboratório de Neurobiologia da Memória, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas de Oliveira Alvares
- Departamento de Biofísica, Laboratório de Neurobiologia da Memória, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Programa da Pós-Graduação em Neurociências. Instituto de Ciências Básicas da Saúde (ICBS). Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
23
|
Shirsath KR, Patil VK, Awathale SN, Goyal SN, Nakhate KT. Pathophysiological and therapeutic implications of neuropeptide S system in neurological disorders. Peptides 2024; 175:171167. [PMID: 38325715 DOI: 10.1016/j.peptides.2024.171167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Neuropeptide S (NPS) is a 20 amino acids-containing neuroactive molecule discovered by the reverse pharmacology method. NPS is detected in specific brain regions like the brainstem, amygdala, and hypothalamus, while its receptor (NPSR) is ubiquitously expressed in the central nervous system (CNS). Besides CNS, NPS and NPSR are also expressed in the peripheral nervous system. NPSR is a G-protein coupled receptor that primarily uses Gq and Gs signaling pathways to mediate the actions of NPS. In animal models of Parkinsonism and Alzheimer's disease, NPS exerts neuroprotective effects. NPS suppresses oxidative stress, anxiety, food intake, and pain, and promotes arousal. NPSR facilitates reward, reinforcement, and addiction-related behaviors. Genetic variation and single nucleotide polymorphism in NPSR are associated with depression, schizophrenia, rheumatoid arthritis, and asthma. NPS interacts with several neurotransmitters including glutamate, noradrenaline, serotonin, corticotropin-releasing factor, and gamma-aminobutyric acid. It also modulates the immune system via augmenting pro-inflammatory cytokines and plays an important role in the pathogenesis of rheumatoid arthritis and asthma. In the present review, we discussed the distribution profile of NPS and NPSR, signaling pathways, and their importance in the pathophysiology of various neurological disorders. We have also proposed the areas where further investigations on the NPS system are warranted.
Collapse
Affiliation(s)
- Kamini R Shirsath
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Vaishnavi K Patil
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sanjay N Awathale
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sameer N Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India.
| |
Collapse
|
24
|
Osuch B, Misztal T, Pałatyńska K, Tomaszewska-Zaremba D. Implications of Kynurenine Pathway Metabolism for the Immune System, Hypothalamic-Pituitary-Adrenal Axis, and Neurotransmission in Alcohol Use Disorder. Int J Mol Sci 2024; 25:4845. [PMID: 38732064 PMCID: PMC11084367 DOI: 10.3390/ijms25094845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/21/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
In recent years, there has been a marked increase in interest in the role of the kynurenine pathway (KP) in mechanisms associated with addictive behavior. Numerous reports implicate KP metabolism in influencing the immune system, hypothalamic-pituitary-adrenal (HPA) axis, and neurotransmission, which underlie the behavioral patterns characteristic of addiction. An in-depth analysis of the results of these new studies highlights interesting patterns of relationships, and approaching alcohol use disorder (AUD) from a broader neuroendocrine-immune system perspective may be crucial to better understanding this complex phenomenon. In this review, we provide an up-to-date summary of information indicating the relationship between AUD and the KP, both in terms of changes in the activity of this pathway and modulation of this pathway as a possible pharmacological approach for the treatment of AUD.
Collapse
Affiliation(s)
- Bartosz Osuch
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (T.M.); (K.P.); (D.T.-Z.)
| | | | | | | |
Collapse
|
25
|
Nguyen LTH, Nguyen NPK, Tran KN, Shin HM, Yang IJ. Intranasal administration of the essential oil from Perillae Folium ameliorates social defeat stress-induced behavioral impairments in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117775. [PMID: 38224793 DOI: 10.1016/j.jep.2024.117775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Perillae Folium, the leaves and twigs of Perilla frutescens (L.) Britton, has been included in many traditional Chinese medicine herbal formulas to treat depression. However, the precise antidepressant mechanism of the essential oil from Perillae Folium (PFEO) has not been fully investigated. AIM OF THE STUDY To assess the effects and potential mechanisms of PFEO on depression using animal models and network pharmacology analysis. MATERIALS AND METHODS PFEO was intranasally administered to a mouse model of social defeat stress (SDS). The antidepressant effects of PFEO on SDS-induced mice were evaluated using behavioral tests. Enzyme-linked immunosorbent assay (ELISA) and western blot were performed to measure the levels of depression-related biomarkers in the hippocampus and serum of the mice. The chemical compounds of PFEO were determined using gas chromatography-mass spectrometry (GC-MS). Network pharmacology and molecular docking analyses were conducted to investigate the potential bioactive components of PFEO and the mechanisms underlying the antidepressant effects. To validate the mechanisms of the bioactive compounds, in vitro models using PC12 and BV2 cells were established and the blood-brain barrier (BBB) permeability was evaluated. RESULTS The intranasal administration of PFEO suppressed SDS-induced depression in mice by increasing the time spent in the social zone and the social interactions in the social interaction test and by decreasing the immobility time in the tail suspension and forced swimming tests. Moreover, the PFEO treatment reduced the SDS-induced anxiety-like behavior, as inferred from the increased activity in the central zone observed in the open field test and in the open arms observed in the elevated plus maze test. PFEO administration recovered the SDS-induced decrease in the levels of 5-HT, NE, gamma-aminobutyric acid (GABA), and p-ERK in the hippocampus of mice. Furthermore, the increased serum corticosterone level was also attenuated by the PFEO treatment. A total of 21 volatile compounds were detected in PFEO using GC-MS, among which elemicin (15.52%), apiol (15.16%), and perillaldehyde (12.79%) were the most abundant ones. The PFEO compounds targeted 32 depression-associated genes, which were mainly related to neural cells and neurotransmission pathways. Molecular docking indicated good binding affinities between the bioactive components of PFEO (apiol, β-caryophyllene, elemicin, and myristicin) and the key targets, including ACHE, IL1B, IL6, MAOB, SLC6A2, SLC6A3, SLC6A4, and tumor necrosis factor. Among the four compounds, β-caryophyllene, elemicin, and myristicin were more effective in reducing neurotoxicity and neuroinflammation. Elemicin showed the highest BBB permeability rate. CONCLUSIONS This study shows the antidepressant activities of PFEO in an SDS-induced mouse model and suggests its potential mechanisms of action: regulation of the corticosterone levels, hippocampal neurotransmitters, and ERK signaling. Apiol, β-caryophyllene, elemicin, and myristicin may be the main contributors to the observed effects induced by PFEO. Further studies are needed to fully elucidate the underlying mechanisms and the main PFEO bioactive components.
Collapse
Affiliation(s)
- Ly Thi Huong Nguyen
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, 38066, Republic of Korea; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Nhi Phuc Khanh Nguyen
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, 38066, Republic of Korea.
| | - Khoa Nguyen Tran
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, 38066, Republic of Korea.
| | - Heung-Mook Shin
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, 38066, Republic of Korea.
| | - In-Jun Yang
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
26
|
Frank LR, Galinsky VL, Krigolson O, Tapert SF, Bickel S, Martinez A. Imaging of brain electric field networks. RESEARCH SQUARE 2024:rs.3.rs-2432269. [PMID: 38659785 PMCID: PMC11042417 DOI: 10.21203/rs.3.rs-2432269/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We present a method for direct imaging of the electric field networks in the human brain from electroencephalography (EEG) data with much higher temporal and spatial resolution than functional MRI (fMRI), without the concomitant distortions. The method is validated using simultaneous EEG/fMRI data in healthy subjects, intracranial EEG data in epilepsy patients, and in a direct comparison with standard EEG analysis in a well-established attention paradigm. The method is then demonstrated on a very large cohort of subjects performing a standard gambling task designed to activate the brain's 'reward circuit'. The technique uses the output from standard EEG systems and thus has potential for immediate benefit to a broad range of important basic scientific and clinical questions concerning brain electrical activity, but also provides an inexpensive and portable alternative to function MRI (fMRI).
Collapse
Affiliation(s)
- Lawrence R. Frank
- Center for Scientific Computation in Imaging, UC San Diego, La Jolla, CA, USA
- 7Center for Functional MRI, UC San Diego, La Jolla, CA, USA
| | - Vitaly L. Galinsky
- Center for Scientific Computation in Imaging, UC San Diego, La Jolla, CA, USA
| | - Olave Krigolson
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | | | - Stephan Bickel
- Nathan Kline Institute, Orangeburg, NY, USA
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | | |
Collapse
|
27
|
Hughes NC, Qian H, Zargari M, Zhao Z, Singh B, Wang Z, Fulton JN, Johnson GW, Li R, Dawant BM, Englot DJ, Constantinidis C, Roberson SW, Bick SK. Reward Circuit Local Field Potential Modulations Precede Risk Taking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588629. [PMID: 38645237 PMCID: PMC11030333 DOI: 10.1101/2024.04.10.588629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Risk taking behavior is a symptom of multiple neuropsychiatric disorders and often lacks effective treatments. Reward circuitry regions including the amygdala, orbitofrontal cortex, insula, and anterior cingulate have been implicated in risk-taking by neuroimaging studies. Electrophysiological activity associated with risk taking in these regions is not well understood in humans. Further characterizing the neural signalling that underlies risk-taking may provide therapeutic insight into disorders associated with risk-taking. Eleven patients with pharmacoresistant epilepsy who underwent stereotactic electroencephalography with electrodes in the amygdala, orbitofrontal cortex, insula, and/or anterior cingulate participated. Patients participated in a gambling task where they wagered on a visible playing card being higher than a hidden card, betting $5 or $20 on this outcome, while local field potentials were recorded from implanted electrodes. We used cluster-based permutation testing to identify reward prediction error signals by comparing oscillatory power following unexpected and expected rewards. We also used cluster-based permutation testing to compare power preceding high and low bets in high-risk (<50% chance of winning) trials and two-way ANOVA with bet and risk level to identify signals associated with risky, risk averse, and optimized decisions. We used linear mixed effects models to evaluate the relationship between reward prediction error and risky decision signals across trials, and a linear regression model for associations between risky decision signal power and Barratt Impulsiveness Scale scores for each patient. Reward prediction error signals were identified in the amygdala (p=0.0066), anterior cingulate (p=0.0092), and orbitofrontal cortex (p=6.0E-4, p=4.0E-4). Risky decisions were predicted by increased oscillatory power in high-gamma frequency range during card presentation in the orbitofrontal cortex (p=0.0022), and by increased power following bet cue presentation across the theta-to-beta range in the orbitofrontal cortex ( p =0.0022), high-gamma in the anterior cingulate ( p =0.0004), and high-gamma in the insula ( p =0.0014). Risk averse decisions were predicted by decreased orbitofrontal cortex gamma power ( p =2.0E-4). Optimized decisions that maximized earnings were preceded by decreases within the theta to beta range in orbitofrontal cortex ( p =2.0E-4), broad frequencies in amygdala ( p =2.0E-4), and theta to low-gamma in insula ( p =4.0E-4). Insula risky decision power was associated with orbitofrontal cortex high-gamma reward prediction error signal ( p =0.0048) and with patient impulsivity ( p =0.00478). Our findings identify and help characterize reward circuitry activity predictive of risk-taking in humans. These findings may serve as potential biomarkers to inform the development of novel treatment strategies such as closed loop neuromodulation for disorders of risk taking.
Collapse
|
28
|
Stefanaki K, Karagiannakis DS, Peppa M, Vryonidou A, Kalantaridou S, Goulis DG, Psaltopoulou T, Paschou SA. Food Cravings and Obesity in Women with Polycystic Ovary Syndrome: Pathophysiological and Therapeutic Considerations. Nutrients 2024; 16:1049. [PMID: 38613082 PMCID: PMC11013286 DOI: 10.3390/nu16071049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Polycystic ovary syndrome (PCOS), the most common endocrine disorder in women of reproductive age, constitutes a metabolic disorder frequently associated with obesity and insulin resistance (IR). Furthermore, women with PCOS often suffer from excessive anxiety and depression, elicited by low self-esteem due to obesity, acne, and hirsutism. These mood disorders are commonly associated with food cravings and binge eating. Hypothalamic signaling regulates appetite and satiety, deteriorating excessive food consumption. However, the hypothalamic function is incapable of compensating for surplus food in women with PCOS, leading to the aggravation of obesity and a vicious circle. Hyperandrogenism, IR, the reduced secretion of cholecystokinin postprandially, and leptin resistance defined by leptin receptors' knockout in the hypothalamus have been implicated in the pathogenesis of hypothalamic dysfunction and appetite dysregulation. Diet modifications, exercise, and psychological and medical interventions have been applied to alleviate food disorders, interrupting the vicious circle. Cognitive-behavioral intervention seems to be the mainstay of treatment, while the role of medical agents, such as GLP-1 analogs and naltrexone/bupropion, has emerged.
Collapse
Affiliation(s)
- Katerina Stefanaki
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.S.); (T.P.); (S.A.P.)
| | - Dimitrios S. Karagiannakis
- Academic Department of Gastroenterology, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Melpomeni Peppa
- Endocrine Unit and Diabetes Center, Second Department of Internal Medicine, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- 3rd Department of Internal Medicine, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Andromachi Vryonidou
- Department of Endocrinology and Diabetes Center, Hellenic Red Cross Hospital, 11526 Athens, Greece;
| | - Sophia Kalantaridou
- 3rd Department of Obstetrics and Gynecology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Dimitrios G. Goulis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Theodora Psaltopoulou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.S.); (T.P.); (S.A.P.)
| | - Stavroula A. Paschou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.S.); (T.P.); (S.A.P.)
| |
Collapse
|
29
|
Reyes S, Peirano P, Gahagan S, Blanco E, Algarín C. Neurocognitive factors predicting BMI changes from adolescence to young adulthood. Obesity (Silver Spring) 2024; 32:768-777. [PMID: 38529547 PMCID: PMC10965240 DOI: 10.1002/oby.23978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 03/27/2024]
Abstract
OBJECTIVE The objective of this study was to assess whether inhibitory task performance in adolescence could be prospectively related to weight gain in young adulthood. We proposed that this association would differ according to the BMI group in adolescence. METHODS A total of 318 adolescents performed the anti-saccade task, and 530 completed the Stroop test. Accuracy and reaction time were assessed for each incentive type (neutral, loss, and reward) in the anti-saccade task and for each trial type (control and incongruent trials) in the Stroop test. Changes in the BMI z score (∆BMI z score) from adolescence to young adulthood were calculated. RESULTS The relationship between the BMI z score and the anti-saccade task accuracy showed an effect on the ∆BMI z score (β = -0.002, p < 0.05). The neutral and loss accuracies were related to ∆BMI z score in the groups with overweight (all β = -0.004, p = 0.05) and obesity (β = -0.006 and β = -0.005, p < 0.01). The interaction between adolescents' BMI z score with control (β = -0.312, p < 0.001) and incongruent (β = -0.384, p < 0.001) trial reaction times showed an effect on the ∆BMI z score. Control (β = 0.730, p = 0.036) and incongruent (β = 0.535, p = 0.033) trial reaction times were related to ∆BMI z score in the group with overweight. CONCLUSIONS Our findings support the hypothesis that cognitive vulnerability could predict the BMI gain from adolescence to young adulthood.
Collapse
Affiliation(s)
- Sussanne Reyes
- Laboratory of Sleep and Functional Neurobiology, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Patricio Peirano
- Laboratory of Sleep and Functional Neurobiology, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Sheila Gahagan
- Academic General Pediatrics, Child Development, and Community Health, University of California, San Diego, San Diego, CA, USA
| | - Estela Blanco
- Centro de Investigación en Sociedad y Salud y Núcleo Milenio de Sociomedicina, Universidad Mayor, Santiago, Chile
| | - Cecilia Algarín
- Laboratory of Sleep and Functional Neurobiology, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| |
Collapse
|
30
|
Kijima R, Watanabe K, Okamoto N, Ikenouchi A, Tesen H, Kakeda S, Yoshimura R. Fronto-striato network function is reduced in major depressive disorder. Front Psychiatry 2024; 15:1336370. [PMID: 38510800 PMCID: PMC10950964 DOI: 10.3389/fpsyt.2024.1336370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/06/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Major depressive disorder (MDD) is a major cause of poor quality of life and disability and is highly prevalent worldwide. Various pathological mechanisms are implicated in MDD, including the reward system. The human brain is equipped with a reward system that is involved in aspects such as motivation, pleasure, and learning. Several studies including a meta-analysis have been reported on the reward system network and MDD. However, to our knowledge, no studies have examined the relationship between the reward system network of drug-naïve, first-episode MDD patients and the detailed symptoms of MDD or age. The fronto-striato network (FSN) is closely related to the reward system network. The present study primarily aimed to elucidate this point. Methods A total of 89 drug-naïve first-episode MDD patients and 82 healthy controls (HCs) patients were enrolled in the study. The correlation between the FSN and age and the interaction between age and illness in the FSN were investigated in 75 patients in the MDD group and 79 patients in the HC group with available information on the FSN and age. In addition, the association between the FSN and the total scores on the 17-item Hamilton Rating Scale for Depression (HAMD-17) and scores in each symptom item was analyzed in 76 MDD subjects with information on the FSN and HAMD-17. The significance of each result was evaluated according to a p-value of <0.05. Results Age was inversely correlated with the FSN (p=2.14e-11) in the HC group but not in the MDD group (p=0.79). FSN varied with the presence of MDD and with age, particularly showing an interaction with MDD and age (p=1.04e-08). Specifically, age and the presence or absence of MDD each affected FSN, but the effect of age on FSN changed in the presence of depression. FSN did not correlate with total HAMD-17 scores or scores in each item. Discussion The reward system may be dysfunctional in patients with MDD. In addition, the effect could be greater in younger patients. Meanwhile, there is no correlation between the function of the reward system and the severity of MDD or the severity of each symptom. Thus, the reward system network may be an important biological marker of MDD, although careful consideration should be given to age and its association with the severity of the disorder. Conclusion The reward system function is decreased in MDD patients, and this decrease may be more pronounced in younger patients, although further research is still needed.
Collapse
Affiliation(s)
- Reoto Kijima
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Keita Watanabe
- Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naomichi Okamoto
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Atsuko Ikenouchi
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Hirofumi Tesen
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Shingo Kakeda
- Department of Radiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| |
Collapse
|
31
|
Boecker H, Daamen M, Maurer A, Bodensohn L, Werkhausen J, Lohaus M, Manunzio C, Manunzio U, Radbruch A, Attenberger U, Dukart J, Upadhyay N. Fractional amplitude of low-frequency fluctuations associated with μ-opioid and dopamine receptor distributions in the central nervous system after high-intensity exercise bouts. FRONTIERS IN NEUROIMAGING 2024; 3:1332384. [PMID: 38455686 PMCID: PMC10917966 DOI: 10.3389/fnimg.2024.1332384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
Introduction Dopaminergic, opiod and endocannabinoid neurotransmission are thought to play an important role in the neurobiology of acute exercise and, in particular, in mediating positive affective responses and reward processes. Recent evidence indicates that changes in fractional amplitude of low-frequency fluctuations (zfALFF) in resting-state functional MRI (rs-fMRI) may reflect changes in specific neurotransmitter systems as tested by means of spatial correlation analyses. Methods Here, we investigated this relationship at different exercise intensities in twenty young healthy trained athletes performing low-intensity (LIIE), high-intensity (HIIE) interval exercises, and a control condition on three separate days. Positive And Negative Affect Schedule (PANAS) scores and rs-fMRI were acquired before and after each of the three experimental conditions. Respective zfALFF changes were analyzed using repeated measures ANOVAs. We examined the spatial correspondence of changes in zfALFF before and after training with the available neurotransmitter maps across all voxels and additionally, hypothesis-driven, for neurotransmitter maps implicated in the neurobiology of exercise (dopaminergic, opiodic and endocannabinoid) in specific brain networks associated with "reward" and "emotion." Results Elevated PANAS Positive Affect was observed after LIIE and HIIE but not after the control condition. HIIE compared to the control condition resulted in differential zfALFF decreases in precuneus, temporo-occipital, midcingulate and frontal regions, thalamus, and cerebellum, whereas differential zfALFF increases were identified in hypothalamus, pituitary, and periaqueductal gray. The spatial alteration patterns in zfALFF during HIIE were positively associated with dopaminergic and μ-opioidergic receptor distributions within the 'reward' network. Discussion These findings provide new insight into the neurobiology of exercise supporting the importance of reward-related neurotransmission at least during high-intensity physical activity.
Collapse
Affiliation(s)
- Henning Boecker
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Marcel Daamen
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Clinical Research, German Center for Neurodegenerative Diseases (DZNE) Bonn, Bonn, Germany
| | - Angelika Maurer
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Luisa Bodensohn
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Judith Werkhausen
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Marvin Lohaus
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Christian Manunzio
- Sportsmedicine, Department of Paediatric Cardiology, University Hospital Bonn, Bonn, Germany
| | - Ursula Manunzio
- Sportsmedicine, Department of Paediatric Cardiology, University Hospital Bonn, Bonn, Germany
| | | | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Neeraj Upadhyay
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
32
|
Bertrand M, Chabardes S, Fontanier V, Procyk E, Bastin J, Piallat B. Contribution of the subthalamic nucleus to motor, cognitive and limbic processes: an electrophysiological and stimulation study in monkeys. Front Neurosci 2024; 18:1257579. [PMID: 38456146 PMCID: PMC10918855 DOI: 10.3389/fnins.2024.1257579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
Deep brain stimulation of the subthalamic nucleus (STN) has become the gold standard surgical treatment for Parkinson's disease and is being investigated for obsessive compulsive disorders. Even if the role of the STN in the behavior is well documented, its organization and especially its division into several functional territories is still debated. A better characterization of these territories and a better knowledge of the impact of stimulation would address this issue. We aimed to find specific electrophysiological markers of motor, cognitive and limbic functions within the STN and to specifically modulate these components. Two healthy non-human primates (Macaca fascicularis) performed a behavioral task allowing the assessment of motor, cognitive and limbic reward-related behavioral components. During the task, four contacts in the STN allowed recordings and stimulations, using low frequency stimulation (LFS) and high frequency stimulation (HFS). Specific electrophysiological functional markers were found in the STN with beta band activity for the motor component of behavior, theta band activity for the cognitive component, and, gamma and theta activity bands for the limbic component. For both monkeys, dorsolateral HFS and LFS of the STN significantly modulated motor performances, whereas only ventromedial HFS modulated cognitive performances. Our results validated the functional overlap of dorsal motor and ventral cognitive subthalamic territories, and, provide information that tends toward a diffuse limbic territory sensitive to the reward within the STN.
Collapse
Affiliation(s)
- Mathilde Bertrand
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute of Neurosciences, Grenoble, France
| | - Stephan Chabardes
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute of Neurosciences, Grenoble, France
- Univ. Grenoble Alpes, Department of Neurosurgery, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institute Neurosciences, Grenoble, France
- Clinatec-CEA Leti, Grenoble, France
| | - Vincent Fontanier
- Univ. Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
- Medinetic Learning, Research Department, Paris, France
| | - Emmanuel Procyk
- Univ. Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Julien Bastin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute of Neurosciences, Grenoble, France
| | - Brigitte Piallat
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute of Neurosciences, Grenoble, France
| |
Collapse
|
33
|
Çakar T, Son-Turan S, Girişken Y, Sayar A, Ertuğrul S, Filiz G, Tuna E. Unlocking the neural mechanisms of consumer loan evaluations: an fNIRS and ML-based consumer neuroscience study. Front Hum Neurosci 2024; 18:1286918. [PMID: 38375365 PMCID: PMC10875049 DOI: 10.3389/fnhum.2024.1286918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction This study conducts a comprehensive exploration of the neurocognitive processes underlying consumer credit decision-making using cutting-edge techniques from neuroscience and machine learning (ML). Employing functional Near-Infrared Spectroscopy (fNIRS), the research examines the hemodynamic responses of participants while evaluating diverse credit offers. Methods The experimental phase of this study investigates the hemodynamic responses collected from 39 healthy participants with respect to different loan offers. This study integrates fNIRS data with advanced ML algorithms, specifically Extreme Gradient Boosting, CatBoost, Extra Tree Classifier, and Light Gradient Boosted Machine, to predict participants' credit decisions based on prefrontal cortex (PFC) activation patterns. Results Findings reveal distinctive PFC regions correlating with credit behaviors, including the dorsolateral prefrontal cortex (dlPFC) associated with strategic decision-making, the orbitofrontal cortex (OFC) linked to emotional valuations, and the ventromedial prefrontal cortex (vmPFC) reflecting brand integration and reward processing. Notably, the right dorsomedial prefrontal cortex (dmPFC) and the right vmPFC contribute to positive credit preferences. Discussion This interdisciplinary approach bridges neuroscience, machine learning and finance, offering unprecedented insights into the neural mechanisms guiding financial choices regarding different loan offers. The study's predictive model holds promise for refining financial services and illuminating human financial behavior within the burgeoning field of neurofinance. The work exemplifies the potential of interdisciplinary research to enhance our understanding of human financial decision-making.
Collapse
Affiliation(s)
- Tuna Çakar
- Department of Computer Engineering, MEF University, Istanbul, Türkiye
| | - Semen Son-Turan
- Department of Business Administration, MEF University, Maslak, Türkiye
| | - Yener Girişken
- Faculty of Economics and Administrative Sciences, Final International University, Istanbul, Türkiye
| | - Alperen Sayar
- Informatics Technologies Master Program, MEF University, Istanbul, Türkiye
| | - Seyit Ertuğrul
- Informatics Technologies Master Program, MEF University, Istanbul, Türkiye
| | - Gözde Filiz
- Computer Science and Engineering Ph.D. Program, MEF University, Istanbul, Türkiye
| | - Esin Tuna
- Department of Psychology, MEF University, Istanbul, Türkiye
| |
Collapse
|
34
|
Pagare PP, Flammia R, Zhang Y. IUPHAR review: Recent progress in the development of Mu opioid receptor modulators to treat opioid use disorders. Pharmacol Res 2024; 199:107023. [PMID: 38081336 DOI: 10.1016/j.phrs.2023.107023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
Opioid Use Disorder (OUD) can be described as intense preoccupation with using or obtaining opioids despite the negative consequences associated with their use. As the number of OUD cases in the U.S. increase, so do the number of opioid-related overdose deaths. In 2022, opioid-related overdose became the No. 1 cause of death for individuals in the U.S. between the ages of 25 and 64 years of age. Because of the introduction of highly potent synthetic opioids (e.g. fentanyl) to the illicit drug market, there is an urgent need for therapeutics that successfully reduce the number of overdoses and can help OUD patients maintain sobriety. Most abused opioids stimulate the mu-opioid receptor (MOR) and activation of this receptor can lead to positive (e.g., euphoria) consequences. However, the negative side effects of MOR stimulation can be fatal (e.g., sedation, respiratory depression). Therefore, the MOR is an attractive target for developing medications to treat OUD. Current FDA drugs include MOR agonists that aid in detoxification and relapse prevention, and MOR antagonists that also serve as maintenance therapies or reverse overdose. These medications are limited by their abuse potential, adverse effects, or pharmacological profiles which leaves ample room for research into designing new chemical entities with optimal physiological effects. These includes, orthosteric ligands that target the primary binding site of the MOR, allosteric ligands that positively, negatively, or "silently" modulate receptor function, and lastly, bitopic ligands target both the orthosteric and allosteric sites simultaneously.
Collapse
Affiliation(s)
- Piyusha P Pagare
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23219, United States
| | - Rachael Flammia
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23219, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23219, United States; Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States; Institute for Drug and Alcohol Studies, 203 East Cary Street, Richmond, VA 23298, United States.
| |
Collapse
|
35
|
Harder EV, Franklin JP, VanRyzin JW, Reissner KJ. Astrocyte-Neuron Interactions in Substance Use Disorders. ADVANCES IN NEUROBIOLOGY 2024; 39:165-191. [PMID: 39190075 DOI: 10.1007/978-3-031-64839-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Engagement of astrocytes within the brain's reward circuitry has been apparent for approximately 30 years, when noncontingent drug administration was observed to lead to cytological markers of reactive astrocytes. Since that time, advanced approaches in rodent behavior and astrocyte monitoring have revealed complex interactions between astrocytes with drug type, animal sex, brain region, and dose and duration of drug administration. A number of studies now collectively reveal that rodent drug self-administration followed by prolonged abstinence results in decreased features of structure and synaptic colocalization of astrocytes. In addition, stimulation of astrocytes in the nucleus accumbens with DREADD receptors or pharmacological compounds opposes drug-seeking behavior. These findings provide a clear path for ongoing investigation into astrocytes as mediators of drug action in the brain and underscore the potential therapeutic utility of astrocytes in the regulation of drug craving and relapse vulnerability.
Collapse
Affiliation(s)
- Eden V Harder
- Department of Psychology & Neuroscience, Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Janay P Franklin
- Department of Psychology & Neuroscience, Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan W VanRyzin
- Department of Psychology & Neuroscience, Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Kathryn J Reissner
- Department of Psychology & Neuroscience, Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
36
|
López-Ojeda W, Hurley RA. Glucagon-Like Peptide 1: An Introduction and Possible Implications for Neuropsychiatry. J Neuropsychiatry Clin Neurosci 2024; 36:A4-86. [PMID: 38616646 DOI: 10.1176/appi.neuropsych.20230226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Affiliation(s)
- Wilfredo López-Ojeda
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC) and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Department of Psychiatry and Behavioral Medicine (López-Ojeda, Hurley) and Department of Radiology (Hurley), Wake Forest University School of Medicine, Winston-Salem, N.C.; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley)
| | - Robin A Hurley
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC) and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Department of Psychiatry and Behavioral Medicine (López-Ojeda, Hurley) and Department of Radiology (Hurley), Wake Forest University School of Medicine, Winston-Salem, N.C.; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley)
| |
Collapse
|
37
|
Koijam AS, Singh KD, Nameirakpam BS, Haobam R, Rajashekar Y. Drug addiction and treatment: An epigenetic perspective. Biomed Pharmacother 2024; 170:115951. [PMID: 38043446 DOI: 10.1016/j.biopha.2023.115951] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Drug addiction is a complex disease affected by numerous genetic and environmental factors. Brain regions in reward pathway, neuronal adaptations, genetic and epigenetic interactions causing transcriptional enhancement or repression of multiple genes induce different addiction phenotypes for varying duration. Addictive drug use causes epigenetic alterations and similarly epigenetic changes induced by environment can promote addiction. Epigenetic mechanisms include DNA methylation and post-translational modifications like methylation, acetylation, phosphorylation, ubiquitylation, sumoylation, dopaminylation and crotonylation of histones, and ADP-ribosylation. Non-coding RNAs also induce epigenetic changes. This review discusses these above areas and stresses the need for exploring epidrugs as a treatment alternative and adjunct, considering the limited success of current addiction treatment strategies. Epigenome editing complexes have lately been effective in eukaryotic systems. Targeted DNA cleavage techniques such as CRISPR-Cas9 system, CRISPR-dCas9 complexes, transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases (ZFNs) have been exploited as targeted DNA recognition or anchoring platforms, fused with epigenetic writer or eraser proteins and delivered by transfection or transduction methods. Efficacy of epidrugs is seen in various neuropsychiatric conditions and initial results in addiction treatment involving model organisms are remarkable. Epidrugs present a promising alternative treatment for addiction.
Collapse
Affiliation(s)
- Arunkumar Singh Koijam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Kabrambam Dasanta Singh
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Bunindro Singh Nameirakpam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal 795003, Manipur, India
| | - Yallappa Rajashekar
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India.
| |
Collapse
|
38
|
Echevarria P, Del-Ponte B, Tovo-Rodrigues L, Matijasevich A, Halal CS, Santos IS. Screen use and sleep duration and quality at 15 years old: Cohort study. Sleep Med X 2023; 5:100073. [PMID: 37305851 PMCID: PMC10251069 DOI: 10.1016/j.sleepx.2023.100073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Objective/background The evidence on the association between screen use and sleep of adolescents is mainly based on studies about time watching television, with a few examining time using computers, videogames, and mobile devices. Our aim was to investigate the association between screen time for entertainment (watching TV, using computer, or playing games on tablets, smartphones, or videogame consoles) and sleep duration and self-reported sleep quality, among adolescents aged 15 years. Methods With data from the 2004 Pelotas Birth Cohort, sleep duration was assessed with questions extracted from the Munich Chronotype Questionnaire and quality was self-reported. Adjusted β coefficients and prevalence ratios (PR) with (95% confidence intervals) were obtained, respectively, by linear and Poisson regressions. Results 1,949 adolescents had information about screen time and sleep quality, and 1,851 about screen time and sleep duration. The median screen time was 4.5hs/24hs. The mean sleep duration was 7.6hs/24hs and the prevalence of bad sleep was 17.3% (15.7-19.0%). There was an inverse relationship between screen time and sleep duration. When compared with those with less than 2hs/24hs of screen time, adolescents with 6-8.8hs/24hs and ≥9hs experienced, respectively, 23.4 and 32.4 min reduction in sleep duration (β = -0.39; -0.62;-0.16 and β = -0.54; -0.77;-0.30). Adolescents with ≥9hs of screen time were 60% more likely to report bad sleep than those with less than 2hs/24hs (PR: 1.60; 1.10-2.32). Conclusions The median time spent using screens was longer than recommended. Screen use for ≥6hs/24hs was associated with a shorter sleep duration, and ≥9hs/24hs with poor sleep quality.
Collapse
Affiliation(s)
- Priscila Echevarria
- Programa de Pós-graduação em Epidemiologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Bianca Del-Ponte
- Programa de Pós-graduação em Epidemiologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Luciana Tovo-Rodrigues
- Programa de Pós-graduação em Epidemiologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Alicia Matijasevich
- Departamento de Medicina Preventiva, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Camila S. Halal
- Faculdade de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Iná S. Santos
- Programa de Pós-graduação em Epidemiologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
39
|
Matiș L, Alexandru BA, Ghitea TC. Catecholamine Variations in Pediatric Gastrointestinal Disorders and Their Neuropsychiatric Expression. Biomedicines 2023; 11:2600. [PMID: 37892974 PMCID: PMC10604142 DOI: 10.3390/biomedicines11102600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The interplay between the central nervous system and the intestinal environment hinges on neural, hormonal, immune, and metabolic reactions. Over decades, significant effort has gone into exploring the link between the digestive system and the brain. The primary objective of this study is to assess catecholamine levels in children with neuropsychiatric disorders. We aim to examine how these levels impact the mental and physical wellbeing of these children, with a specific focus on psychoemotional symptoms and cognitive performance. Our research seeks to identify the significance of modifying neurotransmitter levels in pediatric medical interventions, ultimately striving to reduce mental health risks and enhance children's future development. A total of 135 individuals were chosen to partake, and they engaged in regular monthly consultations according to established study protocols. Clinical evaluations were conducted in a medical environment, encompassing the observation of constipation, diarrhea, and additional gastrointestinal anomalies not confined to constipation or diarrhea. This entailed the assessment of neurotransmitter imbalances, with a specific focus on dopamine, adrenaline, noradrenaline, and the noradrenaline/adrenaline ratio. Gastrointestinal disorders are indicative of imbalances in catecholamines, with lower gastrointestinal problems being correlated with such imbalances. In subjects with psychiatric disorders, a more pronounced dopamine and noradrenaline/adrenaline ratio was observed, while elevated adrenaline levels were associated with psychoanxiety disorders.
Collapse
|
40
|
Dresp-Langley B. From Reward to Anhedonia-Dopamine Function in the Global Mental Health Context. Biomedicines 2023; 11:2469. [PMID: 37760910 PMCID: PMC10525914 DOI: 10.3390/biomedicines11092469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
When "hijacked" by compulsive behaviors that affect the reward and stress centers of the brain, functional changes in the dopamine circuitry occur as the consequence of pathological brain adaptation. As a brain correlate of mental health, dopamine has a central functional role in behavioral regulation from healthy reward-seeking to pathological adaptation to stress in response to adversity. This narrative review offers a spotlight view of the transition from healthy reward function, under the control of dopamine, to the progressive deregulation of this function in interactions with other brain centers and circuits, producing what may be called an anti-reward brain state. How such deregulation is linked to specific health-relevant behaviors is then explained and linked to pandemic-related adversities and the stresses they engendered. The long lockdown periods where people in social isolation had to rely on drink, food, and digital rewards via the internet may be seen as the major triggers of changes in motivation and reward-seeking behavior worldwide. The pathological adaptation of dopamine-mediated reward circuitry in the brain is discussed. It is argued that, when pushed by fate and circumstance into a physiological brain state of anti-reward, human behavior changes and mental health is affected, depending on individual vulnerabilities. A unified conceptual account that places dopamine function at the centre of the current global mental health context is proposed.
Collapse
Affiliation(s)
- Birgitta Dresp-Langley
- Centre National de la Recherche Scientifique, UMR 7357 ICube CNRS, Université de Strasbourg Hôpitaux Universitaires Faculté de Médecine, Pavillon Clovis Vincent, 4 Rue Kirschleger, CEDEX, 67085 Strasbourg, France
| |
Collapse
|
41
|
Xu Y, Zhang Y. Abnormal voxel-mirrored homotopic connectivity in first-episode, drug-naïve patients with obsessive-compulsive disorder. Eur J Neurosci 2023; 58:3531-3539. [PMID: 37592392 DOI: 10.1111/ejn.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
Prior studies suggest that obsessive-compulsive disorder (OCD) can cause both anatomical and functional variations in the brain, but to date, altered functional synchronization between two functional hemispheres remains unclear in OCD patients. Voxel-mirrored homotopic connectivity (VMHC) is defined as the temporal correlation of spontaneous low-frequency blood oxygenation level-dependent signal fluctuations across mirror regions of hemisphere revealing the homotopic connectivity between each voxel in one hemisphere and its mirrored counterpart in the contralateral hemisphere. To investigate the alterations of brain regional function and VMHC in patients with OCD, the current study enrolled 103 OCD patients and 118 healthy controls, undergoing resting-state functional magnetic resonance imaging. Compared to healthy controls (HCs), patients had decreased VMHC in bilateral cerebellum, lingual and fusiform gyrus; bilateral paracentral lobule, pre and postcentral gyrus; and bilateral superior and middle temporal gyrus, putamen and bilateral precuneus without global signal regression. And we found mostly similar results after regressing global signals; apart from the regions mentioned above, decreased in bilateral cuneus and calcarine was also showed. Furthermore, the mean VMHC values of the left cerebellum were negatively correlated with the obsession scores (ρ = -.204, π = .039). The decreased values in right fusiform and putamen were negatively correlated with duration of disease (ρ = -.205, π = .038; ρ = -.196, π = .047). We confirmed a significant VMHC reduction in OCD patients in broad areas. Our findings suggest that the patients tend to disconnect information exchange across hemispheres.
Collapse
Affiliation(s)
- Yinhuan Xu
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhang
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
42
|
Fico BG, Maharaj A, Pena GS, Huang CJ. The Effects of Obesity on the Inflammatory, Cardiovascular, and Neurobiological Responses to Exercise in Older Adults. BIOLOGY 2023; 12:865. [PMID: 37372149 DOI: 10.3390/biology12060865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Obesity with advancing age leads to increased health complications that are involved in various complex physiological processes. For example, inflammation is a critical cardiovascular disease risk factor that plays a role in the stages of atherosclerosis in both aging and obesity. Obesity can also induce profound changes to the neural circuitry that regulates food intake and energy homeostasis with advancing age. Here we discuss how obesity in older adults impacts inflammatory, cardiovascular, and neurobiological functions with an emphasis on how exercise mediates each topic. Although obesity is a reversible disorder through lifestyle changes, it is important to note that early interventions are crucial to prevent pathological changes seen in the aging obese population. Lifestyle modifications such as physical activity (including aerobic and resistance training) should be considered as a main intervention to minimize the synergistic effect of obesity on age-related conditions, such as cerebrovascular disease.
Collapse
Affiliation(s)
- Brandon G Fico
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Arun Maharaj
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Gabriel S Pena
- Department of Kinesiology, University of Maryland, College Park, MD 20742, USA
| | - Chun-Jung Huang
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
43
|
Impaired interhemispheric synchrony in Parkinson's disease patients with apathy. J Affect Disord 2022; 318:283-290. [PMID: 36096372 DOI: 10.1016/j.jad.2022.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Apathy is a common non-motor symptom in Parkinson's disease (PD), yet the neural mechanism remains unknown. It has been reported that the lateralization of dopamine levels is correlated with apathetic symptoms. We aimed to ascertain the role of lateralization in the neuropathogenesis of apathy in PD. METHODS Twenty-six apathetic PD patients (PD-A), twenty-seven nonapathetic PD patients (PD-NA), and twenty-three healthy controls (HCs) were recruited. All subjects underwent T1-weighted and resting state functional MRI scanning during OFF medication state. Voxel-mirrored Homotopic Connectivity (VMHC) and asymmetry voxel-based morphometry (asymmetry VBM) analysis were applied to detect the synchrony of homotopic connections between hemispheres and grey matter asymmetry index. RESULTS Compared with both PD-NA and HCs groups, the PD-A group showed excessively decreased z-VMHC values in the nucleus accumbens (NAcc) and putamen. Additionally, both PD subgroups exhibited decreased z-VMHC values in the cerebellum lobule VIII compared with controls. However, no corresponding alteration in grey matter asymmetry index was found. Further, a negative correlation between the z-VMHC values of the NAcc and the Apathy Scale (AS) was confirmed in the PD-A group. Meanwhile, the same relationship was also confirmed between the putamen and AS. Notably, ROC curve analyses uncovered that the z-VMHC values of the NAcc and putamen could be a potential neuroimaging feature discerning apathetic PD patient, respectively. LIMITATIONS This is a cross-sectional study. CONCLUSION Our findings demonstrated that the asymmetric functional connectivity in the mesocorticolimbic and nigrostriatal systems might induce the pathophysiological mechanisms of apathy in PD.
Collapse
|
44
|
Otsuka T, Le HT, Thein ZL, Ihara H, Sato F, Nakao T, Kohsaka A. Deficiency of the circadian clock gene Rev-erbα induces mood disorder-like behaviours and dysregulation of the serotonergic system in mice. Physiol Behav 2022; 256:113960. [PMID: 36115382 DOI: 10.1016/j.physbeh.2022.113960] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 10/31/2022]
Abstract
Mood disorders such as depression, anxiety, and bipolar disorder are highly associated with disrupted daily rhythms of activity, which are often observed in shift work and sleep disturbance in humans. Recent studies have proposed the REV-ERBα protein as a key circadian nuclear receptor that links behavioural rhythms to mood regulation. However, how the Rev-erbα gene participates in the regulation of mood remains poorly understood. Here, we show that the regulation of the serotonergic (5-HTergic) system, which plays a central role in stress-induced mood behaviours, is markedly disrupted in Rev-erbα-/- mice. Rev-erbα-/- mice exhibit both negative and positive behavioural phenotypes, including anxiety-like and mania-like behaviours, when subjected to a stressful environment. Importantly, Rev-erbα-/- mice show a significant decrease in the expression of a gene that encodes the rate-limiting enzyme of serotonin (5-HT) synthesis in the raphe nuclei (RN). In addition, 5-HT levels in Rev-erbα-/- mice are significantly reduced in the prefrontal cortex, which receives strong inputs from the RN and controls stress-related behaviours. Our findings indicate that Rev-erbα plays an important role in controlling the 5-HTergic system and thus regulates mood and behaviour.
Collapse
Affiliation(s)
- Tsuyoshi Otsuka
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan; The Second Department of Physiology, Wakayama Medical University, Wakayama 641-8509, Japan.
| | - Hue Thi Le
- The Second Department of Physiology, Wakayama Medical University, Wakayama 641-8509, Japan; Department of Biomedical Engineering, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Zaw Lin Thein
- The Second Department of Physiology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Hayato Ihara
- The Department of Radioisotope Laboratory Center, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Fuyuki Sato
- Department of Diagnostic Pathology, Shizuoka Cancer Center, Suntogun, Shizuoka 411-8777, Japan; The Departments of Pathology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Tomomi Nakao
- The Second Department of Physiology, Wakayama Medical University, Wakayama 641-8509, Japan; The First Department of Internal Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Akira Kohsaka
- The Second Department of Physiology, Wakayama Medical University, Wakayama 641-8509, Japan
| |
Collapse
|
45
|
Jannini TB, Sansone A, Rossi R, Di Lorenzo G, Toscano M, Siracusano A, Jannini EA. Pharmacological strategies for sexual recovery in men undergoing antipsychotic treatment. Expert Opin Pharmacother 2022; 23:1065-1080. [PMID: 35470768 DOI: 10.1080/14656566.2022.2071124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION : First- and second-generation antipsychotics are highly accountable for causing a plethora of medical side effects, ranging from metabolic imbalances to sexual dysfunction (SD), that frequently undermine patient-doctor relationships. Nevertheless, to date antipsychotics are one of the best treatment options for dealing with numerous either acute or chronic conditions like agitation, suicidality, depression, dementia, and of course psychosis. For these reasons, clinicians need to handle them wisely to preserve patients' sexual health, avoid poor therapeutic adherence and prevent high rates of therapy drop-out. AREAS COVERED : This article reviews the literature on pharmacologic approaches for management strategies in men who are administered with antipsychotics and developed SD. The etiology of antipsychotic-induced SD is also discussed. EXPERT OPINION : Clinicians must consider sexual life as a major health domain. To do so, a first step would be to measure and monitor sexual function by means of psychometric tools. Secondly, primary prevention should be conducted when choosing antipsychotics, i.e., picking sex-sparing compounds like aripiprazole or brexpiprazole. Thirdly, if sexolytic compounds cannot be dismissed, such as first-generation antipsychotics, risperidone, paliperidone, or amisulpride, then aripiprazole 5-20 mg/day adjunctive therapy has proven to be most effective in normalizing prolactin levels and consequently treating antipsychotic-induced SD.
Collapse
Affiliation(s)
- Tommaso B Jannini
- Chair of Psychiatry, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Sansone
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Rodolfo Rossi
- Chair of Psychiatry, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giorgio Di Lorenzo
- Chair of Psychiatry, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS-Fondazione Santa Lucia, Rome, Italy
| | - Massimiliano Toscano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,Department of Neurology, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Alberto Siracusano
- Chair of Psychiatry, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Emmanuele A Jannini
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|