1
|
Stiles P, Grant M, Kim H, Comin A, Svensson M, Nilsson J, Nöremark M. Mapping the risk of introduction of highly pathogenic avian influenza to Swedish poultry. Prev Vet Med 2024; 230:106260. [PMID: 38976955 DOI: 10.1016/j.prevetmed.2024.106260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Outbreaks of highly pathogenic avian influenza (HPAI) have resulted in severe economic impact for national governments and poultry industries globally and in Sweden in recent years. Veterinary authorities can enforce prevention measures, e.g. mandatory indoor housing of poultry, in HPAI high-risk areas. The aim of this study was to conduct a spatiotemporal mapping of the risk of introduction of highly pathogenic avian influenza virus (HPAIV) to Swedish poultry from wild birds, utilising existing data sources. A raster calculation method was used to assess the spatiotemporal risk of introduction of HPAIV to Swedish poultry. The environmental infectious pressure of HPAIV was first calculated in each 5 km by 5 km cell using four risk factors: density of selected species of wild birds, air temperature, presence of agriculture as land cover and presence of HPAI in wild birds based on data from October 2016-September 2021. The relative importance of each risk factor was weighted based on opinion of experts. The estimated environmental infectious pressure was then multiplied with poultry population density to obtain risk values for risk of introduction of HPAIV to poultry. The results showed a large variation in risk both on national and local level. The counties of Skåne and Östergötland particularly stood out regarding environmental infectious pressure, risk of introduction to poultry and detected outbreaks of HPAI. On the other hand, there were counties, identified as having higher risk of introduction to poultry which never experienced any outbreaks. A possible explanation is the variation in poultry production types present in different areas of Sweden. These results indicate that the national and local variation in risk for HPAIV introduction to poultry in Sweden is high, and this would support more targeted compulsory prevention measures than what has previously been employed in Sweden. With the current and evolving HPAI situation in Europe and on the global level, there is a need for continuous updates to the risk map as the virus evolves and circulates in different wild bird species. The study also identified areas of improvement, in relation to data use and data availability, e.g. improvements to poultry registers, inclusion of citizen reported mortality in wild birds, data from standardised wild bird surveys, wild bird migration data as well as results from ongoing risk-factor studies.
Collapse
Affiliation(s)
- Pascale Stiles
- Department of Epidemiology, Surveillance and Risk Assessment, National Veterinary Agency, SVA, 751 89 Uppsala, Sweden; Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 130/3, 69120 Heidelberg, Germany
| | - Malin Grant
- Department of Epidemiology, Surveillance and Risk Assessment, National Veterinary Agency, SVA, 751 89 Uppsala, Sweden; Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7070, 750 07 Uppsala, Sweden.
| | - Hyeyoung Kim
- Department of Epidemiology, Surveillance and Risk Assessment, National Veterinary Agency, SVA, 751 89 Uppsala, Sweden
| | - Arianna Comin
- Department of Epidemiology, Surveillance and Risk Assessment, National Veterinary Agency, SVA, 751 89 Uppsala, Sweden
| | - Mikael Svensson
- SLU Swedish Species Information Centre, Swedish University of Agricultural Sciences, Box 7070, 750 07 Uppsala, Sweden
| | - Johan Nilsson
- SLU Swedish Species Information Centre, Swedish University of Agricultural Sciences, Box 7070, 750 07 Uppsala, Sweden
| | - Maria Nöremark
- Department of Epidemiology, Surveillance and Risk Assessment, National Veterinary Agency, SVA, 751 89 Uppsala, Sweden
| |
Collapse
|
2
|
Pei Y, Chen Z, Zhao R, An Y, Yisihaer H, Wang C, Bai Y, Liang L, Jin L, Hu Y. A Cyclic Peptide Based on Pheasant Cathelicidin Inhibits Influenza A H1N1 Virus Infection. Antibiotics (Basel) 2024; 13:606. [PMID: 39061288 PMCID: PMC11273436 DOI: 10.3390/antibiotics13070606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Influenza viruses are the leading cause of upper respiratory tract infections, leading to several global pandemics and threats to public health. Due to the continuous mutation of influenza A viruses, there is a constant need for the development of novel antiviral therapeutics. Recently, natural antimicrobial peptides have provided an opportunity for the discovery of anti-influenza molecules. Here, we designed several peptides based on pheasant cathelicidin and tested their antiviral activities and mechanisms against the H1N1 virus. Of note, the designed peptides Pc-4 and Pc-5 were found to inhibit replication of the H1N1 virus with an IC50 = 8.14 ± 3.94 µM and 2.47 ± 1.95 µM, respectively. In addition, the cyclic peptide Pc-5 was found to induce type I interferons and the expression of interferon-induced genes. An animal study showed that the cyclic peptide Pc-5 effectively inhibited H1N1 virus infection in a mouse model. Taken together, our work reveals a strategy for designing cyclic peptides and provides novel molecules with therapeutic potential against influenza A virus infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lin Jin
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; (Y.P.); (Z.C.); (R.Z.); (Y.A.); (H.Y.); (C.W.); (Y.B.); (L.L.)
| | - Yongting Hu
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; (Y.P.); (Z.C.); (R.Z.); (Y.A.); (H.Y.); (C.W.); (Y.B.); (L.L.)
| |
Collapse
|
3
|
Stanislawek WL, Tana T, Rawdon TG, Cork SC, Chen K, Fatoyinbo H, Cogger N, Webby RJ, Webster RG, Joyce M, Tuboltsev MA, Orr D, Ohneiser S, Watts J, Riegen AC, McDougall M, Klee D, O’Keefe JS. Avian influenza viruses in New Zealand wild birds, with an emphasis on subtypes H5 and H7: Their distinctive epidemiology and genomic properties. PLoS One 2024; 19:e0303756. [PMID: 38829903 PMCID: PMC11146706 DOI: 10.1371/journal.pone.0303756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
The rapid spread of highly pathogenic avian influenza (HPAI) A (H5N1) viruses in Southeast Asia in 2004 prompted the New Zealand Ministry for Primary Industries to expand its avian influenza surveillance in wild birds. A total of 18,693 birds were sampled between 2004 and 2020, including migratory shorebirds (in 2004-2009), other coastal species (in 2009-2010), and resident waterfowl (in 2004-2020). No avian influenza viruses (AIVs) were isolated from cloacal or oropharyngeal samples from migratory shorebirds or resident coastal species. Two samples from red knots (Calidris canutus) tested positive by influenza A RT-qPCR, but virus could not be isolated and no further characterization could be undertaken. In contrast, 6179 samples from 15,740 mallards (Anas platyrhynchos) tested positive by influenza A RT-qPCR. Of these, 344 were positive for H5 and 51 for H7. All H5 and H7 viruses detected were of low pathogenicity confirmed by a lack of multiple basic amino acids at the hemagglutinin (HA) cleavage site. Twenty H5 viruses (six different neuraminidase [NA] subtypes) and 10 H7 viruses (two different NA subtypes) were propagated and characterized genetically. From H5- or H7-negative samples that tested positive by influenza A RT-qPCR, 326 AIVs were isolated, representing 41 HA/NA combinations. The most frequently isolated subtypes were H4N6, H3N8, H3N2, and H10N3. Multivariable logistic regression analysis of the relations between the location and year of sampling, and presence of AIV in individual waterfowl showed that the AIV risk at a given location varied from year to year. The H5 and H7 isolates both formed monophyletic HA groups. The H5 viruses were most closely related to North American lineages, whereas the H7 viruses formed a sister cluster relationship with wild bird viruses of the Eurasian and Australian lineages. Bayesian analysis indicates that the H5 and H7 viruses have circulated in resident mallards in New Zealand for some time. Correspondingly, we found limited evidence of influenza viruses in the major migratory bird populations visiting New Zealand. Findings suggest a low probability of introduction of HPAI viruses via long-distance bird migration and a unique epidemiology of AIV in New Zealand.
Collapse
Affiliation(s)
| | - Toni Tana
- Ministry for Primary Industries, Upper Hutt, New Zealand
| | | | - Susan C. Cork
- Department of Ecosystem & Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kylie Chen
- Department of Computational Biology, University of Auckland, Auckland, New Zealand
| | - Hammed Fatoyinbo
- EpiCentre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Naomi Cogger
- EpiCentre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Robert G. Webster
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Maree Joyce
- Ministry for Primary Industries, Upper Hutt, New Zealand
| | | | - Della Orr
- Ministry for Primary Industries, Upper Hutt, New Zealand
| | | | - Jonathan Watts
- Ministry for Primary Industries, Upper Hutt, New Zealand
| | | | | | | | | |
Collapse
|
4
|
de Bruin ACM, Spronken MI, Kok A, Rosu ME, de Meulder D, van Nieuwkoop S, Lexmond P, Funk M, Leijten LM, Bestebroer TM, Herfst S, van Riel D, Fouchier RAM, Richard M. Species-specific emergence of H7 highly pathogenic avian influenza virus is driven by intrahost selection differences between chickens and ducks. PLoS Pathog 2024; 20:e1011942. [PMID: 38408092 PMCID: PMC10919841 DOI: 10.1371/journal.ppat.1011942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/07/2024] [Accepted: 01/03/2024] [Indexed: 02/28/2024] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) cause severe hemorrhagic disease in terrestrial poultry and are a threat to the poultry industry, wild life, and human health. HPAIVs arise from low pathogenic avian influenza viruses (LPAIVs), which circulate in wild aquatic birds. HPAIV emergence is thought to occur in poultry and not wild aquatic birds, but the reason for this species-restriction is not known. We hypothesized that, due to species-specific tropism and replication, intrahost HPAIV selection is favored in poultry and disfavored in wild aquatic birds. We tested this hypothesis by co-inoculating chickens, representative of poultry, and ducks, representative of wild aquatic birds, with a mixture of H7N7 HPAIV and LPAIV, mimicking HPAIV emergence in an experimental setting. Virus selection was monitored in swabs and tissues by RT-qPCR and immunostaining of differential N-terminal epitope tags that were added to the hemagglutinin protein. HPAIV was selected in four of six co-inoculated chickens, whereas LPAIV remained the major population in co-inoculated ducks on the long-term, despite detection of infectious HPAIV in tissues at early time points. Collectively, our data support the hypothesis that HPAIVs are more likely to be selected at the intrahost level in poultry than in wild aquatic birds and point towards species-specific differences in HPAIV and LPAIV tropism and replication levels as possible explanations.
Collapse
Affiliation(s)
- Anja C. M. de Bruin
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Monique I. Spronken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adinda Kok
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Miruna E. Rosu
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Pascal Lexmond
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mathis Funk
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lonneke M. Leijten
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Debby van Riel
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Mirolo M, Pohlmann A, Ahrens AK, Kühl B, Rubio-Garcìa A, Kramer K, Meinfelder U, Rosenberger T, Morito HL, Beer M, Ludlow M, Wohlsein P, Baumgärtner W, Harder T, Osterhaus A. Highly pathogenic avian influenza A virus (HPAIV) H5N1 infection in two European grey seals ( Halichoerus grypus) with encephalitis. Emerg Microbes Infect 2023; 12:e2257810. [PMID: 37682060 PMCID: PMC10768861 DOI: 10.1080/22221751.2023.2257810] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
ABSTRACTRecent reports documenting sporadic infections in carnivorous mammals worldwide with highly pathogenic avian influenza virus (HPAIV) H5N1 clade 2.3.4.4b have raised concerns about the potential risk of adaptation to sustained transmission in mammals, including humans. We report H5N1 clade 2.3.4.4b infection of two grey seals (Halichoerus grypus) from coastal waters of The Netherlands and Germany in December 2022 and February 2023, respectively. Histological and immunohistochemical investigations showed in both animals a non-suppurative and necrotising encephalitis with viral antigen restricted to the neuroparenchyma. Whole genome sequencing showed the presence of HPAIV H5N1 clade 2.3.4.4b strains in brain tissue, which were closely related to sympatric avian influenza viruses. Viral RNA was also detected in the lung of the seal from Germany by real-time quantitative PCR. No other organs tested positive. The mammalian adaptation PB2-E627K mutation was identified in approximately 40% of the virus population present in the brain tissue of the German seal. Retrospective screening for nucleoprotein-specific antibodies, of sera collected from 251 seals sampled in this region from 2020 to 2023, did not show evidence of influenza A virus-specific antibodies. Similarly, screening by reverse transcription PCR of tissues of 101 seals that had died along the Dutch coast in the period 2020-2021, did not show evidence of influenza virus infection. Collectively, these results indicate that individual seals are sporadically infected with HPAIV-H5N1 clade 2.3.4.4b, resulting in an encephalitis in the absence of a systemic infection, and with no evidence thus far of onward spread between seals.
Collapse
Affiliation(s)
- Monica Mirolo
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Anne Pohlmann
- Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany
| | | | - Bianca Kühl
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | | | | | | | | | - Hannah Leah Morito
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Martin Beer
- Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany
| | - Martin Ludlow
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Timm Harder
- Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany
| | - Albert Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Foundation, Hannover, Germany
- Sealcentre Pieterburen, Pieterburen, Netherlands
| |
Collapse
|
6
|
Martelli L, Fornasiero D, Scarton F, Spada A, Scolamacchia F, Manca G, Mulatti P. Study of the Interface between Wild Bird Populations and Poultry and Their Potential Role in the Spread of Avian Influenza. Microorganisms 2023; 11:2601. [PMID: 37894259 PMCID: PMC10609042 DOI: 10.3390/microorganisms11102601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Water birds play a crucial role in disseminating and amplifying avian influenza viruses (AIVs) in the environment. However, they may have limited interactions with domestic facilities, raising the hypothesis that other wild birds may play the bridging role in introducing AIVs into poultry. An ornithocoenosis study, based on census-transect and camera-trapping methods, was conducted in 2019 in ten poultry premises in northeast Italy to characterize the bird communities and envisage the species that might act as bridge hosts for AIVs. The data collected were explored through a series of multivariate analyses (correspondence analysis and non-metric multidimensional scaling), and biodiversity indices (observed and estimated richness, Shannon entropy and Pielou's evenness). The analyses revealed a high level of complexity in the ornithic population, with 147 censused species, and significant qualitative and quantitative differences in wild bird species composition, both in space and in time. Among these, only a few were observed in close proximity to the farm premises (i.e., Magpies, Blackbirds, Cattle Egrets, Pheasants, Eurasian Collared Doves, and Wood Pigeons), thus suggesting their potential role in spilling over AIVs to poultry; contrarily, waterfowls appeared to be scarcely inclined to close visits, especially during autumn and winter seasons. These findings stress the importance of ongoing research on the wild-domestic bird interface, advocating for a wider range of species to be considered in AIVs surveillance and prevention programs.
Collapse
Affiliation(s)
- Luca Martelli
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (L.M.); (F.S.); (G.M.)
| | - Diletta Fornasiero
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (L.M.); (F.S.); (G.M.)
| | | | - Arianna Spada
- SELC Soc. Coop., 30175 Venice, Italy; (F.S.); (A.S.)
| | - Francesca Scolamacchia
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (L.M.); (F.S.); (G.M.)
| | - Grazia Manca
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (L.M.); (F.S.); (G.M.)
| | - Paolo Mulatti
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (L.M.); (F.S.); (G.M.)
| |
Collapse
|
7
|
Oesterle PT, Root JJ, Mora DSO, Schneider H, Franklin AB, Huyvaert KP. LIMITED ACCUMULATION AND PERSISTENCE OF AN INFLUENZA A VIRUS IN TADPOLE SNAILS (PHYSA SPP.). J Wildl Dis 2023; 59:694-701. [PMID: 37768784 DOI: 10.7589/jwd-d-22-00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 06/08/2023] [Indexed: 09/30/2023]
Abstract
Waterfowl infected with avian influenza A viruses (IAVs) shed infectious virus into aquatic environments, providing a mechanism for transmission among waterfowl, while also exposing the entire aquatic ecosystem to the virus. Aquatic invertebrates such as freshwater snails are likely exposed to IAVs in the water column and sediment. Freshwater snails comprise a significant portion of some waterfowl species' diets, so this trophic interaction may serve as a novel route of IAV transmission. In these experiments, tadpole snails (Physa spp.) were exposed to a low-pathogenicity IAV (H3N8) to determine whether snails can accumulate the virus and, if so, how long virus persists in snail tissues. Snail tissues were destructively sampled and tested by reverse-transcription quantitative real-time PCR. Our experiments demonstrated that tadpole snails do accumulate IAV RNA in their tissues, although at low titers, for at least 96 h. These results indicate that it may be possible for IAV transmission to occur between waterfowl via ingestion of a natural invertebrate prey item; however, the time frame for transmission may be limited.
Collapse
Affiliation(s)
- Paul T Oesterle
- US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, 4101 LaPorte Avenue Fort Collins, Colorado 80521, USA
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, 1474 Campus Delivery, Fort Collins, Colorado 80523, USA
- Current address: Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia College of Veterinary Medicine, 589 D. W. Brooks Drive, Athens, Georgia 30602, USA
| | - J Jeffrey Root
- US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, 4101 LaPorte Avenue Fort Collins, Colorado 80521, USA
| | - Darcy S O Mora
- US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, 4101 LaPorte Avenue Fort Collins, Colorado 80521, USA
| | - Heather Schneider
- US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, 4101 LaPorte Avenue Fort Collins, Colorado 80521, USA
| | - Alan B Franklin
- US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, 4101 LaPorte Avenue Fort Collins, Colorado 80521, USA
| | - Kathryn P Huyvaert
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, 1474 Campus Delivery, Fort Collins, Colorado 80523, USA
- Current address: Department of Veterinary Microbiology and Pathology, Washington State University, PO Box 647040, Pullman, Washington 99164, USA
| |
Collapse
|
8
|
Xu Y, Tang L, Gu X, Bo S, Ming L, Ma M, Zhao C, Sun K, Liu Y, He G. Characterization of avian influenza A (H4N2) viruses isolated from wild birds in Shanghai during 2019 to 2021. Poult Sci 2023; 102:102948. [PMID: 37604021 PMCID: PMC10465953 DOI: 10.1016/j.psj.2023.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 08/23/2023] Open
Abstract
The H4 subtype of avian influenza viruses has been widely distributed among wild birds. During the surveillance of the avian influenza virus in Shanghai from 2019 to 2021, a total of 4,451 samples were collected from wild birds, among which 46 H4 subtypes of avian influenza viruses were identified, accounting for 7.40% of the total positive samples. The H4 subtype viruses have a wide range of hosts, including the spot-billed duck, common teal, and other wild birds in Anseriformes. Among all H4 subtypes, the most abundant are the H4N2 viruses. To clarify the genetic characteristics of H4N2 viruses, the whole genome sequences of 20 H4N2 viruses were analyzed. Phylogenetical analysis showed that all 8 genes of these viruses belonged to the Eurasian lineage and closely clustered with low pathogenic avian influenza viruses from countries along the East Asia-Australia migratory route. However, the PB1 gene of 1 H4N2 virus (NH21920) might provide its internal gene for highly pathogenic avian influenza H5N8 viruses in Korea and Japan. At least 10 genotypes were identified in these viruses, indicating that they underwent multiple complex recombination events. Our study has provided a better epidemiological understanding of the H4N2 viruses in wild birds. Considering the mutational potential, comprehensive surveillance of the H4N2 virus in both poultry and wild birds is imperative.
Collapse
Affiliation(s)
- Yuting Xu
- School of Life Science, East China Normal University, Shanghai, China
| | - Ling Tang
- Shanghai Wildlife and Protected Natural Areas Research Center, Shanghai, China
| | - Xiaojun Gu
- Shanghai Landscaping & City Appearance Administrative Bureau, Shanghai, China
| | - Shunqi Bo
- Shanghai Landscaping & City Appearance Administrative Bureau, Shanghai, China
| | - Le Ming
- School of Life Science, East China Normal University, Shanghai, China
| | - Min Ma
- School of Life Science, East China Normal University, Shanghai, China
| | | | - Kaibo Sun
- Shanghai Forestry Station, Shanghai, China
| | - Yuyi Liu
- Shanghai Landscaping & City Appearance Administrative Bureau, Shanghai, China
| | - Guimei He
- School of Life Science, East China Normal University, Shanghai, China; Institute of Eco-Chongming (IEC), East China Normal University, Shanghai, China.
| |
Collapse
|
9
|
Lee SH, Lee J, Noh JY, Jeong JH, Kim JB, Kwon JH, Youk S, Song CS, Lee DH. Age is a determinant factor in the susceptibility of domestic ducks to H5 clade 2.3.2.1c and 2.3.4.4e high pathogenicity avian influenza viruses. Front Vet Sci 2023; 10:1207289. [PMID: 37546334 PMCID: PMC10400362 DOI: 10.3389/fvets.2023.1207289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
High pathogenicity avian influenza (HPAI) is a viral disease with devastating consequences for the poultry industry worldwide. Domestic ducks are a major source of HPAI viruses in many Eurasian countries. The infectivity and pathogenicity of HPAI viruses in ducks vary depending on host and viral factors. To assess the factors influencing the infectivity and pathogenicity of HPAI viruses in ducks, we compared the pathobiology of two HPAI viruses (H5N1 clade 2.3.2.1c and H5N6 clade 2.3.4.4e) in 5- and 25-week-old ducks. Both HPAI viruses caused mortality in a dose-dependent manner (104, 106, and 108 EID50) in young ducks. By contrast, adult ducks were infected but exhibited no mortality due to either virus. Viral excretion was higher in young ducks than in adults, regardless of the HPAI strain. These findings demonstrate the age-dependent mortality of clade 2.3.2.1c and clade 2.3.4.4e H5 HPAI viruses in ducks.
Collapse
Affiliation(s)
- Sun-Hak Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jiho Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jin-Yong Noh
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
- KHAV Co., Ltd., Seoul, Republic of Korea
| | - Jei-Hyun Jeong
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
- KHAV Co., Ltd., Seoul, Republic of Korea
| | - Jun-Beom Kim
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
- KHAV Co., Ltd., Seoul, Republic of Korea
| | - Jung-Hoon Kwon
- Laboratory of Veterinary Microbiology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sungsu Youk
- Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Chang-Seon Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
- KHAV Co., Ltd., Seoul, Republic of Korea
| | - Dong-Hun Lee
- Wildlife Health Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Gass JD, Hill NJ, Damodaran L, Naumova EN, Nutter FB, Runstadler JA. Ecogeographic Drivers of the Spatial Spread of Highly Pathogenic Avian Influenza Outbreaks in Europe and the United States, 2016-Early 2022. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6030. [PMID: 37297634 PMCID: PMC10252585 DOI: 10.3390/ijerph20116030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
H5Nx highly pathogenic avian influenza (HPAI) viruses of clade 2.3.4.4 have caused outbreaks in Europe among wild and domestic birds since 2016 and were introduced to North America via wild migratory birds in December 2021. We examined the spatiotemporal extent of HPAI viruses across continents and characterized ecological and environmental predictors of virus spread between geographic regions by constructing a Bayesian phylodynamic generalized linear model (phylodynamic-GLM). The findings demonstrate localized epidemics of H5Nx throughout Europe in the first several years of the epizootic, followed by a singular branching point where H5N1 viruses were introduced to North America, likely via stopover locations throughout the North Atlantic. Once in the United States (US), H5Nx viruses spread at a greater rate between US-based regions as compared to prior spread in Europe. We established that geographic proximity is a predictor of virus spread between regions, implying that intercontinental transport across the Atlantic Ocean is relatively rare. An increase in mean ambient temperature over time was predictive of reduced H5Nx virus spread, which may reflect the effect of climate change on declines in host species abundance, decreased persistence of the virus in the environment, or changes in migratory patterns due to ecological alterations. Our data provide new knowledge about the spread and directionality of H5Nx virus dispersal in Europe and the US during an actively evolving intercontinental outbreak, including predictors of virus movement between regions, which will contribute to surveillance and mitigation strategies as the outbreak unfolds, and in future instances of uncontained avian spread of HPAI viruses.
Collapse
Affiliation(s)
- Jonathon D. Gass
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nichola J. Hill
- Department of Biology, University of Massachusetts, Boston, Boston, MA 02125, USA
| | | | - Elena N. Naumova
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02155, USA
| | - Felicia B. Nutter
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Jonathan A. Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| |
Collapse
|
11
|
Simancas-Racines A, Cadena-Ullauri S, Guevara-Ramírez P, Zambrano AK, Simancas-Racines D. Avian Influenza: Strategies to Manage an Outbreak. Pathogens 2023; 12:pathogens12040610. [PMID: 37111496 PMCID: PMC10145843 DOI: 10.3390/pathogens12040610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Avian influenza (AI) is a contagious disease among the poultry population with high avian mortality, which generates significant economic losses and elevated costs for disease control and outbreak eradication. AI is caused by an RNA virus part of the Orthomyxoviridae family; however, only Influenzavirus A is capable of infecting birds. AI pathogenicity is based on the lethality, signs, and molecular characteristics of the virus. Low pathogenic avian influenza (LPAI) virus has a low mortality rate and ability to infect, whereas the highly pathogenic avian influenza (HPAI) virus can cross respiratory and intestinal barriers, diffuse to the blood, damage all tissues of the bird, and has a high mortality rate. Nowadays, avian influenza is a global public health concern due to its zoonotic potential. Wild waterfowl is the natural reservoir of AI viruses, and the oral-fecal path is the main transmission route between birds. Similarly, transmission to other species generally occurs after virus circulation in densely populated infected avian species, indicating that AI viruses can adapt to promote the spread. Moreover, HPAI is a notifiable animal disease; therefore, all countries must report infections to the health authorities. Regarding laboratory diagnoses, the presence of influenza virus type A can be identified by agar gel immunodiffusion (AGID), enzyme immunoassay (EIA), immunofluorescence assays, and enzyme-linked immunoadsorption assay (ELISAs). Furthermore, reverse transcription polymerase chain reaction is used for viral RNA detection and is considered the gold standard for the management of suspect and confirmed cases of AI. If there is suspicion of a case, epidemiological surveillance protocols must be initiated until a definitive diagnosis is obtained. Moreover, if there is a confirmed case, containment actions should be prompt and strict precautions must be taken when handling infected poultry cases or infected materials. The containment measures for confirmed cases include the sanitary slaughter of infected poultry using methods such as environment saturation with CO2, carbon dioxide foam, and cervical dislocation. For disposal, burial, and incineration, protocols should be followed. Lastly, disinfection of affected poultry farms must be carried out. The present review aims to provide an overview of the avian influenza virus, strategies for its management, the challenges an outbreak can generate, and recommendations for informed decision making.
Collapse
Affiliation(s)
- Alison Simancas-Racines
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria Universidad Técnica de Cotopaxi, Latacunga 050108, Ecuador
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito 170129, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito 170129, Ecuador
| |
Collapse
|
12
|
de Bruin ACM, Spronken MI, Bestebroer TM, Fouchier RAM, Richard M. Conserved Expression and Functionality of Furin between Chickens and Ducks as an Activating Protease of Highly Pathogenic Avian Influenza Virus Hemagglutinins. Microbiol Spectr 2023; 11:e0460222. [PMID: 36916982 PMCID: PMC10100678 DOI: 10.1128/spectrum.04602-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/23/2023] [Indexed: 03/15/2023] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) typically emerge from low-pathogenic avian influenza viruses (LPAIVs) of the H5 and H7 subtypes upon spillover from wild aquatic birds into poultry. The conversion from LPAIV to HPAIV is characterized by the acquisition of a multibasic cleavage site (MBCS) at the proteolytic cleavage site in the viral binding and fusion protein, hemagglutinin (HA), resulting in cleavage and activation of HA by ubiquitously expressed furin-like proteases. The ensuing HPAIVs disseminate systemically in gallinaceous poultry, are endotheliotropic, and cause hemorrhagic disease with high mortality. HPAIV infections in wild aquatic birds are generally milder, often asymptomatic, and generally not associated with systemic dissemination nor endotheliotropic. As MBCS cleavage by host proteases is the main virulence determinant of HPAIVs in poultry, we set out to determine whether cleavage of HPAIV HA by host proteases might influence the observed species-specific pathogenesis and tropism. Here, we sequenced, cloned, and characterized the expression and functionality of duck furin. The furin sequence was strongly conserved between chickens and ducks, and duck furin cleaved HPAIV and tetrabasic HA in an overexpression system, confirming its functionality. Furin was expressed ubiquitously and to similar extents in duck and chicken tissues, including in primary duck endothelial cells, which sustained multicycle replication of H5N1 HPAIV but not LPAIVs. In conclusion, differences in furin-like protease biology between wild aquatic birds and gallinaceous poultry are unlikely to largely determine the stark differences observed in species-specific pathogenesis of HPAIVs. IMPORTANCE HPAIV outbreaks are a global concern due to the health risks for poultry, wildlife, and humans and their major economic impact. The number of LPAIV-to-HPAIV conversions, which is associated with spillover from wild birds to poultry, has been increasing over recent decades. Furthermore, H5 HPAIVs from the A/goose/Guangdong/1/96 lineage have been circulating in migratory birds, causing increasingly frequent epizootics in poultry and wild birds. Milder symptoms in migratory birds allow for dispersion of HPAIVs over long distances, justifying the importance of understanding the pathogenesis of HPAIVs in wild birds. Here, we examined whether host proteases are a likely candidate to explain some differences in the degree of HPAIV systemic dissemination between avian species. This is the first report to show that furin function and expression is comparable between chickens and ducks, which renders the hypothesis unlikely that furin-like protease differences influence the HPAIV species-specific pathogenesis and tropism.
Collapse
Affiliation(s)
- Anja C. M. de Bruin
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Monique I. Spronken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
13
|
Kayed AE, Kutkat O, Kandeil A, Moatasim Y, El Taweel A, El Sayes M, El-Shesheny R, Aboulhoda BE, Abdeltawab NF, Kayali G, Ali MA, Ramadan MA. Comparative pathogenic potential of avian influenza H7N3 viruses isolated from wild birds in Egypt and their sensitivity to commercial antiviral drugs. Arch Virol 2023; 168:82. [PMID: 36757481 PMCID: PMC9909137 DOI: 10.1007/s00705-022-05646-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/03/2022] [Indexed: 02/10/2023]
Abstract
Active surveillance and studying the virological features of avian-origin influenza viruses are essential for early warning and preparedness for the next potential pandemic. During our active surveillance of avian influenza viruses in wild birds in Egypt in the period 2014-2017, multiple reassortant low-pathogenic avian influenza H7N3 viruses were isolated. In this study, we investigated and compared the infectivity, pathogenicity, and transmission of four different constellation forms of Egyptian H7N3 viruses in chickens and mice and assessed the sensitivity of these viruses to different commercial antiviral drugs in vitro. Considerable variation in virus pathogenicity was observed in mice infected with different H7N3 viruses. The mortality rate ranged from 20 to 100% in infected mice. Infected chickens showed only ocular clinical signs at three days postinfection as well as systemic viral infection in different organs. Efficient virus replication and transmission in chickens was observed within each group, indicating that these subtypes can spread easily from wild birds to poultry without prior adaptation. Mutations in the viral proteins associated with antiviral drug resistance were not detected, and all strains were sensitive to the antiviral drugs tested. In conclusion, all of the viruses studied had the ability to infect mice and chickens. H7N3 viruses circulating among wild birds in Egypt could threaten poultry production and public health.
Collapse
Affiliation(s)
- Ahmed E Kayed
- Environmental Research Division, Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Omnia Kutkat
- Environmental Research Division, Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Ahmed Kandeil
- Environmental Research Division, Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Yassmin Moatasim
- Environmental Research Division, Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Ahmed El Taweel
- Environmental Research Division, Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Mohamed El Sayes
- Environmental Research Division, Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Rabeh El-Shesheny
- Environmental Research Division, Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, 12613, Egypt
| | - Nourtan F Abdeltawab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 12613, Egypt
| | | | - Mohamed A Ali
- Environmental Research Division, Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt.
| | - Mohammed A Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 12613, Egypt.
| |
Collapse
|
14
|
Teitelbaum CS, Casazza ML, McDuie F, De La Cruz SEW, Overton CT, Hall LA, Matchett EL, Ackerman JT, Sullivan JD, Ramey AM, Prosser DJ. Waterfowl recently infected with low pathogenic avian influenza exhibit reduced local movement and delayed migration. Ecosphere 2023. [DOI: 10.1002/ecs2.4432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Affiliation(s)
- Claire S. Teitelbaum
- Akima Systems Engineering Herndon Virginia USA
- Contractor to U.S. Geological Survey Eastern Ecological Science Center Laurel Maryland USA
| | - Michael L. Casazza
- U.S. Geological Survey Western Ecological Research Center, Dixon Field Station Dixon California USA
| | - Fiona McDuie
- U.S. Geological Survey Western Ecological Research Center, Dixon Field Station Dixon California USA
- San Jose State University Research Foundation Moss Landing Marine Laboratories Moss Landing California USA
| | - Susan E. W. De La Cruz
- U.S. Geological Survey Western Ecological Research Center San Francisco Bay Estuary Field Station Moffett Field California USA
| | - Cory T. Overton
- U.S. Geological Survey Western Ecological Research Center, Dixon Field Station Dixon California USA
| | - Laurie A. Hall
- U.S. Geological Survey Western Ecological Research Center San Francisco Bay Estuary Field Station Moffett Field California USA
| | - Elliott L. Matchett
- U.S. Geological Survey Western Ecological Research Center, Dixon Field Station Dixon California USA
| | - Joshua T. Ackerman
- U.S. Geological Survey Western Ecological Research Center, Dixon Field Station Dixon California USA
| | - Jeffery D. Sullivan
- U.S. Geological Survey Eastern Ecological Science Center Laurel Maryland USA
| | - Andrew M. Ramey
- U.S. Geological Survey Alaska Science Center Anchorage Alaska USA
| | - Diann J. Prosser
- U.S. Geological Survey Eastern Ecological Science Center Laurel Maryland USA
| |
Collapse
|
15
|
Ren W, Pei S, Jiang W, Zhao M, Jiang L, Liu H, Yi Y, Hui M, Li J. A replication-deficient H9N2 influenza virus carrying H5 hemagglutinin conferred protection against H9N2 and H5N1 influenza viruses in mice. Front Microbiol 2022; 13:1042916. [PMID: 36458187 PMCID: PMC9705590 DOI: 10.3389/fmicb.2022.1042916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/26/2022] [Indexed: 05/07/2024] Open
Abstract
H5N1 and H9N2 influenza viruses have been reported to cause human infections and are believed to have pandemic potential. The vaccine is an effective tool to prevent influenza virus infection. However, inactivated influenza vaccines sometimes result in low antigenicity as result leads to generating of incomplete immune protection in the form of low cellular and humoral immunity. While the low temperature adapted, traditional live attenuated influenza vaccine (LAIV) is associated with the potential risk to revert to a virulent phenotype, there appears an essential need for an alternative potent methodology to design and develop influenza vaccines with substantial safety and efficacy which may confer solid protection against H9N2 or H5N1 influenza virus infections. In the present study, a replication-deficient recombinant influenza virus, WM01ma-HA(H5), expressing hemagglutinin (HA) of both H9N2 and H5N1 subtypes was developed. The chimeric gene segment expressing HA(H5), was designed using the sequence of an open reading frame (ORF) of HA adopted from A/wild duck/Hunan/021/2005(H5N1)(HN021ma) which was flanked by the NA packaging signals of mouse-adapted strain A/Mink/Shandong/WM01/2014(H9N2)(WM01ma). Due to the absence of ORF of structural protein NA, the replication of this engineered H9N2 influenza viruses WM01ma-HA(H5) was hampered in vitro and in vivo but was well competent in MDCK cells stably expressing the NA protein of WM01ma. Intranasal vaccination of mice with WM01ma-HA(H5) stimulated robust immune response without any clinical signs and conferred complete protection from infection by H5N1 or H9N2 subtype influenza viruses.
Collapse
Affiliation(s)
- Weigang Ren
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Shuli Pei
- Henan Vocational College of Agriculture, Zhongmu, China
| | - Wenming Jiang
- Laboratory of Surveillance for Avian Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Meixia Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Le Jiang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Honggang Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yongxiang Yi
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- The Clinical Infectious Disease Center of Nanjing, Nanjing, China
| | - Mizhou Hui
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Junwei Li
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- The Clinical Infectious Disease Center of Nanjing, Nanjing, China
| |
Collapse
|
16
|
Briand FX, Schmitz A, Scoizec A, Allée C, Busson R, Guillemoto C, Quenault H, Lucas P, Pierre I, Louboutin K, Guillou-Cloarec C, Martenot C, Cherbonnel-Pansart M, Thomas R, Massin P, Souchaud F, Blanchard Y, Steensels M, Lambrecht B, Eterradossi N, Le Bouquin S, Niqueux E, Grasland B. Concomitant NA and NS deletion on avian Influenza H3N1 virus associated with hen mortality in France in 2019. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 104:105356. [PMID: 36038008 DOI: 10.1016/j.meegid.2022.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
An H3N1 avian influenza virus was detected in a laying hens farm in May 2019 which had experienced 25% mortality in Northern France. The complete sequencing of this virus showed that all segment sequences belonged to the Eurasian lineage and were phylogenetically very close to many of the Belgian H3N1 viruses detected in 2019. The French virus presented two genetic particularities with NA and NS deletions that could be related to virus adaptation from wild to domestic birds and could increase virulence, respectively. Molecular data of H3N1 viruses suggest that these two deletions occurred at two different times.
Collapse
|
17
|
Yun S, Hong MJ, Yang MS, Jeon HJ, Lee WS. Assessment of the spatiotemporal risk of avian influenza between waterfowl and poultry farms during the annual cycle: A spatial prediction study focused on seasonal distribution changes in resident waterfowl in South Korea. Transbound Emerg Dis 2022; 69:e3128-e3140. [PMID: 35894239 DOI: 10.1111/tbed.14669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022]
Abstract
Previous studies and efforts to prevent and manage avian influenza (AI) outbreaks have mainly focused on the wintering season. However, outbreaks of AI have been reported in the summer, including the breeding season of waterfowl. Additionally, the spatial distribution of waterfowl can easily change during the annual cycle due to their life-cycle traits and the presence of both migrants and residents in the population. Thus, we assessed the spatiotemporal variation in AI exposure risk in poultry due to spatial distribution changes in three duck species included in both major residents and wintering migrants in South Korea, the mandarin, mallard and spot-billed duck, during wintering (October-March), breeding (April-June) and whole annual seasons. To estimate seasonal ecological niche variations among the three duck species, we applied pairwise ecological niche analysis using the Pianka index. Subsequently, seasonal distribution models were projected by overlaying the monthly ranges estimated by the maximum entropy model. Finally, we overlaid each seasonal distribution range onto a poultry distribution map of South Korea. We found that the mandarin had less niche overlap with the mallard and spot-billed duck during the wintering season than during the breeding season, whereas the mallard had less niche overlap with the mandarin and spot-billed duck during the breeding season than during the wintering season. Breeding and annual distribution ranges of the mandarin and spot-billed duck, but not the mallard, were similar or even wider than their wintering ranges. Similarly, the mandarin and spot-billed duck showed more extensive overlap proportions between poultry and their distributional ranges during both the breeding and annual seasons than during the wintering season. These results suggest that potential AI exposure in poultry can occur more widely in the summer than in winter, depending on sympatry with the host duck species. Future studies considering the population density and variable pathogenicity of AI are required.
Collapse
Affiliation(s)
- Seongho Yun
- Korea Institute of Ornithology, Kyung Hee University, Seoul, Republic of Korea
| | - Mi-Jin Hong
- Korea Institute of Ornithology, Kyung Hee University, Seoul, Republic of Korea.,Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Min-Seung Yang
- Korea Institute of Ornithology, Kyung Hee University, Seoul, Republic of Korea.,Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Hye-Jeong Jeon
- Korea Institute of Ornithology, Kyung Hee University, Seoul, Republic of Korea.,Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Who-Seung Lee
- Environment Assessment Group, Korea Environment Institute, Sejong, Republic of Korea
| |
Collapse
|
18
|
Jax E, Franchini P, Sekar V, Ottenburghs J, Monné Parera D, Kellenberger RT, Magor KE, Müller I, Wikelski M, Kraus RHS. Comparative genomics of the waterfowl innate immune system. Mol Biol Evol 2022; 39:6649919. [PMID: 35880574 PMCID: PMC9356732 DOI: 10.1093/molbev/msac160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animal species differ considerably in their ability to fight off infections. Finding the genetic basis of these differences is not easy, as the immune response is comprised of a complex network of proteins that interact with one another to defend the body against infection. Here, we used population- and comparative genomics to study the evolutionary forces acting on the innate immune system in natural hosts of the avian influenza virus (AIV). For this purpose, we used a combination of hybrid capture, next- generation sequencing and published genomes to examine genetic diversity, divergence, and signatures of selection in 127 innate immune genes at a micro- and macroevolutionary time scale in 26 species of waterfowl. We show across multiple immune pathways (AIV-, toll-like-, and RIG-I -like receptors signalling pathways) that genes involved genes in pathogen detection (i.e., toll-like receptors) and direct pathogen inhibition (i.e., antimicrobial peptides and interferon-stimulated genes), as well as host proteins targeted by viral antagonist proteins (i.e., mitochondrial antiviral-signaling protein, [MAVS]) are more likely to be polymorphic, genetically divergent, and under positive selection than other innate immune genes. Our results demonstrate that selective forces vary across innate immune signaling signalling pathways in waterfowl, and we present candidate genes that may contribute to differences in susceptibility and resistance to infectious diseases in wild birds, and that may be manipulated by viruses. Our findings improve our understanding of the interplay between host genetics and pathogens, and offer the opportunity for new insights into pathogenesis and potential drug targets.
Collapse
Affiliation(s)
- Elinor Jax
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, Rome, Italy
| | - Vaishnovi Sekar
- Department of Biology, Lund University, Lund, Sweden.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Jente Ottenburghs
- Wildlife Ecology and Conservation Group, Wageningen University, Wageningen, The Netherlands.,Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | | | - Roman T Kellenberger
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Katharine E Magor
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
| | - Inge Müller
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Robert H S Kraus
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
19
|
de Bruin ACM, Funk M, Spronken MI, Gultyaev AP, Fouchier RAM, Richard M. Hemagglutinin Subtype Specificity and Mechanisms of Highly Pathogenic Avian Influenza Virus Genesis. Viruses 2022; 14:1566. [PMID: 35891546 PMCID: PMC9321182 DOI: 10.3390/v14071566] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Highly Pathogenic Avian Influenza Viruses (HPAIVs) arise from low pathogenic precursors following spillover from wild waterfowl into poultry populations. The main virulence determinant of HPAIVs is the presence of a multi-basic cleavage site (MBCS) in the hemagglutinin (HA) glycoprotein. The MBCS allows for HA cleavage and, consequently, activation by ubiquitous proteases, which results in systemic dissemination in terrestrial poultry. Since 1959, 51 independent MBCS acquisition events have been documented, virtually all in HA from the H5 and H7 subtypes. In the present article, data from natural LPAIV to HPAIV conversions and experimental in vitro and in vivo studies were reviewed in order to compile recent advances in understanding HA cleavage efficiency, protease usage, and MBCS acquisition mechanisms. Finally, recent hypotheses that might explain the unique predisposition of the H5 and H7 HA sequences to obtain an MBCS in nature are discussed.
Collapse
Affiliation(s)
- Anja C. M. de Bruin
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Mathis Funk
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Monique I. Spronken
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Alexander P. Gultyaev
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
- Group Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science (LIACS), Leiden University, 2300 RA Leiden, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| |
Collapse
|
20
|
Zhang X, Li Y, Jin S, Wang T, Sun W, Zhang Y, Li F, Zhao M, Sun L, Hu X, Feng N, Xie Y, Zhao Y, Yang S, Xia X, Gao Y. H9N2 influenza virus spillover into wild birds from poultry in China bind to human-type receptors and transmit in mammals via respiratory droplets. Transbound Emerg Dis 2022; 69:669-684. [PMID: 33566453 DOI: 10.1111/tbed.14033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/30/2021] [Accepted: 02/07/2021] [Indexed: 12/30/2022]
Abstract
H9N2 influenza virus has been reported worldwide for several decades, and it has evolved into multiple genotypes among domestic poultry. However, the study involving ecology and evolution of low pathogenic avian influenza virus H9N2 in wild birds in China is limited. Here, we carried out surveillance of avian influenza virus H9N2 in wild birds along with the East Asian-Australian migratory flyway in China in 2017. To estimate the prevalence of H9N2 avian virus in wild birds, information on exposure of wild bird populations to H9N2 viruses using serology, in addition to virology, would greatly improve monitoring capabilities. In this study, we also present serological data of H9N2 among wild birds in China during 2013-2016. We report the identification of poultry-derived H9N2 isolates from asymptomatic infected multispecies wild birds such as Common kestrel (Falco tinnunculus), Northern goshawk (Accipiter gentilis), Little owl (Athene noctua) and Ring-necked Pheasant (Phasianus colchicus) in North China in June 2017. Phylogenetic analysis demonstrated that Tianjin H9N2 isolates belong to the G81 and carry internal genes highly homologous to human H10N8 and H7N9. The isolates could directly infect mice without adaptation but were restricted to replicate in the respiratory system. Glycan-binding preference analyses suggested that the H9N2 isolates have acquired a binding affinity for the human-like receptor. Notably, results from transmission experiment in guinea pigs and ferrets demonstrated the wild birds-derived H9N2 influenza virus exhibits efficient transmission phenotypes in mammalian models via respiratory droplets. Our results indicate that the H9N2 AIVs continued to circulate extensively in wild bird populations and migratory birds play an important role in the spread and genetic diversification of H9N2 AIVs. The pandemic potential of H9N2 viruses demonstrated by aerosol transmission in mammalian models via respiratory droplets highlights the importance of monitoring influenza viruses in these hosts.
Collapse
Affiliation(s)
- Xinghai Zhang
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yuanguo Li
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Song Jin
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
| | - Weiyang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
| | - Yiming Zhang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Fangxu Li
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Menglin Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
| | - Leiyun Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
| | - Xinyu Hu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
| | - Ying Xie
- Hebei Key Lab of Laboratory Animal Science, Department of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
| | - Xianzhu Xia
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
21
|
de Bruin ACM, Spronken MI, Bestebroer TM, Fouchier RAM, Richard M. Reduced Replication of Highly Pathogenic Avian Influenza Virus in Duck Endothelial Cells Compared to Chicken Endothelial Cells Is Associated with Stronger Antiviral Responses. Viruses 2022; 14:v14010165. [PMID: 35062369 PMCID: PMC8779112 DOI: 10.3390/v14010165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) cause fatal systemic infections in chickens, which are associated with endotheliotropism. HPAIV infections in wild birds are generally milder and not endotheliotropic. Here, we aimed to elucidate the species-specific endotheliotropism of HPAIVs using primary chicken and duck aortic endothelial cells (chAEC and dAEC respectively). Viral replication kinetics and host responses were assessed in chAEC and dAEC upon inoculation with HPAIV H5N1 and compared to embryonic fibroblasts. Although dAEC were susceptible to HPAIV upon inoculation at high multiplicity of infection, HPAIV replicated to lower levels in dAEC than chAEC during multi-cycle replication. The susceptibility of duck embryonic endothelial cells to HPAIV was confirmed in embryos. Innate immune responses upon HPAIV inoculation differed between chAEC, dAEC, and embryonic fibroblasts. Expression of the pro-inflammatory cytokine IL8 increased in chicken cells but decreased in dAEC. Contrastingly, the induction of antiviral responses was stronger in dAEC than in chAEC, and chicken and duck fibroblasts. Taken together, these data demonstrate that although duck endothelial cells are permissive to HPAIV infection, they display markedly different innate immune responses than chAEC and embryonic fibroblasts. These differences may contribute to the species-dependent differences in endotheliotropism and consequently HPAIV pathogenesis.
Collapse
|
22
|
Lo FT, Zecchin B, Diallo AA, Racky O, Tassoni L, Diop A, Diouf M, Diouf M, Samb YN, Pastori A, Gobbo F, Ellero F, Diop M, Lo MM, Diouf MN, Fall M, Ndiaye AA, Gaye AM, Badiane M, Lo M, Youm BN, Ndao I, Niaga M, Terregino C, Diop B, Ndiaye Y, Angot A, Seck I, Niang M, Soumare B, Fusaro A, Monne I. Intercontinental Spread of Eurasian Highly Pathogenic Avian Influenza A(H5N1) to Senegal. Emerg Infect Dis 2022; 28:234-237. [PMID: 34932444 PMCID: PMC8714199 DOI: 10.3201/eid2801.211401] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In January 2021, Senegal reported the emergence of highly pathogenic avian influenza virus A(H5N1), which was detected on a poultry farm in Thies, Senegal, and in great white pelicans in the Djoudj National Bird Sanctuary. We report evidence of new transcontinental spread of H5N1 from Europe toward Africa.
Collapse
Affiliation(s)
| | | | - Alpha A. Diallo
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - O. Racky
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Luca Tassoni
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Aida Diop
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Moussa Diouf
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Mayékor Diouf
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Yacine N. Samb
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Ambra Pastori
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Federica Gobbo
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Francesca Ellero
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Mariame Diop
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Modou M. Lo
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Mame N. Diouf
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Mathioro Fall
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Amadou A. Ndiaye
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Adji M. Gaye
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Médoune Badiane
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Mbargou Lo
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Babacor N. Youm
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Ibrahima Ndao
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Marius Niaga
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Calogero Terregino
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Boly Diop
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Youssou Ndiaye
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Angelique Angot
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Ismaila Seck
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Mamadou Niang
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Baba Soumare
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Alice Fusaro
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| | - Isabella Monne
- Institut Sénégalais de Recherches Agricoles–Laboratoire National de l’Elevage et de Recherches Vétérinaires, Dakar-Hann, Senegal (F.T. Lo, A.A. Diallo, R.O. Ba, A. Diop, Moussa Diouf, Mayékor Diouf, Y.N. Samb, M. Diop, M.M. Lo, M.N. Diouf)
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy (B. Zecchin, L. Tassoni, A. Pastori, F. Gobbo, F. Ellero, C. Terregino, A. Fusaro, I. Monne)
- Direction des Services Vétérinaires, Rufisque, Senegal (M. Fall, A.A. Ndiaye, A.M. Gaye, M. Badiane, M. Lo)
- Direction des Parcs Nationaux, Dakar, Senegal (B.N. Youm, I. Ndao, M. Niaga)
- Direction de la Prévention, Dakar (B. Diop)
- Food and Agriculture Organization of the United Nations, Dakar (Y. Ndiaye)
- Food and Agriculture Organization of the United Nations, Rome, Italy (A. Angot)
- Food and Agriculture Organization of the United Nations, Accra, Ghana (I. Seck, M. Niang, B. Soumare)
| |
Collapse
|
23
|
Debnath PP, Dinh‐Hung N, Taengphu S, Nguyen VV, Delamare‐Deboutteville J, Senapin S, Vishnumurthy Mohan C, Dong HT, Rodkhum C. Tilapia Lake Virus was not detected in non-tilapine species within tilapia polyculture systems of Bangladesh. JOURNAL OF FISH DISEASES 2022; 45:77-87. [PMID: 34580880 PMCID: PMC9293328 DOI: 10.1111/jfd.13537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Sixteen countries, including Bangladesh, have reported the presence of tilapia lake virus (TiLV), an emerging tilapia pathogen. Fish polyculture is a common farming practice in Bangladesh. Some unusual mortalities reported in species co-cultivated with TiLV-infected tilapia led us to investigate whether any of the co-cultivated species would also test positive for TiLV and whether they were susceptible to TiLV infection under controlled laboratory experiments. Using 183 samples obtained from 15 farms in six districts across Bangladesh, we determined that 20% of the farms tested positive for TiLV in tilapia, while 15 co-cultivated fish species and seven other invertebrates (e.g. insects and crustaceans) considered potential carriers all tested negative. Of the six representative fish species experimentally infected with TiLV, only Nile tilapia showed the typical clinical signs of the disease, with 70% mortality within 12 days. By contrast, four carp species and one catfish species challenged with TiLV showed no signs of TiLV infection. Challenged tilapia were confirmed as TiLV-positive by RT-qPCR, while challenged carp and walking catfish all tested negative. Overall, our field and laboratory findings indicate that species used in polycultures are not susceptible to TiLV. Although current evidence suggests that TiLV is likely host-specific to tilapia, targeted surveillance for TiLV in other fish species in polyculture systems should continue, in order to prepare for a possible future scenario where TiLV mutates and/or adapts to new host(s).
Collapse
Affiliation(s)
- Partho Pratim Debnath
- The International Graduate Course of Veterinary Science and Technology (VST)Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
- Department of Veterinary MicrobiologyCenter of Excellent in Fish Infectious Diseases (CE FID)Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
| | - Nguyen Dinh‐Hung
- Department of Veterinary MicrobiologyCenter of Excellent in Fish Infectious Diseases (CE FID)Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
| | - Suwimon Taengphu
- Fish Health PlatformCenter of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp)Faculty of ScienceMahidol UniversityBangkokThailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Pathum ThaniThailand
| | | | | | - Saengchan Senapin
- Fish Health PlatformCenter of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp)Faculty of ScienceMahidol UniversityBangkokThailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Pathum ThaniThailand
| | | | - Ha Thanh Dong
- Department of Food, Agriculture and BioresourcesAquaculture and Aquatic Resources Management ProgramAsian Institute of Technology (AIT)School of EnvironmentKlong LuangPathumthaniThailand
| | - Channarong Rodkhum
- The International Graduate Course of Veterinary Science and Technology (VST)Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
- Department of Veterinary MicrobiologyCenter of Excellent in Fish Infectious Diseases (CE FID)Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
| |
Collapse
|
24
|
Mellouli FE, Abouchoaib N, Zekhnini H, Khayli M, Fusaro A, Idrissi HR, Benhoussa A. Molecular Detection of Avian Influenza Virus in Wild Birds in Morocco, 2016–2019. Avian Dis 2021; 66:29-38. [DOI: 10.1637/aviandiseases-d-21-00070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/22/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Fatiha El Mellouli
- Biodiversity, Ecology and Genome Laboratory, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, 10106 Rabat, Morocco
| | - Nabil Abouchoaib
- Biodiversity, Ecology and Genome Laboratory, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, 10106 Rabat, Morocco
| | - Hasnae Zekhnini
- Immunology and Biodiversity Laboratory, Faculty of Science Ain chock, Hassan II University of Casablanca, 20100 Casablanca, Morocco
| | - Mounir Khayli
- Epidemiology and Health Surveillance Unit (SEVS), Institut Agronomique et Vétérinaire Hassan II, Rabat-Instituts, 6472 Rabat, Morocco
| | - Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Hamid Rguibi Idrissi
- Biodiversity, Ecology and Genome Laboratory, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, 10106 Rabat, Morocco
| | - Abdelaziz Benhoussa
- Biodiversity, Ecology and Genome Laboratory, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, 10106 Rabat, Morocco
| |
Collapse
|
25
|
Marimwe MC, Fosgate GT, Roberts LC, Tavornpanich S, Olivier AJ, Abolnik C. The spatiotemporal epidemiology of high pathogenicity avian influenza outbreaks in key ostrich producing areas of South Africa. Prev Vet Med 2021; 196:105474. [PMID: 34564052 DOI: 10.1016/j.prevetmed.2021.105474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/31/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
High pathogenicity avian influenza (HPAI) has become a major focus point worldwide due to its zoonotic potential and economic effects resulting from trade restrictions and high mortality rates in poultry. Key ostrich producing provinces of South Africa have experienced three H5N2 HPAI outbreaks (2004, 2006 and 2011) and one H5N8 HPAI (2017) outbreak over the past two decades. The Klein Karoo region in the Western Cape Province, a province with a largely Mediterranean climate, is the predominant ostrich producing region in the country. Understanding the epidemiology of HPAI in ostrich producing areas is an essential first step in developing effective and efficient control measures. This study investigated the spatiotemporal patterns associated with the 2011 (H5N2) and 2017 (H5N8) HPAI outbreaks in the key ostrich producing areas of South Africa. Six hundred and nine and 340 active ostrich farms/holdings were subjected to surveillance during 2011 and 2017 respectively, with over 70 % of these farms located within five local municipalities of the study area. Forty-two and fifty-one farms were affected in the 2011 and 2017 outbreaks respectively. Both HPAI outbreaks occurred predominantly in areas of high ostrich farm density. However, the temporal occurrence, spatial and directional distributions of the outbreaks were different. The 2011 outbreak occurred earlier in the South African autumn months with a predominantly contiguous and stationary distribution, whilst the 2017 outbreak onset was during the winter with a more expansive multidirectional spatial distribution. Results suggest potential dissimilarities in the important risk factors for introduction and possible mode of spread. The 2011 outbreak pattern resembled an outbreak characterised by point introductions with the risk of introduction possibly being linked to high ostrich farm density and common management and husbandry practices in the ostrich industry. In contrast, the 2017 outbreak appeared to have a more propagating mode of transmission. The findings highlight epidemiological features of HPAI outbreak occurrence within ostrich populations that could be used to inform surveillance and control measures including targeted surveillance within high-risk spatial clusters. The study emphasizes the importance of both; implementation of a multi-pronged approach to HPAI control and the need for constant evaluation of the interaction of the host, environment and agent with each outbreak, in order to strengthen disease control.
Collapse
Affiliation(s)
- Miriam C Marimwe
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa; Western Cape Department of Agriculture, Elsenburg, 7607, South Africa.
| | - Geoffrey T Fosgate
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Laura C Roberts
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa; Western Cape Department of Agriculture, Elsenburg, 7607, South Africa
| | - Saraya Tavornpanich
- Department of Epidemiology, Norwegian Veterinary Institute, Oslo, 0160, Norway
| | - Adriaan J Olivier
- South African Ostrich Business Chamber, Oudtshoorn, 6620, South Africa
| | - Celia Abolnik
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa
| |
Collapse
|
26
|
Hubálek Z. Pathogenic microorganisms associated with gulls and terns (Laridae). JOURNAL OF VERTEBRATE BIOLOGY 2021. [DOI: 10.25225/jvb.21009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Zdeněk Hubálek
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic; e-mail:
| |
Collapse
|
27
|
Elbers ARW, Gonzales JL. Efficacy of an automated laser for reducing wild bird visits to the free range area of a poultry farm. Sci Rep 2021; 11:12779. [PMID: 34140601 PMCID: PMC8211814 DOI: 10.1038/s41598-021-92267-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/08/2021] [Indexed: 11/28/2022] Open
Abstract
In the Netherlands, free-range layer farms as opposed to indoor layer farms, are at greater risk with regard to the introduction of avian influenza viruses (AIVs). Wild waterfowl are the natural reservoir hosts of AIVs, and play a major role in their transmission to poultry by contaminating free-range layer areas. The laser as a wild bird repellent has been in use since the 1970s, in particular around airfields to reduce bird-strike. The efficacy of laser for reducing wild bird numbers in and around free-range poultry areas has however not been investigated. During the autumn-winter, wild bird visits to the free-range area of a layer farm was surveilled by video-camera for a month without laser, followed by a month with laser. The automated laser (Class-III B qualification) was operated in two separate areas (i) within the poultry free-range area that directly bordered the poultry barn between 5:00 p.m. and 10:00 a.m. when poultry were absent (free-range study area, size 1.5 ha), and (ii) in surrounding grass pastures between 10:00 a.m. and 5:00 p.m. The overall (all bird species combined) efficacy of the laser for reducing the rate of wild birds visiting the free-range study area was 98.2%, and for the Orders Anseriformes and Passeriformes, respectively, was 99.7% and 96.1%. With the laser in operation, the overall exposure time of the free-range area to wild bird visits, but specifically to the Order Anseriformes, was massively reduced. It can be concluded that the Class-III B laser is highly proficient at keeping wild birds, in particular waterfowl, away from the free-range area of layer farms situated along a winter migration flyway.
Collapse
Affiliation(s)
- Armin R W Elbers
- Department of Epidemiology, Bioinformatics and Animal Studies, Wageningen Bioveterinary Research, P.O. Box 65, 8200 AB, Lelystad, The Netherlands.
| | - José L Gonzales
- Department of Epidemiology, Bioinformatics and Animal Studies, Wageningen Bioveterinary Research, P.O. Box 65, 8200 AB, Lelystad, The Netherlands
| |
Collapse
|
28
|
Dolinski AC, Jankowski MD, Fair JM, Owen JC. The association between SAα2,3Gal occurrence frequency and avian influenza viral load in mallards (Anas platyrhynchos) and blue-winged teals (Spatula discors). BMC Vet Res 2020; 16:430. [PMID: 33167978 PMCID: PMC7653716 DOI: 10.1186/s12917-020-02642-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 10/26/2020] [Indexed: 12/05/2022] Open
Abstract
Background Individual heterogeneity in pathogen load can affect disease transmission dynamics; therefore, identifying intrinsic factors responsible for variation in pathogen load is necessary for determining which individuals are prone to be most infectious. Because low pathogenic avian influenza viruses (LPAIV) preferentially bind to alpha-2,3 sialic acid receptors (SAα2,3Gal) in the intestines and bursa of Fabricius in wild ducks (Anas and Spatula spp.), we investigated juvenile mallards (Anas platyrhyncos) and blue-winged teals (Anas discors) orally inoculated with A/northern pintail/California/44221–761/2006 (H5N9) and the virus titer relationship to occurrence frequency of SAα2,3Gal in the intestines and bursa. To test the natural variation of free-ranging duck populations, birds were hatched and raised in captivity from eggs collected from nests of free-ranging birds in North Dakota, USA. Data generated from qPCR were used to quantify virus titers in cloacal swabs, ileum tissue, and bursa of Fabricius tissue, and lectin histochemistry was used to quantify the occurrence frequency of SAα2,3Gal. Linear mixed models were used to analyze infection status, species, and sex-based differences. Multiple linear regression was used to analyze the relationship between virus titer and SAα2,3Gal occurrence frequency. Results In mallards, we found high individual variation in virus titers significantly related to high variation of SAα2,3Gal in the ileum. In contrast to mallards, individual variation in teals was minimal and significant relationships between virus titers and SAα2,3Gal were not determined. Collectively, teals had both higher virus titers and a higher occurrence frequency of SAα2,3Gal compared to mallards, which may indicate a positive association between viral load and SAα2,3Gal. Statistically significant differences were observed between infected and control birds indicating that LPAIV infection may influence the occurrence frequency of SAα2,3Gal, or vice versa, but only in specific tissues. Conclusions The results of this study provide quantitative evidence that SAα2,3Gal abundance is related to LPAIV titers; thus, SAα2,3Gal should be considered a potential intrinsic factor influencing variation in LPAIV load. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-020-02642-7.
Collapse
Affiliation(s)
- Amanda C Dolinski
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA.
| | - Mark D Jankowski
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA.,U.S. Environmental Protection Agency, Seattle, WA, USA
| | - Jeanne M Fair
- Los Alamos National Laboratory, Biosecurity & Public Health, Los Alamos, NM, USA
| | - Jennifer C Owen
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA.,Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
29
|
Jerry C, Stallknecht D, Leyson C, Berghaus R, Jordan B, Pantin-Jackwood M, Hitchener G, França M. Recombinant hemagglutinin glycoproteins provide insight into binding to host cells by H5 influenza viruses in wild and domestic birds. Virology 2020; 550:8-20. [PMID: 32861143 PMCID: PMC7554162 DOI: 10.1016/j.virol.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022]
Abstract
Clade 2.3.4.4, H5 subtype highly pathogenic avian influenza viruses (HPAIVs) have caused devastating effects across wild and domestic bird populations. We investigated differences in the intensity and distribution of the hemagglutinin (HA) glycoprotein binding of a clade 2.3.4.4 H5 HPAIV compared to a H5 low pathogenic avian influenza virus (LPAIV). Recombinant HA from gene sequences from a HPAIV, A/Northern pintail/Washington/40964/2014(H5N2) and a LPAIV, A/mallard/MN/410/2000(H5N2) were generated and, via protein histochemistry, HA binding in respiratory, intestinal and cloacal bursal tissue was quantified as median area of binding (MAB). Poultry species, shorebirds, ducks and terrestrial birds were used. Differences in MAB were observed between the HPAIV and LPAIV H5 HAs. We demonstrate that clade 2.3.4.4 HPAIV H5 HA has a broader host cell binding across a variety of bird species compared to the LPAIV H5 HA. These findings support published results from experimental trials, and outcomes of natural disease outbreaks with these viruses.
Collapse
Affiliation(s)
- Carmen Jerry
- Poultry Diagnostic and Research Center, 953 College, Station Road, Athens, GA, 30605, USA; The Department of Pathology, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - David Stallknecht
- Southeastern Cooperative Wildlife Disease Study, 589 D.W Brooks Drive, Athens, GA, 30602, USA
| | - Christina Leyson
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Dept. of Agriculture, Agricultural Research Service, 934 College Station Road, Athens, GA, 30605, USA
| | - Roy Berghaus
- Food Animal Health and Management Program, Veterinary Medical Center, 2200 College Station Road, Athens, GA, 30602, USA
| | - Brian Jordan
- Poultry Diagnostic and Research Center, 953 College, Station Road, Athens, GA, 30605, USA
| | - Mary Pantin-Jackwood
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Dept. of Agriculture, Agricultural Research Service, 934 College Station Road, Athens, GA, 30605, USA
| | - Gavin Hitchener
- Cornell University Duck Research Laboratory, 192 Old Country Road, Eastport, NY, 11941, USA
| | - Monique França
- Poultry Diagnostic and Research Center, 953 College, Station Road, Athens, GA, 30605, USA.
| |
Collapse
|
30
|
Ramey AM, Reeves AB. Ecology of Influenza A Viruses in Wild Birds and Wetlands of Alaska. Avian Dis 2020; 64:109-122. [PMID: 32550610 DOI: 10.1637/0005-2086-64.2.109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/05/2020] [Indexed: 11/05/2022]
Abstract
Alaska represents a globally important region for the ecology of avian-origin influenza A viruses (IAVs) given the expansive wetlands in this region, which serve as habitat for numerous hosts of IAVs that disperse among four continents during the annual cycle. Extensive sampling of wild birds for IAVs in Alaska since 1991 has greatly extended inference regarding intercontinental viral exchange between North America and East Asia and the importance of Beringian endemic species to IAV ecology within this region. Data on IAVs in aquatic birds inhabiting Alaska have also been useful for helping to establish global patterns of prevalence in wild birds and viral dispersal across the landscape. In this review, we summarize the main findings from investigations of IAVs in wild birds and wetlands of Alaska with the aim of providing readers with an understanding of viral ecology within this region. More specifically, we review viral detections, evidence of IAV exposure, and genetic characterization of isolates derived from wild bird samples collected in Alaska by host taxonomy. Additionally, we provide a short overview of wetland complexes within Alaska that may be important to IAV ecology at the continental scale.
Collapse
Affiliation(s)
- Andrew M Ramey
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK 99508,
| | - Andrew B Reeves
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK 99508
| |
Collapse
|
31
|
A Review of Avian Influenza A Virus Associations in Synanthropic Birds. Viruses 2020; 12:v12111209. [PMID: 33114239 PMCID: PMC7690888 DOI: 10.3390/v12111209] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Avian influenza A viruses (IAV) have received significant attention due to the threat they pose to human, livestock, and wildlife health. In this review, we focus on what is known about IAV dynamics in less common avian species that may play a role in trafficking IAVs to poultry operations. Specifically, we focus on synanthropic bird species. Synanthropic species, otherwise known as peridomestic, are species that are ecologically associated with humans and anthropogenically modified landscapes, such as agricultural and urban areas. Aquatic birds such as waterfowl and shorebirds are the species most commonly associated with avian IAVs, and are generally considered the reservoir or maintenance hosts in the natural ecology of these viruses. Waterfowl and shorebirds are occasionally associated with poultry facilities, but are uncommon or absent in many areas, especially large commercial operations. In these cases, spillover hosts that share resources with both maintenance hosts and target hosts such as poultry may play an important role in introducing wild bird viruses onto farms. Consequently, our focus here is on what is known about IAV dynamics in synanthropic hosts that are commonly found on both farms and in nearby habitats, such as fields, lakes, wetlands, or riparian areas occupied by waterfowl or shorebirds.
Collapse
|
32
|
Lam SS, Tjørnløv RS, Therkildsen OR, Christensen TK, Madsen J, Daugaard-Petersen T, Ortiz JMC, Peng W, Charbonneaux M, Rivas EI, Garbus SE, Lyngs P, Siebert U, Dietz R, Maier-Sam K, Lierz M, Tombre IM, Andersen-Ranberg EU, Sonne C. Seroprevalence of avian influenza in Baltic common eiders (Somateria mollissima) and pink-footed geese (Anser brachyrhynchus). ENVIRONMENT INTERNATIONAL 2020; 142:105873. [PMID: 32585505 DOI: 10.1016/j.envint.2020.105873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Blood plasma was collected during 2016-2018 from healthy incubating eiders (Somateria molissima, n = 183) in three Danish colonies, and healthy migrating pink-footed geese (Anser brachyrhynchus, n = 427) at their spring roost in Central Norway (Svalbard breeding population) and their novel flyway through the Finnish Baltic Sea (Russian breeding population). These species and flyways altogether represent terrestrial, brackish and marine ecosystems spanning from the Western to the Eastern and Northern part of the Baltic Sea. Plasma of these species was analysed for seroprevalence of specific avian influenza A (AI) antibodies to obtain information on circulating AI serotypes and exposure. Overall, antibody prevalence was 55% for the eiders and 47% for the pink-footed geese. Of AI-antibody seropositive birds, 12% (22/183) of the eiders and 3% (12/427) of the pink-footed geese had been exposed to AI of the potentially zoonotic serotypes H5 and/or H7 virus. AI seropositive samples selected at random (n = 33) showed a low frequency of serotypes H1, H6 and H9. Future projects should aim at sampling and isolating AI virus to characterize dominant serotypes and virus strains (PCR). This will increase our understanding of how AI exposure may affect health, breeding and population viability of Baltic common eiders and pink-footed geese as well as the potential spill-over to humans (zoonotic potential).
Collapse
Affiliation(s)
- Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Rune Skjold Tjørnløv
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | | | | | - Jesper Madsen
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Tobias Daugaard-Petersen
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | | | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Maël Charbonneaux
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Esteban Iglesias Rivas
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Svend-Erik Garbus
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Peter Lyngs
- Christiansø Scientific Field Station, Christiansø 97, DK-3760 Gudhjem, Denmark
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, GE-25761 Büsum, Germany.
| | - Rune Dietz
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Kristina Maier-Sam
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus-Liebig-University Giessen, Frankfurter Str. 91-93, GE-35392 Giessen, Germany.
| | - Michael Lierz
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus-Liebig-University Giessen, Frankfurter Str. 91-93, GE-35392 Giessen, Germany.
| | - Ingunn M Tombre
- Department of Arctic Ecology, The Fram Centre, Norwegian Institute for Nature Research (NINA), P.O. Box 6606 Langnes, N-9296 Tromso, Norway.
| | - Emilie U Andersen-Ranberg
- University of Copenhagen, Department of Clinical Veterinary Sciences, Dyrlægevej 16, DK-1870 Frederiksberg C, Denmark.
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
33
|
Root JJ. What Are the Transmission Mechanisms of Influenza A Viruses in Wild Mammals? J Infect Dis 2020; 221:169-171. [PMID: 30838414 DOI: 10.1093/infdis/jiz033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/28/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- J Jeffrey Root
- US Department of Agriculture, National Wildlife Research Center, Fort Collins, Colorado
| |
Collapse
|
34
|
Zhang RH, Li PY, Xu MJ, Wang CL, Li CH, Gao JP, Wang XJ, Xu T, Zhang HL, Zhang RH, Tian SF. Molecular characterization and pathogenesis of H9N2 avian influenza virus isolated from a racing pigeon. Vet Microbiol 2020; 246:108747. [PMID: 32605760 DOI: 10.1016/j.vetmic.2020.108747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 12/14/2022]
Abstract
H9N2 avian influenza viruses (AIVs) can cross species barriers and expand from birds tomammals and humans. It usually leads to economic loss for breeding farms and poses a serious threat to human health.This study investigated the molecular characteristics of H9N2 AIV isolated from a racing pigeon and its pathogenesis in BALB/c mice and pigeons. Phylogenetic analysis indicated that the H9N2 virus belonged to the Ck/BJ/94-like lineage, and acquired multiple specific amino acid substitutions that might contribute to viral transmission from birds to mammals and humans. A pathogenesis study showed that both mice and pigeons infected with H9N2 virus showed clinical signs and mortality. The H9N2 viruses efficiently replicated in mice and pigeons. In our study, high levels of viral shedding were detected in pigeons, but the infection was not transmitted to co-housed pigeons. Histopathological examination revealed the presence of inflammatory responses in the infected mice and pigeons. Immunohistochemical analysis showed the presence of H9N2 virus in multiple organs of the infected mice and pigeons. Moreover, the infected mice and pigeons demonstrated significant cytokine/chemokine production. Our results showed that the H9N2 virus can infect mice and pigeons, and can not be transmitted between pigeons through direct contact.
Collapse
Affiliation(s)
- Rui-Hua Zhang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, PR China
| | - Pei-Yao Li
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, PR China
| | - Ming-Ju Xu
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, PR China
| | - Cun-Lian Wang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, PR China
| | - Chun-Hong Li
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, PR China
| | - Jing-Ping Gao
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, PR China
| | - Xue-Jing Wang
- The Animal Husbandry and Veterinary Institute of Heibei, Baoding, 071001, PR China
| | - Tong Xu
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, PR China.
| | - Hong-Liang Zhang
- Department of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, PR China.
| | - Rui-Hong Zhang
- BaYin Central School, ChaYouZhongQi, Wulanchabu, Inner Mongolia, 013550, PR China
| | - Shu-Fei Tian
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, PR China
| |
Collapse
|
35
|
Germeraad EA, Elbers ARW, de Bruijn ND, Heutink R, van Voorst W, Hakze-van der Honing R, Bergervoet SA, Engelsma MY, van der Poel WHM, Beerens N. Detection of Low Pathogenic Avian Influenza Virus Subtype H10N7 in Poultry and Environmental Water Samples During a Clinical Outbreak in Commercial Free-Range Layers, Netherlands 2017. Front Vet Sci 2020; 7:237. [PMID: 32478107 PMCID: PMC7232570 DOI: 10.3389/fvets.2020.00237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/07/2020] [Indexed: 11/23/2022] Open
Abstract
Wild birds are the natural reservoir of the avian influenza virus (AIV) and may transmit AIV to poultry via direct contact or indirectly through the environment. In the Netherlands, a clinically suspected free-range layer flock was reported to the veterinary authorities by the farmer. Increased mortality, a decreased feed intake, and a drop in egg production were observed. Subsequently, an infection with low pathogenic avian influenza virus was detected. This study describes the diagnostic procedures used for detection and subtyping of the virus. In addition to routine diagnostics, the potential of two different environmental diagnostic methods was investigated for detecting AIV in surface water. AIV was first detected using rRT-PCR and isolated from tracheal and cloacal swabs collected from the hens. The virus was subtyped as H10N7. Antibodies against the virus were detected in 28 of the 31 sera tested. An intravenous pathogenicity index (IVPI) experiment was performed, but no clinical signs (IVPI = 0) were observed. Post-mortem examination and histology confirmed the AIV infection. Multiple water samples were collected longitudinally from the free-range area and waterway near the farm. Both environmental diagnostic methods allowed the detection of the H10N7 virus, demonstrating the potential of these methods in detection of AIV. The described methods could be a useful additional procedure for AIV surveillance in water-rich areas with large concentrations of wild birds or in areas around poultry farms. In addition, these methods could be used as a tool to test if the environment or free-range area is virus-free again, at the end of an AIV epidemic.
Collapse
Affiliation(s)
- Evelien A. Germeraad
- Wageningen Bioveterinary Research, Department of Virology, Lelystad, Netherlands
| | - Armin R. W. Elbers
- Wageningen Bioveterinary Research, Department of Bacteriology and Epidemiology, Lelystad, Netherlands
| | | | - Rene Heutink
- Wageningen Bioveterinary Research, Department of Virology, Lelystad, Netherlands
| | - Wendy van Voorst
- Wageningen Bioveterinary Research, Department of Virology, Lelystad, Netherlands
- Poultry Department, GD-Animal Health, Deventer, Netherlands
| | | | - Saskia A. Bergervoet
- Wageningen Bioveterinary Research, Department of Virology, Lelystad, Netherlands
| | - Marc Y. Engelsma
- Wageningen Bioveterinary Research, Department of Virology, Lelystad, Netherlands
| | | | - Nancy Beerens
- Wageningen Bioveterinary Research, Department of Virology, Lelystad, Netherlands
| |
Collapse
|
36
|
Elbers ARW, Gonzales JL. Quantification of visits of wild fauna to a commercial free-range layer farm in the Netherlands located in an avian influenza hot-spot area assessed by video-camera monitoring. Transbound Emerg Dis 2020; 67:661-677. [PMID: 31587498 PMCID: PMC7079184 DOI: 10.1111/tbed.13382] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 01/19/2023]
Abstract
Free-range poultry farms have a high risk of introduction of avian influenza viruses (AIV), and it is presumed that wild (water) birds are the source of introduction. There is very scarce quantitative data on wild fauna visiting free-range poultry farms. We quantified visits of wild fauna to a free-range area of a layer farm, situated in an AIV hot-spot area, assessed by video-camera monitoring. A total of 5,016 hr (209 days) of video recordings, covering all 12 months of a year, were analysed. A total of 16 families of wild birds and five families of mammals visited the free-range area of the layer farm. Wild birds, except for the dabbling ducks, visited the free-range area almost exclusively in the period between sunrise and the moment the chickens entered the free-range area. Known carriers of AIV visited the outdoor facility regularly: species of gulls almost daily in the period January-August; dabbling ducks only in the night in the period November-May, with a distinct peak in the period December-February. Only a small fraction of visits of wild fauna had overlap with the presence of chickens at the same time in the free-range area. No direct contact between chickens and wild birds was observed. It is hypothesized that AIV transmission to poultry on free-range poultry farms will predominantly take place via indirect contact: taking up AIV by chickens via wild-bird-faeces-contaminated water or soil in the free-range area. The free-range poultry farmer has several possibilities to potentially lower the attractiveness of the free-range area for wild (bird) fauna: daily inspection of the free-range area and removal of carcasses and eggs; prevention of forming of water pools in the free-range facility. Furthermore, there are ways to scare-off wild birds, for example use of laser equipment or trained dogs.
Collapse
Affiliation(s)
- Armin R. W. Elbers
- Department of Bacteriology and EpidemiologyWageningen Bioveterinary ResearchLelystadThe Netherlands
| | - José L. Gonzales
- Department of Bacteriology and EpidemiologyWageningen Bioveterinary ResearchLelystadThe Netherlands
| |
Collapse
|
37
|
Nikolov S, H. Marinova M, Murad B, Tsachev I. A review of wild and synantropic birds recorded as reservoirs of avian influenza viruses in Bulgaria. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2020. [DOI: 10.15547/bjvm.2248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of the present review is to summarise the information about the species diversity of wild and synanthropic birds, which have been recorded as reservoirs of influenza in Bulgaria until 2018. A total of 17 species of wild and synantropic birds were reported. They belong to 16 genera, 11 families and 10 orders of the class Aves. A list of wild and synantropic birds – potential reservoirs of influenza in Bulgaria is also presented.
Collapse
|
38
|
Abstract
Avian influenza (AI) viruses have been routinely isolated from a wide diversity of free-living avian species, representing numerous taxonomic orders. Birds in orders Anseriformes and Charadriiformes are considered the natural reservoirs for all AI viruses; it is from these orders that AI viruses have been most frequently isolated. Since first recognized in the late 1800s, AI viruses have been an important cause of disease in poultry and, occasionally, in non-gallinaceous birds and mammals. While AI viruses tend to be of low pathogenicity (LP) in wild birds, the 2014-2015 incursion of highly pathogenic avian influenza (HPAI) clade 2.3.4.4 H5Nx viruses into North America and the recent circulation of HPAI H5 viruses in European wild birds highlight the need for targeted, thorough, and continuous surveillance programs in the wild bird reservoir. Such programs are crucial to understanding the potential risk for the incursion of AI into human and domestic animal populations. The aim of this chapter is to provide general concepts and guidelines for the planning and implementation of surveillance plans for AI viruses in wild birds.
Collapse
|
39
|
Susceptibility of Chickens to Low Pathogenic Avian Influenza (LPAI) Viruses of Wild Bird- and Poultry-Associated Subtypes. Viruses 2019; 11:v11111010. [PMID: 31683727 PMCID: PMC6893415 DOI: 10.3390/v11111010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 01/01/2023] Open
Abstract
Analysis of low pathogenic avian influenza (LPAI) viruses circulating in the Netherlands in a previous study revealed associations of specific hemagglutinin (HA) and neuraminidase (NA) subtypes with wild bird or poultry hosts. In this study, we identified putative host associations in LPAI virus internal proteins. We show that LPAI viruses isolated from poultry more frequently carried the allele A variant of the nonstructural protein (NS) gene, compared to wild bird viruses. We determined the susceptibility of chickens to wild bird–associated subtypes H3N8 and H4N6 and poultry-associated subtypes H8N4 and H9N2, carrying either NS allele A or B, in an infection experiment. We observed variations in virus shedding and replication patterns, however, these did not correlate with the predicted wild bird- or poultry-associations of the viruses. The experiment demonstrated that LPAI viruses of wild bird-associated subtypes can replicate in chickens after experimental infection, despite their infrequent detection in poultry. Although the NS1 protein is known to play a role in immune modulation, no differences were detected in the limited innate immune response to LPAI virus infection. This study contributes to a better understanding of the infection dynamics of LPAI viruses in chickens.
Collapse
|
40
|
Bergervoet SA, Pritz-Verschuren SBE, Gonzales JL, Bossers A, Poen MJ, Dutta J, Khan Z, Kriti D, van Bakel H, Bouwstra R, Fouchier RAM, Beerens N. Circulation of low pathogenic avian influenza (LPAI) viruses in wild birds and poultry in the Netherlands, 2006-2016. Sci Rep 2019; 9:13681. [PMID: 31548582 PMCID: PMC6757041 DOI: 10.1038/s41598-019-50170-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 08/27/2019] [Indexed: 01/01/2023] Open
Abstract
In this study, we explore the circulation of low pathogenic avian influenza (LPAI) viruses in wild birds and poultry in the Netherlands. Surveillance data collected between 2006 and 2016 was used to evaluate subtype diversity, spatiotemporal distribution and genetic relationships between wild bird and poultry viruses. We observed close species-dependent associations among hemagglutinin and neuraminidase subtypes. Not all subtypes detected in wild birds were found in poultry, suggesting transmission to poultry is selective and likely depends on viral factors that determine host range restriction. Subtypes commonly detected in poultry were in wild birds most frequently detected in mallards and geese. Different temporal patterns in virus prevalence were observed between wild bird species. Virus detections in domestic ducks coincided with the prevalence peak in wild ducks, whereas virus detections in other poultry types were made throughout the year. Genetic analysis of the surface genes demonstrated that most poultry viruses were related to locally circulating wild bird viruses, but no direct spatiotemporal link was observed. Results indicate prolonged undetected virus circulation and frequent reassortment events with local and newly introduced viruses within the wild bird population. Increased knowledge on LPAI virus circulation can be used to improve surveillance strategies.
Collapse
Affiliation(s)
- Saskia A Bergervoet
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands.,Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Jose L Gonzales
- Department of Epidemiology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Alex Bossers
- Department of Infection Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Marjolein J Poen
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Jayeeta Dutta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Zenab Khan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Divya Kriti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Nancy Beerens
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands.
| |
Collapse
|
41
|
The effects of climate change on avian migratory patterns and the dispersal of commercial poultry diseases in Canada - Part II. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933913000147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Gilchrist P. Involvement of free-flying wild birds in the spread of the viruses of avian influenza, Newcastle disease and infectious bursal disease from poultry products to commercial poultry. WORLD POULTRY SCI J 2019. [DOI: 10.1079/wps200451] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- P. Gilchrist
- 139 Warraba Road, The Branch, NSW 2425, Australia
| |
Collapse
|
43
|
|
44
|
Lee MH, Song KY, Hwang HJ, Kim JH, Hwang I. Development of fast and sensitive protocols for the detection of viral pathogens using a small portable convection PCR platform. Mol Biol Rep 2019; 46:5073-5077. [PMID: 31313130 DOI: 10.1007/s11033-019-04961-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/28/2019] [Indexed: 11/26/2022]
Abstract
One of the most crucial steps for preventing viral pandemics is the early detection of the causative virus on site. Various molecular and immunological approaches have been developed for virus detection. In this study, we investigated the utility of the recently introduced convection polymerase chain reaction (cPCR) platform for the rapid and sensitive detection of various animal viruses in the field, including the foot-and-mouth disease virus (FMDV) and avian influenza viruses (AIVs). Primer sets were designed to simultaneously detect two highly conserved regions of the FMDV, including the 5' untranslated region (5'-UTR) and 3D gene, and to specifically amplify the NP and hemagglutinin (HA) genes of H5 and H9 subtypes of AIVs. The portable cPCR system was able to amplify from as low as 1 to 10 copies of viral cDNAs in the singleplex mode and 10 to 100 copies of viral cDNAs in the duplex mode within 21 min. Thus, our data suggest that the cPCR protocols developed in this study are highly sensitive and enable quick detection of animal viruses in biological samples.
Collapse
Affiliation(s)
- Myoung Hui Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea
| | - Kyung-Young Song
- R&D Center, Ahram Biosystems Inc, Seoul, 133-120, Republic of Korea
| | - Hyun Jin Hwang
- R&D Center, Ahram Biosystems Inc, Seoul, 133-120, Republic of Korea
| | - Jeong Hee Kim
- Department of Biochemistry and Molecular Biology, College of Dentistry, Graduate School, Kyung Hee University, Seoul, 130-701, Republic of Korea.
- Department of Life and Nanopharmaceutical Sciences, College of Dentistry, Graduate School, Kyung Hee University, Seoul, 130-701, Republic of Korea.
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea.
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea.
| |
Collapse
|
45
|
Ramey AM, Uher-Koch BD, Reeves AB, Schmutz JA, Poulson RL, Stallknecht DE. Emperor geese (Anser canagicus) are exposed to a diversity of influenza A viruses, are infected during the non-breeding period and contribute to intercontinental viral dispersal. Transbound Emerg Dis 2019; 66:1958-1970. [PMID: 31077545 DOI: 10.1111/tbed.13226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/27/2022]
Abstract
Emperor geese (Anser canagicus) are endemic to coastal areas within Beringia and have previously been found to have antibodies to or to be infected with influenza A viruses (IAVs) in Alaska. In this study, we use virological, serological and tracking data to further elucidate the role of emperor geese in the ecology of IAVs in Beringia during the non-breeding period. Specifically, we assess evidence for: (a) active IAV infection during spring staging, autumn staging and wintering periods; (b) infection with novel Eurasian-origin or interhemispheric reassortant viruses; (c) contemporary movement of geese between East Asia and North America; (d) previous exposure to viruses of 14 haemagglutinin subtypes, including Eurasian lineage highly pathogenic (HP) H5 IAVs; and (e) subtype-specific antibody seroconversion and seroreversion. Emperor geese were found to shed IAVs, including interhemispheric reassortant viruses, throughout the non-breeding period; migrate between Alaska and the Russian Far East prior to and following remigial moult; have antibodies reactive to a diversity of IAVs including, in a few instances, Eurasian lineage HP H5 IAVs; and exhibit relatively broad and stable patterns of population immunity among breeding females. Results of this study suggest that emperor geese may play an important role in the maintenance and dispersal of IAVs within Beringia during the non-breeding period and provide information that may be used to further optimize surveillance activities focused on the early detection of Eurasian-origin IAVs in North America.
Collapse
Affiliation(s)
- Andrew M Ramey
- U.S. Geological Survey Alaska Science Center, Anchorage, Alaska
| | | | - Andrew B Reeves
- U.S. Geological Survey Alaska Science Center, Anchorage, Alaska
| | - Joel A Schmutz
- U.S. Geological Survey Alaska Science Center, Anchorage, Alaska
| | - Rebecca L Poulson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - David E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| |
Collapse
|
46
|
Numberger D, Dreier C, Vullioud C, Gabriel G, Greenwood AD, Grossart HP. Recovery of influenza A viruses from lake water and sediments by experimental inoculation. PLoS One 2019; 14:e0216880. [PMID: 31091283 PMCID: PMC6519785 DOI: 10.1371/journal.pone.0216880] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/30/2019] [Indexed: 11/19/2022] Open
Abstract
Influenza A viruses (IAV) are zoonotic pathogens relevant to human, domestic animal and wildlife health. Many avian IAVs are transmitted among waterfowl via a faecal-oral-route. Therefore, environmental water where waterfowl congregate may play an important role in the ecology and epidemiology of avian IAV. Water and sediment may sustain and transmit virus among individuals or species. It is unclear at what concentrations waterborne viruses are infectious or remain detectable. To address this, we performed lake water and sediment dilution experiments with varying concentrations or infectious doses of four IAV strains from seal, turkey, duck and gull. To test for infectivity of the IAV strains in a concentration dependent manner, we applied cultivation to specific pathogen free (SPF) embryonated chicken eggs and Madin-Darby Canine Kidney (MDCK) cells. IAV recovery was more effective from embryonated chicken eggs than MDCK cells for freshwater lake dilutions, whereas, MDCK cells were more effective for viral recovery from sediment samples. Low infectious dose (1 PFU/200 μL) was sufficient in most cases to detect and recover IAV from lake water dilutions. Sediment required higher initial infectious doses (≥ 100 PFU/200 μL).
Collapse
Affiliation(s)
| | - Carola Dreier
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Colin Vullioud
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Gülsah Gabriel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Alex D. Greenwood
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
- * E-mail: (HPG); (ADG)
| | - Hans-Peter Grossart
- University of Potsdam, Institute of Biochemistry and Biology, Potsdam, Germany
- Freie Universität Berlin, Department of Veterinary Medicine, Institute for Virology, Berlin, Germany
- * E-mail: (HPG); (ADG)
| |
Collapse
|
47
|
Ssematimba A, St. Charles KM, Bonney PJ, Malladi S, Culhane M, Goldsmith TJ, Halvorson DA, Cardona CJ. Analysis of geographic location and pathways for influenza A virus infection of commercial upland game bird and conventional poultry farms in the United States of America. BMC Vet Res 2019; 15:147. [PMID: 31088548 PMCID: PMC6518635 DOI: 10.1186/s12917-019-1876-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/18/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Avian influenza (AI) is an infectious viral disease that affects several species and has zoonotic potential. Due to its associated health and economic repercussions, minimizing AI outbreaks is important. However, most control measures are generic and mostly target pathways important for the conventional poultry farms producing chickens, turkeys, and eggs and may not target other pathways that may be specific to the upland game bird sector. The goal of this study is to provide evidence to support the development of novel strategies for sector-specific AI control by comparing and contrasting practices and potential pathways for spread in upland game bird farms with those for conventional poultry farms in the United States. Farm practices and processes, seasonality of activities, geographic location and inter-farm distance were analyzed across the sectors. All the identified differences were framed and discussed in the context of their associated pathways for virus introduction into the farm and subsequent between-farm spread. RESULTS Differences stemming from production systems and seasonality, inter-farm distance and farm densities were evident and these could influence both fomite-mediated and local-area spread risks. Upland game bird farms operate under a single, independent owner rather than being contracted with or owned by a company with other farms as is the case with conventional poultry. The seasonal marketing of upland game birds, largely driven by hunting seasons, implies that movements are seasonal and customer-vendor dynamics vary between industry groups. Farm location analysis revealed that, on average, an upland game bird premises was 15.42 km away from the nearest neighboring premises with birds compared to 3.74 km for turkey premises. Compared to turkey premises, the average poultry farm density in a radius of 10 km of an upland game bird premises was less than a half, and turkey premises were 3.8 times (43.5% compared with 11.5%) more likely to fall within a control area during the 2015 Minnesota outbreak. CONCLUSIONS We conclude that the existing differences in the seasonality of production, isolated geographic location and epidemiological seclusion of farms influence AI spread dynamics and therefore disease control measures should be informed by these and other factors to achieve success.
Collapse
Affiliation(s)
- Amos Ssematimba
- Secure Food Systems Team, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108 USA
- Department of Mathematics, Faculty of Science, Gulu University, P.O. Box 166, Gulu, Uganda
| | - Kaitlyn M. St. Charles
- Secure Food Systems Team, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108 USA
| | - Peter J. Bonney
- Secure Food Systems Team, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108 USA
| | - Sasidhar Malladi
- Secure Food Systems Team, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108 USA
| | - Marie Culhane
- Secure Food Systems Team, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108 USA
| | - Timothy J. Goldsmith
- Secure Food Systems Team, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108 USA
| | - David A. Halvorson
- Secure Food Systems Team, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108 USA
| | - Carol J. Cardona
- Secure Food Systems Team, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108 USA
| |
Collapse
|
48
|
Bergervoet SA, Heutink R, Bouwstra R, Fouchier RAM, Beerens N. Genetic analysis identifies potential transmission of low pathogenic avian influenza viruses between poultry farms. Transbound Emerg Dis 2019; 66:1653-1664. [PMID: 30964232 PMCID: PMC6850361 DOI: 10.1111/tbed.13199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 12/25/2022]
Abstract
Poultry can become infected with low pathogenic avian influenza (LPAI) viruses via (in)direct contact with infected wild birds or by transmission of the virus between farms. This study combines routinely collected surveillance data with genetic analysis to assess the contribution of between‐farm transmission to the overall incidence of LPAI virus infections in poultry. Over a 10‐year surveillance period, we identified 35 potential cases of between‐farm transmission in the Netherlands, of which 10 formed geographical clusters. A total of 21 LPAI viruses were isolated from nine potential between‐farm transmission cases, which were further studied by genetic and epidemiological analysis. Whole genome sequence analysis identified close genetic links between infected farms in seven cases. The presence of identical deletions in the neuraminidase stalk region and minority variants provided additional indications of between‐farm transmission. Spatiotemporal analysis demonstrated that genetically closely related viruses were detected within a median time interval of 8 days, and the median distance between the infected farms was significantly shorter compared to farms infected with genetically distinct viruses (6.3 versus 69.0 km; p < 0.05). The results further suggest that between‐farm transmission was not restricted to holdings of the same poultry type and not related to the housing system. Although separate introductions from the wild bird reservoir cannot be excluded, our study indicates that between‐farm transmission occurred in seven of nine virologically analysed cases. Based on these findings, it is likely that between‐farm transmission contributes considerably to the incidence of LPAI virus infections in poultry.
Collapse
Affiliation(s)
- Saskia A Bergervoet
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands.,Department of Viroscience, Erasmus MC, Rotterdam, The Netherlandss
| | - Rene Heutink
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlandss
| | - Nancy Beerens
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| |
Collapse
|
49
|
Ghafouri SA, Fallah Mehrabadi MH, Talakesh SF, Hosseini H, Ziafati Z, Malekan M, Aghaeean L, Ghalyanchilangeroudi A. Full genome characterization of Iranian H5N8 highly pathogenic avian influenza virus from Hooded Crow (Corvus cornix), 2017: The first report. Comp Immunol Microbiol Infect Dis 2019; 64:73-80. [PMID: 31174704 DOI: 10.1016/j.cimid.2019.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/04/2019] [Indexed: 11/19/2022]
Abstract
During 2014-2017 Clade 2.3.4.4 H5N8 highly pathogenic avian influenza viruses (HPAIVs) have spread worldwide. In 2016, an epidemic of HPAIV H5N8 in Iran caused mass deaths among wild birds, and several commercial poultry farms and captive bird holdings were affected and continue to experience problems. Several outbreaks were reported in 2017. One of them is related to Hooded crow (Corvus cornix) in a national park in Esfahan province in 2017. Whole genome sequencing and characterization have been done on the detected H5N8 sample. Based on HA sequencing results, it belongs to 2.3.4.4 clade, and the cleavage site is (PLREKRRKR/G). Phylogenetic analysis of the HA gene showed that the Iran 2017 H5N8 virus clustered within subgroup Russia 2016 2.3.4.4 b of group B in H5 clade 2.3.4.4 HPAIV. On the other hand, the NA gene of the virus is placed in group C of Eurasian lineage. Complete genome characterization of this virus revealed probable reassortment of the virus with East-Asian low-pathogenic influenza viruses. Furthermore, the virus possessed some phenotypic markers related to the increased potential for transmission and pathogenicity to mammals at internal segments. This study is the first full genome characterization H5N8 HPAIV in Iran. The data complete the puzzle of molecular epidemiology of H5N8 HPAIV in Iran and the region. Our study provides evidence for fast and continuing reassortment of H5 clade 2.3.4.4 viruses, that might lead to changes in virus structural and functional characteristics such as the route and method of transmission of the virus and virus infective, pathogenic and zoonotic potential.
Collapse
Affiliation(s)
| | - Mohammad Hossein Fallah Mehrabadi
- Department of Poultry Diseases, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | | | - Hossein Hosseini
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Zahra Ziafati
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Malekan
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Leila Aghaeean
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Arash Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
50
|
Nguyen GT, Rauw F, Steensels M, Ingrao F, Bonfante F, Davidson I, Lambrecht B. Study of the underlying mechanisms and consequences of pathogenicity differences between two in vitro selected G1-H9N2 clones originating from a single isolate. Vet Res 2019; 50:18. [PMID: 30823888 PMCID: PMC6397504 DOI: 10.1186/s13567-019-0635-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/20/2019] [Indexed: 01/10/2023] Open
Abstract
The G1-H9N2 avian influenza virus (AIV) has caused significant economic losses in the commercial poultry industry due to reduced egg production and increased mortality. The field observations have shown that H9N2 viruses circulate and naturally mix with other pathogens and these simultaneous infections can exacerbate disease. To avoid an incorrect virus characterization, due to co-infection, isolates were purified by in vitro plaque assays. Two plaque purified G1-H9N2 clones, selected on different cell types, named MDCK-and CEF-clone in regards to the cell culture used, were studied in vivo, revealing two different virulence phenotypes. Subsequently, the underlying mechanisms were studied. Specifically, the phenotypical outcome of SPF bird infection by the two clones resulted in completely different clinical outcomes. These differences in clinical outcome were used to study the factors behind this output in more detail. Further studies demonstrated that the more severe disease outcome associated with the MDCK-clone involves a strong induction of pro-inflammatory cytokines and a lack of type I interferon production, whereas the mild disease outcome associated with the CEF-clone is related to a greater antiviral cytokine response. The immunosuppressive effect of the MDCK-clone on splenocytes was further demonstrated via ChIFN-γ lack production after ex vivo mitogenic stimulation. Genome sequencing of the two clones identified only four amino acid differences including three in the HA sequence (HA-E198A, HA-R234L, HA-E502D-H9 numbering) and one in the NA sequence (NA-V33M). In the present study, valuable insights on the mechanisms responsible for AI pathogenicity and molecular mechanisms of H9N2 infections in chicken were obtained while highlighting the impact of the cells viruses are grown on their virulence.
Collapse
Affiliation(s)
- Giang Thu Nguyen
- Avian Virology and Immunology Service, National Reference Laboratory for Avian Influenza and Newcastle Disease Virus, Sciensano, Uccle, Brussels Belgium
| | - Fabienne Rauw
- Avian Virology and Immunology Service, National Reference Laboratory for Avian Influenza and Newcastle Disease Virus, Sciensano, Uccle, Brussels Belgium
| | - Mieke Steensels
- Avian Virology and Immunology Service, National Reference Laboratory for Avian Influenza and Newcastle Disease Virus, Sciensano, Uccle, Brussels Belgium
| | - Fiona Ingrao
- Avian Virology and Immunology Service, National Reference Laboratory for Avian Influenza and Newcastle Disease Virus, Sciensano, Uccle, Brussels Belgium
| | | | - Irit Davidson
- Division of Avian and Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Bénédicte Lambrecht
- Avian Virology and Immunology Service, National Reference Laboratory for Avian Influenza and Newcastle Disease Virus, Sciensano, Uccle, Brussels Belgium
| |
Collapse
|