1
|
Koizumi Y, Nakajima Y, Tanaka Y, Matsui K, Sakabe M, Maeda K, Sato M, Koshino H, Sato S, Kimura M, Takahashi-Ando N. A Role in 15-Deacetylcalonectrin Acetylation in the Non-Enzymatic Cyclization of an Earlier Bicyclic Intermediate in Fusarium Trichothecene Biosynthesis. Int J Mol Sci 2024; 25:4288. [PMID: 38673874 PMCID: PMC11050026 DOI: 10.3390/ijms25084288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The trichothecene biosynthesis in Fusarium begins with the cyclization of farnesyl pyrophosphate to trichodiene, followed by subsequent oxygenation to isotrichotriol. This initial bicyclic intermediate is further cyclized to isotrichodermol (ITDmol), a tricyclic precursor with a toxic trichothecene skeleton. Although the first cyclization and subsequent oxygenation are catalyzed by enzymes encoded by Tri5 and Tri4, the second cyclization occurs non-enzymatically. Following ITDmol formation, the enzymes encoded by Tri101, Tri11, Tri3, and Tri1 catalyze 3-O-acetylation, 15-hydroxylation, 15-O-acetylation, and A-ring oxygenation, respectively. In this study, we extensively analyzed the metabolites of the corresponding pathway-blocked mutants of Fusarium graminearum. The disruption of these Tri genes, except Tri3, led to the accumulation of tricyclic trichothecenes as the main products: ITDmol due to Tri101 disruption; a mixture of isotrichodermin (ITD), 7-hydroxyisotrichodermin (7-HIT), and 8-hydroxyisotrichodermin (8-HIT) due to Tri11 disruption; and a mixture of calonectrin and 3-deacetylcalonectrin due to Tri1 disruption. However, the ΔFgtri3 mutant accumulated substantial amounts of bicyclic metabolites, isotrichotriol and trichotriol, in addition to tricyclic 15-deacetylcalonectrin (15-deCAL). The ΔFgtri5ΔFgtri3 double gene disruptant transformed ITD into 7-HIT, 8-HIT, and 15-deCAL. The deletion of FgTri3 and overexpression of Tri6 and Tri10 trichothecene regulatory genes did not result in the accumulation of 15-deCAL in the transgenic strain. Thus, the absence of Tri3p and/or the presence of a small amount of 15-deCAL adversely affected the non-enzymatic second cyclization and C-15 hydroxylation steps.
Collapse
Affiliation(s)
- Yoshiaki Koizumi
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Japan; (Y.K.); (S.S.)
| | - Yuichi Nakajima
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (Y.N.); (Y.T.); (K.M.); (K.M.)
| | - Yuya Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (Y.N.); (Y.T.); (K.M.); (K.M.)
| | - Kosuke Matsui
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (Y.N.); (Y.T.); (K.M.); (K.M.)
| | - Masato Sakabe
- Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Japan;
| | - Kazuyuki Maeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (Y.N.); (Y.T.); (K.M.); (K.M.)
| | - Masayuki Sato
- Plant & Microbial Engineering Research Unit, Discovery Research Institute (DRI) RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan;
| | - Hiroyuki Koshino
- Molecular Structure Characterization Unit, Technology Platform Division, Center for Sustainable Resource Science (CSRS) RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan;
| | - Soichi Sato
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Japan; (Y.K.); (S.S.)
- Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Japan;
| | - Makoto Kimura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (Y.N.); (Y.T.); (K.M.); (K.M.)
- Plant & Microbial Engineering Research Unit, Discovery Research Institute (DRI) RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan;
| | - Naoko Takahashi-Ando
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Japan; (Y.K.); (S.S.)
- Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe 350-8585, Japan;
- Plant & Microbial Engineering Research Unit, Discovery Research Institute (DRI) RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan;
| |
Collapse
|
2
|
Liu JD, Shanmugasundaram R, Doupovec B, Schatzmayr D, Murugesan GR, Applegate TJ. Short-term exposure to fumonisins and deoxynivalenol, on broiler growth performance and cecal Salmonella load during experimental Salmonella Enteritidis infection. Poult Sci 2023; 102:102677. [PMID: 37104905 PMCID: PMC10160587 DOI: 10.1016/j.psj.2023.102677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Fumonisins (FUM) and deoxynivalenol (DON) are two common mycotoxins in poultry feed. Salmonella enterica ser. Enteritidis (S. Enteritidis) is a primary foodborne bacterium in broilers. This trial was conducted to evaluate the effects of naturally occurring FUM and DON and their combination at subclinical doses on broiler performance during a S. Enteritidis challenge. The experiment consisted of five treatments: NCC, no-challenge no-mycotoxin treatment; CC, Salmonella challenge + no-mycotoxin treatment; DON, DON 0.6 mg/kg + Salmonella challenge; FUM, FUM 14 mg/kg + Salmonella challenge; DON + FUM + T-2 + neosolaniol, DON 0.6 mg/kg + FUM 14 mg/kg + T-2 toxin 0.6 mg/kg + 0.8 mg/kg neosolaniol + Salmonella challenge. On d 4, birds were challenged with either 0 or 1 × 109 CFU/mL S. Enteritidis orally. There were no significant effects on growth performance among treatments at 0, 3, 7, and 14 d of post-inoculation (dpi). On 14 dpi, the combined DON + FUM + T-2 + neosolaniol significantly increased the Salmonella load by 1.5 logs compared to the control groups (P < 0.05). FUM significantly increased the cecal tonsil IL-10 gene expression by 1.2-fold at 7 dpi (P < 0.05) and downregulated TNF-α by 1.8-fold on 14 dpi compared to the control, nonchallenge groups (P < 0.05). On 7 dpi, the combined DON + FUM + T-2 + neosolaniol reduced occludin by 4.4-fold (P < 0.05) when compared to the control groups. Similarly, combined DON + FUM+ T-2 + neosolaniol decreased zona-occluden transcription by 2.3 and 7.6-fold on 3 and 14 dpi, respectively (P < 0.05). Furthermore, combined DON + FUM + T-2 + neosolaniol decreased Claudin-1 by 2.2-fold and Claudin-4 by 5.1-fold on 14 dpi when compared to the control groups (P < 0.05). In conclusion, short-term exposure to a subclinical dose of combined DON + FUM + T-2 + neosolaniol had an impact on broiler intestinal tight junction proteins and cecal Salmonella abundance under experimental Salmonella challenge.
Collapse
Affiliation(s)
- J D Liu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - R Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA.
| | - B Doupovec
- DSM - BIOMIN Research Center, Tulln 3430, Austria
| | - D Schatzmayr
- DSM - BIOMIN Research Center, Tulln 3430, Austria
| | | | - T J Applegate
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
3
|
Kirana RP, Gaurav K, Arora S, Wiesenberger G, Doppler M, Michel S, Zimmerl S, Matic M, Eze CE, Kumar M, Topuz A, Lemmens M, Schuhmacher R, Adam G, Wulff BBH, Buerstmayr H, Steiner B. Identification of a UDP-glucosyltransferase conferring deoxynivalenol resistance in Aegilops tauschii and wheat. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:109-121. [PMID: 36121345 PMCID: PMC9829400 DOI: 10.1111/pbi.13928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/08/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Aegilops tauschii is the diploid progenitor of the wheat D subgenome and a valuable resource for wheat breeding, yet, genetic analysis of resistance against Fusarium head blight (FHB) and the major Fusarium mycotoxin deoxynivalenol (DON) is lacking. We treated a panel of 147 Ae. tauschii accessions with either Fusarium graminearum spores or DON solution and recorded the associated disease spread or toxin-induced bleaching. A k-mer-based association mapping pipeline dissected the genetic basis of resistance and identified candidate genes. After DON infiltration nine accessions revealed severe bleaching symptoms concomitant with lower conversion rates of DON into the non-toxic DON-3-O-glucoside. We identified the gene AET5Gv20385300 on chromosome 5D encoding a uridine diphosphate (UDP)-glucosyltransferase (UGT) as the causal variant and the mutant allele resulting in a truncated protein was only found in the nine susceptible accessions. This UGT is also polymorphic in hexaploid wheat and when expressed in Saccharomyces cerevisiae only the full-length gene conferred resistance against DON. Analysing the D subgenome helped to elucidate the genetic control of FHB resistance and identified a UGT involved in DON detoxification in Ae. tauschii and hexaploid wheat. This resistance mechanism is highly conserved since the UGT is orthologous to the barley UGT HvUGT13248 indicating descent from a common ancestor of wheat and barley.
Collapse
Affiliation(s)
- Rizky Pasthika Kirana
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
- Laboratory of Plant BreedingDepartment of Agronomy, Faculty of Agriculture, Universitas Gadjah MadaYogyakartaIndonesia
| | | | - Sanu Arora
- John Innes CentreNorwich Research ParkNorwichUK
| | - Gerlinde Wiesenberger
- Department of Applied Genetics and Cell Biology, Institute of Microbial GeneticsUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Maria Doppler
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Bioanalytics and Agro‐MetabolomicsUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
- Core Facility Bioactive Molecules: Screening and AnalysisUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Sebastian Michel
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Simone Zimmerl
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Magdalena Matic
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
- Faculty of Agrobiotechnical Sciences OsijekJosip Juraj Strossmayer University of OsijekOsijekCroatia
| | - Chinedu E. Eze
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
- Department of AgronomyMichael Okpara University of Agriculture UmudikeUmudikeNigeria
| | - Mukesh Kumar
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
- Department of Genetics & Plant BreedingCCS Haryana Agricultural UniversityHisar (Haryana)India
| | - Ajla Topuz
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Marc Lemmens
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Bioanalytics and Agro‐MetabolomicsUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, Institute of Microbial GeneticsUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Brande B. H. Wulff
- John Innes CentreNorwich Research ParkNorwichUK
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Hermann Buerstmayr
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| | - Barbara Steiner
- Department of Agrobiotechnology (IFA‐Tulln), Institute of Biotechnology in Plant ProductionUniversity of Natural Resources and Life Sciences, ViennaTullnAustria
| |
Collapse
|
4
|
Shanmugasundaram R, Adams D, Ramirez S, Murugesan GR, Applegate TJ, Cunningham S, Pokoo-Aikins A, Glenn AE. Subclinical Doses of Combined Fumonisins and Deoxynivalenol Predispose Clostridium perfringens–Inoculated Broilers to Necrotic Enteritis. Front Physiol 2022; 13:934660. [PMID: 35936897 PMCID: PMC9353554 DOI: 10.3389/fphys.2022.934660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
Fumonisins (FB) and deoxynivalenol (DON) are mycotoxins which may predispose broiler chickens to necrotic enteritis (NE). The objective of this study was to identify the effects of subclinical doses of combined FB and DON on NE. A total of 480 day-old male broiler chicks were divided into four treatment groups; 1) control group (basal diet + Clostridium perfringens); 2) necrotic enteritis group (basal diet + Eimeria maxima + C. perfringens); 3) FB + DON group (basal diet + 3 mg/kg FB + 4 mg/kg DON + C. perfringens); and 4) FB + DON + NE group (basal diet + 3 mg/kg FB + 4 mg/kg DON + E. maxima + C. perfringens). Birds in NE and FB + DON + NE groups received 2.5 × 103E. maxima on day 14. All birds were inoculated with C. perfringens on days 19, 20, and 21. On day 35, birds in the NE, FB + DON, and FB + DON + NE groups had 242, 84, and 339 g lower BWG and a 19-, 2-, and 22-point increase in FCR respectively, than in the control group. Subclinical doses of FB + DON increased (p < 0.05) the NE lesion scores compared to the control group on day 21. On day 21, birds in the NE, FB + DON, and FB + DON + NE groups had increased (p < 0.05) serum FITC-D, lower (p < 0.05) jejunal tight junction protein mRNA, and increased (p < 0.05) cecal tonsil IL-1 mRNA compared to control group. On day 21, birds in the NE group had decreased (p < 0.05) villi height to crypt depth ratio compared to the control group and the presence of FB + DON in NE-induced birds further decreased the villi height to crypt depth ratio. Birds in the NE, FB + DON, and FB + DON + NE groups had increased (p < 0.05) C. perfringens, lower (p < 0.05) Lactobacillus loads in the cecal content, and a lower (p < 0.05) CD8+: CD4+ cell ratio in the cecal tonsils compared to the control group. It can be concluded that subclinical doses of combined FB and DON predispose C. perfringens-inoculated birds to NE, and the presence of FB + DON in NE-induced birds exacerbated the severity of NE.
Collapse
Affiliation(s)
- R. Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
- *Correspondence: R. Shanmugasundaram,
| | - D. Adams
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - S. Ramirez
- DSM Animal Nutrition and Health, Kaiseraugst, Switzerland
| | | | - T. J. Applegate
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - S. Cunningham
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| | - A. Pokoo-Aikins
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| | - A. E. Glenn
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| |
Collapse
|
5
|
Novak B, Lopes Hasuda A, Ghanbari M, Mayumi Maruo V, Bracarense APFRL, Neves M, Emsenhuber C, Wein S, Oswald IP, Pinton P, Schatzmayr D. Effects of Fusarium metabolites beauvericin and enniatins alone or in mixture with deoxynivalenol on weaning piglets. Food Chem Toxicol 2021; 158:112719. [PMID: 34843867 DOI: 10.1016/j.fct.2021.112719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 01/16/2023]
Abstract
The impact of the Fusarium-derived metabolites beauvericin, enniatin B and B1 (EB) alone or in combination with deoxynivalenol (DON) was investigated in 28-29 days old weaning piglets over a time period of 14 days. The co-application of EB and DON (EB + DON) led to a significant decrease in the weight gain of the animals. Liver enzyme activities in plasma were significantly decreased at day 14 in piglets receiving the EB + DON-containing diet compared to piglets receiving the control diet. All mycotoxin-contaminated diets led to moderate to severe histological lesions in the jejunum, the liver and lymph nodes. Shotgun metagenomics revealed a significant effect of EB-application on the gut microbiota. Our results provide novel insights into the harmful impact of emerging mycotoxins alone or with DON on the performance, gut health and immunological parameters in pigs.
Collapse
Affiliation(s)
- Barbara Novak
- BIOMIN Research Center, Technopark 1, 3430, Tulln, Austria.
| | - Amanda Lopes Hasuda
- Laboratory of Animal Pathology, State University of Londrina, P.O. Box 10.011, Londrina, PR, 86057-970, Brazil; Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France.
| | - Mahdi Ghanbari
- BIOMIN Research Center, Technopark 1, 3430, Tulln, Austria.
| | - Viviane Mayumi Maruo
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France; Universidade Federal do Tocantins, Araguaína, 77824-838, Brazil.
| | - Ana Paula F R L Bracarense
- Laboratory of Animal Pathology, State University of Londrina, P.O. Box 10.011, Londrina, PR, 86057-970, Brazil.
| | - Manon Neves
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France.
| | | | - Silvia Wein
- BIOMIN Research Center, Technopark 1, 3430, Tulln, Austria.
| | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France.
| | - Philippe Pinton
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France.
| | | |
Collapse
|
6
|
Gallo A, Ghilardelli F, Doupovec B, Faas J, Schatzmayr D, Masoero F. Kinetics of gas production in the presence of Fusarium mycotoxins in rumen fluid of lactating dairy cows. JDS COMMUNICATIONS 2021; 2:243-247. [PMID: 36338385 PMCID: PMC9623688 DOI: 10.3168/jdsc.2021-0100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/08/2021] [Indexed: 12/01/2022]
Abstract
Toxins produced by Fusarium can be commonly detected in ruminant diets. Deoxynivalenol and fumonisins in the diet interfere with rumen microbiota. The presence of a mycotoxin-deactivating product counteracted negative effects.
Little is known about the effects of Fusarium mycotoxins on the fermentation potential of rumen fluid sampled from lactating dairy cows ingesting diets contaminated at regular levels of these mycotoxins (i.e., contamination levels that can normally be found on dairy farms). In the current experiment, rumen donor animals received diets contaminated with both deoxynivalenol (DON) and fumonisins (FB) with or without a mycotoxin-deactivating product. The rumen fluid donor animals were 12 lactating Holstein dairy cows that received one of 3 experimental diets in agreement with a 3 × 3 Latin square design (3 periods and 3 treatments). The 3 diets were as follows: (1) a TMR contaminated with a regular level of Fusarium mycotoxins [340.5 ± 161.0 µg of DON/kg of dry matter (DM) and 127.9 ± 43.9 µg of FB/kg of DM; control diet, CTR], (2) a TMR contaminated with Fusarium mycotoxins at levels higher than CTR but below US and European Union guidelines (733.0 ± 213.6 µg of DON/kg of DM and 994.4 ± 323.2 µg of FB/kg of DM; MTX), and (3) the MTX diet (897.3 ± 230.4 µg of DON/kg of DM and 1,247.1 ± 370.2 µg of FB/kg of DM) supplemented with a mycotoxin-deactivator product (Mycofix, Biomin Holding GmbH; 35 g/animal per day; MDP). Each experimental period lasted 21 d, and rumen fluid was individually sampled from all cows on the last day of each intoxication period. Then, the 4 rumen fluids sampled from cows receiving the same experimental diets were pooled into a single rumen inoculum, which was used in the in vitro gas production test. For the gas production test, 3 different rumen inocula (i.e., CTR, MTX, and MDP) were buffered (buffer:rumen ratio of 2:1, vol/vol) and then used in 3 fermentation runs to evaluate gas production dynamics in the presence of 8 feeds (i.e., corn meal, barley meal, corn silage, sorghum silage, alfalfa hay, ryegrass hay, dry brewers barley grains, and dried distillers grains with solubles). The kinetic parameters of gas production and volatile fatty acid concentrations were evaluated at the end of fermentation. The block run (i.e., fermentation day) effect influenced all of the fermentative and kinetic parameters. Greater final volumes or rates of gas production over time were observed for MDP compared with MTX rumen inocula (i.e., 172.6 vs. 147.8 mL/g of organic matter or 0.078 vs. 0.063 h−1, respectively). However, the increase in rate of gas production was not consistent among tested feeds, meaning that a treatment by feed interaction was observed. Volatile fatty acid concentrations were not different among treatments, except for a slight increase of acetic acid in CTR compared with MTX (i.e., 71.0 vs. 67.9 mmol/L). This study showed that Fusarium-produced mycotoxins negatively affected the kinetics of gas production in feeds, whereas the presence of the mycotoxin-deactivator product in the diets of donor animals resulted in an increase in rumen fermentation potential, thus safeguarding the rumen environment.
Collapse
Affiliation(s)
- A. Gallo
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
- Corresponding author
| | - F. Ghilardelli
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - B. Doupovec
- Biomin Research Center, Technopark 1, 3430 Tulln, Austria
| | - J. Faas
- Biomin Research Center, Technopark 1, 3430 Tulln, Austria
| | - D. Schatzmayr
- Biomin Research Center, Technopark 1, 3430 Tulln, Austria
| | - F. Masoero
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
7
|
Duringer J, Roberts H, Doupovec B, Faas J, Estill C, Jiang D, Schatzmayr D. Effects of deoxynivalenol and fumonisins fed in combination on beef cattle: health and performance indices. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2020.2567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interactions between livestock management practices and toxicological outcomes of mycotoxin exposure may explain the range of tolerable toxin levels reported for various species. In the current study, we investigated the effect of concurrent mycotoxin exposure with a high starch diet in 12 beef steers in a partial cross-over experiment using a 21-day treatment period, followed by a 14-day clearance. During the treatment period, animals were assigned to one of two diets: a low mycotoxin control total mixed ration (TMR) (0.2±0.1 mg deoxynivalenol (DON) and 0.2±0.2 mg fumonisins (FUM)/kg TMR) and a high mycotoxin TMR treatment (1.7±0.2 mg DON and 3.5±0.3 mg FUM/kg TMR). We evaluated the impacts of these mycotoxins on performance, physiology and biochemistry; and the ability of the clearance period to return animals to a naïve state in the cross-over model. The lack of acute ruminal acidosis observed indicates that the animals were able to withstand the physiological stresses of the high starch diet, while toxicological outcomes were manifested in minor perturbations of biochemistry and outright performance of exposed animals. Aspartate aminotransferase, cholesterol, fibrinogen and leukocyte count were increased while sorbitol dehydrogenase, bile acids and mean corpuscular volume were decreased in treatment-fed steers, yet were not significantly different than those from control-fed animals. Fusarium toxin exposure significantly decreased ruminal fluid pH, with the clearance period returning animals to a naïve state, as it did for most of the molecular variables measured. Conversely, treatment-fed animals continued to exhibit significantly lower average weekly body weight throughout the treatment period and the first week of the clearance period. While the risk of adverse health effects to fattening cattle from similar doses of DON or FUM as used in the current study is considered low, additional work should be directed towards minimising production losses due to these feed contaminants.
Collapse
Affiliation(s)
- J.M. Duringer
- Department of Environmental & Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - H.L. Roberts
- Department of Animal & Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - B. Doupovec
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - J. Faas
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - C.T. Estill
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - D. Jiang
- Department of Statistics, College of Science, Oregon State University, Corvallis, OR 97331, USA
| | - D. Schatzmayr
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| |
Collapse
|
8
|
Gallo A, Minuti A, Bani P, Bertuzzi T, Cappelli FP, Doupovec B, Faas J, Schatzmayr D, Trevisi E. A mycotoxin-deactivating feed additive counteracts the adverse effects of regular levels of Fusarium mycotoxins in dairy cows. J Dairy Sci 2020; 103:11314-11331. [PMID: 33222853 DOI: 10.3168/jds.2020-18197] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022]
Abstract
Little is known about the effects of commonly found levels of Fusarium mycotoxins on the performance, metabolism, and immunity of dairy cattle. We investigated the effects of regular contamination levels, meaning contamination levels that can be commonly detected in dairy feeds, of deoxynivalenol (DON) and fumonisins (FB) in total mixed ration (TMR) on the performance, diet digestibility, milk quality, and plasma liver enzymes in dairy cows. This trial examined 12 lactating Holstein dairy cows using a 3-period × 3-treatment Latin square design. The experimental period was 21 d of mycotoxin exposure followed by 14 d of washout. During treatment periods, cows received one of 3 diets: (1) CTR (control) diet of TMR contaminated with 340.5 µg of DON/kg of dry matter (DM) and 127.9 µg FB/kg of DM; (2) MTX diet of TMR contaminated with Fusarium mycotoxins at levels higher than CTR but below US and European Union guidelines (i.e., 733.0 µg of DON/kg of DM and 994.4 µg of FB/kg of DM); or (3) MDP diet, which was MTX diet supplemented with a mycotoxin deactivator product (i.e., 897.3 µg of DON/kg of DM and 1,247.1 µg of FB/kg of DM; Mycofix, 35 g/animal per day). During washout, all animals were fed the same CTR diet. Body weight, body condition score, DM intake, dietary nutrient digestibility, milk production, milk composition and rennet coagulation properties, somatic cell count, blood serum chemistry, hematology, serum immunoglobulin concentrations, and expression of multiple genes in circulating leucocytes were measured. Milk production was significantly greater in the CTR group (37.73 kg/d) than in the MTX (36.39 kg/d) and the MDP (36.55 kg/d) groups. Curd firmness and curd firming time were negatively affected by the MTX diet compared with the other 2 diets. Furthermore, DM and neutral detergent fiber digestibility were lower after the MTX diet than after the CTR diet (67.3 vs. 71.0% and 42.8 vs. 52.3%). The MDP diet had the highest digestibility coefficients for DM (72.4%) and neutral detergent fiber (53.6%) compared with the other 2 diets. The activities of plasma liver transaminases were higher after the MTX diet than after the CTR and MDP diets. Compared with the CTR diet, the MTX diet led to slightly lower expression of genes related to immune and inflammatory functions, indicating that Fusarium mycotoxins had an immunosuppressive effect. Our results indicated that feed contaminated with regular levels of Fusarium mycotoxins adversely affected the performance, milk quality, diet digestibility, metabolic variables, and immunity of dairy cows, and that supplementation with mycotoxin deactivator product counteracted most of these negative effects.
Collapse
Affiliation(s)
- A Gallo
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| | - A Minuti
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - P Bani
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - T Bertuzzi
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - F Piccioli Cappelli
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - B Doupovec
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - J Faas
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - D Schatzmayr
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - E Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
9
|
Hales B, Steed A, Giovannelli V, Burt C, Lemmens M, Molnár-Láng M, Nicholson P. Type II Fusarium head blight susceptibility conferred by a region on wheat chromosome 4D. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4703-4714. [PMID: 32473016 PMCID: PMC7410183 DOI: 10.1093/jxb/eraa226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/04/2020] [Indexed: 05/20/2023]
Abstract
Fusarium head blight (FHB) causes significant grain yield and quality reductions in wheat and barley. Most wheat varieties are incapable of preventing FHB spread through the rachis, but disease is typically limited to individually infected spikelets in barley. We point-inoculated wheat lines possessing barley chromosome introgressions to test whether FHB resistance could be observed in a wheat genetic background. The most striking differential was between 4H(4D) substitution and 4H addition lines. The 4H addition line was similarly susceptible to the wheat parent, but the 4H(4D) substitution line was highly resistant, which suggests that there is an FHB susceptibility factor on wheat chromosome 4D. Point inoculation of Chinese Spring 4D ditelosomic lines demonstrated that removing 4DS results in high FHB resistance. We genotyped four Chinese Spring 4DS terminal deletion lines to better characterize the deletions in each line. FHB phenotyping indicated that lines del4DS-2 and del4DS-4, containing smaller deletions, were susceptible and had retained the susceptibility factor. Lines del4DS-3 and del4DS-1 contain larger deletions and were both significantly more resistant, and hence had presumably lost the susceptibility factor. Combining the genotyping and phenotyping results allowed us to refine the susceptibility factor to a 31.7 Mbp interval on 4DS.
Collapse
Affiliation(s)
- Benjamin Hales
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Andrew Steed
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Vincenzo Giovannelli
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Christopher Burt
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marc Lemmens
- University of Natural Resources and Life Sciences, Institute for Biotechnology in Plant Production, Department of Agrobiotechnology, IFA Tulln, Tulln, Austria
| | - Marta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Paul Nicholson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
- Correspondence:
| |
Collapse
|
10
|
Hales B, Steed A, Giovannelli V, Burt C, Lemmens M, Molnár-Láng M, Nicholson P. Type II Fusarium head blight susceptibility conferred by a region on wheat chromosome 4D. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4703-4714. [PMID: 32473016 DOI: 10.1101/2020.02.06.937425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/04/2020] [Indexed: 05/24/2023]
Abstract
Fusarium head blight (FHB) causes significant grain yield and quality reductions in wheat and barley. Most wheat varieties are incapable of preventing FHB spread through the rachis, but disease is typically limited to individually infected spikelets in barley. We point-inoculated wheat lines possessing barley chromosome introgressions to test whether FHB resistance could be observed in a wheat genetic background. The most striking differential was between 4H(4D) substitution and 4H addition lines. The 4H addition line was similarly susceptible to the wheat parent, but the 4H(4D) substitution line was highly resistant, which suggests that there is an FHB susceptibility factor on wheat chromosome 4D. Point inoculation of Chinese Spring 4D ditelosomic lines demonstrated that removing 4DS results in high FHB resistance. We genotyped four Chinese Spring 4DS terminal deletion lines to better characterize the deletions in each line. FHB phenotyping indicated that lines del4DS-2 and del4DS-4, containing smaller deletions, were susceptible and had retained the susceptibility factor. Lines del4DS-3 and del4DS-1 contain larger deletions and were both significantly more resistant, and hence had presumably lost the susceptibility factor. Combining the genotyping and phenotyping results allowed us to refine the susceptibility factor to a 31.7 Mbp interval on 4DS.
Collapse
Affiliation(s)
- Benjamin Hales
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Andrew Steed
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Vincenzo Giovannelli
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Christopher Burt
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marc Lemmens
- University of Natural Resources and Life Sciences, Institute for Biotechnology in Plant Production, Department of Agrobiotechnology, IFA Tulln, Tulln, Austria
| | - Marta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Paul Nicholson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
11
|
Liu JD, Doupovec B, Schatzmayr D, Murugesan GR, Bortoluzzi C, Villegas AM, Applegate TJ. The impact of deoxynivalenol, fumonisins, and their combination on performance, nutrient, and energy digestibility in broiler chickens. Poult Sci 2020; 99:272-279. [PMID: 32416811 PMCID: PMC7587770 DOI: 10.3382/ps/pez484] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/07/2019] [Indexed: 01/19/2023] Open
Abstract
This study evaluated the effects of the mycotoxins deoxynivalenol (DON), fumonisins (FUM), and their combination on growth performance, nutrient, and energy digestibility in broilers. A total of 960 Cobb-Cobb male broilers were obtained on the day of hatch and placed 10 birds per cage with 8 cages per treatment. The experiment consisted of 12 treatments: control; DON 1.5 mg/kg; DON 5.0 mg/kg; FUM 20.0 mg/kg; DON 1.5 mg/kg + FUM 20.0 mg/kg; and DON 5.0 mg/kg + FUM 20 mg/kg. The remaining dietary treatments were the correlative nitrogen-free diets (NFD) for determining the endogenous nutrients loss. All birds were fed with a corn-soybean meal diet from days 1 to 15, until birds from latter 6 treatments were switched to their correlative NFD diet from days 15 to 21. Feed and BW were weighed by cage on days 8, 15, and 21. On day 21, ileal digesta was collected for digestibility determination. Both DON 1.5 mg/kg + FUM 20 mg/kg and DON 5.0 mg/kg + FUM 20 mg/kg treatments showed reduced feed intake (P ≤ 0.05) from days 8 to 15 and days 15 to 21. However, no significant effects were noted for BW gain or mortality-adjusted feed conversion ratio after adding single or combined mycotoxin on days 8 and 15. At day 21, cumulative BW gain was less (P ≤ 0.05) in birds fed with the mycotoxin combination diets than the control. No significant changes were shown for ileal endogenous amino acids losses. Control treatment had significantly higher (P ≤ 0.05) apparent ileal energy digestibility than the DON 5.0 mg/kg + FUM 20.0 mg/kg treatment (3,126 vs. 2,895 kcal/kg), representing a 5%-unit loss in apparent DM digestibility. No significant difference was found for standardized crude protein and amino acid digestibility. In conclusion, the combination of DON and FUM (DON 1.5 mg/kg + FUM 20 mg/kg or DON 5.0 mg/kg + FUM 20 mg/kg) reduced DM and ileal energy digestibility, which negatively affected BW gain in broilers.
Collapse
Affiliation(s)
- J D Liu
- Department of Poultry Science, University of Georgia, Athens, GA 30602.
| | - B Doupovec
- BIOMIN Research Center, Tulln 3430, Austria
| | | | | | - C Bortoluzzi
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - A M Villegas
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - T J Applegate
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| |
Collapse
|
12
|
Tanaka N, Takushima R, Tanaka A, Okada A, Matsui K, Maeda K, Aikawa S, Kimura M, Takahashi-Ando N. Reduced Toxicity of Trichothecenes, Isotrichodermol, and Deoxynivalenol, by Transgenic Expression of the Tri101 3- O-Acetyltransferase Gene in Cultured Mammalian FM3A Cells. Toxins (Basel) 2019; 11:toxins11110654. [PMID: 31717667 PMCID: PMC6891669 DOI: 10.3390/toxins11110654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 11/16/2022] Open
Abstract
In trichothecene-producing fusaria, isotrichodermol (ITDol) is the first intermediate with a trichothecene skeleton. In the biosynthetic pathway of trichothecene, a 3-O-acetyltransferase, encoded by Tri101, acetylates ITDol to a less-toxic intermediate, isotrichodermin (ITD). Although trichothecene resistance has been conferred to microbes and plants transformed with Tri101, there are no reports of resistance in cultured mammalian cells. In this study, we found that a 3-O-acetyl group of trichothecenes is liable to hydrolysis by esterases in fetal bovine serum and FM3A cells. We transfected the cells with Tri101 under the control of the MMTV-LTR promoter and obtained a cell line G3 with the highest level of C-3 acetylase activity. While the wild-type FM3A cells hardly grew in the medium containing 0.40 μM ITDol, many G3 cells survived at this concentration. The IC50 values of ITDol and ITD in G3 cells were 1.0 and 9.6 μM, respectively, which were higher than the values of 0.23 and 3.0 μM in the wild-type FM3A cells. A similar, but more modest, tendency was observed in deoxynivalenol and 3-acetyldeoxynivalenol. Our findings indicate that the expression of Tri101 conferred trichothecene resistance in cultured mammalian cells.
Collapse
Affiliation(s)
- Nozomu Tanaka
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Ryo Takushima
- Graduate School of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Akira Tanaka
- Graduate School of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Ayaki Okada
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Kosuke Matsui
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan (M.K.)
| | - Kazuyuki Maeda
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan (M.K.)
| | - Shunichi Aikawa
- Research Institute of Industrial Technology, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Makoto Kimura
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan (M.K.)
| | - Naoko Takahashi-Ando
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
- Graduate School of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
- Research Institute of Industrial Technology, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
- Correspondence: ; Tel.: +81-49-239-1384
| |
Collapse
|
13
|
Twaruschek K, Spörhase P, Michlmayr H, Wiesenberger G, Adam G. New Plasmids for Fusarium Transformation Allowing Positive-Negative Selection and Efficient Cre- loxP Mediated Marker Recycling. Front Microbiol 2018; 9:1954. [PMID: 30258410 PMCID: PMC6143793 DOI: 10.3389/fmicb.2018.01954] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/02/2018] [Indexed: 11/14/2022] Open
Abstract
In filamentous fungi such as Fusarium graminearum, disruption of multiple genes of interest in the same strain (e.g., to test for redundant gene function) is a difficult task due to the limited availability of reliable selection markers. We have created a series of transformation vectors that allow antibiotic-based selection of transformants and subsequent negative selection for marker removal using thymidine kinase fusions combined with the Cre-loxP system. The fusion genes contain commonly used C-terminal drug resistance markers, either nptII (G418), nat1 (nourseothricin), or hph (hygromycin B). These resistance genes are fused to the sequence encoding Herpes simplex virus thymidine kinase (HSVtk). Despite the presence of the 1 kb HSVtk gene (about ∼30% increase in total marker size), there is only a slight reduction in transformation efficiency on a molar basis. The fusion genes expressed under the Trichoderma pyruvate kinase (PKI) promoter also confer antibiotic resistance in Escherichia coli, allowing straightforward construction of disruption plasmids. For removal of the loxP flanked resistance cassettes, protoplasts of transformants are directly treated with purified Cre recombinase protein. Loss of the HSVtk containing cassette is selected by restoration of resistance to 5-fluoro-2-deoxyuridine (FdU). As a proof of principle, we demonstrated the efficiency of the HSVtk-based marker removal in Fusarium by reversing the disruption phenotype of the gene responsible for production of the red pigment aurofusarin. We first disrupted the FgPKS12 gene via integration of the loxP-flanked HSVtk-nptII cassette into the promoter or the first intron, thereby generating transformants with a white mycelium phenotype. Using Cre recombinase and FdU, the selection marker was subsequently removed, and the resulting transformants regained red pigmentation despite the remaining loxP site. We also found that it is possible to remove several unselected loxP-flanked cassettes with a single Cre protein treatment, as long as one of them contains a negative selectable HSVtk cassette. The negative selection system can also be used to introduce allele swaps into strains without leaving marker sequences, by first disrupting the gene of interest and then complementing the deletion in situ with genomic DNA containing a different allele.
Collapse
Affiliation(s)
| | | | | | - Gerlinde Wiesenberger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | |
Collapse
|
14
|
Antonissen G, Devreese M, De Baere S, Martel A, Van Immerseel F, Croubels S. Impact of Fusarium mycotoxins on hepatic and intestinal mRNA expression of cytochrome P450 enzymes and drug transporters, and on the pharmacokinetics of oral enrofloxacin in broiler chickens. Food Chem Toxicol 2017; 101:75-83. [DOI: 10.1016/j.fct.2017.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 11/16/2022]
|
15
|
Susceptibility of Broiler Chickens to Coccidiosis When Fed Subclinical Doses of Deoxynivalenol and Fumonisins-Special Emphasis on the Immunological Response and the Mycotoxin Interaction. Toxins (Basel) 2016; 8:toxins8080231. [PMID: 27472362 PMCID: PMC4999847 DOI: 10.3390/toxins8080231] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/30/2016] [Accepted: 07/18/2016] [Indexed: 11/17/2022] Open
Abstract
Deoxynivalenol (DON) and fumonisins (FB) are the most frequently encountered mycotoxins produced by Fusarium species in livestock diets. The effect of subclinical doses of mycotoxins in chickens is largely unknown, and in particular the susceptibility of birds to pathogenic challenge when fed these fungal metabolites. Therefore, the present study reports the effects of DON and FB on chickens challenged with Eimeria spp, responsible for coccidiosis. Broilers were fed diets from hatch to day 20, containing no mycotoxins, 1.5 mg DON/kg, 20 mg FB/kg, or both toxins (12 pens/diet; 7 birds/pen). At day 14, six pens of birds per diet (half of the birds) were challenged with a 25×-recommended dose of coccidial vaccine, and all birds (challenged and unchallenged) were sampled 6 days later. As expected, performance of birds was strongly affected by the coccidial challenge. Ingestion of mycotoxins did not further affect the growth but repartitioned the rate of reduction (between the fraction due to the change in maintenance and feed efficiency), and reduced apparent nitrogen digestibility. Intestinal lesions and number of oocysts in the jejunal mucosa and feces of challenged birds were more frequent and intense in the birds fed mycotoxins than in birds fed control feed. The upregulation of cytokines (interleukin (IL) IL-1β, IL-6, IL-8 and IL-10) following coccidial infection was higher in the jejunum of birds fed mycotoxins. Further, the higher intestinal immune response was associated with a higher percentage of T lymphocytes CD4+CD25+, also called Tregs, observed in the cecal tonsils of challenged birds fed mycotoxins. Interestingly, the increase in FB biomarker of exposure (sphinganine/sphingosine ratio in serum and liver) suggested a higher absorption and bioavailability of FB in challenged birds. The interaction of DON and FB was very dependent on the endpoint assessed, with three endpoints reporting antagonism, nine additivity, and two synergism. In conclusion, subclinical doses of DON and FB showed little effects in unchallenged chickens, but seem to result in metabolic and immunologic disturbances that amplify the severity of coccidiosis.
Collapse
|
16
|
Ribosome quality control is a central protection mechanism for yeast exposed to deoxynivalenol and trichothecin. BMC Genomics 2016; 17:417. [PMID: 27245696 PMCID: PMC4888481 DOI: 10.1186/s12864-016-2718-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/10/2016] [Indexed: 11/25/2022] Open
Abstract
Background The trichothecene mycotoxins deoxynivalenol (DON) and trichothecin (TTC) are inhibitors of eukaryotic protein synthesis. Their effect on cellular homeostasis is poorly understood. We report a systematic functional investigation of the effect of DON and TTC on the yeast Saccharomyces cerevisiae using genetic array, network and microarray analysis. To focus the genetic analysis on intracellular consequences of toxin action we eliminated the PDR5 gene coding for a potent pleiotropic drug efflux protein potentially confounding results. We therefore used a knockout library with a pdr5Δ strain background. Results DON or TTC treatment creates a fitness bottleneck connected to ribosome efficiency. Genes isolated by systematic genetic array analysis as contributing to toxin resistance function in ribosome quality control, translation fidelity, and in transcription. Mutants in the E3 ligase Hel2, involved in ribosome quality control, and several members of the Rpd3 histone deacetylase complex were highly sensitive to DON. DON and TTC have similar genetic profiles despite their different toxic potency. Network analysis shows a coherent and tight network of genetic interactions among the DON and TTC resistance conferring gene products. The networks exhibited topological properties commonly associated with efficient processing of information. Many sensitive mutants have a "slow growth" gene expression signature. DON-exposed yeast cells increase transcripts of ribosomal protein and histone genes indicating an internal signal for growth enhancement. Conclusions The combination of gene expression profiling and analysis of mutants reveals cellular pathways which become bottlenecks under DON and TTC stress. These are generally directly or indirectly connected to ribosome biosynthesis such as the general secretory pathway, cytoskeleton, cell cycle delay, ribosome synthesis and translation quality control. Gene expression profiling points to an increased demand of ribosomal components and does not reveal activation of stress pathways. Our analysis highlights ribosome quality control and a contribution of a histone deacetylase complex as main sources of resistance against DON and TTC. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2718-y) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Antonissen G, Van Immerseel F, Pasmans F, Ducatelle R, Janssens GPJ, De Baere S, Mountzouris KC, Su S, Wong EA, De Meulenaer B, Verlinden M, Devreese M, Haesebrouck F, Novak B, Dohnal I, Martel A, Croubels S. Mycotoxins Deoxynivalenol and Fumonisins Alter the Extrinsic Component of Intestinal Barrier in Broiler Chickens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10846-10855. [PMID: 26632976 DOI: 10.1021/acs.jafc.5b04119] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Deoxynivalenol (DON) and fumonisins (FBs) are secondary metabolites produced by Fusarium fungi that frequently contaminate broiler feed. The aim of this study was to investigate the impact of DON and/or FBs on the intestinal barrier in broiler chickens, more specifically on the mucus layer and antioxidative response to oxidative stress. One-day-old broiler chicks were divided into four groups, each consisting of eight pens of seven birds each, and were fed for 15 days either a control diet, a DON-contaminated diet (4.6 mg DON/kg feed), a FBs-contaminated diet (25.4 mg FB1 + FB2/kg feed), or a DON+FBs-contaminated diet (4.3 mg DON and 22.9 mg FB1 + FB2/kg feed). DON and FBs affected the duodenal mucus layer by suppressing intestinal mucin (MUC) 2 gene expression and altering the mucin monosaccharide composition. Both mycotoxins decreased gene expression of the intestinal zinc transporter (ZnT)-1 and regulated intracellular methionine homeostasis, which are both important for preserving the cell's critical antioxidant activity. Feeding a DON- and/or FBs-contaminated diet, at concentrations close to the European Union maximum guidance levels (5 mg DON and 20 mg FB1 + FB2/kg feed) changes the intestinal mucus layer and several intestinal epithelial antioxidative mechanisms.
Collapse
Affiliation(s)
- Gunther Antonissen
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University , Salisburylaan 133, 9820 Merelbeke, Belgium
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University , Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University , Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University , Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University , Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Geert P J Janssens
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University , Heidestraat 19, 9820 Merelbeke, Belgium
| | - Siegrid De Baere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University , Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Konstantinos C Mountzouris
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens , Iera Odos 75, 11855 Athens, Greece
| | - Shengchen Su
- Department of Animal and Poultry Sciences, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Eric A Wong
- Department of Animal and Poultry Sciences, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Bruno De Meulenaer
- Department of Food Safety and Food Quality (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, 9000 Gent, Belgium
| | - Marc Verlinden
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University , Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Mathias Devreese
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University , Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University , Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Barbara Novak
- Biomin Research Center , Technopark 1, 3430 Tulln, Austria
| | - Ilse Dohnal
- Biomin Research Center , Technopark 1, 3430 Tulln, Austria
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University , Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University , Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
18
|
Behrens M, Hüwel S, Galla HJ, Humpf HU. Blood-Brain Barrier Effects of the Fusarium Mycotoxins Deoxynivalenol, 3 Acetyldeoxynivalenol, and Moniliformin and Their Transfer to the Brain. PLoS One 2015; 10:e0143640. [PMID: 26600019 PMCID: PMC4658139 DOI: 10.1371/journal.pone.0143640] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/07/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Secondary metabolites produced by Fusarium fungi frequently contaminate food and feed and have adverse effects on human and animal health. Fusarium mycotoxins exhibit a wide structural and biosynthetic diversity leading to different toxicokinetics and toxicodynamics. Several studies investigated the toxicity of mycotoxins, focusing on very specific targets, like the brain. However, it still remains unclear how fast mycotoxins reach the brain and if they impair the integrity of the blood-brain barrier. This study investigated and compared the effects of the Fusarium mycotoxins deoxynivalenol, 3-acetyldeoxynivalenol and moniliformin on the blood-brain barrier. Furthermore, the transfer properties to the brain were analyzed, which are required for risk assessment, including potential neurotoxic effects. METHODS Primary porcine brain capillary endothelial cells were cultivated to study the effects of the examined mycotoxins on the blood-brain barrier in vitro. The barrier integrity was monitored by cellular impedance spectroscopy and 14C radiolabeled sucrose permeability measurements. The distribution of the applied toxins between blood and brain compartments of the cell monolayer was analyzed by high performance liquid chromatography-mass spectrometry to calculate transfer rates and permeability coefficients. RESULTS Deoxynivalenol reduced the barrier integrity and caused cytotoxic effects at 10 μM concentrations. Slight alterations of the barrier integrity were also detected for 3-acetyldeoxynivalenol. The latter was transferred very quickly across the barrier and additionally cleaved to deoxynivalenol. The transfer of deoxynivalenol and moniliformin was slower, but clearly exceeded the permeability of the negative control. None of the compounds was enriched in one of the compartments, indicating that no efflux transport protein is involved in their transport.
Collapse
Affiliation(s)
- Matthias Behrens
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Sabine Hüwel
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, 48149, Münster, Germany
| | - Hans-Joachim Galla
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
- * E-mail:
| |
Collapse
|
19
|
Warth B, Siegwart G, Lemmens M, Krska R, Adam G, Schuhmacher R. Hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry for the quantification of uridine diphosphate-glucose, uridine diphosphate-glucuronic acid, deoxynivalenol and its glucoside: In-house validation and application to wheat. J Chromatogr A 2015; 1423:183-9. [PMID: 26554298 DOI: 10.1016/j.chroma.2015.10.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/16/2015] [Accepted: 10/22/2015] [Indexed: 11/17/2022]
Abstract
Nucleotide sugars, the activated forms of monosaccharides, are important metabolites involved in a multitude of cellular processes including glycosylation of xenobiotics. Especially in plants, UDP-glucose is one of the most prominent members among these nucleotide-sugars, as it is involved in the formation of glucose conjugates of xenobiotics, including mycotoxins, but also holds a central role in the interconversion of energized sugars such as the formation of UDP-glucuronic acid required for cell wall biosynthesis. Here, we present the first HILIC-LC-ESI-TQ-MS/MS method for the quantification of UDP-glucose and UDP-glucuronic acid together with the Fusarium toxin deoxynivalenol (DON) and its major plant detoxification product DON-3-O-glucoside (DON-3-Glc) utilizing a polymer-based column. For sample preparation a time-effective and straightforward 'dilute and shoot' protocol was applied. The chromatographic run time was minimized to 9min including proper column re-equilibration. In-house validation of the method verified its linear range, intra- (1-7%) and interday (8-20%) precision, instrumental LODs between 0.6 and 10ngmL(-1), selectivity and moderate matrix effects with mean recoveries of 85-103%. To prove the methods applicability, we analyzed two sets of wheat extracts obtained from different cultivars grown under standardized greenhouse conditions. The results clearly demonstrated the suitability of the developed method to quantify UDP-glucose, DON and its masked form D3G in diluted wheat extracts. We observed differing concentration levels of UDP-glucose in the two wheat cultivars showing different resistance to the severe plant disease Fusarium head blight. We propose that the higher ability to detoxify DON into DON-3-Glc might be a consequence of the higher cellular UDP-glucose pool in the resistant cultivar.
Collapse
Affiliation(s)
- Benedikt Warth
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, A-3430 Tulln, Austria
| | - Gerald Siegwart
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Marc Lemmens
- Institute for Biotechnology in Plant Production, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, A-3430 Tulln, Austria
| | - Rudolf Krska
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, A-3430 Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, A-3430 Tulln, Austria.
| |
Collapse
|
20
|
Michlmayr H, Malachová A, Varga E, Kleinová J, Lemmens M, Newmister S, Rayment I, Berthiller F, Adam G. Biochemical Characterization of a Recombinant UDP-glucosyltransferase from Rice and Enzymatic Production of Deoxynivalenol-3-O-β-D-glucoside. Toxins (Basel) 2015; 7:2685-700. [PMID: 26197338 PMCID: PMC4516937 DOI: 10.3390/toxins7072685] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/10/2015] [Accepted: 07/16/2015] [Indexed: 12/20/2022] Open
Abstract
Glycosylation is an important plant defense mechanism and conjugates of Fusarium mycotoxins often co-occur with their parent compounds in cereal-based food and feed. In case of deoxynivalenol (DON), deoxynivalenol-3-O-β-D-glucoside (D3G) is the most important masked mycotoxin. The toxicological significance of D3G is not yet fully understood so that it is crucial to obtain this compound in pure and sufficient quantities for toxicological risk assessment and for use as an analytical standard. The aim of this study was the biochemical characterization of a DON-inactivating UDP-glucosyltransferase from rice (OsUGT79) and to investigate its suitability for preparative D3G synthesis. Apparent Michaelis constants (Km) of recombinant OsUGT79 were 0.23 mM DON and 2.2 mM UDP-glucose. Substrate inhibition occurred at DON concentrations above 2 mM (Ki = 24 mM DON), and UDP strongly inhibited the enzyme. Cu2+ and Zn2+ (1 mM) inhibited the enzyme completely. Sucrose synthase AtSUS1 was employed to regenerate UDP-glucose during the glucosylation reaction. With this approach, optimal conversion rates can be obtained at limited concentrations of the costly co-factor UDP-glucose. D3G can now be synthesized in sufficient quantity and purity. Similar strategies may be of interest to produce β-glucosides of other toxins.
Collapse
Affiliation(s)
- Herbert Michlmayr
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 24, 3430 Tulln, Austria.
| | - Alexandra Malachová
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
| | - Elisabeth Varga
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
| | - Jana Kleinová
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic.
| | - Marc Lemmens
- Biotechnology in Plant Production, Department IFA-Tulln, BOKU, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
| | - Sean Newmister
- Department of Biochemistry, University of Wisconsin, 433 Babcock Dr., Madison, WI 53706, USA.
| | - Ivan Rayment
- Department of Biochemistry, University of Wisconsin, 433 Babcock Dr., Madison, WI 53706, USA.
| | - Franz Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 24, 3430 Tulln, Austria.
| |
Collapse
|
21
|
Antonissen G, Devreese M, Van Immerseel F, De Baere S, Hessenberger S, Martel A, Croubels S. Chronic exposure to deoxynivalenol has no influence on the oral bioavailability of fumonisin B1 in broiler chickens. Toxins (Basel) 2015; 7:560-71. [PMID: 25690690 PMCID: PMC4344641 DOI: 10.3390/toxins7020560] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/15/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023] Open
Abstract
Both deoxynivalenol (DON) and fumonisin B1 (FB1) are common contaminants of feed. Fumonisins (FBs) in general have a very limited oral bioavailability in healthy animals. Previous studies have demonstrated that chronic exposure to DON impairs the intestinal barrier function and integrity, by affecting the intestinal surface area and function of the tight junctions. This might influence the oral bioavailability of FB1, and possibly lead to altered toxicity of this mycotoxin. A toxicokinetic study was performed with two groups of 6 broiler chickens, which were all administered an oral bolus of 2.5 mg FBs/kg BW after three-week exposure to either uncontaminated feed (group 1) or feed contaminated with 3.12 mg DON/kg feed (group 2). No significant differences in toxicokinetic parameters of FB1 could be demonstrated between the groups. Also, no increased or decreased body exposure to FB1 was observed, since the relative oral bioavailability of FB1 after chronic DON exposure was 92.2%.
Collapse
Affiliation(s)
- Gunther Antonissen
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Mathias Devreese
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Siegrid De Baere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | | | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| |
Collapse
|
22
|
Warth B, Parich A, Bueschl C, Schoefbeck D, Neumann NKN, Kluger B, Schuster K, Krska R, Adam G, Lemmens M, Schuhmacher R. GC-MS based targeted metabolic profiling identifies changes in the wheat metabolome following deoxynivalenol treatment. Metabolomics 2015; 11:722-738. [PMID: 25972772 PMCID: PMC4419159 DOI: 10.1007/s11306-014-0731-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/08/2014] [Indexed: 01/13/2023]
Abstract
Fusariumgraminearum and related species commonly infest grains causing the devastating plant disease Fusarium head blight (FHB) and the formation of trichothecene mycotoxins. The most relevant toxin is deoxynivalenol (DON), which acts as a virulence factor of the pathogen. FHB is difficult to control and resistance to this disease is a polygenic trait, mainly mediated by the quantitative trait loci (QTL) Fhb1 and Qfhs.ifa-5A. In this study we established a targeted GC-MS based metabolomics workflow comprising a standardized experimental setup for growth, treatment and sampling of wheat ears and subsequent GC-MS analysis followed by data processing and evaluation of QC measures using tailored statistical and bioinformatics tools. This workflow was applied to wheat samples of six genotypes with varying levels of Fusarium resistance, treated with either DON or water, and harvested 0, 12, 24, 48 and 96 h after treatment. The results suggest that the primary carbohydrate metabolism and transport, the citric acid cycle and the primary nitrogen metabolism of wheat are clearly affected by DON treatment. Most importantly significantly elevated levels of amino acids and derived amines were observed. In particular, the concentrations of the three aromatic amino acids phenylalanine, tyrosine, and tryptophan increased. No clear QTL specific difference in the response could be observed except a generally faster increase in shikimate pathway intermediates in genotypes containing Fhb1. The overall workflow proved to be feasible and facilitated to obtain a more comprehensive picture on the effect of DON on the central metabolism of wheat.
Collapse
Affiliation(s)
- Benedikt Warth
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry and Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Alexandra Parich
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry and Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Christoph Bueschl
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry and Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Denise Schoefbeck
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry and Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Nora Katharina Nicole Neumann
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry and Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Bernhard Kluger
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry and Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Katharina Schuster
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry and Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Rudolf Krska
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry and Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Marc Lemmens
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry and Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry and Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| |
Collapse
|
23
|
Warth B, Fruhmann P, Wiesenberger G, Kluger B, Sarkanj B, Lemmens M, Hametner C, Fröhlich J, Adam G, Krska R, Schuhmacher R. Deoxynivalenol-sulfates: identification and quantification of novel conjugated (masked) mycotoxins in wheat. Anal Bioanal Chem 2014; 407:1033-9. [PMID: 25492089 PMCID: PMC4305104 DOI: 10.1007/s00216-014-8340-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 01/26/2023]
Abstract
We report the identification of deoxynivalenol-3-sulfate and deoxynivalenol-15-sulfate as two novel metabolites of the trichothecene mycotoxin deoxynivalenol in wheat. Wheat ears which were either artificially infected with Fusarium graminearum or directly treated with the major Fusarium toxin deoxynivalenol (DON) were sampled 96 h after treatment. Reference standards, which have been chemically synthesized and confirmed by NMR, were used to establish a liquid chromatography-electrospray ionization (LC-ESI)-MS/MS-based "dilute and shoot" method for the detection, unambiguous identification, and quantification of both sulfate conjugates in wheat extracts. Using this approach, detection limits of 0.003 mg/kg for deoxynivalenol-3-sulfate and 0.002 mg/kg for deoxynivalenol-15-sulfate were achieved. Matrix-matched calibration was used for the quantification of DON-sulfates in the investigated samples. In DON-treated samples, DON-3-sulfate was detected in the range of 0.29-1.4 mg/kg fresh weight while DON-15-sulfate concentrations were significantly lower (range 0.015-0.061 mg/kg fresh weight). In Fusarium-infected wheat samples, DON-3-sulfate was the only detected sulfate conjugate (range 0.022-0.059 mg/kg fresh weight). These results clearly demonstrate the potential of wheat to form sulfate conjugates of DON. In order to test whether sulfation is a detoxification reaction in planta, we determined the ability of the sulfated DON derivatives to inhibit in vitro protein synthesis of wheat ribosomes. The results demonstrate that both DON-sulfates can be regarded as detoxification products. DON-15-sulfate was about 44× less inhibitory than the native toxin, and no toxicity was observed for DON-3-sulfate in the tested range.
Collapse
Affiliation(s)
- Benedikt Warth
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Antonissen G, Van Immerseel F, Pasmans F, Ducatelle R, Haesebrouck F, Timbermont L, Verlinden M, Janssens GPJ, Eeckhaut V, Eeckhout M, De Saeger S, Hessenberger S, Martel A, Croubels S. The mycotoxin deoxynivalenol predisposes for the development of Clostridium perfringens-induced necrotic enteritis in broiler chickens. PLoS One 2014; 9:e108775. [PMID: 25268498 PMCID: PMC4182565 DOI: 10.1371/journal.pone.0108775] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/25/2014] [Indexed: 11/18/2022] Open
Abstract
Both mycotoxin contamination of feed and Clostridium perfringens-induced necrotic enteritis have an increasing global economic impact on poultry production. Especially the Fusarium mycotoxin deoxynivalenol (DON) is a common feed contaminant. This study aimed at examining the predisposing effect of DON on the development of necrotic enteritis in broiler chickens. An experimental Clostridium perfringens infection study revealed that DON, at a contamination level of 3,000 to 4,000 µg/kg feed, increased the percentage of birds with subclinical necrotic enteritis from 20±2.6% to 47±3.0% (P<0.001). DON significantly reduced the transepithelial electrical resistance in duodenal segments (P<0.001) and decreased duodenal villus height (P = 0.014) indicating intestinal barrier disruption and intestinal epithelial damage, respectively. This may lead to an increased permeability of the intestinal epithelium and decreased absorption of dietary proteins. Protein analysis of duodenal content indeed showed that DON contamination resulted in a significant increase in total protein concentration (P = 0.023). Furthermore, DON had no effect on in vitro growth, alpha toxin production and netB toxin transcription of Clostridium perfringens. In conclusion, feed contamination with DON at concentrations below the European maximum guidance level of 5,000 µg/kg feed, is a predisposing factor for the development of necrotic enteritis in broilers. These results are associated with a negative effect of DON on the intestinal barrier function and increased intestinal protein availability, which may stimulate growth and toxin production of Clostridium perfringens.
Collapse
Affiliation(s)
- Gunther Antonissen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- * E-mail:
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Leen Timbermont
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Marc Verlinden
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Geert Paul Jules Janssens
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Venessa Eeckhaut
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mia Eeckhout
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sarah De Saeger
- Department of Bio-analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
25
|
Fruhmann P, Skrinjar P, Weber J, Mikula H, Warth B, Sulyok M, Krska R, Adam G, Rosenberg E, Hametner C, Fröhlich J. Sulfation of deoxynivalenol, its acetylated derivatives, and T2-toxin. Tetrahedron 2014; 70:5260-5266. [PMID: 25170180 PMCID: PMC4082130 DOI: 10.1016/j.tet.2014.05.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/08/2014] [Accepted: 05/20/2014] [Indexed: 11/17/2022]
Abstract
The synthesis of several sulfates of trichothecene mycotoxins is presented. Deoxynivalenol (DON) and its acetylated derivatives were synthesized from 3-acetyldeoxynivalenol (3ADON) and used as substrate for sulfation in order to reach a series of five different DON-based sulfates as well as T2-toxin-3-sulfate. These substances are suspected to be formed during phase-II metabolism in plants and humans. The sulfation was performed using a sulfuryl imidazolium salt, which was synthesized prior to use. All protected intermediates and final products were characterized via NMR and will serve as reference materials for further investigations in the fields of toxicology and bioanalytics of mycotoxins.
Collapse
Affiliation(s)
- Philipp Fruhmann
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, A-1060 Vienna, Austria
| | - Philipp Skrinjar
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, A-1060 Vienna, Austria
| | - Julia Weber
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, A-1060 Vienna, Austria
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, A-1060 Vienna, Austria
| | - Benedikt Warth
- University of Natural Resources and Life Sciences, Vienna (BOKU), Dept. for Agrarbiotechnology (IFA-Tulln), Center for Analytical Chemistry, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| | - Michael Sulyok
- University of Natural Resources and Life Sciences, Vienna (BOKU), Dept. for Agrarbiotechnology (IFA-Tulln), Center for Analytical Chemistry, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| | - Rudolf Krska
- University of Natural Resources and Life Sciences, Vienna (BOKU), Dept. for Agrarbiotechnology (IFA-Tulln), Center for Analytical Chemistry, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| | - Gerhard Adam
- University of Natural Resources and Life Sciences, Vienna (BOKU), Dept. of Applied Genetics and Cell Biology, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| | - Erwin Rosenberg
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, A-1060 Vienna, Austria
| | - Christian Hametner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, A-1060 Vienna, Austria
| | - Johannes Fröhlich
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, A-1060 Vienna, Austria
| |
Collapse
|
26
|
Wan D, Huang L, Pan Y, Wu Q, Chen D, Tao Y, Wang X, Liu Z, Li J, Wang L, Yuan Z. Metabolism, distribution, and excretion of deoxynivalenol with combined techniques of radiotracing, high-performance liquid chromatography ion trap time-of-flight mass spectrometry, and online radiometric detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:288-296. [PMID: 24341775 DOI: 10.1021/jf4047946] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Dispositions of deoxynivalenol (DON) in rats and chickens were investigated, using a radiotracer method coupled with a novel γ-accurate radioisotope counting (γ-ARC) radio-high-performance liquid chromatography ion trap time-of-flight tandem mass spectrometry (radio-HPLC-IT-TOF-MS/MS) system. 3β-(3)H-DON was chemically synthesized and orally administrated to both sexes of rats and chickens as single or multiple doses. The results showed that DON was widely distributed and quickly eliminated in all tissues. The highest concentration was found in the gastrointestinal tract at 6 h post-administration. Substantially lower levels were detected in the kidney, liver, heart, lung, spleen, and brain. Three new metabolites were identified tentatively as 10-deoxynivalenol-sulfonate, 10-deepoxy-deoxynivalenol (DOM-1)-sulfonate, and deoxynivalenol-3α-sulfate. Deoxynivalenol-3α-sulfate was a major metabolite in chickens, while the major forms in rats were DOM-1 and DON. Additionally, a higher excretion rate in urine was observed in female rats than in male rats. The differences in metabolite profiles and excretion rates, which suggested diverse ways to detoxify, may relate to the different tolerances in different genders or species.
Collapse
Affiliation(s)
- Dan Wan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and Ministry of Agriculture (MOA) Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University , Wuhan, Hubei 430070, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wu Q, Lohrey L, Cramer B, Yuan Z, Humpf HU. Impact of physicochemical parameters on the decomposition of deoxynivalenol during extrusion cooking of wheat grits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:12480-12485. [PMID: 22010947 DOI: 10.1021/jf2038604] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Deoxynivalenol (DON) is a toxic secondary metabolite produced by molds of the Fusarium genus and is known to cause a spectrum of diseases in animals such as vomiting and gastroenteritis. It is found in cereals and cereal products as most processing techniques lead only to a partial reduction of deoxynivalenol levels. One technique with a reported relatively high impact on deoxynivaleol decomposition is extrusion cooking. In the current work, systematic studies of a range of physicochemical parameters, such as temperature, moisture, compression, residence time in the extruder, pH value, and protein content, on their impact on deoxynivalenol decomposition during extrusion cooking were performed. The analysis of deoxynivalenol was made by high-performance liquid chromatography--tandem mass spectrometry using a quick, easy, cheap, effective, rugged, and safe-based cleanup with 15-d(1)-deoxynivalenol as an internal standard. It could be shown that the reduction of deoxynivalenol levels is dependent on a set of parameters partially interacting with each other. Especially the moisture content and compression are key factors for the reduction of deoxynivalenol levels. A correlation between residence time of the mycotoxin in the extruder and deoxynivalenol degradation was also observed when screws without a compression factor were used. Generally, the reduction of deoxynivalenol levels was increased by the use of screws with a high compression factor. As known from cooking, deoxynivalenol could also be easily degraded by extrusion under alkaline conditions. Furthermore, an increase of the protein content of the starting material resulted in higher reduction rates of deoxynivalenol.
Collapse
Affiliation(s)
- Qinghua Wu
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | | | | | | | | |
Collapse
|
28
|
Determination of deoxynivalenol-sulfonate (DONS) in cereals by hydrophilic interaction chromatography coupled to tandem mass spectrometry. Mycotoxin Res 2010; 26:109-17. [DOI: 10.1007/s12550-010-0046-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 10/19/2022]
|
29
|
Königs M, Schwerdt G, Gekle M, Humpf H. Effects of the mycotoxin deoxynivalenol on human primary hepatocytes. Mol Nutr Food Res 2008; 52:830-9. [DOI: 10.1002/mnfr.200700439] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Sasanya JJ, Hall C, Wolf-Hall C. Analysis of deoxynivalenol, masked deoxynivalenol, and Fusarium graminearum pigment in wheat samples, using liquid chromatography-UV-mass spectrometry. J Food Prot 2008; 71:1205-13. [PMID: 18592747 DOI: 10.4315/0362-028x-71.6.1205] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tolerable limits set for deoxynivalenol (DON) do not consider DON conjugates such as DON-3-glucoside. Conjugates may be metabolized in vivo to DON. Such masked mycotoxins and the potentially toxic Fusarium pigment are not routinely analyzed in cereals. We quantified DON, DON-3-glucoside, and a red Fusarium pigment in hard red spring wheat, using a new liquid chromatography-mass spectrometry method. Extraction protocols using centrifugation and shaking, and methanol-methylene chloride (50:50 [vol/vol]) or acetonitrile-water (84:16 [vol/vol]) were assessed. Purposively and randomly selected hard spring wheat samples were extracted with solvent filtered through a C18 column and analyzed using liquid chromatography-UV-mass spectrometry. Isocratic mobile phase (70% methanol) was used. Recoveries were 96.4% (DON) and 70.0% (DON-3-glucoside), while limits of detection were 1 microg/kg (MS) and 10 microg/kg (UV), and limits of quantification were 1 microg/kg (UV) and 0.5 microg/kg (MS), respectively. The pigment limits of quantification and limits of detection on the MS were 4.3 and 0.0005 microg/kg, respectively. The purposively selected samples had DON, DON-3-glucoside, and pigment averages of 3.4 +/- 4.0 microg/g, 3.8 +/- 8.3 microg/g, and 0.31 +/- 3.71 g/kg, respectively. The randomly selected spring wheat had lower mean levels of DON (1.4 +/- 2.3 microg/g), DON-3-glucoside (0.2 +/- 1.0 microg/g), and pigment (147.93 +/- 247.84 microg/g). Analytical tools such as this new liquid chromatography-UV-mass spectrometry method can be used to quantify masked and parent mycotoxins, plus a potentially toxic pigment for risk assessment.
Collapse
Affiliation(s)
- J J Sasanya
- Great Plains Institute of Food Safety, North Dakota State University, Fargo, North Dakota 58105, USA
| | | | | |
Collapse
|
31
|
Bretz M, Beyer M, Cramer B, Knecht A, Humpf HU. Thermal degradation of the Fusarium mycotoxin deoxynivalenol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:6445-51. [PMID: 16910743 DOI: 10.1021/jf061008g] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Deoxynivalenol (DON) is a toxic secondary metabolite produced by molds of the Fusarium genus, which are able to infect cereal crops in the field. Concerning its rate of occurrence and mean concentration, DON is one of the most important mycotoxins in cereal commodities. Its toxic effects range from causing diarrhea, vomiting, and gastro-intestinal inflammation to noncompetitive inhibition of the biosynthesis of proteins in eukaryotic cells. To study the stability of DON under food-processing conditions such as cooking or baking, we performed model heating experiments and screened the residue for degradation products. Heating of DON and 3-acetyldeoxynivalenol (3-AcDON), especially under alkaline conditions, gave a mixture of compounds, which were isolated and structurally elucidated by NMR and MS experiments. Three of these compounds were already known (norDON A, norDON B, and norDON C), while four were new and named 9-hydroxymethyl DON lactone, norDON D, norDON E, and norDON F. The significance of the DON degradation products was checked by analyzing commercially available food samples. norDON A, B, and C were detected in 29-66% of the samples in mean concentrations ranging from 3 to 15 microg/kg. Furthermore, cell culture experiments using IHKE cells showed that the compounds that were detected in food samples are less cytotoxic in the formazan dye cytotoxicity assay compared to DON. Whereas DON revealed a median effective concentration (EC50) at 1.1 micromol/L, all other compounds did not show any significant effect up to 100 micromol/L. These findings indicate that the degradation of DON under thermal treatment might reduce the toxicity of DON contaminated food.
Collapse
Affiliation(s)
- Michael Bretz
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, 48149 Münster, Germany
| | | | | | | | | |
Collapse
|
32
|
Schatzmayr G, Zehner F, Täubel M, Schatzmayr D, Klimitsch A, Loibner AP, Binder EM. Microbiologicals for deactivating mycotoxins. Mol Nutr Food Res 2006; 50:543-51. [PMID: 16715543 DOI: 10.1002/mnfr.200500181] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mycotoxins are secondary metabolites of fungi affecting human and animal health. Five classes of mycotoxins are of major concern in animal husbandry, namely aflatoxins, trichothecenes, zearalenone, ochratoxins, and fumonisins. Due to their diverse structure these fungal toxins are able to cause a great variety of acute symptoms in animals. Clay minerals have been used in animal nutrition to bind mycotoxins, but the binders are only very specific for aflatoxins but not for other toxins. A novel strategy to control the problem of mycotoxicoses in animals is the application of microorganisms capable of biotransforming mycotoxins into nontoxic metabolites. The microbes act in the intestinal tract of animals prior to the resorption of the mycotoxins. A Eubacterium (BBSH 797) strain is able to deactivate trichothecenes by reduction of the epoxide ring (CAST, Mycotoxins, Risks in Plant, Animal and Human Systems, Task Force Report 139, Council of Agricultural Science and Technology, Ames Iowa 2003, p. 10.; Binder, E. M., Binder, J., Ellend, N., Schaffer, E. et al., in: Miraglia, M., van Egmond, H., Brera, C., Gilbert, J. (Eds.), Mycotoxins and Phycotoxins--Developments in Chemistry, Toxicology and Food Safety, Alaken, Fort Collins 1996, pp. 279-285). This strain was isolated out of bovine rumen fluid and the mode of action was proven in vitro and also in vivo. Further a novel yeast strain, capable of degrading ochratoxin A and zearalenone was isolated and characterized (Bruinink, A., Rasonyi, T., Sidler, C., Nat. Toxins 1999, 6, 173-177; Schatzmayr, G., Heidler, D., Fuchs, E., Mohnl, M. et al., Mycotoxin Res. 2003, 19, 124-128.) Due to the yeasts affiliation to the genus of Trichosporon and its property to degrade mycotoxins this strain was named Trichosporon mycotoxinivorans (Trichosporon MTV, 115).
Collapse
|
33
|
Bretz M, Beyer M, Cramer B, Humpf HU. Stable isotope dilution analysis of theFusariummycotoxins deoxynivalenol and 3-acetyldeoxynivalenol. Mol Nutr Food Res 2006; 50:251-60. [PMID: 16521158 DOI: 10.1002/mnfr.200500230] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Trichothecenes are secondary metabolites produced by several fungi of the Fusarium genus during their growth period. They inhibit protein biosynthesis in eukaryotic cells resulting in numerous toxic effects such as diarrhea, vomiting, and gastro-intestinal inflammation. Considering its occurrence in food and feedstuff, deoxynivalenol (DON) is one of the most important trichothecenes. We report the synthesis of stable isotope labeled 15-d(1)-deoxynivalenol (15-d(1)-DON) from its natural precursor 3-acetyldeoxynivalenol (3-AcDON) as starting material. Furthermore, a method for the analysis of DON and 3-AcDON using HPLC-MS/MS with stable isotope labeled 15-d(1)-DON and 3-d(3)-AcDON as internal standards has been developed. In total, 18 cereal product samples were analyzed with contamination levels ranging from 10-301 microg/kg for DON and 5-14 microg/kg for 3-AcDON. This is the first report of an isotope dilution MS method for the analysis of type B-trichothecenes.
Collapse
Affiliation(s)
- Michael Bretz
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Germany
| | | | | | | |
Collapse
|
34
|
Bretz M, Beyer M, Cramer B, Humpf HU. Synthesis of stable isotope labeled 3-acetyldeoxynivalenol. Mol Nutr Food Res 2005; 49:1151-3. [PMID: 16229052 DOI: 10.1002/mnfr.200500153] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Stable isotope labeled 3-acetyldeoxynivalenol (3-AcDON) was synthesized in excellent yield from deoxynivalenol as starting material. This is the first synthesis of a stable isotope labeled type-B trichothecene suitable as internal standard for HPLC-MS/MS or GC-MS analysis of trichothecene mycotoxins. The isotopic purity of the 3-d(3)-AcDON was determined to be 94.9%.
Collapse
Affiliation(s)
- Michael Bretz
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Correnstrasse 45, 48149 Münster, Germany
| | | | | | | |
Collapse
|
35
|
Krska R, Schothorst RC, van Egmond HP, Josephs RD, Lepschy J, Pettersson H, Chan D, Berthiller F, Schuhmacher R, Kandler W, Parich A, Welzig E. Processing and purity assessment of standards for the analysis of type-B trichothecene mycotoxins. Anal Bioanal Chem 2005; 382:1848-58. [PMID: 16007445 DOI: 10.1007/s00216-005-3330-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 05/12/2005] [Accepted: 05/12/2005] [Indexed: 10/25/2022]
Abstract
The lack of reliable, certified calibrant solutions for the Fusarium mycotoxins deoxynivalenol (DON), 3-acetyl-DON (3-Ac-DON), 15-acetyl-DON (15-Ac-DON) and nivalenol (NIV) is a serious drawback in the already problematic area of trichothecene analysis. For this reason, purified DON, 3-Ac-DON, 15-Ac-DON and NIV standards were processed, the conditions required for their isolation and purification were optimised, and the crystalline toxins were thoroughly characterised. Several complimentary analytical methods were used to evaluate the identities of the mycotoxins and the types and amounts of impurities; results obtained from 1H and 13C NMR spectra, as well as from IR-spectra, were in agreement with the literature. Elemental analysis revealed that the isolated NIV occurs as monohydrate. If this is not known it results in a weighing error of approximately 5%. Differential scanning calorimetry (DSC) was only successful for 15-Ac-DON, as the other trichothecenes decomposed during measurements. No traces of chloride, nitrate and sulphate were found by means of ion chromatography (IC). As expected UV absorption spectra for DON, NIV, 3-Ac-DON and 15-Ac-DON yielded lambda(max) values of 216, 217, 217 and 219 nm, respectively. Minor peaks due to impurities were observed by high performance liquid chromatography (HPLC) with UV detection. The main impurity peak in the DON sample was identified by LC-tandem mass spectroscopy (LC-MS/MS) as 4,7-dideoxy-NIV (7-deoxy-DON), which occurs at levels of approximately 1.4%. Gas chromatography (GC) was performed, coupled with either an electron capture detector (ECD), a flame ionisation detector (FID), or a mass spectrometric detector (MS); however, derivatisation prior to GC analysis makes the estimation of impurities difficult. LC-MS/MS was found to be unsuitable for quantifying levels of impurities. It can be concluded that high-purity (>97%) B-trichothecene standards were successfully processed and fully characterised for the first time.
Collapse
Affiliation(s)
- R Krska
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, Konrad Lorenz Strasse 20, 3430 Tulln, Austria.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Parich A, Pettersson H, Josephs RD, van Egmond HP, Schothorst R, Brereton P, Chan D, Krska R. DON calibrant: Towards the production of certified B-trichothecene calibrants. Mycotoxin Res 2005; 21:7-10. [DOI: 10.1007/bf02954805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Mitterbauer R, Poppenberger B, Raditschnig A, Lucyshyn D, Lemmens M, Glössl J, Adam G. Toxin-dependent utilization of engineered ribosomal protein L3 limits trichothecene resistance in transgenic plants. PLANT BIOTECHNOLOGY JOURNAL 2004; 2:329-40. [PMID: 17134394 DOI: 10.1111/j.1467-7652.2004.00075.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The contamination of agricultural products with Fusarium mycotoxins is a problem of world-wide importance. Fusarium graminearum and related species, which are important pathogens of small grain cereals and maize, produce an economically important and structurally diverse class of toxins designated trichothecenes. Trichothecenes inhibit eukaryotic protein synthesis. Therefore, a proposed role for these fungal toxins in plant disease development is to block or delay the expression of defence-related proteins induced by the plant. Using yeast as a model system, we have identified several mutations in the gene encoding ribosomal protein L3 (Rpl3), which confer semi-dominant resistance to trichothecenes. Expression of an engineered tomato RPL3 (LeRPL3) cDNA, into which one of the amino acid changes identified in yeast was introduced, improved the ability of transgenic tobacco plants to adapt to the trichothecene deoxynivalenol (DON), but did not result in constitutive resistance. We show here that, in the presence of wild-type Rpl3 protein, the engineered Rpl3 protein is not utilized, unless yeast transformants or the transgenic plants are challenged with sublethal amounts of toxin. Our data from yeast two-hybrid experiments suggest that affinity for the ribosome assembly factor Rrb1p could be altered by the toxin resistance-conferring mutation. This toxin-dependent utilization of the resistance-conferring Rpl3 protein could seriously limit efforts to utilize the identified target alterations in transgenic crops to increase trichothecene tolerance and Fusarium resistance.
Collapse
Affiliation(s)
- Rudolf Mitterbauer
- Institute of Applied Genetics and Cell Biology, Department of Applied Plant Sciences and Plant Biotechnology, BOKU-University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
38
|
Chen L, McCormick SP, Hohn TM. Altered regulation of 15-acetyldeoxynivalenol production in Fusarium graminearum. Appl Environ Microbiol 2000; 66:2062-5. [PMID: 10788382 PMCID: PMC101455 DOI: 10.1128/aem.66.5.2062-2065.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/1999] [Accepted: 01/28/2000] [Indexed: 11/20/2022] Open
Abstract
Most Fusarium graminearum isolates produce low or undetectable levels of trichothecenes in liquid shake cultures, making it difficult to perform biochemical studies of trichothecene biosynthesis. To develop strains with higher levels of trichothecene production under liquid shake conditions we transformed F. graminearum with both a reporter gene containing a homologous trichothecene pathway gene promoter (TRI5) and a gene encoding a heterologous trichothecene pathway transcription factor (TRI6). The TRI5 and TRI6 genes are part of the trichothecene pathway gene clusters of both Fusarium sporotrichioides and F. graminearum. These genes encode trichodiene synthase (encoded by TRI5), the first enzyme in the trichothecene pathway, and a transcription factor (encoded by TRI6) required for pathway gene expression. Transformation of F. graminearum with plasmids containing either an F. graminearum TRI5 promoter fragment (FGTRI5(P)) or FGTRI5(P) coupled with the beta-D-glucuronidase (GUS) reporter gene resulted in the identification of several transformants capable of producing 45 to 200 mg of 15-acetyldeoxynivalenol (15-ADON)/liter in liquid shake culture after 7 days. Increased 15-ADON production was only observed in transformants where plasmid integration occurred through the FGTRI5(P) sequence and was not accompanied by increased GUS expression. 15-ADON production was further increased in liquid culture up to 1,200 mg/liter following introduction of the F. sporotrichioides TRI6 gene (FSTRI16) into F. graminearum. The effects of FSTRI6 on 15-ADON production also depended on plasmid integration via homologous recombination of the FGTRI5(P) fragment and resulted in a 100-fold increase in GUS expression. High-level production of 15-ADON in liquid shake cultures provides a convenient method for large-scale trichothecene preparation. The results suggest that targeting transformation vector integration to FGTRI5(P) alters pathway gene expression and are consistent with the proposed conservation of TRI6 function between Fusarium species.
Collapse
Affiliation(s)
- L Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | | | | |
Collapse
|