1
|
Chen S, Gao L, Li X, Ye Y. Allopregnanolone in mood disorders: Mechanism and therapeutic development. Pharmacol Res 2021; 169:105682. [PMID: 34019980 DOI: 10.1016/j.phrs.2021.105682] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 01/23/2023]
Abstract
The neuroactive steroid allopregnanolone (ALLO) is an endogenous positive allosteric modulator of GABA type A receptor (GABAAR), and the down-regulation of its biosynthesis have been attributed to the development of mood disorders, such as depression, anxiety and post-traumatic stress disorder (PTSD). ALLO mediated depression/anxiety involves GABAergic mechanisms and appears to be related to brain-derived neurotrophic factor (BDNF), dopamine receptor, glutamate neurotransmission, and Ca2+ channel. In the clinical, brexanolone, as a newly developed intravenous ALLO preparation, has been approved for the treatment of postpartum depression (PPD). In addition, traditional antidepressants such as selective serotonin reuptake inhibitor (SSRI) could reverse ALLO decline. Recently, the translocation protein (TSPO, 18 kDa), which involves in the speed-limiting step of ALLO synthesis, and ALLO derivatization have been identified as new directions for antidepressant therapy. This review provides an overview of ALLO researches in animal model and patients, discusses its role in the development and treatment of depression/anxiety, and directs its therapeutic potential in future.
Collapse
Affiliation(s)
- Shiyi Chen
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Lijuan Gao
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Xiaoyu Li
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Yiping Ye
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
2
|
Tomaselli G, Vallée M. Stress and drug abuse-related disorders: The promising therapeutic value of neurosteroids focus on pregnenolone-progesterone-allopregnanolone pathway. Front Neuroendocrinol 2019; 55:100789. [PMID: 31525393 DOI: 10.1016/j.yfrne.2019.100789] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/14/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
The pregnenolone-progesterone-allopregnanolone pathway is receiving increasing attention in research on the role of neurosteroids in pathophysiology, particularly in stress-related and drug use disorders. These disorders involve an allostatic change that may result from deficiencies in allostasis or adaptive responses, and may be downregulated by adjustments in neurotransmission by neurosteroids. The following is an overview of findings that assess how pregnenolone and/or allopregnanolone concentrations are altered in animal models of stress and after consumption of alcohol or cannabis-type drugs, as well as in patients with depression, anxiety, post-traumatic stress disorder or psychosis and/or in those diagnosed with alcohol or cannabis use disorders. Preclinical and clinical evidence shows that pregnenolone and allopregnanolone, operating according to a different or common pharmacological profile involving GABAergic and/or endocannabinoid system, may be relevant biomarkers of psychiatric disorders for therapeutic purposes. Hence, ongoing clinical trials implicate synthetic analogs of pregnenolone or allopregnanolone, and also modulators of neurosteroidogenesis.
Collapse
Affiliation(s)
- Giovanni Tomaselli
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", 146 Rue Léo Saignat, 33000 Bordeaux, France; University of Bordeaux, 33000 Bordeaux, France
| | - Monique Vallée
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", 146 Rue Léo Saignat, 33000 Bordeaux, France; University of Bordeaux, 33000 Bordeaux, France.
| |
Collapse
|
3
|
Clossen BL, Reddy DS. Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1519-1538. [PMID: 28179120 PMCID: PMC5474195 DOI: 10.1016/j.bbadis.2017.02.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 11/16/2022]
Abstract
This article describes the recent advances in epileptogenesis and novel therapeutic approaches for the prevention of epilepsy, with a special emphasis on the pharmacological basis of disease-modification of epileptogenesis for curing epilepsy. Here we assess animal studies and human clinical trials of epilepsy spanning 1982-2016. Epilepsy arises from a number of neuronal factors that trigger epileptogenesis, which is the process by which a brain shifts from a normal physiologic state to an epileptic condition. The events precipitating these changes can be of diverse origin, including traumatic brain injury, cerebrovascular damage, infections, chemical neurotoxicity, and emergency seizure conditions such as status epilepticus. Expectedly, the molecular and system mechanisms responsible for epileptogenesis are not well defined or understood. To date, there is no approved therapy for the prevention of epilepsy. Epigenetic dysregulation, neuroinflammation, and neurodegeneration appear to trigger epileptogenesis. Targeted drugs are being identified that can truly prevent the development of epilepsy in at-risk people. The promising agents include rapamycin, COX-2 inhibitors, TRK inhibitors, epigenetic modulators, JAK-STAT inhibitors, and neurosteroids. Recent evidence suggests that neurosteroids may play a role in modulating epileptogenesis. A number of promising drugs are under investigation for the prevention or modification of epileptogenesis to halt the development of epilepsy. Some drugs in development appear rational for preventing epilepsy because they target the initial trigger or related signaling pathways as the brain becomes progressively more prone to seizures. Additional research into the target validity and clinical investigation is essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Bryan L Clossen
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
4
|
Hammond RS, Althaus AL, Ackley MA, Maciag C, Martinez Botella G, Salituro FG, Robichaud AJ, Doherty JJ. Anticonvulsant profile of the neuroactive steroid, SGE-516, in animal models. Epilepsy Res 2017; 134:16-25. [PMID: 28521115 DOI: 10.1016/j.eplepsyres.2017.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/21/2017] [Accepted: 05/03/2017] [Indexed: 12/18/2022]
Abstract
Despite the availability of multiple antiepileptic drugs (AED), failure to adequately control seizures is a challenge for approximately one third of epilepsy patients, and new therapies with a differentiated mechanism of action are needed. The neuroactive steroid, SGE-516, is a positive allosteric modulator of both gamma- and delta-containing GABAA receptors. This broad GABAA receptor activity differentiates neuroactive steroids like SGE-516 from benzodiazepines, a class of anticonvulsants which have been shown in vitro to selectively target gamma-subunit containing GABAA receptors. As a neuroactive steroid, SGE-516 has pharmacokinetic properties that are intended to allow for chronic oral dosing. We investigated the anticonvulsant activity of SGE-516 across numerous in vitro and in vivo models of seizure activity. SGE-516 dose-dependently reduced neuronal firing rates and epileptiform activity in vitro. In mice, SGE-516 protected against acute seizures in the PTZ-induced chemo-convulsant seizure model and the 6Hz psychomotor seizure model. In addition, SGE-516 demonstrated anticonvulsant activity in the mouse corneal kindling model. These data suggest that SGE-516 may have potential for development as a novel oral AED for the treatment of refractory seizures.
Collapse
|
5
|
Gunter BW, Jones SA, Paul IA, Platt DM, Rowlett JK. Benzodiazepine and neuroactive steroid combinations in rats: anxiolytic-like and discriminative stimulus effects. Psychopharmacology (Berl) 2016; 233:3237-47. [PMID: 27356519 PMCID: PMC6334648 DOI: 10.1007/s00213-016-4369-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
RATIONALE Benzodiazepines are effective anxiolytics, hypnotics, and anticonvulsants but unwanted side effects, including abuse potential, limit their use. A possible strategy to increase the therapeutic index of this drug class is to combine benzodiazepines with neuroactive steroids. OBJECTIVES The present study evaluated the extent to which combinations of benzodiazepines (triazolam, clonazepam) and neuroactive steroids (pregnanolone, ganaxolone) induced additive, supra-additive, or infra-additive effects in an elevated zero maze and a drug discrimination procedure in rats. METHODS Male Sprague-Dawley rats (N = 7/group) were placed into an elevated zero maze apparatus following injections of multiple doses of triazolam and pregnanolone, alone and combined, or clonazepam and ganaxolone, alone and combined. These drugs/drug combinations also were evaluated in rats (N = 8) trained to discriminate triazolam (0.1 mg/kg, i.p.) from vehicle. Drug interactions were evaluated using isobolographic and dose-addition analysis. RESULTS In the elevated zero maze, all drugs engendered dose-dependent increases in time spent in the open quadrant when administered alone. Triazolam and pregnanolone, as well as clonazepam and ganaxolone combinations produced additive or supra-additive effects depending on the fixed-proportion that was tested. In triazolam discrimination, all drugs engendered dose-dependent increases in triazolam-lever responding. In combination, triazolam and pregnanolone and clonazepam and ganaxolone produced predominantly additive discriminative stimulus effects, except for one fixed proportion of clonazepam and ganaxolone which had supra-additive effects. CONCLUSIONS Although drug interactions depended on the constituent drugs, the combination tested, and the behavioral endpoint; a combination was identified that would be predicted to result in supra-additive anxiolytic-like effects with predominantly additive discriminative stimulus effects.
Collapse
Affiliation(s)
- Barak W Gunter
- Department of Psychiatry and Human Behavior, Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
- Program in Neuroscience, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Sherman A Jones
- Department of Psychiatry and Human Behavior, Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
- Program in Neuroscience, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Ian A Paul
- Department of Psychiatry and Human Behavior, Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
- Program in Neuroscience, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Donna M Platt
- Department of Psychiatry and Human Behavior, Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
- Program in Neuroscience, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - James K Rowlett
- Department of Psychiatry and Human Behavior, Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
- Program in Neuroscience, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA.
| |
Collapse
|
6
|
Reddy DS. Neurosteroids for the potential protection of humans against organophosphate toxicity. Ann N Y Acad Sci 2016; 1378:25-32. [PMID: 27450921 DOI: 10.1111/nyas.13160] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/29/2016] [Accepted: 06/01/2016] [Indexed: 12/18/2022]
Abstract
This article describes the therapeutic potential of neurosteroids as anticonvulsant antidotes for chemical intoxication caused by organophosphate pesticides and nerve agents or gases like sarin and soman. Toxic manifestations following nerve agent exposure, as evident in chemical attacks in Japan and Syria, include hypersecretion, respiratory distress, tremors, convulsions leading to status epilepticus (SE), and death. Benzodiazepines, such as diazepam, are the current anticonvulsants of choice for controlling nerve agent-induced life-threatening seizures, SE, and brain injury. Benzodiazepines can control acute seizures when given early, but they are less effective for delayed treatment of SE, which is characterized by rapid desensitization of synaptic GABAA receptors, benzodiazepine resistance, and brain injury. Neurosteroid-sensitive extrasynaptic GABAA receptors, however, remain unaffected by such events. Thus, anticonvulsant neurosteroids may produce more effective protection than benzodiazepines against a broad spectrum of chemical agents, even when given late after nerve agent exposure.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas.
| |
Collapse
|
7
|
Kazdoba TM, Hagerman RJ, Zolkowska D, Rogawski MA, Crawley JN. Evaluation of the neuroactive steroid ganaxolone on social and repetitive behaviors in the BTBR mouse model of autism. Psychopharmacology (Berl) 2016; 233:309-23. [PMID: 26525567 PMCID: PMC4703522 DOI: 10.1007/s00213-015-4115-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
RATIONALE Abnormalities in excitatory/inhibitory neurotransmission are hypothesized to contribute to autism spectrum disorder (ASD) etiology. BTBR T (+) Itpr3 (tf) /J (BTBR), an inbred mouse strain, displays social deficits and repetitive self-grooming, offering face validity to ASD diagnostic symptoms. Reduced GABAergic neurotransmission in BTBR suggests that GABAA receptor positive allosteric modulators (PAMs) could improve ASD-relevant BTBR phenotypes. The neuroactive steroid ganaxolone acts as a PAM, displaying anticonvulsant properties in rodent epilepsy models and an anxiolytic-like profile in the elevated plus-maze. OBJECTIVES We evaluated ganaxolone in BTBR and C57BL/6J mice in standardized assays for sociability and repetitive behaviors. Open field and anxiety-related behaviors were tested as internal controls and for comparison with the existing neuroactive steroid literature. RESULTS Ganaxolone improved aspects of social approach and reciprocal social interactions in BTBR, with no effect on repetitive self-grooming, and no detrimental effects in C57BL/6J. Ganaxolone increased overall exploratory activity in BTBR and C57BL/6J in the open field, social approach, and elevated plus-maze, introducing a confound for the interpretation of social improvements. Allopregnanolone and diazepam similarly increased total entries in the elevated plus-maze, indicating that behavioral activation may be a general property of GABAA receptor PAMs in these strains. CONCLUSIONS Ganaxolone shows promise for improving sociability. In addition, ganaxolone, as well as other GABAA receptor PAMs, enhanced overall BTBR activity. The translational implications of specific sociability improvements and nonspecific behavioral activation by ganaxolone in the BTBR model remain to be determined. Future studies to explore whether PAMs provide a novel profile with unique benefits for ASD treatment will be worthwhile.
Collapse
Affiliation(s)
- Tatiana M Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
| | - Randi J Hagerman
- MIND Institute, Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Dorota Zolkowska
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Michael A Rogawski
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| |
Collapse
|
8
|
Salgado PRR, da Fonsêca DV, Braga RM, de Melo CGF, Andrade LN, de Almeida RN, de Sousa DP. Comparative Anticonvulsant Study of Epoxycarvone Stereoisomers. Molecules 2015; 20:19660-73. [PMID: 26528962 PMCID: PMC6332048 DOI: 10.3390/molecules201119649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/12/2015] [Accepted: 10/20/2015] [Indexed: 01/13/2023] Open
Abstract
Stereoisomers of the monoterpene epoxycarvone (EC), namely (+)-cis-EC, (-)-cis-EC, (+)-trans-EC, and (-)-trans-EC, were comparatively evaluated for anticonvulsant activity in specific methodologies. In the pentylenetetrazole (PTZ)-induced anticonvulsant test, all of the stereoisomers (at 300 mg/kg) increased the latency to seizure onset, and afforded 100% protection against the death of the animals. In the maximal electroshock-induced seizures (MES) test, prevention of tonic seizures was also verified for all of the isomers tested. However, the isomeric forms (+) and (-)-trans-EC showed 25% and 12.5% inhibition of convulsions, respectively. In the pilocarpine-induced seizures test, all stereoisomers demonstrated an anticonvulsant profile, yet the stereoisomers (+) and (-)-trans-EC (at 300 mg/kg) showed a more pronounced effect. A strychnine-induced anticonvulsant test was performed, and none of the stereoisomers significantly increased the latency to onset of convulsions; the stereoisomers probably do not act in this pathway. However, the stereoisomers (+)-cis-EC and (+)-trans-EC greatly increased the latency to death of the animals, thus presenting some protection. The four EC stereoisomers show promise for anticonvulsant activity, an effect emphasized in the isomers (+)-cis-EC, (+)-trans-EC, and (-)-trans-EC for certain parameters of the tested methodologies. These results serve as support for further research and development of antiepileptic drugs from monoterpenes.
Collapse
Affiliation(s)
- Paula Regina Rodrigues Salgado
- Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, PB, Brazil; (P.R.R.S.); (D.V.F.); (R.M.B.); (C.G.F.M.); (R.N.A.)
| | - Diogo Vilar da Fonsêca
- Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, PB, Brazil; (P.R.R.S.); (D.V.F.); (R.M.B.); (C.G.F.M.); (R.N.A.)
| | - Renan Marinho Braga
- Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, PB, Brazil; (P.R.R.S.); (D.V.F.); (R.M.B.); (C.G.F.M.); (R.N.A.)
| | - Cynthia Germoglio Farias de Melo
- Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, PB, Brazil; (P.R.R.S.); (D.V.F.); (R.M.B.); (C.G.F.M.); (R.N.A.)
| | - Luciana Nalone Andrade
- Departamento de Farmácia, Universidade Federal de Sergipe, São Cristóvão-SE, CEP 49100-000, Brazil;
| | - Reinaldo Nóbrega de Almeida
- Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, PB, Brazil; (P.R.R.S.); (D.V.F.); (R.M.B.); (C.G.F.M.); (R.N.A.)
- Departamento de Fisiologia e Patologia, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, PB, Brazil
| | - Damião Pergentino de Sousa
- Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, PB, Brazil; (P.R.R.S.); (D.V.F.); (R.M.B.); (C.G.F.M.); (R.N.A.)
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, PB, Brazil
| |
Collapse
|
9
|
Brunton PJ. Programming the brain and behaviour by early-life stress: a focus on neuroactive steroids. J Neuroendocrinol 2015; 27:468-80. [PMID: 25688636 DOI: 10.1111/jne.12265] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 01/09/2023]
Abstract
Animal studies have amply demonstrated that stress exposure during pregnancy or in early postnatal life can adversely influence brain development and have long-term 'programming' effects on future brain function and behaviour. Furthermore, a growing body of evidence from human studies supports the hypothesis that some psychiatric disorders may have developmental origins. Here, the focus is on three adverse consequences of early-life stress: dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, heightened anxiety behaviour and cognitive impairments, with review of what is known about the underlying central mechanisms. Neuroactive steroids modulate neuronal activity and play a key role in neurodevelopment. Moreover they can negatively modulate activity of the HPA axis, exert anxiolytic actions and influence cognitive performance. Thus, neuroactive steroids may provide a link between early-life stress and the resultant adverse effects on the brain and behaviour. Here, a role for neuroactive steroids, in particular the 5α-reduced/3α-hydroxylated metabolites of progesterone, testosterone and deoxycorticosterone, is discussed in the context of early-life stress. Furthermore, the impact of early-life stress on the brain's capacity to generate neurosteroids is considered and the evidence for an ability of neuroactive steroids to over-write the negative effects of early-life stress on the brain and behaviour is examined. An enhanced understanding of the influence of early-life stress on brain neurosteroid systems could aid the identification of new targets for developing treatments for stress-related conditions in humans.
Collapse
Affiliation(s)
- P J Brunton
- Division of Neurobiology, The Roslin Institute & R(D)SVS, University of Edinburgh, Midlothian, UK
| |
Collapse
|
10
|
Bruun DA, Cao Z, Inceoglu B, Vito ST, Austin AT, Hulsizer S, Hammock BD, Tancredi DJ, Rogawski MA, Pessah IN, Lein PJ. Combined treatment with diazepam and allopregnanolone reverses tetramethylenedisulfotetramine (TETS)-induced calcium dysregulation in cultured neurons and protects TETS-intoxicated mice against lethal seizures. Neuropharmacology 2015; 95:332-42. [PMID: 25882826 DOI: 10.1016/j.neuropharm.2015.03.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/15/2015] [Accepted: 03/31/2015] [Indexed: 01/09/2023]
Abstract
Tetramethylenedisulfotetramine (TETS) is a potent convulsant GABAA receptor blocker. Mice receiving a lethal dose of TETS (0.15 mg/kg i.p.) are rescued from death by a high dose of diazepam (5 mg/kg i.p.) administered shortly after the second clonic seizure (∼20 min post-TETS). However, this high dose of diazepam significantly impairs blood pressure and mobility, and does not prevent TETS-induced neuroinflammation in the brain. We previously demonstrated that TETS alters synchronous Ca(2+) oscillations in primary mouse hippocampal neuronal cell cultures and that pretreatment with the combination of diazepam and allopregnanolone at concentrations having negligible effects individually prevents TETS effects on intracellular Ca(2+) dynamics. Here, we show that treatment with diazepam and allopregnanolone (0.1 μM) 20 min after TETS challenge normalizes synchronous Ca(2+) oscillations when added in combination but not when added singly. Similarly, doses (0.03-0.1 mg/kg i.p.) of diazepam and allopregnanolone that provide minimal protection when administered singly to TETS intoxicated mice increase survival from 10% to 90% when given in combination either 10 min prior to TETS or following the second clonic seizure. This therapeutic combination has negligible effects on blood pressure or mobility. Combined treatment with diazepam and allopregnanolone also decreases TETS-induced microglial activation. Diazepam and allopregnanolone have distinct actions as positive allosteric modulators of GABAA receptors that in combination enhance survival and mitigate neuropathology following TETS intoxication without the adverse side effects associated with high dose benzodiazepines. Combination therapy with a benzodiazepine and neurosteroid represents a novel neurotherapeutic strategy with potentially broad application.
Collapse
Affiliation(s)
- Donald A Bruun
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Zhengyu Cao
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Bora Inceoglu
- Department of Entomology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Stephen T Vito
- Department of Entomology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | | | - Susan Hulsizer
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA; Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | | | - Michael A Rogawski
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA.
| |
Collapse
|
11
|
Holmberg E, Johansson M, Bäckström T, Löfgren M, Haage D. Repeated allopregnanolone exposure induces weight gain in schedule fed rats on high fat diet. Physiol Behav 2014; 140:1-7. [PMID: 25484355 DOI: 10.1016/j.physbeh.2014.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/28/2014] [Accepted: 12/03/2014] [Indexed: 01/06/2023]
Abstract
Ingestion of energy rich high fat diets is one of the determining factors associated with the obesity epidemic. Therefore, much can be learned from studies of obesity-related substances given to animals fed a high fat diet. The progesterone metabolite allopregnanolone is a potent positive modulator of the gamma-aminobutyric acid (GABA)A-receptor, and both allopregnanolone and GABA have been implicated in evoking hyperphagia. In this study, food intake and body weight gain were investigated during repeated allopregnanolone exposure. Male Wistar rats were studied when fed chow ad libitum, with chow access for 4h per day or with 45% high fat pellets for 4h per day. Rats on the high fat diet were separated into obesity prone and obesity resistant individuals. Subcutaneous injections of allopregnanolone were given once daily over five consecutive days. Repeated exposure to allopregnanolone lead to increased weight gain, significantly so in schedule fed rats on a high fat diet. The increased weight gain was correlated to an increased energy intake. Both obesity resistant and obesity prone rats responded to allopregnanolone with increased weight gain. Obesity resistant rats treated with allopregnanolone increased their energy intake and ate as much as vehicle treated obesity prone rats. Their weight gain was also increased to the level of obesity prone rats injected with just the vehicle carrier oil. Thus, it appears that allopregnanolone may be one of the endogenous factors involved in weight gain, especially when the diet is rich in fat.
Collapse
Affiliation(s)
- E Holmberg
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, SE-901 87 Umeå, Sweden.
| | - M Johansson
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, SE-901 87 Umeå, Sweden
| | - T Bäckström
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, SE-901 87 Umeå, Sweden
| | - M Löfgren
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, SE-901 87 Umeå, Sweden
| | - D Haage
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
12
|
Tsutsui K, Haraguchi S. Breakthrough in neuroendocrinology by discovering novel neuropeptides and neurosteroids: 2. Discovery of neurosteroids and pineal neurosteroids. Gen Comp Endocrinol 2014; 205:11-22. [PMID: 24704561 DOI: 10.1016/j.ygcen.2014.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bargmann-Scharrer's discovery of "neurosecretion" in the first half of the 20th century has since matured into the scientific discipline of neuroendocrinology. Identification of novel neurohormones, such as neuropeptides and neurosteroids, is essential for the progress of neuroendocrinology. Our studies over the past two decades have significantly broadened the horizons of this field of research by identifying novel neuropeptides and neurosteroids in vertebrates that have opened new lines of scientific investigation in neuroendocrinology. We have established de novo synthesis and functions of neurosteroids in the brain of various vertebrates. Recently, we discovered 7α-hydroxypregnenolone (7α-OH PREG), a novel bioactive neurosteroid that acts as a key regulator for inducing locomotor behavior by means of the dopaminergic system. We further discovered that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol (CHOL). The pineal gland secretes 7α-OH PREG and 3α,5α-tetrahydroprogesterone (3α,5α-THP; allopregnanolone) that are involved in locomotor rhythms and neuronal survival, respectively. Subsequently, we have demonstrated their mode of action and functional significance. This review summarizes the discovery of these novel neurosteroids and its contribution to the progress of neuroendocrinology.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan.
| | - Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| |
Collapse
|
13
|
Effects of inhibitory GABA-active neurosteroids on cocaine seeking and cocaine taking in rats. Psychopharmacology (Berl) 2014; 231:3391-400. [PMID: 24398823 DOI: 10.1007/s00213-013-3404-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
Abstract
RATIONALE Several compounds that potentiate GABA-induced inhibitory currents also decrease stress, anxiety and addiction-related behaviors. Because of the well-established connection between stress and addiction, compounds that reduce stress-induced responses might be efficacious in treating addiction. Since endogenous neurosteroids such as allopregnanolone may function in a manner similar to benzodiazepines to reduce HPA axis activation and anxiety following stressful stimuli, we hypothesized that exogenously applied neurosteroids would reduce cocaine reinforcement in two animal models. METHODS Male Wistar rats were trained to self-administer cocaine and food under a concurrent alternating operant schedule of reinforcement. Two separate groups of rats were trained to self-administer cocaine or food pellets and were then exposed to similar cue-induced reinstatement paradigms. Both groups of rats were pretreated with various doses of neurosteroids. RESULTS Allopregnanolone and 3α-hydroxy-3β-methyl-17β-nitro-5α-androstane (R6305-7, a synthetic neurosteroid) were ineffective in selectively decreasing cocaine relative to food self-administration. On the other hand, both allopregnanolone and R6305-7 significantly decreased the cue-induced reinstatement of extinguished cocaine seeking, confirmed by one-way ANOVA. CONCLUSIONS These results suggest that neurosteroids may be effective in reducing the relapse to cocaine use without affecting ongoing cocaine self-administration.
Collapse
|
14
|
Neurosteroids and their role in sex-specific epilepsies. Neurobiol Dis 2014; 72 Pt B:198-209. [PMID: 24960208 DOI: 10.1016/j.nbd.2014.06.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/11/2014] [Accepted: 06/14/2014] [Indexed: 01/21/2023] Open
Abstract
Neurosteroids are involved in sex-specific epilepsies. Allopregnanolone and related endogenous neurosteroids in the brain control excessive neuronal excitability and seizure susceptibility. Neurosteroids activate GABA-A receptors, especially extrasynaptic αγδ-GABA-A receptor subtypes that mediate tonic inhibition and thus dampen network excitability. Our studies over the past decade have shown that neurosteroids are broad-spectrum anticonvulsants and confer seizure protection in various animal models. Neurosteroids also exert antiepileptogenic effects. There is emerging evidence on a critical role for neurosteroids in the pathophysiology of the sex-specific forms of epilepsies such as catamenial epilepsy, a menstrual cycle-related seizure disorder in women. Catamenial epilepsy is a neuroendocrine condition in which seizures are clustered around specific points in the menstrual cycle, most often around the perimenstrual or periovulatory period. Apart from ovarian hormones, fluctuations in neurosteroid levels could play a critical role in this gender-specific epilepsy. Neurosteroids also regulate the plasticity of synaptic and extrasynaptic GABA-A receptors in the hippocampus and other regions involved in epilepsy pathology. Based on these studies, we proposed a neurosteroid replacement therapy for catamenial epilepsy. Thus, neurosteroids are novel drug targets for pharmacotherapy of epilepsy.
Collapse
|
15
|
Berretti R, Santoru F, Locci A, Sogliano C, Calza A, Choleris E, Porcu P, Concas A. Neonatal exposure to estradiol decreases hypothalamic allopregnanolone concentrations and alters agonistic and sexual but not affective behavior in adult female rats. Horm Behav 2014; 65:142-53. [PMID: 24368289 DOI: 10.1016/j.yhbeh.2013.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 12/03/2013] [Accepted: 12/15/2013] [Indexed: 01/22/2023]
Abstract
Exposure of developing female rats to estradiol during the perinatal period induced long-lasting dysregulation of gonadal axis and decreased cerebrocortical and plasma concentrations of allopregnanolone. We have now examined the effects of neonatal estradiol administration in female rats on hypothalamic allopregnanolone concentrations and on exploratory, affective, agonistic and sexual behaviors as well as social learning. A single administration of β-estradiol 3-benzoate (EB, 10μg) on the day of birth resulted in a delay of vaginal opening, acyclicity and ovarian failure. These alterations were associated with a significant decrease in the concentrations of allopregnanolone in the hypothalamus at 21 and 60days, but not at 7days, after birth. Neonatal administration of EB also increased agonistic behaviors in adult rats, such as dominant behaviors and following of an ovariectomized intruder, while living attacks unaffected. EB-treated rats showed also an increase in anogenital investigation, associated with a drastic reduction in spontaneous and induced female sexual behaviors (receptivity and proceptivity). In contrast, neonatal administration of EB did not affect locomotor activity, anxiety- and mood-related behaviors, the social transmission of flavor preferences, and seizures sensitivity. These effects of estradiol suggest that it plays a major role in regulation of both the abundance of allopregnanolone and the expression of agonistic and sexual behaviors, while failing to influence affective behaviors and social learning. Thus, the pronounced and persistent decrease in hypothalamic allopregnanolone concentration may be related to the manifestation of agonistic and sexual behaviors.
Collapse
Affiliation(s)
- R Berretti
- Department of Life and Environment Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - F Santoru
- Department of Life and Environment Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - A Locci
- Department of Life and Environment Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - C Sogliano
- Department of Life and Environment Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - A Calza
- Department of Life and Environment Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - E Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - P Porcu
- Institute of Neuroscience, National Research Council of Italy (CNR), Cagliari, Italy
| | - A Concas
- Department of Life and Environment Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy; Institute of Neuroscience, National Research Council of Italy (CNR), Cagliari, Italy.
| |
Collapse
|
16
|
Le Mellédo JM, Baker G. Role of progesterone and other neuroactive steroids in anxiety disorders. Expert Rev Neurother 2014; 4:851-60. [PMID: 15853511 DOI: 10.1586/14737175.4.5.851] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It remains unexplained why a greater prevalence of anxiety disorders exists in women than in men, and how female hormone-related events (i.e., menstrual cycle and postpartum) can influence the course of anxiety disorders. It would appear logical that female hormones and their derivatives play a major role in these observations. The abundance of preclinical data demonstrating a role for sex hormones and their derivatives in anxiety-like behavior is in contrast to the relative paucity of experimental clinical data on the role of female hormones and neuroactive steroids in anxiety disorders. There is a dramatic potential for therapeutic anxiolytic activity of pharmacological compounds derived from powerful anxiolytic agents, such as the progesterone derivative, allopregnanolone. As a result, there is currently tremendous interest from the pharmaceutical industry in developing and testing such agents in anxiety disorders.
Collapse
|
17
|
Rogawski MA, Loya CM, Reddy K, Zolkowska D, Lossin C. Neuroactive steroids for the treatment of status epilepticus. Epilepsia 2013; 54 Suppl 6:93-8. [PMID: 24001085 DOI: 10.1111/epi.12289] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Benzodiazepines are the current first-line standard-of-care treatment for status epilepticus but fail to terminate seizures in about one third of cases. Synaptic GABAA receptors, which mediate phasic inhibition in central circuits, are the molecular target of benzodiazepines. As status epilepticus progresses, these receptors are internalized and become functionally inactivated, conferring benzodiazepine resistance, which is believed to be a major cause of treatment failure. GABAA receptor positive allosteric modulator neuroactive steroids, such as allopregnanolone, also potentiate synaptic GABAA receptors, but in addition they enhance extrasynaptic GABAA receptors that mediate tonic inhibition. Extrasynaptic GABAA receptors are not internalized, and desensitization of these receptors does not occur during continuous seizures in status epilepticus models. Here we review the broad-spectrum antiseizure activity of allopregnanolone in animal seizure models and the evidence for its activity in models of status epilepticus. We also demonstrate that allopregnanolone inhibits ongoing behavioral and electrographic seizures in a model of status epilepticus, even when there is benzodiazepine resistance. Parenteral allopregnanolone may provide an improved treatment for refractory status epilepticus.
Collapse
Affiliation(s)
- Michael A Rogawski
- Department of Neurology, School of Medicine, University of California-Davis, 4860 Y Street, Sacramento, CA 95817, U.S.A.
| | | | | | | | | |
Collapse
|
18
|
The role of allopregnanolone in depression and anxiety. Prog Neurobiol 2013; 113:79-87. [PMID: 24215796 DOI: 10.1016/j.pneurobio.2013.09.003] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/21/2013] [Accepted: 09/21/2013] [Indexed: 12/22/2022]
Abstract
Neuroactive steroids such as allopregnanolone do not only act as transcriptional factors in the regulation of gene expression after intracellular back-oxidation into the 5-α pregnane steroids but may also alter neuronal excitability through interactions with specific neurotransmitter receptors. In particular, certain 3α-reduced metabolites of progesterone such as 3α,5α-tetrahydroprogesterone (allopregnanolone) and 3α,5β-tetrahydroprogesterone (pregnanolone) are potent positive allosteric modulators of the GABA(A) receptor complex. During the last years, the downregulation of neurosteroid biosynthesis has been intensively discussed to be a possible contributor to the development of anxiety and depressive disorder. Reduced levels of allopregnanolone in the peripheral blood or cerebrospinal fluid were found to be associated with major depression, anxiety disorders, premenstrual dysphoric disorder, negative symptoms in schizophrenia, or impulsive aggression. The importance of allopregnanolone for the regulation of emotion and its therapeutical use in depression and anxiety may not only involve GABAergic mechanisms, but probably also includes enhancement of neurogenesis, myelination, neuroprotection, and regulatory effects on HPA axis function. Certain pharmacokinetic obstacles limit the therapeutic use of natural neurosteroids (low bioavailability, oxidation to the ketone). Until now synthetic neuroactive steroids could not be established in the treatment of anxiety disorders or depression. However, the translocator protein (18 kDa) (TSPO) which is important for neurosteroidogenesis has been identified as a potential novel target. TSPO ligands such as XBD 173 increase neurosteroidogenesis and have anxiolytic effects with a favorable side effect profile.
Collapse
|
19
|
Carver CM, Reddy DS. Neurosteroid interactions with synaptic and extrasynaptic GABA(A) receptors: regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability. Psychopharmacology (Berl) 2013; 230:151-88. [PMID: 24071826 PMCID: PMC3832254 DOI: 10.1007/s00213-013-3276-5] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 08/29/2013] [Indexed: 12/25/2022]
Abstract
RATIONALE Neurosteroids are steroids synthesized within the brain with rapid effects on neuronal excitability. Allopregnanolone, allotetrahydrodeoxycorticosterone, and androstanediol are three widely explored prototype endogenous neurosteroids. They have very different targets and functions compared to conventional steroid hormones. Neuronal γ-aminobutyric acid (GABA) type A (GABA(A)) receptors are one of the prime molecular targets of neurosteroids. OBJECTIVE This review provides a critical appraisal of recent advances in the pharmacology of endogenous neurosteroids that interact with GABA(A) receptors in the brain. Neurosteroids possess distinct, characteristic effects on the membrane potential and current conductance of the neuron, mainly via potentiation of GABA(A) receptors at low concentrations and direct activation of receptor chloride channel at higher concentrations. The GABA(A) receptor mediates two types of inhibition, now characterized as synaptic (phasic) and extrasynaptic (tonic) inhibition. Synaptic release of GABA results in the activation of low-affinity γ2-containing synaptic receptors, while high-affinity δ-containing extrasynaptic receptors are persistently activated by the ambient GABA present in the extracellular fluid. Neurosteroids are potent positive allosteric modulators of synaptic and extrasynaptic GABA(A) receptors and therefore enhance both phasic and tonic inhibition. Tonic inhibition is specifically more sensitive to neurosteroids. The resulting tonic conductance generates a form of shunting inhibition that controls neuronal network excitability, seizure susceptibility, and behavior. CONCLUSION The growing understanding of the mechanisms of neurosteroid regulation of the structure and function of the synaptic and extrasynaptic GABA(A) receptors provides many opportunities to create improved therapies for sleep, anxiety, stress, epilepsy, and other neuropsychiatric conditions.
Collapse
Affiliation(s)
- Chase Matthew Carver
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, 2008 Medical Research and Education Building, 8447 State Highway 47, Bryan, TX, 77807-3260, USA
| | | |
Collapse
|
20
|
Tsutsui K, Haraguchi S, Fukada Y, Vaudry H. Brain and pineal 7α-hydroxypregnenolone stimulating locomotor activity: identification, mode of action and regulation of biosynthesis. Front Neuroendocrinol 2013; 34:179-89. [PMID: 23685042 DOI: 10.1016/j.yfrne.2013.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 11/30/2022]
Abstract
Biologically active steroids synthesized in the central and peripheral nervous systems are termed neurosteroids. However, the biosynthetic pathways leading to the formation of neurosteroids are still incompletely elucidated. 7α-Hydroxypregnenolone, a novel bioactive neurosteroid stimulating locomotor activity, has been recently identified in the brain of newts and quail. Subsequently, the mode of action and regulation of biosynthesis of 7α-hydroxypregnenolone have been determined. Moreover, recent studies on birds have demonstrated that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol. 7α-Hydroxypregnenolone is a major pineal neurosteroid that stimulates locomotor activity in juvenile chickens, connecting light-induced gene expression with locomotion. This review summarizes the advances in our understanding of the identification, mode of action and regulation of biosynthesis of brain and pineal 7α-hydroxypregnenolone, a potent stimulator of locomotor activity.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan.
| | | | | | | |
Collapse
|
21
|
Reddy DS. Role of hormones and neurosteroids in epileptogenesis. Front Cell Neurosci 2013; 7:115. [PMID: 23914154 PMCID: PMC3728472 DOI: 10.3389/fncel.2013.00115] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/01/2013] [Indexed: 12/03/2022] Open
Abstract
This article describes the emerging evidence of hormonal influence on epileptogenesis, which is a process whereby a brain becomes progressively epileptic due to an initial precipitating event of diverse origin such as brain injury, stroke, infection, or prolonged seizures. The molecular mechanisms underlying the development of epilepsy are poorly understood. Neuroinflammation and neurodegeneration appear to trigger epileptogenesis. There is an intense search for drugs that truly prevent the development of epilepsy in people at risk. Hormones play an important role in children and adults with epilepsy. Corticosteroids, progesterone, estrogens, and neurosteroids have been shown to affect seizure activity in animal models and in clinical studies. However, the impact of hormones on epileptogenesis has not been investigated widely. There is emerging new evidence that progesterone, neurosteroids, and endogenous hormones may play a role in regulating the epileptogenesis. Corticosterone has excitatory effects and triggers epileptogenesis in animal models. Progesterone has disease-modifying activity in epileptogenic models. The antiepileptogenic effect of progesterone has been attributed to its conversion to neurosteroids, which binds to GABA-A receptors and enhances phasic and tonic inhibition in the brain. Neurosteroids are robust anticonvulsants. There is pilot evidence that neurosteroids may have antiepileptogenic properties. Future studies may generate new insight on the disease-modifying potential of hormonal agents and neurosteroids in epileptogenesis.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center Bryan, TX, USA
| |
Collapse
|
22
|
Tsutsui K, Haraguchi S, Inoue K, Miyabara H, Ubuka T, Hatori M, Hirota T, Fukada Y. New biosynthesis and biological actions of avian neurosteroids. J Exp Neurosci 2013; 7:15-29. [PMID: 25157204 PMCID: PMC4089810 DOI: 10.4137/jen.s11148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
De novo neurosteroidogenesis from cholesterol occurs in the brain of various avian species. However, the biosynthetic pathways leading to the formation of neurosteroids are still not completely elucidated. We have recently found that the avian brain produces 7α-hydroxypregnenolone, a novel bioactive neurosteroid that stimulates locomotor activity. Until recently, it was believed that neurosteroids are produced in neurons and glial cells in the central and peripheral nervous systems. However, our recent studies on birds have demonstrated that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol. 7α-Hydroxypregnenolone is a major pineal neurosteroid that stimulates locomotor activity of juvenile birds, connecting light-induced gene expression with locomotion. The other major pineal neurosteroid allopregnanolone is involved in Purkinje cell survival during development. This paper highlights new aspects of neurosteroid synthesis and actions in birds.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Kazuhiko Inoue
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Hitomi Miyabara
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Megumi Hatori
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Hirota
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Fukada
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Tsutsui K, Haraguchi S, Matsunaga M, Koyama T, Do Rego JL, Vaudry H. 7α-Hydroxypregnenolone, a new key regulator of amphibian locomotion: discovery, progress and prospect. Gen Comp Endocrinol 2012; 176:440-7. [PMID: 22138220 DOI: 10.1016/j.ygcen.2011.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/11/2011] [Accepted: 11/13/2011] [Indexed: 11/26/2022]
Abstract
Seasonally-breeding amphibians have served as excellent animal models to investigate the biosynthesis and biological actions of neurosteroids. Previous studies have demonstrated that the brain of amphibians possesses key steroidogenic enzymes and produces pregnenolone, a precursor of steroid hormones, and other various neurosteroids. We recently found that the brain of seasonally-breeding newts actively produces 7α-hydroxypregnenolone, a previously undescribed amphibian neurosteroid. This novel amphibian neurosteroid acts as a neuronal modulator to stimulate locomotor activity in newts. Subsequently, the mode of action of 7α-hydroxypregnenolone has been demonstrated in the newt brain. 7α-Hydroxypregnenolone stimulates locomotor activity through activation of the dopaminergic system. To understand the functional significance of 7α-hydroxypregnenolone in the regulation of locomotor activity, diurnal and seasonal changes in synthesis of 7α-hydroxypregnenolone have also been demonstrated in the newt brain. Melatonin derived from the pineal gland and eyes regulates 7α-hydroxypregnenolone synthesis in the brain, thus inducing diurnal locomotor changes. Prolactin, an adenohypophyseal hormone, regulates 7α-hydroxypregnenolone synthesis in the brain, and also induces seasonal locomotor changes. In addition, 7α-hydroxypregnenolone mediates corticosterone action to increase locomotor activity under stress. This review summarizes the discovery, progress and prospect of 7α-hydroxypregnenolone, a new key regulator of amphibian locomotion.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University and Center for Medical Life Science of Waseda University, Tokyo 162-8480, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Fischer BD, Rowlett JK. Anticonflict and reinforcing effects of triazolam + pregnanolone combinations in rhesus monkeys. J Pharmacol Exp Ther 2011; 337:805-11. [PMID: 21411495 PMCID: PMC3101007 DOI: 10.1124/jpet.111.180422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 03/14/2011] [Indexed: 11/22/2022] Open
Abstract
Combinations of positive modulators of benzodiazepine and neuroactive steroid sites on GABA(A) receptors have been shown to act in an additive or supra-additive manner depending on the endpoint under study, but they have not been assessed on experimentally induced conflict or drug self-administration. The present study examined the interactive effects of the benzodiazepine triazolam and the neuroactive steroid pregnanolone in a rhesus monkey conflict procedure (a model of anxiolysis) and on a progressive-ratio schedule of drug self-administration (a model of abuse potential). Both triazolam and pregnanolone decreased rates of nonsuppressed responding, whereas only triazolam consistently increased rates of suppressed responding (i.e., had an anticonflict effect). Fixed-ratio mixtures of triazolam and pregnanolone also decreased rates of nonsuppressed responding and did so in an additive manner. In contrast, mixtures of triazolam and pregnanolone produced either additive or supra-additive rate-increasing effects on suppressed responding, depending on the proportion of drugs in the mixture. Both triazolam and pregnanolone were self-administered significantly, and triazolam and pregnanolone mixtures had either proportion-dependent additive or infra-additive reinforcing effects. These results suggest that combinations of triazolam and pregnanolone may have enhanced anxiolytic effects with reduced behavioral disruption and abuse potential compared with either drug alone.
Collapse
Affiliation(s)
- Bradford D Fischer
- Harvard Medical School, New England Primate Research Center, One Pine Hill Drive, P.O. Box 9102, Southborough, MA 01772-9102, USA.
| | | |
Collapse
|
25
|
Schüle C, Eser D, Baghai TC, Nothdurfter C, Kessler JS, Rupprecht R. Neuroactive steroids in affective disorders: target for novel antidepressant or anxiolytic drugs? Neuroscience 2011; 191:55-77. [PMID: 21439354 DOI: 10.1016/j.neuroscience.2011.03.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/13/2011] [Accepted: 03/14/2011] [Indexed: 11/18/2022]
Abstract
In the past decades considerable evidence has emerged that so-called neuroactive steroids do not only act as transcriptional factors in the regulation of gene expression but may also alter neuronal excitability through interactions with specific neurotransmitter receptors such as the GABA(A) receptor. In particular, 3α-reduced neuroactive steroids such as allopregnanolone or allotetrahydrodeoxycorticosterone have been shown to act as positive allosteric modulators of the GABA(A) receptor and to play an important role in the pathophysiology of depression and anxiety. During depression, the concentrations of 3α,5α-tetrahydroprogesterone and 3α,5β-tetrahydroprogesterone are decreased, while the levels of 3β,5α-tetrahydroprogesterone, a stereoisomer of 3α,5α-tetrahydroprogesterone, which may act as an antagonist for GABAergic steroids, are increased. Antidepressant drugs such as selective serotonin reuptake inhibitors (SSRIs) or mirtazapine apparently have an impact on key enzymes of neurosteroidogenesis and have been shown to normalize the disequilibrium of neuroactive steroids in depression by increasing 3α-reduced pregnane steroids and decreasing 3β,5α-tetrahydroprogesterone. Moreover, 3α-reduced neuroactive steroids have been demonstrated to possess antidepressant- and anxiolytic-like effects both in animal and human studies for themselves. In addition, the translacator protein (18 kDa) (TSPO), previously called peripheral benzodiazepine receptor, is the key element of the mitochondrial import machinery supplying the substrate cholesterol to the first steroidogenic enzyme (P450scc), which transforms cholesterol into pregnenolone, the precursor of all neurosteroids. TSPO ligands increase neurosteroidogenesis and are a target of novel anxiolytic drugs producing anxiolytic effects without causing the side effects normally associated with conventional benzodiazepines such as sedation or tolerance. This article is part of a Special Issue entitled: Neuroactive Steroids: Focus on Human Brain.
Collapse
Affiliation(s)
- C Schüle
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Nussbaumstrasse 7, 80336 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Haraguchi S, Matsunaga M, Vaudry H, Tsutsui K. Mode of action and functional significance of 7α-hydroxypregnenolone stimulating locomotor activity. Front Endocrinol (Lausanne) 2011; 2:23. [PMID: 22645507 PMCID: PMC3355833 DOI: 10.3389/fendo.2011.00023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 08/04/2011] [Indexed: 11/13/2022] Open
Abstract
Previous studies over the past two decades have demonstrated that the brain and other nervous systems possess key steroidogenic enzymes and produces pregnenolone and other various neurosteroids in vertebrates in general. Recently, 7α-hydroxypregnenolone, a novel bioactive neurosteroid, was identified in the brain of newts and quail. Importantly, this novel neurosteroid is produced from pregnenolone through the enzymatic activity of cytochrome P450(7α) and acts on brain tissue as a neuronal modulator to stimulate locomotor activity in these vertebrates. Subsequently, the mode of action of 7α-hydroxypregnenolone was demonstrated. 7α-Hydroxypregnenolone stimulates locomotor activity through activation of the dopaminergic system. To understand the functional significance of 7α-hydroxypregnenolone in the regulation of locomotor activity, diurnal, and seasonal changes in 7α-hydroxypregnenolone synthesis were further characterized. Melatonin derived from the pineal gland and eyes regulates 7α-hydroxypregnenolone synthesis in the brain, thus inducing diurnal locomotor changes. Prolactin, an adenohypophyseal hormone, regulates 7α-hydroxypregnenolone synthesis in the brain, and also induces seasonal locomotor changes. In addition, 7α-hydroxypregnenolone mediates corticosterone action to modulate locomotor activity under stress. This review summarizes the current knowledge regarding the mode of action and functional significance of 7α-hydroxypregnenolone, a newly identified bioactive neurosteroid stimulating locomotor activity.
Collapse
Affiliation(s)
- Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityTokyo, Japan
| | - Masahiro Matsunaga
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityTokyo, Japan
| | - Hubert Vaudry
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (INSERM U982), European Institute for Peptide Research, University of RouenMont-Saint-Aignan, France
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityTokyo, Japan
- *Correspondence: Kazuyoshi Tsutsui, Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan. e-mail:
| |
Collapse
|
27
|
Reddy DS. Role of anticonvulsant and antiepileptogenic neurosteroids in the pathophysiology and treatment of epilepsy. Front Endocrinol (Lausanne) 2011; 2:38. [PMID: 22654805 PMCID: PMC3356070 DOI: 10.3389/fendo.2011.00038] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/06/2011] [Indexed: 02/05/2023] Open
Abstract
This review highlights the role of major endogenous neurosteroids in seizure disorders and the promise of neurosteroid replacement therapy in epilepsy. Neurosteroids are endogenous modulators of seizure susceptibility. Neurosteroids such as allopregnanolone (3α-hydroxy-5α-pregnane-20-one) and allotetrahydrodeoxycorticosterone (3α,21-dihydroxy-5α-pregnan-20-one) are positive modulators of GABA-A receptors. Aside from peripheral tissues, neurosteroids are synthesized within the brain, mostly in principal neurons. Neurosteroids potentiate synaptic GABA-A receptor function and also activate δ-subunit-containing extrasynaptic GABA-A receptors that mediate tonic currents and thus may play an important role in neuronal network excitability and seizure susceptibility. Our studies over the past decade have shown that neurosteroids are broad-spectrum anticonvulsants and confer seizure protection in various animal models. They protect against seizures induced by GABA-A receptor antagonists, 6-Hz model, pilocarpine-induced limbic seizures, and seizures in kindled animals. Unlike benzodiazepines, tolerance does not occur to their actions during chronic administration. Our recent studies provide compelling evidence that neurosteroids may have antiepileptogenic properties. There is emerging evidence that endogenous neurosteroids may play a key role in the pathophysiology of catamenial epilepsy, stress-sensitive seizure conditions, temporal lobe epilepsy, and alcohol-withdrawal seizures. It is suggested that neurosteroid replacement with natural or synthetic neurosteroids may be useful in the treatment of epilepsy. Synthetic analogs of neurosteroids that are devoid of hormonal side effects show promise in the treatment of diverse seizure disorders. Agents that stimulate endogenous production of neurosteroids may also be useful for treatment of epilepsy.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science CenterCollege Station, TX, USA
- *Correspondence: Doodipala Samba Reddy, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, 228 Reynolds Medical Building, College Station, TX 77843, USA. e-mail:
| |
Collapse
|
28
|
Abstract
Neurosteroids represent a class of endogenous steroids that are synthesized in the brain, the adrenals, and the gonads and have potent and selective effects on the GABAA-receptor. 3α-hydroxy A-ring reduced metabolites of progesterone, deoxycorticosterone, and testosterone are positive modulators of GABA(A)-receptor in a non-genomic manner. Allopregnanolone (3α-OH-5α-pregnan-20-one), 5α-androstane-3α, 17α-diol (Adiol), and 3α5α-tetrahydrodeoxycorticosterone (3α5α-THDOC) enhance the GABA-mediated Cl(-) currents acting on a site (or sites) distinct from the GABA, benzodiazepine, barbiturate, and picrotoxin binding sites. 3α5α-P and 3α5α-THDOC potentiate synaptic GABA(A)-receptor function and activate δ-subunit containing extrasynaptic receptors that mediate tonic currents. On the contrary, 3β-OH pregnane steroids and pregnenolone sulfate (PS) are GABA(A)-receptor antagonists and induce activation-dependent inhibition of the receptor. The activities of neurosteroid are dependent on brain regions and types of neurons. In addition to the slow genomic action of the parent steroids, the non-genomic, and rapid actions of neurosteroids play a significant role in the GABA(A)-receptor function and shift in mood and memory function. This review describes molecular mechanisms underlying neurosteroid action on the GABA(A)-receptor, mood changes, and cognitive functions.
Collapse
Affiliation(s)
- Mingde Wang
- Section of Obstetrics and Gynecology, Department of Clinical Science, Umeå Neurosteroid Research Center, Umeå UniversityUmeå, Sweden
- *Correspondence: Mingde Wang, Section of Obstetrics and Gynecology, Department of Clinical Science, Umeå Neurosteroid Research Center, Umeå University, 901 85 Umeå, Sweden. e-mail:
| |
Collapse
|
29
|
Tsutsui K. Neurosteroid biosynthesis and function in the brain of domestic birds. Front Endocrinol (Lausanne) 2011; 2:37. [PMID: 22645509 PMCID: PMC3355851 DOI: 10.3389/fendo.2011.00037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 09/05/2011] [Indexed: 11/17/2022] Open
Abstract
It is now established that the brain and other nervous systems have the capability of forming steroids de novo, the so-called "neurosteroids." The pioneering discovery of Baulieu and his colleagues, using rodents, has opened the door to a new research field of "neurosteroids." In contrast to mammalian vertebrates, little has been known regarding de novo neurosteroidogenesis in the brain of birds. We therefore investigated neurosteroid formation and metabolism in the brain of quail, a domestic bird. Our studies over the past two decades demonstrated that the quail brain possesses cytochrome P450 side-chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4)-isomerase (3β-HSD), 5β-reductase, cytochrome P450 17α-hydroxylase/c17,20-lyase (P450(17α,lyase)), 17β-HSD, etc., and produces pregnenolone, progesterone, 5β-dihydroprogesterone (5β-DHP), 3β, 5β-tetrahydroprogesterone (3β, 5β-THP), androstenedione, testosterone, and estradiol from cholesterol. Independently, Schlinger's laboratory demonstrated that the brain of zebra finch, a songbird, also produces various neurosteroids. Thus, the formation and metabolism of neurosteroids from cholesterol is now known to occur in the brain of birds. In addition, we recently found that the quail brain expresses cytochrome P450(7α) and produces 7α- and 7β-hydroxypregnenolone, previously undescribed avian neurosteroids, from pregnenolone. This paper summarizes the advances made in our understanding of neurosteroid formation and metabolism in the brain of domestic birds. This paper also describes what are currently known about physiological changes in neurosteroid formation and biological functions of neurosteroids in the brain of domestic and other birds.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityShinjuku-ku, Tokyo, Japan
- *Correspondence: Kazuyoshi Tsutsui, Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan. e-mail:
| |
Collapse
|
30
|
Besheer J, Lindsay TG, O'Buckley TK, Hodge CW, Morrow AL. Pregnenolone and ganaxolone reduce operant ethanol self-administration in alcohol-preferring p rats. Alcohol Clin Exp Res 2010; 34:2044-52. [PMID: 20946297 DOI: 10.1111/j.1530-0277.2010.01300.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Neuroactive steroids modulate ethanol intake in several self-administration models with variable effects. The purpose of this work was to examine the effects of the long-acting synthetic GABAergic neurosteroid ganaxolone and the endogenous neurosteroid pregnenolone, a precursor of all GABAergic neuroactive steroids, on the maintenance of ethanol self-administration in an animal model of elevated drinking-the alcohol-preferring (P) rats. METHODS P rats were trained to self-administer ethanol (15% v/v) versus water on a concurrent schedule of reinforcement, and the effects of ganaxolone (0 to 30 mg/kg, subcutaneous [SC]) and pregnenolone (0 to 75 mg/kg, intraperitoneal [IP]) were evaluated on the maintenance of ethanol self-administration. After completion of self-administration testing, doses of the neuroactive steroids that altered ethanol self-administration were assessed on spontaneous locomotor activity. Finally, the effect of pregnenolone administration on cerebral cortical levels of the GABAergic neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (allopregnanolone, 3α,5α-THP) was determined in both ethanol-experienced and ethanol-inexperienced P rats because pregnenolone is a precursor of these steroids. RESULTS Ganaxolone produced a dose-dependent biphasic effect on ethanol reinforcement, as the lowest dose (1 mg/kg) increased and the highest dose (30 mg/kg) decreased ethanol-reinforced responding. However, the highest ganaxolone dose also produced a nonspecific reduction in locomotor activity. Pregnenolone treatment significantly reduced ethanol self-administration (50 and 75 mg/kg), without altering locomotor activity. Pregnenolone (50 mg/kg) produced a significant increase in cerebral cortical allopregnanolone levels. This increase was observed in the self-administration trained animals, but not in ethanol-naïve P rats. CONCLUSIONS These results indicate that pregnenolone dose-dependently reduces operant ethanol self-administration in P rats without locomotor impairment, suggesting that it may have potential as a novel therapeutic for reducing chronic alcohol drinking in individuals that abuse alcohol.
Collapse
Affiliation(s)
- Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7178, USA
| | | | | | | | | |
Collapse
|
31
|
Tsutsui K, Haraguchi S, Matsunaga M, Koyama T, Do Rego JL, Vaudry H. Identification of 7alpha-hydroxypregnenolone, a novel bioactive amphibian neurosteroid stimulating locomotor activity, and its physiological roles in the regulation of locomotion. Gen Comp Endocrinol 2010; 168:275-9. [PMID: 20138182 DOI: 10.1016/j.ygcen.2010.01.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/13/2010] [Accepted: 01/31/2010] [Indexed: 11/24/2022]
Abstract
We now know that steroids can be synthesized de novo by the brain and the peripheral nervous system. Such steroids are called neurosteroids and de novo neurosteroidogenesis from cholesterol is a conserved property of vertebrate brains. Our studies over the past decade have demonstrated that the brain expresses several kinds of steroidogenic enzymes and produces a variety of neurosteroids in sub-mammalian species. However, neurosteroid biosynthetic pathways in amphibians, as well as other vertebrates may still not be fully mapped. We first found that the newt brain actively produces 7alpha-hydroxypregnenolone, a previously undescribed amphibian neurosteroid. We then demonstrated that 7alpha-hydroxypregnenolone acts as a novel bioactive neurosteroid to stimulate locomotor activity of newt by means of the dopaminergic system. Subsequently, we analyzed the physiological roles of 7alpha-hydroxypregnenolone in the regulation of locomotor activity of newt. This paper summarizes the advances made in our understanding of 7alpha-hydroxypregnenolone, a newly discovered bioactive amphibian neurosteroid stimulating locomotor activity, and its physiological roles in the regulation of locomotion in newt.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo 162-8480, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
This chapter provides an overview of neurosteroids, especially their impact on the brain, sex differences and their therapeutic potentials. Neurosteroids are synthesized within the brain and rapidly modulate neuronal excitability. They are classified as pregnane neurosteroids, such as allopregnanolone and allotetrahydrodeoxycorticosterone, androstane neurosteroids, such as androstanediol and etiocholanolone, and sulfated neurosteroids such as pregnenolone sulfate. Neurosteroids such as allopregnanolone are positive allosteric modulators of GABA-A receptors with powerful anti-seizure activity in diverse animal models. Neurosteroids increase both synaptic and tonic inhibition. They are endogenous regulators of seizure susceptibility, anxiety, and stress. Sulfated neurosteroids such as pregnenolone sulfate, which are negative GABA-A receptor modulators, are memory-enhancing agents. Sex differences in susceptibility to brain disorders could be due to neurosteroids and sexual dimorphism in specific structures of the human brain. Synthetic neurosteroids that exhibit better bioavailability and efficacy and drugs that enhance neurosteroid synthesis have therapeutic potential in anxiety, epilepsy, and other brain disorders. Clinical trials with the synthetic neurosteroid analog ganaxolone in the treatment of epilepsy have been encouraging. Neurosteroidogenic agents that lack benzodiazepine-like side effects show promise in the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
33
|
Tsutsui K, Haraguchi S, Matsunaga M, Inoue K, Vaudry H. 7α-hydroxypregnenolone, a new key regulator of locomotor activity of vertebrates: identification, mode of action, and functional significance. Front Endocrinol (Lausanne) 2010; 1:9. [PMID: 22654788 PMCID: PMC3356142 DOI: 10.3389/fendo.2010.00009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 12/10/2010] [Indexed: 11/13/2022] Open
Abstract
Steroids synthesized de novo by the central and peripheral nervous systems are called neurosteroids. The formation of neurosteroids from cholesterol in the brain was originally demonstrated in mammals by Baulieu and colleagues. Our studies over the past two decades have also shown that, in birds and amphibians as in mammals, the brain expresses several kinds of steroidogenic enzymes and produces a variety of neurosteroids. Thus, de novo neurosteroidogenesis from cholesterol is a conserved property that occurs throughout vertebrates. However, the biosynthetic pathways of neurosteroids in the brain of vertebrates was considered to be still incompletely elucidated. Recently, 7α-hydroxypregnenolone was identified as a novel bioactive neurosteroid stimulating locomotor activity in the brain of newts and quail through activation of the dopaminergic system. Subsequently, diurnal and seasonal changes in synthesis of 7α-hydroxypregnenolone in the brain were demonstrated. Interestingly, melatonin derived from the pineal gland and eyes regulates 7α-hydroxypregnenolone synthesis in the brain, thus inducing diurnal locomotor changes. Prolactin, an adenohypophyseal hormone, regulates 7α-hydroxypregnenolone synthesis in the brain, and may also induce seasonal locomotor changes. This review highlights the identification, mode of action, and functional significance of 7α-hydroxypregnenolone, a new key regulator of locomotor activity of vertebrates, in terms of diurnal and seasonal changes in 7α-hydroxypregnenolone synthesis, and describes some of their regulatory mechanisms.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University and Center for Medical Life Science of Waseda UniversityTokyo, Japan
- *Correspondence: Kazuyoshi Tsutsui, Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University and Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan. e-mail:
| | - Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University and Center for Medical Life Science of Waseda UniversityTokyo, Japan
| | - Masahiro Matsunaga
- Laboratory of Brain Science, Faculty of Integrated Arts and Sciences, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Kazuhiko Inoue
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University and Center for Medical Life Science of Waseda UniversityTokyo, Japan
- Laboratory of Brain Science, Faculty of Integrated Arts and Sciences, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Hubert Vaudry
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (INSERM U982), European Institute for Peptide Research, University of RouenMont-Saint-Aignan, France
| |
Collapse
|
34
|
Lack of tolerance to anxiolysis and withdrawal symptoms in mice repeatedly treated with AC-5216, a selective TSPO ligand. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1040-5. [PMID: 19497344 DOI: 10.1016/j.pnpbp.2009.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 05/16/2009] [Accepted: 05/26/2009] [Indexed: 11/22/2022]
Abstract
AC-5216, a ligand for the translocator protein (18 kDa) (TSPO), produces anxiolytic-like effects in animal models of anxiety without causing the side effects normally associated with conventional benzodiazepines. This study aimed to investigate whether repeated administration of AC-5216 induces tolerance to anxiolytic-like effects of AC-5216 and produces withdrawal on abrupt cessation, and compare the results with those of diazepam. In the tolerance experiment, AC-5216 (0.1 mg/kg, p.o.) produced significant anxiolytic-like effects in both groups of mice pretreated with the vehicle and AC-5216 twice daily for 14 days. Diazepam (0.1 mg/kg, p.o.) also retained its anxiolytic effects in mice repeatedly treated with diazepam. In the withdrawal experiment, mice were orally treated with either AC-5216 (0.1, 1 or 10 mg/kg; twice daily) or diazepam (0.1, 1 or 10 mg/kg; twice daily) for 14 days, and examined, during a treatment withdrawal period, for anxiogenic-like effects in the social interaction test, and for body weight loss as indices of emotional and somatic withdrawal symptoms, respectively. In AC-5216-treated groups, neither anxiogenic-like effects nor body weight loss was observed upon treatment withdrawal at any of the doses tested. In contrast, in diazepam 1 mg/kg- and 10 mg/kg-treated groups, treatment withdrawal not only induced anxiogenic-like effects on the second day of the withdrawal period, but also decreased body weight gain and brought about body weight loss in mice. These findings indicate that AC-5216 when repeatedly administered does not induce tolerance to its anxiolytic-like effects or withdrawal symptoms.
Collapse
|
35
|
Calabrese EJ. Addiction and Dose Response: The Psychomotor Stimulant Theory of Addiction Reveals That Hormetic Dose Responses Are Dominant. Crit Rev Toxicol 2008; 38:599-617. [DOI: 10.1080/10408440802026315] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Kita A, Furukawa K. Involvement of neurosteroids in the anxiolytic-like effects of AC-5216 in mice. Pharmacol Biochem Behav 2008; 89:171-8. [DOI: 10.1016/j.pbb.2007.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 11/26/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
|
37
|
Wang MD, Borra VB, Strömberg J, Lundgren P, Haage D, Bäckström T. Neurosteroids 3beta, 20 (R/S)-pregnandiols decrease offset rate of the GABA-site activation at the recombinant GABA A receptor. Eur J Pharmacol 2008; 586:67-73. [PMID: 18374329 DOI: 10.1016/j.ejphar.2008.02.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 02/07/2008] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
Abstract
Neurosteroids directly modulate ligand gated ion channels such as GABA A receptors. Two such molecules, 3beta-OH A-ring reduced pregnane steroids and pregnenolone sulfate (PS), inhibit recombinant GABA A receptor. Using a two-electrode voltage-clamp technique, we compared the effect of 5alpha-pregnan-3beta,20(S)-diol (UC1019), 5beta-pregnan-3beta, 20(R)-diol (UC1020) and PS on the activation onset and offset times of the recombinant GABA A receptor (rat alpha1beta2gamma2L) in Xenopus oocytes. Rapid solution changes allowed the kinetic analysis of GABA-evoked currents. Steroids were co-applied with 30 microM GABA for 10 s, followed by a 80 s washout period. PS (> ir =0.3 microM) moderately increased the slow onset rate (k(on-S)) of GABA-response. PS had no significant effects on the fast onset rate (k(on-F)). UC1019 and UC1020 decreased the k(on-S) of the GABA-response in a concentration-dependent manner with no significant effects on the k(on-F). Like PS, UC1019 and UC1020 decreased the slow offset rates (k(off-S)). In addition, PS increased the fast offset rate (k(off-F)) in a concentration-dependent manner, while UC1019 and UC1020 decreased k(off-F). The EC50 of PS to increase k(off-F) was calculated as 0.47+/-0.1 microM. The corresponding IC50 values of UC1019 and UC1020 to decrease k(off-F) were 5.0+/-0.5 microM and 8.4+/-0.9 microM, respectively. These results suggest differential actions of PS and 3beta, 20(R/S)-pregnandiols on the offset time course of GABA-site activation.
Collapse
Affiliation(s)
- Ming-De Wang
- Umeå Neurosteroid Research Center, Department of Clinical Science, Obstetrics and Gynecology, Sweden.
| | | | | | | | | | | |
Collapse
|
38
|
Marx CE, Shampine LJ, Khisti RT, Trost WT, Bradford DW, Grobin AC, Massing MW, Madison RD, Butterfield MI, Lieberman JA, Morrow AL. Olanzapine and fluoxetine administration and coadministration increase rat hippocampal pregnenolone, allopregnanolone and peripheral deoxycorticosterone: implications for therapeutic actions. Pharmacol Biochem Behav 2006; 84:609-17. [PMID: 16996120 DOI: 10.1016/j.pbb.2006.07.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 07/19/2006] [Accepted: 07/25/2006] [Indexed: 12/17/2022]
Abstract
Olanzapine and fluoxetine elevate the GABAergic neuroactive steroid allopregnanolone to physiologically relevant concentrations in rodent cerebral cortex. It is unknown if these agents also alter pregnenolone or deoxycorticosterone. Since olanzapine and fluoxetine in combination have clinical utility and may demonstrate synergistic effects, we investigated neuroactive steroid alterations following olanzapine, fluoxetine or coadministration. Male rats received IP vehicle, olanzapine, fluoxetine or the combination of both agents in higher-dose (0, 10, 20 or 10/20 mg/kg, respectively) and lower-dose (0, 5, 10 or 5/10 mg/kg, respectively) experiments. Pregnenolone and allopregnanolone levels in hippocampus were determined by gas chromatography/mass spectrometry. Peripheral deoxycorticosterone and other steroid levels were determined by radioimmunoassay. Olanzapine, fluoxetine or the combination increased hippocampal pregnenolone and serum deoxycorticosterone in both higher- and lower-dose experiments, and elevated hippocampal allopregnanolone in higher-dose conditions. No synergistic effects on pregnenolone or allopregnanolone were observed following olanzapine and fluoxetine coadministration compared to either compound alone. Pregnenolone and its sulfate enhance learning and memory in rodent models, and therefore pregnenolone elevations may be relevant to cognitive changes in psychotic and affective disorders. Since pregnenolone decreases have been linked to depression, it is possible that olanzapine- and fluoxetine-induced pregnenolone elevations may contribute to the antidepressant actions of these agents.
Collapse
|
39
|
Eser D, Schüle C, Baghai TC, Romeo E, Uzunov DP, Rupprecht R. Neuroactive steroids and affective disorders. Pharmacol Biochem Behav 2006; 84:656-66. [PMID: 16831459 DOI: 10.1016/j.pbb.2006.05.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Revised: 05/23/2006] [Accepted: 05/25/2006] [Indexed: 10/24/2022]
Abstract
Neuroactive steroids modulate neurotransmission through modulation of specific neurotransmitter receptors such as gamma-aminobutyric acid type A (GABA(A)) receptors. Preclinical studies suggested that neuroactive steroids may modulate anxiety and depression-related behaviour and may contribute to the therapeutical effects of antidepressant drugs. Attenuations of such neuroactive steroids have been observed during major depression and in several anxiety disorders, suggesting a pathophysiological role in such psychiatric conditions. In panic disorder patients a dysequilibrium of neuroactive steroid composition has been observed, which may represent a counterregulatory mechanism against the occurrence of spontaneous panic attacks. Furthermore, alterations of 3alpha-reduced pregnane steroids during major depression were corrected by successful treatment with antidepressant drugs. However in contrast, non-pharmacological antidepressant treatment strategies did not affect neuroactive steroid composition. In addition, changes in neuroactive steroid concentrations after mirtazapine therapy occurred independently from the clinical response, thereby suggesting that changes in neuroactive steroid concentrations more likely reflect direct pharmacological effects of antidepressants rather than clinical improvement in general. Nevertheless, the effects of antidepressant pharmacotherapy on the composition of neuroactive steroids may contribute to the alleviation of certain depressive symptoms, such as amelioration of anxiety, inner tension or sleep disturbances. Moreover, first studies investigating the therapeutical effects of dehydroepiandrosterone revealed promising results in the treatment of major depression. In conclusion, neuroactive steroids are important endogenous modulators of depression and anxiety and may provide a basis for development of novel therapeutic agents in the treatment of affective disorders.
Collapse
Affiliation(s)
- D Eser
- Department of Psychiatry, Ludwig-Maximilian-University, Nussbaumstr. 7, 80336 Munich, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Eser D, Romeo E, Baghai TC, Schüle C, Zwanzger P, Rupprecht R. Neuroactive steroids as modulators of depression and anxiety. Expert Rev Endocrinol Metab 2006; 1:517-526. [PMID: 30290461 DOI: 10.1586/17446651.1.4.517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In addition to the well-known genomic effects of steroid molecules, certain neuroactive steroids control neurotransmission through the modulation of specific neurotransmitter receptors. Preclinical studies suggested that neuroactive steroids may modulate anxiety and depression-related behavior and may contribute to the therapeutic effects of antidepressant drugs. However, nonpharmacological antidepressant treatment strategies did not affect neuroactive steroid composition. These studies suggest that the changes in neuroactive steroids observed after antidepressant pharmacotherapy probably reflect distinct pharmacological properties of antidepressants, rather than the clinical response. Nevertheless, initial studies investigating the antidepressive effects of exogenously administered dehydroepiandosterone revealed promising results. In addition, in various anxiety disorders, alterations of neuroactive steroid levels have been observed. In conclusion, neuroactive steroids contribute to the pathophysiology of affective disorders and the mechanisms of action of antidepressants. They are important endogenous modulators of depression and anxiety and might offer new targets for the development of novel anxiolytic compounds.
Collapse
Affiliation(s)
- Daniela Eser
- a Assistant Member, Department of Psychiatry, Ludwig-Maximilian-University, Nussbaumstr 7, 80336 Munich, Germany
| | - Elena Romeo
- b IRCCS Santa Lucia, Tor Vergata University, Via Ardeatina 306, 00179 Rome, Italy
| | - Thomas C Baghai
- c Assistant Member, Department of Psychiatry, Ludwig-Maximilian-University, Nussbaumstr 7, 80336 Munich, Germany
| | - Cornelius Schüle
- d Assistant Member, Department of Psychiatry, Ludwig-Maximilian-University Nussbaumstr 7, 80336 Munich, Germany
| | - Peter Zwanzger
- e Assistant Member, Department of Psychiatry, Ludwig-Maximilian-University, Nussbaumstr 7, 80336 Munich, Germany
| | - Rainer Rupprecht
- f Department of Psychiatry, Ludwig-Maximilian-University, Nussbaumstr 7, 80336 Munich, Germany
| |
Collapse
|
41
|
Frye CA, Sumida K, Dudek BC, Harney JP, Lydon JP, O'Malley BW, Pfaff DW, Rhodes ME. Progesterone's effects to reduce anxiety behavior of aged mice do not require actions via intracellular progestin receptors. Psychopharmacology (Berl) 2006; 186:312-22. [PMID: 16538472 DOI: 10.1007/s00213-006-0309-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 12/19/2005] [Indexed: 10/24/2022]
Abstract
RATIONALE Aging is associated with reduced secretion of, and down-regulation of receptors for, progesterone (P); yet, P's effects when administered to younger and older animals have not been systematically investigated. Some of P's antianxiety effects may be due to its conversion to 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-THP) and its subsequent actions as a positive modulator at GABAA receptor complexes (GBRs). OBJECTIVES We investigated whether P administration can decrease anxiety behavior of progestin receptor (PR) knockout (PRKO) or wild-type control mice. METHODS P (10 mg/kg) or vehicle (propylene glycol) were administered subcutaneously to intact, female or male wild-type or PRKO mice that were either 9-12 or 18-24 months of age. Behavior in tasks that assess spontaneous activity (activity monitor and roto-rod), free exploration of a novel environment (open field, elevated plus maze, and elevated zero maze), and conflict behavior (mirror chamber, dark-light transition, and punished drinking) were examined 1 h after injection. RESULTS P significantly decreased anxiety behavior of both PRKO and wild-type mice. P did not alter motor behavior but increased central entries in the open field, time in the open quadrants of the elevated zero maze, time in the mirrored chamber, time in the light compartment of the dark-light transition, and punished drinking in young and old mice. P-administered mice had higher levels of hippocampal 3alpha,5alpha-THP and GABA-stimulated chloride flux than did vehicle-administered PRKO or wild-type mice. CONCLUSIONS The effects of P to decrease anxiety behavior of younger and older mice do not require classic PRs and may involve actions of 3alpha,5alpha-THP at GBRs.
Collapse
Affiliation(s)
- C A Frye
- Department of Psychology, The University at Albany, SUNY, Albany, NY 12222, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Eser D, Schüle C, Romeo E, Baghai TC, di Michele F, Pasini A, Zwanzger P, Padberg F, Rupprecht R. Neuropsychopharmacological properties of neuroactive steroids in depression and anxiety disorders. Psychopharmacology (Berl) 2006; 186:373-87. [PMID: 16247651 DOI: 10.1007/s00213-005-0188-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 08/27/2005] [Indexed: 02/01/2023]
Abstract
Neuroactive steroids modulate neurotransmission through modulation of specific neurotransmitter receptors such as gamma-aminobutyric acid type A (GABAA) receptors. Preclinical studies suggested that neuroactive steroids may modulate anxiety- and depression-related behaviour and may contribute to the therapeutical effects of antidepressant drugs. Attenuations of 3alpha-reduced neuroactive steroids have been observed during major depression. This disequilibrium can be corrected by successful treatment with antidepressant drugs. However, non-pharmacological antidepressant treatment strategies did not affect neuroactive steroid composition independently from the clinical response. Further research is needed to clarify whether enhancement of neuroactive steroid levels might represent a new therapeutical approach in the treatment of affective disorders. Nevertheless, the first studies investigating the therapeutical effects of exogenously administered dehydroepiandosterone revealed promising results in the treatment of major depression. In addition, in various anxiety disorders alterations of neuroactive steroid levels have been observed. In panic disorder, in the absence of panic attacks, neuroactive steroid composition is opposite to that seen in depression, which may represent counter-regulatory mechanisms against the occurrence of spontaneous panic attacks. However, during experimentally induced panic attacks, there was a pronounced decline in GABAergic neuroactive steroids, which might contribute to the pathophysiology of panic attacks. In conclusion, neuroactive steroids contribute to the pathophysiology of affective disorders and the mechanisms of action of antidepressants. They are important endogenous modulators of depression and anxiety and may provide a basis for the development of novel therapeutic agents in the treatment of affective disorders.
Collapse
Affiliation(s)
- Daniela Eser
- Department of Psychiatry, Ludwig Maximilian University, Nussbaumstr. 7, 80336, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Porcu P, Grant KA, Green HL, Rogers LSM, Morrow AL. Hypothalamic-pituitary-adrenal axis and ethanol modulation of deoxycorticosterone levels in cynomolgus monkeys. Psychopharmacology (Berl) 2006; 186:293-301. [PMID: 16133132 DOI: 10.1007/s00213-005-0132-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 07/07/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE The metabolites of deoxycorticosterone (DOC) and progesterone, allotetrahydrodeoxycorticosterone and allopregnanolone, are potent endogenous neuroactive steroids that are increased in rodent brain and plasma after hypothalamic-pituitary-adrenal (HPA) axis activation by acute stress or ethanol administration. However, little data are available for male nonhuman primates. OBJECTIVE To determine DOC concentrations in plasma samples from 11 monkeys following challenge of the HPA axis with naloxone, corticotropin-releasing factor (CRF), dexamethasone, adrenocorticotropic hormone (ACTH) following dexamethasone pretreatment and ethanol. METHODS DOC levels were measured in monkey plasma by radioimmunoassay. RESULTS DOC levels were increased after naloxone (125 microg/kg and 375 microg/kg, respectively) and CRF administration (1 microg/kg), and decreased following dexamethasone (130 microg/kg) administration. ACTH (10 ng/kg) challenge, 4-6 h after 0.5 mg/kg dexamethasone, and administration of ethanol (1.0 g/kg and 1.5 g/kg) had no effect on DOC concentrations. DOC levels were positively correlated with cortisol and ACTH levels after the naloxone (375 microg/kg), CRF, and ACTH challenges. Finally, the suppression of DOC levels measured after dexamethasone was negatively correlated with subsequent alcohol self-administration. CONCLUSIONS These results suggest that DOC levels in monkeys are regulated by the HPA axis and may contribute to physiological responses following activation.
Collapse
Affiliation(s)
- Patrizia Porcu
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, 27599-7178, USA
| | | | | | | | | |
Collapse
|
44
|
Fudge MA, Kavaliers M, Ossenkopp KP. Allopregnanolone produces hyperphagia by reducing neophobia without altering food palatability. Eur Neuropsychopharmacol 2006; 16:272-80. [PMID: 16246529 DOI: 10.1016/j.euroneuro.2005.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 06/16/2005] [Accepted: 08/09/2005] [Indexed: 11/30/2022]
Abstract
The neurosteroid allopregnanolone may increase feeding by altering food palatability; however, it may also increase feeding by reducing anxiety (neophobia). Moreover, it is unclear whether this induced hyperphagia is selective to safe, palatable foods only. Male rats were injected with allopregnanolone 20 min prior to behavioral testing. The taste reactivity test was used to examine possible shifts in the palatability of a 0.3 M sucrose solution. A lickometer was used to monitor intake and licking of either a sucrose or sucrose-quinine solution. Sucrose palatability was not enhanced; however, allopregnanolone significantly increased sucrose intake and licking on Test Day 1 when the solution was novel, but not on Test Day 2 when the solution was familiar. Sucrose-quinine intake was not enhanced. Allopregnanolone-induced hyperphagia is not a result of altered sucrose palatability, but rather reflects a reduction in the neophobia elicited by a novel solution; an effect that further seems to be selective to safe, palatable foods.
Collapse
Affiliation(s)
- Melissa A Fudge
- Neuroscience Program and Department of Psychology, Room 7418 Social Science Center, The University of Western Ontario, London, Ontario, Canada N6A 5C2.
| | | | | |
Collapse
|
45
|
Mares P, Mikulecká A, Haugvicová R, Kasal A. Anticonvulsant action of allopregnanolone in immature rats. Epilepsy Res 2006; 70:110-7. [PMID: 16644184 DOI: 10.1016/j.eplepsyres.2006.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 03/14/2006] [Accepted: 03/18/2006] [Indexed: 10/24/2022]
Abstract
Anticonvulsant activity of allopregnanolone, a neurosteroid allosterically modulating GABA(A) receptor was tested in a model of motor seizures elicited by pentetrazol in immature rats. Rats 7, 12, 18, 25 or 90 days old were pretreated with allopregnanolone in doses from 5 to 40 mg/kg i.p. and 15 min later pentetrazol was injected subcutaneously in a dose of 100 mg/kg. Rats were observed in isolation for 30 min. Allopregnanolone dose-dependently suppressed both generalized tonic-clonic and minimal clonic seizures with the highest efficacy in 12-day-old rats. Anticonvulsant action was least expressed in adult animals. Duration of anticonvulsant action tested after a dose of 20 mg/kg in 12- and 90-day-old rats demonstrated markedly longer effects in young rats. Allopregnanolone compromised motor performance of rats but duration of this unwanted effect in 12-day-old rats was shorter than duration of anticonvulsant action. This difference can be important for possible clinical use of neurosteroids.
Collapse
Affiliation(s)
- P Mares
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | |
Collapse
|
46
|
Eser D, Romeo E, Baghai TC, di Michele F, Schüle C, Pasini A, Zwanzger P, Padberg F, Rupprecht R. Neuroactive steroids as modulators of depression and anxiety. Neuroscience 2006; 138:1041-8. [PMID: 16310959 DOI: 10.1016/j.neuroscience.2005.07.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 07/09/2005] [Accepted: 07/12/2005] [Indexed: 11/30/2022]
Abstract
Certain neuroactive steroids modulate ligand-gated ion channels via non-genomic mechanisms. Especially 3alpha-reduced pregnane steroids are potent positive allosteric modulators of the GABA type A-receptor. During major depression there is a dysequilibrium of 3alpha-reduced neuroactive steroids, which is corrected by clinically effective pharmacological treatment. To investigate whether these alterations are a general principle of successful antidepressant treatment we studied the impact of non-pharmacological treatment options on neuroactive steroid concentrations during major depression. Neither partial sleep deprivation, transcranial magnetic stimulation nor electroconvulsive therapy affected neuroactive steroid levels irrespectively of the response to these treatments. These studies suggest that the changes in neuroactive steroids observed after antidepressant pharmacotherapy more likely reflect distinct pharmacological properties of antidepressants rather than the clinical response. In patients with panic disorder changes in neuroactive steroid composition have been observed opposite of those seen in depression. These changes may represent counterregulatory mechanisms against the occurrence of spontaneous panic attacks. However, during experimental panic induction with either cholecystokinin-tetrapeptide or sodium lactate there was a pronounced decline in the concentrations of 3alpha-reduced neuroactive steroids in patients with panic disorder, which might result in a decreased GABAergic tone. In contrast, no changes in neuroactive steroid concentrations could be observed in healthy controls with the exception of 3alpha, 5alpha-tetrahydrodeoxycorticosterone, allotetrahydrodeoxycorticosterone. The modulation of GABA type A-receptors by neuroactive steroids might contribute to the pathophysiology of depression and anxiety disorders and might offer new targets for the development of novel anxiolytic compounds.
Collapse
Affiliation(s)
- D Eser
- Department of Psychiatry, Ludwig-Maximilian-University, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Eser D, Schüle C, Baghai TC, Romeo E, Rupprecht R. Neuroactive steroids in depression and anxiety disorders: clinical studies. Neuroendocrinology 2006; 84:244-54. [PMID: 17159334 DOI: 10.1159/000097879] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 10/17/2006] [Indexed: 11/19/2022]
Abstract
Certain neuroactive steroids modulate ligand-gated ion channels via non-genomic mechanisms. Especially 3alpha-reduced pregnane steroids are potent positive allosteric modulators of the gamma-aminobutyric acid type A (GABA(A)) receptor. During major depression, there is a disequilibrium of 3alpha-reduced neuroactive steroids, which is corrected by clinically effective pharmacological treatment. To investigate whether these alterations are a general principle of successful antidepressant treatment, we studied the impact of nonpharmacological treatment options on neuroactive steroid concentrations during major depression. Neither partial sleep deprivation, transcranial magnetic stimulation, nor electroconvulsive therapy affected neuroactive steroid levels irrespectively of the response to these treatments. These studies suggest that the changes in neuroactive steroid concentrations observed after antidepressant pharmacotherapy more likely reflect distinct pharmacological properties of antidepressants rather than the clinical response. In patients with panic disorder, changes in neuroactive steroid composition have been observed opposite to those seen in depression. However, during experimentally induced panic induction either with cholecystokinine-tetrapeptide or sodium lactate, there was a pronounced decline in the concentrations of 3alpha-reduced neuroactive steroids in patients with panic disorder, which might result in a decreased GABAergic tone. In contrast, no changes in neuroactive steroid concentrations could be observed in healthy controls with the exception of 3alpha,5alpha-tetrahydrodeoxycorticosterone. The modulation of GABA(A) receptors by neuroactive steroids might contribute to the pathophysiology of depression and anxiety disorders and might offer new targets for the development of novel anxiolytic compounds.
Collapse
Affiliation(s)
- Daniela Eser
- Department of Psychiatry, Ludwig-Maximilian University, Munich, Germany
| | | | | | | | | |
Collapse
|
48
|
Mares P. Anticonvulsant action of three neurosteroids against cortical epileptic afterdischarges in immature rats. Brain Res Bull 2005; 68:179-84. [PMID: 16325018 DOI: 10.1016/j.brainresbull.2005.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 08/09/2005] [Accepted: 08/22/2005] [Indexed: 10/25/2022]
Abstract
Neurosteroids exhibit anticonvulsant action probably by positive modulatory influence on GABA-A receptors. The action of three neurosteroids was tested against cortical epileptic afterdischarges in immature rats with implanted electrodes. Afterdischarges (ADs) were elicited by rhythmic electrical stimulation (biphasic pulses at 8 Hz frequency for 15s) of sensorimotor cortical region with a slightly suprathreshold current intensity. Drugs were administered intraperitoneally after the first afterdischarge and stimulation was repeated five more times with the same intensity. Allopregnanolone in doses of 20 and 30 mg/kg i.p. was found to be active in 12-day-old rats; there was no effect in 18-day-old rats and only a tendency in 25-day-old ones. Therefore, the effects of pregnanolone and a new derivative THDOC-conjugate (20 and 40 mg/kg) were compared with those of allopregnanolone (40 mg/kg) only in 12- and 25-day-old rats in the second part of study. All three neurosteroids blocked progressive prolongation of repeated ADs seen in control 12-day-old rats. In addition, pregnanolone was able to shorten the ADs. In contrast, duration of ADs in 25-day-old animals was significantly shorter than the duration of the first, predrug AD only after administration of the 40 mg/kg dose of pregnanolone; if corresponding ADs in the control and drug groups were compared, pregnanolone and THDOC-conjugate led to significantly shorter ADs, changes after allopregnanolone administration were statistically significant only in the fourth AD. None of the studied neurosteroids was able to suppress movements directly bound to stimulation as well as clonic seizures accompanying afterdischarges. Among the three drugs studied, pregnanolone was found to be the most potent one. As developmental changes are concerned, the youngest animals exhibited the highest sensitivity to anticonvulsant action of neurosteroids.
Collapse
Affiliation(s)
- Pavel Mares
- Institute of Physiology, Academy of Sciences of the Czech Republic, Department of Developmental Epileptology, Vídenská 1083, CZ 14220 Prague 4, Czech Republic.
| |
Collapse
|
49
|
Quinton MS, Gerak LR, Moerschbaecher JM, Winsauer PJ. Interaction of cocaine with positive GABAA modulators on the repeated acquisition and performance of response sequences in rats. Psychopharmacology (Berl) 2005; 181:217-26. [PMID: 15778875 DOI: 10.1007/s00213-005-2241-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Accepted: 02/15/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Although positive GABA(A) modulators can attenuate several cocaine-induced behavioral effects, there is a paucity of data on their interaction with cocaine on transition behavior or learning. OBJECTIVES The current study examined the effects of cocaine (3.2-32 mg/kg), pregnanolone (3.2-24 mg/kg), and lorazepam (0.1-10 mg/kg) alone and in combination in rats responding under a multiple schedule of repeated acquisition and performance. METHODS In the acquisition component, subjects acquired a different three-response sequence each session, whereas in the performance component, they responded on the same three-response sequence each session. RESULTS All three drugs produced dose-dependent rate-decreasing and error-increasing effects. Cocaine was the least effective in decreasing rates and the most effective in increasing the percentage of errors. In combination with pregnanolone (3.2 or 10 mg/kg), the rate-decreasing effects of cocaine were relatively unchanged in both components, but 3.2 mg/kg of pregnanolone enhanced its error-increasing effects and the 10-mg/kg dose produced a significant dose-dependent interaction on errors. The combination of cocaine with lorazepam (0.32 mg/kg, 70-min pretreatment) produced significantly greater rate-decreasing and error-increasing effects than cocaine alone. A 15-min pretreatment with the same dose of lorazepam enhanced the error-increasing effects of small doses and attenuated the effects of larger doses of cocaine. Combinations of pregnanolone and lorazepam produced greater rate-decreasing and error-increasing effects in both components than either drug alone. CONCLUSIONS The present data show that cocaine is more disruptive to learning in rats than pregnanolone or lorazepam, and that the disruptive effects of cocaine can be enhanced by CNS depressants.
Collapse
Affiliation(s)
- M S Quinton
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, 70123-1393, USA
| | | | | | | |
Collapse
|
50
|
Hirani K, Sharma AN, Jain NS, Ugale RR, Chopde CT. Evaluation of GABAergic neuroactive steroid 3alpha-hydroxy-5alpha-pregnane-20-one as a neurobiological substrate for the anti-anxiety effect of ethanol in rats. Psychopharmacology (Berl) 2005; 180:267-78. [PMID: 15719223 DOI: 10.1007/s00213-005-2169-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2004] [Accepted: 12/29/2004] [Indexed: 11/29/2022]
Abstract
RATIONALE Acute systemic ethanol administration is known to elevate plasma and cerebral levels of neuroactive steroid 3alpha-hydroxy-5alpha-pregnane-20-one (3alpha, 5alpha-THP; allopregnanolone) to a concentration sufficient to potentiate GABA(A) receptors. We have earlier demonstrated that 3alpha, 5alpha-THP mediates the antidepressant-like effect of ethanol in Porsolt forced swim test. OBJECTIVE The aim of the present study is to explain the relationship between endogenous GABAergic neurosteroids and anxiolytic effect of ethanol in Sprague-Dawley rats. METHOD The mediation of 3alpha, 5alpha-THP in the anti-anxiety effect of ethanol was assessed by pharmacological interactions of ethanol with various endogenous neurosteroidal modulators and using simulated physiological conditions of altered neurosteroid content in elevated plus maze (EPM) test. RESULTS Pretreatment of 3alpha, 5alpha-THP (0.5-2.5 mug/rat, i.c.v.) or neurosteroidogenic agents such as 3alpha, 5alpha-THP precursor progesterone (5 or 10 mg/kg, i.p.), 11-beta hydroxylase inhibitor metyrapone (50 or 100 mg/kg, i.p.) or the GABA(A) receptor agonist muscimol (25 ng/rat, i.c.v.) significantly potentiated the anti-anxiety effect of ethanol (1 g/kg, i.p.). On the other hand, the GABAergic antagonistic neurosteroid dehydroepiandrosterone sulphate (DHEAS) (1 mg/kg, i.p.), the GABA(A) receptor blocker bicuculline (1 mg/kg, i.p.), the 5alpha-reductase inhibitor finasteride (50 x 2 mg/kg, s.c.) or the mitochondrial diazepam binding inhibitory receptor antagonist PK11195 (1 mg/kg, i.p.) reduced ethanol-induced preference of time spent and number of entries into open arms. Anti-anxiety effect of ethanol was abolished in adrenalectomized (ADX) rats as compared to sham-operated control. This ADX-induced blockade was restored by prior systemic injection of progesterone, signifying the contribution of peripheral steroidogenesis in ethanol anxiolysis. Socially isolated animals known to exhibit decreased brain 3alpha, 5alpha-THP and GABA(A) receptor functions displayed reduced sensitivity to the effects of ethanol and 3alpha, 5alpha-THP in EPM test. CONCLUSIONS Our results demonstrated the contributory role of neuroactive steroid 3alpha, 5alpha-THP in the anti-anxiety effect of ethanol. It is speculated that ethanol-induced modulation of endogenous GABAergic neurosteroids, especially 3alpha, 5alpha-THP, might be crucial pertinent to the etiology of 'trait' anxiety (tension reduction) and ethanol abuse.
Collapse
Affiliation(s)
- Khemraj Hirani
- Department of Pharmaceutical Sciences, Nagpur University Campus, Nagpur, 440 033, Maharashtra, India
| | | | | | | | | |
Collapse
|