1
|
Stephenson KA, Barron A, Rae MG, O'Malley D. Inhibition of hippocampal interleukin-6 receptor-evoked signalling normalises long-term potentiation in dystrophin-deficient mdx mice. Brain Behav Immun Health 2025; 43:100935. [PMID: 39867844 PMCID: PMC11762146 DOI: 10.1016/j.bbih.2024.100935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/30/2024] [Accepted: 12/21/2024] [Indexed: 01/28/2025] Open
Abstract
Duchenne muscular dystrophy (DMD), an X-linked neuromuscular disorder, characterised by progressive immobility, chronic inflammation and premature death, is caused by the loss of the mechano-transducing signalling molecule, dystrophin. In non-contracting cells, such as neurons, dystrophin is likely to have a functional role in synaptic plasticity, anchoring post-synaptic receptors. Dystrophin-expressing hippocampal neurons are key to cognitive functions such as emotions, learning and the consolidation of memories. In the context of disease-induced chronic inflammation, we have explored the role of the pleiotropic cytokine, interleukin (IL)-6 in hippocampal dysfunction using immunofluorescence, electrophysiology and metabolic measurements in dystrophic mdx mice. Hippocampal long-term potentiation (LTP) of the Schaffer collateral-CA1 projections was suppressed in mdx slices. Given the importance of mitochondria-generated ATP in synaptic plasticity, reduced maximal respiration in the CA1 region may impact upon this process. Consistent with a role for IL-6 in this observation, early LTP was suppressed in dystrophin-expressing wildtype slices exposed to IL-6. In dystrophic mdx mice, exposure to IL-6 suppressed mitochondrial-mediated basal metabolism in CA1, CA3 and DG hippocampal regions. Furthermore, blocking IL-6-mediated signalling by administering neutralising monoclonal IL-6 receptor antibodies intrathecally, normalised LTP in mdx mice. The impact of dystrophin loss from the hippocampus was associated with modified cellular bioenergetics, which underpin energy-driven processes such as the induction of LTP. The additional challenge of pathophysiological levels of IL-6 resulted in altered cellular bioenergetics, which may be key to cognitive deficits associated with the loss of dystrophin.
Collapse
Affiliation(s)
- Kimberley A. Stephenson
- Department of Physiology, School of Medicine, University College Cork, Western Road, Cork, Ireland
| | - Aaron Barron
- Department of Anatomy and Neuroscience, University College Cork, Western Road, Cork, Ireland
| | - Mark G. Rae
- Department of Physiology, School of Medicine, University College Cork, Western Road, Cork, Ireland
| | - Dervla O'Malley
- Department of Physiology, School of Medicine, University College Cork, Western Road, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| |
Collapse
|
2
|
Stephenson KA, Peters P, Rae MG, O'Malley D. Astrocyte proliferation in the hippocampal dentate gyrus is suppressed across the lifespan of dystrophin-deficient mdx mice. Exp Physiol 2025. [PMID: 39792584 DOI: 10.1113/ep092150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
Absence of the structural protein, dystrophin, results in the neuromuscular disorder Duchenne Muscular Dystrophy (DMD). In addition to progressive skeletal muscle dysfunction, this multisystemic disorder can also result in cognitive deficits and behavioural changes that are likely to be consequences of dystrophin loss from central neurons and astrocytes. Dystrophin-deficient mdx mice exhibit decreases in grey matter volume in the hippocampus, the brain region that encodes and consolidates memories, and this is exacerbated with ageing. To understand changes in cellular composition that might underpin these age-related developments, we have compared neurogenesis and the prevalence of immunofluorescently identified newly born and mature neurons, astrocytes and microglia in the dentate gyrus of mdx and wild-type mice at 2, 4, 8 and 16 months of age. The number of adult-born neurons was suppressed in the dentate gyrus subgranular zone of 2-month-old mdx mice. However, the numbers of granule cells and GABAA receptor, alpha 1-expressing cells were similar in wild-type and mdx mice at all ages. Strikingly, the numbers of astrocytes, particularly in the dentate gyrus molecular layer, were suppressed in mdx mice at all time points. Thus, dystrophin loss was associated with reduced hippocampal neurogenesis in early life but did not impact the prevalence of mature neurons across the lifespan of mdx mice. In contrast, normal age-related dentate gyrus astrocyte proliferation was suppressed in dystrophic mice. Astrocytes are the most abundant cell type in the brain and are crucial in supporting neuronal function, such that loss of these cells is likely to contribute to hippocampal dysfunction reported in mdx mice.
Collapse
Affiliation(s)
| | - Polly Peters
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - Mark G Rae
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - Dervla O'Malley
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Goutal S, Lancien M, Rivier F, Tournier N, Vaillend C. Brain glucose metabolism as a neuronal substrate of the abnormal behavioral response to stress in the mdx mouse, a model of Duchenne muscular dystrophy. Neurobiol Dis 2025; 204:106771. [PMID: 39701189 DOI: 10.1016/j.nbd.2024.106771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is associated with a range of cognitive and behavioral problems. Brain-related comorbidities show clinical heterogeneity depending on the position of the mutation within the multi-promoter dystrophin (DMD) gene, likely due to the differential impact of mutations on the expression of distinct brain dystrophins. A deficiency of the full-length brain dystrophin, Dp427, has been associated with enhanced stress reactivity, characterized by abnormal fear responses in both patients and mdx mouse model. However, the neural substrates of this phenotype are still unknown. Here, we undertook the first functional imaging study of the mdx mouse brain, following expression of the typical unconditioned fear response expressed by mdx mice after a short scruff restraint and one week later after recovery from stress. We compared the brain glucose metabolism in 12 brain structures of mdx and WT littermate male mice using [18F]FDG PET imaging. Restraint-stress induced a global decrease in [18F]FDG uptake in mdx mice, while no difference was found between genotypes when mice were tested one week later under non-stressful conditions. A subset of brain structures were particularly affected by stress in mdx mice, and we identified abnormal correlations between fear responses and metabolism in specific structures, and altered co-activation of the hypothalamus with several subcortical structures. Our data support the hypothesis that enhanced stress reactivity due to loss of brain Dp427 relies on abnormal activation of the brain fear circuit and deregulation of a hypothalamus-dependent pathway.
Collapse
Affiliation(s)
- Sébastien Goutal
- Université Paris-Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 91401 Orsay, France.
| | - Marion Lancien
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, 91400 Saclay, France; PhyMedExp, CNRS UMR 9214, INSERM U1046, University of Montpellier, CHU de Montpellier, France.
| | - François Rivier
- PhyMedExp, CNRS UMR 9214, INSERM U1046, University of Montpellier, CHU de Montpellier, France.
| | - Nicolas Tournier
- Université Paris-Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 91401 Orsay, France.
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, 91400 Saclay, France.
| |
Collapse
|
4
|
Saoudi A, Mitsogiannis MD, Zarrouki F, Fergus C, Stojek E, Talavera S, Moore-Frederick D, Kelly VP, Goyenvalle A, Montanaro F, Muntoni F, Prenderville JA, Sokolowska E, Vaillend C. Impact of distinct dystrophin gene mutations on behavioral phenotypes of Duchenne muscular dystrophy. Dis Model Mech 2024; 17:dmm050707. [PMID: 39718030 PMCID: PMC11698058 DOI: 10.1242/dmm.050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/30/2024] [Indexed: 12/25/2024] Open
Abstract
The severity of brain comorbidities in Duchenne muscular dystrophy (DMD) depends on the mutation position within the DMD gene and differential loss of distinct brain dystrophin isoforms (i.e. Dp427, Dp140, Dp71). Comparative studies of DMD mouse models with different mutation profiles may help to understand this genotype-phenotype relationship. The aim of this study was (1) to compare the phenotypes due to Dp427 loss in mdx5cv mice to those of mdx52 mice, which concomitantly lack Dp427 and Dp140; and (2) to evaluate replicability of phenotypes in separate laboratories. We show that mdx5cv mice displayed impaired fear conditioning and robust anxiety-related responses, the severity of which was higher in mdx52 mice. Depression-related phenotypes presented variably in these models and were difficult to replicate between laboratories. Recognition memory was unaltered or minimally affected in mdx5cv and mdx52 mice, at variance with the cognitive deficits described in the original Dp427-deficient mdx mouse, suggesting a difference related to its distinct genetic background. Our results confirm that Dp140 loss may increase the severity of emotional disturbances, and provide insights on the limits of the reproducibility of behavioral studies in DMD mouse models.
Collapse
Affiliation(s)
- Amel Saoudi
- CNRS, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, 91400 Saclay, France
- UVSQ, Inserm, END-ICAP, Université Paris-Saclay, Versailles, France
| | - Manuela D. Mitsogiannis
- Transpharmation Ireland Ltd, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Faouzi Zarrouki
- CNRS, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, 91400 Saclay, France
| | - Claire Fergus
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Erwina Stojek
- Transpharmation Ireland Ltd, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Silvia Talavera
- Transpharmation Ireland Ltd, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Dervla Moore-Frederick
- Transpharmation Ireland Ltd, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Vincent P. Kelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Dublin, Ireland
| | | | - Federica Montanaro
- Great Ormond Street Institute of Child Health, Dubowitz Neuromuscular Centre, University College London, London, United Kingdom
| | - Francesco Muntoni
- Great Ormond Street Institute of Child Health, Dubowitz Neuromuscular Centre, University College London, London, United Kingdom
| | - Jack A. Prenderville
- Transpharmation Ireland Ltd, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Ewa Sokolowska
- Transpharmation Ireland Ltd, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Dublin, Ireland
- Transpharmation Poland Sp. z o.o., Faculty of Veterinary Medicine, University of Warmia & Mazury in Olsztyn, 00-131 Olsztyn, Poland
| | - Cyrille Vaillend
- CNRS, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, 91400 Saclay, France
| |
Collapse
|
5
|
Prigogine C, Ruiz JM, Cebolla AM, Deconinck N, Servais L, Gailly P, Dan B, Cheron G. Cerebellar dysfunction in the mdx mouse model of Duchenne muscular dystrophy: An electrophysiological and behavioural study. Eur J Neurosci 2024; 60:6470-6489. [PMID: 39415418 DOI: 10.1111/ejn.16566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024]
Abstract
Patients with Duchenne muscular dystrophy (DMD) commonly show specific cognitive deficits in addition to a severe muscle impairment caused by the absence of dystrophin expression in skeletal muscle. These cognitive deficits have been related to the absence of dystrophin in specific regions of the central nervous system, notably cerebellar Purkinje cells (PCs). Dystrophin has recently been involved in GABAA receptors clustering at postsynaptic densities, and its absence, by disrupting this clustering, leads to decreased inhibitory input to PC. We performed an in vivo electrophysiological study of the dystrophin-deficient muscular dystrophy X-linked (mdx) mouse model of DMD to compare PC firing and local field potential (LFP) in alert mdx and control C57Bl/10 mice. We found that the absence of dystrophin is associated with altered PC firing and the emergence of fast (~160-200 Hz) LFP oscillations in the cerebellar cortex of alert mdx mice. These abnormalities were not related to the disrupted expression of calcium-binding proteins in cerebellar PC. We also demonstrate that cerebellar long-term depression is altered in alert mdx mice. Finally, mdx mice displayed a force weakness, mild impairment of motor coordination and balance during behavioural tests. These findings demonstrate the existence of cerebellar dysfunction in mdx mice. A similar cerebellar dysfunction may contribute to the cognitive deficits observed in patients with DMD.
Collapse
Affiliation(s)
- Cynthia Prigogine
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Electrophysiology, Université de Mons, Mons, Belgium
| | | | - Ana Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Deconinck
- Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Brussels, Belgium
| | | | - Philippe Gailly
- Laboratory of Cell Physiology, Université Catholique de Louvain, Brussels, Belgium
| | - Bernard Dan
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
- Rehabilitation Hospital Inkendaal, Vlezenbeek, Belgium
| | - Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Electrophysiology, Université de Mons, Mons, Belgium
| |
Collapse
|
6
|
Gharibi S, Vaillend C, Lindsay A. The unconditioned fear response in vertebrates deficient in dystrophin. Prog Neurobiol 2024; 235:102590. [PMID: 38484964 DOI: 10.1016/j.pneurobio.2024.102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Dystrophin loss due to mutations in the Duchenne muscular dystrophy (DMD) gene is associated with a wide spectrum of neurocognitive comorbidities, including an aberrant unconditioned fear response to stressful/threat stimuli. Dystrophin-deficient animal models of DMD demonstrate enhanced stress reactivity that manifests as sustained periods of immobility. When the threat is repetitive or severe in nature, dystrophinopathy phenotypes can be exacerbated and even cause sudden death. Thus, it is apparent that enhanced sensitivity to stressful/threat stimuli in dystrophin-deficient vertebrates is a legitimate cause of concern for patients with DMD that could impact neurocognition and pathophysiology. This review discusses our current understanding of the mechanisms and consequences of the hypersensitive fear response in preclinical models of DMD and the potential challenges facing clinical translatability.
Collapse
Affiliation(s)
- Saba Gharibi
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay 91400, France.
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Department of Medicine, University of Otago, Christchurch 8014, New Zealand.
| |
Collapse
|
7
|
Saoudi A, Barberat S, le Coz O, Vacca O, Doisy Caquant M, Tensorer T, Sliwinski E, Garcia L, Muntoni F, Vaillend C, Goyenvalle A. Partial restoration of brain dystrophin by tricyclo-DNA antisense oligonucleotides alleviates emotional deficits in mdx52 mice. MOLECULAR THERAPY - NUCLEIC ACIDS 2023; 32:173-188. [PMID: 37078061 PMCID: PMC10106732 DOI: 10.1016/j.omtn.2023.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/16/2023] [Indexed: 04/05/2023]
Abstract
The mdx52 mouse model recapitulates a frequent mutation profile associated with brain involvement in Duchenne muscular dystrophy. Deletion of exon 52 impedes expression of two dystrophins (Dp427, Dp140) expressed in brain, and is eligible for therapeutic exon-skipping strategies. We previously showed that mdx52 mice display enhanced anxiety and fearfulness, and impaired associative fear learning. In this study, we examined the reversibility of these phenotypes using exon 51 skipping to restore exclusively Dp427 expression in the brain of mdx52 mice. We first show that a single intracerebroventricular administration of tricyclo-DNA antisense oligonucleotides targeting exon 51 restores 5%-15% of dystrophin protein expression in the hippocampus, cerebellum, and cortex, at stable levels between 7 and 11 week after injection. Anxiety and unconditioned fear were significantly reduced in treated mdx52 mice and acquisition of fear conditioning appeared fully rescued, while fear memory tested 24 h later was only partially improved. Additional restoration of Dp427 in skeletal and cardiac muscles by systemic treatment did not further improve the unconditioned fear response, confirming the central origin of this phenotype. These findings indicate that some emotional and cognitive deficits associated with dystrophin deficiency may be reversible or at least improved by partial postnatal dystrophin rescue.
Collapse
Affiliation(s)
- Amel Saoudi
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Sacha Barberat
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - Olivier le Coz
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - Ophélie Vacca
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | | | - Thomas Tensorer
- SQY Therapeutics – Synthena, UVSQ, 78180 Montigny le Bretonneux, France
| | - Eric Sliwinski
- SQY Therapeutics – Synthena, UVSQ, 78180 Montigny le Bretonneux, France
| | - Luis Garcia
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
- Corresponding author Cyrille Vaillend, Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France.
| | - Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
- Corresponding author Aurélie Goyenvalle, Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France.
| |
Collapse
|
8
|
Crawford AH, Hornby NL, de la Fuente AG, Piercy RJ. Brain magnetic resonance imaging in the DE50-MD dog model of Duchenne muscular dystrophy reveals regional reductions in cerebral gray matter. BMC Neurosci 2023; 24:21. [PMID: 36932329 PMCID: PMC10024360 DOI: 10.1186/s12868-023-00788-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy is a X-linked disease characterized by severe and progressive muscle weakness, alongside cognitive impairment and a range of neurobehavioral disorders secondary to brain dystrophin deficiency. Duchenne muscular dystrophy patients have reduced cerebral gray matter and altered white matter ultrastructure (detected by magnetic resonance imaging) compared to age-matched controls. METHODS We studied the DE50-MD canine model of Duchenne muscular dystrophy, which is deficient in full length brain dystrophin (Dp427) isoforms and has a neurocognitive phenotype. Eight DE50-MD and 6 age-matched littermate wild type male dogs underwent serial brain magnetic resonance imaging from 14 to 33 months of age. RESULTS Reduced regional gray matter was detected in DE50-MD dogs compared with wildtype, including the piriform lobe, hippocampus and cingulate gyrus. Lateral ventricle volume was larger in DE50-MD dogs. Differences did not progress over time. White matter volume did not differ between DE50-MD and wildtype dogs. There was no difference in brain nor cranial vault volume between DE50-MD and wildtype dogs. CONCLUSION Dystrophin deficiency in the canine brain results in structural changes that likely contribute to the neurocognitive phenotype.
Collapse
Affiliation(s)
- Abbe H. Crawford
- grid.20931.390000 0004 0425 573XComparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, UK
| | - Natasha L. Hornby
- grid.20931.390000 0004 0425 573XComparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, UK
| | - Alerie G. de la Fuente
- grid.513062.30000 0004 8516 8274Institute of Health and Biomedical Research of Alicante (ISABIAL), Alicante, Spain
- Institute of Neurosciences CSIC-UMH, San Juan de Alicante, Spain
- grid.4777.30000 0004 0374 7521Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, UK
| | - Richard J. Piercy
- grid.20931.390000 0004 0425 573XComparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, UK
| |
Collapse
|
9
|
Colvin MK, Truba N, Sorensen S, Henricson E, Kinnett K. Dystrophinopathy and the brain: A parent project muscular dystrophy (PPMD) meeting report November 11-12, 2021, New York City, NY. Neuromuscul Disord 2022; 32:935-944. [PMID: 36323606 DOI: 10.1016/j.nmd.2022.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Mary K Colvin
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
| | - Natalie Truba
- Department of Psychology and Neurology, Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | - Kathi Kinnett
- Parent Project Muscular Dystrophy, Washington DC, USA
| |
Collapse
|
10
|
Barboni MTS, Joachimsthaler A, Roux MJ, Nagy ZZ, Ventura DF, Rendon A, Kremers J, Vaillend C. Retinal dystrophins and the retinopathy of Duchenne muscular dystrophy. Prog Retin Eye Res 2022:101137. [DOI: 10.1016/j.preteyeres.2022.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
|
11
|
Babaeijandaghi F, Cheng R, Kajabadi N, Soliman H, Chang CK, Smandych J, Tung LW, Long R, Ghassemi A, Rossi FMV. Metabolic reprogramming of skeletal muscle by resident macrophages points to CSF1R inhibitors as muscular dystrophy therapeutics. Sci Transl Med 2022; 14:eabg7504. [PMID: 35767650 DOI: 10.1126/scitranslmed.abg7504] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The role of tissue-resident macrophages during tissue regeneration or fibrosis is not well understood, mainly due to the lack of a specific marker for their identification. Here, we identified three populations of skeletal muscle-resident myelomonocytic cells: a population of macrophages positive for lymphatic vessel endothelial receptor 1 (LYVE1) and T cell membrane protein 4 (TIM4 or TIMD4), a population of LYVE1-TIM4- macrophages, and a population of cells likely representing dendritic cells that were positive for CD11C and major histocompatibility complex class II (MHCII). Using a combination of parabiosis and lineage-tracing experiments, we found that, at steady state, TIM4- macrophages were replenished from the blood, whereas TIM4+ macrophages locally self-renewed [self-renewing resident macrophages (SRRMs)]. We further showed that Timd4 could be reliably used to distinguish SRRMs from damage-induced infiltrating macrophages. Using a colony-stimulating factor 1 receptor (CSF1R) inhibition/withdrawal approach to specifically deplete SRRMs, we found that SRRMs provided a nonredundant function in clearing damage-induced apoptotic cells early after extensive acute injury. In contrast, in chronic mild injury as seen in a mouse model of Duchenne muscular dystrophy, depletion of both TIM4-- and TIM4+-resident macrophage populations through long-term CSF1R inhibition changed muscle fiber composition from damage-sensitive glycolytic fibers toward damage-resistant glycolytic-oxidative fibers, thereby protecting muscle against contraction-induced injury both ex vivo and in vivo. This work reveals a previously unidentified role for resident macrophages in modulating tissue metabolism and may have therapeutic potential given the ongoing clinical testing of CSF1R inhibitors.
Collapse
Affiliation(s)
- Farshad Babaeijandaghi
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ryan Cheng
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nasim Kajabadi
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hesham Soliman
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.,Aspect Biosystems, 1781 W 75th Ave, Vancouver, BC V6P 6P2, Canada
| | - Chih-Kai Chang
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Josh Smandych
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Lin Wei Tung
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Reece Long
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Amirhossein Ghassemi
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Fabio M V Rossi
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
12
|
Zarrouki F, Relizani K, Bizot F, Tensorer T, Garcia L, Vaillend C, Goyenvalle A. Partial restoration of brain dystrophin and behavioral deficits by exon skipping in the muscular dystrophy X-linked (mdx) mouse. Ann Neurol 2022; 92:213-229. [PMID: 35587226 PMCID: PMC9544349 DOI: 10.1002/ana.26409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/08/2022]
Abstract
Objectives Duchenne muscular dystrophy is associated with various degrees of cognitive impairment and behavioral disturbances. Emotional and memory deficits also constitute reliable outcome measures to assess efficacy of treatments in the mdx mouse lacking the muscle and neuronal full‐length dystrophins. The present study aimed to evaluate whether these deficits could be alleviated by the restoration of brain dystrophin. Methods We performed intracerebroventricular administration of a new potent tricyclo‐DNA antisense oligonucleotide (tcDNA‐ASO) containing a full phosphodiester backbone conjugated to a palmitic acid moiety (tcDNA‐ASO), designed to skip the mutated exon 23 of mdx mice. Results We first show that the tcDNA‐ASO rescues expression of brain dystrophin to 10–30% of wild‐type levels and significantly reduces the abnormal unconditioned fear responses in mdx mice in a dose‐dependent manner, 5 weeks post‐injection. Exon skipping efficiency, ASO biodistribution, protein restoration and effect on the fear response were optimal with a dose of 400 μg at 6–7 weeks post‐injection, with synaptic‐like expression in brain tissues such as the hippocampus and amygdala. Furthermore, this dose of tcDNA‐ASO restored long‐term memory retention of mdx mice in an object recognition task, but only had minor effects on fear conditioning. Interpretation These results suggest for the first time that postnatal re‐expression of brain dystrophin could reverse or at least alleviate some cognitive deficits associated with Duchenne muscular dystrophy. ANN NEUROL 2022;92:213–229
Collapse
Affiliation(s)
- Faouzi Zarrouki
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000, Versailles, France.,Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, 91400, Saclay, France
| | - Karima Relizani
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000, Versailles, France.,SQY Therapeutics, UVSQ, 78180, Montigny le Bretonneux, France
| | - Flavien Bizot
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000, Versailles, France
| | - Thomas Tensorer
- SQY Therapeutics, UVSQ, 78180, Montigny le Bretonneux, France
| | - Luis Garcia
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000, Versailles, France.,LIA BAHN, centre scientifique de Monaco, 98000, Monaco
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, 91400, Saclay, France
| | - Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000, Versailles, France.,LIA BAHN, centre scientifique de Monaco, 98000, Monaco
| |
Collapse
|
13
|
Crawford AH, Hildyard JCW, Rushing SAM, Wells DJ, Diez-Leon M, Piercy RJ. Validation of DE50-MD dogs as a model for the brain phenotype of Duchenne muscular dystrophy. Dis Model Mech 2022; 15:dmm049291. [PMID: 35019137 PMCID: PMC8906169 DOI: 10.1242/dmm.049291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/21/2021] [Indexed: 11/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), a fatal musculoskeletal disease, is associated with neurodevelopmental disorders and cognitive impairment caused by brain dystrophin deficiency. Dog models of DMD represent key translational tools to study dystrophin biology and to develop novel therapeutics. However, characterisation of dystrophin expression and function in the canine brain is lacking. We studied the DE50-MD canine model of DMD that has a missense mutation in the donor splice site of exon 50. Using a battery of cognitive tests, we detected a neurocognitive phenotype in DE50-MD dogs, including reduced attention, problem solving and exploration of novel objects. Through a combination of capillary immunoelectrophoresis, immunolabelling, quantitative PCR and RNAScope in situ hybridisation, we show that regional dystrophin expression in the adult canine brain reflects that of humans, and that the DE50-MD dog lacks full-length dystrophin (Dp427) protein expression but retains expression of the two shorter brain-expressed isoforms, Dp140 and Dp71. Thus, the DE50-MD dog is a translationally relevant pre-clinical model to study the consequences of Dp427 deficiency in the brain and to develop therapeutic strategies for the neurological sequelae of DMD.
Collapse
Affiliation(s)
- Abbe H. Crawford
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London NW1 0TU, UK
| | - John C. W. Hildyard
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London NW1 0TU, UK
| | - Sophie A. M. Rushing
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London NW1 0TU, UK
| | - Dominic J. Wells
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Maria Diez-Leon
- Pathobiology and Population Sciences, Royal Veterinary College, London AL9 7TA, UK
| | - Richard J. Piercy
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London NW1 0TU, UK
| |
Collapse
|
14
|
Hayward GC, Caceres D, Copeland EN, Baranowski BJ, Mohammad A, Whitley KC, Fajardo VA, MacPherson REK. Characterization of Alzheimer's disease-like neuropathology in Duchenne's muscular dystrophy using the DBA/2J mdx mouse model. FEBS Open Bio 2021; 12:154-162. [PMID: 34668666 PMCID: PMC8727939 DOI: 10.1002/2211-5463.13317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 11/26/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disorder caused by a mutation in the dystrophin gene. In addition to muscle pathology, some patients with DMD will exhibit cognitive impairments with severity being linked to age and type of genetic mutation. Likewise, some studies have shown that mdx mice display impairments in spatial memory compared with wild‐type (WT) controls, while others have not observed any such effect. Most studies have utilized the traditional C57BL/10 (C57) mdx mouse, which exhibits a mild disease phenotype. Recently, the DBA/2J (D2) mdx mouse has emerged as a more severe and perhaps clinically relevant DMD model; however, studies examining cognitive function in these mice are limited. Thus, in this study we examined cognitive function in age‐matched C57 and D2 mdx mice along with their respective WT controls. Our findings show that 8‐ to 12‐week‐old C57 mdx mice did not display any differences in exploration time when challenged with a novel object recognition test. Conversely, age‐matched D2 mdx mice spent less time exploring objects in total as a well as less time exploring the novel object, suggestive of impaired recognition memory. Biochemical analyses of the D2 mdx brain revealed higher soluble amyloid precursor protein β (APPβ) and APP in the prefrontal cortex of mdx mice compared with WT, and lower soluble APPα in the hippocampus, suggestive of a shift towards amyloidogenesis and a similar pathogenesis to Alzheimer's disease. Furthermore, our study demonstrates the utility of the D2 mdx model in studying cognitive impairment.
Collapse
Affiliation(s)
| | - Daniela Caceres
- Faculty of Medicine, University of del Rosario, Bogota, Colombia
| | - Emily N Copeland
- Department of Kinesiology, Brock University, St. Catharines, Canada
| | | | - Ahmad Mohammad
- Department of Health Sciences, Brock University, St. Catharines, Canada
| | | | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, Canada
| | | |
Collapse
|
15
|
Saoudi A, Zarrouki F, Sebrié C, Izabelle C, Goyenvalle A, Vaillend C. Emotional behavior and brain anatomy of the mdx52 mouse model of Duchenne muscular dystrophy. Dis Model Mech 2021; 14:dmm049028. [PMID: 34546327 PMCID: PMC8476816 DOI: 10.1242/dmm.049028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/30/2021] [Indexed: 11/20/2022] Open
Abstract
The exon-52-deleted mdx52 mouse is a critical model of Duchenne muscular dystrophy (DMD), as it features a deletion in a hotspot region of the DMD gene, frequently mutated in patients. Deletion of exon 52 impedes expression of several brain dystrophins (Dp427, Dp260 and Dp140), thus providing a key model for studying the cognitive impairment associated with DMD and testing rescuing strategies. Here, using in vivo magnetic resonance imaging and neurohistology, we found no gross brain abnormalities in mdx52 mice, suggesting that the neural dysfunctions in this model are likely at the level of brain cellular functionalities. Then, we investigated emotional behavior and fear learning performance of mdx52 mice compared to mdx mice that only lack Dp427 to focus on behavioral phenotypes that could be used in future comparative preclinical studies. mdx52 mice displayed enhanced anxiety and a severe impairment in learning an amygdala-dependent Pavlovian association. These replicable behavioral outcome measures are reminiscent of the internalizing problems reported in a quarter of DMD patients, and will be useful for preclinical estimation of the efficacy of treatments targeting brain dysfunctions in DMD.
Collapse
Affiliation(s)
- Amel Saoudi
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, 91190, Gif-sur-Yvette, France
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - Faouzi Zarrouki
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, 91190, Gif-sur-Yvette, France
| | - Catherine Sebrié
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401 Orsay, France
| | - Charlotte Izabelle
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, 91190, Gif-sur-Yvette, France
| | - Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, 91190, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Engelbeen S, Aartsma-Rus A, Koopmans B, Loos M, van Putten M. Assessment of Behavioral Characteristics With Procedures of Minimal Human Interference in the mdx Mouse Model for Duchenne Muscular Dystrophy. Front Behav Neurosci 2021; 14:629043. [PMID: 33551769 PMCID: PMC7855581 DOI: 10.3389/fnbeh.2020.629043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive neuromuscular disorder caused by mutations in the DMD gene resulting in loss of functional dystrophin protein. The muscle dystrophin isoform is essential to protect muscles from contraction-induced damage. However, most dystrophin isoforms are expressed in the brain. In addition to progressive muscle weakness, many DMD patients therefore also exhibit intellectual and behavioral abnormalities. The most commonly used mouse model for DMD, the mdx mouse, lacks only the full-length dystrophin isoforms and has been extensively characterized for muscle pathology. In this study, we assessed behavioral effects of a lack of full-length dystrophins on spontaneous behavior, discrimination and reversal learning, anxiety, and short-term spatial memory and compared performance between male and female mdx mice. In contrast to our previous study using only female mdx mice, we could not reproduce the earlier observed reversal learning deficit. However, we did notice small differences in the number of visits made during the Y-maze and dark-light box. Results indicate that it is advisable to establish standard operating procedures specific to behavioral testing in mdx mice to allow the detection of the subtle phenotypic differences and to eliminate inter and intra laboratory variance.
Collapse
Affiliation(s)
- Sarah Engelbeen
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Maarten Loos
- Sylics (Synaptologics B.V.), Amsterdam, Netherlands
| | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
17
|
Interleukin-6: A neuro-active cytokine contributing to cognitive impairment in Duchenne muscular dystrophy? Cytokine 2020; 133:155134. [DOI: 10.1016/j.cyto.2020.155134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022]
|
18
|
Xu S, Tang S, Li X, Iyer SR, Lovering RM. Abnormalities in Brain and Muscle Microstructure and Neurochemistry of the DMD Rat Measured by in vivo Diffusion Tensor Imaging and High Resolution Localized 1H MRS. Front Neurosci 2020; 14:739. [PMID: 32760246 PMCID: PMC7372970 DOI: 10.3389/fnins.2020.00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/22/2020] [Indexed: 12/03/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disorder caused by the lack of dystrophin with progressive degeneration of skeletal muscles. Most studies regarding DMD understandably focus on muscle, but dystrophin is also expressed in the central nervous system, potentially resulting in cognitive and behavioral changes. Animal models are being used for developing more comprehensive neuromonitoring protocols and clinical image acquisition procedures. The recently developed DMD rat is an animal model that parallels the progressive muscle wasting seen in DMD. Here, we studied the brain and temporalis muscle structure and neurochemistry of wild type (WT) and dystrophic (DMD) rats using magnetic resonance imaging and spectroscopy. Both structural and neurochemistry alterations were observed in the DMD rat brain and the temporalis muscle. There was a decrease in absolute brain volume (WT = 1579 mm3; DMD = 1501 mm3; p = 0.039, Cohen’s d = 1.867), but not normalized (WT = 4.27; DMD = 4.02; p = 0.306) brain volume. Diffusion tensor imaging (DTI) revealed structural alterations in the DMD temporalis muscle, with increased mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). In the DMD rat thalamus, DTI revealed an increase in fractional anisotropy (FA) and a decrease in RD. Smaller normalized brain volume correlated to severity of muscle dystrophy (r = −0.975). Neurochemical changes in the DMD rat brain included increased GABA and NAA in the prefrontal cortex, and GABA in the hippocampus. Such findings could indicate disturbed motor and sensory signaling, resulting in a dysfunctional GABAergic neurotransmission, and an unstable osmoregulation in the dystrophin-null brain.
Collapse
Affiliation(s)
- Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shiyu Tang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Xin Li
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
19
|
Caudal D, François V, Lafoux A, Ledevin M, Anegon I, Le Guiner C, Larcher T, Huchet C. Characterization of brain dystrophins absence and impact in dystrophin-deficient Dmdmdx rat model. PLoS One 2020; 15:e0230083. [PMID: 32160266 PMCID: PMC7065776 DOI: 10.1371/journal.pone.0230083] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/20/2020] [Indexed: 12/27/2022] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a severe muscle-wasting disease caused by mutations in the DMD gene encoding dystrophin, expressed mainly in muscles but also in other tissues like retina and brain. Non-progressing cognitive dysfunction occurs in 20 to 50% of DMD patients. Furthermore, loss of expression of the Dp427 dystrophin isoform in the brain of mdx mice, the most used animal model of DMD, leads to behavioral deficits thought to be linked to insufficiencies in synaptogenesis and channel clustering at synapses. Mdx mice where the locomotor phenotype is mild also display a high and maladaptive response to stress. Recently, we generated Dmdmdx rats carrying an out-of frame mutation in exon 23 of the DMD gene and exhibiting a skeletal and cardiac muscle phenotype similar to DMD patients. In order to evaluate the impact of dystrophin loss on behavior, we explored locomotion parameters as well as anhedonia, anxiety and response to stress, in Dmdmdx rats aged from 1.5 to 7 months, in comparison to wild-type (WT) littermates. Pattern of dystrophin expression in the brain of WT and Dmdmdx rats was characterized by western-blot analyses and immunohistochemistry. We showed that dystrophin-deficient Dmdmdx rats displayed motor deficits in the beam test, without association with depressive or anxiety-like phenotype. However, Dmdmdx rats exhibited a strong response to restraint-induced stress, with a large increase in freezings frequency and duration, suggesting an alteration in a functional circuit including the amygdala. In brain, large dystrophin isoform Dp427 was not expressed in mutant animals. Dmdmdx rat is therefore a good animal model for preclinical evaluations of new treatments for DMD but care must be taken with their responses to mild stress.
Collapse
Affiliation(s)
- Dorian Caudal
- Therassay Platform, CAPACITES, Université de Nantes, Nantes, France
- * E-mail:
| | - Virginie François
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, Nantes, France
| | - Aude Lafoux
- Therassay Platform, CAPACITES, Université de Nantes, Nantes, France
| | | | | | - Caroline Le Guiner
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, Nantes, France
| | | | - Corinne Huchet
- Therassay Platform, CAPACITES, Université de Nantes, Nantes, France
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, Nantes, France
| |
Collapse
|
20
|
Cognitive impairment appears progressive in the mdx mouse. Neuromuscul Disord 2020; 30:368-388. [PMID: 32360405 PMCID: PMC7306157 DOI: 10.1016/j.nmd.2020.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 11/22/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive muscle wasting disease caused by mutations in the DMD gene, which encodes the large cytoskeletal protein dystrophin. Approximately one-third of DMD patient's exhibit cognitive problems yet it is unknown if cognitive impairments worsen with age. The mdx mouse model is deficient in dystrophin demonstrates cognitive abnormalities, but no studies have investigated this longitudinally. We assessed the consequences of dystrophin deficiency on brain morphology and cognition in male mdx mice. We utilised non-invasive methods to monitor CNS pathology with an aim to identify changes longitudinally (between 4 and 18 months old) which could be used as outcome measures. MRI identified a total brain volume (TBV) increase in control mice with ageing (p < 0.05); but the mdx mice TBV increased significantly more (p < 0.01). Voxel-based morphometry (VBM) identified decreases in grey matter volume, particularly in the hippocampus of the mdx brain, most noticeable from 12 months onwards, as were enlarged lateral ventricles in mdx mice. The caudate putamen of older mdx mice showed increases in T2- relaxometry which may be considered as evidence of increased water content. Hippocampal spatial learning and memory was decreased in mdx mice, particularly long-term memory, which progressively worsened with age. The novel object recognition (NOR) task highlighted elevated anxiety-related behaviour in older mdx mice. Our studies suggest that dystrophin deficiency causes a progressive cognitive impairment in mice (compared to ageing control mice), becoming evident at late disease stages, and may explain why progressive CNS symptoms are not obvious in DMD patients.
Collapse
|
21
|
Naidoo M, Anthony K. Dystrophin Dp71 and the Neuropathophysiology of Duchenne Muscular Dystrophy. Mol Neurobiol 2020; 57:1748-1767. [PMID: 31836945 PMCID: PMC7060961 DOI: 10.1007/s12035-019-01845-w] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) is caused by frameshift mutations in the DMD gene that prevent the body-wide translation of its protein product, dystrophin. Besides a severe muscle phenotype, cognitive impairment and neuropsychiatric symptoms are prevalent. Dystrophin protein 71 (Dp71) is the major DMD gene product expressed in the brain and mutations affecting its expression are associated with the DMD neuropsychiatric syndrome. As with dystrophin in muscle, Dp71 localises to dystrophin-associated protein complexes in the brain. However, unlike in skeletal muscle; in the brain, Dp71 is alternatively spliced to produce many isoforms with differential subcellular localisations and diverse cellular functions. These include neuronal differentiation, adhesion, cell division and excitatory synapse organisation as well as nuclear functions such as nuclear scaffolding and DNA repair. In this review, we first describe brain involvement in DMD and the abnormalities observed in the DMD brain. We then review the gene expression, RNA processing and functions of Dp71. We review genotype-phenotype correlations and discuss emerging cellular/tissue evidence for the involvement of Dp71 in the neuropathophysiology of DMD. The literature suggests changes observed in the DMD brain are neurodevelopmental in origin and that their risk and severity is associated with a cumulative loss of distal DMD gene products such as Dp71. The high risk of neuropsychiatric syndromes in Duchenne patients warrants early intervention to achieve the best possible quality of life. Unravelling the function and pathophysiological significance of dystrophin in the brain has become a high research priority to inform the development of brain-targeting treatments for Duchenne.
Collapse
Affiliation(s)
- Michael Naidoo
- Centre for Physical Activity and Life Sciences, Faculty of Arts, Science and Technology, University of Northampton, University Drive, Northampton, Northamptonshire, NN1 5PH, UK
| | - Karen Anthony
- Centre for Physical Activity and Life Sciences, Faculty of Arts, Science and Technology, University of Northampton, University Drive, Northampton, Northamptonshire, NN1 5PH, UK.
| |
Collapse
|
22
|
Cultured hippocampal neurons of dystrophic mdx mice respond differently from those of wild type mice to an acute treatment with corticosterone. Exp Cell Res 2020; 386:111715. [PMID: 31711918 DOI: 10.1016/j.yexcr.2019.111715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/27/2022]
Abstract
Duchenne muscular dystrophy is a lethal genetic disease characterised by progressive degeneration of skeletal muscles induced by deficiency of dystrophin, a cytoskeletal protein expressed in myocytes and in certain neuron populations. The severity of the neurological disorder varies in humans and animal models owing to dysfunction in numerous brain areas, including the hippocampus. Cyclic treatments with high-dose glucocorticoids remain a major pharmacological approach for treating the disease; however, elevated systemic levels of either stress-induced or exogenously administered anti-inflammatory molecules dramatically affect hippocampal activity. In this study, we analysed and compared the response of hippocampal neurons isolated from wild-type and dystrophic mdx mice to acute administration of corticosterone in vitro, without the influence of other glucocorticoid-regulated processes. Our results showed that in neurons of mdx mice, both the genomic and intracellular signalling-mediated responses to corticosterone were affected compared to those in wild-type animals, evoking the characteristic response to detrimental chronic glucocorticoid exposure. Responsiveness to glucocorticoids is, therefore, another function of hippocampal neurons possibly affected by deficiency of Dp427 since embryonic development. Knowing the pivotal role of hippocampus in stress hormone signalling, attention should be paid to the effects that prolonged glucocorticoid treatments may have on this and other brain areas of DMD patients.
Collapse
|
23
|
Dickson PE, Mittleman G. Visual Discrimination, Serial Reversal, and Extinction Learning in the mdx Mouse. Front Behav Neurosci 2019; 13:200. [PMID: 31543764 PMCID: PMC6728792 DOI: 10.3389/fnbeh.2019.00200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/14/2019] [Indexed: 12/14/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy and the most common neuromuscular disorder. In addition to neuromuscular consequences, some individuals with DMD experience global intellectual dysfunction and executive dysfunction of unknown mechanistic origin. The cognitive profile of the mdx mouse, the most commonly used mouse model of DMD, has been incompletely characterized and has never been assessed using the touchscreen operant conditioning paradigm. The touchscreen paradigm allows the use of protocols that are virtually identical to those used in human cognitive testing and may, therefore, provide the most translational paradigm for quantifying mouse cognitive function. In the present study, we used the touchscreen paradigm to assess the effects of the mdx mutation on visual discrimination learning, serial reversal learning, and extinction learning. To enable measuring task-dependent learning and memory processes while holding demands on sensory-driven information processing constant, we developed equally salient visual stimuli and used them on all experimental stages. Acquisition of the initial pairwise visual discrimination was facilitated in mdx mice relative to wildtype littermates; this effect was not explained by genotypic differences in impulsivity, motivation, or motor deficits. The mdx mutation had no effect on serial reversal or extinction learning. Together, findings from this study and previous studies suggest that mdx effects on cognitive function are task-specific and may be influenced by discrimination type (spatial, visual), reward type (food, escape from a non-preferred environment), sex, and genetic background.
Collapse
Affiliation(s)
| | - Guy Mittleman
- Department of Psychological Science, Ball State University, Muncie, IN, United States
| |
Collapse
|
24
|
Moon HY, Javadi S, Stremlau M, Yoon KJ, Becker B, Kang SU, Zhao X, van Praag H. Conditioned media from AICAR-treated skeletal muscle cells increases neuronal differentiation of adult neural progenitor cells. Neuropharmacology 2018; 145:123-130. [PMID: 30391731 DOI: 10.1016/j.neuropharm.2018.10.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022]
Abstract
Exercise has profound benefits for brain function in animals and humans. In rodents, voluntary wheel running increases the production of new neurons and upregulates neurotrophin levels in the hippocampus, as well as improving synaptic plasticity, memory function and mood. The underlying cellular mechanisms, however, remain unresolved. Recent research indicates that peripheral organs such as skeletal muscle, liver and adipose tissue secrete factors during physical activity that may influence neuronal function. Here we used an in vitro cell assay and proteomic analysis to investigate the effects of proteins secreted from skeletal muscle cells on adult hippocampal neural progenitor cell (aNPC) differentiation. We also sought to identify the relevant molecules driving these effects. Specifically, we treated rat L6 skeletal muscle cells with the AMP-kinase (AMPK) agonist 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) or vehicle (distilled water). We then collected the conditioned media (CM) and fractionated it using high-performance liquid chromatography (HPLC). Treatment of aNPCs with a specific fraction of the AICAR-CM upregulated expression of doublecortin (DCX) and Tuj1, markers of immature neurons. Proteomic analysis of this fraction identified proteins known to be involved in energy metabolism, cell migration, adhesion and neurogenesis. Culturing differentiating aNPCs in the presence of one of the factors, glycolytic enzyme glucose-6-phosphate isomerase (GPI), or AICAR-CM, increased the proportion of neuronal (Tuj1+) and astrocytic, glial fibrillary acidic protein (GFAP+) cells. Our study provides further evidence that proteins secreted from skeletal muscle cells may serve as a critical communication link to the brain through factors that enhance neural differentiation.
Collapse
Affiliation(s)
- Hyo Youl Moon
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA; Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sahar Javadi
- Waisman Center and Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Matthew Stremlau
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kyeong Jin Yoon
- Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Benjamin Becker
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinyu Zhao
- Waisman Center and Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA; Department of Biomedical Science, Charles E. Schmidt College of Medicine, and Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA.
| |
Collapse
|
25
|
Pereira da Silva JD, Campos DV, Nogueira-Bechara FM, Stilhano RS, Han SW, Sinigaglia-Coimbra R, Lima-Landman MTR, Lapa AJ, Souccar C. Altered release and uptake of gamma-aminobutyric acid in the cerebellum of dystrophin-deficient mice. Neurochem Int 2018; 118:105-114. [PMID: 29864448 DOI: 10.1016/j.neuint.2018.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/07/2018] [Accepted: 06/01/2018] [Indexed: 01/08/2023]
Abstract
Dystrophin deficiency caused by mutations of the related gene leads to muscle wasting in Duchenne muscular dystrophy (DMD). Some patients with DMD also present with intellectual disability and various degrees of neurological disorders, which have been related to a decreased number of postsynaptic gamma-aminobutyric acid type A receptors (GABAARs) in the hippocampus (HPC) and cerebellum (CBL). The aim of this study was to examine the relevance of dystrophin in the presynaptic GABAergic function in brain regions in which this protein is normally abundant. [3H]-GABA release, induced by nicotinic receptor (nAChR) activation or K+ depolarization, and [3H]-GABA uptake were determined using synaptosomes extracted from the cortex (CTX), HPC, and CBL of littermate control and mdx mice. Superfusion of the synaptosomes with nicotine or high K+ solutions led to a concentration-dependent and Ca2+-dependent [3H]-GABA release in control and mdx synaptosomes. [3H]-GABA release induced by 10 μM nicotine in mdx CBL synaptosomes was 47% less than that in control mice. K+-induced [3H]-GABA release did not differ between control and mdx synaptosomes. α7-containing and β2-containing nAChRs were involved in nicotine-induced [3H]-GABA release in control and mdx synaptosomes. Kinetic analysis of [3H]-GABA uptake in mdx CBL synaptosomes showed a reduced (50%) half-maximal uptake time (t1/2) and increased (44%) rate of [3H]-GABA uptake (Vmax) compared to controls. The apparent transporter affinity (Km) for GABA was not altered. Our findings show that dystrophin deficiency in mdx mice is associated with significant changes in the release and uptake of GABA in the CBL. These presynaptic alterations may be related to the reported decrease in postsynaptic GABAAR in the same brain region. The results indicate possible dysfunction of GABAergic synapses associated with dystrophin deficiency in the CBL, which may contribute to the cognitive and neurobehavioral disorders in mdx mice and patients with DMD.
Collapse
Affiliation(s)
| | - Diego Vannucci Campos
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, SP, Brazil
| | | | - Roberta Sessa Stilhano
- Department of Biophysics, Universidade Federal de São Paulo, Escola Paulista de Medicina, SP, Brazil
| | - Sang Won Han
- Department of Biophysics, Universidade Federal de São Paulo, Escola Paulista de Medicina, SP, Brazil
| | - Rita Sinigaglia-Coimbra
- Electron Microscopy Center, Universidade Federal de São Paulo, Escola Paulista de Medicina, SP, Brazil
| | | | - Antônio José Lapa
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, SP, Brazil; Visiting Professor at Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Caden Souccar
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, SP, Brazil.
| |
Collapse
|
26
|
Abstract
Accumulating research in rodents and humans indicates that exercise benefits brain function and may prevent or delay onset of neurodegenerative conditions. In particular, exercise modifies the structure and function of the hippocampus, a brain area important for learning and memory. This review addresses the central and peripheral mechanisms underlying the beneficial effects of exercise on the hippocampus. We focus on running-induced changes in adult hippocampal neurogenesis, neural circuitry, neurotrophins, synaptic plasticity, neurotransmitters, and vasculature. The role of peripheral factors in hippocampal plasticity is also highlighted. We discuss recent evidence that systemic factors released from peripheral organs such as muscle (myokines), liver (hepatokines), and adipose tissue (adipokines) during exercise contribute to hippocampal neurotrophin and neurogenesis levels, and memory function. A comprehensive understanding of the body-brain axis is needed to elucidate how exercise improves hippocampal plasticity and cognition.
Collapse
Affiliation(s)
- C'iana Cooper
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
| | - Hyo Youl Moon
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
- Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
| |
Collapse
|
27
|
Kogelman B, Khmelinskii A, Verhaart I, van Vliet L, Bink DI, Aartsma-Rus A, van Putten M, van der Weerd L. Influence of full-length dystrophin on brain volumes in mouse models of Duchenne muscular dystrophy. PLoS One 2018; 13:e0194636. [PMID: 29601589 PMCID: PMC5877835 DOI: 10.1371/journal.pone.0194636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/07/2018] [Indexed: 11/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) affects besides muscle also the brain, resulting in memory and behavioral problems. The consequences of dystrophinopathy on gross macroscopic alterations are unclear. To elucidate the effect of full-length dystrophin expression on brain morphology, we used high-resolution post-mortem MRI in mouse models that either express 0% (mdx), 100% (BL10) or a low amount of full-length dystrophin (mdx-XistΔhs). While absence or low amounts of full-length dystrophin did not significantly affect whole brain volume and skull morphology, we found differences in volume of individual brain structures. The results are in line with observations in humans, where whole brain volume was found to be reduced only in patients lacking both full-length dystrophin and the shorter isoform Dp140.
Collapse
Affiliation(s)
- Bauke Kogelman
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Artem Khmelinskii
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Percuros B.V., Enschede, the Netherlands
| | - Ingrid Verhaart
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura van Vliet
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Diewertje I. Bink
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
28
|
Lopez JR, Uryash A, Kolster J, Estève E, Zhang R, Adams JA. Enhancing Endogenous Nitric Oxide by Whole Body Periodic Acceleration Elicits Neuroprotective Effects in Dystrophic Neurons. Mol Neurobiol 2018; 55:8680-8694. [DOI: 10.1007/s12035-018-1018-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 03/16/2018] [Indexed: 12/25/2022]
|
29
|
Abstract
Duchenne muscular dystrophy is a highly progressive neuromuscular disorder caused by primary abnormalities in the Dmd gene encoding the membrane cytoskeletal protein dystrophin. Dystrophinopathies are multi-systems disorders that are characterized by severe skeletal muscle wasting, with loss of independent ambulation in the early teenage years, followed by cardio-respiratory complications and premature death. Nonprogressive cognitive impairments are estimated to affect approximately one-third of dystrophic children. To identify the molecular mechanisms behind the impaired brain function in dystrophinopathy, liquid chromatography-based mass spectrometry offers an unbiased and technology-driven approach. In this chapter, we give a detailed description of a label-free mass spectrometric method to investigate proteome-wide changes in the dystrophin-deficient brain from a genetic mouse model of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland Maynooth, Callan Building, North Campus, Maynooth, Co. Kildare, Ireland
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland Maynooth, Callan Building, North Campus, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
30
|
Mavrogeni S, Pons R, Nikas I, Papadopoulos G, Verganelakis DA, Kolovou G, Chrousos GP. Brain and heart magnetic resonance imaging/spectroscopy in duchenne muscular dystrophy. Eur J Clin Invest 2017; 47. [PMID: 28981141 DOI: 10.1111/eci.12842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 10/02/2017] [Indexed: 01/04/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked muscle disorder characterized by progressive and irreversible loss of muscular function. As muscular disease progresses, the repair mechanisms cannot compensate for cellular damage, leading inevitably to necrosis and progressive replacement by fibrous and fatty tissue. Cardiomyopathy and respiratory failure are the main causes of death in DMD. In addition to the well-described muscle and heart disease, cognitive dysfunction affects around 30% of DMD boys. Myocardial fibrosis, assessed by late gadolinium enhancement (LGE), using cardiovascular magnetic resonance imaging (CMR), is an early marker of heart involvement in both DMD patients and female carriers. In parallel, brain MRI identifies smaller total brain volume, smaller grey matter volume, lower white matter fractional anisotropy and higher white matter radial diffusivity in DMD patients. The in vivo brain evaluation of mdx mice, a surrogate animal model of DMD, showed an increased inorganic phosphate (P(i))/phosphocreatine (PCr) and pH. In this paper, we propose a holistic approach using techniques of magnetic resonance imaging, spectroscopy and diffusion tensor imaging as a tool to create a "heart and brain imaging map" in DMD patients that could potentially facilitate the patients' risk stratification and also future research studies in the field.
Collapse
Affiliation(s)
| | - Roser Pons
- 1st Department of Pediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Ioannis Nikas
- 1st Department of Pediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - George Papadopoulos
- 1st Department of Pediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Dimitrios A Verganelakis
- 1st Department of Pediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | | | - George P Chrousos
- 1st Department of Pediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| |
Collapse
|
31
|
Van Ry PM, Fontelonga TM, Barraza-Flores P, Sarathy A, Nunes AM, Burkin DJ. ECM-Related Myopathies and Muscular Dystrophies: Pros and Cons of Protein Therapies. Compr Physiol 2017; 7:1519-1536. [PMID: 28915335 DOI: 10.1002/cphy.c150033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Extracellular matrix (ECM) myopathies and muscular dystrophies are a group of genetic diseases caused by mutations in genes encoding proteins that provide critical links between muscle cells and the extracellular matrix. These include structural proteins of the ECM, muscle cell receptors, enzymes, and intracellular proteins. Loss of adhesion within the myomatrix results in progressive muscle weakness. For many ECM muscular dystrophies, symptoms can occur any time after birth and often result in reduced life expectancy. There are no cures for the ECM-related muscular dystrophies and treatment options are limited to palliative care. Several therapeutic approaches have been explored to treat muscular dystrophies including gene therapy, gene editing, exon skipping, embryonic, and adult stem cell therapy, targeting genetic modifiers, modulating inflammatory responses, or preventing muscle degeneration. Recently, protein therapies that replace components of the defective myomatrix or enhance muscle and/or extracellular matrix integrity and function have been explored. Preclinical studies for many of these biologics have been promising in animal models of these muscle diseases. This review aims to summarize the ECM muscular dystrophies for which protein therapies are being developed and discuss the exciting potential and possible limitations of this approach for treating this family of devastating genetic muscle diseases. © 2017 American Physiological Society. Compr Physiol 7:1519-1536, 2017.
Collapse
Affiliation(s)
- Pam M Van Ry
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Tatiana M Fontelonga
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Pamela Barraza-Flores
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Apurva Sarathy
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Andreia M Nunes
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA.,Departamento de Biologia Animal, Centro de Ecologia, Evolucao e Alteracoes Ambientais, Faculdade de Ciencias, Universidade de Lisboa, Lisbon, Portugal
| | - Dean J Burkin
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| |
Collapse
|
32
|
The Brain-Enriched MicroRNA miR-9-3p Regulates Synaptic Plasticity and Memory. J Neurosci 2017; 36:8641-52. [PMID: 27535911 DOI: 10.1523/jneurosci.0630-16.2016] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/28/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED MicroRNAs (miRNAs) are small, noncoding RNAs that posttranscriptionally regulate gene expression in many tissues. Although a number of brain-enriched miRNAs have been identified, only a few specific miRNAs have been revealed as critical regulators of synaptic plasticity, learning, and memory. miR-9-5p/3p are brain-enriched miRNAs known to regulate development and their changes have been implicated in several neurological disorders, yet their role in mature neurons in mice is largely unknown. Here, we report that inhibition of miR-9-3p, but not miR-9-5p, impaired hippocampal long-term potentiation (LTP) without affecting basal synaptic transmission. Moreover, inhibition of miR-9-3p in the hippocampus resulted in learning and memory deficits. Furthermore, miR-9-3p inhibition increased the expression of the LTP-related genes Dmd and SAP97, the expression levels of which are negatively correlated with LTP. These results suggest that miR-9-3p-mediated gene regulation plays important roles in synaptic plasticity and hippocampus-dependent memory. SIGNIFICANCE STATEMENT Despite the abundant expression of the brain-specific microRNA miR-9-5p/3p in both proliferating and postmitotic neurons, most functional studies have focused on their role in neuronal development. Here, we examined the role of miR-9-5p/3p in adult brain and found that miR-9-3p, but not miR-9-5p, has a critical role in hippocampal synaptic plasticity and memory. Moreover, we identified in vivo binding targets of miR-9-3p that are involved in the regulation of long-term potentiation. Our study provides the very first evidence for the critical role of miR-9-3p in synaptic plasticity and memory in the adult mouse.
Collapse
|
33
|
Evaluation of the behavioral characteristics of the mdx mouse model of duchenne muscular dystrophy through operant conditioning procedures. Behav Processes 2017; 142:8-20. [PMID: 28532665 DOI: 10.1016/j.beproc.2017.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 11/20/2022]
Abstract
The mdx mouse is an important nonhuman model for Duchenne muscular dystrophy (DMD) research. Characterizing the behavioral traits of the strain relative to congenic wild-type (WT) mice may enhance our understanding of the cognitive deficits observed in some humans with DMD and contribute to treatment development and evaluation. In this paper we report the results of a number of experiments comparing the behavior of mdx to WT mice in operant conditioning procedures designed to assess learning and memory. We found that mdx outperformed WT in all learning and memory tasks involving food reinforcement, and this appeared to be related to the differential effects of the food deprivation motivating operation on mdx mice. Conversely, WT outperformed mdx in an escape/avoidance learning task. These results suggest motivational differences between the strains and demonstrate the potential utility of operant conditioning procedures in the assessment of the behavioral characteristics of the mdx mouse.
Collapse
|
34
|
Remmelink E, Aartsma-Rus A, Smit AB, Verhage M, Loos M, van Putten M. Cognitive flexibility deficits in a mouse model for the absence of full-length dystrophin. GENES BRAIN AND BEHAVIOR 2017; 15:558-67. [PMID: 27220066 DOI: 10.1111/gbb.12301] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/14/2016] [Accepted: 05/20/2016] [Indexed: 11/28/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder, caused by mutations in the DMD gene and the resulting lack of dystrophin. The DMD gene has seven promoters, giving rise to multiple full-length and shorter isoforms. Besides the expression of dystrophin in muscles, the majority of dystrophin isoforms is expressed in brain and dystrophinopathy can lead to cognitive deficits, including intellectual impairments and deficits in executive function. In contrast to the muscle pathology, the impact of the lack of dystrophin on the brain is not very well studied. Here, we study the behavioral consequences of a lack of full-length dystrophin isoforms in mdx mice, particularly with regard to domains of executive functions and anxiety. We observed a deficit in cognitive flexibility in mdx mice in the absence of motor dysfunction or general learning impairments using two independent behavioral tests. In addition, increased anxiety was observed, but its expression depended on the context. Overall, these results suggest that the absence of full-length dystrophin in mice has specific behavioral effects that compare well to deficits observed in DMD patients.
Collapse
Affiliation(s)
- E Remmelink
- Sylics (Synaptologics B.V.), The Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - A Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - A B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, The Netherlands
| | - M Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - M Loos
- Sylics (Synaptologics B.V.), The Netherlands
| | - M van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
35
|
Lopez JR, Kolster J, Uryash A, Estève E, Altamirano F, Adams JA. Dysregulation of Intracellular Ca 2+ in Dystrophic Cortical and Hippocampal Neurons. Mol Neurobiol 2016; 55:603-618. [PMID: 27975174 DOI: 10.1007/s12035-016-0311-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an inherited X-linked disorder characterized by skeletal muscle wasting, cardiomyopathy, as well as cognitive impairment. Lack of dystrophin in striated muscle produces dyshomeostasis of resting intracellular Ca2+ ([Ca2+]i), Na+ ([Na+]i), and oxidative stress. Here, we test the hypothesis that similar to striated muscle cells, an absence of dystrophin in neurons from mdx mice (a mouse model for DMD) is also associated with dysfunction of [Ca2+]i homeostasis and oxidative stress. [Ca2+]i and [Na+]i in pyramidal cortical and hippocampal neurons from 3 and 6 months mdx mice were elevated compared to WT in an age-dependent manner. Removal of extracellular Ca2+ reduced [Ca2+]i in both WT and mdx neurons, but the decrease was greater and age-dependent in the latter. GsMTx-4 (a blocker of stretch-activated cation channels) significantly decreased [Ca2+]i and [Na+]i in an age-dependent manner in all mdx neurons. Blockade of ryanodine receptors (RyR) or inositol triphosphate receptors (IP3R) reduced [Ca2+]i in mdx. Mdx neurons showed elevated and age-dependent reactive oxygen species (ROS) production and an increase in neuronal damage. In addition, mdx mice showed a spatial learning deficit compared to WT. GsMTx-4 intraperitoneal injection reduced neural [Ca2+]i and improved learning deficit in mdx mice. In summary, mdx neurons show an age-dependent dysregulation in [Ca2+]i and [Na+]i which is mediated by plasmalemmal cation influx and by intracellular Ca2+ release through the RyR and IP3R. Also, mdx neurons have elevated ROS production and more extensive cell damage. Finally, a reduction of [Ca2+]i improved cognitive function in mdx mice.
Collapse
Affiliation(s)
- José R Lopez
- Department of Molecular Biosciences, University of California, Davis, CA, 95616, USA.
| | - Juan Kolster
- Centro de Investigaciones Biomédicas, Mexico, México
| | - Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami, FL, 33140, USA
| | - Eric Estève
- HP2 INSERM 1042 Institut Jean Roget, Université Grenoble Alpes, BP170, 38042, Grenoble Cedex, France
| | - Francisco Altamirano
- Department of Molecular Biosciences, University of California, Davis, CA, 95616, USA.,Department of Internal Medicine - Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - José A Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami, FL, 33140, USA
| |
Collapse
|
36
|
Rae MG, O'Malley D. Cognitive dysfunction in Duchenne muscular dystrophy: a possible role for neuromodulatory immune molecules. J Neurophysiol 2016; 116:1304-15. [PMID: 27385793 DOI: 10.1152/jn.00248.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/29/2016] [Indexed: 11/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X chromosome-linked disease characterized by progressive physical disability, immobility, and premature death in affected boys. Underlying the devastating symptoms of DMD is the loss of dystrophin, a structural protein that connects the extracellular matrix to the cell cytoskeleton and provides protection against contraction-induced damage in muscle cells, leading to chronic peripheral inflammation. However, dystrophin is also expressed in neurons within specific brain regions, including the hippocampus, a structure associated with learning and memory formation. Linked to this, a subset of boys with DMD exhibit nonprogressing cognitive dysfunction, with deficits in verbal, short-term, and working memory. Furthermore, in the genetically comparable dystrophin-deficient mdx mouse model of DMD, some, but not all, types of learning and memory are deficient, and specific deficits in synaptogenesis and channel clustering at synapses has been noted. Little consideration has been devoted to the cognitive deficits associated with DMD compared with the research conducted into the peripheral effects of dystrophin deficiency. Therefore, this review focuses on what is known about the role of full-length dystrophin (Dp427) in hippocampal neurons. The importance of dystrophin in learning and memory is assessed, and the potential importance that inflammatory mediators, which are chronically elevated in dystrophinopathies, may have on hippocampal function is also evaluated.
Collapse
Affiliation(s)
- Mark G Rae
- Department of Physiology, University College Cork, Cork, Ireland; and
| | - Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland; and APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
37
|
Fuenzalida M, Espinoza C, Pérez MÁ, Tapia-Rojas C, Cuitino L, Brandan E, Inestrosa NC. Wnt signaling pathway improves central inhibitory synaptic transmission in a mouse model of Duchenne muscular dystrophy. Neurobiol Dis 2015; 86:109-20. [PMID: 26626079 DOI: 10.1016/j.nbd.2015.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/02/2015] [Accepted: 11/23/2015] [Indexed: 02/01/2023] Open
Abstract
The dystrophin-associated glycoprotein complex (DGC) that connects the cytoskeleton, plasma membrane and the extracellular matrix has been related to the maintenance and stabilization of channels and synaptic receptors, which are both essential for synaptogenesis and synaptic transmission. The dystrophin-deficient (mdx) mouse model of Duchenne muscular dystrophy (DMD) exhibits a significant reduction in hippocampal GABA efficacy, which may underlie the altered synaptic function and abnormal hippocampal long-term plasticity exhibited by mdx mice. Emerging studies have implicated Wnt signaling in the modulation of synaptic efficacy, neuronal plasticity and cognitive function. We report here that the activation of the non-canonical Wnt-5a pathway and Andrographolide, improves hippocampal mdx GABAergic efficacy by increasing the number of inhibitory synapses and GABA(A) receptors or GABA release. These results indicate that Wnt signaling modulates GABA synaptic efficacy and could be a promising novel target for DMD cognitive therapy.
Collapse
Affiliation(s)
- Marco Fuenzalida
- Centro de Neurobiología y Plasticidad Cerebral, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| | - Claudia Espinoza
- Centro de Neurobiología y Plasticidad Cerebral, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Miguel Ángel Pérez
- Centro de Neurobiología y Plasticidad Cerebral, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Cheril Tapia-Rojas
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreto Cuitino
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Brandan
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
38
|
McGreevy JW, Hakim CH, McIntosh MA, Duan D. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech 2015; 8:195-213. [PMID: 25740330 PMCID: PMC4348559 DOI: 10.1242/dmm.018424] [Citation(s) in RCA: 347] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder. It is caused by loss-of-function mutations in the dystrophin gene. Currently, there is no cure. A highly promising therapeutic strategy is to replace or repair the defective dystrophin gene by gene therapy. Numerous animal models of DMD have been developed over the last 30 years, ranging from invertebrate to large mammalian models. mdx mice are the most commonly employed models in DMD research and have been used to lay the groundwork for DMD gene therapy. After ~30 years of development, the field has reached the stage at which the results in mdx mice can be validated and scaled-up in symptomatic large animals. The canine DMD (cDMD) model will be excellent for these studies. In this article, we review the animal models for DMD, the pros and cons of each model system, and the history and progress of preclinical DMD gene therapy research in the animal models. We also discuss the current and emerging challenges in this field and ways to address these challenges using animal models, in particular cDMD dogs.
Collapse
Affiliation(s)
- Joe W McGreevy
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Mark A McIntosh
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
39
|
Murphy S, Zweyer M, Henry M, Meleady P, Mundegar RR, Swandulla D, Ohlendieck K. Label-free mass spectrometric analysis reveals complex changes in the brain proteome from the mdx-4cv mouse model of Duchenne muscular dystrophy. Clin Proteomics 2015; 12:27. [PMID: 26604869 PMCID: PMC4657206 DOI: 10.1186/s12014-015-9099-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND X-linked muscular dystrophy is a primary disease of the neuromuscular system. Primary abnormalities in the Dmd gene result in the absence of the full-length isoform of the membrane cytoskeletal protein dystrophin. Besides progressive skeletal muscle wasting and cardio-respiratory complications, developmental cognitive deficits and behavioural abnormalities are clinical features of Duchenne muscular dystrophy. In order to better understand the mechanisms that underlie impaired brain functions in Duchenne patients, we have carried out a proteomic analysis of total brain extracts from the mdx-4cv mouse model of dystrophinopathy. RESULTS The comparative proteomic profiling of the mdx-4cv brain revealed a significant increase in 39 proteins and a decrease in 7 proteins. Interesting brain tissue-associated proteins with an increased concentration in the mdx-4cv animal model were represented by the glial fibrillary acidic protein GFAP, the neuronal Ca(2+)-binding protein calretinin, annexin AnxA5, vimentin, the neuron-specific enzyme ubiquitin carboxyl-terminal hydrolase isozyme L1, the dendritic spine protein drebrin, the cytomatrix protein bassoon of the nerve terminal active zone, and the synapse-associated protein SAP97. Decreased proteins were identified as the nervous system-specific proteins syntaxin-1B and syntaxin-binding protein 1, as well as the plasma membrane Ca(2+)-transporting ATPase PMCA2 that is mostly found in the brain cortex. The differential expression patterns of GFAP, vimentin, PMCA2 and AnxA5 were confirmed by immunoblotting. Increased GFAP levels were also verified by immunofluorescence microscopy. CONCLUSIONS The large number of mass spectrometrically identified proteins with an altered abundance suggests complex changes in the mdx-4cv brain proteome. Increased levels of the glial fibrillary acidic protein, an intermediate filament component that is uniquely associated with astrocytes in the central nervous system, imply neurodegeneration-associated astrogliosis. The up-regulation of annexin and vimentin probably represent compensatory mechanisms involved in membrane repair and cytoskeletal stabilization in the absence of brain dystrophin. Differential alterations in the Ca(2+)-binding protein calretinin and the Ca(2+)-pumping protein PMCA2 suggest altered Ca(2+)-handling mechanisms in the Dp427-deficient brain. In addition, the proteomic findings demonstrated metabolic adaptations and functional changes in the central nervous system from the dystrophic phenotype. Candidate proteins can now be evaluated for their suitability as proteomic biomarkers and their potential in predictive, diagnostic, prognostic and/or therapy-monitoring approaches to treat brain abnormalities in dystrophinopathies.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare Ireland
| | - Margit Zweyer
- Department of Physiology II, University of Bonn, 53115 Bonn, Germany
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Rustam R Mundegar
- Department of Physiology II, University of Bonn, 53115 Bonn, Germany
| | - Dieter Swandulla
- Department of Physiology II, University of Bonn, 53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare Ireland
| |
Collapse
|
40
|
Nichols B, Takeda S, Yokota T. Nonmechanical Roles of Dystrophin and Associated Proteins in Exercise, Neuromuscular Junctions, and Brains. Brain Sci 2015; 5:275-98. [PMID: 26230713 PMCID: PMC4588140 DOI: 10.3390/brainsci5030275] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/29/2015] [Accepted: 07/21/2015] [Indexed: 02/06/2023] Open
Abstract
Dystrophin-glycoprotein complex (DGC) is an important structural unit in skeletal muscle that connects the cytoskeleton (f-actin) of a muscle fiber to the extracellular matrix (ECM). Several muscular dystrophies, such as Duchenne muscular dystrophy, Becker muscular dystrophy, congenital muscular dystrophies (dystroglycanopathies), and limb-girdle muscular dystrophies (sarcoglycanopathies), are caused by mutations in the different DGC components. Although many early studies indicated DGC plays a crucial mechanical role in maintaining the structural integrity of skeletal muscle, recent studies identified novel roles of DGC. Beyond a mechanical role, these DGC members play important signaling roles and act as a scaffold for various signaling pathways. For example, neuronal nitric oxide synthase (nNOS), which is localized at the muscle membrane by DGC members (dystrophin and syntrophins), plays an important role in the regulation of the blood flow during exercise. DGC also plays important roles at the neuromuscular junction (NMJ) and in the brain. In this review, we will focus on recently identified roles of DGC particularly in exercise and the brain.
Collapse
Affiliation(s)
- Bailey Nichols
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry.
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan.
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry.
- Muscular Dystrophy Canada Research Chair, 8812-112 St, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
41
|
Chaussenot R, Edeline JM, Le Bec B, El Massioui N, Laroche S, Vaillend C. Cognitive dysfunction in the dystrophin-deficient mouse model of Duchenne muscular dystrophy: A reappraisal from sensory to executive processes. Neurobiol Learn Mem 2015; 124:111-22. [PMID: 26190833 DOI: 10.1016/j.nlm.2015.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 01/08/2023]
Abstract
Duchenne muscular dystrophy (DMD) is associated with language disabilities and deficits in learning and memory, leading to intellectual disability in a patient subpopulation. Recent studies suggest the presence of broader deficits affecting information processing, short-term memory and executive functions. While the absence of the full-length dystrophin (Dp427) is a common feature in all patients, variable mutation profiles may additionally alter distinct dystrophin-gene products encoded by separate promoters. However, the nature of the cognitive dysfunctions specifically associated with the loss of distinct brain dystrophins is unclear. Here we show that the loss of the full-length brain dystrophin in mdx mice does not modify the perception and sensorimotor gating of auditory inputs, as assessed using auditory brainstem recordings and prepulse inhibition of startle reflex. In contrast, both acquisition and long-term retention of cued and trace fear memories were impaired in mdx mice, suggesting alteration in a functional circuit including the amygdala. Spatial learning in the water maze revealed reduced path efficiency, suggesting qualitative alteration in mdx mice learning strategy. However, spatial working memory performance and cognitive flexibility challenged in various behavioral paradigms in water and radial-arm mazes were unimpaired. The full-length brain dystrophin therefore appears to play a role during acquisition of associative learning as well as in general processes involved in memory consolidation, but no overt involvement in working memory and/or executive functions could be demonstrated in spatial learning tasks.
Collapse
Affiliation(s)
- Rémi Chaussenot
- Paris-Saclay Neuroscience Institute, UMR 9197, CNRS, F-91405 Orsay, France; Univ. Paris-Sud, UMR 9197, F-91405 Orsay, France; Université Paris-Saclay, France
| | - Jean-Marc Edeline
- Paris-Saclay Neuroscience Institute, UMR 9197, CNRS, F-91405 Orsay, France; Univ. Paris-Sud, UMR 9197, F-91405 Orsay, France; Université Paris-Saclay, France
| | - Benoit Le Bec
- Paris-Saclay Neuroscience Institute, UMR 9197, CNRS, F-91405 Orsay, France; Univ. Paris-Sud, UMR 9197, F-91405 Orsay, France; Université Paris-Saclay, France
| | - Nicole El Massioui
- Paris-Saclay Neuroscience Institute, UMR 9197, CNRS, F-91405 Orsay, France; Univ. Paris-Sud, UMR 9197, F-91405 Orsay, France; Université Paris-Saclay, France
| | - Serge Laroche
- Paris-Saclay Neuroscience Institute, UMR 9197, CNRS, F-91405 Orsay, France; Univ. Paris-Sud, UMR 9197, F-91405 Orsay, France; Université Paris-Saclay, France
| | - Cyrille Vaillend
- Paris-Saclay Neuroscience Institute, UMR 9197, CNRS, F-91405 Orsay, France; Univ. Paris-Sud, UMR 9197, F-91405 Orsay, France; Université Paris-Saclay, France.
| |
Collapse
|
42
|
Xu S, Shi D, Pratt SJP, Zhu W, Marshall A, Lovering RM. Abnormalities in brain structure and biochemistry associated with mdx mice measured by in vivo MRI and high resolution localized (1)H MRS. Neuromuscul Disord 2015; 25:764-72. [PMID: 26236031 DOI: 10.1016/j.nmd.2015.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 06/21/2015] [Accepted: 07/06/2015] [Indexed: 01/16/2023]
Abstract
Duchenne muscular dystrophy (DMD), an X-linked disorder caused by the lack of dystrophin, is characterized by the progressive wasting of skeletal muscles. To date, what is known about dystrophin function is derived from studies of dystrophin-deficient animals, with the most common model being the mdx mouse. Most studies on patients with DMD and in mdx mice have focused on skeletal muscle and the development of therapies to reverse, or at least slow, the severe muscle wasting and progressive degeneration. However, dystrophin is also expressed in the CNS. Both mdx mice and patients with DMD can have cognitive and behavioral changes, but studies in the dystrophic brain are limited. We examined the brain structure and metabolites of mature wild type (WT) and mdx mice using magnetic resonance imaging and spectroscopy (MRI/MRS). Both structural and metabolic alterations were observed in the mdx brain. Enlarged lateral ventricles were detected in mdx mice when compared to WT. Diffusion tensor imaging (DTI) revealed elevations in diffusion diffusivities in the prefrontal cortex and a reduction of fractional anisotropy in the hippocampus. Metabolic changes included elevations in phosphocholine and glutathione, and a reduction in γ-aminobutyric acid in the hippocampus. In addition, an elevation in taurine was observed in the prefrontal cortex. Such findings indicate a regional structural change, altered cellular antioxidant defenses, a dysfunction of GABAergic neurotransmission, and a perturbed osmoregulation in the brain lacking dystrophin.
Collapse
Affiliation(s)
- Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Da Shi
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Stephen J P Pratt
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Wenjun Zhu
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Andrew Marshall
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Richard M Lovering
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
43
|
Acetylcholine, GABA and neuronal networks: a working hypothesis for compensations in the dystrophic brain. Brain Res Bull 2014; 110:1-13. [PMID: 25445612 DOI: 10.1016/j.brainresbull.2014.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 11/22/2022]
Abstract
Duchenne muscular dystrophy (DMD), a genetic disease arising from a mutation in the dystrophin gene, is characterized by muscle failure and is often associated with cognitive deficits. Studies of the dystrophic brain on the murine mdx model of DMD provide evidence of morphological and functional alterations in the central nervous system (CNS) possibly compatible with the cognitive impairment seen in DMD. However, while some of the alterations reported are a direct consequence of the absence of dystrophin, others seem to be associated only indirectly. In this review we reevaluate the literature in order to formulate a possible explanation for the cognitive impairments associated with DMD. We present a working hypothesis, demonstrated as an integrated neuronal network model, according to which within the cascade of events leading to cognitive impairments there are compensatory mechanisms aimed to maintain functional stability via perpetual adjustments of excitatory and inhibitory components. Such ongoing compensatory response creates continuous perturbations that disrupt neuronal functionality in terms of network efficiency. We have theorized that in this process acetylcholine and network oscillations play a central role. A better understating of these mechanisms could provide a useful diagnostic index of the disease's progression and, perhaps, the correct counterbalance of this process might help to prevent deterioration of the CNS in DMD. Furthermore, the involvement of compensatory mechanisms in the CNS could be extended beyond DMD and possibly help to clarify other physio-pathological processes of the CNS.
Collapse
|
44
|
Goodnough CL, Gao Y, Li X, Qutaish MQ, Goodnough LH, Molter J, Wilson D, Flask CA, Yu X. Lack of dystrophin results in abnormal cerebral diffusion and perfusion in vivo. Neuroimage 2014; 102 Pt 2:809-16. [PMID: 25213753 PMCID: PMC4320943 DOI: 10.1016/j.neuroimage.2014.08.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 01/08/2023] Open
Abstract
Dystrophin, the main component of the dystrophin–glycoprotein complex, plays an important role in maintaining the structural integrity of cells. It is also involved in the formation of the blood–brain barrier (BBB). To elucidate the impact of dystrophin disruption in vivo, we characterized changes in cerebral perfusion and diffusion in dystrophin-deficient mice (mdx) by magnetic resonance imaging (MRI). Arterial spin labeling (ASL) and diffusion-weighted MRI (DWI) studies were performed on 2-month-old and 10-month-old mdx mice and their age-matched wild-type controls (WT). The imaging results were correlated with Evan's blue extravasation and vascular density studies. The results show that dystrophin disruption significantly decreased the mean cerebral diffusivity in both 2-month-old (7.38± 0.30 × 10−4mm2/s) and 10-month-old (6.93 ± 0.53 × 10−4 mm2/s) mdx mice as compared to WT (8.49±0.24×10−4, 8.24±0.25× 10−4mm2/s, respectively). There was also an 18% decrease in cerebral perfusion in 10-month-old mdx mice as compared to WT, which was associated with enhanced arteriogenesis. The reduction in water diffusivity in mdx mice is likely due to an increase in cerebral edema or the existence of large molecules in the extracellular space from a leaky BBB. The observation of decreased perfusion in the setting of enhanced arteriogenesis may be caused by an increase of intracranial pressure from cerebral edema. This study demonstrates the defects in water handling at the BBB and consequently, abnormal perfusion associated with the absence of dystrophin.
Collapse
Affiliation(s)
- Candida L Goodnough
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ying Gao
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xin Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mohammed Q Qutaish
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - L Henry Goodnough
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Joseph Molter
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - David Wilson
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chris A Flask
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xin Yu
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
45
|
Manning J, Kulbida R, Rai P, Jensen L, Bouma J, Singh SP, O'Malley D, Yilmazer-Hanke D. Amitriptyline is efficacious in ameliorating muscle inflammation and depressive symptoms in the mdx mouse model of Duchenne muscular dystrophy. Exp Physiol 2014; 99:1370-86. [PMID: 24972834 DOI: 10.1113/expphysiol.2014.079475] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mutations in the structural protein dystrophin underlie muscular dystrophies characterized by progressive deterioration of muscle function. Dystrophin-deficient mdx mice are considered a model for Duchenne muscular dystrophy (DMD). Individuals with DMD are also susceptible to mood disorders, such as depression and anxiety. Therefore, the study objectives were to investigate the effects of the tricyclic antidepressant amitriptyline on mood, learning, central cytokine expression and skeletal muscle inflammation in mdx mice. Amitriptyline-induced effects (10 mg kg(-1) daily s.c. injections, 25 days) on the behaviour of mdx mice were investigated using the open field arena and tail suspension tests. The effects of chronic amitriptyline treatment on inflammatory markers were studied in the muscle and plasma of mdx mice, and mood-associated monoamine and cytokine concentrations were measured in the amygdala, hippocampus, prefrontal cortex, striatum, hypothalamus and midbrain. The mdx mice exhibited increased levels of anxiety and depressive-like behaviour compared with wild-type mice. Amitriptyline treatment had anxiolytic and antidepressant effects in mdx mice associated with elevations in serotonin levels in the amygdala and hippocampus. Inflammation in mdx skeletal muscle tissue was also reduced following amitriptyline treatment as indicated by decreased immune cell infiltration of muscle and lower levels of the pro-inflammatory cytokines tumour necrosis factor-α and interleukin-6 in the forelimb flexors. Interleukin-6 mRNA expression was remarkably reduced in the amygdala of mdx mice by chronic amitriptyline treatment. Positive effects of amitriptyline on mood, in addition to its anti-inflammatory effects in skeletal muscle, may make it an attractive therapeutic option for individuals with DMD.
Collapse
Affiliation(s)
- Jennifer Manning
- Department of Physiology, University College Cork, Cork, Ireland Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Rebecca Kulbida
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Prerana Rai
- Department of Biomedical Sciences, Creighton University, School of Medicine, Omaha, NE, USA Department of Neurology, Creighton University, School of Medicine, Omaha, NE, USA
| | - Lindsay Jensen
- Department of Neurology, Creighton University, School of Medicine, Omaha, NE, USA
| | - Judith Bouma
- Department of Biomedical Sciences, Creighton University, School of Medicine, Omaha, NE, USA
| | - Sanjay P Singh
- Department of Neurology, Creighton University, School of Medicine, Omaha, NE, USA
| | - Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland
| | - Deniz Yilmazer-Hanke
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland Department of Biomedical Sciences, Creighton University, School of Medicine, Omaha, NE, USA
| |
Collapse
|
46
|
Snow WM, Anderson JE, Fry M. Regional and genotypic differences in intrinsic electrophysiological properties of cerebellar Purkinje neurons from wild-type and dystrophin-deficient mdx mice. Neurobiol Learn Mem 2014; 107:19-31. [DOI: 10.1016/j.nlm.2013.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 10/10/2013] [Accepted: 10/25/2013] [Indexed: 10/26/2022]
|
47
|
Snow WM, Fry M, Anderson JE. Increased density of dystrophin protein in the lateral versus the vermal mouse cerebellum. Cell Mol Neurobiol 2013; 33:513-20. [PMID: 23436181 DOI: 10.1007/s10571-013-9917-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/06/2013] [Indexed: 02/04/2023]
Abstract
Dystrophin, present in muscle, also resides in the brain, including cerebellar Purkinje neurons. The cerebellum, although historically associated with motor abilities, is also implicated in cognition. An absence of brain dystrophin in Duchenne muscular dystrophy (DMD) and in the mdx mouse model results in cognitive impairments. Localization studies of cerebellar dystrophin, however, have focused on the vermal cerebellum, associated with motor function, and have not investigated dystrophin distribution in the lateral cerebellum, considered to mediate cognitive function. The present study examined dystrophin localization in vermal and lateral cerebellar regions and across subcellular areas of Purkinje neurons in the mouse using immunohistochemistry. In both vermal and lateral cerebellum, dystrophin was restricted to puncta on somatic and dendritic membranes of Purkinje neurons. The density of dystrophin puncta was greater in the lateral than the vermal region. Neither the size of puncta nor the area of Purkinje neuron somata differed between regions. Results support the view that cognitive deficits in the DMD and the mdx model may be mediated by the loss of dystrophin, particularly in the lateral cerebellum. Findings have important implications for future studies examining the neurophysiological sequelae of neuronal dystrophin deficiency and the role of the lateral cerebellum in cognition.
Collapse
Affiliation(s)
- Wanda M Snow
- Department of Psychology, University of Manitoba, P404 Duff Roblin Building, 190 Dysart Road, Winnipeg, MB R3T 2N2, Canada
| | | | | |
Collapse
|
48
|
The dystrophin–glycoprotein complex in brain development and disease. Trends Neurosci 2012; 35:487-96. [DOI: 10.1016/j.tins.2012.04.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 04/03/2012] [Accepted: 04/15/2012] [Indexed: 11/23/2022]
|
49
|
Perronnet C, Chagneau C, Le Blanc P, Samson-Desvignes N, Mornet D, Laroche S, De La Porte S, Vaillend C. Upregulation of brain utrophin does not rescue behavioral alterations in dystrophin-deficient mice. Hum Mol Genet 2012; 21:2263-76. [PMID: 22343141 DOI: 10.1093/hmg/dds047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dystrophin, the protein responsible for X-linked Duchenne muscular dystrophy (DMD), is normally expressed in both muscle and brain, which explains that its loss also leads to cognitive deficits. The utrophin protein, an autosomal homolog, is a natural candidate for dystrophin replacement in patients. Pharmacological upregulation of endogenous utrophin improves muscle physiology in dystrophin-deficient mdx mice, and represents a potential therapeutic tool that has the advantage of allowing delivery to various organs following peripheral injections. Whether this could alleviate cognitive deficits, however, has not been explored. Here, we first investigated basal expression of all utrophins and dystrophins in the brain of mdx mice and found no evidence for spontaneous compensation by utrophins. Then, we show that systemic chronic, spaced injections of arginine butyrate (AB) alleviate muscle alterations and upregulate utrophin expression in the adult brain of mdx mice. AB selectively upregulated brain utrophin Up395, while reducing expression of Up113 and Up71. This, however, was not associated with a significant improvement of behavioral functions typically affected in mdx mice, which include exploration, emotional reactivity, spatial and fear memories. We suggest that AB did not overcome behavioral and cognitive dysfunctions because the regional and cellular expression of utrophins did not coincide with dystrophin expression in untreated mice, nor did it in AB-treated mice. While treatments based on the modulation of utrophin may alleviate DMD phenotypes in certain organs and tissues that coexpress dystrophins and utrophins in the same cells, improvement of cognitive functions would likely require acting on specific dystrophin-dependent mechanisms.
Collapse
Affiliation(s)
- Caroline Perronnet
- Univ Paris-Sud, Centre de Neurosciences Paris-Sud, UMR8195, Orsay F-91405, France
| | | | | | | | | | | | | | | |
Collapse
|
50
|
|