1
|
Gozalo AS, Zerfas PM, Qin J, Alves DA, Akkaya M, Peña MY, Elkins WR. Contributions of Diet and Age to Ulcerative Dermatitis in Female C57BL/6J Mice. Comp Med 2023; 73:109-119. [PMID: 36882188 PMCID: PMC10162378 DOI: 10.30802/aalas-cm-22-000096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/14/2022] [Accepted: 11/23/2022] [Indexed: 03/09/2023]
Abstract
C57BL/6J (B6) mice are commonly affected by ulcerative dermatitis (UD), a disease of unknown etiology with poor response to treatment. To study the possible role of diet in UD, we compared skin changes in B6 female mice fed a high-fat diet with those of mice fed a control diet. In addition, skin samples from mice with no, mild, moderate, and severe clinical signs of UD were examined by light and transmission electron microscopy (TEM). Mice fed a high-fat diet for 2 mo had more skin mast cell degranulation than did mice fed the control diet for the same period. Regardless of diet, older mice had more skin mast cells and more of these cells were degranulating as compared with younger mice. Microscopic changes in very early lesions were characterized by an increase in dermal mast cells and degranulation with focal areas of epidermal hyperplasia with or without hyperkeratosis. As the condition progressed, a mixed but predominantly neutrophilic inflammatory cell infiltrate appeared in the dermis, with or without epidermal erosion and scab formation. TEM showed that dermal mast cell membranes had disrupted and released of large number of electron-dense granules, whereas degranulated mast cells were filled with isolated and coalescing empty spaces due to fusion of granule membranes. Ulceration appeared to occur very quickly, probably as result of intense scratching due to the pruritogenic properties of the histamine released from mast cell granules. This study showed a direct correlation between dietary fat and skin mast cell degranulation in female B6 mice. In addition, the number of skin mast cells and degranulation rates was higher in older mice. Treatments directed at preventing mast cell degranulation may result in better outcomes when applied early in UD cases. As noted previously in studies using caloric restriction, lower fat content in rodent diets may help prevent UD.
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, Columbus, Ohio
| | | | - Jing Qin
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, Columbus, Ohio
| | - Derron A Alves
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, Columbus, Ohio
| | - Munir Akkaya
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Columbus, Ohio; Department of Internal Medicine, Division of Rheumatology and Immunology, Department of Microbial Infection and Immunity, Pelotonia Institute for Immuno-Oncology, Columbus, Ohio
| | - Mirna Y Peña
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Columbus, Ohio
| | - William R Elkins
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, Columbus, Ohio
| |
Collapse
|
2
|
Urrutia NL, Baldin M, Egolf SR, Walker RE, Ying Y, Green MH, Harvatine KJ. Kinetics of omega-3 fatty acid transfer to milk differs between fatty acids and stage of lactation in dairy cows. Prostaglandins Leukot Essent Fatty Acids 2023; 192:102573. [PMID: 37060854 DOI: 10.1016/j.plefa.2023.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Fatty acids (FA) differ in their transfer efficiencies and metabolic partitioning and lactating cows provide a robust model to investigate kinetics of FA transport. The objective was to compare kinetics of n-3 polyunsaturated FA (PUFA) trafficking through plasma and into milk. In the first experiment, ten ruminally cannulated multiparous Holstein cows were used in a crossover design with 7 d periods. Cows were milked at 6 h intervals and abomasal treatments provided a single dose of 80.1 g of α-linolenic acid as free FA (ALA-FFA) or 45.5 g EPA and 32.9 g DHA (LCn3-FFA). Transfer of n-3 PUFA to milk was nearly 50% higher for ALA-FFA than LCn3-FFA (48.2 and 32.7% of the bolus) and fit a bi-exponential model. Rapid transport of n-3 PUFA, assumed to be directly through chylomicrons, was nearly twice as high in ALA-FFA than LCn3-FFA and the subsequent slow transport, assumed to be indirect transfer through tissue recycling, was over 2.5-fold higher in LCn3-FFA than in ALA-FFA. Plasma analysis revealed LCn3-FFA enriched phospholipids and cholesterol esters, which had a slow clearance. In the second experiment, 4 cows received a bolus of a mixture of ALA, EPA, and DHA prepartum while not lactating and around d 10, 55, and 225 of lactation. Transfer of ALA to milk did not differ between stages of lactation, but DHA was lower in early compared to mid and late lactation. In conclusion, dietary ALA is rapidly and efficiently transferred to milk in cows while EPA and DHA are rapidly incorporated into plasma or tissue fractions not available to the mammary gland. This demonstrates clear differences in trafficking and partitioning of n-3 PUFA that ultimately impact tissue and organelle enrichment with implications for effective doses.
Collapse
Affiliation(s)
- Natalie L Urrutia
- Instituto de Investigaciones Agropecuarias, INIA Remehue, Osorno, Chile; Department of Animal Science, Penn State University, University Park, PA, United States
| | - Michel Baldin
- Department of Animal Science, Penn State University, University Park, PA, United States; MILC Group, San Luis Obispo, CA 93405, United States
| | - Samantha R Egolf
- Department of Animal Science, Penn State University, University Park, PA, United States; Food & Livestock Planning, Kansas City, MO 64156, United States
| | - Rachel E Walker
- Department of Nutritional Sciences, Penn State University, University Park, PA, United States
| | - Yun Ying
- Department of Animal Science, Penn State University, University Park, PA, United States; Department of Medicine, Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, PA 19104, United States
| | - Michael H Green
- Department of Nutritional Sciences, Penn State University, University Park, PA, United States
| | - Kevin J Harvatine
- Department of Animal Science, Penn State University, University Park, PA, United States.
| |
Collapse
|
3
|
Igarashi M, Iwasa K, Hayakawa T, Tsuduki T, Kimura I, Maruyama K, Yoshikawa K. Dietary oleic acid contributes to the regulation of food intake through the synthesis of intestinal oleoylethanolamide. Front Endocrinol (Lausanne) 2022; 13:1056116. [PMID: 36733808 PMCID: PMC9886573 DOI: 10.3389/fendo.2022.1056116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/07/2022] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION Among the fatty acid ethanolamides (FAEs), oleoylethanolamide (OEA), linoleoylethanolamide (LEA), and palmitoylethanolamide (PEA) are reported to be involved in feeding regulation. In particular, OEA is well characterized as a satiety signal. Following food consumption, OEA is synthesized from oleic acid (OA) via an N-acyl phosphatidylethanolamine-specific phospholipase D-dependent pathway in the gastroenterocytes, and OEA induces satiety by recruiting sensory fibers. Thus, we hypothesized that dietary OA is an important satiety-inducing molecule. However, there has been no direct demonstration of the effect of dietary OA on satiety induction without the influence of the endogenous biosynthesis of OA from stearic acid (SA) or other FAEs. METHODS In this study, we used two experimental diets to test our hypothesis: (i) an OA diet (OAD; 38.4 mg of OA/g and 7.2 mg of SA/g) and (ii) a low OA diet (LOAD; 3.1 mg of OA/g and 42.4 mg of SA/g). RESULTS Relative to mice fed the OAD, mice fed the LOAD for two weeks exhibited reduced levels of jejunal OEA but not jejunal LEA and PEA. The LOAD-fed mice showed an increase in food intake and body weight gain. Moreover, LOAD-induced increase in food intake was immediately observed after the switch from the OAD, whereas these effects were diminished by the switch back to the OAD. Furthermore, treatment with OA and OEA diminished the effects of LOAD on food intake. CONCLUSION Collectively, these results show that dietary OA is a key factor in the reduction of food intake and increase in satiety mediated by OEA signaling.
Collapse
Affiliation(s)
- Miki Igarashi
- Advanced Clinical Research Center, Institute of Neurological Disorders, Kawasaki, Japan
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- *Correspondence: Miki Igarashi,
| | - Kensuke Iwasa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Tetsuhiko Hayakawa
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tsuyoshi Tsuduki
- Department of Bioscience and Biotechnology for Future Bioindustries, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kei Maruyama
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Keisuke Yoshikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
4
|
Gerstner C, Saín J, Lavandera J, González M, Bernal C. Functional milk fat enriched in conjugated linoleic acid prevented liver lipid accumulation induced by a high-fat diet in male rats. Food Funct 2021; 12:5051-5065. [PMID: 33960342 DOI: 10.1039/d0fo03296d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim was to investigate the potential effect of functional milk fat (FMF), naturally enriched in conjugated linoleic acid, on the prevention of liver lipid accumulation and some biochemical mechanisms involved in the liver triacylglycerol (TAG) regulation in high-fat (HF) fed rats. Male Wistar rats were fed (60 days) with S7 (soybean oil, 7%) or HF diets: S30 (soybean oil, 30%), MF30 (soybean oil, 3% + milk fat -MF-, 27%) or FMF30 (soybean oil, 3% + FMF, 27%). Nutritional parameters, hepatic fatty acid (FA) composition, liver and serum TAG levels, hepatic TAG secretion rate (TAG-SR), lipoprotein lipase (LPL) activity in adipose tissue and muscle, activities and/or mRNA levels of lipogenic and β-oxidative enzymes, and mRNA levels of transcription factors and FA transport proteins were assessed. The hepatic lipid accumulation induced by the S30 diet was associated with increased mRNA levels of FA transporters; and it was prevented by FMF through an increase in the hepatic TAG-SR, carnitine palmitoyltransferase-1a activity and peroxisome proliferator-activated receptor alpha mRNA levels, as well as by a reduction of the mRNA levels of FA transporters. The hypotriacylglyceridaemia observed in S30 was related with an increased LPL activity in adipose tissue and it was reverted by FMF through the increased hepatic TAG-SR. In brief, FMF prevented the liver lipid accumulation induced by HF diets by increasing the hepatic TAG-SR and β-oxidation, and reducing the hepatic FA uptake. The increased hepatic TAG-SR induced by FMF could be responsible for the attenuation of serum TAG alterations.
Collapse
Affiliation(s)
- Carolina Gerstner
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Juliana Saín
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina. and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Jimena Lavandera
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina. and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Marcela González
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Claudio Bernal
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina. and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| |
Collapse
|
5
|
Igarashi M, Iwasa K, Yoshikawa K. Feeding regulation by oleoylethanolamide synthesized from dietary oleic acid. Prostaglandins Leukot Essent Fatty Acids 2021; 165:102228. [PMID: 33385936 DOI: 10.1016/j.plefa.2020.102228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 11/15/2022]
Abstract
Oleoylethanolamide (OEA), a well-known satiety factor, is produced during feeding in the proximal intestine. Enterocytes sense oleic acid in dietary fat via CD36 and convert it to OEA through NAPE-PLD dependent or independent pathways. The satiety function of OEA is known to involve peroxisome proliferator-activated receptor type-α (PPAR-α). OEA stimulates afferent sensory fibers (possibly those of the vagus nerve) and provoke the recruitment of feeding-controlling circuits in the brain that use oxytocin and histamine as neurotransmitters for regulating satiety. Dysfunction of OEA synthesis by high-fat feeding might contribute to increased weight and obesity. Here, we describe the roles played by OEA in the regulation of energy metabolism and food intake by introducing our preliminary data regarding this lipid mediator, and we briefly outline the biosynthesis and deactivation of OEA.
Collapse
Affiliation(s)
- Miki Igarashi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.
| | - Kensuke Iwasa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan
| | - Keisuke Yoshikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan
| |
Collapse
|
6
|
Jackson C, Barrett DW, Shumake J, Gonzales E, Gonzalez-Lima F, Lane MA. Maternal omega-3 fatty acid intake during neurodevelopment does not affect pup behavior related to depression, novelty, or learning. BMC Res Notes 2018; 11:812. [PMID: 30442183 PMCID: PMC6238316 DOI: 10.1186/s13104-018-3915-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/09/2018] [Indexed: 11/23/2022] Open
Abstract
Objective Previously, we showed that consumption of a diet supplemented with omega-3 polyunsaturated fatty acids (n-3FAs) for two rounds of gestation and lactation increased the ability of rat dams to cope with stress when compared to dams that ingested a diet lacking n-3FAs. The objective of this study was to determine if the diets of these dams affected the behavior of their pups later in life. To isolate the neurodevelopmental effects of n-3FAs, pups from the second gestation were weaned to a diet adequate in n-3FAs. Pup testing began at 8 weeks of age and consisted of the forced swim, open field, and hole board tests to examine depression-related behavior, reaction to novelty, and learning and memory, respectively. Results Given the considerable difference in the n-3FA content of the maternal diet, we expected a large effect size, however with the exception of rearing duration, maternal diet did not affect behavior in any of the tests conducted. These results suggest that maternal n-3FA supplementation during neurodevelopment likely does not affect offspring behavior when a diet adequate in n-3FA is provided post-weaning. Rather, we hypothesize that brain n-3FAs at the time of testing confer altered behavior and corroborate the need for additional research. Electronic supplementary material The online version of this article (10.1186/s13104-018-3915-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Corey Jackson
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX, 78666, USA
| | - Douglas W Barrett
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX, 78712, USA
| | - Jason Shumake
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX, 78712, USA
| | - Elisa Gonzales
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX, 78666, USA
| | - F Gonzalez-Lima
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX, 78712, USA
| | - Michelle A Lane
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX, 78666, USA.
| |
Collapse
|
7
|
Gibson CL, Codreanu SG, Schrimpe-Rutledge AC, Retzlaff CL, Wright J, Mortlock DP, Sherrod SD, McLean JA, Blakely RD. Global untargeted serum metabolomic analyses nominate metabolic pathways responsive to loss of expression of the orphan metallo β-lactamase, MBLAC1. Mol Omics 2018; 14:142-155. [PMID: 29868674 PMCID: PMC6015503 DOI: 10.1039/c7mo00022g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The C. elegans gene swip-10 encodes an orphan metallo β-lactamase that genetic studies indicate is vital for limiting neuronal excitability and viability. Sequence analysis indicates that the mammalian gene Mblac1 is the likely ortholog of swip-10, with greatest sequence identity localized to the encoded protein's single metallo β-lactamase domain. The substrate for the SWIP-10 protein remains unknown and to date no functional roles have been ascribed to MBLAC1, though we have shown that the protein binds the neuroprotective β-lactam antibiotic, ceftriaxone. To gain insight into the functional role of MBLAC1 in vivo, we used CRISPR/Cas9 methods to disrupt N-terminal coding sequences of the mouse Mblac1 gene, resulting in a complete loss of protein expression in viable, homozygous knockout (KO) animals. Using serum from both WT and KO mice, we performed global, untargeted metabolomic analyses, resolving small molecules via hydrophilic interaction chromatography (HILIC) based ultra-performance liquid chromatography, coupled to mass spectrometry (UPLC-MS/MS). Unsupervised principal component analysis reliably segregated the metabolomes of MBLAC1 KO and WT mice, with 92 features subsequently nominated as significantly different by ANOVA, and for which we made tentative and putative metabolite assignments. Bioinformatic analyses of these molecules nominate validated pathways subserving bile acid biosynthesis and linoleate metabolism, networks known to be responsive to metabolic and oxidative stress. Our findings lead to hypotheses that can guide future targeted studies seeking to identify the substrate for MBLAC1 and how substrate hydrolysis supports the neuroprotective actions of ceftriaxone.
Collapse
Affiliation(s)
- Chelsea L. Gibson
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter FL, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN USA
| | - Simona G. Codreanu
- Department of Chemistry, Vanderbilt University, Nashville, TN USA
- Center for Innovative Technology, Vanderbilt University, Nashville, TN USA
| | - Alexandra C. Schrimpe-Rutledge
- Department of Chemistry, Vanderbilt University, Nashville, TN USA
- Center for Innovative Technology, Vanderbilt University, Nashville, TN USA
| | - Cassandra L. Retzlaff
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter FL, USA
| | - Jane Wright
- Department of Pharmacology, Vanderbilt University, Nashville, TN USA
| | - Doug P. Mortlock
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN USA
| | - Stacy D. Sherrod
- Department of Chemistry, Vanderbilt University, Nashville, TN USA
- Center for Innovative Technology, Vanderbilt University, Nashville, TN USA
| | - John A. McLean
- Department of Chemistry, Vanderbilt University, Nashville, TN USA
- Center for Innovative Technology, Vanderbilt University, Nashville, TN USA
| | - Randy D. Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter FL, USA
- Brain Institute, Florida Atlantic University, Jupiter FL, USA
| |
Collapse
|
8
|
Mann JD, Faurot KR, MacIntosh B, Palsson OS, Suchindran CM, Gaylord SA, Lynch C, Johnston A, Maiden K, Barrow DA, Hibbeln JR, Ramsden CE. A sixteen-week three-armed, randomized, controlled trial investigating clinical and biochemical effects of targeted alterations in dietary linoleic acid and n-3 EPA+DHA in adults with episodic migraine: Study protocol. Prostaglandins Leukot Essent Fatty Acids 2018; 128:41-52. [PMID: 29413360 PMCID: PMC6269096 DOI: 10.1016/j.plefa.2017.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 01/22/2023]
Abstract
UNLABELLED Migraine is a prevalent neurological disorder, affecting over 16% of adult women and 7% of adult men in the U.S., causing significant pain, disability, and medical expense, with incomplete benefits from conventional medical management. Migraine, as a chronic pain syndrome, provides a practical model for investigating the impact of dietary modifications in omega-3 (n-3) and omega-6 (n-6) fatty acids. This paper reports the protocol of a trial to assess whether targeted dietary modifications designed to increase n-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), with or without concurrent reduction in n-6 linoleic acid (LA), will alter nociceptive lipid mediators and mediate decreases in frequency and severity of migraine. This prospective, randomized, controlled trial in 153 male and female adult subjects, ages 18-99, with diagnosed and actively managed episodic migraine tests the efficacy, safety, and biochemical effects of targeted, controlled alterations in dietary omega-3 and omega-6 fatty acids. Participants are masked to diet hypotheses and all assessors are masked to treatment assignment. Following a four-week baseline period, participants with migraine headache frequency of 5-20 per month are randomized to one of three intensive dietary regimens for 16 additional weeks followed by a less intensive observation period. Dietary intervention arms include: 1) increased n-3 EPA+DHA with low n-6 linoleic acid (H3 L6); 2) increased n-3 EPA+DHA with usual US dietary intake of n-6 linoleic acid (H3 H6); and 3) usual US dietary content of n-3 and n-6 fatty acids (L3 H6). During the actual intervention, subjects receive content-specific study oils and foods sufficient for two meals and two snacks per day, as well as dietary counseling. Biochemical and clinical outcome measures are performed at intervals throughout this period. This randomized controlled trial is designed to determine whether targeted alterations in dietary n-3 and n-6 fatty acids can alter nociceptive lipid mediators in a manner that decreases headache pain and enhances quality of life and function in adults with frequent migraines. TRIAL REGISTRATION NCT02012790.
Collapse
Affiliation(s)
- John Douglas Mann
- Department of Neurology, UNC, 2133 Physicians Office Bld, 170 Manning Drive, Chapel Hill, NC 27599-7025, United States.
| | - Keturah R Faurot
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, 171 Wing D, C.B.#7200, 170 Manning Drive, Chapel Hill, NC 27599-7200, United States.
| | - Beth MacIntosh
- UNC Healthcare Department of Nutrition & Food Services - Metabolic & Nutrition Research Core, 102 Mason Farm Rd., CB#7777, Chapel Hill, NC 27599, United States.
| | - Olafur S Palsson
- Department of Medicine, 4111 Bioinformatics Building, Campus Box 7080, 130 Mason Farm Rd., Chapel Hill, NC 27599-7080, United States.
| | - Chirayath M Suchindran
- Department of Biostatistics, Gillings School of Global Public Health, CB # 7420, 3103-A, McGavran-Greenberg Hall, Chapel Hill, NC 27599-7420, United States.
| | - Susan Ann Gaylord
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, 183 Wing D, C.B.#7200, 170 Manning Drive, Chapel Hill, NC 27599-7025, United States.
| | - Chanee Lynch
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, 183 Wing D, C.B.#7200, 170 Manning Drive, Chapel Hill, NC 27599-7025, United States.
| | - Angela Johnston
- North Carolina Department of Agriculture and Consumer Services, 2 West Edenton St., Raleigh, NC 27601, United States.
| | - Kristen Maiden
- Lipid Mediators, Inflammation, and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, United States.
| | - David A Barrow
- UNC Cytokine Analysis Facility, North Carolina Oral Health Institute, 3412 Koury Oral Health Sciences Bldg., CB #7455, Chapel Hill, NC 27599-7455, United States.
| | - Joseph R Hibbeln
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, 5625 Fishers Lane, Room 3N-07, Rockville, MD 20892, United States.
| | - Christopher E Ramsden
- Lipid Mediators, Inflammation, and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, United States; Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, United States; Department of Physical Medicine and Rehabilitation, UNC School of Medicine, 171 Wing D, C.B.#7200, 170 Manning Drive, Chapel Hill, NC 27599, United States.
| |
Collapse
|
9
|
Ostermann AI, Reutzel M, Hartung N, Franke N, Kutzner L, Schoenfeld K, Weylandt KH, Eckert GP, Schebb NH. A diet rich in omega-3 fatty acids enhances expression of soluble epoxide hydrolase in murine brain. Prostaglandins Other Lipid Mediat 2017; 133:79-87. [PMID: 28583889 DOI: 10.1016/j.prostaglandins.2017.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/28/2017] [Accepted: 06/01/2017] [Indexed: 02/09/2023]
Abstract
Several studies suggest that intake of omega-3 polyunsaturated fatty acids (n3-PUFA) beneficially influences cognitive function. However, effects on the adult brain are not clear. Little is known about the impact of dietary intervention on the fatty acid profile in adult brain, the modulation in the expression of enzymes involved in fatty acid biosynthesis and metabolism as well as changes in resulting oxylipins. These questions were addressed in the present study in two independent n3-PUFA feeding experiments in mice. Supplementation of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA, 1% each in the diet) for 30days to adult NMRI and C57BL/6 mice led to a distinct shift in the brain PUFA pattern. While n3-PUFAs EPA, n3 docosapentaenoic acid and DHA were elevated, many n6-PUFAs were significantly decreased (except, e.g. C20:3 n6 which was increased). This shift in PUFAs was accompanied by immense differences in concentrations of oxidative metabolites derived from enzymatic conversion of PUFAs, esp. arachidonic acid whose products were uniformly decreased, and a modulation in the activity and expression pattern of delta-5 and delta-6 desaturases. In both mouse strains a remarkable increase in the soluble epoxide hydrolase (sEH) activity (decreased epoxy-FA concentrations and epoxy-FA to dihydroxy-FA-ratios) as well as sEH expression was observed. Taking the high biological activity of epoxy-FA, e.g. on blood flow and nociceptive signaling into account, this finding might be of relevance for the effects of n3-PUFAs in neurodegenerative diseases. On any account, our study suggests a new distinct regulation of brain PUFA and oxylipin pattern by supplementation of n3-PUFAs to adult rodents.
Collapse
Affiliation(s)
- Annika Irmgard Ostermann
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Martina Reutzel
- Institute of Nutritional Sciences, Justus-Liebig-University, Wilhelmstr. 20, 35392 Giessen, Germany
| | - Nicole Hartung
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Nicole Franke
- Institute of Nutritional Sciences, Justus-Liebig-University, Wilhelmstr. 20, 35392 Giessen, Germany
| | - Laura Kutzner
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Kirsten Schoenfeld
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Karsten-Henrich Weylandt
- Medical Department, Division of Hepatology and Gastroenterology (including Metabolic Diseases), Charité University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany; Experimental and Clinical Research Centre, Charité University Medicine, Campus Buch, Berlin, Germany; Medical Department, Division of Gastroenterology, Oncology, Hematology, Rheumatology and Diabetes, Ruppiner Kliniken, Brandenburg Medical School, Neuruppin, Germany
| | - Gunter Peter Eckert
- Institute of Nutritional Sciences, Justus-Liebig-University, Wilhelmstr. 20, 35392 Giessen, Germany
| | - Nils Helge Schebb
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany; Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany.
| |
Collapse
|
10
|
Shapiro H, Singer P, Ariel A. Beyond the classic eicosanoids: Peripherally-acting oxygenated metabolites of polyunsaturated fatty acids mediate pain associated with tissue injury and inflammation. Prostaglandins Leukot Essent Fatty Acids 2016; 111:45-61. [PMID: 27067460 DOI: 10.1016/j.plefa.2016.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
Abstract
Pain is a complex sensation that may be protective or cause undue suffering and loss of function, depending on the circumstances. Peripheral nociceptor neurons (PNs) innervate most tissues, and express ion channels, nocisensors, which depolarize the cell in response to intense stimuli and numerous substances. Inflamed tissues manifest inflammatory hyperalgesia in which the threshold for pain and the response to painful stimuli are decreased and increased, respectively. Constituents of the inflammatory milieu sensitize PNs, thereby contributing to hyperalgesia. Polyunsaturated fatty acids undergo enzymatic and free radical-mediated oxygenation into an array of bioactive metabolites, oxygenated polyunsaturated fatty acids (oxy-PUFAs), including the classic eicosanoids. Oxy-PUFA production is enhanced during inflammation. Pioneering studies by Vane and colleagues from the early 1970s first implicated classic eicosanoids in the pain associated with inflammation. Here, we review the production and action of oxy-PUFAs that are not classic eicosanoids, but nevertheless are produced in injured/ inflamed tissues and activate or sensitize PNs. In general, oxy-PUFAs that sensitize PNs may do so directly, by activation of nocisensors, ion channels or GPCRs expressed on the surface of PNs, or indirectly, by increasing the production of inflammatory mediators that activate or sensitize PNs. We focus on oxy-PUFAs that act directly on PNs. Specifically, we discuss the role of arachidonic acid-derived 12S-HpETE, HNE, ONE, PGA2, iso-PGA2 and 15d-PGJ2, 5,6-and 8,9-EET, PGE2-G and 8R,15S-diHETE, as well as the linoleic acid-derived 9-and 13-HODE in inducing acute nocifensive behavior and/or inflammatory hyperalgesia in rodents. The nocisensors TRPV1, TRPV4 and TRPA1, and putative Gαs-type GPCRs are the PN targets of these oxy-PUFAs.
Collapse
Affiliation(s)
- Haim Shapiro
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Abba Khoushy Ave, Mount Carmel, Haifa 3498838, Israel.
| | - Pierre Singer
- Department of General Intensive Care, Institute for Nutrition Research, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Petah Tikva 49100, Israel
| | - Amiram Ariel
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Abba Khoushy Ave, Mount Carmel, Haifa 3498838, Israel
| |
Collapse
|
11
|
Astrup A, Rice Bradley BH, Brenna JT, Delplanque B, Ferry M, Torres-Gonzalez M. Regular-Fat Dairy and Human Health: A Synopsis of Symposia Presented in Europe and North America (2014-2015). Nutrients 2016; 8:nu8080463. [PMID: 27483308 PMCID: PMC4997376 DOI: 10.3390/nu8080463] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/22/2016] [Accepted: 07/26/2016] [Indexed: 02/07/2023] Open
Abstract
In recent history, some dietary recommendations have treated dairy fat as an unnecessary source of calories and saturated fat in the human diet. These assumptions, however, have recently been brought into question by current research on regular fat dairy products and human health. In an effort to disseminate, explore and discuss the state of the science on the relationship between regular fat dairy products and health, symposia were programmed by dairy industry organizations in Europe and North America at The Eurofed Lipids Congress (2014) in France, The Dairy Nutrition Annual Symposium (2014) in Canada, The American Society for Nutrition Annual Meeting held in conjunction with Experimental Biology (2015) in the United States, and The Federation of European Nutrition Societies (2015) in Germany. This synopsis of these symposia describes the complexity of dairy fat and the effects regular-fat dairy foods have on human health. The emerging scientific evidence indicates that the consumption of regular fat dairy foods is not associated with an increased risk of cardiovascular disease and inversely associated with weight gain and the risk of obesity. Dairy foods, including regular-fat milk, cheese and yogurt, can be important components of an overall healthy dietary pattern. Systematic examination of the effects of dietary patterns that include regular-fat milk, cheese and yogurt on human health is warranted.
Collapse
Affiliation(s)
- Arne Astrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C DK-1958, Denmark.
| | | | - J Thomas Brenna
- Division of Nutritional Sciences, Cornell University, Savage Hall, Ithaca, NY 14853, USA.
| | - Bernadette Delplanque
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), Universite Paris-Sud, Bat 447, Orsay 91405, France.
| | - Monique Ferry
- Sorbonne Paris-Cité, 190 Avenue de France, Paris 75013, France.
| | | |
Collapse
|
12
|
El-Sayed El-Sisi A, Sokkar SS, El-Sayed El-Sayad M, Sayed Ramadan E, Osman EY. Celecoxib and omega-3 fatty acids alone and in combination with risperidone affect the behavior and brain biochemistry in amphetamine-induced model of schizophrenia. Biomed Pharmacother 2016; 82:425-31. [PMID: 27470381 DOI: 10.1016/j.biopha.2016.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/16/2016] [Accepted: 05/16/2016] [Indexed: 01/25/2023] Open
Abstract
The implications of oxidative stress and neuro-inflammation in the pathogenesis of schizophrenia have been elucidated. Despite their effectiveness against positive symptoms of schizophrenia, antipsychotics have limited effectiveness against negative and cognitive symptoms and are associated with remarkable adverse effects. The use of celecoxib or omega-3 in schizophrenia may have beneficial effects. This study aimed to evaluate the possible efficacies of celecoxib, omega-3 or the combination of celecoxib+risperidone and omega-3+ risperidone compared to risperidone on the behavior and brain biochemistry in rats. In the present study, an amphetamine-induced model of schizophrenia in adult male rats was used to evaluate the effects of celecoxib, omega-3, celecoxib+risperidone and omega-3+ risperidone on the behavior of animals and on brain lipid peroxidation or tumor necrosis factor-alpha. In the water maze task, celecoxib, omega-3, celecoxib+risperidone, omega-3+ risperidone significantly decreased the latency time compared to amphetamine-treated group. Celecoxib, omega-3, celecoxib+risperidone, omega-3+risperidone also significantly reversed the decreased spontaneous alternation induced by amphetamine in the Y-maze task. In the social interaction task, groups treated with celecoxib, omega-3, celecoxib+risperidone, omega-3+ risperidone spent less time to recognize foreign animals than animals in the amphetamine-treated group. Increased brain MDA and TNF-α levels due to amphetamine were significantly reduced in groups treated with celecoxib+risperidone or omega-3+ risperidone. The present findings showed that celecoxib or omega-3 can attenuate amphetamine- induced behavioral impairment and these effects may be associated with their ability to decrease lipid peroxidation and cytokine release. Celecoxib or omega-3 may be promising candidates as adjuvant therapy for schizophrenia.
Collapse
Affiliation(s)
- Alaa El-Sayed El-Sisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Egypt
| | - Samia Salem Sokkar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Egypt
| | | | - Ehab Sayed Ramadan
- Department of Neuropsychiatry, Faculty of Medicine, University of Tanta, Egypt
| | - Enass Yossef Osman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Egypt.
| |
Collapse
|
13
|
Alizadeh A, Taleb Z, Ebrahimi B, Esmaeili V, Shaverdi A, Nasr J, Kheimeh A, Yazdi RS. Dietary Vitamin E Is More Effective than Omega-3 and Omega-6 Fatty Acid for Improving The Kinematic Characteristics of Rat Sperm. CELL JOURNAL 2016; 18:262-70. [PMID: 27540532 PMCID: PMC4988426 DOI: 10.22074/cellj.2016.4322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/21/2015] [Indexed: 11/11/2022]
Abstract
Objective Although key roles for dietary vitamin E (VITE) and fatty acid (FA) in fertility
have been confirmed, limited data are available on the effects of VITE alone, or a constant
level of VITE supplemented by dietary omega-6 and omega-3 FAs in combination on male
reproduction. Consequently in this paper, the effects of VITE, sunflower oil, fish oil and
their combination on rat sperm were investigated. Materials and Methods We divided 50 mature male Wistar rats into 5 groups (n=10) in
a experimental completely randomized design for eight weeks: i. Control (CTR): standard
diet; ii. Vitamin E diet (VITE): 2 times greater than recommendations; iii. Sunflower
oil group (n-6) [gavaged with 0.5 ml/day/rat sunflower oil+VITE diet]; iv. Fish oil group
(n-3): [gavaged with 0.5 ml/day/rat fish oil+VITE diet] and v. n-3+n-6 group [gavaged
with 0.3 ml fish oil/day/rat+0.2 ml sunflower oil/day/rat+VITE diet]. The sperm parameters were measured by computer assisted semen analyzer (CASA). All data were
analyzed with SPSS software. Results Feed intake decreased in groups which were administered sunflower oil
compared with the other groups (P<0.05). The groups which received only VITE or
fish oil+VITE had a significantly higher concentration of sperm compared with the n-6+n-3 and CTR group (P<0.05). VITE and n-3 showed significant improved progressive motility compared to the CTR group, whereas the n-6 and n-6+n-3 groups were
in the middle (P<0.05). The highest sperm kinematic parameters were observed in
the VITE only group. There was no strong correlation between sperm parameters and
blood lipid profiles. Conclusion Dietary VITE and fish oil+VITE can improve sperm quality. Our findings can
be a focus for improvements in sperm quantity and motility in fertile animals using only
dietary VITE.
Collapse
Affiliation(s)
- AliReza Alizadeh
- Department of Animal Science, Saveh Branch, Islamic Azad University, Saveh, Iran
| | - Zeinab Taleb
- Department of Animal Science, Saveh Branch, Islamic Azad University, Saveh, Iran
| | - Bita Ebrahimi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Vahid Esmaeili
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Abdolhossein Shaverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Javad Nasr
- Department of Animal Science, Saveh Branch, Islamic Azad University, Saveh, Iran
| | - Abolfazl Kheimeh
- Animal Core Facility, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Tehran, Iran
| | - Reza Salman Yazdi
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Ira
| |
Collapse
|
14
|
Ramsden CE, Ringel A, Majchrzak-Hong SF, Yang J, Blanchard H, Zamora D, Loewke JD, Rapoport SI, Hibbeln JR, Davis JM, Hammock BD, Taha AY. Dietary linoleic acid-induced alterations in pro- and anti-nociceptive lipid autacoids: Implications for idiopathic pain syndromes? Mol Pain 2016; 12:1744806916636386. [PMID: 27030719 PMCID: PMC4955998 DOI: 10.1177/1744806916636386] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/06/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Chronic idiopathic pain syndromes are major causes of personal suffering, disability, and societal expense. Dietary n-6 linoleic acid has increased markedly in modern industrialized populations over the past century. These high amounts of linoleic acid could hypothetically predispose to physical pain by increasing the production of pro-nociceptive linoleic acid-derived lipid autacoids and by interfering with the production of anti-nociceptive lipid autacoids derived from n-3 fatty acids. Here, we used a rat model to determine the effect of increasing dietary linoleic acid as a controlled variable for 15 weeks on nociceptive lipid autacoids and their precursor n-6 and n-3 fatty acids in tissues associated with idiopathic pain syndromes. RESULTS Increasing dietary linoleic acid markedly increased the abundance of linoleic acid and its pro-nociceptive derivatives and reduced the abundance of n-3 eicosapentaenoic acid and docosahexaenoic acid and their anti-nociceptive monoepoxide derivatives. Diet-induced changes occurred in a tissue-specific manner, with marked alterations of nociceptive lipid autacoids in both peripheral and central tissues, and the most pronounced changes in their fatty acid precursors in peripheral tissues. CONCLUSIONS The present findings provide biochemical support for the hypothesis that the high linoleic acid content of modern industrialized diets may create a biochemical susceptibility to develop chronic pain. Dietary linoleic acid lowering should be further investigated as part of an integrative strategy for the prevention and management of idiopathic pain syndromes.
Collapse
Affiliation(s)
- Christopher E Ramsden
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA Department of Physical Medicine and Rehabilitation, University of North Carolina-Chapel Hill, NC, USA
| | - Amit Ringel
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Sharon F Majchrzak-Hong
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Jun Yang
- Department of Entomology and Nematology, University of California-Davis, Davis, CA, USA UCD Comprehensive Cancer Center, University of California-Davis, Sacramento, CA, USA
| | | | - Daisy Zamora
- Department of Psychiatry, University of North Carolina-Chapel Hill, NC, USA
| | - James D Loewke
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Stanley I Rapoport
- UCD Comprehensive Cancer Center, University of California-Davis, Sacramento, CA, USA
| | - Joseph R Hibbeln
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - John M Davis
- Department of Psychiatry, University of North Carolina-Chapel Hill, NC, USA Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California-Davis, Davis, CA, USA UCD Comprehensive Cancer Center, University of California-Davis, Sacramento, CA, USA
| | - Ameer Y Taha
- National Institute on Aging, Bethesda, MD, USA Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California-Davis, Davis, CA, USA
| |
Collapse
|
15
|
Alashmali SM, Hopperton KE, Bazinet RP. Lowering dietary n-6 polyunsaturated fatty acids: interaction with brain arachidonic and docosahexaenoic acids. Curr Opin Lipidol 2016; 27:54-66. [PMID: 26709472 DOI: 10.1097/mol.0000000000000255] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Arachidonic (ARA) and docosahexaenoic (DHA) acids are the most abundant polyunsaturated fatty acids (PUFA) in the brain, where they have many biological effects, including on inflammation, cell-signaling, appetite regulation, and blood flow. The Western diet contains a high ratio of n-6: n-3 PUFA. Although interest in lowering this ratio has largely focused on increasing intake of n-3 PUFA, few studies have examined lowering dietary n-6 PUFA. This review will evaluate the effect of lowering dietary n-6 PUFA on levels and metabolism of ARA and DHA in animal models and in humans, with a primary focus on the brain. RECENT FINDINGS In animal models, lowering dietary ARA or linoleic acid generally lowers levels of brain ARA and raises DHA. Lowering dietary n-6 PUFA can also modulate the levels of ARA and DHA metabolizing enzymes, as well as their associated bioactive mediators. Human studies examining changes in plasma fatty acid composition following n-6 PUFA lowering demonstrate no changes in levels of ARA and DHA, though there is evidence of alterations in their respective bioactive mediators. SUMMARY Lowering dietary n-6 PUFA, in animal models, can alter the levels and metabolism of ARA and DHA in the brain, but it remains to be determined whether these changes are clinically meaningful.
Collapse
Affiliation(s)
- Shoug M Alashmali
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada *Shoug M. Alashmali and Kathryn E. Hopperton contributed equally to the writing of this article
| | | | | |
Collapse
|
16
|
Dietary linoleic acid requirements in the presence of α-linolenic acid are lower than the historical 2 % of energy intake value, study in rats. Br J Nutr 2015; 113:1056-68. [PMID: 25787691 DOI: 10.1017/s0007114515000094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previous studies on rats and human subjects have established that the linoleic acid (LA) requirement is 2 % of the total energy intake (en%), but is obtained in the absence of α-linolenic acid (ALA) and consequently appear to be overestimated. This raises questions since a recent study including ALA has suggested to divide the historical value by four. However, this recent study has remained inconclusive because the animals used were not totally LA-deficient animals. For the first time, the present study was especially designed using physiological and biochemical markers and performed in two steps: (1) to achieve a specific n-6 fatty acid deficiency model using growing male rats fed either a 0 en% from LA/0 en% from ALA (0LA/0ALA), 0LA/0·5ALA or 2LA/0·5ALA diet, born from female rats fed a 0LA/0·5ALA diet; and (2) to refine the required level of LA in the presence of ALA using rats fed either a 0LA/0ALA, 0·5LA/0·5ALA, 1LA/0·5ALA, 1·5LA/0·5ALA diet, born from female rats fed a 0LA/0·5ALA diet. The first step shows that the best LA deficiency model was obtained using rats fed the 0LA/0ALA diet, born from female rats fed the 0LA/0·5ALA diet. The second step demonstrates that in growing rats, LA deficiency was corrected with an intake of 1-1·5 en% from LA and 0·5 en% from ALA. These data suggest that the requirements in humans should be revisited, considering the presence of ALA to set up the recommendation for LA.
Collapse
|
17
|
Lin LE, Chen CT, Hildebrand KD, Liu Z, Hopperton KE, Bazinet RP. Chronic dietary n-6 PUFA deprivation leads to conservation of arachidonic acid and more rapid loss of DHA in rat brain phospholipids. J Lipid Res 2014; 56:390-402. [PMID: 25477531 DOI: 10.1194/jlr.m055590] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To determine how the level of dietary n-6 PUFA affects the rate of loss of arachidonic acid (ARA) and DHA in brain phospholipids, male rats were fed either a deprived or adequate n-6 PUFA diet for 15 weeks postweaning, and then subjected to an intracerebroventricular infusion of (3)H-ARA or (3)H-DHA. Brains were collected at fixed times over 128 days to determine half-lives and the rates of loss from brain phospholipids (J out). Compared with the adequate n-6 PUFA rats, the deprived n-6-PUFA rats had a 15% lower concentration of ARA and an 18% higher concentration of DHA in their brain total phospholipids. Loss half-lives of ARA in brain total phospholipids and fractions (except phosphatidylserine) were longer in the deprived n-6 PUFA rats, whereas the J out was decreased. In the deprived versus adequate n-6 PUFA rats, the J out of DHA was higher. In conclusion, chronic n-6 PUFA deprivation decreases the rate of loss of ARA and increases the rate of loss of DHA in brain phospholipids. Thus, a low n-6 PUFA diet can be used to target brain ARA and DHA metabolism.
Collapse
Affiliation(s)
- Lauren E Lin
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Chuck T Chen
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kayla D Hildebrand
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhen Liu
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kathryn E Hopperton
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Lassek WD, Gaulin SJC. Linoleic and docosahexaenoic acids in human milk have opposite relationships with cognitive test performance in a sample of 28 countries. Prostaglandins Leukot Essent Fatty Acids 2014; 91:195-201. [PMID: 25172360 DOI: 10.1016/j.plefa.2014.07.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/20/2014] [Accepted: 07/30/2014] [Indexed: 01/30/2023]
Abstract
Polyunsaturated fatty acids play critical roles in brain development and function, and their levels in human breast milk closely reflect the long-term diet. The fatty acid contents of human milk samples from 28 countries were used to predict averaged 2009 and 2012 test scores in mathematics, reading, and science from the Program for International Student Assessment. All test scores were positively related to milk docosahexaenoic acid (r=0.48 to 0.55), and negatively related to linoleic acid (r=-0.28 to -0.56). Together, these two human milk fatty acids explained 46% to 48% of the variance in scores, with no improvement in predictive power when socioeconomic variables were added to the regression. The (log) ratio of linoleic to arachidonic acid was negatively related to scores (r=-0.45 to -0.48). Statistical effects were similar for the two sexes. In a separate US sample, estimated dietary linoleic was negatively related to the levels of all long-chain n-3 and n-6 plasma fatty acids. High levels of dietary linoleic may impair cognition by decreasing both docosahexaenoic and arachidonic acids in the brain.
Collapse
Affiliation(s)
- W D Lassek
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 130 Desoto Street, Pittsburgh, PA 15213, United States.
| | - S J C Gaulin
- Department of Anthropology, University of California at Santa Barbara, Santa Barbara, CA 93106-3210, United States
| |
Collapse
|
19
|
Hammamieh R, Chakraborty N, Gautam A, Miller SA, Muhie S, Meyerhoff J, Jett M. Transcriptomic analysis of the effects of a fish oil enriched diet on murine brains. PLoS One 2014; 9:e90425. [PMID: 24632812 PMCID: PMC3954562 DOI: 10.1371/journal.pone.0090425] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/29/2014] [Indexed: 12/15/2022] Open
Abstract
The health benefits of fish oil enriched with high omega-3 polyunsaturated fatty acids (n-3 PUFA) are widely documented. Fish oil as dietary supplements, however, show moderate clinical efficacy, highlighting an immediate scope of systematic in vitro feedback. Our transcriptomic study was designed to investigate the genomic shift of murine brains fed on fish oil enriched diets. A customized fish oil enriched diet (FD) and standard lab diet (SD) were separately administered to two randomly chosen populations of C57BL/6J mice from their weaning age until late adolescence. Statistical analysis mined 1,142 genes of interest (GOI) differentially altered in the hemibrains collected from the FD- and SD-fed mice at the age of five months. The majority of identified GOI (∼40%) encodes proteins located in the plasma membrane, suggesting that fish oil primarily facilitated the membrane-oriented biofunctions. FD potentially augmented the nervous system's development and functions by selectively stimulating the Src-mediated calcium-induced growth cascade and the downstream PI3K-AKT-PKC pathways. FD reduced the amyloidal burden, attenuated oxidative stress, and assisted in somatostatin activation—the signatures of attenuation of Alzheimer's disease, Parkinson's disease, and affective disorder. FD induced elevation of FKBP5 and suppression of BDNF, which are often linked with the improvement of anxiety disorder, depression, and post-traumatic stress disorder. Hence we anticipate efficacy of FD in treating illnesses such as depression that are typically triggered by the hypoactivities of dopaminergic, adrenergic, cholinergic, and GABAergic networks. Contrastingly, FD's efficacy could be compromised in treating illnesses such as bipolar disorder and schizophrenia, which are triggered by hyperactivities of the same set of neuromodulators. A more comprehensive investigation is recommended to elucidate the implications of fish oil on disease pathomechanisms, and the result-driven repositioning of fish oil utilization may revitalize its therapeutic efficacy.
Collapse
Affiliation(s)
- Rasha Hammamieh
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
- * E-mail:
| | - Nabarun Chakraborty
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Aarti Gautam
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Stacy-Ann Miller
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Seid Muhie
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - James Meyerhoff
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Marti Jett
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| |
Collapse
|
20
|
Steer CD, Lattka E, Koletzko B, Golding J, Hibbeln JR. Maternal fatty acids in pregnancy, FADS polymorphisms, and child intelligence quotient at 8 y of age. Am J Clin Nutr 2013; 98:1575-82. [PMID: 24067669 PMCID: PMC6404851 DOI: 10.3945/ajcn.112.051524] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Brain tissue is selectively enriched with highly unsaturated fatty acids (FAs). Altering the maternal FA status in pregnancy may improve fetal neural development with lasting consequences for child development. OBJECTIVE We explored whether maternal FAs in erythrocytes, either measured directly or indirectly by maternal FADS genetic variants, are associated with child intelligence quotient (IQ). DESIGN Linear regression analyses, adjusted for 18 confounders, were used to investigate the associations in 2839 mother-child pairs from the population-based Avon Longitudinal Study of Parents and Children cohort. RESULTS Low levels of arachidonic acid (20:4n-6) were associated with lower performance IQ (-2.0 points; 95% CI: -3.5, -0.6 points; P = 0.007, increased R² = 0.27%), high levels of osbond acid (22:5n-6) were associated with verbal IQ (-1.8 points; 95% CI: -3.2, -0.4 points; P = 0.014, R² = 0.20%), and high levels of adrenic acid (22:4n-6) were associated with verbal IQ (-1.7 points; 95% CI:-3.1, -0.3 points; P = 0.016, R² = 0.19%). There was some evidence to support a negative association of low docosahexaenoic acid (DHA; 22:6n-3) with full-scale IQ (R² = 0.15%). Novel weak associations were also observed for low levels of osbond acid (R² ≤ 0.29%) and FADS variants with opposite effects for intron variants and variants in the promoter region such as rs3834458 (R² ≤ 0.38%). CONCLUSIONS These results support the positive role of maternal arachidonic acid and DHA on fetal neural development, although the effects on child IQ by 8 y of age were small (0.1 SD), with other factors contributing more substantially. The endogenous synthesis of these FAs by FADS genes, especially FADS2, may also be important. The replication of these results is recommended.
Collapse
Affiliation(s)
- Colin D Steer
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom (CDS and JG); the Research Unit for Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany (EL); the Department of Pediatrics, Dr von Hauner Children's Hospital, University of Munich Medical Center, München, Germany (BK); and the NIH, National Institute on Alcohol Abuse and Alcoholism, Bethesda MD (JRH)
| | | | | | | | | |
Collapse
|
21
|
Igarashi M, Chang L, Ma K, Rapoport SI. Kinetics of eicosapentaenoic acid in brain, heart and liver of conscious rats fed a high n-3 PUFA containing diet. Prostaglandins Leukot Essent Fatty Acids 2013; 89:403-12. [PMID: 24209500 PMCID: PMC5861380 DOI: 10.1016/j.plefa.2013.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/07/2013] [Accepted: 09/07/2013] [Indexed: 01/06/2023]
Abstract
Eicosapentaenoic acid (EPA, 20:5n-3), a precursor of docosahexaenoic acid (DHA), may benefit cardiovascular and brain health. Quantifying EPA's in vivo kinetics might elucidate these effects. [1-(14)C]EPA was infused i.v. for 5min in unanesthetized male rats fed a standard EPA-DHA diet. Plasma and microwaved tissue were analyzed. Kinetic parameters were calculated using our compartmental model. At 5min, 31-48% of labeled EPA in brain and heart was oxidized, 7% in liver. EPA incorporation rates from brain and liver precursor EPA-CoA pools into lipids, mainly phospholipids, were 36 and 2529nmol/s/g×10(-4), insignificant for heart. Deacylation-reacylation half-lives were 22h and 38-128min. Conversion rates to DHA equaled 0.65 and 25.1nmol/s/g×10(-4), respectively. The low brain concentration and incorporation rate and high oxidation of EPA suggest that, if EPA has a beneficial effect in brain, it might result from its suppression of peripheral inflammation and hepatic conversion to bioactive DHA.
Collapse
Affiliation(s)
- Miki Igarashi
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Building 9, Room 1S126, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
22
|
Abstract
Linoleic acid is the most abundant polyunsaturated fatty acid in human nutrition and represents about 14 g per day in the US diet. Following the discovery of its essential functions in animals and humans in the early 1920's, studies are currently questioning the real requirement of linoleic acid. It seems now overestimated and creates controversy: how much linoleic acid should be consumed in a healthy diet? Beyond the necessity to redefine the dietary requirement of linoleic acid, many questions concerning the consequences of its excessive consumption on human health arise. Linoleic acid is a direct precursor of the bioactive oxidized linoleic acid metabolites. It is also a precursor of arachidonic acid, which produces pro-inflammatory eicosanoids and endocannabinoids. A majority of the studies on linoleic acid and its derivatives show a direct/indirect link with inflammation and metabolic diseases. Many authors claim that a high linoleic acid intake may promote inflammation in humans. This review tries to (i) highlight the importance of reconsidering the actual requirement of linoleic acid (ii) point out the lack of knowledge between dietary levels of linoleic acid and the molecular mechanisms explaining its physiological roles (iii) demonstrate the relevance of carrying out further human studies on the single variable linoleic acid.
Collapse
|
23
|
Abstract
Few trials have evaluated the metabolic effects and health outcomes of lowering dietary n-6 PUFA. The objectives of the present paper were (1) to report the methods employed to lower dietary n-6 PUFA, while either increasing or maintaining n-3 PUFA intake and (2) to validate our methods with 24 h recalls and erythrocyte fatty acid analyses. A total of sixty-seven subjects were randomised to either (1) an average-n-3 PUFA, low-n-6 PUFA (L6) intervention designed to lower linoleic acid (LA; #2·5% of energy (en%)) and arachidonic acid (#60 mg/d), while maintaining an average US intake of n-3 PUFA or (2) a high-n-3 PUFA, low-n-6 PUFA (H3-L6) intervention designed to lower n-6 LA, while increasing the n-3 PUFA a-linolenic acid (ALA; $1·5 en%) and EPA þ DHA ($1000 mg/d). Pre- and intraintervention nutrient intakes were estimated with six 24 h dietary recalls per subject. Both groups achieved the targeted reductions in dietary LA to #2·5 en% (median LA 2·45 (2·1, 3·1); P,0·001). Intakes of n-3 PUFA did not change for the L6 group. Target increases in n-3 ALA (median 1·6 en%, (1·3, 2·0), P,0·001) and EPA þ DHA (1482 mg, (374, 2558), P,0·001) were achieved in the H3-L6 group. Dietary changes were validated by corresponding changes in erythrocyte n-6 and n-3 fatty acid composition. Dietary LA can be lowered to #2·5 en%, with or without concurrent increases in dietary n-3 PUFA, in an outpatient clinical trial setting using this integrated diet method.
Collapse
|
24
|
Delplanque B, Du Q, Agnani G, Le Ruyet P, Martin JC. A dairy fat matrix providing alpha-linolenic acid (ALA) is better than a vegetable fat mixture to increase brain DHA accretion in young rats. Prostaglandins Leukot Essent Fatty Acids 2013; 88:115-20. [PMID: 22884780 DOI: 10.1016/j.plefa.2012.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/24/2012] [Accepted: 07/12/2012] [Indexed: 11/18/2022]
Abstract
Achieving an appropriate DHA status in the neonatal brain is an important goal of neonatal nutrition. We evaluated how alpha-linolenic acid (ALA), provided for six weeks after weaning by different dietary fat matrix, improved brain DHA content of young male rats born from deficient-dams. The level of ALA achieved was based on the fat composition of usual infant vegetable formula. A palm oil-blend diet thus providing 1.5%ALA was compared to dairy fat-blend-based diets that provided either 1.5%ALA or 2.3%ALA, or a rapeseed oil diet providing 8.3%ALA (n-6/n-3 ratio were, respectively 10,10,5,2.5). The 1.5%ALA-dairy-fat-blend was superior to 1.5%ALA-palm-oil-blend to restore values of brain DHA, while the 2.3%ALA-dairy-fat-blend exhibited a further increase and reached the values obtained with pure rapeseed diet (8.3%ALA). Dairy-fat-blends enriched with ALA appear to be an interesting strategy for achieving optimal DHA levels in the brain of post-weaning rats. Providing dairy fat as well as a reduction of the LA/ALA ratio should be reconsidered to design infant formula.
Collapse
Affiliation(s)
- B Delplanque
- UMR 8195 CNPS-Centre de Neurosciences Paris-Sud, NMPA-Neuroendocrinologie Moléculaire de la Prise Alimentaire, Université Paris-Sud XI, Orsay F-91405, France.
| | | | | | | | | |
Collapse
|
25
|
Ramsden CE, Ringel A, Feldstein AE, Taha AY, MacIntosh BA, Hibbeln JR, Majchrzak-Hong SF, Faurot KR, Rapoport SI, Cheon Y, Chung YM, Berk M, Mann JD. Lowering dietary linoleic acid reduces bioactive oxidized linoleic acid metabolites in humans. Prostaglandins Leukot Essent Fatty Acids 2012; 87:135-41. [PMID: 22959954 PMCID: PMC3467319 DOI: 10.1016/j.plefa.2012.08.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/17/2012] [Accepted: 08/18/2012] [Indexed: 12/21/2022]
Abstract
Linoleic acid (LA) is the most abundant polyunsaturated fatty acid in human diets, a major component of human tissues, and the direct precursor to the bioactive oxidized LA metabolites (OXLAMs), 9- and 13 hydroxy-octadecadienoic acid (9- and 13-HODE) and 9- and 13-oxo-octadecadienoic acid (9- and 13-oxoODE). These four OXLAMs have been mechanistically linked to pathological conditions ranging from cardiovascular disease to chronic pain. Plasma OXLAMs, which are elevated in Alzheimer's dementia and non-alcoholic steatohepatitis, have been proposed as biomarkers useful for indicating the presence and severity of both conditions. Because mammals lack the enzymatic machinery needed for de novo LA synthesis, the abundance of LA and OXLAMs in mammalian tissues may be modifiable via diet. To examine this issue in humans, we measured circulating LA and OXLAMs before and after a 12-week LA lowering dietary intervention in chronic headache patients. Lowering dietary LA significantly reduced the abundance of plasma OXLAMs, and reduced the LA content of multiple circulating lipid fractions that may serve as precursor pools for endogenous OXLAM synthesis. These results show that lowering dietary LA can reduce the synthesis and/or accumulation of oxidized LA derivatives that have been implicated in a variety of pathological conditions. Future studies evaluating the clinical implications of diet-induced OXLAM reductions are warranted.
Collapse
Affiliation(s)
- Christopher E Ramsden
- Section on Nutritional Neurosciences, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Alvheim AR, Malde MK, Osei-Hyiaman D, Hong Lin Y, Pawlosky RJ, Madsen L, Kristiansen K, Frøyland L, Hibbeln JR. Dietary linoleic acid elevates endogenous 2-AG and anandamide and induces obesity. Obesity (Silver Spring) 2012; 20:1984-94. [PMID: 22334255 PMCID: PMC3458187 DOI: 10.1038/oby.2012.38] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Suppressing hyperactive endocannabinoid tone is a critical target for reducing obesity. The backbone of both endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA) is the ω-6 fatty acid arachidonic acid (AA). Here we posited that excessive dietary intake of linoleic acid (LA), the precursor of AA, would induce endocannabinoid hyperactivity and promote obesity. LA was isolated as an independent variable to reflect the dietary increase in LA from 1 percent of energy (en%) to 8 en% occurring in the United States during the 20th century. Mice were fed diets containing 1 en% LA, 8 en% LA, and 8 en% LA + 1 en% eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) in medium-fat diets (35 en% fat) and high-fat diets (60 en%) for 14 weeks from weaning. Increasing LA from 1 en% to 8 en% elevated AA-phospholipids (PL) in liver and erythrocytes, tripled 2-AG + 1-AG and AEA associated with increased food intake, feed efficiency, and adiposity in mice. Reducing AA-PL by adding 1 en% long-chain ω-3 fats to 8 en% LA diets resulted in metabolic patterns resembling 1 en% LA diets. Selectively reducing LA to 1 en% reversed the obesogenic properties of a 60 en% fat diet. These animal diets modeled 20th century increases of human LA consumption, changes that closely correlate with increasing prevalence rates of obesity. In summary, dietary LA increased tissue AA, and subsequently elevated 2-AG + 1-AG and AEA resulting in the development of diet-induced obesity. The adipogenic effect of LA can be prevented by consuming sufficient EPA and DHA to reduce the AA-PL pool and normalize endocannabinoid tone.
Collapse
Affiliation(s)
- Anita R. Alvheim
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
- National Institute on Alcohol Abuse & Alcoholism, NIH, Bethesda, Maryland, USA
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Marian K. Malde
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Douglas Osei-Hyiaman
- National Institute on Alcohol Abuse & Alcoholism, NIH, Bethesda, Maryland, USA
- CardioMetabolic Disease Research, Department of Molecular & Cellular Biology, Nippon Boehringer-Ingelheim, Kobe, Japan
- RIKEN Center for Molecular Imaging Sciences, Kobe, Japan
| | - Yu Hong Lin
- National Institute on Alcohol Abuse & Alcoholism, NIH, Bethesda, Maryland, USA
| | - Robert J. Pawlosky
- National Institute on Alcohol Abuse & Alcoholism, NIH, Bethesda, Maryland, USA
| | - Lise Madsen
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Livar Frøyland
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Joseph R. Hibbeln
- National Institute on Alcohol Abuse & Alcoholism, NIH, Bethesda, Maryland, USA
- ()
| |
Collapse
|
27
|
Cardoso HD, Passos PP, Lagranha CJ, Ferraz AC, Santos Júnior EF, Oliveira RS, Oliveira PEL, Santos RDCF, Santana DF, Borba JMC, Rocha-de-Melo AP, Guedes RCA, Navarro DMAF, Santos GKN, Borner R, Picanço-Diniz CW, Beltrão EI, Silva JF, Rodrigues MCA, Andrade da Costa BLS. Differential vulnerability of substantia nigra and corpus striatum to oxidative insult induced by reduced dietary levels of essential fatty acids. Front Hum Neurosci 2012; 6:249. [PMID: 22969716 PMCID: PMC3431008 DOI: 10.3389/fnhum.2012.00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 08/10/2012] [Indexed: 01/24/2023] Open
Abstract
Oxidative stress (OS) has been implicated in the etiology of certain neurodegenerative disorders. Some of these disorders have been associated with unbalanced levels of essential fatty acids (EFA). The response of certain brain regions to OS, however, is not uniform and a selective vulnerability or resilience can occur. In our previous study on rat brains, we observed that a two-generation EFA dietary restriction reduced the number and size of dopaminergic neurons in the substantia nigra (SN) rostro-dorso-medial. To understand whether OS contributes to this effect, we assessed the status of lipid peroxidation (LP) and anti-oxidant markers in both SN and corpus striatum (CS) of rats submitted to this dietary treatment for one (F1) or two (F2) generations. Wistar rats were raised from conception on control or experimental diets containing adequate or reduced levels of linoleic and α-linolenic fatty acids, respectively. LP was measured using the thiobarbituric acid reaction method (TBARS) and the total superoxide dismutase (t-SOD) and catalase (CAT) enzymatic activities were assessed. The experimental diet significantly reduced the docosahexaenoic acid (DHA) levels of SN phospholipids in the F1 (~28%) and F2 (~50%) groups. In F1 adult animals of the experimental group there was no LP in both SN and CS. Consistently, there was a significant increase in the t-SOD activity (p < 0.01) in both regions. In EF2 young animals, degeneration in dopaminergic and non-dopaminergic neurons and a significant increase in LP (p < 0.01) and decrease in the CAT activity (p < 0.001) were detected in the SN, while no inter-group difference was found for these parameters in the CS. Conversely, a significant increase in t-SOD activity (p < 0.05) was detected in the CS of the experimental group compared to the control. The results show that unbalanced EFA dietary levels reduce the redox balance in the SN and reveal mechanisms of resilience in the CS under this stressful condition.
Collapse
Affiliation(s)
- Henriqueta D Cardoso
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco Recife, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Passos PP, Borba JMC, Rocha-de-Melo AP, Guedes RCA, da Silva RP, Filho WTM, Gouveia KMM, Navarro DMDAF, Santos GKN, Borner R, Picanço-Diniz CW, Pereira A, de Oliveira Costa MSM, Rodrigues MCA, Andrade-da-Costa BLDS. Dopaminergic cell populations of the rat substantia nigra are differentially affected by essential fatty acid dietary restriction over two generations. J Chem Neuroanat 2012; 44:66-75. [DOI: 10.1016/j.jchemneu.2012.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/05/2012] [Accepted: 05/31/2012] [Indexed: 11/16/2022]
|
29
|
Igarashi M, Kim HW, Chang L, Ma K, Rapoport SI. Dietary n-6 polyunsaturated fatty acid deprivation increases docosahexaenoic acid metabolism in rat brain. J Neurochem 2012; 120:985-97. [PMID: 22117540 PMCID: PMC3296886 DOI: 10.1111/j.1471-4159.2011.07597.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Dietary n-6 polyunsaturated fatty acid (PUFA) deprivation in rodents reduces brain arachidonic acid (20:4n-6) concentration and 20:4n-6-preferring cytosolic phospholipase A(2) (cPLA(2) -IVA) and cyclooxygenase (COX)-2 expression, while increasing brain docosahexaenoic acid (DHA, 22:6n-3) concentration and DHA-selective calcium-independent phospholipase A(2) (iPLA(2) )-VIA expression. We hypothesized that these changes are accompanied by up-regulated brain DHA metabolic rates. Using a fatty acid model, brain DHA concentrations and kinetics were measured in unanesthetized male rats fed, for 15 weeks post-weaning, an n-6 PUFA 'adequate' (31.4 wt% linoleic acid) or 'deficient' (2.7 wt% linoleic acid) diet, each lacking 20:4n-6 and DHA. [1-(14) C]DHA was infused intravenously, arterial blood was sampled, and the brain was microwaved at 5 min and analyzed. Rats fed the n-6 PUFA deficient compared with adequate diet had significantly reduced n-6 PUFA concentrations in brain phospholipids but increased eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid n-3 (DPAn-3, 22:5n-3), and DHA (by 9.4%) concentrations, particularly in ethanolamine glycerophospholipid (EtnGpl). Incorporation rates of unesterified DHA from plasma, which represent DHA metabolic loss from brain, were increased 45% in brain phospholipids, as was DHA turnover. Increased DHA metabolism following dietary n-6 PUFA deprivation may increase brain concentrations of antiinflammatory DHA metabolites, which with a reduced brain n-6 PUFA content, likely promotes neuroprotection and alters neurotransmission.
Collapse
Affiliation(s)
- Miki Igarashi
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- S C Cunnane
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | | |
Collapse
|
31
|
Guesnet P, Lallemand SM, Alessandri JM, Jouin M, Cunnane SC. α-Linolenate reduces the dietary requirement for linoleate in the growing rat. Prostaglandins Leukot Essent Fatty Acids 2011; 85:353-60. [PMID: 21880475 DOI: 10.1016/j.plefa.2011.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/22/2011] [Accepted: 08/09/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND We hypothesized that due to the absence of a dietary source of omega-3 fatty acids, the essential fatty acid (EFA) deficiency model leads to an overestimate of linoleic acid (LA) requirements. METHODS over 7wk, young rats consumed an EFA diet containing either 0en% linoleate (0LA) and 0en% α-linolenate (0LNA) or a diet containing 0.5en% LNA plus one of seven levels of added LA (0.12-4.0en%; n=6/group). RESULTS Rats consuming the 0LA-0LNA diet had the lowest final body weight, 34-68% lower LA and arachidonate in plasma and liver, 87% lower LA in epididymal fat, and an 8-20 fold higher eicosatrienoate in plasma, liver and muscle lipids. 0.5LNA completely prevented the lower growth and partly prevented the rise in eicosatrienoate seen in the 0LA-0LNA group. CONCLUSION Providing dietary LNA at 0.5 en% reduces the rat's physiological requirement for LA by an estimated factor of at least four (0.5en% instead of 2en%). Since LA requirements in humans are also based on the same flawed model of EFA deficiency, it is plausible that they too have been overestimated and should therefore be reinvestigated.
Collapse
Affiliation(s)
- P Guesnet
- INRA, UR 909 Nutrition et Régulation Lipidique des Fonctions Cérébrales, F-78352 Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
32
|
Novak EM, Innis SM. Impact of maternal dietary n-3 and n-6 fatty acids on milk medium-chain fatty acids and the implications for neonatal liver metabolism. Am J Physiol Endocrinol Metab 2011; 301:E807-17. [PMID: 21791621 DOI: 10.1152/ajpendo.00225.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Levels of n-6, n-3, and medium-chain fatty acids (MCFA) in milk are highly variable. Higher carbohydrate intakes are associated with increased mammary gland MCFA synthesis, but the role of unsaturated fatty acids for milk MCFA secretion is unclear. This study addressed whether n-6 and n-3 fatty acids, which are known to inhibit hepatic fatty acid synthesis, influence MCFA in rat and human milk and the implications of varying MCFA, n-6, and n-3 fatty acids in rat milk for metabolic regulation in the neonatal liver. Rats were fed a low-fat diet or one of six higher-fat diets, varying in 16:0, 18:1n-9, 18:2n-6, 18:3n-3, and long-chain (LC) n-3 fatty acids. Higher maternal dietary 18:2n-6 or 18:3n-3 did not influence milk MCFA, but lower maternal plasma triglycerides, due to either a low-fat or a high-fat high-LC n-3 diet led to higher milk MCFA. MCFA levels were inversely associated with 18:1n-9, 18:2n-6, and 18:3n-3 in human milk, likely reflecting the association between dietary total fat and unsaturated fatty acids. High LC n-3 fatty acid in rat milk was associated with lower hepatic Pklr, Acly, Fasn, and Scd1 and higher Hmgcs2 in the milk-fed rat neonate, with no effect of milk 18:1n-9, 18:2n-6, or MCFA. These studies show that the dietary fatty acid composition does not impact MCFA secretion in milk, but the fatty acid composition of milk, particularly the LC n-3 fatty acid, is relevant to hepatic metabolic regulation in the milk-fed neonate.
Collapse
Affiliation(s)
- Elizabeth M Novak
- Nutrition and Metabolism Program, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
33
|
Luxwolda MF, Kuipers RS, Smit EN, Velzing-Aarts FV, Dijck-Brouwer DAJ, Muskiet FAJ. The relation between the omega-3 index and arachidonic acid is bell shaped: synergistic at low EPA+DHA status and antagonistic at high EPA+DHA status. Prostaglandins Leukot Essent Fatty Acids 2011; 85:171-8. [PMID: 21715149 DOI: 10.1016/j.plefa.2011.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/26/2011] [Accepted: 05/31/2011] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The relation between docosahexaenoic (DHA) and eicosapentaenoic (EPA) vs. arachidonic acid (AA) seems characterized by both synergism and antagonism. MATERIALS AND METHODS Investigate the relation between EPA+DHA and AA in populations with a wide range of EPA+DHA status and across the life cycle. EPA+DHA and AA were determined in erythrocytes (RBC; n=1979), umbilical arteries (UA; n=789) and umbilical veins (UV; n=785). RESULTS In all compartments, notably RBC, the relation between EPA+DHA and AA appeared bell-shaped. Populations with low RBC-EPA+DHA (<2g%) exhibited positive relationships; those with high RBC-EPA+DHA (>8g%) negative relationships. Antagonism in UA and UV could not be demonstrated. CONCLUSION Both synergism and antagonism might aim at a balance between ω6 and ω3 long-chain polyunsaturated fatty acid (LCP) to maintain homeostasis. Synergism might be a feature of low LCPω3 status. AA becomes suppressed by antagonism from an RBC-EPA+DHA >8g%.
Collapse
Affiliation(s)
- Martine F Luxwolda
- Laboratory Medicine, University Medical Center Groningen (UMCG), 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
34
|
Brenna JT. Animal studies of the functional consequences of suboptimal polyunsaturated fatty acid status during pregnancy, lactation and early post-natal life. MATERNAL AND CHILD NUTRITION 2011; 7 Suppl 2:59-79. [PMID: 21366867 DOI: 10.1111/j.1740-8709.2011.00301.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Scores of animal studies demonstrate that seed oils replete with linoleic acid and very low in linolenic acid fed as the exclusive source of fat through pregnancy and lactation result in visual, cognitive, and behavioural deficits in the offspring. Commodity peanut, sunflower, and safflower oils fed to mother rats, guinea pigs, rhesus monkeys, and baboons induce predictable changes in tissue polyunsaturated fatty acid composition that are abnormal in free-living land mammals as well as changes in neurotransmitter levels, catecholamines, and signalling compounds compared with animals with a supply of ω3 polyunsaturated fatty acid. These diets consistently induce functional deficits in electroretinograms, reflex responses, reward or avoidance induced learning, maze learning, behaviour, and motor development compared with ω3 replete groups. Boosting neural tissue docosahexaenoic acid (DHA) by feeding preformed DHA enhances visual and cognitive function. Though no human randomized controlled trials on minimal ω3 requirements in pregnancy and lactation have been conducted, the weight of animal evidence compellingly shows that randomizing pregnant or lactating humans to diets that include high linoleate oils as the sole source of fat would be frankly unethical because they would result in suboptimal child development. Increasing use of commodity ω3-deficient oils in developing countries, many in the name of heart health, will limit brain development of the next generation and can be easily corrected at minimal expense by substituting high oleic acid versions of these same oils, in many cases blended with small amounts of α-linolenic acid oils like flax or perilla oil. Inclusion of DHA in these diets is likely to further enhance visual and neural development.
Collapse
Affiliation(s)
- J Thomas Brenna
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
35
|
Kim HW, Rao JS, Rapoport SI, Igarashi M. Dietary n-6 PUFA deprivation downregulates arachidonate but upregulates docosahexaenoate metabolizing enzymes in rat brain. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1811:111-7. [PMID: 21070866 DOI: 10.1016/j.bbalip.2010.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/26/2010] [Accepted: 10/27/2010] [Indexed: 11/28/2022]
Abstract
BACKGROUND Dietary n-3 polyunsaturated fatty acid (PUFA) deprivation increases expression of arachidonic acid (AA 20:4n-6)-selective cytosolic phospholipase A(2) (cPLA(2)) IVA and cyclooxygenase (COX)-2 in rat brain, while decreasing expression of docosahexaenoic acid (DHA 22:6n-3)-selective calcium-independent iPLA(2) VIA. Assuming that these enzyme changes represent brain homeostatic responses to deprivation, we hypothesized that dietary n-6 PUFA deprivation would produce changes in the opposite directions. METHODS Brain expression of PUFA-metabolizing enzymes and their transcription factors was quantified in male rats fed an n-6 PUFA adequate or deficient diet for 15weeks post-weaning. RESULTS The deficient compared with adequate diet increased brain mRNA, protein and activity of iPLA(2) VIA and 15-lipoxygenase (LOX), but decreased cPLA(2) IVA and COX-2 expression. The brain protein level of the iPLA(2) transcription factor SREBP-1 was elevated, while protein levels were decreased for AP-2α and NF-κB p65, cPLA(2) and COX-2 transcription factors, respectively. CONCLUSIONS With dietary n-6 PUFA deprivation, rat brain PUFA metabolizing enzymes and some of their transcription factors change in a way that would homeostatically dampen reductions in brain n-6 PUFA concentrations and metabolism, while n-3 PUFA metabolizing enzyme expression is increased. The changes correspond to reported in vitro enzyme selectivities for AA compared with DHA.
Collapse
Affiliation(s)
- Hyung-Wook Kim
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
36
|
Gao F, Kiesewetter D, Chang L, Rapoport SI, Igarashi M. Quantifying conversion of linoleic to arachidonic and other n-6 polyunsaturated fatty acids in unanesthetized rats. J Lipid Res 2010; 51:2940-6. [PMID: 20622136 DOI: 10.1194/jlr.m005595] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isotope feeding studies report a wide range of conversion fractions of dietary shorter-chain polyunsaturated fatty acids (PUFAs) to long-chain PUFAs, which limits assessing nutritional requirements and organ effects of arachidonic (AA, 20:4n-6) and docosahexaenoic (DHA, 22:6n-3) acids. In this study, whole-body (largely liver) steady-state conversion coefficients and rates of circulating unesterified linoleic acid (LA, 18:2n-6) to esterified AA and other elongated n-6 PUFAs were quantified directly using operational equations, in unanesthetized adult rats on a high-DHA but AA-free diet, using 2 h of intravenous [U-(13)C]LA infusion. Unesterified LA was converted to esterified LA in plasma at a greater rate than to esterified gamma-linolenic (gamma-LNA, 18:3n-6), eicosatrienoic acid (ETA, 20:3n-6), or AA. The steady-state whole-body synthesis-secretion (conversion) coefficient k*(i) to AA equaled 5.4 x 10(-3) min(-1), while the conversion rate (coefficient x concentration) equaled 16.1 micromol/day. This rate exceeds the reported brain AA consumption rate by 27-fold. As brain and heart cannot synthesize significant AA from circulating LA, liver synthesis is necessary to maintain their homeostatic AA concentrations in the absence of dietary AA. The heavy-isotope intravenous infusion method could be used to quantify steady-state liver synthesis-secretion of AA from LA under different conditions in rodents and in humans.
Collapse
Affiliation(s)
- Fei Gao
- Brain Physiology and Metabolism Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | |
Collapse
|
37
|
Coulman KD, Liu Z, Michaelides J, Quan Hum W, Thompson LU. Fatty acids and lignans in unground whole flaxseed and sesame seed are bioavailable but have minimal antioxidant and lipid-lowering effects in postmenopausal women. Mol Nutr Food Res 2010; 53:1366-75. [PMID: 19824016 DOI: 10.1002/mnfr.200900032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fatty acids and lignans in ground flaxseed and sesame seed are absorbed, metabolized, and exert some health benefits in vivo. However, it is unclear if they are absorbed, metabolized, and exert health benefits when consumed as unground whole seed; therefore, it was investigated in this study. In a randomized crossover study, 16 postmenopausal women supplemented their diets with food bars containing either 25 g unground flaxseed, sesame seed, or their combination (12.5 g each) (flaxseed+sesame seed bar, FSB) for 4 wk each, separated by 4 wk washout periods. Total serum n-3 fatty acids increased with flaxseed (p<0.05) and FSB (p=0.064) while serum n-6 fatty acids increased with sesame seed (p<0.05). Urinary lignans increased similarly with all treatments (p<0.05). Plasma lipids and several antioxidant markers were unaffected by all treatments, except serum gamma-tocopherol (GT), which increased with both sesame seed (p<0.0001) and FSB (p<0.01). In conclusion, fatty acids and lignans from unground seed in food bars are absorbed and metabolized; however, except for serum GT, the 25 g unground seed is inadequate to induce changes in plasma lipids and several biomarkers of oxidative stress.
Collapse
Affiliation(s)
- Karen D Coulman
- Department of Nutritional Sciences, University of Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
38
|
Kim YJ, Park T. Genes are differentially expressed in the epididymal fat of rats rendered obese by a high-fat diet. Nutr Res 2009; 28:414-22. [PMID: 19083440 DOI: 10.1016/j.nutres.2008.03.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 02/24/2008] [Accepted: 03/14/2008] [Indexed: 02/01/2023]
Abstract
The aim of present study was to identify the visceral adipose tissue genes differentially expressed in a well-characterized rat model of high-fat diet (HFD)-induced obesity. Male Sprague-Dawley rats were fed either the HFD (17 g lard + 3 g corn oil/100 g) or the normal diet (5 g corn oil/100 g) for 9 weeks. The HFD rats weighed 55% more and accumulated 85% to 133% greater visceral fats than did the normal-diet rats (P < .05). Animals given the HFD for 9 weeks acquired dyslipidemia, fatty liver, insulin resistance, and hyperleptinemia along with the overexpression of several obesity-related genes, such as leptin, tumor necrosis factor alpha, resistin, peroxisome proliferator-activated receptor gamma2, CCAAT/enhancer-binding protein alpha, and sterol regulatory element-binding protein-1c, in the epididymal adipose tissue. The differential gene expression profile obtained from the cDNA microarray analysis followed by the real-time polymerase chain reaction confirmation led to a recruitment of several uncharacterized adipose tissue genes responding to the HFD. We report herein, for the first time, that a series of genes which might be implicated in the insulin-stimulated glucose transporter 4 translocation, such as protein phosphatase 2 (formerly 2A), cell division cycle 42-interacting protein 4, syntaxin 6, linker of T-cell receptor pathways 10, as well as the genes which might be involved in cancer development, such as heat shock 10-kd protein 1, and ras-related C3 botulinum toxin substrate 1, were differentially expressed in the epididymal adipose tissue of rats rendered obese by an HFD.
Collapse
Affiliation(s)
- Yun Jung Kim
- Department of Food and Nutrition, Brain Korea 21 Project, Yonsei University, Seoul 120-749, Korea
| | | |
Collapse
|
39
|
Igarashi M, Gao F, Kim HW, Ma K, Bell JM, Rapoport SI. Dietary n-6 PUFA deprivation for 15 weeks reduces arachidonic acid concentrations while increasing n-3 PUFA concentrations in organs of post-weaning male rats. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1791:132-9. [PMID: 19073280 DOI: 10.1016/j.bbalip.2008.11.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/23/2008] [Accepted: 11/17/2008] [Indexed: 11/26/2022]
Abstract
Few studies have examined effects of feeding animals a diet deficient in n-6 polyunsaturated fatty acids (PUFAs) but with an adequate amount of n-3 PUFAs. To do this, we fed post-weaning male rats a control n-6 and n-3 PUFA adequate diet and an n-6 deficient diet for 15 weeks, and measured stable lipid and fatty acid concentrations in different organs. The deficient diet contained nutritionally essential linoleic acid (LA,18:2n-6) as 2.3% of total fatty acids (10% of the recommended minimum LA requirement for rodents) but no arachidonic acid (AA, 20:4n-6), and an adequate amount (4.8% of total fatty acids) of alpha-linolenic acid (18:3n-3). The deficient compared with adequate diet did not significantly affect body weight, but decreased testis weight by 10%. AA concentration was decreased significantly in serum (-86%), brain (-27%), liver (-68%), heart (-39%), testis (-25%), and epididymal adipose tissue (-77%). Eicosapentaenoic (20:5n-3) and docosahexaenoic acid (22:6n-3) concentrations were increased in all but adipose tissue, and the total monounsaturated fatty acid concentration was increased in all organs. The concentration of 20:3n-9, a marker of LA deficiency, was increased by the deficient diet, and serum concentrations of triacylglycerol, total cholesterol and total phospholipid were reduced. In summary, 15 weeks of dietary n-6 PUFA deficiency with n-3 PUFA adequacy significantly reduced n-6 PUFA concentrations in different organs of male rats, while increasing n-3 PUFA and monounsaturated fatty acid concentrations. This rat model could be used to study metabolic, functional and behavioral effects of dietary n-6 PUFA deficiency.
Collapse
Affiliation(s)
- Miki Igarashi
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bldg. 9, Room 1S126, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Innis SM. Dietary omega 3 fatty acids and the developing brain. Brain Res 2008; 1237:35-43. [PMID: 18789910 DOI: 10.1016/j.brainres.2008.08.078] [Citation(s) in RCA: 393] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/21/2008] [Accepted: 08/22/2008] [Indexed: 01/04/2023]
Abstract
The omega-3 fatty acids are essential dietary nutrients and one of their important roles is providing the fatty acid with 22 carbons and 6 double bonds known as docosahexaenoic acid (DHA) for nervous tissue growth and function. Inadequate intakes of omega-3 fatty acids decrease DHA and increase omega-6 fatty acids in the brain. Decreased DHA in the developing brain leads to deficits in neurogenesis, neurotransmitter metabolism, and altered learning and visual function in animals. Western diets are low in omega-3 fatty acids, including the 18 carbon omega-3 fatty acid alpha linolenic acid found mainly in plant oils, and DHA, which is found mainly in fish. The DHA status of the newborn and breast-fed infant depends on the maternal intake of DHA and varies widely. Epidemiological studies have linked low maternal DHA to increased risk of poor child neural development. Intervention studies have shown improving maternal DHA nutrition decreases the risk of poor infant and child visual and neural development. Thus, sufficient evidence is available to conclude that maternal fatty acid nutrition is important to DHA transfer to the infant before and after birth, with short and long-term implications for neural function. However, genetic variation in genes encoding fatty acid desaturases also influence essential fatty acid metabolism, and may increase requirements in some individuals. Consideration of omega-3 fatty acid to include brain development, optimizing omega-3 and omega-6 fatty acids in gestation and lactation, and in fatty acid nutrition support for intravenous and formula-fed neonates is important.
Collapse
Affiliation(s)
- Sheila M Innis
- Nutrition Research Program, Child and Family Research Institute, Department of Paediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, B.C., Canada.
| |
Collapse
|
41
|
Novak EM, Dyer RA, Innis SM. High dietary omega-6 fatty acids contribute to reduced docosahexaenoic acid in the developing brain and inhibit secondary neurite growth. Brain Res 2008; 1237:136-45. [PMID: 18710653 DOI: 10.1016/j.brainres.2008.07.107] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 07/24/2008] [Accepted: 07/26/2008] [Indexed: 11/30/2022]
Abstract
Docosahexaenoic acid (DHA, 22:6omega-3) is a major polyunsaturated fatty acid in the brain and is required in large amounts during development. Low levels of DHA in the brain are associated with functional deficits. The omega-3 fatty acids are essential nutrients and their metabolism and incorporation in developing brain depends on the composition of dietary fat. We assessed the importance of the intake of the omega-3 fatty acid, 18:3omega-3 and the balance with the omega-6 fatty acid, 18:2omega-6, and the effects of dietary arachidonic acid (20:4omega-6) and DHA in milk diets using the piglet as a model of early infant nutrition. Piglets were fed (% energy) 1.2% 18:2omega-6 and 0.05% 18:3omega-3 (deficient), 10.7% 18:2omega-6 and 1.1% 18:3omega-3 (contemporary), 1.2% 18:2omega-6 and 1.1% 18:3omega-3 (evolutionary), or the contemporary diet with 0.3% 20:4omega-6 and 0.3% DHA (supplemented) from birth to 30 days of age. Our results show that a contemporary diet, high in 18:2omega-6 compromises DHA accretion and leads to increased 22:4omega-6 and 22:5omega-6 in the brain. However, an evolutionary diet, low in 18:2omega-6, supports high brain DHA. DHA supplementation effectively increased DHA, but not the intermediate omega-3 fatty acids, 20:5omega-3 and 22:5omega-3. Using primary cultures of cortical neurons, we show that 22:5omega-6 is efficiently acylated and preferentially taken up over DHA. However, DHA, but not 22:5omega-6 supports growth of secondary neurites. Our results suggest the need to consider whether current high dietary omega-6 fatty acid intakes compromise brain DHA accretion and contribute to poor neurodevelopment.
Collapse
Affiliation(s)
- Elizabeth M Novak
- Nutrition Research Program, Child and Family Research Institute, Department of Paediatrics, University of British Columbia, Vancouver, B.C., Canada
| | | | | |
Collapse
|
42
|
Lin YH, Salem N. Whole body distribution of deuterated linoleic and α-linolenic acids and their metabolites in the rat. J Lipid Res 2007; 48:2709-24. [PMID: 17876057 DOI: 10.1194/jlr.m700369-jlr200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the uptake or metabolism of essential fatty acids (EFAs) in various mammalian organs. Thus, the distribution of deuterated alpha-linolenic acid (18:3n-3) and linoleic acid (18:2n-6) and their metabolites was studied using a stable isotope tracer technique. Rats were orally administered a single dose of a mixture (20 mg each) of ethyl D5-18:3n-3 and D5-18:2n-6, and 25 tissues per animal were analyzed for D5-labeled PUFAs at 4, 8, 24, 96, 168, 240, 360, and 600 h after dosing. Plasma, stomach, and spleen contained the highest concentrations of labeled precursors at the earliest time points, whereas other internal organs and red blood cells reached their maximal concentrations at 8 h. The time-course data were consistent with liver metabolism of EFAs, but local metabolism in other tissues could not be ruled out. Brain, spinal cord, heart, testis, and eye accumulated docosahexaenoic acid with time, whereas skin accumulated mainly 20:4n-6. On average, approximately 16-18% of the D5-18:3n-3 and D5-18:2n-6 initial dosage was eventually accumulated in tissues, principally in adipose, skin, and muscle. Approximately 6.0% of D5-18:3n-3 and 2.6% of D5-18:2n-6 were elongated/desaturated and stored, mainly in muscle, adipose, and the carcass. The remaining 78% of both precursors was apparently catabolized or excreted.
Collapse
Affiliation(s)
- Yu Hong Lin
- Section of Nutritional Neuroscience, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9410, USA
| | | |
Collapse
|
43
|
Liou YA, King DJ, Zibrik D, Innis SM. Decreasing linoleic acid with constant alpha-linolenic acid in dietary fats increases (n-3) eicosapentaenoic acid in plasma phospholipids in healthy men. J Nutr 2007; 137:945-52. [PMID: 17374659 DOI: 10.1093/jn/137.4.945] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
High linoleic acid (LA) intakes have been suggested to reduce alpha-linolenic acid [ALA, 18:3(n-3)] metabolism to eicosapentaenoic acid [EPA, 20:5(n-3)] and docosahexaenoic acid [DHA, 22:6(n-3)], and favor high arachidonic acid [ARA, 20:4(n-6)]. We used a randomized cross-over study with men (n = 22) to compare the effect of replacing vegetable oils high in LA with oils low in LA in foods, while maintaining constant ALA, for 4 wk each, on plasma (n-3) fatty acids. Nonvegetable sources of fat, except fish and seafoods, were unrestricted. We determined plasma phospholipid fatty acids at wk 0, 2, 4, 6, and 8, and triglycerides, cholesterol, serum CRP, and IL-6, and platelet aggregation at wk 0, 4, and 8. LA and ALA intakes were 3.8 +/- 0.12% and 1.0 +/- 0.05%, and 10.5 +/- 0.53% and 1.1 +/- 0.06% energy with LA:ALA ratios of 4:0 and 10:1 during the low and high LA diets, respectively. The plasma phospholipid LA was higher and EPA was lower during the high than during the low LA diet period (P < 0.001), but DHA declined over the 8-wk period (r = -0.425, P < 0.001). The plasma phospholipid ARA:EPA ratios were (mean +/- SEM) 20.7 +/- 1.52 and 12.9 +/- 1.01 after 4 wk consuming the high or low LA diets, respectively (P < 0.001); LA was inversely associated with EPA (r = -0.729, P < 0.001) but positively associated with ARA:EPA (r = 0.432, P < 0.001). LA intake did not influence ALA, ARA, DPA, DHA, or total, LDL or HDL cholesterol, CRP or IL-6, or platelet aggregation. In conclusion, high LA intakes decrease plasma phospholipid EPA and increase the ARA:EPA ratio, but do not favor higher ARA.
Collapse
Affiliation(s)
- Y Angela Liou
- The Nutrition Research Program, Child and Family Research Institute, University of British Columbia, Vancouver, Canada V52 4H40
| | | | | | | |
Collapse
|
44
|
The conditional nature of the dietary need for polyunsaturates: a proposal to reclassify ‘essential fatty acids’ as ‘conditionally-indispensable’ or ‘conditionally-dispensable’ fatty acids. Br J Nutr 2007. [DOI: 10.1017/s0007114500002415] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The term essential fatty acid no longer clearly identifies the fatty acids it was originally used to describe. It would be more informative if the concept of essentiality shifted away from the symptoms arising from the lack of de novo synthesis of linoleate or α-linolenate and towards the adequacy of the capacity for synthesis and conservation of both the parent and the derived long-chain polyunsaturates. For instance, despite the existence of the pathway for synthesis of docosahexaenoate from α-linolenate, the former would be more correctly classified as ‘conditionally indispensable’ because the capacity of the pathway appears insufficient during early development, although it may be sufficient later in life in healthy individuals. Similarly, despite the inability to synthesize linoleate de novo, abundant linoleate stores and its relatively slow turnover in healthy adults probably makes linoleate ‘conditionally dispensable’ for long periods. There are two other anomalies with the terms essential and non-essential fatty acids: (1) under several different experimental circumstances, the C-skeleton of essential fatty acids is avidly used in the synthesis of non-essential fatty acids; (2) to function normally, the brain is required to endogenously synthesize several non-essential fatty acids. As with essential amino acids, which have been reclassified as indispensable or conditionally indispensable, such a change in terminology should lead to an improved understanding of the function and metabolism of polyunsaturates in particular, and long-chain fatty acids in general.
Collapse
|
45
|
Sakuma S, Usa K, Fujimoto Y. 15-Hydroperoxyeicosapentaenoic acid, but not eicosapentaenoic acid, shifts arachidonic acid away from cyclooxygenase pathway into acyl-CoA synthetase pathway in rabbit kidney medulla microsomes. Prostaglandins Leukot Essent Fatty Acids 2006; 75:69-74. [PMID: 16889947 DOI: 10.1016/j.plefa.2006.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 05/30/2006] [Accepted: 06/08/2006] [Indexed: 10/24/2022]
Abstract
Under physiological conditions, small amounts of free arachidonic acid (AA) are released from membrane phospholipids, and cyclooxygenase (COX) and acyl-CoA synthetase (ACS) competitively act on this fatty acid to form prostaglandins (PGs) and arachidonoyl-CoA (AA-CoA). In the present study, we investigated the effects of eicosapentaenoic acid (EPA) and 15-hydroperoxyeicosapentaenoic acid (15-HPEPE) on the PG and AA-CoA formations from high and low concentrations of AA (60 and 5 microM) in rabbit kidney medulla microsomes. The kidney medulla microsomes were incubated with 60 or 5 microM [(14)C]-AA in 0.1M Tris/HCl buffer (pH 8.0) containing cofactors of COX (reduced glutathione and hydroquinone) and cofactors of ACS (ATP, MgCl(2) and CoA). After incubation, PG (as total PGs), AA-CoA and residual AA were separated by selective extraction using petroleum ether and ethyl acetate. EPA reduced the PG and AA-CoA formations from both 60 and 5 microM AA. In contrast, 15-HPEPE decreased the PG formation without affecting the AA-CoA formation from 60 microM AA, and increased the AA-CoA formation at the expense of PG formation when 5 microM AA was used as substrate concentration. The experiments utilizing Fe(2+) and an electron spin resonance (ESR) revealed that 15-HPEPE elicits these effects in the form of hydroperoxy adduct. These results suggest that 15-HPEPE, but not EPA, has the potential to shift AA away from COX pathway into ACS pathway at low substrate concentration (close to the physiological concentration of AA).
Collapse
Affiliation(s)
- Satoru Sakuma
- Laboratory of Physiological Chemistry, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka 569-1094, Japan.
| | | | | |
Collapse
|
46
|
Sabarense CM, de Almeida Gonçalves MI, Filho JM. Elaidic acid in rat liver identified by gas chromatography and nuclear magnetic resonance spectroscopy. EUR J LIPID SCI TECH 2006. [DOI: 10.1002/ejlt.200500300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Jorge Mancini Filho
- School of Pharmaceutical Science, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
47
|
Affiliation(s)
- Clifford Hall
- Department of Cereal and Food Sciences, North Dakota State University, Fargo, North Dakota 58105, USA
| | | | | |
Collapse
|
48
|
Gura KM, Parsons SK, Bechard LJ, Henderson T, Dorsey M, Phipatanakul W, Duggan C, Puder M, Lenders C. Use of a fish oil-based lipid emulsion to treat essential fatty acid deficiency in a soy allergic patient receiving parenteral nutrition. Clin Nutr 2005; 24:839-47. [PMID: 16029913 DOI: 10.1016/j.clnu.2005.05.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Accepted: 05/31/2005] [Indexed: 10/25/2022]
Abstract
The treatment of essential fatty acid deficiency (EFAD) in a 17-year-old male following allogeneic bone marrow transplantation is described. His transplant was complicated by gastrointestinal bleeding that precluded the use of enteral feedings. Due to a severe soy allergy, he could not tolerate any intravenous fat emulsions marketed in the US. After months of receiving fat-free parenteral nutrition and intermittent use of enteral feeds, he developed signs and symptoms consistent with EFAD, including a rash and an elevated plasma triene:tetraene ratio of 0.231 (0.013-0.05). After receiving FDA approval, a parenteral fish oil emulsion was administered to provide fat calories and sufficient alpha-linolenic and linoleic acid to correct his EFAD. Therapy was initiated at 0.2 g/kg/day and advanced to 0.67 g/kg/day, providing approximately 45 mg/kg/day of linoleic acid. After 10 days of therapy, his rash disappeared and his triene:tetraene ratio improved to 0.07. By day 17 the ratio normalized to 0.047. This suggests that using a fish oil emulsion with minimal linoleic acid may be safely used as the sole source of fat calories and may be an option to prevent or treat EFAD in subjects allergic to soy that require a parenteral source of fat.
Collapse
Affiliation(s)
- Kathleen M Gura
- Department of Pharmacy, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Innis S. Chapter 10 Essential fatty acid metabolism during early development. BIOLOGY OF GROWING ANIMALS 2005. [DOI: 10.1016/s1877-1823(09)70017-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
50
|
KIMURA F, KAWASHIMA S, ENDO Y, FUJIMOTO K. The Effect of Dietary Fatty Acid Composition on Food Choice Using the Bottle-Choice Test in Rats. J Oleo Sci 2004. [DOI: 10.5650/jos.53.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|