1
|
Jenkins AK, Ketchesin KD, Becker-Krail DD, McClung CA. Molecular Rhythmicity in Glia: Importance for Brain Health and Relevance to Psychiatric Disease. Biol Psychiatry 2024; 96:909-918. [PMID: 38735357 PMCID: PMC11550267 DOI: 10.1016/j.biopsych.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/05/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Circadian rhythms are approximate 24-hour rhythms present in nearly all aspects of human physiology, including proper brain function. These rhythms are produced at the cellular level through a transcriptional-translational feedback loop known as the molecular clock. Diurnal variation in gene expression has been demonstrated in brain tissue from multiple species, including humans, in both cortical and subcortical regions. Interestingly, these rhythms in gene expression have been shown to be disrupted across psychiatric disorders and may be implicated in their underlying pathophysiology. However, little is known regarding molecular rhythms in specific cell types in the brain and how they might be involved in psychiatric disease. Although glial cells (e.g., astrocytes, microglia, and oligodendrocytes) have been historically understudied compared to neurons, evidence of the molecular clock is found within each of these cell subtypes. Here, we review the current literature, which suggests that molecular rhythmicity is essential to functional physiologic outputs from each glial subtype. Furthermore, disrupted molecular rhythms within these cells and the resultant functional deficits may be relevant to specific phenotypes across psychiatric illnesses. Given that circadian rhythm disruptions have been so integrally tied to psychiatric disease, the molecular mechanisms governing these associations could represent exciting new avenues for future research and potential novel pharmacologic targets for treatment.
Collapse
Affiliation(s)
- Aaron K Jenkins
- Translational Neuroscience Program, Department of Psychiatry, and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kyle D Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Darius D Becker-Krail
- Translational Neuroscience Program, Department of Psychiatry, and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Colleen A McClung
- Translational Neuroscience Program, Department of Psychiatry, and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
2
|
Jurcau MC, Jurcau A, Cristian A, Hogea VO, Diaconu RG, Nunkoo VS. Inflammaging and Brain Aging. Int J Mol Sci 2024; 25:10535. [PMID: 39408862 PMCID: PMC11476611 DOI: 10.3390/ijms251910535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Progress made by the medical community in increasing lifespans comes with the costs of increasing the incidence and prevalence of age-related diseases, neurodegenerative ones included. Aging is associated with a series of morphological changes at the tissue and cellular levels in the brain, as well as impairments in signaling pathways and gene transcription, which lead to synaptic dysfunction and cognitive decline. Although we are not able to pinpoint the exact differences between healthy aging and neurodegeneration, research increasingly highlights the involvement of neuroinflammation and chronic systemic inflammation (inflammaging) in the development of age-associated impairments via a series of pathogenic cascades, triggered by dysfunctions of the circadian clock, gut dysbiosis, immunosenescence, or impaired cholinergic signaling. In addition, gender differences in the susceptibility and course of neurodegeneration that appear to be mediated by glial cells emphasize the need for future research in this area and an individualized therapeutic approach. Although rejuvenation research is still in its very early infancy, accumulated knowledge on the various signaling pathways involved in promoting cellular senescence opens the perspective of interfering with these pathways and preventing or delaying senescence.
Collapse
Affiliation(s)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Alexander Cristian
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Vlad Octavian Hogea
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | | | | |
Collapse
|
3
|
Wang X, Zhi H, Zhang Z, Li J, Guo D. REV-ERBα Mitigates Astrocyte Activation and Protects Dopaminergic Neurons from Damage. J Mol Neurosci 2024; 74:84. [PMID: 39254874 DOI: 10.1007/s12031-024-02264-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Parkinson's disease (PD) is characterized by astrocyte activation and disruptions in circadian rhythm. Within the astrocyte population, two distinct reactive states exist: A1 and A2. A1 astrocytes are associated with neurotoxicity and inflammation, while A2 astrocytes exhibit neuroprotective functions. Our investigation focused on the role of REV-ERBα, a member of the nuclear receptor superfamily and a key regulator of the circadian clock, in astrocyte activation. We observed that REV-ERBα expression in A1 astrocytes was reduced to one-third of its normal level. Notably, activation of REV-ERBα prompted a transformation of astrocytes from A1 to A2. Mechanistically, REV-ERBα inhibition was linked to the classical NF-κB pathway, while it concurrently suppressed the STAT3 pathway. Furthermore, astrocytes with low REV-ERBα expression were associated with dopaminergic neurons apoptosis. Intriguingly, the opposite effect was observed when using a REV-ERBα agonist, which mitigated astrocyte activation and reduced dopaminergic neuron damage by 50%. In summary, our study elucidates the pivotal role of REV-ERBα in modulating astrocyte function and its potential implications in PD pathogenesis.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Hui Zhi
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Zongqin Zhang
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Jingwei Li
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China.
| | - Dongkai Guo
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China.
| |
Collapse
|
4
|
Smyllie NJ, Hastings MH, Patton AP. Neuron-Astrocyte Interactions and Circadian Timekeeping in Mammals. Neuroscientist 2024:10738584241245307. [PMID: 38602223 DOI: 10.1177/10738584241245307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Almost every facet of our behavior and physiology varies predictably over the course of day and night, anticipating and adapting us to their associated opportunities and challenges. These rhythms are driven by endogenous biological clocks that, when deprived of environmental cues, can continue to oscillate within a period of approximately 1 day, hence circa-dian. Normally, retinal signals synchronize them to the cycle of light and darkness, but disruption of circadian organization, a common feature of modern lifestyles, carries considerable costs to health. Circadian timekeeping pivots around a cell-autonomous molecular clock, widely expressed across tissues. These cellular timers are in turn synchronized by the principal circadian clock of the brain: the hypothalamic suprachiasmatic nucleus (SCN). Intercellular signals make the SCN network a very powerful pacemaker. Previously, neurons were considered the sole SCN timekeepers, with glial cells playing supportive roles. New discoveries have revealed, however, that astrocytes are active partners in SCN network timekeeping, with their cell-autonomous clock regulating extracellular glutamate and GABA concentrations to control circadian cycles of SCN neuronal activity. Here, we introduce circadian timekeeping at the cellular and SCN network levels before focusing on the contributions of astrocytes and their mutual interaction with neurons in circadian control in the brain.
Collapse
Affiliation(s)
- Nicola J Smyllie
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Andrew P Patton
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
5
|
Son G, Neylan TC, Grinberg LT. Neuronal and glial vulnerability of the suprachiasmatic nucleus in tauopathies: evidence from human studies and animal models. Mol Neurodegener 2024; 19:4. [PMID: 38195580 PMCID: PMC10777507 DOI: 10.1186/s13024-023-00695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Tauopathies, a group of neurodegenerative diseases that includes Alzheimer's disease, commonly lead to disturbances in sleep-wake patterns and circadian rhythm disorders. The circadian rhythm, a recurring 24-hour cycle governing human biological activity, is regulated by the hypothalamic suprachiasmatic nucleus (SCN) and endogenous transcriptional-translational feedback loops. Surprisingly, little attention has been given to investigating tauopathy-driven neuropathology in the SCN and the repercussions of SCN and circadian gene dysfunction in the human brain affected by tauopathies. This review aims to provide an overview of the current literature on the vulnerability of the SCN in tauopathies in humans. Emphasis is placed on elucidating the neuronal and glial changes contributing to the widespread disruption of the molecular circadian clock. Furthermore, this review identifies areas of knowledge requiring further investigation.
Collapse
Affiliation(s)
- Gowoon Son
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas C Neylan
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Lea T Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil.
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Britz J, Ojo E, Haque N, Dhukhwa A, Hascup ER, Hascup KN, Tischkau SA. Sex-Dependent Effects of Chronic Circadian Disruption in AβPP/PS1 Mice. J Alzheimers Dis 2024; 97:855-870. [PMID: 38143343 PMCID: PMC10860643 DOI: 10.3233/jad-230089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Chronic disruption of the circadian timing system, often reflected as a loss of restful sleep, also includes myriad other pathophysiological effects. OBJECTIVE The current study examined how chronic circadian disruption (CD) could contribute to pathology and rate of progression in the AβPP/PS1 mouse model of Alzheimer's disease (AD). METHODS A chronic CD was imposed until animals reached 6 or 12 months of age in AβPP/PS1 and C57BL/6J control mice. Home cage activity was monitored for a period of 3-4 weeks prior to the endpoint along with a single timepoint measure of glucose sensitivity. To assess long term effects of CD on the AD phenotype, animals were re-entrained to a no disruption (ND) schedule just prior to the endpoint, after which a Morris water maze (MWM) was used to assess spatial learning and memory. RESULTS Dampening of nighttime activity levels occurred in disrupted animals, and female animals demonstrated a greater adaptability to CD. Diminished arginine vasopressin (AVP) and vasoactive intestinal peptide (VIP) levels in the suprachiasmatic nucleus (SCN) of 12-month male AβPP/PS1 exposed to the CD paradigm were observed, potentially accounting for the diminished re-entrainment response. Similarly, CD worsened performance in the MWM in 12-month male AβPP/PS1 animals, whereas no effect was seen in females. CONCLUSIONS Collectively, these findings show that exposure to chronic CD impairs circadian behavioral patterns and cognitive phenotypes of AβPP/PS1 mouse model in a sex-dependent manner.
Collapse
Affiliation(s)
- Jesse Britz
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Emmanuel Ojo
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Nazmul Haque
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Asmita Dhukhwa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Erin R. Hascup
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin N. Hascup
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Shelley A. Tischkau
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
7
|
Pang Y, Qu J, Zhang H, Cao Y, Ma X, Wang S, Wang J, Wu J, Zhang T. Nose-to-brain translocation and nervous system injury in response to indium tin oxide nanoparticles of long-term low-dose exposures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167314. [PMID: 37742979 DOI: 10.1016/j.scitotenv.2023.167314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Indium tin oxide (ITO) is a semiconductor nanomaterial with broad application in liquid crystal displays, solar cells, and electrochemical immune sensors. It is worth noting that, with the gradual increase in worker exposure opportunities, the exposure risk in occupational production cannot be ignored. At present, the toxicity of ITO mainly focuses on respiratory toxicity. ITO inhaled through the upper respiratory tract can cause pathological changes such as interstitial pneumonia and pulmonary fibrosis. Still, extrapulmonary toxicity after nanoscale ITO nanoparticle (ITO NPs) exposure, such as long-term effects on the central nervous system, should also be of concern. Therefore, we set up exposure dose experiments (0 mg·kg-1, 3.6 mg·kg-1, and 36 mg·kg-1) based on occupational exposure limits to treat C57BL/6 mice via nasal drops for 15 weeks. Moreover, we conducted a preliminary assessment of the neurotoxicity of ITO NPs (20-30 nm) in vivo. The results indicated that ITO NPs can cause diffuse inflammatory infiltrates in brain tissue, increased glial cell responsiveness, abnormal neuronal cell lineage transition, neuronal migration disorders, and neuronal apoptosis related to the oxidative stress induced by ITO NPs exposure. Hence, our findings provide useful information for the fuller risk assessment of ITO NPs after occupational exposure.
Collapse
Affiliation(s)
- Yanting Pang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jing Qu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Haopeng Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuna Cao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xinmo Ma
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shile Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jianli Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jingying Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
8
|
Li Y, Que M, Wang X, Zhan G, Zhou Z, Luo X, Li S. Exploring Astrocyte-Mediated Mechanisms in Sleep Disorders and Comorbidity. Biomedicines 2023; 11:2476. [PMID: 37760916 PMCID: PMC10525869 DOI: 10.3390/biomedicines11092476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Astrocytes, the most abundant cells in the brain, are integral to sleep regulation. In the context of a healthy neural environment, these glial cells exert a profound influence on the sleep-wake cycle, modulating both rapid eye movement (REM) and non-REM sleep phases. However, emerging literature underscores perturbations in astrocytic function as potential etiological factors in sleep disorders, either as protopathy or comorbidity. As known, sleep disorders significantly increase the risk of neurodegenerative, cardiovascular, metabolic, or psychiatric diseases. Meanwhile, sleep disorders are commonly screened as comorbidities in various neurodegenerative diseases, epilepsy, and others. Building on existing research that examines the role of astrocytes in sleep disorders, this review aims to elucidate the potential mechanisms by which astrocytes influence sleep regulation and contribute to sleep disorders in the varied settings of brain diseases. The review emphasizes the significance of astrocyte-mediated mechanisms in sleep disorders and their associated comorbidities, highlighting the need for further research.
Collapse
Affiliation(s)
- Yujuan Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Mengxin Que
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Xuan Wang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Gaofeng Zhan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Zhiqiang Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shiyong Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| |
Collapse
|
9
|
Mitchell JW, Gillette MU. Development of circadian neurovascular function and its implications. Front Neurosci 2023; 17:1196606. [PMID: 37732312 PMCID: PMC10507717 DOI: 10.3389/fnins.2023.1196606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
The neurovascular system forms the interface between the tissue of the central nervous system (CNS) and circulating blood. It plays a critical role in regulating movement of ions, small molecules, and cellular regulators into and out of brain tissue and in sustaining brain health. The neurovascular unit (NVU), the cells that form the structural and functional link between cells of the brain and the vasculature, maintains the blood-brain interface (BBI), controls cerebral blood flow, and surveils for injury. The neurovascular system is dynamic; it undergoes tight regulation of biochemical and cellular interactions to balance and support brain function. Development of an intrinsic circadian clock enables the NVU to anticipate rhythmic changes in brain activity and body physiology that occur over the day-night cycle. The development of circadian neurovascular function involves multiple cell types. We address the functional aspects of the circadian clock in the components of the NVU and their effects in regulating neurovascular physiology, including BBI permeability, cerebral blood flow, and inflammation. Disrupting the circadian clock impairs a number of physiological processes associated with the NVU, many of which are correlated with an increased risk of dysfunction and disease. Consequently, understanding the cell biology and physiology of the NVU is critical to diminishing consequences of impaired neurovascular function, including cerebral bleeding and neurodegeneration.
Collapse
Affiliation(s)
- Jennifer W. Mitchell
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Martha U. Gillette
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Carle-Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
10
|
Trotier A, Bagnoli E, Walski T, Evers J, Pugliese E, Lowery M, Kilcoyne M, Fitzgerald U, Biggs M. Micromotion Derived Fluid Shear Stress Mediates Peri-Electrode Gliosis through Mechanosensitive Ion Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301352. [PMID: 37518828 PMCID: PMC10520674 DOI: 10.1002/advs.202301352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/11/2023] [Indexed: 08/01/2023]
Abstract
The development of bioelectronic neural implant technologies has advanced significantly over the past 5 years, particularly in brain-machine interfaces and electronic medicine. However, neuroelectrode-based therapies require invasive neurosurgery and can subject neural tissues to micromotion-induced mechanical shear, leading to chronic inflammation, the formation of a peri-electrode void and the deposition of reactive glial scar tissue. These structures act as physical barriers, hindering electrical signal propagation and reducing neural implant functionality. Although well documented, the mechanisms behind the initiation and progression of these processes are poorly understood. Herein, in silico analysis of micromotion-induced peri-electrode void progression and gliosis is described. Subsequently, ventral mesencephalic cells exposed to milliscale fluid shear stress in vitro exhibited increased expression of gliosis-associated proteins and overexpression of mechanosensitive ion channels PIEZO1 (piezo-type mechanosensitive ion channel component 1) and TRPA1 (transient receptor potential ankyrin 1), effects further confirmed in vivo in a rat model of peri-electrode gliosis. Furthermore, in vitro analysis indicates that chemical inhibition/activation of PIEZO1 affects fluid shear stress mediated astrocyte reactivity in a mitochondrial-dependent manner. Together, the results suggest that mechanosensitive ion channels play a major role in the development of a peri-electrode void and micromotion-induced glial scarring at the peri-electrode region.
Collapse
Affiliation(s)
- Alexandre Trotier
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| | - Enrico Bagnoli
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| | - Tomasz Walski
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Department of Biomedical EngineeringFaculty of Fundamental Problems of TechnologyWrocław University of Science and TechnologyWroclaw50‐370Poland
| | - Judith Evers
- School of Electrical and Electronic EngineeringUniversity College DublinDublin 4Ireland
| | - Eugenia Pugliese
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
| | - Madeleine Lowery
- School of Electrical and Electronic EngineeringUniversity College DublinDublin 4Ireland
| | - Michelle Kilcoyne
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
- Carbohydrate Signalling GroupDiscipline of MicrobiologyUniversity of GalwayGalwayH91 W2TYIreland
| | - Una Fitzgerald
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| | - Manus Biggs
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| |
Collapse
|
11
|
Rojo D, Gibson EM. Timing matters: A protective role of astrocyte reactivity in neurodegeneration. Neuron 2023; 111:2277-2279. [PMID: 37536287 DOI: 10.1016/j.neuron.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 08/05/2023]
Abstract
Sheehan and Nadarajah et al.1 identified that Bmal1 loss from astrocytes induces the expression of BAG3, a macroautophagy chaperone enriched in Alzheimer's disease patients and in disease-associated astrocytes, enhancing the phagocytosis of misfolded proteins and preventing tau and alpha-synuclein pathologies.
Collapse
Affiliation(s)
- Daniela Rojo
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Erin M Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| |
Collapse
|
12
|
Sheehan PW, Nadarajah CJ, Kanan MF, Patterson JN, Novotny B, Lawrence JH, King MW, Brase L, Inman CE, Yuede CM, Lee J, Patel TK, Harari O, Benitez BA, Davis AA, Musiek ES. An astrocyte BMAL1-BAG3 axis protects against alpha-synuclein and tau pathology. Neuron 2023; 111:2383-2398.e7. [PMID: 37315555 PMCID: PMC10524543 DOI: 10.1016/j.neuron.2023.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 03/29/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
The circadian clock protein BMAL1 modulates glial activation and amyloid-beta deposition in mice. However, the effects of BMAL1 on other aspects of neurodegenerative pathology are unknown. Here, we show that global post-natal deletion of Bmal1 in mouse tauopathy or alpha-synucleinopathy models unexpectedly suppresses both tau and alpha-synuclein (αSyn) aggregation and related pathology. Astrocyte-specific Bmal1 deletion is sufficient to prevent both αSyn and tau pathology in vivo and induces astrocyte activation and the expression of Bag3, a chaperone critical for macroautophagy. Astrocyte Bmal1 deletion enhances phagocytosis of αSyn and tau in a Bag3-dependent manner, and astrocyte Bag3 overexpression is sufficient to mitigate αSyn spreading in vivo. In humans, BAG3 is increased in patients with AD and is highly expressed in disease-associated astrocytes (DAAs). Our results suggest that early activation of astrocytes via Bmal1 deletion induces Bag3 to protect against tau and αSyn pathologies, providing new insights into astrocyte-specific therapies for neurodegeneration.
Collapse
Affiliation(s)
- Patrick W Sheehan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Collin J Nadarajah
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael F Kanan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jessica N Patterson
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brenna Novotny
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer H Lawrence
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Melvin W King
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Logan Brase
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Casey E Inman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carla M Yuede
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiyeon Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tirth K Patel
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruno A Benitez
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Albert A Davis
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Erik S Musiek
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Center on Biological Rhythms and Sleep (COBRAS), Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
13
|
Meldolesi J. Role of Senescent Astrocytes in Health and Disease. Int J Mol Sci 2023; 24:ijms24108498. [PMID: 37239843 DOI: 10.3390/ijms24108498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
For many decades after their discovery, astrocytes, the abundant glial cells of the brain, were believed to work as a glue, supporting the structure and metabolic functions of neurons. A revolution that started over 30 years ago revealed many additional functions of these cells, including neurogenesis, gliosecretion, glutamate homeostasis, assembly and function of synapses, neuronal metabolism with energy production, and others. These properties have been confirmed, limited however, to proliferating astrocytes. During their aging or following severe brain stress lesions, proliferating astrocytes are converted into their no-longer-proliferating, senescent forms, similar in their morphology but profoundly modified in their functions. The changed specificity of senescent astrocytes is largely due to their altered gene expression. The ensuing effects include downregulation of many properties typical of proliferating astrocytes, and upregulation of many others, concerned with neuroinflammation, release of pro-inflammatory cytokines, dysfunction of synapses, etc., specific to their senescence program. The ensuing decrease in neuronal support and protection by astrocytes induces the development, in vulnerable brain regions, of neuronal toxicity together with cognitive decline. Similar changes, ultimately reinforced by astrocyte aging, are also induced by traumatic events and molecules involved in dynamic processes. Senescent astrocytes play critical roles in the development of many severe brain diseases. The first demonstration, obtained for Alzheimer's disease less than 10 years ago, contributed to the elimination of the previously predominant neuro-centric amyloid hypothesis. The initial astrocyte effects, operating a considerable time before the appearance of known Alzheimer's symptoms evolve with the severity of the disease up to their proliferation during the final outcome. Involvement of astrocytes in other neurodegenerative diseases and cancer is now intensely investigated.
Collapse
Affiliation(s)
- Jacopo Meldolesi
- San Raffaele Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
- CNR Institute of Neuroscience, Milano-Bicocca University, Vedano al Lambro, 20854 Milan, Italy
| |
Collapse
|
14
|
Amidfar M, Garcez ML, Kim YK. The shared molecular mechanisms underlying aging of the brain, major depressive disorder, and Alzheimer's disease: The role of circadian rhythm disturbances. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110721. [PMID: 36702452 DOI: 10.1016/j.pnpbp.2023.110721] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
An association with circadian clock function and pathophysiology of aging, major depressive disorder (MDD), and Alzheimer's disease (AD) is well established and has been proposed as a factor in the development of these diseases. Depression and changes in circadian rhythm have been increasingly suggested as the two primary overlapping and interpenetrating changes that occur with aging. The relationship between AD and depression in late life is not completely understood and probably is complex. Patients with major depression or AD suffer from disturbed sleep/wake cycles and altered rhythms in daily activities. Although classical monoaminergic hypotheses are traditionally proposed to explain the pathophysiology of MDD, several clinical and preclinical studies have reported a strong association between circadian rhythm and mood regulation. In addition, a large body of evidence supports an association between disruption of circadian rhythm and AD. Some clock genes are dysregulated in rodent models of depression. If aging, AD, and MDD share a common biological basis in pathophysiology, common therapeutic tools could be investigated for their prevention and treatment. Nitro-oxidative stress (NOS), for example, plays a fundamental role in aging, as well as in the pathogenesis of AD and MDD and is associated with circadian clock disturbances. Thus, development of therapeutic possibilities with these NOS-related conditions is advisable. This review describes recent findings that link disrupted circadian clocks to aging, MDD, and AD and summarizes the experimental evidence that supports connections between the circadian clock and molecular pathologic factors as shared common pathophysiological mechanisms underlying aging, AD, and MDD.
Collapse
Affiliation(s)
- Meysam Amidfar
- Department of Neuroscience, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Michelle Lima Garcez
- Laboratory of Translational Neuroscience, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
15
|
The Circadian Clocks, Oscillations of Pain-Related Mediators, and Pain. Cell Mol Neurobiol 2023; 43:511-523. [PMID: 35179680 DOI: 10.1007/s10571-022-01205-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/06/2022] [Indexed: 01/07/2023]
Abstract
The circadian clock is a biochemical oscillator that is synchronized with solar time. Normal circadian rhythms are necessary for many physiological functions. Circadian rhythms have also been linked with many physiological functions, several clinical symptoms, and diseases. Accumulating evidence suggests that the circadian clock appears to modulate the processing of nociceptive information. Many pain conditions display a circadian fluctuation pattern clinically. Thus, the aim of this review is to summarize the existing knowledge about the circadian clocks involved in diurnal rhythms of pain. Possible cellular and molecular mechanisms regarding the connection between the circadian clocks and pain are discussed.
Collapse
|
16
|
Yang X, Lv W, Yang Y, Yang J, Zhang H, Xu Z. Progesterone receptor membrane component 2 regulates the neuronal activity and participates in epileptic seizures in experimental mice. IBRAIN 2023; 10:356-365. [PMID: 39346797 PMCID: PMC11427800 DOI: 10.1002/ibra.12088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 10/01/2024]
Abstract
It was found the expression of progesterone receptor membrane component 2 (PGRMC2) in the histone of epileptic mice was lower than that of normal mice. In this study, we found by the immunofluorescence technique, PGRMC2 was expressed in both astrocytes and neurons of the mouse hippocampus. In addition, the seizure latency and seizure grade of mice in each group were observed after stereotactic injection of the PGRMC2 knockdown virus, PGRMC2 overexpression lentivirus, and related null virus into the hippocampus of mice. It was found that the seizure latency of mice in the PTZ + siPGRMC2 group was prolonged compared with the null virus group. The seizure latency was shortened in the PTZ + PGRMC2 group. The number of grade IV and above seizures in the PTZ + siPGRMC2 group was significantly reduced, while the number of grade IV and above seizures in the PTZ + PGRMC2 group was significantly increased. It was found that the nerve cells in the PTZ + siPGRMC2 group were still intact. In the PTZ + PGRMC2 group, the neural cells were damaged, the intercellular space was widened, and the number of cells was reduced. These findings support that PGRMC2 may be involved in epileptic seizures.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Wenbo Lv
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Yong Yang
- Division of Clinical Neuroscience Chiba University Center for Forensic Mental Health Chiba Japan
| | - Juan Yang
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Haiqing Zhang
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Zucai Xu
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University Zunyi Guizhou China
| |
Collapse
|
17
|
Abstract
The molecular mechanisms that maintain circadian rhythms in mammalian as well as non-mammalian systems are well documented in neuronal populations but comparatively understudied in glia. Glia are highly dynamic in form and function, and the circadian clock provides broad dynamic ranges for the maintenance of this homeostasis, thus glia are key to understanding the role of circadian biology in brain function. Here, we highlight the implications of the molecular circadian clock on the homeodynamic nature of glia, underscoring the current gap in understanding the role of the circadian system in oligodendroglia lineage cells and subsequent myelination. Through this perspective, we will focus on the intersection of circadian and glial biology and how it interfaces with global circadian rhythm maintenance associated with normative and aberrant brain function.
Collapse
Affiliation(s)
- Daniela Rojo
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Anna Badner
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Erin M. Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA,Corresponding Author: Erin M. Gibson, PhD, 3165 Porter Drive, #2178, Palo Alto, CA 94304, (650)725-6659,
| |
Collapse
|
18
|
Zhu Y, Liu Y, Escames G, Yang Z, Zhao H, Qian L, Xue C, Xu D, Acuña-Castroviejo D, Yang Y. Deciphering clock genes as emerging targets against aging. Ageing Res Rev 2022; 81:101725. [PMID: 36029999 DOI: 10.1016/j.arr.2022.101725] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
The old people often suffer from circadian rhythm disturbances, which in turn accelerate aging. Many aging-related degenerative diseases such as Alzheimer's disease, Parkinson's disease, and osteoarthritis have an inextricable connection with circadian rhythm. In light of the predominant effects of clock genes on regulating circadian rhythm, we systematically present the elaborate network of roles that clock genes play in aging in this review. First, we briefly introduce the basic background regarding clock genes. Second, we systemically summarize the roles of clock genes in aging and aging-related degenerative diseases. Third, we discuss the relationship between clock genes polymorphisms and aging. In summary, this review is intended to clarify the indispensable roles of clock genes in aging and sheds light on developing clock genes as anti-aging targets.
Collapse
Affiliation(s)
- Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yanqing Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Germaine Escames
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, Granada, Spain; Ibs. Granada and CIBERfes, Granada, Spain; UGC of Clinical Laboratories, Universitu San Cecilio's Hospital, Granada, Spain
| | - Zhi Yang
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Chengxu Xue
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Danni Xu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Darío Acuña-Castroviejo
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, Granada, Spain; Ibs. Granada and CIBERfes, Granada, Spain; UGC of Clinical Laboratories, Universitu San Cecilio's Hospital, Granada, Spain.
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
19
|
Blasiak J, Sobczuk P, Pawlowska E, Kaarniranta K. Interplay between aging and other factors of the pathogenesis of age-related macular degeneration. Ageing Res Rev 2022; 81:101735. [PMID: 36113764 DOI: 10.1016/j.arr.2022.101735] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 09/12/2022] [Indexed: 01/31/2023]
Abstract
Age-related macular degeneration (AMD) is a complex eye disease with the retina as the target tissue and aging as per definition the most serious risk factor. However, the retina contains over 60 kinds of cells that form different structures, including the neuroretina and retinal pigment epithelium (RPE) which can age at different rates. Other established or putative AMD risk factors can differentially affect the neuroretina and RPE and can differently interplay with aging of these structures. The occurrence of β-amyloid plaques and increased levels of cholesterol in AMD retinas suggest that AMD may be a syndrome of accelerated brain aging. Therefore, the question about the real meaning of age in AMD is justified. In this review we present and update information on how aging may interplay with some aspects of AMD pathogenesis, such as oxidative stress, amyloid beta formation, circadian rhythm, metabolic aging and cellular senescence. Also, we show how this interplay can be specific for photoreceptors, microglia cells and RPE cells as well as in Bruch's membrane and the choroid. Therefore, the process of aging may differentially affect different retinal structures. As an accurate quantification of biological aging is important for risk stratification and early intervention for age-related diseases, the determination how photoreceptors, microglial and RPE cells age in AMD may be helpful for a precise diagnosis and treatment of this largely untreatable disease.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Piotr Sobczuk
- Emergency Medicine and Disaster Medicine Department, Medical University of Lodz, Pomorska 251, 92-209 Lodz, Poland; Department of Orthopaedics and Traumatology, Polish Mothers' Memorial Hospital - Research Institute, Rzgowska 281, 93-338 Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, KYS, P.O. Box 100, FI-70029 Finland
| |
Collapse
|
20
|
Shah D, Gsell W, Wahis J, Luckett ES, Jamoulle T, Vermaercke B, Preman P, Moechars D, Hendrickx V, Jaspers T, Craessaerts K, Horré K, Wolfs L, Fiers M, Holt M, Thal DR, Callaerts-Vegh Z, D'Hooge R, Vandenberghe R, Himmelreich U, Bonin V, De Strooper B. Astrocyte calcium dysfunction causes early network hyperactivity in Alzheimer's disease. Cell Rep 2022; 40:111280. [PMID: 36001964 PMCID: PMC9433881 DOI: 10.1016/j.celrep.2022.111280] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Accepted: 08/05/2022] [Indexed: 12/15/2022] Open
Abstract
Dysfunctions of network activity and functional connectivity (FC) represent early events in Alzheimer’s disease (AD), but the underlying mechanisms remain unclear. Astrocytes regulate local neuronal activity in the healthy brain, but their involvement in early network hyperactivity in AD is unknown. We show increased FC in the human cingulate cortex several years before amyloid deposition. We find the same early cingulate FC disruption and neuronal hyperactivity in AppNL-F mice. Crucially, these network disruptions are accompanied by decreased astrocyte calcium signaling. Recovery of astrocytic calcium activity normalizes neuronal hyperactivity and FC, as well as seizure susceptibility and day/night behavioral disruptions. In conclusion, we show that astrocytes mediate initial features of AD and drive clinically relevant phenotypes. The cingulate cortex of humans and mice shows early functional deficits in AD Astrocyte calcium signaling is decreased before the presence of amyloid plaques Recovery of astrocyte calcium signals mitigates neuronal hyperactivity Recovery of astrocytes normalizes cingulate connectivity and behavior disruptions
Collapse
Affiliation(s)
- Disha Shah
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium.
| | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Jérôme Wahis
- Laboratory of Glia Biology, VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - Emma S Luckett
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, 3000 Leuven, Belgium
| | - Tarik Jamoulle
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, 3000 Leuven, Belgium
| | - Ben Vermaercke
- Neuro-electronics Research Flanders, 3000 Leuven, Belgium
| | - Pranav Preman
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - Daan Moechars
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - Véronique Hendrickx
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - Tom Jaspers
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - Katleen Craessaerts
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - Katrien Horré
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - Leen Wolfs
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - Mark Fiers
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - Matthew Holt
- Laboratory of Glia Biology, VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, LBI, KU Leuven, 3000 Leuven, Belgium
| | | | - Rudi D'Hooge
- Laboratory of Biological Psychology, KU-Leuven, 3000 Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, 3000 Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Vincent Bonin
- Neuro-electronics Research Flanders, 3000 Leuven, Belgium
| | - Bart De Strooper
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium; UK Dementia Research Institute at University College London, WC1E 6BT London, UK.
| |
Collapse
|
21
|
Christensen SH, Hviid CVB, Madsen AT, Parkner T, Winther-Larsen A. Short-term biological variation of serum glial fibrillary acidic protein. Clin Chem Lab Med 2022; 60:1813-1819. [PMID: 35962632 DOI: 10.1515/cclm-2022-0480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/29/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Serum glial fibrillary acidic protein (GFAP) is an emerging biomarker for intracerebral diseases and is approved for clinical use in traumatic brain injury. GFAP is also being investigated for several other applications, where the GFAP changes are not always outstanding. It is thus essential for the interpretation of GFAP to distinguish clinical relevant changes from natural occurring biological variation. This study aimed at estimating the biological variation of serum GFAP. METHODS Apparently healthy subjects (n=33) had blood sampled for three consecutive days. On the second day, blood was also drawn every third hour from 9 AM to 9 PM. Serum GFAP was measured by Single Molecule Array (Simoa™). Components of biological variation were estimated in a linear mixed-effects model. RESULTS The overall median GFAP value was 92.5 pg/mL (range 34.4-260.3 pg/mL). The overall within- (CVI) and between-subject variations (CVG) were 9.7 and 39.5%. The reference change value was 36.9% for an increase. No day-to-day variation was observed, however semidiurnal variation was observed with increasing GFAP values between 9 AM and 12 PM (p<0.00001) and decreasing from 12 to 9 PM (p<0.001). CONCLUSIONS Serum GFAP exhibits a relatively low CVI but a considerable CVG and a marked semidiurnal variation. This implies caution on the timing of blood sampling and when interpreting GFAP in relation to reference intervals, especially in conditions where only small GFAP differences are observed.
Collapse
Affiliation(s)
| | - Claus Vinter Bødker Hviid
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Biochemistry, Aalborg University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne Tranberg Madsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Tina Parkner
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne Winther-Larsen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Andersen JV, Schousboe A, Verkhratsky A. Astrocyte energy and neurotransmitter metabolism in Alzheimer's disease: integration of the glutamate/GABA-glutamine cycle. Prog Neurobiol 2022; 217:102331. [PMID: 35872221 DOI: 10.1016/j.pneurobio.2022.102331] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023]
Abstract
Astrocytes contribute to the complex cellular pathology of Alzheimer's disease (AD). Neurons and astrocytes function in close collaboration through neurotransmitter recycling, collectively known as the glutamate/GABA-glutamine cycle, which is essential to sustain neurotransmission. Neurotransmitter recycling is intimately linked to astrocyte energy metabolism. In the course of AD, astrocytes undergo extensive metabolic remodeling, which may profoundly affect the glutamate/GABA-glutamine cycle. The consequences of altered astrocyte function and metabolism in relation to neurotransmitter recycling are yet to be comprehended. Metabolic alterations of astrocytes in AD deprive neurons of metabolic support, thereby contributing to synaptic dysfunction and neurodegeneration. In addition, several astrocyte-specific components of the glutamate/GABA-glutamine cycle, including glutamine synthesis and synaptic neurotransmitter uptake, are perturbed in AD. Integration of the complex astrocyte biology within the context of AD is essential for understanding the fundamental mechanisms of the disease, while restoring astrocyte metabolism may serve as an approach to arrest or even revert clinical progression of AD.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania.
| |
Collapse
|
23
|
Killoy KM, Harlan BA, Pehar M, Vargas MR. NR1D1 downregulation in astrocytes induces a phenotype that is detrimental to cocultured motor neurons. FASEB J 2022; 36:e22262. [PMID: 35319791 PMCID: PMC9223394 DOI: 10.1096/fj.202101275r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Nuclear receptor subfamily 1 group D member 1 (NR1D1, also known as Rev-erbα) is a nuclear transcription factor that is part of the molecular clock encoding circadian rhythms and may link daily rhythms with metabolism and inflammation. NR1D1, unlike most nuclear receptors, lacks a ligand-dependent activation function domain 2 and is a constitutive transcriptional repressor. Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease, caused by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Approximately 10%-20% of familial ALS is caused by a toxic gain-of-function induced by mutations of the Cu/Zn superoxide dismutase (SOD1). Dysregulated clock and clock-controlled gene expression occur in multiple tissues from mutant hSOD1-linked ALS mouse models. Here we explore NR1D1 dysregulation in the spinal cord of ALS mouse models and its consequences on astrocyte-motor neuron interaction. NR1D1 protein and mRNA expression are significantly downregulated in the spinal cord of symptomatic mice expressing mutant hSOD1, while no changes were observed in age-matched animals overexpressing wild-type hSOD1. In addition, NR1D1 downregulation in primary astrocyte cultures induces a pro-inflammatory phenotype and decreases the survival of cocultured motor neurons. NR1D1 orchestrates the cross talk between physiological pathways identified to be disrupted in ALS (e.g., metabolism, inflammation, redox homeostasis, and circadian rhythms) and we observed that downregulation of NR1D1 alters astrocyte-motor neuron interaction. Our results suggest that NR1D1 could be a potential therapeutic target to prevent astrocyte-mediated motor neuron toxicity in ALS.
Collapse
Affiliation(s)
- Kelby M Killoy
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Benjamin A Harlan
- Biomedical Sciences Training Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mariana Pehar
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, Wisconsin, USA
| | - Marcelo R Vargas
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
24
|
Abstract
Bipolar disorder (BD) is a complex group of neuropsychiatric disorders, typically comprising both manic and depressive episodes. The underlying neuropathology of BD is not established, but a consistent feature is progressive thinning of cortical grey matter (GM) and white matter (WM) in specific pathways, due to loss of subpopulations of neurons and astrocytes, with accompanying disturbance of connectivity. Dysregulation of astrocyte homeostatic functions are implicated in BD, notably regulation of glutamate, calcium signalling, circadian rhythms and metabolism. Furthermore, the beneficial therapeutic effects of the frontline treatments for BD are due at least in part to their positive actions on astrocytes, notably lithium, valproic acid (VPA) and carbamazepine (CBZ), as well as antidepressants and antipsychotics that are used in the management of this disorder. Treatments for BD are ineffective in a large proportion of cases, and astrocytes represent new therapeutic targets that can also serve as biomarkers of illness progression and treatment responsiveness in BD.
Collapse
|
25
|
Yuan M, Wu H. Astrocytes in the Traumatic Brain Injury: the Good and the Bad. Exp Neurol 2021; 348:113943. [PMID: 34863998 DOI: 10.1016/j.expneurol.2021.113943] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022]
Abstract
Astrocytes control many processes of the nervous system in health and disease, and respond to injury quickly. Astrocytes produce neuroprotective factors in the injured brain to clear cellular debris and to orchestrate neurorestorative processes that are beneficial for neurological recovery after traumatic brain injury (TBI). However, astrocytes also become dysregulated and produce cytotoxic mediators that hinder CNS repair by induction of neuronal dysfunction and cell death. Hence, we discuss the potential role of astrocytes in neuropathological processes such as neuroinflammation, neurogenesis, synaptogenesis and blood-brain barrier repair after TBI. Thus, an improved understanding of the dual role of astrocytes may advance our knowledge of post-brain injury recovery, and provide opportunities for the development of novel therapeutic strategies for TBI.
Collapse
Affiliation(s)
- Mengqi Yuan
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Haitao Wu
- Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, Jiangsu, China; Chinese Institute for Brain Research (CIBR), 102206 Beijing, China.
| |
Collapse
|
26
|
Turner DA. Contrasting Metabolic Insufficiency in Aging and Dementia. Aging Dis 2021; 12:1081-1096. [PMID: 34221551 PMCID: PMC8219502 DOI: 10.14336/ad.2021.0104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic insufficiency and neuronal dysfunction occur in normal aging but is exaggerated in dementia and Alzheimer's disease (AD). Metabolic insufficiency includes factors important for both substrate supply and utilization in the brain. Metabolic insufficiency occurs through a number of serial mechanisms, particularly changes in cerebrovascular supply through blood vessel abnormalities (ie, small and large vessel vasculopathy, stroke), alterations in neurovascular coupling providing dynamic blood flow supply in relation to neuronal demand, abnormalities in blood brain barrier including decreased glucose and amino acid transport, altered glymphatic flow in terms of substrate supply across the extracellular space to cells and drainage into CSF of metabolites, impaired transport into cells, and abnormal intracellular metabolism with more reliance on glycolysis and less on mitochondrial function. Recent studies have confirmed abnormal neurovascular coupling in a mouse model of AD in response to metabolic challenges, but the supply chain from the vascular system into neurons is disrupted much earlier in dementia than in equivalently aged individuals, contributing to the progressive neuronal degeneration and cognitive dysfunction associated with dementia. We discuss several metabolic treatment approaches, but these depend on characterizing patients as to who would benefit the most. Surrogate biomarkers of metabolism are being developed to include dynamic estimates of neuronal demand, sufficiency of neurovascular coupling, and glymphatic flow to supplement traditional static measurements. These surrogate biomarkers could be used to gauge efficacy of metabolic treatments in slowing down or modifying dementia time course.
Collapse
Affiliation(s)
- Dennis A Turner
- Neurosurgery, Neurobiology, and Biomedical Engineering, Duke University Medical Center, Durham, NC 27710, USA.
- Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC 27705, USA.
| |
Collapse
|
27
|
Kim REY, Kim HJ, Kim S, Abbott RD, Thomas RJ, Yun CH, Lee HW, Shin C. A longitudinal observational population-based study of brain volume associated with changes in sleep timing from middle to late-life. Sleep 2021; 44:5973752. [PMID: 33170277 DOI: 10.1093/sleep/zsaa233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 10/06/2020] [Indexed: 01/22/2023] Open
Abstract
STUDY OBJECTIVES Sleep behaviors are related to brain structure and function, but the impact of long-term changes in sleep timing on brain health has not been clearly addressed. The purpose of this study was to examine the association of longitudinal changes in sleep timing from middle to late-life with gray matter volume (GMV), an important marker of brain aging. METHODS We enrolled 1798 adults (aged 49-82 years, men 54.6%) who underwent magnetic resonance imaging (MRI) between 2011 and 2014. Midsleep time (MST) on free days corrected for sleep debt on workdays was adopted as a marker of sleep timing. Data on MST were available at the time of MRI assessment and at examinations that were given 9 years earlier (2003-2004). Longitudinal changes in MST over the 9-year period were derived and categorized into quartiles. Subjects in quartile 1 were defined as "advancers" (MST advanced ≥ 1 h) while those in quartile 4 were defined as "delayers" (MST delayed ≥ 0.2 h). Quartiles 2-3 defined a reference group (MST change was considered modest). The relationship of GMV with MST changes over 9 years was investigated. RESULTS Nine-year change in MST were significantly associated with GMV. Compared to the reference group, advancers had smaller GMVs in the frontal and temporal regions. A delay in MST was also associated with smaller cerebellar GMV. CONCLUSIONS In middle-to-late adulthood, the direction of change in MST is associated with GMV. While advancers and delayers in MST tend to present lower GMV, associations appear to differ across brain regions.
Collapse
Affiliation(s)
- Regina E Y Kim
- College of Medicine, Korea University, Republic of Korea.,College of Psychiatry, University of Iowa, Iowa City, IA
| | - Hyeon Jin Kim
- Department of Neurology and Medical Science, School of Medicine, Ewha Woman University School of Medicine and Ewha Medical Research Institute, Seoul, Republic of Korea
| | - Soriul Kim
- College of Medicine, Korea University, Republic of Korea
| | | | - Robert J Thomas
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center and the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA
| | - Chang-Ho Yun
- Department of Neurology, Seoul National University Bundang Hospital, Republic of Korea
| | - Hyang Woon Lee
- Department of Neurology and Medical Science, School of Medicine, Ewha Woman University School of Medicine and Ewha Medical Research Institute, Seoul, Republic of Korea.,Department of Computational Medicine, System Health & Engineering Major in Graduate School (BK21 Plus Program), Ewha Womans University, Seoul, Republic of Korea
| | - Chol Shin
- College of Medicine, Korea University, Republic of Korea
| |
Collapse
|
28
|
Buijink MR, Michel S. A multi-level assessment of the bidirectional relationship between aging and the circadian clock. J Neurochem 2021; 157:73-94. [PMID: 33370457 PMCID: PMC8048448 DOI: 10.1111/jnc.15286] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
The daily temporal order of physiological processes and behavior contribute to the wellbeing of many organisms including humans. The central circadian clock, which coordinates the timing within our body, is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Like in other parts of the brain, aging impairs the SCN function, which in turn promotes the development and progression of aging-related diseases. We here review the impact of aging on the different levels of the circadian clock machinery-from molecules to organs-with a focus on the role of the SCN. We find that the molecular clock is less effected by aging compared to other cellular components of the clock. Proper rhythmic regulation of intracellular signaling, ion channels and neuronal excitability of SCN neurons are greatly disturbed in aging. This suggests a disconnection between the molecular clock and the electrophysiology of these cells. The neuronal network of the SCN is able to compensate for some of these cellular deficits. However, it still results in a clear reduction in the amplitude of the SCN electrical rhythm, suggesting a weakening of the output timing signal. Consequently, other brain areas and organs not only show aging-related deficits in their own local clocks, but also receive a weaker systemic timing signal. The negative spiral completes with the weakening of positive feedback from the periphery to the SCN. Consequently, chronotherapeutic interventions should aim at strengthening overall synchrony in the circadian system using life-style and/or pharmacological approaches.
Collapse
Affiliation(s)
- M. Renate Buijink
- Department of Cellular and Chemical BiologyLaboratory for NeurophysiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Stephan Michel
- Department of Cellular and Chemical BiologyLaboratory for NeurophysiologyLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
29
|
Costa R, Montagnese S. The role of astrocytes in generating circadian rhythmicity in health and disease. J Neurochem 2021; 157:42-52. [PMID: 33539604 DOI: 10.1111/jnc.15312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 01/26/2023]
Abstract
Evidence is accumulating that the mammalian circadian clock system is considerably more complex than previously believed, also in terms of the cell types that actually contribute to generating the oscillation within the master clock, in the suprachiasmatic nuclei of the hypothalamus. Here we review the evidence that has lead to the identification of a bona fide astrocytic circadian clock, and that of the potential contribution of such clock to the generation of circadian and seasonal rhythmicity in health and in neurodegenerative disorders. Finally, we speculate on the role of the astrocytic clock in determining some of the clinical features of hepatic encephalopathy, a reversible neuropsychiatric syndrome associated with advanced liver disease, which is characterized by transient, profound morphological and functional astrocytic abnormalities, in the absence of significant, structural neuronal changes.
Collapse
Affiliation(s)
- Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy
| | | |
Collapse
|
30
|
Affiliation(s)
- Ravi Allada
- From the Department of Neurobiology, Northwestern University, Evanston (R.A.), and the Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago (J.B.) - both in Illinois
| | - Joseph Bass
- From the Department of Neurobiology, Northwestern University, Evanston (R.A.), and the Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago (J.B.) - both in Illinois
| |
Collapse
|
31
|
Chatterjee S, Angelakos CC, Bahl E, Hawk JD, Gaine ME, Poplawski SG, Schneider-Anthony A, Yadav M, Porcari GS, Cassel JC, Giese KP, Michaelson JJ, Lyons LC, Boutillier AL, Abel T. The CBP KIX domain regulates long-term memory and circadian activity. BMC Biol 2020; 18:155. [PMID: 33121486 PMCID: PMC7597000 DOI: 10.1186/s12915-020-00886-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/01/2020] [Indexed: 12/23/2022] Open
Abstract
Background CREB-dependent transcription necessary for long-term memory is driven by interactions with CREB-binding protein (CBP), a multi-domain protein that binds numerous transcription factors potentially affecting expression of thousands of genes. Identifying specific domain functions for multi-domain proteins is essential to understand processes such as cognitive function and circadian clocks. We investigated the function of the CBP KIX domain in hippocampal memory and gene expression using CBPKIX/KIX mice with mutations that prevent phospho-CREB (Ser133) binding. Results We found that CBPKIX/KIX mice were impaired in long-term memory, but not learning acquisition or short-term memory for the Morris water maze. Using an unbiased analysis of gene expression in the dorsal hippocampus after training in the Morris water maze or contextual fear conditioning, we discovered dysregulation of CREB, CLOCK, and BMAL1 target genes and downregulation of circadian genes in CBPKIX/KIX mice. Given our finding that the CBP KIX domain was important for transcription of circadian genes, we profiled circadian activity and phase resetting in CBPKIX/KIX mice. CBPKIX/KIX mice exhibited delayed activity peaks after light offset and longer free-running periods in constant dark. Interestingly, CBPKIX/KIX mice displayed phase delays and advances in response to photic stimulation comparable to wildtype littermates. Thus, this work delineates site-specific regulation of the circadian clock by a multi-domain protein. Conclusions These studies provide insight into the significance of the CBP KIX domain by defining targets of CBP transcriptional co-activation in memory and the role of the CBP KIX domain in vivo on circadian rhythms. Graphical abstract ![]()
Collapse
Affiliation(s)
- Snehajyoti Chatterjee
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France.,LNCA, CNRS UMR 7364, Strasbourg, France.,Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Christopher C Angelakos
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ethan Bahl
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Joshua D Hawk
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Marie E Gaine
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Shane G Poplawski
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.,Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, USA
| | - Anne Schneider-Anthony
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France.,LNCA, CNRS UMR 7364, Strasbourg, France
| | - Manish Yadav
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Giulia S Porcari
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean-Christophe Cassel
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France
| | - K Peter Giese
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - Jacob J Michaelson
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, USA.,Department of Communication Sciences and Disorders, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa, USA.,Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Lisa C Lyons
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Anne-Laurence Boutillier
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France. .,LNCA, CNRS UMR 7364, Strasbourg, France.
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
32
|
Astrocytes: News about Brain Health and Diseases. Biomedicines 2020; 8:biomedicines8100394. [PMID: 33036256 PMCID: PMC7600952 DOI: 10.3390/biomedicines8100394] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Astrocytes, the most numerous glial cells in the brains of humans and other mammalian animals, have been studied since their discovery over 100 years ago. For many decades, however, astrocytes were believed to operate as a glue, providing only mechanical and metabolic support to adjacent neurons. Starting from a "revolution" initiated about 25 years ago, numerous astrocyte functions have been reconsidered, some previously unknown, others attributed to neurons or other cell types. The knowledge of astrocytes has been continuously growing during the last few years. Based on these considerations, in the present review, different from single or general overviews, focused on six astrocyte functions, chosen due in their relevance in both brain physiology and pathology. Astrocytes, previously believed to be homogeneous, are now recognized to be heterogeneous, composed by types distinct in structure, distribution, and function; their cooperation with microglia is known to govern local neuroinflammation and brain restoration upon traumatic injuries; and astrocyte senescence is relevant for the development of both health and diseases. Knowledge regarding the role of astrocytes in tauopathies and Alzheimer's disease has grow considerably. The multiple properties emphasized here, relevant for the present state of astrocytes, will be further developed by ongoing and future studies.
Collapse
|
33
|
Bicker J, Alves G, Fonseca C, Falcão A, Fortuna A. Repairing blood-CNS barriers: Future therapeutic approaches for neuropsychiatric disorders. Pharmacol Res 2020; 162:105226. [PMID: 33007420 DOI: 10.1016/j.phrs.2020.105226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
Central nervous system (CNS) drug development faces significant difficulties that translate into high rates of failure and lack of innovation. The pathophysiology of neurological and psychiatric disorders often results in the breakdown of blood-CNS barriers, disturbing the CNS microenvironment and worsening disease progression. Therefore, restoring the integrity of blood-CNS barriers may have a beneficial influence in several CNS disorders and improve treatment outcomes. In this review, pathways that may be modulated to protect blood-CNS barriers from neuroinflammatory and oxidative insults are featured. First, the participation of the brain endothelium and glial cells in disruption processes is discussed. Then, the relevance of regulatory systems is analysed, specifically the hypothalamic-pituitary axis, the renin-angiotensin system, sleep and circadian rhythms, and glutamate neurotransmission. Lastly, compounds of endogenous and exogenous origin that are known to mediate the repair of blood-CNS barriers are presented. We believe that enhancing the protection of blood-CNS barriers is a promising therapeutic strategy to pursue in the future.
Collapse
Affiliation(s)
- Joana Bicker
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal.
| | - Gilberto Alves
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Carla Fonseca
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| | - Amílcar Falcão
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Ana Fortuna
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| |
Collapse
|
34
|
Lananna BV, Musiek ES. The wrinkling of time: Aging, inflammation, oxidative stress, and the circadian clock in neurodegeneration. Neurobiol Dis 2020; 139:104832. [PMID: 32179175 PMCID: PMC7727873 DOI: 10.1016/j.nbd.2020.104832] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 01/17/2023] Open
Abstract
A substantial body of research now implicates the circadian clock in the regulation of an array of diverse biological processes including glial function, metabolism, peripheral immune responses, and redox homeostasis. Sleep abnormalities and other forms of circadian disruption are common symptoms of aging and neurodegeneration. Circadian clock disruption may also influence the aging processes and the pathogenesis of neurodegenerative diseases. The specific mechanisms governing the interaction between circadian systems, aging, and the immune system are still being uncovered. Here, we review the evidence supporting a bidirectional relationship between aging and the circadian system. Further, we explore the hypothesis that age-related circadian deterioration may exacerbate multiple pathogenic processes, priming the brain for neurodegeneration.
Collapse
Affiliation(s)
- Brian V Lananna
- Dept. of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Erik S Musiek
- Dept. of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|