1
|
Sareen B, Pudake RN, Sevanthi AM, Solanke AU. Biotechnological approaches to reduce the phytic acid content in millets to improve nutritional quality. PLANTA 2024; 260:99. [PMID: 39294492 DOI: 10.1007/s00425-024-04525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
MAIN CONCLUSION The review article summarizes the approaches and potential targets to address the challenges of anti-nutrient like phytic acid in millet grains for nutritional improvement. Millets are a diverse group of minor cereal grains that are agriculturally important, nutritionally rich, and the oldest cereals in the human diet. The grains are important for protein, vitamins, macro and micronutrients, fibre, and energy sources. Despite a high amount of nutrients, millet grains also contain anti-nutrients that limit the proper utilization of nutrients and finally affect their dietary quality. Our study aims to outline the genomic information to identify the target areas of research for the exploration of candidate genes for nutritional importance and show the possibilities to address the presence of anti-nutrient (phytic acid) in millets. So, the physicochemical accessibility of micronutrients increases and the agronomic traits can do better. Several strategies have been adopted to minimize the phytic acid, a predominant anti-nutrient in cereal grains. In the present review, we highlight the potential of biotechnological tools and genome editing approaches to address phytic acid in millets. It also highlights the biosynthetic pathway of phytic acid and potential targets for knockout or silencing to achieve low phytic acid content in millets.
Collapse
Affiliation(s)
- Bhuvnesh Sareen
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Ramesh Namdeo Pudake
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
- Amity University, Uttar Pradesh, Noida, India.
| | | | - Amolkumar U Solanke
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
2
|
Rogo U, Fambrini M, Pugliesi C. Embryo Rescue in Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:3106. [PMID: 37687352 PMCID: PMC10489947 DOI: 10.3390/plants12173106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
Embryo rescue (ER) techniques are among the oldest and most successful in vitro tissue culture protocols used with plant species. ER refers to a series of methods that promote the development of an immature or lethal embryo into a viable plant. Intraspecific, interspecific, or intergeneric crosses allow the introgression of important alleles of agricultural interest from wild species, such as resistance or tolerance to abiotic and biotic stresses or morphological traits in crops. However, pre-zygotic and post-zygotic reproductive barriers often present challenges in achieving successful hybridization. Pre-zygotic barriers manifest as incompatibility reactions that hinder pollen germination, pollen tube growth, or penetration into the ovule occurring in various tissues, such as the stigma, style, or ovary. To overcome these barriers, several strategies are employed, including cut-style or graft-on-style techniques, the utilization of mixed pollen from distinct species, placenta pollination, and in vitro ovule pollination. On the other hand, post-zygotic barriers act at different tissues and stages ranging from early embryo development to the subsequent growth and reproduction of the offspring. Many crosses among different genera result in embryo abortion due to the failure of endosperm development. In such cases, ER techniques are needed to rescue these hybrids. ER holds great promise for not only facilitating successful crosses but also for obtaining haploids, doubled haploids, and manipulating the ploidy levels for chromosome engineering by monosomic and disomic addition as well substitution lines. Furthermore, ER can be used to shorten the reproductive cycle and for the propagation of rare plants. Additionally, it has been repeatedly used to study the stages of embryonic development, especially in embryo-lethal mutants. The most widely used ER procedure is the culture of immature embryos taken and placed directly on culture media. In certain cases, the in vitro culture of ovule, ovaries or placentas enables the successful development of young embryos from the zygote stage to maturity.
Collapse
Affiliation(s)
| | | | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (U.R.); (M.F.)
| |
Collapse
|
3
|
Bhatt V, Muthusamy V, Panda KK, Katral A, Chhabra R, Mishra SJ, Gopinath I, Zunjare RU, Neeraja CN, Rakshit S, Yadava DK, Hossain F. Expression Dynamics of lpa1 Gene and Accumulation Pattern of Phytate in Maize Genotypes Possessing opaque2 and crtRB1 Genes at Different Stages of Kernel Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091745. [PMID: 37176803 PMCID: PMC10180721 DOI: 10.3390/plants12091745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Phytic acid (PA) acts as a storehouse for the majority of the mineral phosphorous (P) in maize; ~80% of the total P stored as phytate P is not available to monogastric animals and thereby causes eutrophication. In addition, phytic acid chelates positively charged minerals making them unavailable in the diet. The mutant lpa1-1 allele reduces PA more than the wild-type LPA1 allele. Further, mutant gene opaque2 (o2) enhances lysine and tryptophan and crtRB1 enhances provitamin-A (proA) more than wild-type O2 and CRTRB1 alleles, respectively. So far, the expression pattern of the mutant lpa1-1 allele has not been analysed in maize genotypes rich in lysine, tryptophan and proA. Here, we analysed the expression pattern of wild and mutant alleles of LPA1, O2 and CRTRB1 genes in inbreds with (i) mutant lpa1-1, o2 and crtRB1 alleles, (ii) wild-type LPA1 allele and mutant o2 and crtRB1 alleles and (iii) wild-type LPA1, O2 and CRTRB1 alleles at 15, 30 and 45 days after pollination (DAP). The average reduction of PA/total phosphorous (TP) in lpa1-1 mutant inbreds was 29.30% over wild-type LPA1 allele. The o2 and crtRB1-based inbreds possessed ~two-fold higher amounts of lysine and tryptophan, and four-fold higher amounts of proA compared to wild-type alleles. The transcript levels of lpa1-1, o2 and crtRB1 genes in lpa1-1-based inbreds were significantly lower than their wild-type versions across kernel development. The lpa1-1, o2 and crtRB1 genes reached their highest peak at 15 DAP. The correlation of transcript levels of lpa1-1 was positive for PA/TP (r = 0.980), whereas it was negative with inorganic phosphorous (iP) (r = -0.950). The o2 and crtRB1 transcripts showed negative correlations with lysine (r = -0.887) and tryptophan (r = -0.893), and proA (r = -0.940), respectively. This is the first comprehensive study on lpa1-1 expression in the maize inbreds during different kernel development stages. The information generated here offers great potential for comprehending the dynamics of phytic acid regulation in maize.
Collapse
Affiliation(s)
- Vinay Bhatt
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- AMITY Institute of Biotechnology, AMITY University, Noida 201313, Uttar Pradesh, India
| | - Vignesh Muthusamy
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Kusuma Kumari Panda
- AMITY Institute of Biotechnology, AMITY University, Noida 201313, Uttar Pradesh, India
| | - Ashvinkumar Katral
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rashmi Chhabra
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Subhra J Mishra
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Ikkurti Gopinath
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rajkumar U Zunjare
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | | | - Sujay Rakshit
- ICAR-Indian Institute of Maize Research, Ludhiana 141004, India
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi 834010, India
| | - Devendra K Yadava
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Firoz Hossain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
4
|
Dwivedi SL, Garcia-Oliveira AL, Govindaraj M, Ortiz R. Biofortification to avoid malnutrition in humans in a changing climate: Enhancing micronutrient bioavailability in seed, tuber, and storage roots. FRONTIERS IN PLANT SCIENCE 2023; 14:1119148. [PMID: 36794214 PMCID: PMC9923027 DOI: 10.3389/fpls.2023.1119148] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Malnutrition results in enormous socio-economic costs to the individual, their community, and the nation's economy. The evidence suggests an overall negative impact of climate change on the agricultural productivity and nutritional quality of food crops. Producing more food with better nutritional quality, which is feasible, should be prioritized in crop improvement programs. Biofortification refers to developing micronutrient -dense cultivars through crossbreeding or genetic engineering. This review provides updates on nutrient acquisition, transport, and storage in plant organs; the cross-talk between macro- and micronutrients transport and signaling; nutrient profiling and spatial and temporal distribution; the putative and functionally characterized genes/single-nucleotide polymorphisms associated with Fe, Zn, and β-carotene; and global efforts to breed nutrient-dense crops and map adoption of such crops globally. This article also includes an overview on the bioavailability, bioaccessibility, and bioactivity of nutrients as well as the molecular basis of nutrient transport and absorption in human. Over 400 minerals (Fe, Zn) and provitamin A-rich cultivars have been released in the Global South. Approximately 4.6 million households currently cultivate Zn-rich rice and wheat, while ~3 million households in sub-Saharan Africa and Latin America benefit from Fe-rich beans, and 2.6 million people in sub-Saharan Africa and Brazil eat provitamin A-rich cassava. Furthermore, nutrient profiles can be improved through genetic engineering in an agronomically acceptable genetic background. The development of "Golden Rice" and provitamin A-rich dessert bananas and subsequent transfer of this trait into locally adapted cultivars are evident, with no significant change in nutritional profile, except for the trait incorporated. A greater understanding of nutrient transport and absorption may lead to the development of diet therapy for the betterment of human health.
Collapse
Affiliation(s)
| | - Ana Luísa Garcia-Oliveira
- International Maize and Wheat Research Center, Centro Internacional de Mejoramiento de Maíz. y Trigo (CIMMYT), Nairobi, Kenya
- Department of Molecular Biology, College of Biotechnology, CCS Haryana Agricultural University, Hissar, India
| | - Mahalingam Govindaraj
- HarvestPlus Program, Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Rodomiro Ortiz
- Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
5
|
Colombo F, Pagano A, Sangiorgio S, Macovei A, Balestrazzi A, Araniti F, Pilu R. Study of Seed Ageing in lpa1-1 Maize Mutant and Two Possible Approaches to Restore Seed Germination. Int J Mol Sci 2023; 24:ijms24010732. [PMID: 36614175 PMCID: PMC9820859 DOI: 10.3390/ijms24010732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 01/03/2023] Open
Abstract
Phytic acid (PA) is a strong anti-nutritional factor with a key antioxidant role in countering reactive oxygen species. Despite the potential benefits of low phytic acid (lpa) mutants, the reduction of PA causes pleiotropic effects, e.g., reduced seed germination and viability loss related to seed ageing. The current study evaluated a historical series of naturally aged seeds and showed that lpa1-1 seeds aged faster as compared to wildtype. To mimic natural ageing, the present study set up accelerated ageing treatments at different temperatures. It was found that incubating the seeds at 57 °C for 24 h, the wildtype germinated at 82.4% and lpa1-1 at 40%. The current study also hypothesized two possible solutions to overcome these problems: (1) Classical breeding was used to constitute synthetic populations carrying the lpa1-1 mutation, with genes pushing anthocyanin accumulation in the embryo (R-navajo allele). The outcome showed that the presence of R-navajo in the lpa1-1 genotype was not able to improve the germinability (-20%), but this approach could be useful to improve the germinability in non-mutant genotypes (+17%). (2) In addition, hydropriming was tested on lpa1-1 and wildtype seeds, and germination was improved by 20% in lpa1-1, suggesting a positive role of seed priming in restoring germination. Moreover, the data highlighted metabolic differences in the metabolome before and after hydropriming treatment, suggesting that the differences in germination could also be mediated by differences in the metabolic composition induced by the mutation.
Collapse
Affiliation(s)
- Federico Colombo
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Stefano Sangiorgio
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Roberto Pilu
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
- Correspondence:
| |
Collapse
|
6
|
Basnet B, Khanal S. Quantitative trait loci and candidate genes for iron and zinc bio-fortification in genetically diverse germplasm of maize ( Zea mays L): A systematic review. Heliyon 2022; 8:e12593. [PMID: 36619433 PMCID: PMC9813765 DOI: 10.1016/j.heliyon.2022.e12593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/02/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Genetically and economically, Maize plays a pivotal role in tackling Iron-Zinc mineral deficiency through the crop's biofortification approach to high-yielding cultivars. The objective of this study is to summarize quantitative trait loci (QTL) is useful for identifying novel genes of interest in diverse germplasm for understanding the exact genetic mechanism for Iron and zinc uptake, deposition, and biosynthesis in Zea mays L endosperm. various techniques like Germplasm Genetic Wide Association, QTL meta-analysis, and biparental linkage analysis are used by researchers in diverse germplasm of Maize for the gene of interest marking and are extracted as secondary information through a systematic review of scientific published sources in peer-reviewed sites. A literature review was focused on quantitative trait loci with candidate genes from different families like YS, NRAMP, ferritin, Cation efflux, etc., and cloned four phytase soluble genes which influence the concentration as well as bioavailability of Fe & Zn in the endosperm. More than 30 QTLs with 15-Fe, 17-Zn; 10 Meta QTLS are common and linked with micronutrient concentration as well 17 candidate genes from different families are responsible for the zinc-iron deposition on the endosperm. More than 46 Fe-Zn (20 + 26) SNPs and 22 SNPs (10 + 12) on nine different chromosomes play a significant role in the variation of the mineral value of inbreeds and Double haploid Bi-parental population of Zea mays L. In Rice and Maize, five different chromosomes are collinear for the uptake to deposition of these minerals in the endosperm. The success of marker-based biofortification depends upon the nature of germplasm, the gap between flanking marker and targeted genes, the selection of genotypes in each generation, and genotype-environment interaction which are the future area of study. This study can assist the breeders in fast-tracking Fe and Zn biofortification through frequency multiplication of these desired loci of Maize.
Collapse
Affiliation(s)
- Bikas Basnet
- Department of Agriculture, Agriculture and Forestry University, Rampur, Chitwan, Nepal
| | - Shovit Khanal
- Department of Genetics and Plant Breeding, Agriculture and Forestry University, Rampur, Chitwan, Nepal
| |
Collapse
|
7
|
Gainullina KP, Kuluev BR, Davletov FA. Development of source material for pea breeding through chemical mutagenesis and evaluation of its genetic diversity using SSR markers. PROCEEDINGS ON APPLIED BOTANY, GENETICS AND BREEDING 2022. [DOI: 10.30901/2227-8834-2022-3-111-122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Background. Pea (Pisum sativum L.) is a valuable leguminous crop of worldwide importance. The main problem of modern plant breeding is a decrease in the genetic diversity of crops, including pea. One of the ways to increase genetic polymorphism is the use of chemically induced mutagenesis. Sodium azide (NaN3) is a highly effective chemical mutagen successfully used in mutation breeding to increase the productivity of cultivated plants and enrich them with new useful traits. We used it to obtain new pea breeding material.Materials and methods. Experiments were carried out to obtain pea mutants using sodium azide at the concentrations of 1, 5 and 10 mM and the exposure time of 3 and 9 h. Molecular genetic polymorphism of the М2 plants and the original cultivar was assessed using 10 SSR markers from the microsatellite genomic library (Agrogene®, France).Results. Optimal concentrations of sodium azide and the duration of seed treatment with it were identified: 1–5 mM for 3 h. Sixteen mutant populations were obtained; in ten of them a change in the leaf type was found. An analysis of the yield structure components revealed a significant superiority (p < 0.05) over the initial cultivar ‘Pamyati Khangildina’ in the mutant populations No. 1, No. 5, No. 9, No. 10, No. 15 and No. 16 in the number of seeds per pod, No. 9 and No. 16 in the weight of 1000 seeds, and No. 16 in the weight of seeds per plant. A dendrogram constructed on the basis of the SSR analysis data showed the degree of differences between the M2 populations of pea plants and the initial cultivar ‘Pamyati Khangildina’.Conclusion. The obtained mutant populations are planned to be used in pea breeding as sources of high seed numbers in pods, seed yield, seed weight per plant, and large seed size. A microsatellite analysis with 10 SSR markers revealed differences among the M2 mutant populations at the genetic level and made it possible to identify them.
Collapse
Affiliation(s)
- K. P. Gainullina
- Ufa Federal Research Center of the Russian Academy of Sciences, Institute of Biochemistry and Genetics; Ufa Federal Research Center of the Russian Academy of Sciences, Bashkir Research Institute of Agriculture
| | - B. R. Kuluev
- Ufa Federal Research Center of the Russian Academy of Sciences, Institute of Biochemistry and Genetics
| | - F. A. Davletov
- Ufa Federal Research Center of the Russian Academy of Sciences, Bashkir Research Institute of Agriculture
| |
Collapse
|
8
|
Consonni G, Castorina G, Varotto S. The Italian Research on the Molecular Characterization of Maize Kernel Development. Int J Mol Sci 2022; 23:11383. [PMID: 36232684 PMCID: PMC9570349 DOI: 10.3390/ijms231911383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
The study of the genetic control of maize seed development and seed-related pathways has been one of the most important themes approached by the Italian scientific community. Maize has always attracted the interest of the Italian community of agricultural genetics since its beginning, as some of its founders based their research projects on and developed their "schools" by adopting maize as a reference species. Some of them spent periods in the United States, where maize was already becoming a model system, to receive their training. In this manuscript we illustrate the research work carried out in Italy by different groups that studied maize kernels and underline their contributions in elucidating fundamental aspects of caryopsis development through the characterization of maize mutants. Since the 1980s, most of the research projects aimed at the comprehension of the genetic control of seed development and the regulation of storage products' biosyntheses and accumulation, and have been based on forward genetics approaches. We also document that for some decades, Italian groups, mainly based in Northern Italy, have contributed to improve the knowledge of maize genomics, and were both fundamental for further international studies focused on the correct differentiation and patterning of maize kernel compartments and strongly contributed to recent advances in maize research.
Collapse
Affiliation(s)
- Gabriella Consonni
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Giulia Castorina
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Università degli Studi di Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| |
Collapse
|
9
|
Stocky1, a Novel Gene Involved in Maize Seedling Development and Cuticle Integrity. PLANTS 2022; 11:plants11070847. [PMID: 35406827 PMCID: PMC9003528 DOI: 10.3390/plants11070847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022]
Abstract
The cuticle is the plant’s outermost layer that covers the surfaces of aerial parts. This structure is composed of a variety of aliphatic molecules and is well-known for its protective role against biotic and abiotic stresses in plants. Mutants with a permeable cuticle show developmental defects such as organ fusions and altered seed germination and viability. In this study, we identified a novel maize mutant, stocky1, with unique features: lethal at the seedling stage, and showing a severely dwarfed phenotype, due to a defective cuticle. For the first time, the mutant was tentatively mapped to chromosome 5, bin 5.04. The mutant phenotype investigated in this work has the potential to contribute to the elucidation of the role of the cuticle during plant development. The possibility of controlling this trait is of relevance in the context of climate change, as it may contribute to tolerance to abiotic stresses.
Collapse
|
10
|
Wang W, Xie Y, Liu L, King GJ, White P, Ding G, Wang S, Cai H, Wang C, Xu F, Shi L. Genetic Control of Seed Phytate Accumulation and the Development of Low-Phytate Crops: A Review and Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3375-3390. [PMID: 35275483 DOI: 10.1021/acs.jafc.1c06831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Breeding low phytic acid (lpa) crops is a strategy that has potential to both improve the nutritional quality of food and feed and contribute to the sustainability of agriculture. Here, we review the lipid-independent and -dependent pathways of phytate synthesis and their regulatory mechanisms in plants. We compare the genetic variation of the phytate concentration and distribution in seeds between dicot and monocot species as well as the associated temporal and spatial expression patterns of the genes involved in phytate synthesis and transport. Quantitative trait loci or significant single nucleotide polymorphisms for the seed phytate concentration have been identified in different plant species by linkage and association mapping, and some genes have been cloned from lpa mutants. We summarize the effects of various lpa mutations on important agronomic traits in crop plants and propose SULTR3;3 and SULTR3;4 as optimal target genes for lpa crop breeding.
Collapse
Affiliation(s)
- Wei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yiwen Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Lei Liu
- Southern Cross Plant Science, Southern Cross University, Lismore New South Wales 2480, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore New South Wales 2480, Australia
| | - Philip White
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Hongmei Cai
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Chuang Wang
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
11
|
Ibrahim S, Saleem B, Rehman N, Zafar SA, Naeem MK, Khan MR. CRISPR/Cas9 mediated disruption of Inositol Pentakisphosphate 2-Kinase 1 ( TaIPK1) reduces phytic acid and improves iron and zinc accumulation in wheat grains. J Adv Res 2022; 37:33-41. [PMID: 35499048 PMCID: PMC9039650 DOI: 10.1016/j.jare.2021.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/19/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction Phytic acid (PA) is an important antinutrient agent present in cereal grains which reduces the bioavailability of iron and zinc in human body, causing malnutrition. Inositol pentakisphosphate 2- kinase 1 (IPK1) gene has been reported to be an important gene for PA biosynthesis. Objective A recent genome editing tool CRISPR/Cas9 has been successfully applied to develop biofortified rice by disrupting IPK1 gene, however, it remained a challenge in wheat. The aim of this study was to biofortify wheat using CRISPR/Cas9. Methods In this study, we isolated 3 TaIPK1 homeologs in wheat designated as TaIPK1.A, TaIPK1.B and TaIPK1.D and found that the expression abundance of TaIPK1.A was stronger in early stages of grain filling. Using CRISPR/Cas9, we have disrupted TaIPK1.A gene in cv. Borlaug-2016 with two guide RNAs targeting the 1st and 2nd exons. Results We got several genome-edited lines in the T0 generation at frequencies of 12.7% and 10.8%. Sequencing analysis revealed deletion of 1-23 nucleotides and even an addition of 1 nucleotide in various lines. Analysis of the genome-edited lines revealed a significant decrease in the PA content and an increase in iron and zinc accumulation in grains compared with control plants. Conclusion Our study demonstrates the potential application of CRISPR/Cas9 technique for the rapid generation of biofortified wheat cultivars.
Collapse
Affiliation(s)
- Saira Ibrahim
- Genome Editing and Sequencing Lab, National Centre for Bioinformatics, Quaid-i-Azam University Islamabad, Pakistan
| | - Bilal Saleem
- Genome Editing and Sequencing Lab, National Centre for Bioinformatics, Quaid-i-Azam University Islamabad, Pakistan
- National Institute for Genomic and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad Pakistan
| | - Nazia Rehman
- National Institute for Genomic and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad Pakistan
| | - Syed Adeel Zafar
- National Institute for Genomic and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad Pakistan
| | - Muhammad Kashif Naeem
- National Institute for Genomic and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad Pakistan
| | - Muhammad Ramzan Khan
- Genome Editing and Sequencing Lab, National Centre for Bioinformatics, Quaid-i-Azam University Islamabad, Pakistan
- National Institute for Genomic and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad Pakistan
| |
Collapse
|
12
|
Stanton C, Sanders D, Krämer U, Podar D. Zinc in plants: Integrating homeostasis and biofortification. MOLECULAR PLANT 2022; 15:65-85. [PMID: 34952215 DOI: 10.1016/j.molp.2021.12.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 05/24/2023]
Abstract
Zinc plays many essential roles in life. As a strong Lewis acid that lacks redox activity under environmental and cellular conditions, the Zn2+ cation is central in determining protein structure and catalytic function of nearly 10% of most eukaryotic proteomes. While specific functions of zinc have been elucidated at a molecular level in a number of plant proteins, wider issues abound with respect to the acquisition and distribution of zinc by plants. An important challenge is to understand how plants balance between Zn supply in soil and their own nutritional requirement for zinc, particularly where edaphic factors lead to a lack of bioavailable zinc or, conversely, an excess of zinc that bears a major risk of phytotoxicity. Plants are the ultimate source of zinc in the human diet, and human Zn deficiency accounts for over 400 000 deaths annually. Here, we review the current understanding of zinc homeostasis in plants from the molecular and physiological perspectives. We provide an overview of approaches pursued so far in Zn biofortification of crops. Finally, we outline a "push-pull" model of zinc nutrition in plants as a simplifying concept. In summary, this review discusses avenues that can potentially deliver wider benefits for both plant and human Zn nutrition.
Collapse
Affiliation(s)
| | - Dale Sanders
- John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | - Ute Krämer
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, 44801 Bochum, Germany.
| | - Dorina Podar
- Department of Molecular Biology and Biotechnology and Centre for Systems Biology, Biodiversity and Bioresources, Babes-Bolyai University, 400084 Cluj-Napoca, Romania.
| |
Collapse
|
13
|
Schmelter L, Rohm H, Struck S. Gluten-free bakery products: Cookies made from different Vicia faba bean varieties. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
14
|
DeMers LC, Raboy V, Li S, Saghai Maroof MA. Network Inference of Transcriptional Regulation in Germinating Low Phytic Acid Soybean Seeds. FRONTIERS IN PLANT SCIENCE 2021; 12:708286. [PMID: 34531883 PMCID: PMC8438133 DOI: 10.3389/fpls.2021.708286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/23/2021] [Indexed: 05/14/2023]
Abstract
The low phytic acid (lpa) trait in soybeans can be conferred by loss-of-function mutations in genes encoding myo-inositol phosphate synthase and two epistatically interacting genes encoding multidrug-resistance protein ATP-binding cassette (ABC) transporters. However, perturbations in phytic acid biosynthesis are associated with poor seed vigor. Since the benefits of the lpa trait, in terms of end-use quality and sustainability, far outweigh the negatives associated with poor seed performance, a fuller understanding of the molecular basis behind the negatives will assist crop breeders and engineers in producing variates with lpa and better germination rate. The gene regulatory network (GRN) for developing low and normal phytic acid soybean seeds was previously constructed, with genes modulating a variety of processes pertinent to phytic acid metabolism and seed viability being identified. In this study, a comparative time series analysis of low and normal phytic acid soybeans was carried out to investigate the transcriptional regulatory elements governing the transitional dynamics from dry seed to germinated seed. GRNs were reverse engineered from time series transcriptomic data of three distinct genotypic subsets composed of lpa soybean lines and their normal phytic acid sibling lines. Using a robust unsupervised network inference scheme, putative regulatory interactions were inferred for each subset of genotypes. These interactions were further validated by published regulatory interactions found in Arabidopsis thaliana and motif sequence analysis. Results indicate that lpa seeds have increased sensitivity to stress, which could be due to changes in phytic acid levels, disrupted inositol phosphate signaling, disrupted phosphate ion (Pi) homeostasis, and altered myo-inositol metabolism. Putative regulatory interactions were identified for the latter two processes. Changes in abscisic acid (ABA) signaling candidate transcription factors (TFs) putatively regulating genes in this process were identified as well. Analysis of the GRNs reveal altered regulation in processes that may be affecting the germination of lpa soybean seeds. Therefore, this work contributes to the ongoing effort to elucidate molecular mechanisms underlying altered seed viability, germination and field emergence of lpa crops, understanding of which is necessary in order to mitigate these problems.
Collapse
Affiliation(s)
- Lindsay C. DeMers
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Victor Raboy
- National Small Grains Germplasm Research Center, Agricultural Research Service (USDA), Aberdeen, ID, United States
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - M. A. Saghai Maroof
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
15
|
Gupta PK, Balyan HS, Sharma S, Kumar R. Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1-35. [PMID: 33136168 DOI: 10.1007/s00122-020-03709-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/13/2020] [Indexed: 05/02/2023]
Abstract
Knowledge of genetic variation, genetics, physiology/molecular basis and breeding (including biotechnological approaches) for biofortification and bioavailability for Zn, Fe and Se will help in developing nutritionally improved wheat. Biofortification of wheat cultivars for micronutrients is a priority research area for wheat geneticists and breeders. It is known that during breeding of wheat cultivars for productivity and quality, a loss of grain micronutrient contents occurred, leading to decline in nutritional quality of wheat grain. Keeping this in view, major efforts have been made during the last two decades for achieving biofortification and bioavailability of wheat grain for micronutrients including Zn, Fe and Se. The studies conducted so far included evaluation of gene pools for contents of not only grain micronutrients as above, but also for phytic acid (PA) or phytate and phytase, so that, while breeding for the micronutrients, bioavailability is also improved. For this purpose, QTL interval mapping and GWAS were carried out to identify QTLs/genes and associated markers that were subsequently used for marker-assisted selection (MAS) during breeding for biofortification. Studies have also been conducted to understand the physiology and molecular basis of biofortification, which also allowed identification of genes for uptake, transport and storage of micronutrients. Transgenics using transgenes have also been produced. The breeding efforts led to the development of at least a dozen cultivars with improved contents of grain micronutrients, although land area occupied by these biofortified cultivars is still marginal. In this review, the available information on different aspects of biofortification and bioavailability of micronutrients including Zn, Fe and Se in wheat has been reviewed for the benefit of those, who plan to start work or already conducting research in this area.
Collapse
Affiliation(s)
- P K Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India.
| | - H S Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| | - Rahul Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| |
Collapse
|
16
|
Jiang M, Liu Y, Li R, Li S, Tan Y, Huang J, Shu Q. An Inositol 1, 3, 4, 5, 6-Pentakisphosphate 2-Kinase 1 Mutant with a 33-nt Deletion Showed Enhanced Tolerance to Salt and Drought Stress in Rice. PLANTS 2020; 10:plants10010023. [PMID: 33374298 PMCID: PMC7824669 DOI: 10.3390/plants10010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 01/24/2023]
Abstract
OsIPK1 encodes inositol 1,3,4,5,6-pentakisphosphate 2-kinase, which catalyzes the conversion of myo-inositol-1,3,4,5,6-pentakisphosphate to myo-inositol-1,2,3,4,5,6-hexakisphosphate (IP6) in rice. By clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas9)-mediated mutagenesis in the 3rd exon of the gene, three OsIPK1 mutations, i.e., osipk1_1 (a 33-nt deletion), osipk1_2 (a 1-nt deletion), and osipk1_3 (a 2-nt deletion) were identified in T0 plants of the rice line Xidao #1 (wild type, WT). A transfer DNA free line with the homozygous osipk1_1 mutation was developed; however, no homozygous mutant lines could be developed for the other two mutations. The comparative assay showed that the osipk1_1 mutant line had a significantly lower level of phytic acid (PA, IP6; −19.5%) in rice grain and agronomic traits comparable to the WT. However, the osipk1_1 mutant was more tolerant to salt and drought stresses than the WT, with significantly lower levels of inositol triphosphate (IP3), reactive oxygen species (ROS) and induced IP6, and higher activities of antioxidant enzymes in seedlings subjected to these stresses. Further analyses showed that the transcription of stress response genes was significantly upregulated in the osipk1_1 mutant under stress. Thus, the low phytic acid mutant osipk1_1 should have potential applications in rice breeding and production.
Collapse
Affiliation(s)
- Meng Jiang
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China; (M.J.); (Y.L.); (S.L.); (Y.T.); (J.H.)
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Yanhua Liu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China; (M.J.); (Y.L.); (S.L.); (Y.T.); (J.H.)
| | - Ruiqing Li
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China;
| | - Shan Li
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China; (M.J.); (Y.L.); (S.L.); (Y.T.); (J.H.)
| | - Yuanyuan Tan
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China; (M.J.); (Y.L.); (S.L.); (Y.T.); (J.H.)
| | - Jianzhong Huang
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China; (M.J.); (Y.L.); (S.L.); (Y.T.); (J.H.)
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingyao Shu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China; (M.J.); (Y.L.); (S.L.); (Y.T.); (J.H.)
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
- Correspondence:
| |
Collapse
|
17
|
Pramitha JL, Rana S, Aggarwal PR, Ravikesavan R, Joel AJ, Muthamilarasan M. Diverse role of phytic acid in plants and approaches to develop low-phytate grains to enhance bioavailability of micronutrients. ADVANCES IN GENETICS 2020; 107:89-120. [PMID: 33641749 DOI: 10.1016/bs.adgen.2020.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Natural or synthetic compounds that interfere with the bioavailability of nutrients are called antinutrients. Phytic acid (PA) is one of the major antinutrients present in the grains and acts as a chelator of micronutrients. The presence of six reactive phosphate groups in PA hinders the absorption of micronutrients in the gut of non-ruminants. Consumption of PA-rich diet leads to deficiency of minerals such as iron and zinc among human population. On the contrary, PA is a natural antioxidant, and PA-derived molecules function in various signal transduction pathways. Therefore, optimal concentration of PA needs to be maintained in plants to avoid adverse pleiotropic effects, as well as to ensure micronutrient bioavailability in the diets. Given this, the chapter enumerates the structure, biosynthesis, and accumulation of PA in food grains followed by their roles in growth, development, and stress responses. Further, the chapter elaborates on the antinutritional properties of PA and explains the conventional breeding and transgene-based approaches deployed to develop low-PA varieties. Studies have shown that conventional breeding methods could develop low-PA lines; however, the pleiotropic effects of these methods viz. reduced yield, embryo abnormalities, and poor seed quality hinder the use of breeding strategies. Overexpression of phytase in the endosperm and RNAi-mediated silencing of genes involved in myo-inositol biosynthesis overcome these constraints. Next-generation genome editing approaches, including CRISPR-Cas9 enable the manipulation of more than one gene involved in PA biosynthesis pathway through multiplex editing, and scope exists to deploy such tools in developing varieties with optimal PA levels.
Collapse
Affiliation(s)
- J Lydia Pramitha
- Department of Millets, Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Rajasekaran Ravikesavan
- Department of Millets, Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - A John Joel
- Tamil Nadu Rice Research Institute, Tamil Nadu Agricultural University, Aduthurai, Tamil Nadu, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
18
|
Redekar NR, Glover NM, Biyashev RM, Ha BK, Raboy V, Maroof MAS. Genetic interactions regulating seed phytate and oligosaccharides in soybean (Glycine max L.). PLoS One 2020; 15:e0235120. [PMID: 32584851 PMCID: PMC7316244 DOI: 10.1371/journal.pone.0235120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Two low-phytate soybean (Glycine max (L.) Merr.) mutant lines- V99-5089 (mips mutation on chromosome 11) and CX-1834 (mrp-l and mrp-n mutations on chromosomes 19 and 3, respectively) have proven to be valuable resources for breeding of low-phytate, high-sucrose, and low-raffinosaccharide soybeans, traits that are highly desirable from a nutritional and environmental standpoint. A recombinant inbred population derived from the cross CX1834 x V99-5089 provides an opportunity to study the effect of different combinations of these three mutations on soybean phytate and oligosaccharides levels. Of the 173 recombinant inbred lines tested, 163 lines were homozygous for various combinations of MIPS and two MRP loci alleles. These individuals were grouped into eight genotypic classes based on the combination of SNP alleles at the three mutant loci. The two genotypic classes that were homozygous mrp-l/mrp-n and either homozygous wild-type or mutant at the mips locus (MIPS/mrp-l/mrp-n or mips/mrp-l/mrp-n) displayed relatively similar ~55% reductions in seed phytate, 6.94 mg g -1 and 6.70 mg g-1 respectively, as compared with 15.2 mg g-1 in the wild-type MIPS/MRP-L/MRP-N seed. Therefore, in the presence of the double mutant mrp-l/mrp-n, the mips mutation did not cause a substantially greater decrease in seed phytate level. However, the nutritionally-desirable high-sucrose/low-stachyose/low-raffinose seed phenotype originally observed in soybeans homozygous for the mips allele was reversed in the presence of mrp-l/mrp-n mutations: homozygous mips/mrp-l/mrp-n seed displayed low-sucrose (7.70%), high-stachyose (4.18%), and the highest observed raffinose (0.94%) contents per gram of dry seed. Perhaps the block in phytic acid transport from its cytoplasmic synthesis site to its storage site, conditioned by mrp-l/mrp-n, alters myo-inositol flux in mips seeds in a way that restores to wild-type levels the mips conditioned reductions in raffinosaccharides. Overall this study determined the combinatorial effects of three low phytic acid causing mutations on regulation of seed phytate and oligosaccharides in soybean.
Collapse
Affiliation(s)
- Neelam R. Redekar
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Natasha M. Glover
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Ruslan M. Biyashev
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Bo-Keun Ha
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, Georgia, United States of America
| | - Victor Raboy
- National Small Grains Germplasm Center, USDA-ARS, Aberdeen, Idaho, United States of America
| | - M. A. Saghai Maroof
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
19
|
Development and validation of breeder-friendly gene-based markers for lpa1-1 and lpa2-1 genes conferring low phytic acid in maize kernel. 3 Biotech 2020; 10:121. [PMID: 32123645 DOI: 10.1007/s13205-020-2113-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/02/2020] [Indexed: 10/25/2022] Open
Abstract
Based on C (wild) to T (mutant) transition at amino acid position 1432 bp of lpa1-1 gene, two dominant markers each specific to wild type (LPA1) and mutant (lpa1-1) allele were developed and validated across seven F2 populations. Joint segregation of these markers behaved in co-dominant fashion, clearly distinguishing heterozygote from two other homozygote genotypes. Full length sequence alignment between wild type (LPA2) and mutant (lpa2-1) allele revealed one transition mutation (A to G) and a co-dominant CAPS marker was developed which differentiated all three types of segregants across seven F2 populations. Across populations, segregants with lpa1-1/lpa1-1 (1.77 mg/g) and lpa2-1/lpa2-1 (1.85 mg/g) possessed significantly lower phytic acid compared to LPA1/LPA1 (2.58 mg/g) and LPA2/LPA2 (2.53 mg/g). Inorganic phosphorus was however higher in recessive homozygotes (lpa1-1/lpa1-1: 0.77 mg/g, lpa2-1/lpa2-1: 0.53 mg/g) than the dominant homozygotes (LPA1/LPA1: 0.33 mg/g, LPA2/LPA2: 0.19 mg/g). Overall, homozygous segregants of lpa1-1 and lpa2-1 showed 31% and 27% reduction of phytic acid, respectively. Analysis of phytate and inorganic phosphorous in the maize kernel in these segregating populations confirmed co-segregation of trait and markers specific to lpa1-1 and lpa2-1. This is the first report of the development of breeder-friendly gene-based markers for lpa1-1 and lpa2-1; and it holds great significance for maize biofortification.
Collapse
|
20
|
Prasanna BM, Palacios-Rojas N, Hossain F, Muthusamy V, Menkir A, Dhliwayo T, Ndhlela T, San Vicente F, Nair SK, Vivek BS, Zhang X, Olsen M, Fan X. Molecular Breeding for Nutritionally Enriched Maize: Status and Prospects. Front Genet 2020; 10:1392. [PMID: 32153628 PMCID: PMC7046684 DOI: 10.3389/fgene.2019.01392] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Maize is a major source of food security and economic development in sub-Saharan Africa (SSA), Latin America, and the Caribbean, and is among the top three cereal crops in Asia. Yet, maize is deficient in certain essential amino acids, vitamins, and minerals. Biofortified maize cultivars enriched with essential minerals and vitamins could be particularly impactful in rural areas with limited access to diversified diet, dietary supplements, and fortified foods. Significant progress has been made in developing, testing, and deploying maize cultivars biofortified with quality protein maize (QPM), provitamin A, and kernel zinc. In this review, we outline the status and prospects of developing nutritionally enriched maize by successfully harnessing conventional and molecular marker-assisted breeding, highlighting the need for intensification of efforts to create greater impacts on malnutrition in maize-consuming populations, especially in the low- and middle-income countries. Molecular marker-assisted selection methods are particularly useful for improving nutritional traits since conventional breeding methods are relatively constrained by the cost and throughput of nutritional trait phenotyping.
Collapse
Affiliation(s)
| | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Vignesh Muthusamy
- ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Abebe Menkir
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | | | | | | | | | | | | | - Mike Olsen
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Xingming Fan
- Institute of Crop Sciences, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, China
| |
Collapse
|
21
|
Vlcko T, Ohnoutkova L. Allelic Variants of CRISPR/Cas9 Induced Mutation in an Inositol Trisphosphate 5/6 Kinase Gene Manifest Different Phenotypes in Barley. PLANTS (BASEL, SWITZERLAND) 2020; 9:E195. [PMID: 32033421 PMCID: PMC7076722 DOI: 10.3390/plants9020195] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 02/04/2023]
Abstract
Inositol trisphosphate 5/6 kinases (ITPK) constitute a small group of enzymes participating in the sequential phosphorylation of inositol phosphate to inositol hexakisphosphate (IP6), which is a major storage form of phosphate in cereal grains. The development of lines with reduced IP6 content could enhance phosphate and mineral bioavailability. Moreover, plant ITPKs participate in abiotic stress signaling. To elucidate the role of HvITPK1 in IP6 synthesis and stress signaling, a barley itpk1 mutant was created using programmable nuclease Cas9. Homozygous single bp insertion and deletion mutant lines were obtained. The mutants contained altered levels of phosphate in the mature grains, ranging from 65% to 174% of the wild type (WT) content. Homozygous mutant lines were tested for their response to salinity during germination. Interestingly, insertion mutant lines revealed a higher tolerance to salinity stress than deletion mutants. Mature embryos of an insertion mutant itpk1-2 and deletion mutant itpk1-33 were cultivated in vitro on MS medium supplemented with NaCl at 50, 100, and 200 mM. While both mutants grew less well than WT on no or low salt concentrations, the itpk1-2 mutant was affected less than the WT and itpk33 when grown on the highest NaCl concentration. The expression of all ITPKs was induced in roots in response to salt stress. In shoots, the differential effect of high salt on IPTK expression in the two iptk1 mutants was consistent with their different sensitivities to salt stress. The results extend the evidence for the involvement of ITPK genes in phosphate storage and abiotic stress signaling.
Collapse
Affiliation(s)
| | - Ludmila Ohnoutkova
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 241/27, Olomouc 78371, Czech Republic;
| |
Collapse
|
22
|
Fukushima A, Perera I, Hosoya K, Akabane T, Hirotsu N. Genotypic Differences in the Effect of P Fertilization on Phytic Acid Content in Rice Grain. PLANTS 2020; 9:plants9020146. [PMID: 31979223 PMCID: PMC7076419 DOI: 10.3390/plants9020146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 11/25/2022]
Abstract
Phytic acid (PA) prevents the absorption of minerals in the human intestine, and it is regarded as an antinutrient. Low PA rice is beneficial because of its higher Zn bioavailability and it is suggested that the gene expression level of myo-inositol 3-phosphate synthase 1 (INO1) in developing grain is a key factor to explain the genotypic difference in PA accumulation among natural variants of rice. P fertilization is also considered to affect the PA content, but it is not clear how it affects INO1 gene expression and the PA content in different genotypes. Here, we investigated the effect of P fertilization on the PA content in two contrasting rice genotypes, with low and high PA accumulation, respectively. Based on the results of the analysis of the PA content, inorganic P content, INO1 gene expression, and xylem sap inorganic P content, we concluded that the effect of P fertilization on PA accumulation in grain differed with the genotype, and it was regulated by multiple mechanisms.
Collapse
Affiliation(s)
- Ayaka Fukushima
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan;
| | - Ishara Perera
- Grain Legumes and Oil Crops Research and Development Centre, Department of Agriculture, Angunakolapelessa 82220, Sri Lanka;
| | - Koki Hosoya
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan; (K.H.); (T.A.)
| | - Tatsuki Akabane
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan; (K.H.); (T.A.)
| | - Naoki Hirotsu
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan;
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan; (K.H.); (T.A.)
- Correspondence: ; Tel.: +81-276-82-9027
| |
Collapse
|
23
|
Cominelli E, Pilu R, Sparvoli F. Phytic Acid and Transporters: What Can We Learn from low phytic acid Mutants. PLANTS 2020; 9:plants9010069. [PMID: 31948109 PMCID: PMC7020491 DOI: 10.3390/plants9010069] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/23/2019] [Accepted: 01/01/2020] [Indexed: 01/22/2023]
Abstract
Phytic acid has two main roles in plant tissues: Storage of phosphorus and regulation of different cellular processes. From a nutritional point of view, it is considered an antinutritional compound because, being a cation chelator, its presence reduces mineral bioavailability from the diet. In recent decades, the development of low phytic acid (lpa) mutants has been an important goal for nutritional seed quality improvement, mainly in cereals and legumes. Different lpa mutations affect phytic acid biosynthetic genes. However, other lpa mutations isolated so far, affect genes coding for three classes of transporters: A specific group of ABCC type vacuolar transporters, putative sulfate transporters, and phosphate transporters. In the present review, we summarize advances in the characterization of these transporters in cereals and legumes. Particularly, we describe genes, proteins, and mutants for these different transporters, and we report data of in silico analysis aimed at identifying the putative orthologs in some other cereal and legume species. Finally, we comment on the advantage of using such types of mutants for crop biofortification and on their possible utility to unravel links between phosphorus and sulfur metabolism (phosphate and sulfate homeostasis crosstalk).
Collapse
Affiliation(s)
- Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche, Via E. Bassini 15, 20133 Milan, Italy;
- Correspondence: ; Tel.: +39-022-369-9421
| | - Roberto Pilu
- Department of Agricultural and Environmental Sciences—Production Landscape, Agroenergy Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy;
| | - Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche, Via E. Bassini 15, 20133 Milan, Italy;
| |
Collapse
|
24
|
Colombo F, Paolo D, Cominelli E, Sparvoli F, Nielsen E, Pilu R. MRP Transporters and Low Phytic Acid Mutants in Major Crops: Main Pleiotropic Effects and Future Perspectives. FRONTIERS IN PLANT SCIENCE 2020; 11:1301. [PMID: 32973854 PMCID: PMC7481554 DOI: 10.3389/fpls.2020.01301] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/11/2020] [Indexed: 05/15/2023]
Abstract
Phytic acid (PA) represents the major storage form of seed phosphate (P). During seed maturation, it accumulates as phytate salts chelating various mineral cations, therefore reducing their bioavailability. During germination, phytase dephosphorylates PA releasing both P and cations which in turn can be used for the nutrition of the growing seedling. Animals do not possess phytase, thus monogastric animals assimilate only 10% of the phytate ingested with feed, whilst 90% is excreted and may contribute to cause P pollution of the environment. To overcome this double problem, nutritional and environmental, in the last four decades, many low phytic acid (lpa) mutants (most of which affect the PA-MRP transporters) have been isolated and characterized in all major crops, showing that the lpa trait can increase the nutritional quality of foods and feeds and improve P management in agriculture. Nevertheless, these mutations are frequently accompanied by negative pleiotropic effects leading to agronomic defects which may affect either seed viability and germination or plant development or in some cases even increase the resistance to cooking, thus limiting the interest of breeders. Therefore, although some significant results have been reached, the isolation of lpa mutants improved for their nutritional quality and with a good field performance remains a goal so far not fully achieved for many crops. Here, we will summarize the main pleiotropic effects that have been reported to date in lpa mutants affected in PA-MRP transporters in five productive agronomic species, as well as addressing some of the possible challenges to overcome these hurdles and improve the breeding efforts for lpa mutants.
Collapse
Affiliation(s)
- Federico Colombo
- Department of Agricultural and Environmental Sciences—Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Dario Paolo
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Erik Nielsen
- Department of Biology and Biotechnology, Università degli Studi di Pavia, Pavia, Italy
| | - Roberto Pilu
- Department of Agricultural and Environmental Sciences—Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
- *Correspondence: Roberto Pilu,
| |
Collapse
|
25
|
Borlini G, Rovera C, Landoni M, Cassani E, Pilu R. lpa1-5525: A New lpa1 Mutant Isolated in a Mutagenized Population by a Novel Non-Disrupting Screening Method. PLANTS 2019; 8:plants8070209. [PMID: 31284582 PMCID: PMC6681281 DOI: 10.3390/plants8070209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 06/29/2019] [Accepted: 07/04/2019] [Indexed: 11/16/2022]
Abstract
Phytic acid, or myo-inositol 1,2,3,4,5,6-hexakisphosphate, is the main storage form of phosphorus in plants. It is localized in seeds, deposited as mixed salts of mineral cations in protein storage vacuoles; during germination, it is hydrolyzed by phytases to make available P together with all the other cations needed for seed germination. When seeds are used as food or feed, phytic acid and the bound cations are poorly bioavailable for human and monogastric livestock due to their lack of phytase activity. Therefore, reducing the amount of phytic acid is one strategy in breeding programs aimed to improve the nutritional properties of major crops. In this work, we present data on the isolation of a new maize (Zea mays L.) low phytic acid 1 (lpa1) mutant allele obtained by transposon tagging mutagenesis with the Ac element. We describe the generation of the mutagenized population and the screening to isolate new lpa1 mutants. In particular, we developed a fast, cheap and non-disrupting screening method based on the different density of lpa1 seed compared to the wild type. This assay allowed the isolation of the lpa1-5525 mutant characterized by a new mutation in the lpa1 locus associated with a lower amount of phytic phosphorus in the seeds in comparison with the wild type.
Collapse
Affiliation(s)
- Giulia Borlini
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Cesare Rovera
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Michela Landoni
- Department of Biosciences-Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Elena Cassani
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Roberto Pilu
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
26
|
Mutation of Inositol 1,3,4-trisphosphate 5/6-kinase6 Impairs Plant Growth and Phytic Acid Synthesis in Rice. PLANTS 2019; 8:plants8050114. [PMID: 31035443 PMCID: PMC6572258 DOI: 10.3390/plants8050114] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 01/07/2023]
Abstract
Inositol 1,3,4-trisphosphate 5/6-kinase (ITPK) is encoded by six genes in rice (OsITPK1-6). A previous study had shown that nucleotide substitutions of OsITPK6 could significantly lower the phytic acid content in rice grains. In the present study, the possibility of establishing a genome editing-based method for breeding low-phytic acid cultivars in rice was explored, in conjunction with the functional determination of OsITPK6. Four OsITPK6 mutant lines were generated by targeted mutagenesis of the gene’s first exon using the CRISPR/Cas9 method, one (ositpk6_1) with a 6-bp in-frame deletion, and other three with frameshift mutations (ositpk6_2, _3, and _4). The frameshift mutations severely impaired plant growth and reproduction, while the effect of ositpk6_1 was relatively limited. The mutant lines ositpk6_1 and _2 had significantly lower levels (−10.1% and −32.1%) of phytic acid and higher levels (4.12- and 5.18-fold) of inorganic phosphorus compared with the wild-type (WT) line. The line ositpk6_1 also showed less tolerance to osmotic stresses. Our research demonstrates that mutations of OsITPK6, while effectively reducing phytic acid biosynthesis in rice grain, could significantly impair plant growth and reproduction.
Collapse
|
27
|
Kishor DS, Lee C, Lee D, Venkatesh J, Seo J, Chin JH, Jin Z, Hong SK, Ham JK, Koh HJ. Novel allelic variant of Lpa1 gene associated with a significant reduction in seed phytic acid content in rice (Oryza sativa L.). PLoS One 2019; 14:e0209636. [PMID: 30870429 PMCID: PMC6417671 DOI: 10.1371/journal.pone.0209636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/19/2019] [Indexed: 01/26/2023] Open
Abstract
In plants, myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP6), also known as phytic acid (PA), is a major component of organic phosphorus (P), and accounts for up to 85% of the total P in seeds. In rice (Oryza sativa L.), PA mainly accumulates in rice bran, and chelates mineral cations, resulting in mineral deficiencies among brown rice consumers. Therefore, considerable efforts have been focused on the development of low PA (LPA) rice cultivars. In this study, we performed genetic and molecular analyses of OsLpa1, a major PA biosynthesis gene, in Sanggol, a low PA mutant variety developed via chemical mutagenesis of Ilpum rice cultivar. Genetic segregation and sequencing analyses revealed that a recessive allele, lpa1-3, at the OsLpa1 locus (Os02g0819400) was responsible for a significant reduction in seed PA content in Sanggol. The lpa1-3 gene harboured a point mutation (C623T) in the fourth exon of the predicted coding region, resulting in threonine (Thr) to isoleucine (Ile) amino acidsubstitution at position 208 (Thr208Ile). Three-dimensional analysis of Lpa1 protein structure indicated that myo-inositol 3-monophosphate [Ins(3)P1] could bind to the active site of Lpa1, with ATP as a cofactor for catalysis. Furthermore, the presence of Thr208 in the loop adjacent to the entry site of the binding pocket suggests that Thr208Ile substitution is involved in regulating enzyme activity via phosphorylation. Therefore, we propose that Thr208Ile substitution in lpa1-3 reduces Lpa1 enzyme activity in Sanggol, resulting in reduced PA biosynthesis.
Collapse
Affiliation(s)
- D. S. Kishor
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Choonseok Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Dongryung Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jelli Venkatesh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jeonghwan Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Joong Hyoun Chin
- Graduate School of Integrated Bioindustry, Sejong University, Seoul, Republic of Korea
| | - Zhuo Jin
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Soon-Kwan Hong
- Division of Biotechnology, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jin-Kwan Ham
- Gangwon provincial Agricultural Research & Extension Services, Chuncheon, Gangwon-do, Republic of Korea
| | - Hee Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
28
|
Boncompagni E, Orozco-Arroyo G, Cominelli E, Gangashetty PI, Grando S, Kwaku Zu TT, Daminati MG, Nielsen E, Sparvoli F. Antinutritional factors in pearl millet grains: Phytate and goitrogens content variability and molecular characterization of genes involved in their pathways. PLoS One 2018; 13:e0198394. [PMID: 29856884 PMCID: PMC5983567 DOI: 10.1371/journal.pone.0198394] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/22/2018] [Indexed: 02/02/2023] Open
Abstract
Pearl millet [Pennisetum glaucum (L.) R. Br.] is an important "orphan" cereal and the most widely grown of all the millet species worldwide. It is also the sixth most important cereal in the world after wheat, rice, maize, barley, and sorghum, being largely grown and used in West Africa as well as in India and Pakistan. The present study was carried out in the frame of a program designed to increase benefits and reduce potential health problems deriving from the consumption of pearl millet. The specific goal was to provide a database of information on the variability existing in pearl millet germplasm as to the amounts of phytate, the most relevant antinutrient compound, and the goitrogenic compounds C-glycosylflavones (C-GFs) accumulated in the grain.Results we obtained clearly show that, as indicated by the range in values, a substantial variability subsists across the investigated pearl millet inbred lines as regards the grain level of phytic acid phosphate, while the amount of C-GFs shows a very high variation. Suitable potential parents to be used in breeding programs can be therefore chosen from the surveyed material in order to create new germplasm with increased nutritional quality and food safety. Moreover, we report novel molecular data showing which genes are more relevant for phytic acid biosynthesis in the seeds as well as a preliminary analysis of a pearl millet orthologous gene for C-GFs biosynthesis. These results open the way to dissect the genetic determinants controlling key seed nutritional phenotypes and to the characterization of their impact on grain nutritional value in pearl millet.
Collapse
Affiliation(s)
| | | | | | - Prakash Irappa Gangashetty
- ICRISAT Sahelian Center, International Crops Research Institute for the Semi-Arid Tropics, Niamey, Niger
| | - Stefania Grando
- ICRISAT Patancheru, International Crops Research Institute for the Semi-Arid Tropics, Andhra Pradesh, India
| | | | | | - Erik Nielsen
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | |
Collapse
|
29
|
Cominelli E, Confalonieri M, Carlessi M, Cortinovis G, Daminati MG, Porch TG, Losa A, Sparvoli F. Phytic acid transport in Phaseolus vulgaris: A new low phytic acid mutant in the PvMRP1 gene and study of the PvMRPs promoters in two different plant systems. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:1-12. [PMID: 29576062 DOI: 10.1016/j.plantsci.2018.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 05/24/2023]
Abstract
Phytic acid (InsP6) is the main storage form of phosphate in seeds. In the plant it plays an important role in response to environmental stress and hormonal changes. InsP6 is a strong chelator of cations, reducing the bioavailability of essential minerals in the diet. Only a common bean low phytic acid (lpa1) mutant, affected in the PvMRP1 gene, coding for a putative tonoplastic phytic acid transporter, was described so far. This mutant is devoid of negative pleiotropic effects normally characterising lpa mutants. With the aim of isolating new common bean lpa mutants, an ethyl methane sulfonate mutagenized population was screened, resulting in the identification of an additional lpa1 allele. Other putative lpa lines were also isolated. The PvMRP2 gene is probably able to complement the phenotype of mutants affected in the PvMRP1 gene in tissues other than the seed. Only the PvMRP1 gene is expressed at appreciable levels in cotyledons. Arabidopsis thaliana and Medicago truncatula transgenic plants harbouring 1.5 kb portions of the intergenic 5' sequences of both PvMRP genes, fused upstream of the GUS reporter, were generated. GUS activity in different organs suggests a refined, species-specific mechanisms of regulation of gene expression for these two PvMRP genes.
Collapse
Affiliation(s)
- Eleonora Cominelli
- CNR - National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA, CNR), Via E. Bassini, 15, 20133, Milan, Italy.
| | - Massimo Confalonieri
- CREA Research Centre for Animal Production and Aquaculture (CREA-ZA), Viale Piacenza 29, 26900, Lodi, Italy.
| | - Martina Carlessi
- CNR - National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA, CNR), Via E. Bassini, 15, 20133, Milan, Italy; Present address: Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Guidiccioni, 8-10, 56010 Ghezzano (Pisa), Italy.
| | - Gaia Cortinovis
- CNR - National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA, CNR), Via E. Bassini, 15, 20133, Milan, Italy.
| | - Maria Gloria Daminati
- CNR - National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA, CNR), Via E. Bassini, 15, 20133, Milan, Italy.
| | - Timothy G Porch
- USDA-ARS, Tropical Agriculture Research Station, 2200 P.A. Campos Avenue, Suite 201, Mayaguez, 00680, Puerto Rico.
| | - Alessia Losa
- CNR - National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA, CNR), Via E. Bassini, 15, 20133, Milan, Italy; CREA Research Centre for Genomics and Bioinformatics (CREA-GB), Via Paullese 28, 26836 Montanaso Lombardo, Lodi, Italy.
| | - Francesca Sparvoli
- CNR - National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA, CNR), Via E. Bassini, 15, 20133, Milan, Italy.
| |
Collapse
|
30
|
Perera I, Seneweera S, Hirotsu N. Manipulating the Phytic Acid Content of Rice Grain Toward Improving Micronutrient Bioavailability. RICE (NEW YORK, N.Y.) 2018; 11:4. [PMID: 29327163 PMCID: PMC5764899 DOI: 10.1186/s12284-018-0200-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/05/2018] [Indexed: 05/18/2023]
Abstract
Myo-inositol hexaphosphate, also known as phytic acid (PA), is the most abundant storage form of phosphorus in seeds. PA acts as a strong chelator of metal cations to form phytate and is considered an anti-nutrient as it reduces the bioavailability of important micronutrients. Although the major nutrient source for more than one-half of the global population, rice is a poor source of essential micronutrients. Therefore, biofortification and reducing the PA content of rice have arisen as new strategies for increasing micronutrient bioavailability in rice. Furthermore, global climate change effects, particularly rising atmospheric carbon dioxide concentration, are expected to increase the PA content and reduce the concentrations of most of the essential micronutrients in rice grain. Several genes involved in PA biosynthesis have been identified and characterized in rice. Proper understanding of the genes related to PA accumulation during seed development and creating the means to suppress the expression of these genes should provide a foundation for manipulating the PA content in rice grain. Low-PA rice mutants have been developed that have a significantly lower grain PA content, but these mutants also had reduced yields and poor agronomic performance, traits that challenge their effective use in breeding programs. Nevertheless, transgenic technology has been effective in developing low-PA rice without hampering plant growth or seed development. Moreover, manipulating the micronutrient distribution in rice grain, enhancing micronutrient levels and reducing the PA content in endosperm are possible strategies for increasing mineral bioavailability. Therefore, a holistic breeding approach is essential for developing successful low-PA rice lines. In this review, we focus on the key determinants for PA concentration in rice grain and discuss the possible molecular methods and approaches for manipulating the PA content to increase micronutrient bioavailability.
Collapse
Affiliation(s)
- Ishara Perera
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma, 374-0193 Japan
| | - Saman Seneweera
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Naoki Hirotsu
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma, 374-0193 Japan
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma, 374-0193 Japan
| |
Collapse
|
31
|
Garcia-Oliveira AL, Chander S, Ortiz R, Menkir A, Gedil M. Genetic Basis and Breeding Perspectives of Grain Iron and Zinc Enrichment in Cereals. FRONTIERS IN PLANT SCIENCE 2018; 9:937. [PMID: 30013590 PMCID: PMC6036604 DOI: 10.3389/fpls.2018.00937] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/11/2018] [Indexed: 05/18/2023]
Abstract
Micronutrient deficiency, also known as "hidden hunger," is an increasingly serious global challenge to humankind. Among the mineral elements, Fe (Iron) and Zn (Zinc) have earned recognition as micronutrients of outstanding and diverse biological relevance, as well as of clinical importance to global public health. The inherently low Fe and Zn content and poor bioavailability in cereal grains seems to be at the root of these mineral nutrient deficiencies, especially in the developing world where cereal-based diets are the most important sources of calories. The emerging physiological and molecular understanding of the uptake of Fe and Zn and their translocation in cereal grains regrettably also indicates accumulation of other toxic metals, with chemically similar properties, together with these mineral elements. This review article emphasizes breeding to develop bioavailable Fe- and Zn-efficient cereal cultivars to overcome malnutrition while minimizing the risks of toxic metals. We attempt to critically examine the genetic diversity regarding these nutritionally important traits as well as the progress in terms of quantitative genetics. We sought to integrate findings from the rhizosphere with Fe and Zn accumulation in grain, and to discuss the promoters as well as the anti-nutritional factors affecting Fe and Zn bioavailability in humans while restricting the content of toxic metals.
Collapse
Affiliation(s)
- Ana Luisa Garcia-Oliveira
- International Institute of Tropical Agriculture, Ibadan, Nigeria
- *Correspondence: Ana Luisa Garcia-Oliveira
| | - Subhash Chander
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Rodomiro Ortiz
| | - Abebe Menkir
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Melaku Gedil
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| |
Collapse
|
32
|
Chen L, Liao H. Engineering crop nutrient efficiency for sustainable agriculture. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:710-735. [PMID: 28600834 DOI: 10.1111/jipb.12559] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/06/2017] [Indexed: 05/21/2023]
Abstract
Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency.
Collapse
Affiliation(s)
- Liyu Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
33
|
Vinoth A, Ravindhran R. Biofortification in Millets: A Sustainable Approach for Nutritional Security. FRONTIERS IN PLANT SCIENCE 2017; 8:29. [PMID: 28167953 PMCID: PMC5253353 DOI: 10.3389/fpls.2017.00029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/05/2017] [Indexed: 05/04/2023]
Abstract
Nutritional insecurity is a major threat to the world's population that is highly dependent on cereals-based diet, deficient in micronutrients. Next to cereals, millets are the primary sources of energy in the semi-arid tropics and drought-prone regions of Asia and Africa. Millets are nutritionally superior as their grains contain high amount of proteins, essential amino acids, minerals, and vitamins. Biofortification of staple crops is proved to be an economically feasible approach to combat micronutrient malnutrition. HarvestPlus group realized the importance of millet biofortification and released conventionally bred high iron pearl millet in India to tackle iron deficiency. Molecular basis of waxy starch has been identified in foxtail millet, proso millet, and barnyard millet to facilitate their use in infant foods. With close genetic-relatedness to cereals, comparative genomics has helped in deciphering quantitative trait loci and genes linked to protein quality in finger millet. Recently, transgenic expression of zinc transporters resulted in the development of high grain zinc while transcriptomics revealed various calcium sensor genes involved in uptake, translocation, and accumulation of calcium in finger millet. Biofortification in millets is still limited by the presence of antinutrients like phytic acid, polyphenols, and tannins. RNA interference and genome editing tools [zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)] needs to be employed to reduce these antinutrients. In this review paper, we discuss the strategies to accelerate biofortification in millets by summarizing the opportunities and challenges to increase the bioavailability of macro and micronutrients.
Collapse
Affiliation(s)
- A Vinoth
- T. A. Lourdusamy Unit for Plant Tissue Culture and Molecular Biology, Department of Plant Biology and Biotechnology, Loyola College Chennai, India
| | - R Ravindhran
- T. A. Lourdusamy Unit for Plant Tissue Culture and Molecular Biology, Department of Plant Biology and Biotechnology, Loyola College Chennai, India
| |
Collapse
|
34
|
Gemenet DC, Leiser WL, Beggi F, Herrmann LH, Vadez V, Rattunde HFW, Weltzien E, Hash CT, Buerkert A, Haussmann BIG. Overcoming Phosphorus Deficiency in West African Pearl Millet and Sorghum Production Systems: Promising Options for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2016; 7:1389. [PMID: 27721815 PMCID: PMC5033954 DOI: 10.3389/fpls.2016.01389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/31/2016] [Indexed: 05/06/2023]
Abstract
West Africa (WA) is among the most food insecure regions. Rapid human population growth and stagnating crop yields greatly contribute to this fact. Poor soil fertility, especially low plant available phosphorus (P) is constraining food production in the region. P-fertilizer use in WA is among the lowest in the world due to inaccessibility and high prices, often unaffordable to resource-poor subsistence farmers. This article provides an overview of soil P-deficiency in WA and opportunities to overcome it by exploiting sorghum and pearl millet genetic diversity. The topic is examined from the perspectives of plant breeding, soil science, plant physiology, plant nutrition, and agronomy, thereby referring to recent results obtained in a joint interdisciplinary research project, and reported literature. Specific objectives are to summarize: (1) The global problem of P scarcity and how it will affect WA farmers; (2) Soil P dynamics in WA soils; (3) Plant responses to P deficiency; (4) Opportunities to breed for improved crop adaptation to P-limited conditions; (5) Challenges and trade-offs for improving sorghum and pearl millet adaptation to low-P conditions in WA; and (6) Systems approaches to address soil P-deficiency in WA. Sorghum and pearl millet in WA exhibit highly significant genetic variation for P-uptake efficiency, P-utilization efficiency, and grain yield under P-limited conditions indicating the possibility of breeding P-efficient varieties. Direct selection under P-limited conditions was more efficient than indirect selection under high-P conditions. Combining P-uptake and P-utilization efficiency is recommendable for WA to avoid further soil mining. Genomic regions responsible for P-uptake, P-utilization efficiency, and grain yield under low-P have been identified in WA sorghum and pearl millet, and marker-assisted selection could be possible once these genomic regions are validated. Developing P-efficient genotypes may not, however, be a sustainable solution in itself in the long-term without replenishing the P removed from the system in harvested produce. We therefore propose the use of integrated soil fertility management and systems-oriented management such as enhanced crop-tree-livestock integration in combination with P-use-efficiency-improved varieties. Recycling P from animal bones, human excreta and urine are also possible approaches toward a partially closed and efficient P cycle in WA.
Collapse
Affiliation(s)
| | - Willmar L. Leiser
- State Plant Breeding Institute, University of HohenheimStuttgart, Germany
| | | | - Ludger H. Herrmann
- Institute of Soil Science and Land Evaluation, University of HohenheimStuttgart, Germany
| | - Vincent Vadez
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Henry F. W. Rattunde
- University of Wisconsin-Madison, MadisonWI, USA
- International Crops Research Institute for the Semi-Arid Tropics-MaliRemagen, Germany
| | - Eva Weltzien
- University of Wisconsin-Madison, MadisonWI, USA
- International Crops Research Institute for the Semi-Arid Tropics-MaliRemagen, Germany
| | - Charles T. Hash
- International Crops Research Institute for the Semi-Arid TropicsNiamey, Niger
| | - Andreas Buerkert
- Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics, University of KasselKassel, Germany
| | - Bettina I. G. Haussmann
- Institute of Plant Breeding, Seed Science and Population Genetics, University of HohenheimStuttgart, Germany
| |
Collapse
|
35
|
Bhati KK, Alok A, Kumar A, Kaur J, Tiwari S, Pandey AK. Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4379-89. [PMID: 27342224 PMCID: PMC5301939 DOI: 10.1093/jxb/erw224] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Low phytic acid is a trait desired in cereal crops and can be achieved by manipulating the genes involved either in its biosynthesis or its transport in the vacuoles. Previously, we have demonstrated that the wheat TaABCC13 protein is a functional transporter, primarily involved in heavy metal tolerance, and a probable candidate gene to achieve low phytate wheat. In the current study, RNA silencing was used to knockdown the expression of TaABCC13 in order to evaluate its functional importance in wheat. Transgenic plants with significantly reduced TaABCC13 transcripts in either seeds or roots were selected for further studies. Homozygous RNAi lines K1B4 and K4G7 exhibited 34-22% reduction of the phytic acid content in the mature grains (T4 seeds). These transgenic lines were defective for spike development, as characterized by reduced grain filling and numbers of spikelets. The seeds of transgenic wheat had delayed germination, but the viability of the seedlings was unaffected. Interestingly, early emergence of lateral roots was observed in TaABCC13-silenced lines as compared to non-transgenic lines. In addition, these lines also had defects in metal uptake and development of lateral roots in the presence of cadmium stress. Our results suggest roles of TaABCC13 in lateral root initiation and enhanced sensitivity towards heavy metals. Taken together, these data demonstrate that wheat ABCC13 is functionally important for grain development and plays an important role during detoxification of heavy metals.
Collapse
Affiliation(s)
- Kaushal Kumar Bhati
- National Agri-Food Biotechnology Institute (Department of Biotechnology), C-127, Industrial Area, Phase VIII, S.A.S. Nagar, Mohali-160071, Punjab, India
| | - Anshu Alok
- National Agri-Food Biotechnology Institute (Department of Biotechnology), C-127, Industrial Area, Phase VIII, S.A.S. Nagar, Mohali-160071, Punjab, India
| | - Anil Kumar
- National Agri-Food Biotechnology Institute (Department of Biotechnology), C-127, Industrial Area, Phase VIII, S.A.S. Nagar, Mohali-160071, Punjab, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, Punjab, India
| | - Siddharth Tiwari
- National Agri-Food Biotechnology Institute (Department of Biotechnology), C-127, Industrial Area, Phase VIII, S.A.S. Nagar, Mohali-160071, Punjab, India
| | - Ajay Kumar Pandey
- National Agri-Food Biotechnology Institute (Department of Biotechnology), C-127, Industrial Area, Phase VIII, S.A.S. Nagar, Mohali-160071, Punjab, India
| |
Collapse
|
36
|
Chen M, Rao RSP, Zhang Y, Zhong C, Thelen JJ. Metabolite variation in hybrid corn grain from a large-scale multisite study. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.cj.2016.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Sparvoli F, Laureati M, Pilu R, Pagliarini E, Toschi I, Giuberti G, Fortunati P, Daminati MG, Cominelli E, Bollini R. Exploitation of Common Bean Flours with Low Antinutrient Content for Making Nutritionally Enhanced Biscuits. FRONTIERS IN PLANT SCIENCE 2016; 7:928. [PMID: 27446157 PMCID: PMC4921496 DOI: 10.3389/fpls.2016.00928] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 06/10/2016] [Indexed: 05/10/2023]
Abstract
Consumption of legumes is associated with a number of physiological and health benefits. Legume proteins complement very well those of cereals and are often used to produce gluten-free products. However, legume seeds often contain antinutritional compounds, such as phytate, galactooligosaccharides, phenolic compounds, lectins, enzyme inhibitors, whose presence could affect their nutritional value. Screening natural and induced biodiversity for useful traits, followed by breeding, is a way to remove undesirable components. We used the common bean cv. Lady Joy and the lpa1 mutant line, having different seed composition for absence/presence of lectins,α-amylase inhibitor, (α-AI) and phytic acid, to verify the advantage of their use to make biscuits with improved nutritional properties. We showed that use of unprocessed flour from normal beans (Taylor's Horticulture and Billò) must be avoided, since lectin activity is still present after baking, and demonstrated the advantage of using the cv. Lady Joy, lacking active lectins and having active α-AI. To assess the contribution of bean flour to biscuit quality traits, different formulations of composite flours (B12, B14, B22, B24, B29) were used in combinations with wheat (B14), maize (gluten-free B22 and B29), or with both (B12 and B24). These biscuits were nutritionally better than the control, having a better amino acid score, higher fiber amount, lower predicted glycemic index (pGI) and starch content. Replacement of cv. Lady Joy bean flour with that of lpa1, having a 90% reduction of phytic acid and devoid of α-AI, contributed to about a 50% reduction of phytic acid content. We also showed that baking did not fully inactivate α-AI, further contributing to lowering the pGI of the biscuits. Finally, data from a blind taste test using consumers indicated that the B14 biscuit was accepted by consumers and comparable in terms of liking to the control biscuit, although the acceptability of these products decreased with the increase of bean content. The B22 gluten-free biscuits, although received liking scores that were just above the middle point of the hedonic scale, might represent a good compromise between health benefits (absence of gluten and lower pGI), expectations of celiac consumers and likeness.
Collapse
Affiliation(s)
- Francesca Sparvoli
- CNR, Institute of Agricultural Biology and BiotechnologyMilan, Italy
- *Correspondence: Francesca Sparvoli
| | - Monica Laureati
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Roberto Pilu
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of MilanMilan, Italy
| | - Ella Pagliarini
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Ivan Toschi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of MilanMilan, Italy
| | - Gianluca Giuberti
- Alimentari e Ambientali, Facoltà di Scienze Agrarie, Istituto di Scienze degli Alimenti e della Nutrizione, Università Cattolica del Sacro CuorePiacenza, Italy
| | - Paola Fortunati
- Alimentari e Ambientali, Facoltà di Scienze Agrarie, Istituto di Scienze degli Alimenti e della Nutrizione, Università Cattolica del Sacro CuorePiacenza, Italy
| | - Maria G. Daminati
- CNR, Institute of Agricultural Biology and BiotechnologyMilan, Italy
| | | | - Roberto Bollini
- CNR, Institute of Agricultural Biology and BiotechnologyMilan, Italy
| |
Collapse
|
38
|
Sparvoli F, Cominelli E. Seed Biofortification and Phytic Acid Reduction: A Conflict of Interest for the Plant? PLANTS 2015; 4:728-55. [PMID: 27135349 PMCID: PMC4844270 DOI: 10.3390/plants4040728] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/13/2015] [Indexed: 02/03/2023]
Abstract
Most of the phosphorus in seeds is accumulated in the form of phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate, InsP6). This molecule is a strong chelator of cations important for nutrition, such as iron, zinc, magnesium, and calcium. For this reason, InsP6 is considered an antinutritional factor. In recent years, efforts to biofortify seeds through the generation of low phytic acid (lpa) mutants have been noteworthy. Moreover, genes involved in the biosynthesis and accumulation of this molecule have been isolated and characterized in different species. Beyond its role in phosphorus storage, phytic acid is a very important signaling molecule involved in different regulatory processes during plant development and responses to different stimuli. Consequently, many lpa mutants show different negative pleitotropic effects. The strength of these pleiotropic effects depends on the specific mutated gene, possible functional redundancy, the nature of the mutation, and the spatio-temporal expression of the gene. Breeding programs or transgenic approaches aimed at development of new lpa mutants must take into consideration these different aspects in order to maximize the utility of these mutants.
Collapse
Affiliation(s)
- Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| |
Collapse
|
39
|
Affiliation(s)
- Karen Cichy
- USDA-ARS Small Grains and Potato Germplasm Research Unit; Aberdeen Idaho
| | - Victor Raboy
- USDA-ARS Small Grains and Potato Germplasm Research Unit; Aberdeen Idaho
| |
Collapse
|
40
|
Pilu R. Paramutation phenomena in plants. Semin Cell Dev Biol 2015; 44:2-10. [DOI: 10.1016/j.semcdb.2015.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 08/26/2015] [Indexed: 02/05/2023]
|
41
|
Shunmugam ASK, Bock C, Arganosa GC, Georges F, Gray GR, Warkentin TD. Accumulation of Phosphorus-Containing Compounds in Developing Seeds of Low-Phytate Pea (Pisum sativum L.) Mutants. PLANTS (BASEL, SWITZERLAND) 2014; 4:1-26. [PMID: 27135314 PMCID: PMC4844337 DOI: 10.3390/plants4010001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/17/2014] [Indexed: 11/16/2022]
Abstract
Low phytic acid (lpa) crops are low in phytic acid and high in inorganic phosphorus (Pi). In this study, two lpa pea genotypes, 1-150-81, 1-2347-144, and their progenitor CDC Bronco were grown in field trials for two years. The lpa genotypes were lower in IP₆ and higher in Pi when compared to CDC Bronco. The total P concentration was similar in lpa genotypes and CDC Bronco throughout the seed development. The action of myo-inositol phosphate synthase (MIPS) (EC 5.5.1.4) is the first and rate-limiting step in the phytic acid biosynthesis pathway. Aiming at understanding the genetic basis of the lpa mutation in the pea, a 1530 bp open reading frame of MIPS was amplified from CDC Bronco and the lpa genotypes. Sequencing results showed no difference in coding sequence in MIPS between CDC Bronco and lpa genotypes. Transcription levels of MIPS were relatively lower at 49 days after flowering (DAF) than at 14 DAF for CDC Bronco and lpa lines. This study elucidated the rate and accumulation of phosphorus compounds in lpa genotypes. The data also demonstrated that mutation in MIPS was not responsible for the lpa trait in these pea lines.
Collapse
Affiliation(s)
- Arun S K Shunmugam
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
| | - Cheryl Bock
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada.
| | - Gene C Arganosa
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
| | - Fawzy Georges
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada.
| | - Gordon R Gray
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
| | - Thomas D Warkentin
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
42
|
Bouain N, Shahzad Z, Rouached A, Khan GA, Berthomieu P, Abdelly C, Poirier Y, Rouached H. Phosphate and zinc transport and signalling in plants: toward a better understanding of their homeostasis interaction. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5725-41. [PMID: 25080087 DOI: 10.1093/jxb/eru314] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Inorganic phosphate (Pi) and zinc (Zn) are two essential nutrients for plant growth. In soils, these two minerals are either present in low amounts or are poorly available to plants. Consequently, worldwide agriculture has become dependent on external sources of Pi and Zn fertilizers to increase crop yields. However, this strategy is neither economically nor ecologically sustainable in the long term, particularly for Pi, which is a non-renewable resource. To date, research has emphasized the analysis of mineral nutrition considering each nutrient individually, and showed that Pi and Zn homeostasis is highly regulated in a complex process. Interestingly, numerous observations point to an unexpected interconnection between the homeostasis of the two nutrients. Nevertheless, despite their fundamental importance, the molecular bases and biological significance of these interactions remain largely unknown. Such interconnections can account for shortcomings of current agronomic models that typically focus on improving the assimilation of individual elements. Here, current knowledge on the regulation of the transport and signalling of Pi and Zn individually is reviewed, and then insights are provided on the recent progress made towards a better understanding of the Zn-Pi homeostasis interaction in plants.
Collapse
Affiliation(s)
- Nadia Bouain
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Montpellier 2, Montpellier SupAgro. Bat 7, 2 place Viala, 34060 Montpellier cedex 2, France Laboratoire Des Plantes Extrêmophile, Centre de Biotechnologie de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Zaigham Shahzad
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Montpellier 2, Montpellier SupAgro. Bat 7, 2 place Viala, 34060 Montpellier cedex 2, France
| | - Aida Rouached
- Laboratoire Des Plantes Extrêmophile, Centre de Biotechnologie de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Ghazanfar Abbas Khan
- Département de Biologie Moléculaire Végétale, Biophore, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Pierre Berthomieu
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Montpellier 2, Montpellier SupAgro. Bat 7, 2 place Viala, 34060 Montpellier cedex 2, France
| | - Chedly Abdelly
- Laboratoire Des Plantes Extrêmophile, Centre de Biotechnologie de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Yves Poirier
- Département de Biologie Moléculaire Végétale, Biophore, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Hatem Rouached
- Biochimie et Physiologie Moléculaire des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Montpellier 2, Montpellier SupAgro. Bat 7, 2 place Viala, 34060 Montpellier cedex 2, France
| |
Collapse
|
43
|
Rao J, Yang L, Wang C, Zhang D, Shi J. Digital gene expression analysis of mature seeds of transgenic maize overexpressingAspergillus nigerphyA2and its non-transgenic counterpart. GM CROPS & FOOD 2014; 4:98-108. [DOI: 10.4161/gmcr.25593] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Belgaroui N, Zaidi I, Farhat A, Chouayekh H, Bouain N, Chay S, Curie C, Mari S, Masmoudi K, Davidian JC, Berthomieu P, Rouached H, Hanin M. Over-expression of the Bacterial Phytase US417 in Arabidopsis Reduces the Concentration of Phytic Acid and Reveals Its Involvement in the Regulation of Sulfate and Phosphate Homeostasis and Signaling. ACTA ACUST UNITED AC 2014; 55:1912-24. [DOI: 10.1093/pcp/pcu122] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
45
|
Shahzad Z, Rouached H, Rakha A. Combating Mineral Malnutrition through Iron and Zinc Biofortification of Cereals. Compr Rev Food Sci Food Saf 2014; 13:329-346. [PMID: 33412655 DOI: 10.1111/1541-4337.12063] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 01/27/2014] [Indexed: 01/26/2023]
Abstract
Iron and zinc are 2 important nutrients in the human diet. Their deficiencies in humans lead to a variety of health-related problems. Iron and zinc biofortification of cereals is considered a cost-effective solution to overcome the malnutrition of these minerals. Biofortification aims at either increasing accumulation of these minerals in edible parts, endosperm, or to increase their bioavailability. Iron and zinc fertilization management positively influence their accumulation in cereal grains. Regarding genetic strategies, quantitative genetic studies show the existence of ample variation for iron and zinc accumulation as well as inhibitors or promoters of their bioavailability in cereal grains. However, the genes underlying this variation have rarely been identified and never used in breeding programs. Genetically modified cereals developed by modulation of genes involved in iron and zinc homeostasis, or genes influencing bioavailability, have shown promising results. However, iron and zinc concentration were quantified in the whole grains during most of the studies, whereas a significant proportion of them is lost during milling. This makes it difficult to realistically assess the effectiveness of the different strategies. Moreover, modifications in the accumulation of toxic elements, like cadmium and arsenic, that are of concern for food safety are rarely determined. Trials in living organisms with iron- and zinc-biofortified cereals also remain to be undertaken. This review focuses on the common challenges and their possible solutions related to agronomic as well as genetic iron and zinc biofortification of cereals.
Collapse
Affiliation(s)
- Zaigham Shahzad
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 Montpellier SupAgro/CNRS/INRA/Univ, Montpellier II, 2 Place Viala, F-34060 Montpellier cedex 1, France
| | - Hatem Rouached
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 Montpellier SupAgro/CNRS/INRA/Univ, Montpellier II, 2 Place Viala, F-34060 Montpellier cedex 1, France
| | - Allah Rakha
- Natl. Inst. of Food Science and Technology, Univ. of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
46
|
|
47
|
Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene (IPK1). PLoS One 2013; 8:e68161. [PMID: 23844166 PMCID: PMC3699528 DOI: 10.1371/journal.pone.0068161] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 05/30/2013] [Indexed: 02/03/2023] Open
Abstract
Phytic acid (InsP6) is considered to be the major source of phosphorus and inositol phosphates in most cereal grains. However, InsP6 is not utilized efficiently by monogastric animals due to lack of phytase enzyme. Furthermore, due to its ability to chelate mineral cations, phytic acid is considered to be an antinutrient that renders these minerals unavailable for absorption. In view of these facts, reducing the phytic acid content in cereal grains is a desired goal for the genetic improvement of several crops. In the present study, we report the RNAi-mediated seed-specific silencing (using the Oleosin18 promoter) of the IPK1 gene, which catalyzes the last step of phytic acid biosynthesis in rice. The presence of the transgene cassette in the resulting transgenic plants was confirmed by molecular analysis, indicating the stable integration of the transgene. The subsequent T4 transgenic seeds revealed 3.85-fold down-regulation in IPK1 transcripts, which correlated to a significant reduction in phytate levels and a concomitant increase in the amount of inorganic phosphate (Pi). The low-phytate rice seeds also accumulated 1.8-fold more iron in the endosperm due to the decreased phytic acid levels. No negative effects were observed on seed germination or in any of the agronomic traits examined. The results provide evidence that silencing of IPK1 gene can mediate a substantial reduction in seed phytate levels without hampering the growth and development of transgenic rice plants.
Collapse
|
48
|
Dong J, Yan W, Bock C, Nokhrina K, Keller W, Georges F. Perturbing the metabolic dynamics of myo-inositol in developing Brassica napus seeds through in vivo methylation impacts its utilization as phytate precursor and affects downstream metabolic pathways. BMC PLANT BIOLOGY 2013; 13:84. [PMID: 23692661 PMCID: PMC3680054 DOI: 10.1186/1471-2229-13-84] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/09/2013] [Indexed: 05/29/2023]
Abstract
BACKGROUND myo-Inositol (Ins) metabolism during early stages of seed development plays an important role in determining the distributional relationships of some seed storage components such as the antinutritional factors, sucrose galactosides (also known as raffinose oligosaccharides) and phytic acid (PhA) (myo-inositol 1,2,3,4,5,6-hexakisphosphate). The former is a group of oligosaccharides, which plays a role in desiccation at seed maturation. They are not easily digested by monogastric animals, hence their flatulence-causing properties. Phytic acid is highly negatively charged, which chelates positive ions of essential minerals and decreases their bioavailability. It is also a major cause of phosphate-related water pollution. Our aim was to investigate the influence of competitive diversion of Ins as common substrate on the biosynthesis of phytate and sucrose galactosides. RESULTS We have studied the initial metabolic patterns of Ins in developing seeds of Brassica napus and determined that early stages of seed development are marked by rapid deployment of Ins into a variety of pathways, dominated by interconversion of polar (Ins phosphates) and non-polar (phospholipids) species. In a time course experiment at early stages of seed development, we show Ins to be a highly significant constituent of the endosperm and seed coat, but with no phytate biosynthesis occurring in either tissue. Phytate accumulation appears to be confined mainly within the embryo throughout seed development and maturation. In our approach, the gene for myo-inositol methyltransferase (IMT), isolated from Mesembryanthemum crystallinum (ice plant), was transferred to B. napus under the control of the seed-specific promoters, napin and phaseolin. Introduction of this new metabolic step during seed development prompted Ins conversion to the corresponding monomethyl ether, ononitol, and affected phytate accumulation. We were able to produce homozygous transgenic lines with 19%-35% average phytate reduction. Additionally, changes in the raffinose content and related sugars occurred along with enhanced sucrose levels. Germination rates, viability and other seed parameters were unaffected by the IMT transgene over-expression. CONCLUSIONS Competitive methylation of Ins during seed development reduces seed antinutritional components and enhances its nutritional characteristics while maintaining adequate phosphate reserves. Such approach should potentially raise the canola market value and likely, that of other crops.
Collapse
Affiliation(s)
- Jinzhuo Dong
- Wilmar International, 56 Neil Rd, Singapore 088830, Singapore
| | - Wei Yan
- National Research Council Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Cheryl Bock
- National Research Council Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Kateryna Nokhrina
- National Research Council Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Wilf Keller
- Ag-West Bio Inc, 101 – 111 Research Drive, Saskatoon, SK S7N 3R2, Canada
| | - Fawzy Georges
- National Research Council Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| |
Collapse
|
49
|
Landoni M, Cerino Badone F, Haman N, Schiraldi A, Fessas D, Cesari V, Toschi I, Cremona R, Delogu C, Villa D, Cassani E, Pilu R. Low phytic acid 1 mutation in maize modifies density, starch properties, cations, and fiber contents in the seed. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4622-30. [PMID: 23638689 DOI: 10.1021/jf400259h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Monogastric animals are unable to digest phytic acid, so it represents an antinutritional factor and also an environmental problem. One strategy to solve this problem is the utilization of low phytic acid (lpa) mutants that accumulate low levels of phytic P and high levels of free phosphate in the seeds; among the lpa maize mutants lpa1 exhibited the highest reduction of phytic acid in the seed. This study indicated that the low phytic acid mutations exerted pleiotropic effects not directly connected to the phytic acid pathway, such as on seed density, content of ions, and the antioxidant compounds present in the kernels. Furthermore some nutritional properties of the flour were altered by the lpa1 mutations, in particular lignin and protein content, while the starch does not seem to be modified as to the total amount and in the amylose/amylopectin ratio, but alterations were noticed in the structure and size of granules.
Collapse
Affiliation(s)
- Michela Landoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chen R, Zhang C, Yao B, Xue G, Yang W, Zhou X, Zhang J, Sun C, Chen P, Fan Y. Corn seeds as bioreactors for the production of phytase in the feed industry. J Biotechnol 2013; 165:120-6. [DOI: 10.1016/j.jbiotec.2013.01.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/18/2013] [Accepted: 01/29/2013] [Indexed: 11/15/2022]
|