1
|
J C, Me C, Mt C. Renoprotective mechanisms of glucagon-like peptide-1 receptor agonists. DIABETES & METABOLISM 2025; 51:101641. [PMID: 40127835 DOI: 10.1016/j.diabet.2025.101641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/26/2025]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone, secreted from gut endocrine cells, which acts to potentiate nutrient-induced insulin secretion. Activation of its receptor, GLP-1R, decreases glucagon secretion and gastric emptying, thereby decreasing blood glucose and body weight. It is largely through these mechanisms that Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have transformed the treatment of type 2 diabetes. More recently, preclinical and clinical studies have reported that these agents have potent extra-pancreatic effects, exhibiting cardioprotective and renoprotective actions. The recent FLOW trial was the first multicentre clinical trial investigating the effect of GLP-1RAs on a primary renal outcome and reported robust evidence that GLP-1RAs are renoprotective. Studies in rodent models of renal injury have shown that gain and loss of GLP-1R signalling improves or deteriorates kidney function. However, the precise mechanisms responsible for renal benefits of GLP-1RAs are not yet fully understood. While prolonged activation of GLP-1 receptors (GLP-1R) has been shown to reverse diabetes-related disruptions in gene expression across various renal cell populations, GLP-1R expression in both rodent and human kidneys is thought to be primarily confined to certain vascular smooth muscle cells. This review discusses recent advances in our understanding of the effects of GLP-1 medicines on the kidney with a focus on indirect and direct mechanisms of action.
Collapse
Affiliation(s)
- Chen J
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia
| | - Cooper Me
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia
| | - Coughlan Mt
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia; Baker Heart and Diabetes Institute, Melbourne, 3004, Victoria, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University Parkville Campus, 381 Royal Parade, Parkville, 3052, Victoria, Australia.
| |
Collapse
|
2
|
Wu S, Zhao S, Hai L, Yang Z, Wang S, Cui D, Xie J. Macrophage polarization regulates the pathogenesis and progression of autoimmune diseases. Autoimmun Rev 2025; 24:103820. [PMID: 40268127 DOI: 10.1016/j.autrev.2025.103820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/28/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
Macrophages are integral components of the innate immune system, present in nearly all tissues and organs throughout the body. They exhibit a high degree of plasticity and heterogeneity, participating in immune responses to maintain immune homeostasis. When the immune system loses tolerance, macrophages rapidly proliferate and polarize in response to various signaling pathways within a disrupted microenvironment. The direction of macrophage polarization can be regulated by a variety of factors, including transcription factors, non-coding RNAs, and metabolic reprogramming. Autoimmune diseases arise from the immune system's activation against host cells, with macrophage polarization playing a critical role in the pathogenesis of numerous chronic inflammatory and autoimmune conditions, such as rheumatoid arthritis, systemic lupus erythematosus, immune thrombocytopenic purpura, and type 1 diabetes. Consequently, elucidating the molecular mechanisms underlying macrophage development and function presents opportunities for the development of novel therapeutic targets. This review outlines the functions of macrophage polarization in prevalent autoimmune diseases and the underlying mechanisms involved. Furthermore, we discuss the immunotherapeutic potential of targeting macrophage polarization and highlight the characteristics and recent advancements of promising therapeutic targets. Our aim is to inspire further strategies to restore macrophage balance in preventing and treating autoimmune diseases.
Collapse
Affiliation(s)
- Siwen Wu
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shubi Zhao
- Department of Critical Medicine, School of Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Lei Hai
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziyin Yang
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shifen Wang
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dawei Cui
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jue Xie
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Barber T, Neumiller JJ, Fravel MA, Page RL, Tuttle KR. Using guideline-directed medical therapies to improve kidney and cardiovascular outcomes in patients with chronic kidney disease. Am J Health Syst Pharm 2025:zxaf045. [PMID: 40197743 DOI: 10.1093/ajhp/zxaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
PURPOSE An estimated 37 million people currently live with chronic kidney disease in the US, which places them at increased risk for kidney disease progression, cardiovascular disease, and mortality. This review discusses current standard-of-care management of patients with chronic kidney disease, identifies key gaps in care, and briefly highlights how pharmacists can address gaps in care as members of the multidisciplinary care team. SUMMARY Recent advances in guideline-directed medical therapies for patients with chronic kidney disease, including agents from the sodium-glucose cotransporter, glucagon-like peptide-1 receptor agonist, and nonsteroidal mineralocorticoid receptor antagonist classes, can dramatically improve cardiovascular-kidney-metabolic care and outcomes. Unfortunately, gaps in screening, diagnosis, and implementation of recommended therapies persist. Team-based models of care-inclusive of the person with chronic kidney disease-have the potential to significantly improve care and outcomes for people with chronic kidney disease by addressing current gaps in care. CONCLUSION As members of the multidisciplinary care team, pharmacists can play a critical role in addressing current gaps in care, including optimized use of guideline-directed medical therapies, in patients with chronic kidney disease.
Collapse
Affiliation(s)
| | - Joshua J Neumiller
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA
- Providence Medical Research Center, Providence Inland Northwest Health, Spokane, WA, USA
| | - Michelle A Fravel
- Division of Applied Clinical Sciences, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Robert L Page
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Katherine R Tuttle
- Providence Medical Research Center, Providence Inland Northwest Health, Spokane, WA
- Nephrology Division, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
4
|
Boeckhaus J, Mabillard H, Sayer JA. GLP-1 receptor agonists-another promising therapy for Alport syndrome? JOURNAL OF RARE DISEASES (BERLIN, GERMANY) 2025; 4:5. [PMID: 40026358 PMCID: PMC11870915 DOI: 10.1007/s44162-024-00065-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/17/2024] [Indexed: 03/05/2025]
Abstract
Alport syndrome (AS) is a progressive monogenic glomerular kidney disease characterised by kidney function decline, hearing loss, and ocular abnormalities, often leading to early-onset kidney failure (KF). While current therapies, such as renin-angiotensin system inhibitors (RASi), offer some benefits, many patients still experience KF at a young age, highlighting the need for additional treatment options. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have emerged as promising agents with demonstrated cardiovascular and nephroprotective effects in type 2 diabetes (T2D) and chronic kidney disease (CKD) patients. Evidence from several major clinical trials has shown that GLP-1 RAs can reduce cardiovascular events and slow CKD progression by reducing albuminuria. Their potential mechanisms of action include anti-inflammatory, anti-fibrotic, and antioxidative effects, making them particularly relevant for the treatment of AS, where inflammation and fibrosis play crucial roles in disease progression. This review explores the therapeutic potential of GLP-1 RAs in AS, summarising pre-clinical and clinical data and elucidating the pathways through which GLP-1 RAs might offer renoprotective benefits. We advocate for further research into their application in AS and recommend the inclusion of AS patients in future clinical trials to better understand their impact on disease progression and patient outcomes.
Collapse
Affiliation(s)
- Jan Boeckhaus
- Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Holly Mabillard
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle Upon Tyne, UK
| | - John A. Sayer
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne, UK
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, UK
| |
Collapse
|
5
|
Zhang RM, Oh J, Wice BM, Dusso A, Bernal-Mizrachi C. Acute hyperglycemia induces podocyte apoptosis by monocyte TNF-α release, a process attenuated by vitamin D and GLP-1 receptor agonists. J Steroid Biochem Mol Biol 2025; 247:106676. [PMID: 39818342 PMCID: PMC11859504 DOI: 10.1016/j.jsbmb.2025.106676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Targeting optimal glycemic control based on hemoglobin A1c (A1c) values reduces but does not abolish the onset of diabetic kidney disease and its progression to chronic kidney disease (CKD). This suggests that factors other than the average glucose contribute to the residual risk. Vitamin D deficiency and frequent episodes of acute hyperglycemia (AH) are associated with the onset of albuminuria and CKD progression in diabetes. This study aimed to determine if moderate levels of AH harm podocytes directly or promote a pro-inflammatory monocyte/macrophage phenotype that leads to podocyte apoptosis, and whether vitamin D deficiency accelerates these processes. We found that AH (16.7 mM D- glucose) didn't induce podocyte apoptosis directly, but it did promote a pro-inflammatory response in human monocytes and macrophages, resulting in an increased TNF-α secretion causing podocyte apoptosis. The AH-induced monocyte TNF-α secretion was inversely correlated with healthy donors' serum 25(OH)D levels. AH induced monocyte TNF-α release by increasing oxidative and ER stress, which in turn increased ADAM17 (A Disintegrin And Metalloprotease 17) and iRhom2 (inactive Rhomboid protein 2) expression, both essential for TNF-α secretion. Additionally, monocyte activation of glucagon-like peptide-1 receptor (GLP-1R), using a GLP-1R agonist, downregulated ADAM17/iRhom2 expression, decreasing TNF-α release and reducing podocyte apoptosis. These results show that a normal vitamin D status may attenuate a mechanism by which AH contributes to podocyte apoptosis and CKD progression and might enhance a novel anti-inflammatory role of GLP-1 to prevent AH-driven CKD progression in diabetes.
Collapse
Affiliation(s)
- Rong M Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jisu Oh
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Burton M Wice
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Adriana Dusso
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Carlos Bernal-Mizrachi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Medicine, VA Medical Center, St. Louis, MO, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Karakasis P, Theofilis P, Patoulias D, Vlachakis PK, Antoniadis AP, Fragakis N. Diabetes-Driven Atherosclerosis: Updated Mechanistic Insights and Novel Therapeutic Strategies. Int J Mol Sci 2025; 26:2196. [PMID: 40076813 PMCID: PMC11900163 DOI: 10.3390/ijms26052196] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
The global rise in diabetes prevalence has significantly contributed to the increasing burden of atherosclerotic cardiovascular disease (ASCVD), a leading cause of morbidity and mortality in this population. Diabetes accelerates atherosclerosis through mechanisms such as hyperglycemia, oxidative stress, chronic inflammation, and epigenetic dysregulation, leading to unstable plaques and an elevated risk of cardiovascular events. Despite advancements in controlling traditional risk factors like dyslipidemia and hypertension, a considerable residual cardiovascular risk persists, highlighting the need for innovative therapeutic approaches. Emerging treatments, including sodium-glucose cotransporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, epigenetic modulators, and RNA-based therapies, are showing promise in addressing the unique challenges of diabetes-associated ASCVD. Precision medicine strategies, such as nanoparticle-based drug delivery and cell-specific therapies, offer further potential for mitigating cardiovascular complications. Advances in multiomics and systems biology continue to deepen our understanding of the molecular mechanisms driving diabetes-associated atherosclerosis. This review synthesizes recent advances in understanding the pathophysiology and treatment of diabetes-related atherosclerosis, offering a roadmap for future research and precision medicine approaches to mitigate cardiovascular risk in this growing population.
Collapse
Affiliation(s)
- Paschalis Karakasis
- Second Department of Cardiology, Medical School, Hippokration General Hospital, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54124 Thessaloniki, Greece; (A.P.A.); (N.F.)
| | - Panagiotis Theofilis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece; (P.T.); (P.K.V.)
| | - Dimitrios Patoulias
- Second Propedeutic Department of Internal Medicine, Faculty of Medicine, School of Health Sciences Aristotle, University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Panayotis K. Vlachakis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece; (P.T.); (P.K.V.)
| | - Antonios P. Antoniadis
- Second Department of Cardiology, Medical School, Hippokration General Hospital, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54124 Thessaloniki, Greece; (A.P.A.); (N.F.)
| | - Nikolaos Fragakis
- Second Department of Cardiology, Medical School, Hippokration General Hospital, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54124 Thessaloniki, Greece; (A.P.A.); (N.F.)
| |
Collapse
|
7
|
Alicic RZ, Neumiller JJ, Tuttle KR. Combination therapy: an upcoming paradigm to improve kidney and cardiovascular outcomes in chronic kidney disease. Nephrol Dial Transplant 2025; 40:i3-i17. [PMID: 39907543 PMCID: PMC11795665 DOI: 10.1093/ndt/gfae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 02/06/2025] Open
Abstract
In this article the authors review recent advances in the treatment of chronic kidney disease (CKD) with diabetes, and summarize evidence supporting combination therapy approaches to improve patient outcomes. Driven by the global rise in diabetes, the worldwide burden of CKD has nearly doubled since the 1990s. People with CKD have notably increased risks for premature cardiovascular disease (heart and blood vessels disease), kidney failure and death. CKD, diabetes, obesity and cardiovascular disease are closely interrelated and share common risk factors. These health conditions therefore comprise what is now known as cardiovascular-kidney-metabolic (CKM) syndrome. Recently approved medications, including sodium-glucose cotransporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1RAs) and the non-steroidal mineralocorticoid receptor antagonist (ns-MRA) finerenone, represent agents capable of reducing metabolic, kidney and cardiovascular risk through complementary mechanisms of action. Current evidence supports use of these therapies in combination. Besides providing additive protective effects, combination therapy may also help reduce side effects. For instance, using an SGLT2 inhibitor in combination with finerenone helps decrease the risk for high potassium levels. Through the multipronged approach, combination therapy allows tailoring treatment for the individual patient characteristics and needs. Several planned and ongoing clinical trials continue to study the benefits of combination therapy in people with CKM syndrome. With building evidence supporting the use of combination therapy, it is crucial to raise awareness of the importance of this treatment approach and develop processes to incorporate new therapies into every day practice to support optimal care and improved outcomes. ABSTRACT The global burden of chronic kidney disease (CKD) increased by nearly 90% in the period spanning 1990 to 2016, mostly attributed to an increase in the prevalence of CKD in diabetes. People living with CKD have an elevated lifetime risk for cardiovascular disease (CVD) when compared with the general population, with risk increasing in parallel with albuminuria and kidney function decline. Metabolic disease, CKD and CVD share common risk factors including neurohumoral activation, systemic inflammation and oxidative stress, thus prompting the introduction of a broader construct of cardiovascular-kidney-metabolic (CKM) syndrome. An important rationale for the introduction of this concept are recent and ongoing therapeutic advancements fundamentally changing CKM management. Sodium-glucose cotransporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1RAs) and the non-steroidal mineralocorticoid receptor antagonist (ns-MRA) finerenone have shifted the therapeutic paradigm for patients with CKD and have emerged in rapid succession as cornerstones of guideline-directed medical therapy (GDMT). Recently completed clinical trials of aldosterone synthase inhibitors and endothelin receptor antagonists have additionally reported additive antiproteinuric effects on the background of renin-angiotensin system and SGLT2 inhibition, with acceptable safety profiles. The sum of current evidence from both preclinical and clinical studies support combination therapy in the setting of CKD to achieve additive and potentially synergistic kidney and heart protection by addressing metabolic, hemodynamic, and pro-inflammatory and pro-fibrotic mechanistic pathways. This narrative review will discuss available evidence supporting combination GDMT in CKD with diabetes and additionally discuss ongoing and future trials evaluating the efficacy and safety of combination therapies for CKD with or without diabetes.
Collapse
Affiliation(s)
- Radica Z Alicic
- Providence Medical Research Center, Providence Inland Northwest Health, Spokane, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Joshua J Neumiller
- Providence Medical Research Center, Providence Inland Northwest Health, Spokane, WA, USA
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Katherine R Tuttle
- Providence Medical Research Center, Providence Inland Northwest Health, Spokane, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Kidney Research Institute and Institute of Translational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Takasu M, Kishi S, Nagasu H, Kidokoro K, Brooks CR, Kashihara N. The Role of Mitochondria in Diabetic Kidney Disease and Potential Therapeutic Targets. Kidney Int Rep 2025; 10:328-342. [PMID: 39990900 PMCID: PMC11843125 DOI: 10.1016/j.ekir.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 02/25/2025] Open
Abstract
Diabetic kidney disease (DKD) is recognized worldwide as a leading cause of end-stage renal failure. Although therapies that target glomerular hemodynamics and can inhibit disease progression have been developed, there is currently no fundamental cure for the disease. Mitochondria play an important role in cellular respiration, producing adenosine triphosphate (ATP) by oxidative phosphorylation, and are essential for renal function, especially in proximal tubular cells (PTCs). In diabetic conditions, maintaining mitochondrial health is vital for preserving renal function. Under diabetic conditions, excessive reactive oxygen species (ROS) can damage mitochondrial DNA (mtDNA), leading to renal dysfunction. Strategies targeting mitochondrial function, such as AMP-activated protein kinase (AMPK) activation and modulation of nitric oxide (NO) availability, are promising for suppressing diabetic nephropathy. The immune response to DKD, initiated by detecting damage- and pathogen-associated molecular patterns, has a significant impact on the progression of DKD, including leakage of mtDNA and RNA, leading to inflammation through various pathways. This contributes to renal impairment characterized by hyperfiltration, endothelial dysfunction, and albuminuria. Mitochondrial energy metabolism and dynamics induced by hyperglycemia precede the onset of albuminuria and histological changes in the kidneys. The increased mitochondrial fission and decreased fusion that occur under diabetic conditions result in ATP depletion and exacerbate cellular dysfunction. Therapeutic strategies focused on restoring mitochondrial function are promising for slowing the progression of DKD and reduce the adverse effects on renal function. Sodium-glucose cotransporter-2 inhibitors (SGLT2is) and glucagon-like peptide-1 (GLP-1) receptor agonists, already in clinical use, have been shown to be protective for mitochondria, and nuclear factor erythroid 2-related factor 2 (Nrf2) activation and mitochondrial dynamics are promising drug discovery targets for further research.
Collapse
Affiliation(s)
- Masanobu Takasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Seiji Kishi
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Craig R. Brooks
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Naoki Kashihara
- Department of Medical Science, Kawasaki Medical School, Kurashiki, Japan
- Kawasaki Geriatric Medical Center, Kawasaki Medical School, Okayama, Japan
| |
Collapse
|
9
|
Liao HW, Cheng CY, Chen HY, Chen JY, Pan HC, Huang TM, Wu VC. Dipeptidyl peptidase 4 inhibitors reduce the risk of adverse outcomes after acute kidney injury in diabetic patients. Clin Kidney J 2025; 18:sfae385. [PMID: 39927258 PMCID: PMC11806628 DOI: 10.1093/ckj/sfae385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Indexed: 02/11/2025] Open
Abstract
Background Dipeptidyl peptidase 4 inhibitors (DPP4is) are considered safe for use in patients with diabetes mellitus and kidney dysfunction. We explored whether usage of DPP4is in patients who recovered from dialysis-requiring acute kidney injury (AKI) could reduce the risk of future cardiac and kidney events. Methods We used the TriNetX platform to investigate whether the use of DPP4is in diabetes mellitus patients within 90 days of discharge from acute kidney disease could reduce the risk of all-cause mortality, major adverse kidney events (MAKEs), major adverse cardiovascular events (MACEs), and re-dialysis. The patients were followed for 5 years or until the occurrence of significant outcomes, with cohort data collected from 1 January 2016 to 30 September 2022. Results The cohort utilizing DPP4is comprised 7348 patients with acute kidney disease, while the control group encompassed 229 417 individuals. After applying propensity score matching, 7343 patients (age 66.2 ± 13.4 years; male, 49.9%) who used DPP4is showed a significant reduction in the risk of all-cause mortality [adjusted hazard ratio (aHR) 0.89; E-value 1.50 , MAKEs (aHR 0.86; E-value 1.59), MACEs (aHR 0.91; E-value 1.44), and re-dialysis (aHR 0.73; E-value 2.10) after a median follow-up of 2.4 years. Conclusions We demonstrated that in diabetes mellitus patients concurrently experiencing acute kidney disease, DPP4i usage could decrease the risk of mortality, MAKEs, MACEs, and re-dialysis. These findings emphasize the pivotal role of tailored treatment strategies involving DPP4i for acute kidney disease patients.
Collapse
Affiliation(s)
- Hung-Wei Liao
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Yi Cheng
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Medical University-Research Center of Urology and Kidney (RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsing-Yu Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jui-Yi Chen
- Division of Nephrology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Heng-Chih Pan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
- Division of Nephrology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Tao-Min Huang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Vin-Cent Wu
- Primary Aldosteronism Center of Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- NSARF (National Taiwan University Hospital Study Group of ARF), TAIPAI (Taiwan Primary Aldosteronism Investigators), and CAKS (Taiwan Consortium for Acute Kidney Injury and Renal Diseases), Taipei, Taiwan
| |
Collapse
|
10
|
Khan AW, Jandeleit-Dahm KAM. Atherosclerosis in diabetes mellitus: novel mechanisms and mechanism-based therapeutic approaches. Nat Rev Cardiol 2025:10.1038/s41569-024-01115-w. [PMID: 39805949 DOI: 10.1038/s41569-024-01115-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Atherosclerosis is a disease of large and medium arteries that can lead to life-threatening cardiovascular and cerebrovascular consequences, such as myocardial infarction and stroke. Moreover, atherosclerosis is a major contributor to cardiovascular-related mortality in individuals with diabetes mellitus. Diabetes aggravates the pathobiological mechanisms that underlie the development of atherosclerosis. Currently available anti-atherosclerotic drugs or strategies solely focus on optimal control of systemic risk factors, including hyperglycaemia and dyslipidaemia, but do not adequately target the diabetes-exacerbated mechanisms of atherosclerotic cardiovascular disease, highlighting the need for targeted, mechanism-based therapies. This Review focuses on emerging pathological mechanisms and related novel therapeutic targets in atherosclerotic cardiovascular disease in patients with diabetes.
Collapse
Affiliation(s)
- Abdul Waheed Khan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Karin A M Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- German Diabetes Centre, Leibniz Centre for Diabetes Research at the Heinrich Heine University, Dusseldorf, Germany
| |
Collapse
|
11
|
Zhang R, Jiao Y, Wu Y, Yan L, Zhang C, Xu J, On behalf of the China National Diabetic Chronic Complications Study Group. Serum Globulin and Albumin-to-Globulin Ratio are Associated with Diabetic Kidney Disease but Not Diabetic Retinopathy in Type 2 Diabetes Mellitus Patients: A Cross-Sectional Study. J Inflamm Res 2024; 17:11545-11559. [PMID: 39737098 PMCID: PMC11682941 DOI: 10.2147/jir.s493681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/14/2024] [Indexed: 01/01/2025] Open
Abstract
Purpose This study aimed to explore the association of globulin and albumin-to-globulin ratio (AGR) with diabetic kidney disease (DKD) and diabetic retinopathy (DR) in patients with type 2 diabetes mellitus (T2DM). Methods This study used data from the China National Diabetic Chronic Complications Study in Shaanxi Province. From April to May 2019, T2DM patients at disease surveillance sites in Shaanxi Province were investigated using a stratified multi-stage sampling method. The participants completed questionnaire surveys, anthropometric and blood pressure measurements, laboratory tests, and fundus photograph examinations. Multivariate Logistic regression and restricted cubic spline model were used to analyze the association of globulin and AGR with DKD and DR, and subgroup analysis was performed according to age, sex, and diabetes duration to test the stability of the results. Results A total of 1494 T2DM patients were enrolled in this study, including 495 patients with DKD (33.1%) and 341 patients with DR (22.8%). After adjusting for all covariates, globulin and AGR were linearly associated with DKD. For every 1g/L increase in globulin level, the risk of DKD increased by 7% (OR=1.07, 95% CI=1.04, 1.10). For every 1 unit increase in AGR, the risk of DKD was reduced by 55% (OR=0.45, 95% CI=0.28, 0.72). Subgroup analysis showed that the association between globulin and DKD was consistent across all subgroups, and the association between AGR and DKD was consistent across subgroups of age and diabetes duration; however, only in males, higher AGR was associated with a reduced risk of DKD. No association was found between globulin and AGR with DR. Conclusion Globulin is an independent risk factor and AGR is an independent protective factor for DKD. Screening for DKD should be performed in T2DM patients with high globulin and low AGR levels, especially in men.
Collapse
Affiliation(s)
- Ruo Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Yang Jiao
- Department of Endocrinology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Yuchao Wu
- Department of Endocrinology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Lijing Yan
- Department of Endocrinology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Chunhong Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Jing Xu
- Department of Endocrinology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, People’s Republic of China
| | | |
Collapse
|
12
|
Abdelrahman AM, Awad AS, Hasan I, Abdel-Rahman EM. Glucagon-like Peptide-1 Receptor Agonists and Diabetic Kidney Disease: From Bench to Bed-Side. J Clin Med 2024; 13:7732. [PMID: 39768655 PMCID: PMC11677827 DOI: 10.3390/jcm13247732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are currently available for the management of type 2 diabetes mellitus. They have been shown to help with diabetic kidney diseases through multiple mechanisms. In this review, we will shed light on the different mechanisms of action through which GLP-1 receptor agonists may achieve their roles in renal protection in diabetics, both in animal and human studies, as well as review the renal outcomes when using these drugs and their safety profile in diabetic patients.
Collapse
Affiliation(s)
- Aly M. Abdelrahman
- Department of Pharmacology & Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Alkhod 123, Oman;
| | - Alaa S. Awad
- Division of Nephrology, University of Florida, Jacksonville, FL 32209, USA; (A.S.A.); (I.H.)
| | - Irtiza Hasan
- Division of Nephrology, University of Florida, Jacksonville, FL 32209, USA; (A.S.A.); (I.H.)
| | | |
Collapse
|
13
|
Masuda T, Nagata D. Glomerular pressure and tubular oxygen supply: a critical dual target for renal protection. Hypertens Res 2024; 47:3330-3337. [PMID: 39397109 DOI: 10.1038/s41440-024-01944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
The primary treatment goal of chronic kidney disease (CKD) is preserving renal function and preventing its progression to end-stage renal disease. Glomerular hypertension and tubular hypoxia are critical risk factors in CKD progression. However, the renal hemodynamics make it difficult to avoid both factors due to the existence of peritubular capillaries that supply oxygen to the renal tubules downstream from the glomerulus through the efferent arteriole. In the treatment strategies for balancing glomerular pressure and tubular oxygen supply, afferent and efferent arterioles of the glomerulus determine glomerular filtration rate and blood flow to the peritubular capillaries. Therefore, sodium-glucose cotransporter 2 inhibitors and angiotensin receptor-neprilysin inhibitors as well as classical renin-angiotensin system inhibitors, which can change the diameter of afferent and/or efferent arterioles, are promising options for balancing this dual target and achieving renal protection. This review focuses on the clinical importance of glomerular pressure and tubular oxygen supply and proposes an effective treatment modality for this dual target.
Collapse
Affiliation(s)
- Takahiro Masuda
- Division of Nephrology, Department of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| | - Daisuke Nagata
- Division of Nephrology, Department of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
14
|
Doumani G, Theofilis P, Tsimihodimos V, Kalaitzidis RG. GLP-1 Receptor Agonists and Diabetic Kidney Disease: A Game Charger in the Field? Life (Basel) 2024; 14:1478. [PMID: 39598276 PMCID: PMC11595976 DOI: 10.3390/life14111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Kidney disease is a public health epidemic affecting 10% of the population worldwide with a constantly rising incidence, and it is an important contributor to morbidity and mortality. Type 2 diabetes mellitus (T2DM) is a chronic complex condition with a rising incidence worldwide. T2DM remains the principal cause of chronic kidney disease (CKD), which is related to a high risk for cardiovascular (CV) events, end-stage kidney disease (ESKD), and, overall, considerable morbidity and mortality. In the past few decades, various therapeutic treatments have targeted the culprit pathways for slowing CKD progression, with partial success. Thus, despite new advances in patients' treatment, progressive loss of kidney function or death from T2DM and CKD complications compel new therapeutic pathways. Renin-angiotensin-aldosterone-system-blocking agents have been the only treatment until recently. On top of this, sodium-glucose co-transporter 2 inhibitors along with finerenone showed an impressive ability to reduce the progression of kidney disease and cardiovascular events in diabetic patients with CKD. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) can play a special role and could be a game changer in this field. The latest FLOW trial confirmed multiple favorable clinical effects on renal, cardiovascular, and survival outcomes among high-risk patients treated with semaglutide and supports a significant therapeutic role for GLP-1RAs in this population, although larger-scale evaluation of their risks is needed, given their increasing use.
Collapse
Affiliation(s)
- Georgia Doumani
- General Hospital of Nikaia-Piraeus Agios Panteleimon, Center for Nephrology “G. Papadakis”, 18454 Piraeus, Greece; (G.D.); (P.T.)
| | - Panagiotis Theofilis
- General Hospital of Nikaia-Piraeus Agios Panteleimon, Center for Nephrology “G. Papadakis”, 18454 Piraeus, Greece; (G.D.); (P.T.)
| | - Vasilis Tsimihodimos
- Department of Internal Medicine, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece;
| | - Rigas G. Kalaitzidis
- General Hospital of Nikaia-Piraeus Agios Panteleimon, Center for Nephrology “G. Papadakis”, 18454 Piraeus, Greece; (G.D.); (P.T.)
| |
Collapse
|
15
|
Bellos I, Lagiou P, Benetou V, Marinaki S. Safety and Efficacy of Sodium-Glucose Transport Protein 2 Inhibitors and Glucagon-like Peptide-1 Receptor Agonists in Diabetic Kidney Transplant Recipients: Synthesis of Evidence. J Clin Med 2024; 13:6181. [PMID: 39458136 PMCID: PMC11508237 DOI: 10.3390/jcm13206181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Background: This systematic review and meta-analysis aimed to evaluate the efficacy and safety of novel antidiabetics, namely, sodium-glucose transport protein 2 inhibitors (SGLT2-i) and glucagon-like peptide-1 receptor agonists (GLP1-RA), in diabetic kidney transplant recipients. Methods: Medline, Scopus, Web of Science, CENTRAL, and Clinicaltrials.gov were systematically searched from inception until 25 August 2024. Pooled estimates were obtained by applying random-effects models. Results: Overall, 18 studies (17 observational studies and one randomized controlled trial) were included. GLP1-RA were administered to 270 and SGLT2-i to 1003 patients. After GLP1-RA therapy, patients presented significantly lower glycated hemoglobin [mean difference (MD): -0.61%; 95% confidence interval (CI): -0.99; -0.23] and body weight (MD: -3.32 kg; 95% CI: -5.04; -1.59) but a similar estimated glomerular filtration rate (eGFR) and systolic blood pressure. After SGLT2-i therapy, patients had significantly lower glycated hemoglobin (MD: -0.40%, 95% CI: -0.57; -0.23) and body weight (MD: -2.21 kg, 95% CI: -2.74; -1.67), while no difference was noted in eGFR or systolic blood pressure. Preliminary data have shown an association between SGLT2-i use and a reduced risk of cardiovascular events, graft loss, and mortality. Evidence regarding the association between GLP1-RA and SGLT2-i and proteinuria was mixed. No significant effects on calcineurin inhibitor levels were observed. The risk of urinary tract infections was similar among patients treated with SGLT2-i or placebo (odds ratio: 0.84, 95% CI: 0.43; 1.64). Conclusions: Observational data suggest that GLP1-RA and SGLT2-i administration in diabetic kidney transplant recipients may be associated with better glycemic control and reduced body weight, presenting an acceptable safety profile.
Collapse
Affiliation(s)
- Ioannis Bellos
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Str., 115 27 Athens, Greece (V.B.)
- Department of Nephrology and Renal Transplantation, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Str., 115 27 Athens, Greece (V.B.)
| | - Vassiliki Benetou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Str., 115 27 Athens, Greece (V.B.)
| | - Smaragdi Marinaki
- Department of Nephrology and Renal Transplantation, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| |
Collapse
|
16
|
Huang L, Lin T, Shi M, Wu P. Liraglutide ameliorates inflammation and fibrosis by downregulating the TLR4/MyD88/NF-κB pathway in diabetic kidney disease. Am J Physiol Regul Integr Comp Physiol 2024; 327:R410-R422. [PMID: 39133777 PMCID: PMC11483077 DOI: 10.1152/ajpregu.00083.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 09/10/2024]
Abstract
Inflammation and fibrosis play important roles in diabetic kidney disease (DKD). Previous studies have shown that glucagon-like peptide-1 receptor (GLP-1R) agonists had renal protective effects. However, the mechanisms are not clear. The present study explored the effect of liraglutide (LR), a GLP-1R agonist, on the downregulation of glomerular inflammation and fibrosis in DKD by regulating the Toll-like receptor (TLR)4/myeloid differentiation marker 88 (MyD88)/nuclear factor κB (NF-κB) signaling pathway in mesangial cells (MCs). In vitro, rat MCs were cultured in high glucose (HG). We found that liraglutide treatment significantly reduced the HG-mediated activation of the TLR4/MYD88/NF-κB signaling pathway, extracellular matrix (ECM)-related proteins, and inflammatory factors. A combination of TLR4 inhibitor (TAK242) and liraglutide did not synergistically inhibit inflammatory factors and ECM proteins. Furthermore, in the presence of TLR4 siRNA, liraglutide significantly blunted HG-induced expression of fibronectin protein and inflammatory factors. Importantly, TLR4 selective agonist LPS or TLR4 overexpression eliminated the improvement effects of liraglutide on the HG-induced response. In vivo, administration of liraglutide for 8 wk significantly improved the glomerular damage in streptozotocin-induced diabetic mice and reduced the expression of TLR4/MYD88/NF-κB signaling proteins, ECM protein, and inflammatory factors in renal cortex. TLR4-/- diabetic mice showed significant amelioration in urine protein excretion rate, glomerular pathological damage, inflammation, and fibrosis. Liraglutide attenuated glomerular hypertrophy, renal fibrosis, and inflammatory response in TLR4-/- diabetic mice. Taken together, our findings suggest that TLR4/MYD88/NF-κB signaling is involved in the regulation of inflammatory response and ECM protein proliferation in DKD. Liraglutide alleviates inflammation and fibrosis by downregulating the TLR4/MYD88/NF-κB signaling pathway in MCs.NEW & NOTEWORTHY Liraglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA), has renoprotective effect in diabetic kidney disease (DKD). In DKD, TLR4/MYD88/NF-κB signaling is involved in the regulation of inflammatory responses and extracellular matrix (ECM) protein proliferation. Liraglutide attenuates renal inflammation and overexpression of ECM proteins by inhibiting TLR4/MYD88/NF-κB signaling pathway. Therefore, we have identified a new mechanism that contributes to the renal protection of GLP-1RA, thus helping to design innovative treatment strategies for diabetic patients with various complications.
Collapse
Affiliation(s)
- Linjing Huang
- Department of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
- Department of Endocrinology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
- Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
- Diabetes Research Institute of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Tingting Lin
- Department of Endocrinology, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, People's Republic of China
| | - Meizhen Shi
- Department of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Peiwen Wu
- Department of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
- Department of Endocrinology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
- Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
- Diabetes Research Institute of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
17
|
Shenker MN, Shalitin S. Use of GLP-1 Receptor Agonists for the Management of Type 1 Diabetes: A Pediatric Perspective. Horm Res Paediatr 2024:1-20. [PMID: 39222618 DOI: 10.1159/000541228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Despite all the technological advances in treatment of patients with type 1 diabetes (T1D), glucose control remains suboptimal in most patients. In addition, a relatively high percentage of patients with T1D, including children, have obesity. Therefore, new interventions are required that focus their effects on weight loss, in order to help with associated insulin resistance and improve glycemic control. SUMMARY GLP-1 receptor agonists (GLP-1 RAs) have proven to be effective and safe in adults with T1D, showing improvement in glycemic control, body weight and cardiorenal protection. GLP-1 RAs are also approved for children with obesity (above the age of 12 years) or type 2 diabetes (above the age of 10 years). However, currently these medications are not approved for use in children with T1D. Only a few published studies have evaluated their efficacy and safety for this indication. KEY MESSAGE This review presents the rationale and experience of add-on GLP-1 RA therapy to pediatric and adolescent patients with T1D, otherwise treated, from RCTs and real-world data. Results of studies of GLP-1 RA in children with T1D are still pending, while large multicenter randomized controlled trials (RCTs) in this population are lacking.
Collapse
Affiliation(s)
- Michal Nevo Shenker
- Jesse Z. and Lea Shafer Institute of Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Shalitin
- Jesse Z. and Lea Shafer Institute of Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Janez A, Muzurovic E, Bogdanski P, Czupryniak L, Fabryova L, Fras Z, Guja C, Haluzik M, Kempler P, Lalic N, Mullerova D, Stoian AP, Papanas N, Rahelic D, Silva-Nunes J, Tankova T, Yumuk V, Rizzo M. Modern Management of Cardiometabolic Continuum: From Overweight/Obesity to Prediabetes/Type 2 Diabetes Mellitus. Recommendations from the Eastern and Southern Europe Diabetes and Obesity Expert Group. Diabetes Ther 2024; 15:1865-1892. [PMID: 38990471 PMCID: PMC11330437 DOI: 10.1007/s13300-024-01615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024] Open
Abstract
The increasing global incidence of obesity and type 2 diabetes mellitus (T2D) underscores the urgency of addressing these interconnected health challenges. Obesity enhances genetic and environmental influences on T2D, being not only a primary risk factor but also exacerbating its severity. The complex mechanisms linking obesity and T2D involve adiposity-driven changes in β-cell function, adipose tissue functioning, and multi-organ insulin resistance (IR). Early detection and tailored treatment of T2D and obesity are crucial to mitigate future complications. Moreover, personalized and early intensified therapy considering the presence of comorbidities can delay disease progression and diminish the risk of cardiorenal complications. Employing combination therapies and embracing a disease-modifying strategy are paramount. Clinical trials provide evidence confirming the efficacy and safety of glucagon-like peptide 1 receptor agonists (GLP-1 RAs). Their use is associated with substantial and durable body weight reduction, exceeding 15%, and improved glucose control which further translate into T2D prevention, possible disease remission, and improvement of cardiometabolic risk factors and associated complications. Therefore, on the basis of clinical experience and current evidence, the Eastern and Southern Europe Diabetes and Obesity Expert Group recommends a personalized, polymodal approach (comprising GLP-1 RAs) tailored to individual patient's disease phenotype to optimize diabetes and obesity therapy. We also expect that the increasing availability of dual GLP-1/glucose-dependent insulinotropic polypeptide (GIP) agonists will significantly contribute to the modern management of the cardiometabolic continuum.
Collapse
Affiliation(s)
- Andrej Janez
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia.
| | - Emir Muzurovic
- Department of Internal Medicine, Endocrinology Section, Clinical Centre of Montenegro, Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Pawel Bogdanski
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, University of Medical Sciences, Poznan, Poland
| | - Leszek Czupryniak
- Department of Diabetology and Internal Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Lubomira Fabryova
- MetabolKLINIK sro, Department for Diabetes and Metabolic Disorders, Lipid Clinic, MED PED Centre, Biomedical Research Centre of Slovak Academy of Sciences, Slovak Health University, Bratislava, Slovak Republic
| | - Zlatko Fras
- Preventive Cardiology Unit, Division of Medicine, University Medical Centre Ljubljana and Chair of Internal Medicine, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Cristian Guja
- Clinic of Diabetes, Nutrition and Metabolic Diseases, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Martin Haluzik
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21, Prague 4, Czech Republic
| | - Peter Kempler
- Department of Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Nebojsa Lalic
- Faculty of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dana Mullerova
- Faculty of Medicine in Pilsen, Department of Public Health and Preventive Medicine and Faculty Hospital in Pilsen, 1st Internal Clinic, Charles University, Pilsen, Czech Republic
| | - Anca Pantea Stoian
- Diabetes, Nutrition and Metabolic Diseases Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dario Rahelic
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, Zagreb, Croatia
- Catholic University of Croatia School of Medicine, Zagreb, Croatia
- Josip Juraj Strossmayer, University of Osijek School of Medicine, Osijek, Croatia
| | - José Silva-Nunes
- NOVA Medical School, New University of Lisbon, Lisbon, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Unidade Local de Saúde São José, Lisbon, Portugal
| | - Tsvetalina Tankova
- Department of Endocrinology, Faculty of Medicine, Medical University, Sofia, Bulgaria
| | - Volkan Yumuk
- Division of Endocrinology, Metabolism and Diabetes, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
19
|
Song J, Zhuang Y, Pan X, Chen Y, Xie F. Variants in PPARD- GLP1R are related to diabetic kidney disease in Chinese Han patients with type 2 diabetes mellitus. Heliyon 2024; 10:e35289. [PMID: 39161836 PMCID: PMC11332863 DOI: 10.1016/j.heliyon.2024.e35289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Genetic susceptibility is an important pathogenic mechanism in diabetic kidney disease (DKD). Our previous studies have identified that PPARδ and GLP-1R are located in a pathway that is closely related to DKD. We aimed to explore the impacts of variants in PPARD-GLP1R on the susceptibility to DKD in Chinese Han patients with type 2 diabetes mellitus (T2DM). A total of 600 T2DM patients (300 with DKD and 300 without DKD) and 200 healthy control subjects were enrolled to identify PPARD (rs2016520, rs2267668 and rs3777744) and GLP1R (rs3765467, rs1042044 and rs9296291) genotype. The SNaPshot method was used to identify variants in PPARD-GLP1R. We performed correlation analysis between variants in PPARD-GLP1R and the susceptibility to DKD. We observed that GLP1R rs3765467 (G > A) was associated with DKD (OR = 3.145, 95 % CI = 2.128-6.021, P = 0.035). None of the other SNPs were associated with DKD. Regarding DKD related traits, rs3765467 was associated with UACR levels and TC, significant differences were observed among patients with different genotypes of rs2016520 in terms of BMI and TG, and patients with the rs3777744 risk G allele had noticeably higher PPG and HbA1c levels (P < 0.05). Moreover, the results showed the interactions between PPARD rs3777744 and GLP1R rs3765467 in the occurrence of DKD (OR = 4.572, P = 0.029). The results of this study indicate the potential relationship between variants in PPARD-GLP1R and the susceptibility to DKD in Chinese Han patients with T2DM.
Collapse
Affiliation(s)
- Jinfang Song
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, China
| | - Yongru Zhuang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, China
| | - Xiaojun Pan
- Department of Pharmacy, Wuxi No.5 People's Hospital, Wuxi, 214000, China
| | - Ya Chen
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
| | - Fen Xie
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
| |
Collapse
|
20
|
Lian K, Zhang K, Kan C, Hou N, Han F, Sun X, Qiu H, Guo Z. Emerging therapeutic landscape: Incretin agonists in chronic kidney disease management. Life Sci 2024; 351:122801. [PMID: 38862060 DOI: 10.1016/j.lfs.2024.122801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
The increasing incidence of chronic kidney disease (CKD) poses a significant public health concern, prompting heightened attention to its treatment. Incretins, including glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide, are intestinal peptides released after nutrient intake, known for their hypoglycemic effects in diabetes management. Recent advancements highlight the promising outcomes of GLP-1 receptor agonists in reducing CKD risk factors and improving renal outcomes. The multifaceted functions of GLP-1, such as its anti-obesity, anti-hypertensive, anti-hyperglycemic, anti-lipid, anti-inflammatory, and endothelial function protective properties, contribute to its potential as a therapeutic agent for CKD. Although experiments suggest the potential benefits of incretin in CKD, a comprehensive understanding of its specific mechanisms is still lacking. This review aims to provide a detailed examination of current evidence and potential future directions, emphasizing the promising yet evolving landscape of incretin agonists in the context of CKD.
Collapse
Affiliation(s)
- Kexin Lian
- Department of Nephropathy, Affiliated Hospital of Shandong Second Medical University, Weifang, China; Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China.
| | - Zhentao Guo
- Department of Nephropathy, Affiliated Hospital of Shandong Second Medical University, Weifang, China.
| |
Collapse
|
21
|
Chan DC, Lin YC, Tzeng HP, Yang RS, Chiang MT, Liu SH. Exendin-4, a glucagon-like peptide-1 receptor agonist, alleviates muscular dysfunction and wasting in a streptozotocin-induced diabetic mouse model compared to metformin. Tissue Cell 2024; 89:102479. [PMID: 39018713 DOI: 10.1016/j.tice.2024.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Diabetic muscular atrophy is becoming a fast-growing problem worldwide, including sarcopenia, which is associated with substantial mortality and morbidity risk. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been marketed and suggested to exert protective effects on not only glycemic control but also diabetic complications in diabetic patients. In this study, we investigated the therapeutic use of GLP-1RAs exendin-4, compared to antidiabetic drug metformin, for the intervention of muscular dysfunction during diabetic conditions using a streptozotocin (STZ)-induced diabetic mouse model. The results showed that both exendin-4 and metformin could effectively alleviate hyperglycemia in diabetic mice, and also counteract diabetes-induced muscle weight loss, weaker grip, and changes in muscle fiber cross-sectional area distribution. Unexpectedly, exendin-4, but not metformin, enhanced the increased kidney weight and histological change in diabetic mice. Taken together, these findings suggest that both exendin-4 and metformin could effectively improve the diabetic hyperglycemia and muscular dysfunction; but exendin-4 may aggravate the nephropathy in STZ-induced diabetic mice.
Collapse
Affiliation(s)
- Ding-Cheng Chan
- Department of Geriatrics and Gerontology, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yuan-Cheng Lin
- Institute of Toxicology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Huei-Ping Tzeng
- Institute of Toxicology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Rong-Sen Yang
- Department of Orthopedics, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Meng-Tsan Chiang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan, Republic of China.
| | - Shing-Hwa Liu
- Institute of Toxicology, National Taiwan University, Taipei, Taiwan, Republic of China; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, Republic of China; Department of Pediatrics, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan, Republic of China.
| |
Collapse
|
22
|
Dave BP, Chorawala MR, Shah IV, Shah NN, Bhagat SU, Prajapati BG, Thakkar PC. From diabetes to diverse domains: the multifaceted roles of GLP-1 receptor agonists. Mol Biol Rep 2024; 51:835. [PMID: 39042283 DOI: 10.1007/s11033-024-09793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Glucagon-like Peptide-1 (GLP-1) receptor agonists (GLP-1RAs) emerged as a primary treatment for type-2 diabetes mellitus (T2DM), however, their multifaceted effects on various target organs beyond glycemic control opened a new era of treatment. We conducted a comprehensive literature search using databases including Scopus, Google Scholar, PubMed, and the Cochrane Library to identify clinical, in-vivo, and in-vitro studies focusing on the diverse effects of GLP-1 receptor agonists. Eligible studies were selected based on their relevance to the varied roles of GLP-1RAs in T2DM management and their impact on other physiological functions. Numerous studies have reported the efficacy of GLP-1RAs in improving outcomes in T2DM, with demonstrated benefits including glucose-dependent insulinotropic actions, modulation of insulin signaling pathways, and reductions in glycemic excursions. Additionally, GLP-1 receptors are expressed in various tissues and organs, suggesting their widespread physiological functions beyond glycemic control potentially include neuroprotective, anti-inflammatory, cardioprotective, and metabolic benefits. However, further scientific studies are still underway to maximize the benefits of GLP-1RAs and to discover additional roles in improving health benefits. This article sought to review not only the actions of GLP1RAs in the treatment of T2DM but also explore its effects on potential targets in other disorders.
Collapse
Affiliation(s)
- Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Ishika V Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nidhi N Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Shivam U Bhagat
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, Gujarat, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Pratik C Thakkar
- Department of Physiology, Faculty of Medical & Health Sciences, Manaaki Mānawa - The Centre for Heart Research, University of Auckland, 85 Park Road, Auckland, 1142, New Zealand.
| |
Collapse
|
23
|
Ge M, Molina J, Tamayo I, Zhang G, Kim JJ, Njeim R, Fontanesi F, Pieper MP, Merscher S, Sharma K, Fornoni A. Metabolic Analysis and Renal Protective Effects of Linagliptin and Empagliflozin in Alport Syndrome. KIDNEY360 2024; 5:1002-1011. [PMID: 38781016 PMCID: PMC11296534 DOI: 10.34067/kid.0000000000000472] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Key Points Linagliptin reduces kidney function decline and extends lifespan in Alport syndrome mice. Inhibiting the generation of glucose metabolites could serve as a potential therapeutic strategy for the treatment of Alport syndrome. Background We previously demonstrated that empagliflozin (Empa), a sodium-glucose cotransporter-2 inhibitor, reduces intrarenal lipid accumulation and slows kidney function decline in experimental Alport syndrome (AS). In this study, we aimed to evaluate the renal protective benefits of linagliptin (Lina), a dipeptidyl peptidase-4 inhibitor in AS, and compare it with Empa. Methods Metabolite distribution in kidney cortices was assessed using mass spectrometry imaging. We examined albuminuria and histological changes in kidneys from AS mice treated with Lina and/or Empa or vehicle. Results Several metabolites, including adrenic acid and glucose, were increased in renal cortices of AS mice compared with wild-type (WT) mice, whereas eicosapentaenoic acid levels were decreased. In addition, a redistribution of adrenic acid from the glomerular compartment in WT mice to the tubulointerstitial compartment in AS mice was observed. Both Lina and Empa treatments were found to reduce albuminuria to extend the survival of AS mice for about 10 days and to decrease glomerulosclerosis and tubulointerstitial fibrosis compared with WT mice. There were no significant differences with regard to the renal phenotype observed between Empa- and Lina-treated AS mice, and the combination of Lina and Empa was not superior to individual treatments. In vitro experiments revealed that dipeptidyl peptidase-4 is expressed in podocytes and tubular cells derived from both AS and WT mice. Differently from what we have reported for Empa, Lina treatment was found to reduce glucose-driven respiration in AS tubular cells but not in AS podocytes. Conclusions Renal expression patterns and spatial distribution of several metabolites differ in AS compared with WT mice. Although Lina and Empa treatments similarly partially slow the progression of kidney disease in AS, the metabolic mechanisms conferring the protective effect may be different.
Collapse
Affiliation(s)
- Mengyuan Ge
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Judith Molina
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Ian Tamayo
- Center for Precision Medicine, School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Guanshi Zhang
- Center for Precision Medicine, School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Jin-Ju Kim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, Florida
| | - Michael Paul Pieper
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Kumar Sharma
- Center for Precision Medicine, School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
24
|
Lee OYA, Wong ANN, Ho CY, Tse KW, Chan AZ, Leung GPH, Kwan YW, Yeung MHY. Potentials of Natural Antioxidants in Reducing Inflammation and Oxidative Stress in Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:751. [PMID: 38929190 PMCID: PMC11201162 DOI: 10.3390/antiox13060751] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic kidney disease (CKD) presents a substantial global public health challenge, with high morbidity and mortality. CKD patients often experience dyslipidaemia and poor glycaemic control, further exacerbating inflammation and oxidative stress in the kidney. If left untreated, these metabolic symptoms can progress to end-stage renal disease, necessitating long-term dialysis or kidney transplantation. Alleviating inflammation responses has become the standard approach in CKD management. Medications such as statins, metformin, and GLP-1 agonists, initially developed for treating metabolic dysregulation, demonstrate promising renal therapeutic benefits. The rising popularity of herbal remedies and supplements, perceived as natural antioxidants, has spurred investigations into their potential efficacy. Notably, lactoferrin, Boerhaavia diffusa, Amauroderma rugosum, and Ganoderma lucidum are known for their anti-inflammatory and antioxidant properties and may support kidney function preservation. However, the mechanisms underlying the effectiveness of Western medications and herbal remedies in alleviating inflammation and oxidative stress occurring in renal dysfunction are not completely known. This review aims to provide a comprehensive overview of CKD treatment strategies and renal function preservation and critically discusses the existing literature's limitations whilst offering insight into the potential antioxidant effects of these interventions. This could provide a useful guide for future clinical trials and facilitate the development of effective treatment strategies for kidney functions.
Collapse
Affiliation(s)
- On Ying Angela Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Alex Ngai Nick Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Ching Yan Ho
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Ka Wai Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Angela Zaneta Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China;
| | - Yiu Wa Kwan
- The School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Martin Ho Yin Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
25
|
Reed J, Bain SC, Kanamarlapudi V. The Regulation of Metabolic Homeostasis by Incretins and the Metabolic Hormones Produced by Pancreatic Islets. Diabetes Metab Syndr Obes 2024; 17:2419-2456. [PMID: 38894706 PMCID: PMC11184168 DOI: 10.2147/dmso.s415934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
In healthy humans, the complex biochemical interplay between organs maintains metabolic homeostasis and pathological alterations in this process result in impaired metabolic homeostasis, causing metabolic diseases such as diabetes and obesity, which are major global healthcare burdens. The great advancements made during the last century in understanding both metabolic disease phenotypes and the regulation of metabolic homeostasis in healthy individuals have yielded new therapeutic options for diseases like type 2 diabetes (T2D). However, it is unlikely that highly desirable more efficacious treatments will be developed for metabolic disorders until the complex systemic regulation of metabolic homeostasis becomes more intricately understood. Hormones produced by pancreatic islet beta-cells (insulin) and alpha-cells (glucagon) are pivotal for maintaining metabolic homeostasis; the activity of insulin and glucagon are reciprocally correlated to achieve strict control of glucose levels (normoglycaemia). Metabolic hormones produced by other pancreatic islet cells and incretins produced by the gut are also crucial for maintaining metabolic homeostasis. Recent studies highlighted the incomplete understanding of metabolic hormonal synergism and, therefore, further elucidation of this will likely lead to more efficacious treatments for diseases such as T2D. The objective of this review is to summarise the systemic actions of the incretins and the metabolic hormones produced by the pancreatic islets and their interactions with their respective receptors.
Collapse
Affiliation(s)
- Joshua Reed
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Stephen C Bain
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
26
|
Zhang S, Zhu X, Chen Y, Wen Z, Shi P, Ni Q. The role and therapeutic potential of macrophages in the pathogenesis of diabetic cardiomyopathy. Front Immunol 2024; 15:1393392. [PMID: 38774880 PMCID: PMC11106398 DOI: 10.3389/fimmu.2024.1393392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
This review provides a comprehensive analysis of the critical role played by macrophages and their underlying mechanisms in the progression of diabetic cardiomyopathy (DCM). It begins by discussing the origins and diverse subtypes of macrophages, elucidating their spatial distribution and modes of intercellular communication, thereby emphasizing their significance in the pathogenesis of DCM. The review then delves into the intricate relationship between macrophages and the onset of DCM, particularly focusing on the epigenetic regulatory mechanisms employed by macrophages in the context of DCM condition. Additionally, the review discusses various therapeutic strategies aimed at targeting macrophages to manage DCM. It specifically highlights the potential of natural food components in alleviating diabetic microvascular complications and examines the modulatory effects of existing hypoglycemic drugs on macrophage activity. These findings, summarized in this review, not only provide fresh insights into the role of macrophages in diabetic microvascular complications but also offer valuable guidance for future therapeutic research and interventions in this field.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yupeng Chen
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhige Wen
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peiyu Shi
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Ni
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Zago AM, Carvalho FB, Rahmeier FL, Santin M, Guimarães GR, Gutierres JM, da C Fernandes M. Exendin-4 Prevents Memory Loss and Neuronal Death in Rats with Sporadic Alzheimer-Like Disease. Mol Neurobiol 2024; 61:2631-2652. [PMID: 37919602 DOI: 10.1007/s12035-023-03698-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
This study investigated the neuroprotective effects of exendin-4 (EXE-4), an analog of the glucagon-like peptide 1 receptor (GLP-1R) on memory and on the neuronal populations that constitute the hippocampus of rats submitted to a sporadic dementia of Alzheimer's type (SDAT). Male Wistar rats received streptozotocin (STZ icv, 3 mg/kg diluted in aCFS, 5 µl/ventricle) and were treated for 21 days with EXE-4 (10 µg/kg, ip; saline as the vehicle). Four groups were formed: vehicle, EXE-4, STZ, and STZ + EXE-4. The groups were submitted to Y-Maze (YM), object recognition (ORT), and object displacement tasks (ODT) to assess learning and memory. The brains were used for immunohistochemical and immunofluorescent techniques with antibodies to NeuN, cleaved caspase-3 (CC3), PCNA, doublecortin (DCX), synaptophysin (SYP), and insulin receptor (IR). STZ worsened spatial memory in the YMT, as well as short-term (STM) and long-term (LTM) memories in the ORT and ODT, respectively. EXE-4 protected against memory impairment in STZ animals. STZ reduced mature neuron density (NeuN) and increased cell apoptosis (CC3) in the DG, CA1, and CA3. EXE-4 protected against neuronal death in all regions. EXE-4 increased PCNA+ cells in all regions of the hippocampus, and STZ attenuated this effect. STZ reduced neurogenesis in DG per se as well as synaptogenesis induced by EXE-4. EXE-4 increased immunoreactivity to IR in the CA1. From these findings, EXE-4 showed a beneficial effect on hippocampal pyramidal and granular neurons in the SDAT showing anti-apoptotic properties and promoting cell proliferation. In parallel, EXE-4 preserved the memory of SDAT rats. EXE-4 appears to enhance synapses at CA3 and DG. In conclusion, these data indicate that agonists to GLP-1R have a beneficial effect on hippocampal neurons in AD.
Collapse
Affiliation(s)
- Adriana M Zago
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Fabiano B Carvalho
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil.
| | - Francine L Rahmeier
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Marta Santin
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Giuliano R Guimarães
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Jessié M Gutierres
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Marilda da C Fernandes
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil.
| |
Collapse
|
28
|
Wang N, Zhang C. Oxidative Stress: A Culprit in the Progression of Diabetic Kidney Disease. Antioxidants (Basel) 2024; 13:455. [PMID: 38671903 PMCID: PMC11047699 DOI: 10.3390/antiox13040455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic kidney disease (DKD) is the principal culprit behind chronic kidney disease (CKD), ultimately developing end-stage renal disease (ESRD) and necessitating costly dialysis or kidney transplantation. The limited therapeutic efficiency among individuals with DKD is a result of our finite understanding of its pathogenesis. DKD is the result of complex interactions between various factors. Oxidative stress is a fundamental factor that can establish a link between hyperglycemia and the vascular complications frequently encountered in diabetes, particularly DKD. It is crucial to recognize the essential and integral role of oxidative stress in the development of diabetic vascular complications, particularly DKD. Hyperglycemia is the primary culprit that can trigger an upsurge in the production of reactive oxygen species (ROS), ultimately sparking oxidative stress. The main endogenous sources of ROS include mitochondrial ROS production, NADPH oxidases (Nox), uncoupled endothelial nitric oxide synthase (eNOS), xanthine oxidase (XO), cytochrome P450 (CYP450), and lipoxygenase. Under persistent high glucose levels, immune cells, the complement system, advanced glycation end products (AGEs), protein kinase C (PKC), polyol pathway, and the hexosamine pathway are activated. Consequently, the oxidant-antioxidant balance within the body is disrupted, which triggers a series of reactions in various downstream pathways, including phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), transforming growth factor beta/p38-mitogen-activated protein kinase (TGF-β/p38-MAPK), nuclear factor kappa B (NF-κB), adenosine monophosphate-activated protein kinase (AMPK), and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling. The disease might persist even if strict glucose control is achieved, which can be attributed to epigenetic modifications. The treatment of DKD remains an unresolved issue. Therefore, reducing ROS is an intriguing therapeutic target. The clinical trials have shown that bardoxolone methyl, a nuclear factor erythroid 2-related factor 2 (Nrf2) activator, blood glucose-lowering drugs, such as sodium-glucose cotransporter 2 inhibitors, and glucagon-like peptide-1 receptor agonists can effectively slow down the progression of DKD by reducing oxidative stress. Other antioxidants, including vitamins, lipoic acid, Nox inhibitors, epigenetic regulators, and complement inhibitors, present a promising therapeutic option for the treatment of DKD. In this review, we conduct a thorough assessment of both preclinical studies and current findings from clinical studies that focus on targeted interventions aimed at manipulating these pathways. We aim to provide a comprehensive overview of the current state of research in this area and identify key areas for future exploration.
Collapse
Affiliation(s)
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
29
|
Shen R, Qin S, Lv Y, Liu D, Ke Q, Shi C, Jiang L, Yang J, Zhou Y. GLP-1 receptor agonist attenuates tubular cell ferroptosis in diabetes via enhancing AMPK-fatty acid metabolism pathway through macropinocytosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167060. [PMID: 38354757 DOI: 10.1016/j.bbadis.2024.167060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
Kidney tubules are mostly responsible for pathogenesis of diabetic kidney disease. Actively reabsorption of iron, high rate of lipid metabolism and exposure to concentrated redox-active compounds constructed the three main pillars of ferroptosis in tubular cells. However, limited evidence has indicated that ferroptosis is indispensable for diabetic tubular injury. Glucagon-like peptide-1 receptor agonist (GLP-1RA) processed strong benefits on kidney outcomes in people with diabetes. Moreover, GLP-1RA may have additive effects by improving dysmetabolism besides glucose control and weight loss. Therefore, the present study aimed at exploring the benefits of exendin-4, a high affinity GLP-1RA on kidney tubular dysregulation in diabetes and the possible mechanisms involved, with focus on ferroptosis and adenosine 5'-monophosphate-activated protein kinase (AMPK)-mitochondrial lipid metabolism pathway. Our data revealed that exendin-4 treatment markedly improved kidney structure and function by reducing iron overload, oxidative stress, and ACSL4-driven lipid peroxidation taken place in diabetic kidney tubules, along with reduced GPX4 expression and GSH content. AMPK signaling was identified as the downstream target of exendin-4, and enhancement of AMPK triggered the transmit of its downstream signal to activate fatty acid oxidation in mitochondria and suppress lipid synthesis and glycolysis, and ultimately alleviated toxic lipid accumulation and ferroptosis. Further study suggested that exendin-4 was taken up by tubular cells via macropinocytosis. The protective effect of exendin-4 on tubular ferroptosis was abolished by macropinocytosis blockade. Taken together, present work demonstrated the beneficial effects of GLP-1RA treatment on kidney tubular protection in diabetes by suppressing ferroptosis through enhancing AMPK-fatty acid metabolic signaling via macropinocytosis.
Collapse
Affiliation(s)
- Rui Shen
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Songyan Qin
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Yunhui Lv
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Dandan Liu
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Qingqing Ke
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Caifeng Shi
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Lei Jiang
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China.
| | - Junwei Yang
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China.
| | - Yang Zhou
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China.
| |
Collapse
|
30
|
Yu MG, Gordin D, Fu J, Park K, Li Q, King GL. Protective Factors and the Pathogenesis of Complications in Diabetes. Endocr Rev 2024; 45:227-252. [PMID: 37638875 PMCID: PMC10911956 DOI: 10.1210/endrev/bnad030] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/13/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Chronic complications of diabetes are due to myriad disorders of numerous metabolic pathways that are responsible for most of the morbidity and mortality associated with the disease. Traditionally, diabetes complications are divided into those of microvascular and macrovascular origin. We suggest revising this antiquated classification into diabetes complications of vascular, parenchymal, and hybrid (both vascular and parenchymal) tissue origin, since the profile of diabetes complications ranges from those involving only vascular tissues to those involving mostly parenchymal organs. A major paradigm shift has occurred in recent years regarding the pathogenesis of diabetes complications, in which the focus has shifted from studies on risks to those on the interplay between risk and protective factors. While risk factors are clearly important for the development of chronic complications in diabetes, recent studies have established that protective factors are equally significant in modulating the development and severity of diabetes complications. These protective responses may help explain the differential severity of complications, and even the lack of pathologies, in some tissues. Nevertheless, despite the growing number of studies on this field, comprehensive reviews on protective factors and their mechanisms of action are not available. This review thus focused on the clinical, biochemical, and molecular mechanisms that support the idea of endogenous protective factors, and their roles in the initiation and progression of chronic complications in diabetes. In addition, this review also aimed to identify the main needs of this field for future studies.
Collapse
Affiliation(s)
- Marc Gregory Yu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel Gordin
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- Department of Nephrology, University of Helsinki and Helsinki University Central Hospital, Stenbäckinkatu 9, FI-00029 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Jialin Fu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Kyoungmin Park
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Qian Li
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - George Liang King
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
31
|
Noguchi T, Katoh H, Nomura S, Okada K, Watanabe M. The GLP-1 receptor agonist exenatide improves recovery from spinal cord injury by inducing macrophage polarization toward the M2 phenotype. Front Neurosci 2024; 18:1342944. [PMID: 38426018 PMCID: PMC10902060 DOI: 10.3389/fnins.2024.1342944] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Although a wide variety of mechanisms take part in the secondary injury phase of spinal cord injury (SCI), inflammation is the most important factor implicated in the sequelae after SCI. Being central to the inflammation reaction, macrophages and their polarization are a topic that has garnered wide interest in the studies of SCI secondary injury. The glucagon-like peptide 1 (GLP-1) receptor agonist exenatide has been shown to enhance the endoplasmic reticulum stress response and improve motor function recovery after spinal cord injury (SCI). Since exenatide has also been reported to induce the production of M2 cells in models of cerebral infarction and neurodegenerative diseases, this study was conducted to examine the effects of exenatide administration on the inflammation process that ensues after spinal cord injury. In a rat contusion model of spinal cord injury, the exenatide group received a subcutaneous injection of 10 μg exenatide immediately after injury while those in the control group received 1 mL of phosphate-buffered saline. Quantitative RT-PCR and immunohistochemical staining were used to evaluate the effects of exenatide administration on the macrophages infiltrating the injured spinal cord, especially with regard to macrophage M1 and M2 profiles. The changes in hind limb motor function were assessed based on Basso, Beattie, Bresnahan locomotor rating scale (BBB scale) scores. The improvement in BBB scale scores was significantly higher in the exenatide group from day 7 after injury and onwards. Quantitative RT-PCR revealed an increase in the expression of M2 markers and anti-inflammatory interleukins in the exenatide group that was accompanied by a decrease in the expression of M1 markers and inflammatory cytokines. Immunohistochemical staining showed no significant difference in M1 macrophage numbers between the two groups, but a significantly higher number of M2 macrophages was observed in the exenatide group on day 3 after injury. Our findings suggest that exenatide administration promoted the number of M2-phenotype macrophages after SCI, which may have led to the observed improvement in hind limb motor function in a rat model of SCI.
Collapse
Affiliation(s)
| | - Hiroyuki Katoh
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | | | | | | |
Collapse
|
32
|
Alharbi SH. Anti-inflammatory role of glucagon-like peptide 1 receptor agonists and its clinical implications. Ther Adv Endocrinol Metab 2024; 15:20420188231222367. [PMID: 38288136 PMCID: PMC10823863 DOI: 10.1177/20420188231222367] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/28/2023] [Indexed: 01/31/2024] Open
Abstract
Glucagon-like peptide 1 receptor agonists (GLP-1RAs) have emerged as promising therapeutic agents with potent anti-inflammatory properties and diverse clinical implications. This in-depth review article explores the mechanisms behind the anti-inflammatory actions of GLP-1RAs and assesses their prospective applicability in a wide range of disease scenarios. The current review establishes the significance of comprehending the anti-inflammatory role of GLP-1RAs and identifies pertinent research gaps. A concise overview of inflammation and its clinical consequences underscores the critical need for effective anti-inflammatory interventions. Subsequently, the article elucidates the intricate mechanisms through which GLP-1RAs modulate immune cell signaling and regulate the nuclear factor-kappa B (NF-κB) pathway. Detailed discussions encompass their impact on inflammatory responses, cytokine production, and attenuation of oxidative stress. The exposition is substantiated by a collection of pertinent examples and an extensive array of references from both preclinical and clinical investigations. The historical trajectory of GLP-1RA drugs, including exenatide, lixisenatide, liraglutide, and semaglutide, is traced to delineate their development as therapeutic agents. Moreover, the review emphasizes the therapeutic potential of GLP-1RAs in specific disease contexts like type 2 diabetes, a neurodegenerative disorder, and inflammatory bowel disease (IBD), shedding light on their anti-inflammatory effects through rigorous examination of preclinical and clinical studies. The article also provides an outlook on future perspectives for GLP-1RAs, encompassing the domains of diabetes, neurodegenerative diseases, and IBD. In conclusion, GLP-1RAs exhibit substantial anti-inflammatory effects, rendering them promising therapeutic agents with broad clinical implications. They are very useful in a wide variety of diseases because they regulate immunological responses, block NF-κB activation, and decrease production of pro-inflammatory cytokines. Ongoing research endeavors aim to optimize their therapeutic use, delineate patient-specific treatment paradigms, and explore novel therapeutic applications. GLP-1RAs represent a significant breakthrough in anti-inflammatory therapy, offering novel treatment options, and improved patient outcomes.
Collapse
Affiliation(s)
- Saleh Hadi Alharbi
- Department of Medicine, Imam Mohammed Ibn Saud Islamic University, Riyadh 11652, Saudi Arabia
| |
Collapse
|
33
|
Patera F, Gatticchi L, Cellini B, Chiasserini D, Reboldi G. Kidney Fibrosis and Oxidative Stress: From Molecular Pathways to New Pharmacological Opportunities. Biomolecules 2024; 14:137. [PMID: 38275766 PMCID: PMC10813764 DOI: 10.3390/biom14010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Kidney fibrosis, diffused into the interstitium, vessels, and glomerulus, is the main pathologic feature associated with loss of renal function and chronic kidney disease (CKD). Fibrosis may be triggered in kidney diseases by different genetic and molecular insults. However, several studies have shown that fibrosis can be linked to oxidative stress and mitochondrial dysfunction in CKD. In this review, we will focus on three pathways that link oxidative stress and kidney fibrosis, namely: (i) hyperglycemia and mitochondrial energy imbalance, (ii) the mineralocorticoid signaling pathway, and (iii) the hypoxia-inducible factor (HIF) pathway. We selected these pathways because they are targeted by available medications capable of reducing kidney fibrosis, such as sodium-glucose cotransporter-2 (SGLT2) inhibitors, non-steroidal mineralocorticoid receptor antagonists (MRAs), and HIF-1alpha-prolyl hydroxylase inhibitors. These drugs have shown a reduction in oxidative stress in the kidney and a reduced collagen deposition across different CKD subtypes. However, there is still a long and winding road to a clear understanding of the anti-fibrotic effects of these compounds in humans, due to the inherent practical and ethical difficulties in obtaining sequential kidney biopsies and the lack of specific fibrosis biomarkers measurable in easily accessible matrices like urine. In this narrative review, we will describe these three pathways, their interconnections, and their link to and activity in oxidative stress and kidney fibrosis.
Collapse
Affiliation(s)
- Francesco Patera
- Division of Nephrology, Azienda Ospedaliera di Perugia, 06132 Perugia, Italy;
| | - Leonardo Gatticchi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.); (B.C.)
| | - Barbara Cellini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.); (B.C.)
| | - Davide Chiasserini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.); (B.C.)
| | - Gianpaolo Reboldi
- Division of Nephrology, Azienda Ospedaliera di Perugia, 06132 Perugia, Italy;
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.); (B.C.)
| |
Collapse
|
34
|
Sourris KC, Ding Y, Maxwell SS, Al-Sharea A, Kantharidis P, Mohan M, Rosado CJ, Penfold SA, Haase C, Xu Y, Forbes JM, Crawford S, Ramm G, Harcourt BE, Jandeleit-Dahm K, Advani A, Murphy AJ, Timmermann DB, Karihaloo A, Knudsen LB, El-Osta A, Drucker DJ, Cooper ME, Coughlan MT. Glucagon-like peptide-1 receptor signaling modifies the extent of diabetic kidney disease through dampening the receptor for advanced glycation end products-induced inflammation. Kidney Int 2024; 105:132-149. [PMID: 38069998 DOI: 10.1016/j.kint.2023.09.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 01/07/2024]
Abstract
Glucagon like peptide-1 (GLP-1) is a hormone produced and released by cells of the gastrointestinal tract following meal ingestion. GLP-1 receptor agonists (GLP-1RA) exhibit kidney-protective actions through poorly understood mechanisms. Here we interrogated whether the receptor for advanced glycation end products (RAGE) plays a role in mediating the actions of GLP-1 on inflammation and diabetic kidney disease. Mice with deletion of the GLP-1 receptor displayed an abnormal kidney phenotype that was accelerated by diabetes and improved with co-deletion of RAGE in vivo. Activation of the GLP-1 receptor pathway with liraglutide, an anti-diabetic treatment, downregulated kidney RAGE, reduced the expansion of bone marrow myeloid progenitors, promoted M2-like macrophage polarization and lessened markers of kidney damage in diabetic mice. Single cell transcriptomics revealed that liraglutide induced distinct transcriptional changes in kidney endothelial, proximal tubular, podocyte and macrophage cells, which were dominated by pathways involved in nutrient transport and utilization, redox sensing and the resolution of inflammation. The kidney-protective action of liraglutide was corroborated in a non-diabetic model of chronic kidney disease, the subtotal nephrectomised rat. Thus, our findings identify a novel glucose-independent kidney-protective action of GLP-1-based therapies in diabetic kidney disease and provide a valuable resource for exploring the cell-specific kidney transcriptional response ensuing from pharmacological GLP-1R agonism.
Collapse
Affiliation(s)
- Karly C Sourris
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia; Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia.
| | - Yi Ding
- Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia; Diabetes Complications Research, Novo Nordisk, Måløv, Denmark
| | - Scott S Maxwell
- Epigenetics in Human Health and Disease Program, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Annas Al-Sharea
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Phillip Kantharidis
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Muthukumar Mohan
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Carlos J Rosado
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Sally A Penfold
- Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Claus Haase
- Diabetes Complications Research, Novo Nordisk, Måløv, Denmark
| | - Yangsong Xu
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Josephine M Forbes
- Mater Research Institute, the University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Simon Crawford
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Georg Ramm
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Brooke E Harcourt
- Murdoch Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Karin Jandeleit-Dahm
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michaels Hospital, Toronto, Ontario, Canada
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Anil Karihaloo
- Novo Nordisk Research Center Seattle, Inc., Seattle, Washington, USA
| | | | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mark E Cooper
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia; Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Parkville, Victoria, Australia.
| |
Collapse
|
35
|
Neumiller JJ, Alicic RZ, Tuttle KR. Optimization of guideline-directed medical therapies in patients with diabetes and chronic kidney disease. Clin Kidney J 2024; 17:sfad285. [PMID: 38213492 PMCID: PMC10783256 DOI: 10.1093/ckj/sfad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 01/13/2024] Open
Abstract
Diabetes is the leading cause of chronic kidney disease (CKD) and kidney failure worldwide. CKD frequently coexists with heart failure and atherosclerotic cardiovascular disease in the broader context of cardio-kidney-metabolic syndrome. Diabetes and CKD are associated with increased risk of all-cause and cardiovascular death as well as decreased quality of life. The role of metabolic and hemodynamic abnormalities has long been recognized as an important contributor to the pathogenesis and progression of CKD in diabetes, while a more recent and growing body of evidence supports activation of both systemic and local inflammation as important contributors. Current guidelines recommend therapies targeting pathomechanisms of CKD in addition to management of traditional risk factors such as hyperglycemia and hypertension. Sodium-glucose cotransporter-2 inhibitors are recommended for treatment of patients with CKD and type 2 diabetes (T2D) if eGFR is ≥20 ml/min/173 m2 on a background of renin-angiotensin system inhibition. For patients with T2D, CKD, and atherosclerotic cardiovascular disease, a glucagon-like peptide-1 receptor agonist is recommended as additional risk-based therapy. A non-steroidal mineralocorticoid receptor antagonist is also recommended as additional risk-based therapy for persistent albuminuria in patients with T2D already treated with renin-angiotensin system inhibition. Implementation of guideline-directed medical therapies is challenging in the face of rapidly accumulating knowledge, high cost of medications, and lack of infrastructure for optimal healthcare delivery. Furthermore, studies of new therapies have focused on T2D and CKD. Clinical trials are now planned to inform the role of these therapies in people with type 1 diabetes (T1D) and CKD.
Collapse
Affiliation(s)
- Joshua J Neumiller
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
- Providence Medical Research Center, Providence Inland Northwest Health, Spokane, WA, USA
| | - Radica Z Alicic
- Providence Medical Research Center, Providence Inland Northwest Health, Spokane, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Katherine R Tuttle
- Providence Medical Research Center, Providence Inland Northwest Health, Spokane, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Nephrology Division, Kidney Research Institute, and Institute of Translational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
36
|
Sridhar VS, Limonte CP, Groop PH, Heerspink HJL, Pratley RE, Rossing P, Skyler JS, Cherney DZI. Chronic kidney disease in type 1 diabetes: translation of novel type 2 diabetes therapeutics to individuals with type 1 diabetes. Diabetologia 2024; 67:3-18. [PMID: 37801140 DOI: 10.1007/s00125-023-06015-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/21/2023] [Indexed: 10/07/2023]
Abstract
Current management of chronic kidney disease (CKD) in type 1 diabetes centres on glycaemic control, renin-angiotensin system inhibition and optimisation of risk factors including blood pressure, lipids and body weight. While these therapeutic approaches have significantly improved outcomes among people with type 1 diabetes and CKD, this population remains at substantial elevated risk for adverse kidney and cardiovascular events, with limited improvements over the last few decades. The significant burden of CKD and CVD in type 1 diabetes populations highlights the need to identify novel therapies with the potential for heart and kidney protection. Over the last decade, sodium-glucose cotransporter-2 inhibitors, glucagon-like peptide 1 receptor agonists and non-steroidal mineralocorticoid receptor antagonists have emerged as potent kidney-protective and/or cardioprotective agents in type 2 diabetes. The consistent, substantial kidney and cardiovascular benefits of these agents has led to their incorporation into professional guidelines as foundational care for type 2 diabetes. Furthermore, introduction of these agents into clinical practice has been accompanied by a shift in the focus of diabetes care from a 'glucose-centric' to a 'cardiorenal risk-centric' approach. In this review, we evaluate the potential translation of novel type 2 diabetes therapeutics to individuals with type 1 diabetes with the lens of preventing the development and progression of CKD.
Collapse
Affiliation(s)
- Vikas S Sridhar
- Division of Nephrology, University Health Network, University of Toronto, Toronto, ON, Canada.
| | - Christine P Limonte
- Division of Nephrology, University of Washington, Seattle, WA, USA
- Kidney Research Institute, University of Washington, Seattle, WA, USA
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- The George Institute for Global Health, Sydney, Australia
| | | | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jay S Skyler
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David Z I Cherney
- Division of Nephrology, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
37
|
Seksaria S, Dutta BJ, Kaur M, Gupta GD, Bodakhe SH, Singh A. Role of GLP-1 Receptor Agonist in Diabetic Cardio-renal Disorder: Recent Updates of Clinical and Pre-clinical Evidence. Curr Diabetes Rev 2024; 20:e090823219597. [PMID: 37559236 DOI: 10.2174/1573399820666230809152148] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/08/2023] [Accepted: 06/30/2023] [Indexed: 08/11/2023]
Abstract
Cardiovascular complications and renal disease is the growing cause of mortality in patients with diabetes. The subversive complications of diabetes such as hyperglycemia, hyperlipidemia and insulin resistance lead to an increase in the risk of myocardial infarction (MI), stroke, heart failure (HF) as well as chronic kidney disease (CKD). Among the commercially available anti-hyperglycemic agents, incretin-based medications appear to be safe and effective in the treatment of type 2 diabetes mellitus (T2DM) and associated cardiovascular and renal disease. Glucagon-like peptide 1 receptor agonists (GLP-1RAs) have been shown to be fruitful in reducing HbA1c, blood glucose, lipid profile, and body weight in diabetic patients. Several preclinical and clinical studies revealed the safety, efficacy, and preventive advantages of GLP-1RAs against diabetes- induced cardiovascular and kidney disease. Data from cardio-renal outcome trials had highlighted that GLP-1RAs protected people with established CKD from significant cardiovascular disease, lowered the likelihood of hospitalization for heart failure (HHF), and lowered all-cause mortality. They also had a positive effect on people with end-stage renal disease (ESRD) and CKD. Beside clinical outcomes, GLP-1RAs reduced oxidative stress, inflammation, fibrosis, and improved lipid profile pre-clinically in diabetic models of cardiomyopathy and nephropathy that demonstrated the cardio-protective and reno-protective effect of GLP-1RAs. In this review, we have focused on the recent clinical and preclinical outcomes of GLP-1RAs as cardio-protective and reno-protective agents as GLP-1RAs medications have been demonstrated to be more effective in treating T2DM and diabetes-induced cardiovascular and renal disease than currently available treatments in clinics, without inducing hypoglycemia or weight gain.
Collapse
Affiliation(s)
- Sanket Seksaria
- Department of Pharmacology, ISF College of Pharmacy, GT Road, GhalKalan, Moga 142001, Punjab, India
- Department of Pharmacy, Sanaka Educational Trust's Group of Institutions, Malandighi, Durgapur 713212, India
| | - Bhaskar Jyoti Dutta
- Department of Pharmacology, ISF College of Pharmacy, GT Road, GhalKalan, Moga 142001, Punjab, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India
| | - Mandeep Kaur
- Department of Pharmacology, ISF College of Pharmacy, GT Road, GhalKalan, Moga 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmacology, ISF College of Pharmacy, GT Road, GhalKalan, Moga 142001, Punjab, India
| | - Surendra H Bodakhe
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, GhalKalan, Moga 142001, Punjab, India
| |
Collapse
|
38
|
Alicic RZ, Neumiller JJ. Incretin Therapies for Patients with Type 2 Diabetes and Chronic Kidney Disease. J Clin Med 2023; 13:201. [PMID: 38202209 PMCID: PMC10779638 DOI: 10.3390/jcm13010201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Since the early 2000s, an influx of novel glucose-lowering agents has changed the therapeutic landscape for treatment of diabetes and diabetes-related complications. Glucagon-like peptide-1 (GLP-1) receptor agonists represent an important therapeutic class for the management of type 2 diabetes (T2D), demonstrating benefits beyond glycemic control, including lowering of blood pressure and body weight, and importantly, decreased risk of development of new or worsening chronic kidney disease (CKD) and reduced rates of atherosclerotic cardiovascular events. Plausible non-glycemic mechanisms that benefit the heart and kidneys with GLP-1 receptor agonists include anti-inflammatory and antioxidant effects. Further supporting their use in CKD, the glycemic benefits of GLP-1 receptor agonists are preserved in moderate-to-severe CKD. Considering current evidence, major guideline-forming organizations recommend the use of GLP-1 receptor agonists in cases of T2D and CKD, especially in those with obesity and/or in those with high cardiovascular risk or established heart disease. Evidence continues to build that supports benefits to the heart and kidneys of the dual GLP-1/glucose-dependent insulinotropic polypeptide (GIP) receptor agonist tirzepatide. Ongoing outcome and mechanistic studies will continue to inform our understanding of the role of GLP-1 and dual GLP-1/GIP receptor agonists in diverse patient populations with kidney disease.
Collapse
Affiliation(s)
- Radica Z. Alicic
- Providence Medical Research Center, Providence Inland Northwest Health, 105 W. 8th Ave, Suite 250E, Spokane, WA 99204, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Joshua J. Neumiller
- Providence Medical Research Center, Providence Inland Northwest Health, 105 W. 8th Ave, Suite 250E, Spokane, WA 99204, USA
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99164, USA
| |
Collapse
|
39
|
Kobayashi K, Toyoda M, Hatori N, Tsukamoto S, Kimura M, Sakai H, Furuki T, Chin K, Kanaoka T, Aoyama T, Umezono T, Ito S, Suzuki D, Takeda H, Degawa H, Hishiki T, Shimura H, Nakajima S, Miyauchi M, Yamamoto H, Hatori Y, Hayashi M, Sato K, Miyakawa M, Terauchi Y, Tamura K, Kanamori A. The concomitant use of sodium-glucose co-transporter 2 inhibitors improved the renal outcome of Japanese patients with type 2 diabetes treated with glucagon-like peptide 1 receptor agonists. Cardiovasc Endocrinol Metab 2023; 12:e0292. [PMID: 37779602 PMCID: PMC10540913 DOI: 10.1097/xce.0000000000000292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
Aims This study aimed to clarify the renal influence of glucagon-like peptide 1 receptor agonists (GLP1Ras) with or without sodium-glucose co-transporter 2 inhibitors (SGLT2is) on Japanese patients with type 2 diabetes mellitus (T2DM). Methods We retrospectively extracted 547 patients with T2DM who visited the clinics of members of Kanagawa Physicians Association. The progression of albuminuria status and/or a ≥ 15% decrease in the estimated glomerular filtration rate (eGFR) per year was set as the renal composite outcome. Propensity score matching was performed to compare GLP1Ra-treated patients with and without SGLT2i. Results After matching, 186 patients in each group were compared. There was no significant difference of the incidence of the renal composite outcomes (17% vs. 20%, P = 0.50); however, the annual decrease in the eGFR was significantly smaller and the decrease in the urine albumin-to-creatinine ratio was larger in GLP1Ra-treated patients with the concomitant use of SGLT2is than in those without it (-1.1 ± 5.0 vs. -2.8 ± 5.1 mL/min/1.73 m2, P = 0.001; and -0.08 ± 0.61 vs. 0.05 ± 0.52, P = 0.03, respectively). Conclusion The concomitant use of SGLT2i with GLP1Ra improved the annual decrease in the eGFR and the urine albumin-to-creatinine ratio in Japanese patients with T2DM.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- Committee of Hypertension and Kidney Disease, Kanagawa Physicians Association
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama
| | - Masao Toyoda
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Tokai University School of Medicine, lsehara
| | - Nobuo Hatori
- Committee of Hypertension and Kidney Disease, Kanagawa Physicians Association
| | - Shunichiro Tsukamoto
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama
| | - Moritsugu Kimura
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Tokai University School of Medicine, lsehara
| | - Hiroyuki Sakai
- Committee of Hypertension and Kidney Disease, Kanagawa Physicians Association
| | - Takayuki Furuki
- Committee of Hypertension and Kidney Disease, Kanagawa Physicians Association
| | - Keiichi Chin
- Committee of Hypertension and Kidney Disease, Kanagawa Physicians Association
| | - Tomohiko Kanaoka
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama
| | - Togo Aoyama
- Division of Nephrology, Department of internal medicine, Kitasato University School of Medicine, Sagamihara
| | - Tomoya Umezono
- Committee of Hypertension and Kidney Disease, Kanagawa Physicians Association
| | - Shun Ito
- Committee of Hypertension and Kidney Disease, Kanagawa Physicians Association
| | - Daisuke Suzuki
- Committee of Hypertension and Kidney Disease, Kanagawa Physicians Association
| | - Hiroshi Takeda
- Committee of Hypertension and Kidney Disease, Kanagawa Physicians Association
| | - Hisakazu Degawa
- Committee of Hypertension and Kidney Disease, Kanagawa Physicians Association
| | - Toshimasa Hishiki
- Committee of Hypertension and Kidney Disease, Kanagawa Physicians Association
| | - Hidetoshi Shimura
- Committee of Hypertension and Kidney Disease, Kanagawa Physicians Association
| | - Shinichi Nakajima
- Committee of Hypertension and Kidney Disease, Kanagawa Physicians Association
| | - Masaaki Miyauchi
- Committee of Hypertension and Kidney Disease, Kanagawa Physicians Association
| | - Hareaki Yamamoto
- Committee of Hypertension and Kidney Disease, Kanagawa Physicians Association
| | - Yutaka Hatori
- Committee of Hypertension and Kidney Disease, Kanagawa Physicians Association
| | - Masahiro Hayashi
- Committee of Hypertension and Kidney Disease, Kanagawa Physicians Association
| | - Kazuyoshi Sato
- Committee of Hypertension and Kidney Disease, Kanagawa Physicians Association
| | - Masaaki Miyakawa
- Committee of Hypertension and Kidney Disease, Kanagawa Physicians Association
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama
| | - Akira Kanamori
- Committee of Hypertension and Kidney Disease, Kanagawa Physicians Association
| |
Collapse
|
40
|
Meng Y, Wang Y, Fu W, Zhang M, Huang J, Wu H, Sun L. Global trends and focuses of GLP-1RA in renal disease: a bibliometric analysis and visualization from 2005 to 2022. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3347-3361. [PMID: 37389601 DOI: 10.1007/s00210-023-02575-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
Glucagon-like peptide 1 receptor agonist (GLP-1RA) is a new class of glucose-lowing agents with the kidney benefit effect. This paper aims at finding the current state and hotspots of the research on GLP-1RA in kidney disease by using bibliometric methodologies and visualization maps to analyze publications and provide the direction for future studies on that topic. Literature information was obtained by retrieving the WoSCC database. Then, software like Microsoft Excel, VOSviewer, and CiteSpace was used to analyze and process obtained data. Bibliometric analysis and visualization of nations, authors, organizations, journals, keywords, and references were also done by VOSviewer and CiteSpace. A total of 991 publications written by 4747 authors from 1637 organizations in 75 countries on GLP-1RA in renal disease in Web of Science Core Collection were retrieved. The number of publications and citations kept growing from 2015 to 2022. The USA, Univ Copenhagen, and Rossing Peter are the leading country, organization, and author on this topic, respectively. All literature was published in 346 journals, and DIABETES OBESITY & METABOLISM is the journal with the most contributions. Meanwhile, most references are from DIABETES CARE. "Cardiovascular outcome" is the most frequent keyword in the total publications, and the reference cited most times is "Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes" by Marso SP. The topic of GLP-1RA in renal disease has attracted more and more attention all over the world. Existing studies are mainly about clinical use in patients with diabetes, and studies on the mechanism are lacking.
Collapse
Affiliation(s)
- Yilin Meng
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yaqing Wang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Wenjing Fu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Mingyu Zhang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jiayi Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Haoze Wu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Li Sun
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
41
|
Hedin KA, Zhang H, Kruse V, Rees VE, Bäckhed F, Greiner TU, Vazquez-Uribe R, Sommer MOA. Cold Exposure and Oral Delivery of GLP-1R Agonists by an Engineered Probiotic Yeast Strain Have Antiobesity Effects in Mice. ACS Synth Biol 2023; 12:3433-3442. [PMID: 37827516 PMCID: PMC10661039 DOI: 10.1021/acssynbio.3c00455] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 10/14/2023]
Abstract
Advanced microbiome therapeutics (AMTs) holds promise in utilizing engineered microbes such as bacteria or yeasts for innovative therapeutic applications, including the in situ delivery of therapeutic peptides. Glucagon-like peptide-1 receptor agonists, such as Exendin-4, have emerged as potential treatments for type 2 diabetes and obesity. However, current administration methods face challenges with patient adherence and low oral bioavailability. To address these limitations, researchers are exploring improved oral delivery methods for Exendin-4, including utilizing AMTs. This study engineered the probiotic yeast Saccharomyces boulardii to produce Exendin-4 (Sb-Exe4) in the gastrointestinal tract of male C57BL/6 mice to combat diet-induced obesity. The biological efficiency of Exendin-4 secreted by S. boulardii was analyzed ex vivo on isolated pancreatic islets, demonstrating induced insulin secretion. The in vivo characterization of Sb-Exe4 revealed that when combined with cold exposure (8 °C), the Sb-Exe4 yeast strain successfully suppressed appetite by 25% and promoted a 4-fold higher weight loss. This proof of concept highlights the potential of AMTs to genetically modify S. boulardii for delivering active therapeutic peptides in a precise and targeted manner. Although challenges in efficacy and regulatory approval persist, AMTs may provide a transformative platform for personalized medicine. Further research in AMTs, particularly focusing on probiotic yeasts such as S. boulardii, holds great potential for novel therapeutic possibilities and enhancing treatment outcomes in diverse metabolic disorders.
Collapse
Affiliation(s)
- Karl Alex Hedin
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Hongbin Zhang
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Vibeke Kruse
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Vanessa Emily Rees
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Fredrik Bäckhed
- The
Wallenberg Laboratory, Department of Molecular and Clinical Medicine,
Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
- Department
of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Novo
Nordisk Foundation Center for Basic Metabolic Research, Faculty of
Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas U. Greiner
- The
Wallenberg Laboratory, Department of Molecular and Clinical Medicine,
Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Ruben Vazquez-Uribe
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Morten Otto Alexander Sommer
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
42
|
Xu C, Ha X, Yang S, Tian X, Jiang H. Advances in understanding and treating diabetic kidney disease: focus on tubulointerstitial inflammation mechanisms. Front Endocrinol (Lausanne) 2023; 14:1232790. [PMID: 37859992 PMCID: PMC10583558 DOI: 10.3389/fendo.2023.1232790] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes that can lead to end-stage kidney disease. Despite its significant impact, most research has concentrated on the glomerulus, with little attention paid to the tubulointerstitial region, which accounts for the majority of the kidney volume. DKD's tubulointerstitial lesions are characterized by inflammation, fibrosis, and loss of kidney function, and recent studies indicate that these lesions may occur earlier than glomerular lesions. Evidence has shown that inflammatory mechanisms in the tubulointerstitium play a critical role in the development and progression of these lesions. Apart from the renin-angiotensin-aldosterone blockade, Sodium-Glucose Linked Transporter-2(SGLT-2) inhibitors and new types of mineralocorticoid receptor antagonists have emerged as effective ways to treat DKD. Moreover, researchers have proposed potential targeted therapies, such as inhibiting pro-inflammatory cytokines and modulating T cells and macrophages, among others. These therapies have demonstrated promising results in preclinical studies and clinical trials, suggesting their potential to treat DKD-induced tubulointerstitial lesions effectively. Understanding the immune-inflammatory mechanisms underlying DKD-induced tubulointerstitial lesions and developing targeted therapies could significantly improve the treatment and management of DKD. This review summarizes the latest advances in this field, highlighting the importance of focusing on tubulointerstitial inflammation mechanisms to improve DKD outcomes.
Collapse
Affiliation(s)
- Chengren Xu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiaowen Ha
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
43
|
Talukdar A, Basumatary M. Rodent models to study type 1 and type 2 diabetes induced human diabetic nephropathy. Mol Biol Rep 2023; 50:7759-7782. [PMID: 37458869 DOI: 10.1007/s11033-023-08621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/21/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION Diabetic nephropathy (DN), an outcome of prolonged diabetes, has affected millions of people worldwide and every year the incidence and prevalence increase substantially. The symptoms may start with mild manifestations of the disease such as increased albuminuria, serum creatinine levels, thickening of glomerular basement membrane, expansion of mesangial matrix to severe pathological symptoms such as glomerular lesions and tubulointerstitial fibrosis which may further proceed to cardiovascular dysfunction or end-stage renal disease. PERSPECTIVE Numerous therapeutic interventions are being explored for the management of DN, however, these interventions do not completely halt the progression of this disease and hence animal models are being explored to identify critical genetic and molecular parameters which could help in tackling the disease. Rodent models which mostly include mice and rats are commonly used experimental animals which provide a wide range of advantages in understanding the onset and progression of disease in humans and also their response to a wide range of interventions helps in the development of effective therapeutics. Rodent models of type 1 and type 2 diabetes induced DN have been developed utilizing different platforms and interventions during the last few decades some of which mimic various stages of diabetes ranging from early to later stages. However, a rodent model which replicates all the features of human DN is still lacking. This review tries to evaluate the rodent models that are currently available and understand their features and limitations which may help in further development of more robust models of human DN. CONCLUSION Using these rodent models can help to understand different aspects of human DN although further research is required to develop more robust models utilizing diverse genetic platforms which may, in turn, assist in developing effective interventions to target the disease at different levels.
Collapse
Affiliation(s)
- Amit Talukdar
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, 784028, India.
| | - Mandira Basumatary
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, 784028, India
| |
Collapse
|
44
|
Baer B, Putz ND, Riedmann K, Gonski S, Lin J, Ware LB, Toki S, Peebles RS, Cahill KN, Bastarache JA. Liraglutide pretreatment attenuates sepsis-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 325:L368-L384. [PMID: 37489855 PMCID: PMC10639010 DOI: 10.1152/ajplung.00041.2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 07/26/2023] Open
Abstract
There are no effective targeted therapies to treat acute respiratory distress syndrome (ARDS). Recently, the commonly used diabetes and obesity medications, glucagon-like peptide-1 (GLP-1) receptor agonists, have been found to have anti-inflammatory properties. We, therefore, hypothesized that liraglutide pretreatment would attenuate murine sepsis-induced acute lung injury (ALI). We used a two-hit model of ALI (sepsis+hyperoxia). Sepsis was induced by intraperitoneal injection of cecal slurry (CS; 2.4 mg/g) or 5% dextrose (control) followed by hyperoxia [HO; fraction of inspired oxygen ([Formula: see text]) = 0.95] or room air (control; [Formula: see text] = 0.21). Mice were pretreated twice daily with subcutaneous injections of liraglutide (0.1 mg/kg) or saline for 3 days before initiation of CS+HO. At 24-h post CS+HO, physiological dysfunction was measured by weight loss, severity of illness score, and survival. Animals were euthanized, and bronchoalveolar lavage (BAL) fluid, lung, and spleen tissues were collected. Bacterial burden was assessed in the lung and spleen. Lung inflammation was assessed by BAL inflammatory cell numbers, cytokine concentrations, lung tissue myeloperoxidase activity, and cytokine expression. Disruption of the alveolar-capillary barrier was measured by lung wet-to-dry weight ratios, BAL protein, and epithelial injury markers (receptor for advanced glycation end products and sulfated glycosaminoglycans). Histological evidence of lung injury was quantified using a five-point score with four parameters: inflammation, edema, septal thickening, and red blood cells (RBCs) in the alveolar space. Compared with saline treatment, liraglutide improved sepsis-induced physiological dysfunction and reduced lung inflammation, alveolar-capillary barrier disruption, and lung injury. GLP-1 receptor activation may hold promise as a novel treatment strategy for sepsis-induced ARDS. Additional studies are needed to better elucidate its mechanism of action.NEW & NOTEWORTHY In this study, pretreatment with liraglutide, a commonly used diabetes medication and glucagon-like peptide-1 (GLP-1) receptor agonist, attenuated sepsis-induced acute lung injury in a two-hit mouse model (sepsis + hyperoxia). Septic mice who received the drug were less sick, lived longer, and displayed reduced lung inflammation, edema, and injury. These therapeutic effects were not dependent on weight loss. GLP-1 receptor activation may hold promise as a new treatment strategy for sepsis-induced acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Brandon Baer
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Nathan D Putz
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Kyle Riedmann
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Samantha Gonski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jason Lin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Shinji Toki
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- United States Department of Veterans Affairs, Nashville, Tennessee, United States
| | - Katherine N Cahill
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
45
|
Oteng AB, Liu L. GPCR-mediated effects of fatty acids and bile acids on glucose homeostasis. Front Endocrinol (Lausanne) 2023; 14:1206063. [PMID: 37484954 PMCID: PMC10360933 DOI: 10.3389/fendo.2023.1206063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Fatty acids and glucose are key biomolecules that share several commonalities including serving as energy substrates and as signaling molecules. Fatty acids can be synthesized endogenously from intermediates of glucose catabolism via de-novo lipogenesis. Bile acids are synthesized endogenously in the liver from the biologically important lipid molecule, cholesterol. Evidence abounds that fatty acids and bile acids play direct and indirect roles in systemic glucose homeostasis. The tight control of plasma glucose levels during postprandial and fasted states is principally mediated by two pancreatic hormones, insulin and glucagon. Here, we summarize experimental studies on the endocrine effects of fatty acids and bile acids, with emphasis on their ability to regulate the release of key hormones that regulate glucose metabolism. We categorize the heterogenous family of fatty acids into short chain fatty acids (SCFAs), unsaturated, and saturated fatty acids, and highlight that along with bile acids, these biomolecules regulate glucose homeostasis by serving as endogenous ligands for specific G-protein coupled receptors (GPCRs). Activation of these GPCRs affects the release of incretin hormones by enteroendocrine cells and/or the secretion of insulin, glucagon, and somatostatin by pancreatic islets, all of which regulate systemic glucose homeostasis. We deduce that signaling induced by fatty acids and bile acids is necessary to maintain euglycemia to prevent metabolic diseases such as type-2 diabetes and related metabolic disorders.
Collapse
|
46
|
Yan J, Li X, Liu N, He JC, Zhong Y. Relationship between Macrophages and Tissue Microenvironments in Diabetic Kidneys. Biomedicines 2023; 11:1889. [PMID: 37509528 PMCID: PMC10377233 DOI: 10.3390/biomedicines11071889] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease. Increasing evidence has suggested that inflammation is a key microenvironment involved in the development and progression of DN. Studies have confirmed that macrophage accumulation is closely related to the progression to human DN. Macrophage phenotype is highly regulated by the surrounding microenvironment in the diabetic kidneys. M1 and M2 macrophages represent distinct and sometimes coexisting functional phenotypes of the same population, with their roles implicated in pathological changes, such as in inflammation and fibrosis associated with the stage of DN. Recent findings from single-cell RNA sequencing of macrophages in DN further confirmed the heterogeneity and plasticity of the macrophages. In addition, intrinsic renal cells interact with macrophages directly or through changes in the tissue microenvironment. Macrophage depletion, modification of its polarization, and autophagy could be potential new therapies for DN.
Collapse
Affiliation(s)
- Jiayi Yan
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xueling Li
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ni Liu
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - John Cijiang He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yifei Zhong
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
47
|
Alicic RZ, Neumiller JJ, Tuttle KR. Mechanisms and clinical applications of incretin therapies for diabetes and chronic kidney disease. Curr Opin Nephrol Hypertens 2023; 32:377-385. [PMID: 37195250 PMCID: PMC10241427 DOI: 10.1097/mnh.0000000000000894] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
PURPOSE OF REVIEW Diabetic kidney disease (DKD) is the leading cause of kidney failure worldwide. Development of DKD increases risks for cardiovascular events and death. Glucagon-like peptide-1 (GLP-1) receptor agonist have demonstrated improved cardiovascular and kidney outcomes in large-scale clinical trials. RECENT FINDING GLP-1 and dual GLP-1/glucose-depending insulinotropic polypeptide (GIP) receptor agonists have robust glucose-lowering efficacy with low risk of hypoglycemia even in advanced stages of DKD. Initially approved as antihyperglycemic therapies, these agents also reduce blood pressure and body weight. Cardiovascular outcome and glycemic lowering trials have reported decreased risks of development and progression of DKD and atherosclerotic cardiovascular events for GLP-1 receptor agonists. Kidney and cardiovascular protection is mediated partly, but not entirely, by lowering of glycemia, body weight, and blood pressure. Experimental data have identified modulation of the innate immune response as a biologically plausible mechanism underpinning kidney and cardiovascular effects. SUMMARY An influx of incretin-based therapies has changed the landscape of DKD treatment. GLP-1 receptor agonist use is endorsed by all major guideline forming organizations. Ongoing clinical trials and mechanistic studies with GLP-1 and dual GLP-1/GIP receptor agonists will further define the roles and pathways for these agents in the treatment of DKD.
Collapse
Affiliation(s)
- Radica Z. Alicic
- Providence Medical Research Center, Providence Inland Northwest Health
- Department of Medicine, University of Washington School of Medicine
| | - Joshua J. Neumiller
- Providence Medical Research Center, Providence Inland Northwest Health
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University
| | - Katherine R. Tuttle
- Providence Medical Research Center, Providence Inland Northwest Health
- Department of Medicine, University of Washington School of Medicine
- Nephrology Division, Kidney Research Institute and Institute of Translational Health Sciences, University of Washington, Spokane and Seattle, Washington, USA
| |
Collapse
|
48
|
Mahalingam S, Bellamkonda R, Arumugam MK, Perumal SK, Yoon J, Casey C, Kharbanda K, Rasineni K. Glucagon-like peptide 1 receptor agonist, exendin-4, reduces alcohol-associated fatty liver disease. Biochem Pharmacol 2023; 213:115613. [PMID: 37209859 PMCID: PMC10351880 DOI: 10.1016/j.bcp.2023.115613] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Fatty liver is the earliest response to excessive ethanol consumption, which increases the susceptibility of the liver to develop advanced stage of liver disease. Our previous studies have revealed that chronic alcohol administration alters metabolic hormone levels and their functions. Of current interest to our laboratory is glucagon-like peptide 1 (GLP-1), a widely studied hormone known to reduce insulin resistance and hepatic fat accumulation in patients with metabolic-associated fatty liver disease. In this study, we examined the beneficial effects of exendin-4 (a GLP-1 receptor agonist) in an experimental rat model of ALD. Male Wistar rats were pair-fed the Lieber-DeCarli control or ethanol diet. After 4 weeks of this feeding regimen, a subset of rats in each group were intraperitoneally injected every other day with either saline or exendin-4 at a dose of 3 nmol/kg/day (total 13 doses) while still being fed their respective diet. At the end of the treatment, rats were fasted for 6 h and glucose tolerance test was conducted. The following day, the rats were euthanized, and the blood and tissue samples collected for subsequent analysis. We found that exendin-4 treatment had no significant effect on body weight gain among the experimental groups. Exendin-4-treated ethanol rats exhibited improved alcohol-induced alterations in liver/body weight and adipose/body weight ratio, serum ALT, NEFA, insulin, adiponectin and hepatic triglyceride levels. Reduction in indices of hepatic steatosis in exendin-4 treated ethanol-fed rats was attributed to improved insulin signaling and fat metabolism. These results strongly suggest that exendin-4 mitigates alcohol-associated hepatic steatosis by regulating fat metabolism.
Collapse
Affiliation(s)
- Sundararajan Mahalingam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Ramesh Bellamkonda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Madan Kumar Arumugam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sathish Kumar Perumal
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jessica Yoon
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Carol Casey
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kusum Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
49
|
Mehdi SF, Pusapati S, Anwar MS, Lohana D, Kumar P, Nandula SA, Nawaz FK, Tracey K, Yang H, LeRoith D, Brownstein MJ, Roth J. Glucagon-like peptide-1: a multi-faceted anti-inflammatory agent. Front Immunol 2023; 14:1148209. [PMID: 37266425 PMCID: PMC10230051 DOI: 10.3389/fimmu.2023.1148209] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Inflammation contributes to many chronic conditions. It is often associated with circulating pro-inflammatory cytokines and immune cells. GLP-1 levels correlate with disease severity. They are often elevated and can serve as markers of inflammation. Previous studies have shown that oxytocin, hCG, ghrelin, alpha-MSH and ACTH have receptor-mediated anti-inflammatory properties that can rescue cells from damage and death. These peptides have been studied well in the past century. In contrast, GLP-1 and its anti-inflammatory properties have been recognized only recently. GLP-1 has been proven to be a useful adjuvant therapy in type-2 diabetes mellitus, metabolic syndrome, and hyperglycemia. It also lowers HbA1C and protects cells of the cardiovascular and nervous systems by reducing inflammation and apoptosis. In this review we have explored the link between GLP-1, inflammation, and sepsis.
Collapse
Affiliation(s)
- Syed Faizan Mehdi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Suma Pusapati
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Muhammad Saad Anwar
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Durga Lohana
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Parkash Kumar
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | | | - Fatima Kausar Nawaz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kevin Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Huan Yang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Derek LeRoith
- Division of Endocrinology, Diabetes & Bone Disease, Icahn School of Medicine at Mt. Sinai, New York, NY, United States
| | | | - Jesse Roth
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
50
|
Oda Y, Nishi H, Nangaku M. Role of Inflammation in Progression of Chronic Kidney Disease in Type 2 Diabetes Mellitus: Clinical Implications. Semin Nephrol 2023; 43:151431. [PMID: 37865982 DOI: 10.1016/j.semnephrol.2023.151431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Progression of chronic kidney disease in type 2 diabetes has been understood conventionally as a consequence of intraglomerular hemodynamic changes and aberrant metabolic pathways. However, an increasing body of experimental evidence has highlighted the role of inflammatory response in the progression of diabetic kidney disease. Macrophage polarization in response to specific microenvironmental stimuli affects the pathology of diabetic kidneys. The diabetic milieu also up-regulates inflammatory cytokines, chemokines, and adhesion molecules, and promotes inflammatory signal transduction pathways, including inflammasomes. Therefore, from a reverse translational perspective, modulation of the inflammatory response may be the driving force of the renoprotective effects of renin-angiotensin system inhibitors, sodium-glucose cotransporter-2 inhibitors, and mineralocorticoid receptor antagonists, all of which have been shown to slow disease progression. Currently, many agents that target the inflammation in the kidneys directly are evaluated in clinical trials. This article discusses recent clinical and experimental milestones in drug development for diabetic kidney disease with a perspective on inflammation in the kidneys. Such insights may enable a targeted approach to discovering novel drugs against chronic kidney disease in type 2 diabetes.
Collapse
Affiliation(s)
- Yasuhiro Oda
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Nishi
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|