1
|
Aktar R, Rondinelli S, Peiris M. GPR84 in physiology-Many functions in many tissues. Br J Pharmacol 2024; 181:1524-1535. [PMID: 37533166 DOI: 10.1111/bph.16206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023] Open
Abstract
Members of the GPCR superfamily have a wide variety of physiological roles and are therefore valuable targets for developing effective medicines. However, within this superfamily are receptors that are less well characterized and remain orphans, including GPR84. This receptor is stimulated by ligands derived from dietary nutrients, specifically medium chain fatty acids (C9-14), and novel synthetic agonists. There are data demonstrating the role of GPR84 in inflammatory pathways, in addition to emerging data suggesting a key role for GPR84 as a nutrient-sensing GPCR involved in metabolism by sensing energy load via nutrient exposure and subsequent signalling leading to modulation of food intake. Exploring GPR84 pharmacology, its localization and what drives its expression has revealed multiple roles for this receptor. Here, we will reflect on these various roles of GRP84 demonstrated thus far, primarily by exploring data from pre-clinical and clinical studies in various physiological systems, with a specific focus on the gastrointestinal tract. LINKED ARTICLES: This article is part of a themed issue GPR84 Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.10/issuetoc.
Collapse
Affiliation(s)
- Rubina Aktar
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Silvia Rondinelli
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Madusha Peiris
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Xie C, Jalleh RJ, Watson LE, Huang W, Sun Y, Jones KL, Horowitz M, Rayner CK, Wu T. Determinants of blood glucose concentrations following a high carbohydrate meal in type 2 diabetes: A multiple linear regression analysis. Diabetes Res Clin Pract 2023; 198:110606. [PMID: 36893852 DOI: 10.1016/j.diabres.2023.110606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
This study showed that in relatively well-controlled type 2 diabetes blood glucose levels after a high carbohydrate meal were associated positively with fasting blood glucose, but also positively with gastric emptying in the first hour and negatively with the increments in plasma glucagon-like peptide-1 (GLP-1) in the later postprandial phase.
Collapse
Affiliation(s)
- Cong Xie
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Ryan J Jalleh
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Linda E Watson
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Weikun Huang
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Yixuan Sun
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Christopher K Rayner
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia.
| |
Collapse
|
3
|
Kamoshita K, Tsugane H, Ishii KA, Takayama H, Yao X, Abuduwaili H, Tanida R, Taniguchi Y, Oo HK, Gafiyatullina G, Kaneko S, Matsugo S, Takamura T. Lauric acid impairs insulin-induced Akt phosphorylation by upregulating SELENOP expression via HNF4α induction. Am J Physiol Endocrinol Metab 2022; 322:E556-E568. [PMID: 35499234 DOI: 10.1152/ajpendo.00163.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022]
Abstract
Selenoprotein P (SeP; encoded by SELENOP in humans, Selenop in rodents) is a hepatokine that is upregulated in the liver of humans with type 2 diabetes. Excess SeP contributes to the onset of insulin resistance and various type 2 diabetes-related complications. We have previously reported that the long-chain saturated fatty acid, palmitic acid, upregulates Selenop expression, whereas the polyunsaturated fatty acids (PUFAs) downregulate it in hepatocytes. However, the effect of medium-chain fatty acids (MCFAs) on Selenop is unknown. Here we report novel mechanisms that underlie the lauric acid-mediated Selenop gene regulation in hepatocytes. Lauric acid upregulated Selenop expression in Hepa1-6 hepatocytes and mice liver. A luciferase promoter assay and computational analysis of transcription factor-binding sites identified the hepatic nuclear factor 4α (HNF4α) binding site in the SELENOP promoter. A chromatin immunoprecipitation (ChIP) assay showed that lauric acid increased the binding of HNF4α to the SELENOP promoter. The knockdown of Hnf4α using siRNA canceled the upregulation of lauric acid-induced Selenop. Thus, the lauric acid-induced impairment of Akt phosphorylation brought about by insulin was rescued by the knockdown of either Hnf4α or Selenop. These results provide new insights into the regulation of SeP by fatty acids and suggest that SeP may mediate MCFA-induced hepatic insulin signal reduction.
Collapse
Affiliation(s)
- Kyoko Kamoshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Hirohiko Tsugane
- Institute of Science and Engineering, Faculty of Natural System, Kanazawa University, Kanazawa, Japan
| | - Kiyo-Aki Ishii
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- Department of Integrative Medicine for Longevity, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroaki Takayama
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- Department of System Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Life Sciences Division, Engineering and Technology Department, Kanazawa University, Kanazawa, Japan
| | - Xingyu Yao
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Halimulati Abuduwaili
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Ryota Tanida
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Yasumasa Taniguchi
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Hein Ko Oo
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Guzel Gafiyatullina
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Shuichi Kaneko
- Department of System Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Seiichi Matsugo
- Institute of Science and Engineering, Faculty of Natural System, Kanazawa University, Kanazawa, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| |
Collapse
|
4
|
Peiris M, Aktar R, Reed D, Cibert-Goton V, Zdanaviciene A, Halder W, Robinow A, Corke S, Dogra H, Knowles CH, Blackshaw A. Decoy bypass for appetite suppression in obese adults: role of synergistic nutrient sensing receptors GPR84 and FFAR4 on colonic endocrine cells. Gut 2022; 71:928-937. [PMID: 34083384 PMCID: PMC8995825 DOI: 10.1136/gutjnl-2020-323219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 05/09/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Colonic enteroendocrine cells (EECs) store and release potent anorectic hormones that are key regulators of satiety. EECs express multiple nutrient sensing receptors, particularly for medium-chain fatty acids (MCFAs): GPR84 and FFAR4. Here we show a non-surgical approach with targeted colonic delivery of MCFA, which induces EEC and neuronal activation leading to anorectic effects. DESIGN A randomised, double-blind, placebo-controlled, cross-over study was performed in obese adults given combined GPR84 and FFAR4 agonists in colonic release capsules before meals. We measured serum hormones, energy intake and appetite perception. Cell type, activation by agonists and hormone/serotonin release were determined in human colonic explants. Mouse colonic afferent nerve responses to nutrients/mediators were recorded electrophysiologically. RESULTS Subjects receiving GPR84 and FFAR4 agonists had reduced overall calorific intake and increased postprandial levels of PYY versus placebo. Receptors including GPR84 and FFAR4 were coexpressed on human colonic EEC. Activation of GPR84 exclusively induced intracellular pERK, whereas FFAR4 selectively activated pCaMKII. Coactivation of GPR84 and FFAR4 induced both phosphoproteins, and superadditive release of GLP-1 and PYY. Nutrients and hormones convergently activated murine colonic afterent nerves via GLP-1, Y2 and 5-HT3 receptors. CONCLUSIONS Colonic GPR84 and FFAR4 agonists reduce energy intake and increase postprandial PYY in obese adults. Human colonic EECs coexpress these receptors, which activate cells via parallel intracellular pathways and synergistically evoke hormone release. Further synergism occurs in sensory nerve responses to MCFA and EEC mediators. Thus, synergistic activation of colonic endocrine cells via nutrient receptors is an important target for metabolic regulation. TRAIL REGISTRATION NUMBER NCT04292236.
Collapse
Affiliation(s)
- Madusha Peiris
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rubina Aktar
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David Reed
- Gastrointestinal Diseases Research, Queen's University, Kingston, Queensland, Canada
| | - Vincent Cibert-Goton
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ausra Zdanaviciene
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Writaja Halder
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Adam Robinow
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Simon Corke
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Harween Dogra
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Charles H Knowles
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ashley Blackshaw
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
5
|
Hajishafiee M, McVeay C, Lange K, Rehfeld JF, Horowitz M, Feinle-Bisset C. Effects of intraduodenal infusion of lauric acid and L-tryptophan, alone and combined, on glucoregulatory hormones, gastric emptying and glycaemia in healthy men. Metabolism 2022; 129:155140. [PMID: 35065080 DOI: 10.1016/j.metabol.2022.155140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/28/2021] [Accepted: 01/14/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM In healthy men, intraduodenal administration of the fatty acid, lauric acid ('C12') and the amino acid, L-tryptophan ('TRP'), at loads that individually do not affect energy intake, reduce energy intake substantially when combined. C12 and TRP may also stimulate cholecystokinin and glucagon-like peptide-1 (GLP-1), which both slow gastric emptying, a key determinant of postprandial blood glucose. Accordingly, combination of C12 and TRP has the potential to reduce post-meal glycaemia more than either nutrient alone. METHODS Twelve healthy, lean men (age (mean ± SD): 28 ± 7 years) received, on 4 separate occasions, 45-min intraduodenal infusions of C12 (0.3 kcal/min), TRP (0.1 kcal/min), C12 + TRP (0.4 kcal/min), or 0.9% saline (control), in a randomised, double-blind fashion. 30 min after commencement of the infusion a mixed-nutrient drink was consumed and gastric emptying measured (13C breath-test) for 3 h. Blood samples were obtained at baseline, in response to treatments alone, and for 2 h post-drink for measurements of plasma glucose, cholecystokinin, GLP-1, C-peptide, insulin and glucagon. 'Early' (first 30 min) and 'overall' glycaemic and hormone responses were evaluated. RESULTS C12 + TRP and C12 delayed the rise in, but did not affect the overall glycaemic response to the drink, compared with control and TRP (all P < 0.05). C12 + TRP slowed gastric emptying compared with control and TRP (both P < 0.005), and C12 non-significantly slowed gastric emptying compared with control (P = 0.090). C12 + TRP and C12 delayed the rise in C-peptide and insulin, and also stimulated CCK and glucagon, compared with control and TRP (all P < 0.05). Only C12 + TRP stimulated early and overall GLP-1 compared with control (P < 0.05). CONCLUSIONS In healthy men, C12 + TRP and C12, in the loads administered, had comparable effects to delay the rise in glucose following a nutrient drink, probably primarily by slowing of gastric emptying, as a result of CCK and GLP-1 stimulation, while TRP had no effect.
Collapse
Affiliation(s)
- M Hajishafiee
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - C McVeay
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - K Lange
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - J F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - M Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - C Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
6
|
Miedzybrodzka EL, Gribble FM, Reimann F. Targeting the Enteroendocrine System for Treatment of Obesity. Handb Exp Pharmacol 2022; 274:487-513. [PMID: 35419620 DOI: 10.1007/164_2022_583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mimetics of the anorexigenic gut hormone glucagon-like peptide 1 (GLP-1) were originally developed as insulinotropic anti-diabetic drugs but also evoke significant weight loss, leading to their recent approval as obesity therapeutics. Co-activation of receptors for GLP-1 and other gut hormones which reduce food intake - peptide YY (PYY3-36), cholecystokinin (CCK) and glucose-dependent insulinotropic peptide (GIP) - is now being explored clinically to enhance efficacy. An alternative approach involves pharmacologically stimulating endogenous secretion of these hormones from enteroendocrine cells (EECs) to recapitulate the metabolic consequences of bariatric surgery, where highly elevated postprandial levels of GLP-1 and PYY3-36 are thought to contribute to improved glycaemia and weight loss.
Collapse
Affiliation(s)
- Emily L Miedzybrodzka
- Wellcome Trust - MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Fiona M Gribble
- Wellcome Trust - MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | - Frank Reimann
- Wellcome Trust - MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
7
|
Acute effects of delayed-release hydrolyzed pine nut oil on glucose tolerance, incretins, ghrelin and appetite in healthy humans. Clin Nutr 2020; 40:2169-2179. [PMID: 33059911 DOI: 10.1016/j.clnu.2020.09.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 08/22/2020] [Accepted: 09/27/2020] [Indexed: 12/27/2022]
Abstract
BACGROUND & AIM Pinolenic acid, a major component (~20%) of pine nut oil, is a dual agonist of the free fatty acid receptors, FFA1 and FFA4, which may regulate release of incretins and ghrelin from the gut. Here, we investigated the acute effects of hydrolyzed pine nut oil (PNO-FFA), delivered to the small intestine by delayed-release capsules, on glucose tolerance, insulin, incretin and ghrelin secretion, and appetite. METHODS In two cross-over studies, we evaluated 3 g unhydrolyzed pine nut oil (PNO-TG) or 3 g PNO-FFA versus no oil in eight healthy, non-obese subjects (study 1), and 3 g PNO-FFA or 6 g PNO-FFA versus no oil in ten healthy, overweight/obese subjects (study 2) in both studies given in delayed-release capsules 30 min prior to a 4-h-oral glucose tolerance test (OGTT). Outcomes were circulating levels of glucose, insulin, GLP-1, GIP, ghrelin, appetite and gastrointestinal tolerability during OGTT. RESULTS Both 3 g PNO-FFA in study 1 and 6 g PNO-FFA in study 2 markedly increased GLP-1 levels (p < 0.001) and attenuated ghrelin levels (p < 0.001) during the last 2 h of the OGTT compared with no oil. In study 2, these effects of PNO-FFA were accompanied by an increased satiety and fullness (p < 0.03), and decreased prospective food consumption (p < 0.05). PNO-FFA caused only small reductions in glucose and insulin levels during the first 2 h of the OGTT. CONCLUSIONS Our results provide evidence that PNO-FFA delivered to the small intestine by delayed-release capsules may reduce appetite by augmenting GLP-1 release and attenuating ghrelin secretion in the late postprandial state. CLINICAL TRIAL REGISTRY NUMBERS NCT03062592 and NCT03305367.
Collapse
|
8
|
Enteroendocrine Hormone Secretion and Metabolic Control: Importance of the Region of the Gut Stimulation. Pharmaceutics 2020; 12:pharmaceutics12090790. [PMID: 32825608 PMCID: PMC7559385 DOI: 10.3390/pharmaceutics12090790] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
It is now widely appreciated that gastrointestinal function is central to the regulation of metabolic homeostasis. Following meal ingestion, the delivery of nutrients from the stomach into the small intestine (i.e., gastric emptying) is tightly controlled to optimise their subsequent digestion and absorption. The complex interaction of intraluminal nutrients (and other bioactive compounds, such as bile acids) with the small and large intestine induces the release of an array of gastrointestinal hormones from specialised enteroendocrine cells (EECs) distributed in various regions of the gut, which in turn to regulate gastric emptying, appetite and postprandial glucose metabolism. Stimulation of gastrointestinal hormone secretion, therefore, represents a promising strategy for the management of metabolic disorders, particularly obesity and type 2 diabetes mellitus (T2DM). That EECs are distributed distinctively between the proximal and distal gut suggests that the region of the gut exposed to intraluminal stimuli is of major relevance to the secretion profile of gastrointestinal hormones and associated metabolic responses. This review discusses the process of intestinal digestion and absorption and their impacts on the release of gastrointestinal hormones and the regulation of postprandial metabolism, with an emphasis on the differences between the proximal and distal gut, and implications for the management of obesity and T2DM.
Collapse
|
9
|
Huang WK, Xie C, Young RL, Zhao JB, Ebendorff-Heidepriem H, Jones KL, Rayner CK, Wu TZ. Development of innovative tools for investigation of nutrient-gut interaction. World J Gastroenterol 2020; 26:3562-3576. [PMID: 32742126 PMCID: PMC7366065 DOI: 10.3748/wjg.v26.i25.3562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract is the key interface between the ingesta and the human body. There is wide recognition that the gastrointestinal response to nutrients or bioactive compounds, particularly the secretion of numerous hormones, is critical to the regulation of appetite, body weight and blood glucose. This concept has led to an increasing focus on “gut-based” strategies for the management of metabolic disorders, including type 2 diabetes and obesity. Understanding the underlying mechanisms and downstream effects of nutrient-gut interactions is fundamental to effective translation of this knowledge to clinical practice. To this end, an array of research tools and platforms have been developed to better understand the mechanisms of gut hormone secretion from enteroendocrine cells. This review discusses the evolution of in vitro and in vivo models and the integration of innovative techniques that will ultimately enable the development of novel therapies for metabolic diseases.
Collapse
Affiliation(s)
- Wei-Kun Huang
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, Adelaide, SA 5005, Australia
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5005, Australia
| | - Cong Xie
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, Adelaide, SA 5005, Australia
| | - Richard L Young
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, Adelaide, SA 5005, Australia
- Diabetes, Nutrition and Gut Health, Lifelong Health, South Australia Health and Medical Research Institute, Adelaide, SA 5005, Australia
| | - Jiang-Bo Zhao
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5005, Australia
| | - Heike Ebendorff-Heidepriem
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5005, Australia
| | - Karen L Jones
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, Adelaide, SA 5005, Australia
| | - Christopher K Rayner
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, Adelaide, SA 5005, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Tong-Zhi Wu
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, Adelaide, SA 5005, Australia
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
10
|
Effect of bolus enteral tube feeding on body weight in ambulatory adults with obesity and type 2 diabetes: a feasibility pilot randomized trial. Nutr Diabetes 2020; 10:22. [PMID: 32555148 PMCID: PMC7298641 DOI: 10.1038/s41387-020-0125-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 11/16/2022] Open
Abstract
Background/objectives To ascertain the effect on body weight of 14 days of bolus enteral feeding with mixed meal (MM) and electrolyte solution (ES) in ambulatory adults with type 2 diabetes and obesity, and also the safety and feasibility of using a modified, intraorally anchored enteral feeding tube for this purpose. Subjects/methods We conducted a randomized, crossover pilot trial with 16 participants. A 140 cm, 8-French feeding tube was placed in the jejunum under electromagnetic guidance and anchored intraorally. Participants were randomized to self-administer 120 mL 523 kJ (125 kcal) MM, or 50 kJ (12 kcal) ES four times/day for 14 days. After ≥14 days without the tube, participants crossed over to the other treatment. The primary outcome compared weight change between treatments. Thereafter, participants could elect to undergo additional MM cycles. Participants were encouraged to continue with all usual activities including eating ad lib throughout the study. Results Ten participants withdrew prior to completing two randomized 14-day cycles (4 social, 3 intolerant of anchor, and 3 intolerant of tube). Six participants were assessed for the primary outcome and showed no significant difference in weight loss between MM and ES (p = 0.082). For the secondary outcome of within-group weight loss, average weight loss from baseline was significant for MM but not for ES: −2.40 kg (95% CI: −3.78, −1.02; p = 0.008) vs. −0.64 kg (95% CI: −2.01, 0.74; p = 0.27). A total of 23 2-week cycles were completed (12 paired, 2 unpaired, and 9 additional), with no significant adverse events for 334 days of tube use. Conclusions Repeated bolus nutrient administration via enteral feeding tube is associated with weight loss in adults with obesity and type 2 diabetes, with no significant difference seen between MM and ES feeds. The prototype device was safe, but requires development for further investigation into the effect of bolus jejunal feeding on weight and to improve acceptability.
Collapse
|
11
|
McVeay C, Fitzgerald PCE, Horowitz M, Feinle-Bisset C. Effects of Duodenal Infusion of Lauric Acid and L-Tryptophan, Alone and Combined, on Fasting Glucose, Insulin and Glucagon in Healthy Men. Nutrients 2019; 11:nu11112697. [PMID: 31703434 PMCID: PMC6893799 DOI: 10.3390/nu11112697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
Abstract
The fatty acid, lauric acid ('C12'), and the amino acid, tryptophan ('Trp'), when given intraduodenally at loads that individually do not affect energy intake, have recently been shown to stimulate plasma cholecystokinin, suppress ghrelin and reduce energy intake much more markedly when combined. Both fatty acids and amino acids stimulate insulin secretion by distinct mechanisms; fatty acids enhance glucose-stimulated insulin secretion, while amino acids may have a direct effect on pancreatic β cells. Therefore, it is possible that, by combining these nutrients, their effects to lower blood glucose may be enhanced. We have investigated the potential for the combination of C12 and Trp to have additive effects to reduce blood glucose. To address this question, plasma concentrations of glucose, insulin and glucagon were measured in 16 healthy, lean males during duodenal infusions of saline (control), C12 (0.3 kcal/min), Trp (0.1 kcal/min), or C12+Trp (0.4 kcal/min), for 90 min. Both C12 and C12+Trp moderately reduced plasma glucose compared with control (p < 0.05). C12+Trp, but not C12 or Trp, stimulated insulin and increased the insulin-to-glucose ratio (p < 0.05). There was no effect on plasma glucagon. In conclusion, combined intraduodenal administration of C12 and Trp reduced fasting glucose in healthy men, and this decrease was driven primarily by C12. The effects of these nutrients on postprandial blood glucose and elevated fasting blood glucose in type 2 diabetes warrant evaluation.
Collapse
|
12
|
Dairy Fat Consumption and the Risk of Metabolic Syndrome: An Examination of the Saturated Fatty Acids in Dairy. Nutrients 2019; 11:nu11092200. [PMID: 31547352 PMCID: PMC6769731 DOI: 10.3390/nu11092200] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Lifestyle is a key modifiable risk factor involved in the manifestation of metabolic syndrome and, in particular, diet plays a pivotal role in its prevention and development. Current dietary guidelines discourage the consumption of saturated fat and dietary sources rich in saturated fat, such as dairy products, despite data suggesting that full-fat dairy consumption is protective against metabolic syndrome. This narrative review assessed the recent epidemiological and clinical research that examined the consumption of dairy-derived saturated fatty acids (SFA) on metabolic syndrome risk. In addition, this review evaluated studies of individual SFA to gain insight into the potential mechanisms at play with intake of a diet enriched with these dairy-derived fatty acids. This work underscores that SFA are a heterogenous class of fatty acids that can differ considerably in their biological activity within the body depending on their length and specific chemical structure. In summary, previous work on the impact of dairy-derived SFA consumption on disease risk suggests that there is currently insufficient evidence to support current dietary guidelines which consolidate all dietary SFA into a single group of nutrients whose consumption should be reduced, regardless of dietary source, food matrix, and composition.
Collapse
|
13
|
Development of a delayed-release nutrient for appetite control in adults with obesity and type 2 diabetes and initial clinical testing in a single dose randomized controlled trial. Nutr Diabetes 2019; 9:20. [PMID: 31308360 PMCID: PMC6629646 DOI: 10.1038/s41387-019-0088-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/27/2019] [Accepted: 06/13/2019] [Indexed: 12/17/2022] Open
Abstract
Background and objectives Delivery of nutrients directly to the small intestine, either via enteral feeding tube or by gastric bypass surgery, is associated with increased levels of appetite-suppressing and glucoregulatory hormones, including GLP-1, and reduced appetite. Achieving these changes non-invasively using formulated foods may be of therapeutic benefit in individuals with obesity and related comorbidities. The aim of this pilot study was to determine the effect of a single dose of a novel delayed-release nutrient (DRN) on glucose, GLP-1, c-peptide, insulin, and appetite in adults with obesity and type 2 diabetes. Subjects and methods We formulated an all-natural, generally recognized as safe (‘GRAS”) DRN and conducted a randomized prospective crossover trial. Nineteen adults with obesity and type 2 diabetes underwent paired 3-h meal tolerance tests (MTT) in randomized order 1–4 weeks apart. Subjects ingested a single dose of DRN and the same nutrients as unformulated powders (UN). Results For DRN compared with UN, the maximal concentration (Cmax) was significantly lower for glucose, c-peptide, and insulin, and the time of maximal concentration (Tmax) was significantly delayed. While Tmax for GLP-1 was also significantly delayed following DRN compared with UN (45 min later; p = 0.26), Cmax did not differ significantly. GLP-1 rose significantly during the last 90 min of the 3-h MTT (β1 = 0.16 pg/mL/min, p = 0.025), while following UN it decreased (β1 = −0.21 pg/mL/min, p = 0.0026) (p difference = 0.0003). There were minimal differences in seven measures of appetite and adverse symptoms between DRN and UN. Conclusions We conclude that nutrient can be formulated using all-natural ingredients to induce a delayed rise in GLP-1. Further testing is needed to determine the amount and site of nutrient release, when maximum GLP-1 levels occur, and if modification of the formulation specifications and dose are associated with appetite and glucose control.
Collapse
|
14
|
Zhang X, Young RL, Bound M, Hu S, Jones KL, Horowitz M, Rayner CK, Wu T. Comparative Effects of Proximal and Distal Small Intestinal Glucose Exposure on Glycemia, Incretin Hormone Secretion, and the Incretin Effect in Health and Type 2 Diabetes. Diabetes Care 2019; 42:520-528. [PMID: 30765429 DOI: 10.2337/dc18-2156] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/16/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Cells releasing glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are distributed predominately in the proximal and distal gut, respectively. Hence, the region of gut exposed to nutrients may influence GIP and GLP-1 secretion and impact on the incretin effect and gastrointestinal-mediated glucose disposal (GIGD). We evaluated glycemic and incretin responses to glucose administered into the proximal or distal small intestine and quantified the corresponding incretin effect and GIGD in health and type 2 diabetes mellitus (T2DM). RESEARCH DESIGN AND METHODS Ten healthy subjects and 10 patients with T2DM were each studied on four occasions. On two days, a transnasal catheter was positioned with infusion ports opening 13 cm and 190 cm beyond the pylorus, and 30 g glucose with 3 g 3-O-methylglucose (a marker of glucose absorption) was infused into either site and 0.9% saline into the alternate site over 60 min. Matching intravenous isoglycemic clamp studies were performed on the other two days. Blood glucose, serum 3-O-methylglucose, and plasma hormones were evaluated over 180 min. RESULTS In both groups, blood glucose and serum 3-O-methylglucose concentrations were higher after proximal than distal glucose infusion (all P < 0.001). Plasma GLP-1 increased minimally after proximal, but substantially after distal, glucose infusion, whereas GIP increased promptly after both infusions, with concentrations initially greater, but less sustained, with proximal versus distal infusion (all P < 0.001). Both the incretin effect and GIGD were less with proximal than distal glucose infusion (both P ≤ 0.009). CONCLUSIONS The distal, as opposed to proximal, small intestine is superior in modulating postprandial glucose metabolism in both health and T2DM.
Collapse
Affiliation(s)
- Xiang Zhang
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Richard L Young
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Michelle Bound
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Sanyuan Hu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Christopher K Rayner
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Institute of Diabetes, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Xie C, Wang X, Young RL, Horowitz M, Rayner CK, Wu T. Role of Intestinal Bitter Sensing in Enteroendocrine Hormone Secretion and Metabolic Control. Front Endocrinol (Lausanne) 2018; 9:576. [PMID: 30319553 PMCID: PMC6171477 DOI: 10.3389/fendo.2018.00576] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/10/2018] [Indexed: 02/05/2023] Open
Abstract
The gastrointestinal tract stores ingested nutrients in the stomach which are then delivered to the small intestine at a controlled rate to optimize their digestion and absorption. The interaction of nutrients with the small and large intestine generates feedback that slows gastric emptying, induces satiation, and reduces postprandial glycemic excursions. The mechanisms underlying these nutrient-gut interactions are complex; it has only recently been appreciated that the gut has the capacity to detect intraluminal contents in much the same way as the tongue, via activation of specific G-protein-coupled receptors, and that ensuing signaling mechanisms modulate the release of an array of gut hormones that influence gastrointestinal motility, appetite and glycemia. Interestingly, evidence from preclinical models supports a functional link between intestinal bitter taste receptor (BTRs) and gastrointestinal hormone secretion, and the outcomes of recent studies indicate that stimulation of intestinal BTRs may be used to modulate gastrointestinal function, to diminish energy intake and limit postprandial blood glucose excursions in humans. This review summarizes current evidence about the expression and function of intestinal BTRs in relation to enteroendocrine hormone release and discusses the clinical implications of this pathway for the management of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Cong Xie
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
| | - Xuyi Wang
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
- Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Richard L. Young
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Michael Horowitz
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
| | - Christopher K. Rayner
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
| | - Tongzhi Wu
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
- Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
16
|
Ma J, Vella A. What Has Bariatric Surgery Taught Us About the Role of the Upper Gastrointestinal Tract in the Regulation of Postprandial Glucose Metabolism? Front Endocrinol (Lausanne) 2018; 9:324. [PMID: 29997575 PMCID: PMC6028568 DOI: 10.3389/fendo.2018.00324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
The interaction between the upper gastrointestinal tract and the endocrine system is important in the regulation of metabolism and of weight. The gastrointestinal tract has a heterogeneous cellular content and comprises a variety of cells that elaborate paracrine and endocrine mediators that collectively form the entero-endocrine system. The advent of therapy that utilizes these pathways as well as the association of bariatric surgery with diabetes remission has (re-)kindled interest in the role of the gastrointestinal tract in glucose homeostasis. In this review, we will use the changes wrought by bariatric surgery to provide insights into the various gut-pancreas interactions that maintain weight, regulate satiety, and limit glucose excursions after meal ingestion.
Collapse
Affiliation(s)
- Jing Ma
- Division of Endocrinology and Metabolism, Shanghai Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic College of Medicine, Rochester, NY, United States
| | - Adrian Vella
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic College of Medicine, Rochester, NY, United States
| |
Collapse
|
17
|
Gribble FM, Meek CL, Reimann F. Targeted intestinal delivery of incretin secretagogues-towards new diabetes and obesity therapies. Peptides 2018; 100:68-74. [PMID: 29412834 PMCID: PMC5805852 DOI: 10.1016/j.peptides.2017.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
A new strategy under development for the treatment of type 2 diabetes and obesity is to mimic some of the effects of bariatric surgery by delivering food-related stimuli to the distal gastrointestinal tract where they should enhance the release of gut hormones such as glucagon-like peptide-1 (GLP-1) and peptideYY (PYY). Methods include inhibition of food digestion and absorption in the upper GI tract, or oral delivery of stimuli in capsules or pelleted form to protect them against gastric degradation. A variety of agents have been tested in humans using capsules, microcapsules or pellets, delivering nutrients, bile acids, fatty acids and bitter compounds. This review examines the outcomes of these different approaches and supporting evidence from intestinal perfusion studies.
Collapse
Affiliation(s)
- Fiona M Gribble
- Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Addenbrooke's Hospital, Box 289, Hills Road, Cambridge, CB2 0QQ, United Kingdom; Department of Clinical Biochemistry, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom.
| | - Claire L Meek
- Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Addenbrooke's Hospital, Box 289, Hills Road, Cambridge, CB2 0QQ, United Kingdom; Department of Clinical Biochemistry, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Frank Reimann
- Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Addenbrooke's Hospital, Box 289, Hills Road, Cambridge, CB2 0QQ, United Kingdom; Department of Clinical Biochemistry, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom.
| |
Collapse
|
18
|
Steinert RE, Feinle-Bisset C, Asarian L, Horowitz M, Beglinger C, Geary N. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol Rev 2017; 97:411-463. [PMID: 28003328 PMCID: PMC6151490 DOI: 10.1152/physrev.00031.2014] [Citation(s) in RCA: 367] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The efficacy of Roux-en-Y gastric-bypass (RYGB) and other bariatric surgeries in the management of obesity and type 2 diabetes mellitus and novel developments in gastrointestinal (GI) endocrinology have renewed interest in the roles of GI hormones in the control of eating, meal-related glycemia, and obesity. Here we review the nutrient-sensing mechanisms that control the secretion of four of these hormones, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide tyrosine tyrosine [PYY(3-36)], and their contributions to the controls of GI motor function, food intake, and meal-related increases in glycemia in healthy-weight and obese persons, as well as in RYGB patients. Their physiological roles as classical endocrine and as locally acting signals are discussed. Gastric emptying, the detection of specific digestive products by small intestinal enteroendocrine cells, and synergistic interactions among different GI loci all contribute to the secretion of ghrelin, CCK, GLP-1, and PYY(3-36). While CCK has been fully established as an endogenous endocrine control of eating in healthy-weight persons, the roles of all four hormones in eating in obese persons and following RYGB are uncertain. Similarly, only GLP-1 clearly contributes to the endocrine control of meal-related glycemia. It is likely that local signaling is involved in these hormones' actions, but methods to determine the physiological status of local signaling effects are lacking. Further research and fresh approaches are required to better understand ghrelin, CCK, GLP-1, and PYY(3-36) physiology; their roles in obesity and bariatric surgery; and their therapeutic potentials.
Collapse
Affiliation(s)
- Robert E Steinert
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Lori Asarian
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Michael Horowitz
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christoph Beglinger
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Nori Geary
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
19
|
Wu T, Rayner CK, Horowitz M. Inter-regulation of gastric emptying and incretin hormone secretion: implications for postprandial glycemic control. Biomark Med 2016; 10:1167-1179. [PMID: 27734721 DOI: 10.2217/bmm-2016-0164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The GI tract is central to the regulation of postprandial glycemia, with the rate of gastric emptying and the secretion of the incretin hormones, glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1, being key determinants. Gastric emptying exhibits a large interindividual variation; the latter not only accounts for differences in postprandial glycemia but also determines postprandial incretin profiles. Accordingly, the rate of gastric emptying may affect the glucose-lowering efficacy of dipeptidyl peptidase-4 inhibitors. In contrast, glucagon-like peptide-1 receptor agonists lower postprandial glycemia predominantly by their action to slow gastric emptying. This review discusses the inter-relationship between gastric emptying and the incretin axis in the context of changes in blood glucose, with an emphasis on the relevant clinical implications.
Collapse
Affiliation(s)
- Tongzhi Wu
- Discipline of Medicine & Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia
| | - Christopher K Rayner
- Discipline of Medicine & Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia
| | - Michael Horowitz
- Discipline of Medicine & Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia
| |
Collapse
|
20
|
Carreiro AL, Dhillon J, Gordon S, Jacobs AG, Higgins KA, McArthur BM, Redan BW, Rivera RL, Schmidt LR, Mattes RD. The Macronutrients, Appetite, and Energy Intake. Annu Rev Nutr 2016; 36:73-103. [PMID: 27431364 PMCID: PMC4960974 DOI: 10.1146/annurev-nutr-121415-112624] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Each of the macronutrients-carbohydrate, protein, and fat-has a unique set of properties that influences health, but all are a source of energy. The optimal balance of their contribution to the diet has been a long-standing matter of debate. Over the past half century, thinking has progressed regarding the mechanisms by which each macronutrient may contribute to energy balance. At the beginning of this period, metabolic signals that initiated eating events (i.e., determined eating frequency) were emphasized. This was followed by an orientation to gut endocrine signals that purportedly modulate the size of eating events (i.e., determined portion size). Most recently, research attention has been directed to the brain, where the reward signals elicited by the macronutrients are viewed as potentially problematic (e.g., contribute to disordered eating). At this point, the predictive power of the macronutrients for energy intake remains limited.
Collapse
Affiliation(s)
- Alicia L Carreiro
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Jaapna Dhillon
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Susannah Gordon
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Ashley G Jacobs
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Kelly A Higgins
- Department of Food Science, Purdue University, West Lafayette, IN 47907
| | | | - Benjamin W Redan
- Department of Food Science, Purdue University, West Lafayette, IN 47907
| | - Rebecca L Rivera
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Leigh R Schmidt
- Department of Food Science, Purdue University, West Lafayette, IN 47907
| | - Richard D Mattes
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
21
|
Ulven T, Christiansen E. Dietary Fatty Acids and Their Potential for Controlling Metabolic Diseases Through Activation of FFA4/GPR120. Annu Rev Nutr 2016; 35:239-63. [PMID: 26185978 DOI: 10.1146/annurev-nutr-071714-034410] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is well known that the amount and type of ingested fat impacts the development of obesity and metabolic diseases, but the potential for beneficial effects from fat has received less attention. It is becoming clear that the composition of the individual fatty acids in diet is important. Besides acting as precursors of potent signaling molecules, dietary fatty acids act directly on intracellular and cell surface receptors. The free fatty acid receptor 4 (FFA4, previously GPR120) is linked to the regulation of body weight, inflammation, and insulin resistance and represents a potential target for the treatment of metabolic disorders, including type 2 diabetes and obesity. In this review, we discuss the various types of dietary fatty acids, the link between FFA4 and metabolic diseases, the potential effects of the individual fatty acids on health, and the ability of fatty acids to activate FFA4. We also discuss the possibility of dietary schemes that implement activation of FFA4.
Collapse
Affiliation(s)
- Trond Ulven
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark;
| | | |
Collapse
|
22
|
Poudyal H. Mechanisms for the cardiovascular effects of glucagon-like peptide-1. Acta Physiol (Oxf) 2016; 216:277-313. [PMID: 26384481 DOI: 10.1111/apha.12604] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/25/2015] [Accepted: 09/10/2015] [Indexed: 12/16/2022]
Abstract
Over the past three decades, at least 10 hormones secreted by the enteroendocrine cells have been discovered, which directly affect the cardiovascular system through their innate receptors expressed in the heart and blood vessels or through a neural mechanism. Glucagon-like peptide-1 (GLP-1), an important incretin, is perhaps best studied of these gut-derived hormones with important cardiovascular effects. In this review, I have discussed the mechanism of GLP-1 release from the enteroendocrine L-cells and its physiological effects on the cardiovascular system. Current evidence suggests that GLP-1 has positive inotropic and chronotropic effects on the heart and may be important in preserving left ventricular structure and function by direct and indirect mechanisms. The direct effects of GLP-1 in the heart may be mediated through GLP-1R expressed in atria as well as arteries and arterioles in the left ventricle and mainly involve in the activation of multiple pro-survival kinases and enhanced energy utilization. There is also good evidence to support the involvement of a second, yet to be identified, GLP-1 receptor. Further, GLP-1(9-36)amide, which was previously thought to be the inactive metabolite of the active GLP-1(7-36)amide, may also have direct cardioprotective effects. GLP-1's action on GLP-1R expressed in the central nervous system, kidney, vasculature and the pancreas may indirectly contribute to its cardioprotective effects.
Collapse
Affiliation(s)
- H. Poudyal
- Department of Diabetes, Endocrinology and Nutrition; Graduate School of Medicine and Hakubi Centre for Advanced Research; Kyoto University; Kyoto Japan
| |
Collapse
|
23
|
Kuwata H, Iwasaki M, Shimizu S, Minami K, Maeda H, Seino S, Nakada K, Nosaka C, Murotani K, Kurose T, Seino Y, Yabe D. Meal sequence and glucose excursion, gastric emptying and incretin secretion in type 2 diabetes: a randomised, controlled crossover, exploratory trial. Diabetologia 2016; 59:453-61. [PMID: 26704625 PMCID: PMC4742500 DOI: 10.1007/s00125-015-3841-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/26/2015] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS Investigation of dietary therapy for diabetes has focused on meal size and composition; examination of the effects of meal sequence on postprandial glucose management is limited. The effects of fish or meat before rice on postprandial glucose excursion, gastric emptying and incretin secretions were investigated. METHODS The experiment was a single centre, randomised controlled crossover, exploratory trial conducted in an outpatient ward of a private hospital in Osaka, Japan. Patients with type 2 diabetes (n = 12) and healthy volunteers (n = 10), with age 30-75 years, HbA1c 9.0% (75 mmol/mol) or less, and BMI 35 kg/m(2) or less, were randomised evenly to two groups by use of stratified randomisation, and subjected to meal sequence tests on three separate mornings; days 1 and 2, rice before fish (RF) or fish before rice (FR) in a crossover fashion; and day 3, meat before rice (MR). Pre- and postprandial levels of glucose, insulin, C-peptide and glucagon as well as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide were evaluated. Gastric emptying rate was determined by (13)C-acetate breath test involving measurement of (13)CO2 in breath samples collected before and after ingestion of rice steamed with (13)C-labelled sodium acetate. Participants, people doing measurements or examinations, and people assessing the outcomes were not blinded to group assignment. RESULTS FR and MR in comparison with RF ameliorated postprandial glucose excursion (AUC-15-240 min-glucose: type 2 diabetes, FR 2,326.6 ± 114.7 mmol/l × min, MR 2,257.0 ± 82.3 mmol/l × min, RF 2,475.6 ± 87.2 mmol/l × min [p < 0.05 for FR vs RF and MR vs RF]; healthy, FR 1,419.8 ± 72.3 mmol/l × min, MR 1,389.7 ± 69.4 mmol/l × min, RF 1,483.9 ± 72.8 mmol/l × min) and glucose variability (SD-15-240 min-glucose: type 2 diabetes, FR 1.94 ± 0.22 mmol/l, MR 1.68 ± 0.18 mmol/l, RF 2.77 ± 0.24 mmol/l [p < 0.05 for FR vs RF and MR vs RF]; healthy, FR 0.95 ± 0.21 mmol/l, MR 0.83 ± 0.16 mmol/l, RF 1.18 ± 0.27 mmol/l). FR and MR also enhanced GLP-1 secretion, MR more strongly than FR or RF (AUC-15-240 min-GLP-1: type 2 diabetes, FR 7,123.4 ± 376.3 pmol/l × min, MR 7,743.6 ± 801.4 pmol/l × min, RF 6,189.9 ± 581.3 pmol/l × min [p < 0.05 for FR vs RF and MR vs RF]; healthy, FR 3,977.3 ± 324.6 pmol/l × min, MR 4,897.7 ± 330.7 pmol/l × min, RF 3,747.5 ± 572.6 pmol/l × min [p < 0.05 for MR vs RF and MR vs FR]). FR and MR delayed gastric emptying (Time50%: type 2 diabetes, FR 83.2 ± 7.2 min, MR 82.3 ± 6.4 min, RF 29.8 ± 3.9 min [p < 0.05 for FR vs RF and MR vs RF]; healthy, FR 66.3 ± 5.5 min, MR 74.4 ± 7.6 min, RF 32.4 ± 4.5 min [p < 0.05 for FR vs RF and MR vs RF]), which is associated with amelioration of postprandial glucose excursion (AUC-15-120 min-glucose: type 2 diabetes, r = -0.746, p < 0.05; healthy, r = -0.433, p < 0.05) and glucose variability (SD-15-240 min-glucose: type 2 diabetes, r = -0.578, p < 0.05; healthy, r = -0.526, p < 0.05), as well as with increasing GLP-1 (AUC-15-120 min-GLP-1: type 2 diabetes, r = 0.437, p < 0.05; healthy, r = 0.300, p = 0.107) and glucagon (AUC-15-120 min-glucagon: type 2 diabetes, r = 0.399, p < 0.05; healthy, r = 0.471, p < 0.05). The measured outcomes were comparable between the two randomised groups. CONCLUSIONS/INTERPRETATION Meal sequence can play a role in postprandial glucose control through both delayed gastric emptying and enhanced incretin secretion. Our findings provide clues for medical nutrition therapy to better prevent and manage type 2 diabetes. TRIAL REGISTRATION UMIN Clinical Trials Registry UMIN000017434. FUNDING Japan Society for Promotion of Science, Japan Association for Diabetes Education and Care, and Japan Vascular Disease Research Foundation.
Collapse
Affiliation(s)
- Hitoshi Kuwata
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, 1-5-6 Minatojimaminamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, Osaka, Japan
| | - Masahiro Iwasaki
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, 1-5-6 Minatojimaminamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Center for Metabolism and Clinical Nutrition, Kansai Electric Power Hospital, Osaka, Japan
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinobu Shimizu
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, 1-5-6 Minatojimaminamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Department of Clinical Laboratory, Kansai Electric Power Hospital, Osaka, Japan
| | - Kohtaro Minami
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Haruyo Maeda
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koji Nakada
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | | | - Kenta Murotani
- Division of Biostatistics, Clinical Research Center, Aichi Medical University, Nagakute, Aichi, Japan
| | - Takeshi Kurose
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, 1-5-6 Minatojimaminamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, Osaka, Japan
| | - Yutaka Seino
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, 1-5-6 Minatojimaminamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, Osaka, Japan
| | - Daisuke Yabe
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, 1-5-6 Minatojimaminamimachi, Chuo-ku, Kobe, 650-0047, Japan.
- Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, Osaka, Japan.
- Center for Metabolism and Clinical Nutrition, Kansai Electric Power Hospital, Osaka, Japan.
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
24
|
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the known incretin hormones in humans, released predominantly from the enteroendocrine K and L cells within the gut. Their secretion is regulated by a complex of integrated mechanisms involving direct contact for the activation of different chemo-sensors on the brush boarder of K and L cells and several indirect neuro-immuno-hormonal loops. The biological actions of GIP and GLP-1 are fundamental determinants of islet function and blood glucose homeostasis in health and type 2 diabetes. Moreover, there is increasing recognition that GIP and GLP-1 also exert pleiotropic extra-glycaemic actions, which may represent therapeutic targets for human diseases. In this review, we summarise current knowledge of the biology of incretin hormones in health and metabolic disorders and highlight the therapeutic potential of incretin hormones in metabolic regulation.
Collapse
Affiliation(s)
- Tongzhi Wu
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Christopher K Rayner
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia.
- Centre of Research Excellence in Translating Nutritional Science into Good Health, The University of Adelaide, Adelaide, Australia.
| | - Michael Horowitz
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia
- Centre of Research Excellence in Translating Nutritional Science into Good Health, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
25
|
Lin T, Li S, Xu H, Zhou H, Feng R, Liu W, Sun Y, Ma J. Gastrointestinal hormone secretion in women with polycystic ovary syndrome: an observational study. Hum Reprod 2015; 30:2639-44. [PMID: 26373789 DOI: 10.1093/humrep/dev231] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/24/2015] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Is the secretion of gastrointestinal hormones impaired in patients with polycystic ovary syndrome (PCOS)? SUMMARY ANSWER Gastrointestinal hormone levels were abnormal in patients with PCOS. WHAT IS KNOWN ALREADY The hormones glucagon-like peptide-1 (GLP-1) and peptide tyrosine-tyrosine (PYY) are both involved in signaling satiety. Secretion of GLP-1 and PYY in response to nutrients in the small intestine plays an important role in energy metabolism. Most PCOS patients are overweight or obese, which suggests dysregulation of appetite. STUDY DESIGN, SIZE, DURATION In order to evaluate levels of gastrointestinal hormones in PCOS, a cohort study was undertaken, involving 30 PCOS patients and 29 BMI-matched healthy women recruited from Shanghai Renji Hospital between 1 March 2013 and 30 May 2014. PARTICIPANTS/MATERIALS, SETTING, METHODS After an overnight fast, all participants underwent an oral glucose tolerance test. Blood was sampled frequently for measurement of blood glucose and plasma insulin, total GLP-1 and PYY concentrations. MAIN RESULTS AND THE ROLE OF CHANCE Fasting and postprandial insulin levels were significantly higher in patients with PCOS compared with the healthy controls (P < 0.05). Fasting and postprandial GLP-1 (t = 0 and 30 min; mean ± SEM) were also higher in PCOS group (17.5 ± 1.07 pM versus 14.1 ± 1.16 pM, P < 0.05; 29.7 ± 2.39 pM versus 22.8 ± 2.09 pM, P < 0.05). However, there were no differences in plasma PYY between patients with PCOS and healthy controls either fasting or postprandially. PYY levels were lower in obese PCOS patients than in lean PCOS patients (P < 0.05). LIMITATIONS, REASONS FOR CAUTION The study involved a small number of subjects with PCOS, and examined hormone responses to oral glucose rather than a physiological meal. WIDER IMPLICATIONS OF THE FINDINGS Deficient secretion of GLP-1 and PYY does not contribute to excessive food intake in the pathophysiology of PCOS.
Collapse
Affiliation(s)
- Tzuchun Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New Area, Shanghai, China
| | - Shengxian Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New Area, Shanghai, China
| | - Hua Xu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New Area, Shanghai, China
| | - Huan Zhou
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New Area, Shanghai, China
| | - Rilu Feng
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New Area, Shanghai, China
| | - Wei Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New Area, Shanghai, China
| | - Yun Sun
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jing Ma
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New Area, Shanghai, China
| |
Collapse
|
26
|
Should the pharmacological actions of dietary fatty acids in cardiometabolic disorders be classified based on biological or chemical function? Prog Lipid Res 2015. [DOI: 10.1016/j.plipres.2015.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Phillips LK, Rayner CK, Jones KL, Horowitz M. Measurement of gastric emptying in diabetes. J Diabetes Complications 2014; 28:894-903. [PMID: 25047170 DOI: 10.1016/j.jdiacomp.2014.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 06/10/2014] [Indexed: 02/07/2023]
Abstract
There has been a substantial evolution of concepts related to disordered gastric emptying in diabetes. While the traditional focus has hitherto related to the pathophysiology and management of upper gastrointestinal symptoms associated with gastroparesis, it is now apparent that the rate of gastric emptying is central to the regulation of postprandial glycemia. This recognition has stimulated the development of dietary and pharmacologic approaches to optimize glycemic control, at least in part, by slowing gastric emptying. With the increased clinical interest in this area, it has proved necessary to expand the traditional indications for gastric emptying studies, and consider the relative strengths and limitations of available techniques. Scintigraphy remains the 'gold standard' for the measurement of gastric emptying, however, there is a lack of standardization of the technique, and the optimal test meal for the evaluation of gastrointestinal symptoms may be discordant from that which is optimal to assess impaired glycemic control. The stable isotope breath test provides an alternative to scintigraphy and can be performed in an office-based setting. The effect of glucagon-like peptide-1 (GLP-1) and its agonists to reduce postprandial glycemia is dependent on the baseline rate of gastric emptying, as well as the magnitude of slowing. Because the effect of exogenous GLP-1 to slow gastric emptying is subject to tachyphylaxis with sustained receptor exposure, 'short acting' or 'prandial' GLP-1 agonists primarily target postprandial glycemia through slowing of gastric emptying, while 'long acting' or 'non-prandial' agents lower fasting glucose primarily through insulinotropic and glucagonostatic mechanisms. Accordingly, the indications for the therapeutic use of these different agents are likely to vary according to baseline gastric emptying rate and glycemic profiles.
Collapse
Affiliation(s)
- Liza K Phillips
- Discipline of Medicine, The University of Adelaide, Australia; NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Australia
| | - Chris K Rayner
- Discipline of Medicine, The University of Adelaide, Australia; NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Australia
| | - Karen L Jones
- Discipline of Medicine, The University of Adelaide, Australia; NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Australia
| | - Michael Horowitz
- Discipline of Medicine, The University of Adelaide, Australia; NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Australia.
| |
Collapse
|
28
|
Rivera LR, Leung C, Pustovit RV, Hunne BL, Andrikopoulos S, Herath C, Testro A, Angus PW, Furness JB. Damage to enteric neurons occurs in mice that develop fatty liver disease but not diabetes in response to a high-fat diet. Neurogastroenterol Motil 2014; 26:1188-99. [PMID: 24952996 DOI: 10.1111/nmo.12385] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/30/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND Disorders of gastrointestinal functions that are controlled by enteric neurons commonly accompany fatty liver disease. Established fatty liver disease is associated with diabetes, which itself induces enteric neuron damage. Here, we investigate the relationship between fatty liver disease and enteric neuropathy, in animals fed a high-fat, high-cholesterol diet in the absence of diabetes. METHODS Mice were fed a high-fat, high-cholesterol diet (21% fat, 2% cholesterol) or normal chow for 33 weeks. Liver injury was assessed by hematoxylin and eosin, picrosirius red staining, and measurement of plasma alanine aminotransaminase (ALT). Quantitative immunohistochemistry was performed for different types of enteric neurons. KEY RESULTS The mice developed steatosis, steatohepatitis, fibrosis, and a 10-fold increase in plasma ALT, indicative of liver disease. Oral glucose tolerance was unchanged. Loss and damage to enteric neurons occurred in the myenteric plexus of ileum, cecum, and colon. Total numbers of neurons were reduced by 15-30% and neurons expressing nitric oxide synthase were reduced by 20-40%. The RNA regulating protein, Hu, became more concentrated in the nuclei of enteric neurons after high-fat feeding, which is an indication of stress on the enteric nervous system. There was also disruption of the neuronal cytoskeletal protein, neurofilament medium. CONCLUSIONS & INFERENCES Enteric neuron loss and damage occurs in animals with fatty liver disease in the absence of glucose intolerance. The enteric neuron damage may contribute to the gastrointestinal complications of fatty liver disease.
Collapse
Affiliation(s)
- L R Rivera
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Vic., Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wu T, Rayner CK, Young RL, Horowitz M. Gut motility and enteroendocrine secretion. Curr Opin Pharmacol 2013; 13:928-34. [PMID: 24060702 DOI: 10.1016/j.coph.2013.09.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/16/2013] [Accepted: 09/04/2013] [Indexed: 02/07/2023]
Abstract
The motility of the gastrointestinal (GI) tract is modulated by complex neural and hormonal networks; the latter include gut peptides released from enteroendocrine cells during both the interdigestive and postprandial periods. Conversely, it is increasingly recognised that GI motility is an important determinant of gut hormone secretion, in that the transit of luminal contents influences the degree of nutrient stimulation of enteroendocrine cells in different gut regions, as well as the overall length of gut exposed to nutrient. Of particular interest is the relationship between gallbladder emptying and enteroendocrine secretion. The inter-relationships between GI motility and enteroendocrine secretion are central to blood glucose homeostasis, where an understanding is fundamental to the development of novel strategies for the management of diabetes mellitus.
Collapse
Affiliation(s)
- Tongzhi Wu
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Australia
| | | | | | | |
Collapse
|