1
|
Jensen MH, Gasbjerg LS, Skov-Jeppesen K, Jacobsen JCB, Poulsen SS, Zhou C, Jakubauskaite R, Poulsen FR, Bonde C, Albarazi M, Halle B, Christiansen CB, Sanni SJ, Byberg S, Hoe B, Holst JJ, Dela F, Rasmussen AK, Knop FK, Arlien-Søborg MC, Melmed S, Jørgensen JOL, Andersen MS, Hartmann B, Klose MC, Feldt-Rasmussen U, Sparre-Ulrich AH, Rosenkilde MM. GIP Receptor Antagonism Eliminates Paradoxical Growth Hormone Secretion in Some Patients With Acromegaly. J Clin Endocrinol Metab 2025; 110:715-729. [PMID: 39172542 PMCID: PMC11834721 DOI: 10.1210/clinem/dgae583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
CONTEXT About 30% of patients with active acromegaly experience paradoxically increased growth hormone (GH) secretion during the diagnostic oral glucose tolerance test (OGTT). Endogenous glucose-dependent insulinotropic polypeptide (GIP) is implicated in this paradoxical secretion. OBJECTIVE We used the GIP receptor (GIPR) antagonist GIP(3-30)NH2 to test the hypothesis that GIP mediates this paradoxical response when GIPR is abundantly expressed in somatotropinomas. METHODS A total of 25 treatment-naive patients with acromegaly were enrolled. Each patient underwent one OGTT during simultaneous placebo infusion and one OGTT during a GIP(3-30)NH2 infusion. Blood samples were drawn at baseline and regularly after infusions to measure GH. We assessed pituitary adenoma size by magnetic resonance imaging and GIPR expression by immunohistochemistry on resected somatotropinomas. For mechanistic confirmation, we applied in vitro and ex vivo approaches. The main outcome measure was the effect of GIP(3-30)NH2 on paradoxical GH secretion during OGTT as a measure of GIP involvement. RESULTS In 4 of 7 patients with paradoxical GH secretion, GIP(3-30)NH2 infusion completely abolished the paradoxical response (P = .0003). Somatotrophs were available from 3 of 4 of these patients, all showing abundant GIPR expression. Adenoma size did not differ between patients with and without paradoxical GH secretion. CONCLUSION Of 25 patients with acromegaly, 7 had paradoxical GH secretion during OGTT, and pharmaceutical GIPR blockade abolished this secretion in 4. Corresponding somatotroph adenomas abundantly expressed GIPR, suggesting a therapeutic target in this subpopulation of patients. In vitro and ex vivo analyses confirmed the role of GIP and the effects of the antagonist.
Collapse
Affiliation(s)
- Mette H Jensen
- Antag Therapeutics Aps, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lærke S Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kirsa Skov-Jeppesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens C B Jacobsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Steen S Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Cuiqi Zhou
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ruta Jakubauskaite
- Department of Radiology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Frantz R Poulsen
- Department of Neurosurgery, Odense University Hospital, 5000 Odense, Denmark
| | - Christian Bonde
- Department of Neurosurgery, Odense University Hospital, 5000 Odense, Denmark
| | - Mahmoud Albarazi
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Bo Halle
- Department of Neurosurgery, Odense University Hospital, 5000 Odense, Denmark
| | - Charlotte B Christiansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Sarah Byberg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bjørn Hoe
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Flemming Dela
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Human Physiology and Biochemistry, Riga Stradiņš University, Riga LV-1007, Latvia
| | - Aase K Rasmussen
- Department of Endocrinology and Metabolism, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mai C Arlien-Søborg
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Shlomo Melmed
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jens Otto L Jørgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Marianne S Andersen
- Department of Endocrinology, Odense University Hospital, 5000 Odense, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marianne C Klose
- Department of Endocrinology and Metabolism, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Ulla Feldt-Rasmussen
- Department of Endocrinology and Metabolism, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
2
|
Douros JD, Flak JN, Knerr PJ. The agony and the efficacy: central mechanisms of GLP-1 induced adverse events and their mitigation by GIP. Front Endocrinol (Lausanne) 2025; 16:1530985. [PMID: 39963285 PMCID: PMC11830610 DOI: 10.3389/fendo.2025.1530985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/02/2025] [Indexed: 02/20/2025] Open
Affiliation(s)
| | - Jonathan N. Flak
- Indiana Biosciences Research Institute, Indianapolis, IN, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Patrick J. Knerr
- Indiana Biosciences Research Institute, Indianapolis, IN, United States
| |
Collapse
|
3
|
Wean J, Kowalsky AH, Laker R, Will S, Drucker DJ, Rhodes CJ, Seeley RJ. Specific loss of GIPR signaling in GABAergic neurons enhances GLP-1R agonist-induced body weight loss. Mol Metab 2024:102074. [PMID: 39612941 DOI: 10.1016/j.molmet.2024.102074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
OBJECTIVES Dual incretin agonists are among the most effective pharmaceutical treatments for obesity and type 2 diabetes to date. Such therapeutics can target two receptors, such as the glucagon-like peptide-1 (GLP-1) receptor and the glucose-dependent insulinotropic polypeptide (GIP) receptor in the case of tirzepatide, to improve glycemia and reduce body weight. Regarding body weight effects, GIPR signaling is thought to involve at least two relevant mechanisms: the enhancement of food intake reduction and the attenuation of aversive effects caused by GLP-1R agonists. Although it is known that dual GLP-1R-GIPR agonism produces greater weight loss than GLP-1R agonism alone, the precise mechanism is unknown. METHODS To address this question, we used mice lacking GIPR in the whole body, GABAergic neurons, or glutamatergic neurons. These mice were given various combinations of GLP-1R and GIPR agonist drugs with subsequent food intake and conditioned taste aversion measurements. RESULTS A GIPR knockout in either the whole body or selectively in inhibitory GABAergic neurons protects against diet-induced obesity, whereas a knockout in excitatory glutamatergic neurons had a negligible effect. Furthermore, we found that GIPR in GABAergic neurons is essential for the enhanced weight loss efficacy of dual incretin agonism, yet, surprisingly, its removal enhances the effect of GLP-1R agonism alone. Finally, GIPR knockout in GABAergic neurons prevents the anti-aversive effects of GIPR agonism. CONCLUSIONS Our findings are consistent with GIPR research at large in that both enhancement and removal of GIPR signaling are metabolically beneficial. Notably, however, our findings suggest that future obesity therapies designed to modulate GIPR signaling, whether by agonism or antagonism, would be best targeted towards GABAergic neurons.
Collapse
Affiliation(s)
- Jordan Wean
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Rhianna Laker
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Sarah Will
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Daniel J Drucker
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Department of Medicine, University of Toronto, Toronto, Canada
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Lacroix A, Bourdeau I, Chasseloup F, Kamenický P, Lopez AG, Louiset E, Lefebvre H. Aberrant hormone receptors regulate a wide spectrum of endocrine tumors. Lancet Diabetes Endocrinol 2024; 12:837-855. [PMID: 39326429 DOI: 10.1016/s2213-8587(24)00200-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 09/28/2024]
Abstract
Aberrant G-protein coupled receptor (GPCR) expression is highly prevalent in cortisol-secreting primary bilateral macronodular adrenal hyperplasia (PBMAH) and unilateral adenomas. The aberrant expression of diverse GPCRs and their ligands play an important role in the over-function of various endocrine tumours. Examples include aberrant expression of MC2R, 5-HT4R, AVPR1A, LHCGR, and GnRHR in primary aldosteronism; GCGR, LHCGR, and 5-HT4R in phaeochromocytomas and paragangliomas; TRHR, GnRHR, GIPR, and GRP101 in pituitary somatotroph tumours; AVPR2, D2DR, and SSTR5 in pituitary corticotroph tumours; GLP1R, GIPR, and somatostatin receptors in medullary thyroid carcinoma; and SSTRs, GLP1R, and GIPR in other neuroendocrine tumours. The genetic mechanisms causing the ectopic expression of GIPR in cortisol-secreting PBMAHs and unilateral adenomas have been identified, but distinct mechanisms are implicated in other endocrine tumours. Development of functional imaging targeting aberrant GPCRs should be useful for identification and for specific therapies of this wide spectrum of tumours. The aim of this review is to show that the regulation of endocrine tumours by aberrant GPCR is not restricted to cortisol-secreting adrenal lesions, but also occurs in tumours of several other organs.
Collapse
Affiliation(s)
- André Lacroix
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l' Université de Montréal (CHUM), Montréal, QC, Canada.
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l' Université de Montréal (CHUM), Montréal, QC, Canada
| | - Fanny Chasseloup
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Le Kremlin-Bicêtre, France
| | - Peter Kamenický
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Le Kremlin-Bicêtre, France
| | - Antoine-Guy Lopez
- Univ Rouen Normandie, Inserm, NorDiC UMR 1239, Rouen, France; Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen, France
| | - Estelle Louiset
- Univ Rouen Normandie, Inserm, NorDiC UMR 1239, Rouen, France; Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen, France
| | - Hervé Lefebvre
- Univ Rouen Normandie, Inserm, NorDiC UMR 1239, Rouen, France; Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen, France
| |
Collapse
|
5
|
Aksu H, Demirbilek A, Uba AI. Insights into the structure and activation mechanism of some class B1 GPCR family members. Mol Biol Rep 2024; 51:966. [PMID: 39240462 DOI: 10.1007/s11033-024-09876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
In humans, 15 genes encode the class B1 family of GPCRs, which are polypeptide hormone receptors characterized by having a large N-terminal extracellular domain (ECD) and receive signals from outside the cell to activate cellular response. For example, the insulinotropic polypeptide (GIP) stimulates the glucose-dependent insulinotropic polypeptide receptor (GIPR), while the glucagon receptor (GCGR) responds to glucagon by increasing blood glucose levels and promoting the breakdown of liver glycogen to induce the production of insulin. The glucagon-like peptides 1 and 2 (GLP-1 and GLP-2) elicit a response from glucagon-like peptide receptor types 1 and 2 (GLP1R and GLP2R), respectively. Since these receptors are implicated in the pathogenesis of diabetes, studying their activation is crucial for the development of effective therapies for the condition. With more structural information being revealed by experimental methods such as X-ray crystallography, cryo-EM, and NMR, the activation mechanism of class B1 GPCRs becomes unraveled. The available crystal and cryo-EM structures reveal that class B1 GPCRs follow a two-step model for peptide binding and receptor activation. The regions close to the C-termini of hormones interact with the N-terminal ECD of the receptor while the regions close to the N-terminus of the peptide interact with the TM domain and transmit signals. This review highlights the structural details of class B1 GPCRs and their conformational changes following activation. The roles of MD simulation in characterizing those conformational changes are briefly discussed, providing insights into the potential structural exploration for future ligand designs.
Collapse
MESH Headings
- Humans
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Crystallography, X-Ray/methods
- Protein Conformation
- Animals
- Glucagon-Like Peptide-1 Receptor/metabolism
- Glucagon-Like Peptide-1 Receptor/genetics
- Receptors, Gastrointestinal Hormone/metabolism
- Receptors, Gastrointestinal Hormone/chemistry
- Receptors, Gastrointestinal Hormone/genetics
- Glucagon-Like Peptide 1/metabolism
- Models, Molecular
- Protein Binding
- Signal Transduction
- Receptors, Glucagon/metabolism
- Receptors, Glucagon/genetics
- Receptors, Glucagon/chemistry
Collapse
Affiliation(s)
- Hayrunisa Aksu
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey
| | - Ayşenur Demirbilek
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey.
| |
Collapse
|
6
|
Helsted MM, Schaltz NL, Gasbjerg LS, Christensen MB, Vilsbøll T, Knop FK. Safety of native glucose-dependent insulinotropic polypeptide in humans. Peptides 2024; 177:171214. [PMID: 38615716 DOI: 10.1016/j.peptides.2024.171214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
In this systematic review, we assessed the safety and possible safety events of native glucose-dependent insulinotropic polypeptide (GIP)(1-42) in human studies with administration of synthetic human GIP. We searched the PubMed database for all trials investigating synthetic human GIP(1-42) administration. A total of 67 studies were included. Study duration ranged from 30 min to 6 days. In addition to healthy individuals, the studies included individuals with impaired glucose tolerance, type 2 diabetes, type 1 diabetes, chronic pancreatitis and secondary diabetes, latent autoimmune diabetes in adults, diabetes caused by a mutation in the hepatocyte nuclear factor 1-alpha gene, end-stage renal disease, chronic renal insufficiency, critical illness, hypoparathyroidism, or cystic fibrosis-related diabetes. Of the included studies, 78% did not mention safety events, 10% of the studies reported that no safety events were observed in relation to GIP administration, and 15% of the studies reported safety events in relation to GIP administration with most frequently reported event being a moderate and transient increased heart rate. Gastrointestinal safety events, and changes in blood pressure were also reported. Plasma concentration of active GIP(1-42) increased linearly with dose independent of participant phenotype. There was no significant correlation between achieved maximal concentration of GIP(1-42) and reported safety events. Clearance rates of GIP(1-42) were similar between participant groups. In conclusion, the available data indicate that GIP(1-42) in short-term (up to 6 days) infusion studies is generally well-tolerated. The long-term safety of continuous GIP(1-42) administration is unknown.
Collapse
Affiliation(s)
- Mads M Helsted
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Nina L Schaltz
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Copenhagen Center for Translational Research, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Herlev, Denmark.
| |
Collapse
|
7
|
Camilleri M, Lupianez-Merly C. Effects of GLP-1 and Other Gut Hormone Receptors on the Gastrointestinal Tract and Implications in Clinical Practice. Am J Gastroenterol 2024; 119:1028-1037. [PMID: 37753925 PMCID: PMC11026296 DOI: 10.14309/ajg.0000000000002519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
Agonists targeting the receptors of incretin hormones, glucagon-like peptide-1 and glucose-dependent insulinotropic peptide, have been well established for the treatment of type 2 diabetes mellitus. There is increasing awareness that gastroenterologists and hepatologists should be treating obesity when patients present to their clinics. In addition, gastroenterologists and hepatologists should be aware of the effects of these classes of medications prescribed by other providers. Therefore, given the widespread use of incretin agonists for obesity treatment and weight loss, it is important to recognize their effects in the gastrointestinal tract, which could constitute significant benefits in weight loss and cardiometabolic benefits, but can be associated with adverse effects that constitute a potential barrier to their use, particularly at higher doses. Multiple studies reviewed in this article document the diverse effects of these drugs on the glucagon-like peptide-1 receptors that are widely expressed in the human body, including the nervous system modulating appetite, the gastrointestinal tract modifying gastric emptying, and lipid metabolism regulation leading to reduction in fat deposition. The objective of this review is to summarize the mechanism of action of incretin receptor agonists, their effects in the gastrointestinal tract, and implications in clinical practice, particularly in the practice of gastroenterology, endoscopy, and surgery.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
8
|
Liu H, Xiao H, Lin S, Zhou H, Cheng Y, Xie B, Xu D. Effect of gut hormones on bone metabolism and their possible mechanisms in the treatment of osteoporosis. Front Pharmacol 2024; 15:1372399. [PMID: 38725663 PMCID: PMC11079205 DOI: 10.3389/fphar.2024.1372399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Bone is a highly dynamic organ that changes with the daily circadian rhythm. During the day, bone resorption is suppressed due to eating, while it increases at night. This circadian rhythm of the skeleton is regulated by gut hormones. Until now, gut hormones that have been found to affect skeletal homeostasis include glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), glucose-dependent insulinotropic polypeptide (GIP), and peptide YY (PYY), which exerts its effects by binding to its cognate receptors (GLP-1R, GLP-2R, GIPR, and Y1R). Several studies have shown that GLP-1, GLP-2, and GIP all inhibit bone resorption, while GIP also promotes bone formation. Notably, PYY has a strong bone resorption-promoting effect. In addition, gut microbiota (GM) plays an important role in maintaining bone homeostasis. This review outlines the roles of GLP-1, GLP-2, GIP, and PYY in bone metabolism and discusses the roles of gut hormones and the GM in regulating bone homeostasis and their potential mechanisms.
Collapse
Affiliation(s)
- Hongyu Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huimin Xiao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Sufen Lin
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huan Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Yizhao Cheng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Baocheng Xie
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Department of Pharmacy, The 10th Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, China
| | - Daohua Xu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| |
Collapse
|
9
|
Bailey CJ, Flatt PR. Duodenal enteroendocrine cells and GIP as treatment targets for obesity and type 2 diabetes. Peptides 2024; 174:171168. [PMID: 38320643 DOI: 10.1016/j.peptides.2024.171168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
The duodenum is an important source of endocrine and paracrine signals controlling digestion and nutrient disposition, notably including the main incretin hormone glucose-dependent insulinotropic polypeptide (GIP). Bariatric procedures that prevent nutrients from contact with the duodenal mucosa are particularly effective interventions to reduce body weight and improve glycaemic control in obesity and type 2 diabetes. These procedures take advantage of increased nutrient delivery to more distal regions of the intestine which enhances secretion of the other incretin hormone glucagon-like peptide-1 (GLP-1). Preclinical experiments have shown that either an increase or a decrease in the secretion or action of GIP can decrease body weight and blood glucose in obesity and non-insulin dependent hyperglycaemia, but clinical studies involving administration of GIP have been inconclusive. However, a synthetic dual agonist peptide (tirzepatide) that exerts agonism at receptors for GIP and GLP-1 has produced marked weight-lowering and glucose-lowering effects in people with obesity and type 2 diabetes. This appears to result from chronic biased agonism in which the novel conformation of the peptide triggers enhanced signalling by the GLP-1 receptor through reduced internalisation while reducing signalling by the GIP receptor directly or via functional antagonism through increased internalisation and degradation.
Collapse
Affiliation(s)
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA Northern Ireland, UK
| |
Collapse
|
10
|
Barakat G, Assi G, Khalil H, El Khatib S. A Comprehensive Review on GLP-1 Signaling Pathways in the Management of Diabetes Mellitus - Focus on the Potential Role of GLP-1 Receptors Agonists and Selenium among Various Organ Systems. Curr Diabetes Rev 2024; 21:e160424228945. [PMID: 38629376 DOI: 10.2174/0115733998287178240403055901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 10/30/2024]
Abstract
Diabetes Mellitus develops when the body becomes unable to fuel its cells with glucose, which results in the accumulation of sugar excess in the bloodstream. Because it has diverse pathophysiological impacts on the body, diabetes mellitus represents a significant issue of concern in an attempt to find suitable treatment modalities and medications for afflicted diabetic patients. Glucagon-like peptide 1 (GLP-1) plays a pivotal role in the incretin effect, emerging as a prospective treatment for diabetes mellitus and a promising means of regenerating pancreatic cells, whether directly or through its receptor agonists. It has been shown that GLP-1 efficiently increases insulin production, lowers blood sugar levels in patients with type 2 diabetes mellitus, and decreases appetite, craving, and hunger, therefore amplifying the sensation of fullness and satiety. Moreover, since they are all dependent on GLP-1 effect, intricate signaling pathways share some similarities during specific phases, although the pathways continue to exhibit significant divergence engendered by specific reactions and effects in each organ, which encompasses the rationale behind observed differences. This triggers an expanding range of GLP-1 R agonists, creating new unforeseen research and therapeutic application prospects. This review aims to explain the incretin effect, discuss how GLP-1 regulates blood glucose levels, and how it affects different body organs, as well as how it transmits signals, before introducing selenium's role in the incretin impact.
Collapse
Affiliation(s)
- Ghinwa Barakat
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Ghaith Assi
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Hussein Khalil
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Sami El Khatib
- Department of Biomedical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa, Lebanon
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah, Kuwait
| |
Collapse
|
11
|
Abdel-Malek M, Yang L, Miras AD. Pharmacotherapy for chronic obesity management: a look into the future. Intern Emerg Med 2023; 18:1019-1030. [PMID: 37249754 PMCID: PMC10326094 DOI: 10.1007/s11739-023-03237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/17/2023] [Indexed: 05/31/2023]
Abstract
Substantial leaps have been made in the drug discovery front in tackling the growing pandemic of obesity and its metabolic co-morbidities. Greater mechanistic insight and understanding of the gut-brain molecular pathways at play have enabled the pursuit of novel therapeutic agents that possess increasingly efficacious weight-lowering potential whilst remaining safe and tolerable for clinical use. In the wake of glucagon-like peptide 1 (GLP-1) based therapy, we look at recent advances in gut hormone biology that have fermented the development of next generation pharmacotherapy in diabesity that harness synergistic potential. In this paper, we review the latest data from the SURPASS and SURMOUNT clinical trials for the novel 'twincretin', known as Tirzepatide, which has demonstrated sizeable body weight reduction as well as glycaemic efficacy. We also provide an overview of amylin-based combination strategies and other emerging therapies in the pipeline that are similarly providing great promise for the future of chronic management of obesity.
Collapse
Affiliation(s)
| | - Lisa Yang
- Imperial College Healthcare NHS Trust, London, UK
| | - Alexander Dimitri Miras
- School of Medicine, Ulster University, Derry~Londonderry, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
12
|
Li A, Su X, Hu S, Wang Y. Efficacy and safety of oral semaglutide in type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Res Clin Pract 2023; 198:110605. [PMID: 36871874 DOI: 10.1016/j.diabres.2023.110605] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/24/2022] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
OBJECTIVES To investigate the efficacy and safety of oral semaglutide 7 and 14 mg, the only orally delivered glucagon-like peptide-1 (GLP-1) receptor agonist tablet approved for type 2 diabetes mellitus (T2DM) patients. METHODS Search several databases for randomized controlled trials (RCTs) of oral semaglutide in patients with T2DM from inception through May 31, 2021. The primary outcomes included change from baseline in hemoglobin A1c (HbA1c) and body weight. Risk ratios (RR), mean differences (MD), and 95% confidence intervals (CI) were calculated to evaluate the outcomes. RESULTS This meta-analysis included 11 RCTs with a total of 9821 patients. Compared with placebo, semaglutide 7 and 14 mg reduced HbA1c by 1.06% (95% CI, 0.81-1.30) and 1.10% (95% CI, 0.88-1.31), respectively. While in comparison with other antidiabetic agents, semaglutide 7 and 14 mg reduced HbA1c by 0.26% (95% CI, 0.15-0.38) and 0.38% (95%CI, 0.31-0.45). Both doses of semaglutide could significantly reduce body weight. Semaglutide 14 mg did increase the incidence of medication discontinuation and gastrointestinal events (nausea, vomiting and diarrhea). CONCLUSION Once-daily semaglutide 7 and 14 mg can significantly lowered HbA1c and body weight in patients with T2DM, and this effect increases with dose. Significantly, more gastrointestinal events occurred with semaglutide 14 mg.
Collapse
Affiliation(s)
- Aihua Li
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Xiaorong Su
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Shanshan Hu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Yong Wang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China; Laboratory of Research of New Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China.
| |
Collapse
|
13
|
Hindsø M, Hedbäck N, Svane MS, Møller A, Martinussen C, Jørgensen NB, Dirksen C, Gasbjerg LS, Kristiansen VB, Hartmann B, Rosenkilde MM, Holst JJ, Madsbad S, Bojsen-Møller KN. The Importance of Endogenously Secreted GLP-1 and GIP for Postprandial Glucose Tolerance and β-Cell Function After Roux-en-Y Gastric Bypass and Sleeve Gastrectomy Surgery. Diabetes 2023; 72:336-347. [PMID: 36478039 DOI: 10.2337/db22-0568] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Enhanced secretion of glucagon-like peptide 1 (GLP-1) seems to be essential for improved postprandial β-cell function after Roux-en-Y gastric bypass (RYGB) but is less studied after sleeve gastrectomy (SG). Moreover, the role of the other major incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), is relatively unexplored after bariatric surgery. We studied the effects of separate and combined GLP-1 receptor (GLP-1R) and GIP receptor (GIPR) blockade during mixed-meal tests in unoperated (CON), SG-operated, and RYGB-operated people with no history of diabetes. Postprandial GLP-1 concentrations were highest after RYGB but also higher after SG compared with CON. In contrast, postprandial GIP concentrations were lowest after RYGB. The effect of GLP-1R versus GIPR blockade differed between groups. GLP-1R blockade reduced β-cell glucose sensitivity and increased or tended to increase postprandial glucose responses in the surgical groups but had no effect in CON. GIPR blockade reduced β-cell glucose sensitivity and increased or tended to increase postprandial glucose responses in the CON and SG groups but had no effect in the RYGB group. Our results support that GIP is the most important incretin hormone in unoperated people, whereas GLP-1 and GIP are equally important after SG, and GLP-1 is the most important incretin hormone after RYGB.
Collapse
Affiliation(s)
- Morten Hindsø
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Nora Hedbäck
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Maria S Svane
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Andreas Møller
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Nils B Jørgensen
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Carsten Dirksen
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Lærke S Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Viggo B Kristiansen
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | | |
Collapse
|
14
|
Contribution of GIP and GLP-1 to the Insulin Response to Oral Administration of Glucose in Female Mice. Biomedicines 2023; 11:biomedicines11020591. [PMID: 36831127 PMCID: PMC9953110 DOI: 10.3390/biomedicines11020591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
It has previously been shown that the incretin effect accounts for ≈50% of the insulin response to oral glucose in normal mice. Now, I have proceeded and studied the contribution of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) to the insulin response to oral glucose in female mice by using receptor antagonists. A specific GIP receptor antagonist (mGIP(3-30); 50 or 500 nmol/kg), a specific GLP-1 receptor antagonist (exendin(9-39); 3 or 30 nmol/kg), the combination of mGIP (500 nmol/kg) and exendin(9-39) (30 nmol/kg), or saline was given intravenously four minutes after administration of glucose (50 mg) through a gastric tube in anesthetized C57/BL6J mice (n = 95) with samples obtained before glucose administration and after 15, 30 and 60 min. The insulinogenic index, determined as the area under the 60 min curve for insulin (AUCinsulin) divided by the AUCglucose, was used to reflect the insulin response. It was found that the insulinogenic index was reduced by 67 ± 4% by mGIP(3-30) (p < 0.001), by 60 ± 14% by exendin(9-39) (p = 0.007) and by 61 ± 14% by the combination of mGIP(3-30) and exendin(9-39) (p = 0.043), both at their highest doses, compared to animals injected with glucose in the same experimental series. It is concluded that both GIP and GLP-1 are required for a normal incretin effect in female mice, that they contribute similarly to the insulin response, and that it is unlikely that there is another incretin hormone in this species.
Collapse
|
15
|
Krogh LSL, Henriksen K, Stensen S, Skov-Jeppesen K, Bergmann NC, Størling J, Rosenkilde MM, Hartmann B, Holst JJ, Gasbjerg LS, Knop FK. The naturally occurring GIP(1-30)NH2 is a GIP receptor agonist in humans. Eur J Endocrinol 2023; 188:6979719. [PMID: 36651162 DOI: 10.1093/ejendo/lvac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The gut hormone glucose-dependent insulinotropic polypeptide (GIP) is an important regulator of glucose and bone metabolism. In rodents, the naturally occurring GIP variant, GIP(1-30)NH2, has shown similar effects as full-length GIP (GIP(1-42)), but its effects in humans are unsettled. Here, we investigated the actions of GIP(1-30)NH2 compared to GIP(1-42) on glucose and bone metabolism in healthy men and in isolated human pancreatic islets. METHODS Nine healthy men completed three separate three-step glucose clamps (0-60 minutes at fasting plasma glucose (FPG) level, 60-120 minutes at 1.5× FPG, and 120-180 minutes at 2× FPG) with infusion of GIP(1-42) (4 pmol/kg/min), GIP(1-30)NH2 (4 pmol/kg/min), and saline (9 mg/mL) in randomised order. Blood was sampled for measurement of relevant hormones and bone turnover markers. Human islets were incubated with low (2 mmol/L) or high (20 mmol/L) d-glucose with or without GIP(1-42) or GIP(1-30)NH2 in three different concentrations for 30 minutes, and secreted insulin and glucagon were measured. RESULTS Plasma glucose (PG) levels at FPG, 1.5× FPG, and 2× FPG were obtained by infusion of 1.45 g/kg, 0.97 g/kg, and 0.6 g/kg of glucose during GIP(1-42), GIP(1-30)NH2, and saline, respectively (P = .18), and were similar on the three experimental days. Compared to placebo, GIP(1-30)NH2 resulted in similar glucagonotropic, insulinotropic, and carboxy-terminal type 1 collagen crosslinks-suppressing effects as GIP(1-42). In vitro experiments on human islets showed similar insulinotropic and glucagonotropic effects of the two GIP variants. CONCLUSIONS GIP(1-30)NH2 has similar effects on glucose and bone metabolism in healthy individuals and in human islets in vitro as GIP(1-42).
Collapse
Affiliation(s)
- Liva S L Krogh
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Kristine Henriksen
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Kirsa Skov-Jeppesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Natasha C Bergmann
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Joachim Størling
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Bertherat J, Bourdeau I, Bouys L, Chasseloup F, Kamenicky P, Lacroix A. Clinical, pathophysiologic, genetic and therapeutic progress in Primary Bilateral Macronodular Adrenal Hyperplasia. Endocr Rev 2022:6957368. [PMID: 36548967 DOI: 10.1210/endrev/bnac034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Patients with primary bilateral macronodular adrenal hyperplasia (PBMAH) usually present bilateral benign adrenocortical macronodules at imaging and variable levels of cortisol excess. PBMAH is a rare cause of primary overt Cushing's syndrome, but may represent up to one third of bilateral adrenal incidentalomas with evidence of cortisol excess. The increased steroidogenesis in PBMAH is often regulated by various G-protein coupled receptors aberrantly expressed in PBMAH tissues; some receptor ligands are ectopically produced in PBMAH tissues creating aberrant autocrine/paracrine regulation of steroidogenesis. The bilateral nature of PBMAH and familial aggregation, led to the identification of germline heterozygous inactivating mutations of the ARMC5 gene, in 20-25% of the apparent sporadic cases and more frequently in familial cases; ARMC5 mutations/pathogenic variants can be associated with meningiomas. More recently, combined germline mutations/pathogenic variants and somatic events inactivating the KDM1A gene were specifically identified in patients affected by GIP-dependent PBMAH. Functional studies demonstrated that inactivation of KDM1A leads to GIP-receptor (GIPR) overexpression and over or down-regulation of other GPCRs. Genetic analysis is now available for early detection of family members of index cases with PBMAH carrying identified germline pathogenic variants. Detailed biochemical, imaging, and co-morbidities assessment of the nature and severity of PBMAH is essential for its management. Treatment is reserved for patients with overt or mild cortisol/aldosterone or other steroid excesses taking in account co-morbidities. It previously relied on bilateral adrenalectomy; however recent studies tend to favor unilateral adrenalectomy, or less frequently, medical treatment with cortisol synthesis inhibitors or specific blockers of aberrant GPCR.
Collapse
Affiliation(s)
- Jerôme Bertherat
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 24 rue du Fg St Jacques, Paris 75014, France
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Lucas Bouys
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 24 rue du Fg St Jacques, Paris 75014, France
| | - Fanny Chasseloup
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Service d'Endocrinologie et des Maladies de la Reproduction, 94276 Le Kremlin-Bicêtre, France
| | - Peter Kamenicky
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Service d'Endocrinologie et des Maladies de la Reproduction, 94276 Le Kremlin-Bicêtre, France
| | - André Lacroix
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| |
Collapse
|
17
|
Boer GA, Hunt JE, Gabe MBN, Windeløv JA, Sparre-Ulrich AH, Hartmann B, Holst JJ, Rosenkilde MM. GIP receptor antagonist treatment causes a reduction in weight gain in ovariectomised high fat diet-fed mice. Br J Pharmacol 2022; 179:4486-4499. [PMID: 35710141 PMCID: PMC9544171 DOI: 10.1111/bph.15894] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 04/04/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background and purpose The incretin hormone, gastric inhibitory peptide/glucose‐dependent insulinotropic polypeptide (GIP), secreted by the enteroendocrine K‐cells in the proximal intestine, may regulate lipid metabolism and adiposity, but its exact role in these processes is unclear. Experimental approach We characterized in vitro and in vivo antagonistic properties of a novel GIP analogue, mGIPAnt‐1. We further assessed the in vivo pharmacokinetic profile of this antagonist, as well as its ability to affect high‐fat diet (HFD)‐induced body weight gain in ovariectomised mice during an 8‐week treatment period. Key results mGIPAnt‐1 showed competitive antagonistic properties to the GIP receptor in vitro as it inhibited GIP‐induced cAMP accumulation in COS‐7 cells. Furthermore, mGIPAnt‐1 was capable of inhibiting GIP‐induced glucoregulatory and insulinotropic effects in vivo and has a favourable pharmacokinetic profile with a half‐life of 7.2 h in C57Bl6 female mice. Finally, sub‐chronic treatment with mGIPAnt‐1 in ovariectomised HFD mice resulted in a reduction of body weight and fat mass. Conclusion and Implications mGIPAnt‐1 successfully inhibited acute GIP‐induced effects in vitro and in vivo and sub‐chronically induces resistance to HFD‐induced weight gain in ovariectomised mice. Our results support the development of GIP antagonists for the therapy of obesity.
Collapse
Affiliation(s)
- Geke Aline Boer
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna Elizabeth Hunt
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Buur Nordskov Gabe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Agerlin Windeløv
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Bolette Hartmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Gabe MBN, Gasbjerg LS, Gadgaard S, Lindquist P, Holst JJ, Rosenkilde MM. N-terminal alterations turn the gut hormone GLP-2 into an antagonist with gradual loss of GLP-2 receptor selectivity towards more GLP-1 receptor interaction. Br J Pharmacol 2022; 179:4473-4485. [PMID: 35523760 PMCID: PMC9541843 DOI: 10.1111/bph.15866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE To fully elucidate the regulatory role of the GLP-2 system in the gut and the bones, potent and selective GLP-2 receptor (GLP-2R) antagonists are needed. Searching for antagonist activity, we performed systematic N-terminal truncations of human GLP-2(1-33). EXPERIMENTAL APPROACH COS-7 cells were transfected with the human GLP-2R and assessed for cAMP accumulation or competition binding using 125 I-GLP-2(1-33)[M10Y]. To examine selectivity, human GLP-1 or GIP receptor expressing COS-7 cells were assessed for cAMP accumulation. KEY RESULTS The affinity for the GLP-2R of the N-terminally truncated GLP-2 peptides decreased with reduced N-terminal peptide length (Ki 6.5-871 nM), while increasing antagonism appeared with inhibitory potencies (IC50 ) values from 79 to 204 nM for truncation up to GLP-2(4-33) and then declined. In contrast, truncation-dependent increases in intrinsic activity were observed from an Emax of only 20% for GLP-(2-33) up to 46% for GLP-2(6-33) at 1 μM, followed by a decline. GLP-2(9-33) had the highest intrinsic efficacy (Emax 65%) and no antagonistic properties. Moreover, with truncations up to GLP-2(8-33) a gradual loss in selectivity for the GLP-2R appeared with increasing GLP-1 receptor (GLP-1R) inhibition (up to 73% at 1 μM). Lipidation of the peptides improved antagonism (IC50 down to 7.9 nM) for both the GLP-2R and the GLP-1R. CONCLUSION AND IMPLICATIONS The N-terminus of GLP-2 is crucial for GLP-2R activity and selectivity. Our observations form the basis for the development of tool compounds for further characterization of the GLP-2 system.
Collapse
Affiliation(s)
- Maria Buur Nordskov Gabe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Laerke Smidt Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Sarina Gadgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Peter Lindquist
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
19
|
Mayendraraj A, Rosenkilde MM, Gasbjerg LS. GLP-1 and GIP receptor signaling in beta cells - A review of receptor interactions and co-stimulation. Peptides 2022; 151:170749. [PMID: 35065096 DOI: 10.1016/j.peptides.2022.170749] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
Glucagon-like peptide 1 receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide receptor (GIPR) are two class B1 G protein-coupled receptors, which are stimulated by the gastrointestinal hormones GLP-1 and GIP, respectively. In the pancreatic beta cells, activation of both receptors lead to increased cyclic adenosine monophosphate (cAMP) and glucose-dependent insulin secretion. Marketed GLP-1R agonists such as dulaglutide, liraglutide, exenatide and semaglutide constitute an expanding drug class with beneficial effects for persons suffering from type 2 diabetes and/or obesity. In recent years another drug class, the GLP-1R-GIPR co-agonists, has emerged. Especially the peptide-based, co-agonist tirzepatide is a promising candidate for a better treatment of type 2 diabetes by improving glycemic control and weight reduction. The mechanism of action for tirzepatide include biased signaling of the GLP-1R as well as potent GIPR signaling. Since the implications of co-targeting these closely related receptors concomitantly are challenging to study in vivo, the pharmacodynamic mechanisms and downstream signaling pathways of the GLP-1R-GIPR co-agonists in general, are not fully elucidated. In this review, we present the individual signaling pathways for GLP-1R and GIPR in the pancreatic beta cell with a focus on the shared signaling pathways of the two receptors and interpret the implications of GLP-1R-GIPR co-activation in the light of recent co-activating therapeutic compounds.
Collapse
Affiliation(s)
- Ashok Mayendraraj
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke S Gasbjerg
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
20
|
Gadgaard S, van der Velden WJC, Schiellerup SP, Hunt JE, Gabe MBN, Windeløv JA, Boer GA, Kissow H, Ørskov C, Holst JJ, Hartmann B, Rosenkilde MM. Novel agonist- and antagonist-based radioligands for the GLP-2 receptor - useful tools for studies of basic GLP-2R pharmacology. Br J Pharmacol 2021; 179:1998-2015. [PMID: 34855984 PMCID: PMC9303331 DOI: 10.1111/bph.15766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 11/27/2022] Open
Abstract
Background Glucagon‐like peptide‐2 (GLP‐2) is a pro‐glucagon‐derived hormone secreted from intestinal enteroendocrine L cells with actions on gut and bones. GLP‐2(1–33) is cleaved by DPP‐4, forming GLP‐2(3–33), having low intrinsic activity and competitive antagonism properties at GLP‐2 receptors. We created radioligands based on these two molecules. Experimental approach The methionine in position 10 of GLP‐2(1–33) and GLP‐2(3–33) was substituted with tyrosine (M10Y) enabling oxidative iodination, creating [125I]‐hGLP‐2(1–33,M10Y) and [125I]‐hGLP‐2(3–33,M10Y). Both were characterized by competition binding, on‐and‐off‐rate determination and receptor activation. Receptor expression was determined by target‐tissue autoradiography and immunohistochemistry. Key results Both M10Y‐substituted peptides induced cAMP production via the GLP‐2 receptor comparable to the wildtype peptides. GLP‐2(3–33,M10Y) maintained the antagonistic properties of GLP‐2(3–33). However, hGLP‐2(1–33,M10Y) had lower arrestin recruitment than hGLP‐2(1–33). High affinities for the hGLP‐2 receptor were observed using [125I]‐hGLP‐2(1–33,M10Y) and [125I]‐hGLP‐2(3–33,M10Y) with KD values of 59.3 and 40.6 nM. The latter (with antagonistic properties) had higher Bmax and faster on and off rates compared to the former (full agonist). Both bound the hGLP‐1 receptor with low affinity (Ki of 130 and 330 nM, respectively). Autoradiography in wildtype mice revealed strong labelling of subepithelial myofibroblasts, confirmed by immunohistochemistry using a GLP‐2 receptor specific antibody that in turn was confirmed in GLP‐2 receptor knock‐out mice. Conclusion and implications Two new radioligands with different binding kinetics, one a full agonist and the other a weak partial agonist with antagonistic properties were developed and subepithelial myofibroblasts identified as a major site for GLP‐2 receptor expression.
Collapse
Affiliation(s)
- Sarina Gadgaard
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Bainan Biotech, Copenhagen, Denmark
| | - Wijnand J C van der Velden
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Present address: Department of Computational & Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Sine P Schiellerup
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna Elizabeth Hunt
- Endocrinology and Metabolism, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Maria B N Gabe
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Agerlin Windeløv
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Geke Aline Boer
- Endocrinology and Metabolism, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hannelouise Kissow
- Endocrinology and Metabolism, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Cathrine Ørskov
- Endocrinology and Metabolism, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens J Holst
- Endocrinology and Metabolism, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Endocrinology and Metabolism, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Lauritzen ES, Støy J, Bæch-Laursen C, Grarup N, Jessen N, Hansen T, Møller N, Hartmann B, Holst JJ, Kampmann U. The Effect of Melatonin on Incretin Hormones: Results From Experimental and Randomized Clinical Studies. J Clin Endocrinol Metab 2021; 106:e5109-e5123. [PMID: 34265066 DOI: 10.1210/clinem/dgab521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 01/10/2023]
Abstract
CONTEXT Glucose homeostasis is under circadian control through both endocrine and intracellular mechanisms, with several lines of evidence suggesting that melatonin affects glucose homeostasis. OBJECTIVE To evaluate the acute in vivo and in situ effects of melatonin on secretion of the incretin hormones, glucagon-like-peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), and their impact on β-cell insulin secretion. DESIGN A human randomized, double-blinded, placebo-controlled crossover study combined with a confirmatory in situ study of perfused rat intestines. SETTING Aarhus University Hospital. METHODS Fifteen healthy male participants were examined 2 × 2 times: an oral glucose tolerance test (OGTT) was performed on day 1 and an isoglycemic IV glucose infusion replicating the blood glucose profile of the OGTT day was performed on day 2. These pairs of study days were repeated on treatment with melatonin and placebo, respectively. For the in situ study, 6 rat intestines and 4 rat pancreases were perfused arterially with perfusion buffer ± melatonin. The intestines were concomitantly perfused with glucose through the luminal compartment. RESULTS In humans, melatonin treatment resulted in reduced GIP secretion compared with placebo (ANOVA P = 0.003), an effect also observed in the perfused rat intestines (ANOVA P = 0.003), in which GLP-1 secretion also was impaired by arterial melatonin infusion (ANOVA P < 0.001). Despite a decrease in GIP levels, the in vivo glucose-stimulated insulin secretion was unaffected by melatonin (P = 0.78). CONCLUSION Melatonin reduced GIP secretion during an oral glucose challenge in healthy young men but did not affect insulin secretion. Reduced GIP secretion was confirmed in an in situ model of the rat intestine.
Collapse
Affiliation(s)
- Esben Stistrup Lauritzen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Medical research laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Julie Støy
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Medical research laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Cecilie Bæch-Laursen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Research Laboratory for Biochemical Pathology, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Møller
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Medical research laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Bolette Hartmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Kampmann
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Medical research laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Yuan L, Zhang J, Guo JH, Holscher C, Yang JT, Wu MN, Wang ZJ, Cai HY, Han LN, Shi H, Han YF, Qi JS. DAla2-GIP-GLU-PAL Protects Against Cognitive Deficits and Pathology in APP/PS1 Mice by Inhibiting Neuroinflammation and Upregulating cAMP/PKA/CREB Signaling Pathways. J Alzheimers Dis 2021; 80:695-713. [PMID: 33579843 DOI: 10.3233/jad-201262] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline in cognitive function. Type 2 diabetes mellitus (T2DM) is an important risk factor for AD. Glucose-dependent insulinotropic polypeptide (GIP) has been identified to be effective in T2DM treatment and neuroprotection. OBJECTIVE The present study investigated the neuroprotective effects and possible mechanisms of DAla2GIP-Glu-PAL, a novel long-lasting GIP analogue, in APP/PS1 AD mice. METHODS Multiple behavioral tests were performed to examine the cognitive function of mice. In vivo hippocampus late-phase long-term potentiation (L-LTP) was recorded to reflect synaptic plasticity. Immunohistochemistry and immunofluorescence were used to examine the Aβ plaques and neuroinflammation in the brain. IL-1β, TNF-α, and cAMP/PKA/CREB signal molecules were also detected by ELISA or western blotting. RESULTS DAla2GIP-Glu-PAL increased recognition index (RI) of APP/PS1 mice in novel object recognition test, elevated spontaneous alternation percentage of APP/PS1 mice in Y maze test, and increased target quadrant swimming time of APP/PS1 mice in Morris water maze test. DAla2GIP-Glu-PAL treatment enhanced in vivo L-LTP of APP/PS1 mice. DAla2GIP-Glu-PAL significantly reduced Aβ deposition, inhibited astrocyte and microglia proliferation, and weakened IL-1β and TNF-α secretion. DAla2GIP-Glu-PAL also upregulated cAMP/PKA/CREB signal transduction and inhibited NF-κB activation in the hippocampus of APP/PS1 mice. CONCLUSION DAla2GIP-Glu-PAL can improve cognitive behavior, synaptic plasticity, and central pathological damage in APP/PS1 mice, which might be associated with the inhibition of neuroinflammation, as well as upregulation of cAMP-/PKA/CREB signaling pathway. This study suggests a potential benefit of DAla2GIP-Glu-PAL in the treatment of AD.
Collapse
Affiliation(s)
- Li Yuan
- Department of Physiology, Changzhi Medical College, Changzhi, Shanxi, PR China.,Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jun Zhang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jun-Hong Guo
- Department of Neurology, First Hospital, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Christian Holscher
- Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, Henan, PR China
| | - Jun-Ting Yang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Hong-Yan Cai
- Department of Immunology and Microbiology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Ling-Na Han
- Department of Physiology, Changzhi Medical College, Changzhi, Shanxi, PR China
| | - Hui Shi
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yu-Fei Han
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jin-Shun Qi
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
23
|
Nauck MA, Quast DR, Wefers J, Pfeiffer AFH. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: A pathophysiological update. Diabetes Obes Metab 2021; 23 Suppl 3:5-29. [PMID: 34310013 DOI: 10.1111/dom.14496] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/27/2022]
Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) have their main physiological role in augmenting insulin secretion after their nutrient-induced secretion from the gut. A functioning entero-insular (gut-endocrine pancreas) axis is essential for the maintenance of a normal glucose tolerance. This is exemplified by the incretin effect (greater insulin secretory response to oral as compared to "isoglycaemic" intravenous glucose administration due to the secretion and action of incretin hormones). GIP and GLP-1 have additive effects on insulin secretion. Local production of GIP and/or GLP-1 in islet α-cells (instead of enteroendocrine K and L cells) has been observed, and its significance is still unclear. GLP-1 suppresses, and GIP increases glucagon secretion, both in a glucose-dependent manner. GIP plays a greater physiological role as an incretin. In type 2-diabetic patients, the incretin effect is reduced despite more or less normal secretion of GIP and GLP-1. While insulinotropic effects of GLP-1 are only slightly impaired in type 2 diabetes, GIP has lost much of its acute insulinotropic activity in type 2 diabetes, for largely unknown reasons. Besides their role in glucose homoeostasis, the incretin hormones GIP and GLP-1 have additional biological functions: GLP-1 at pharmacological concentrations reduces appetite, food intake, and-in the long run-body weight, and a similar role is evolving for GIP, at least in animal studies. Human studies, however, do not confirm these findings. GIP, but not GLP-1 increases triglyceride storage in white adipose tissue not only through stimulating insulin secretion, but also by interacting with regional blood vessels and GIP receptors. GIP, and to a lesser degree GLP-1, play a role in bone remodelling. GLP-1, but not GIP slows gastric emptying, which reduces post-meal glycaemic increments. For both GIP and GLP-1, beneficial effects on cardiovascular complications and neurodegenerative central nervous system (CNS) disorders have been observed, pointing to therapeutic potential over and above improving diabetes complications. The recent finding that GIP/GLP-1 receptor co-agonists like tirzepatide have superior efficacy compared to selective GLP-1 receptor agonists with respect to glycaemic control as well as body weight has renewed interest in GIP, which previously was thought to be without any therapeutic potential. One focus of this research is into the long-term interaction of GIP and GLP-1 receptor signalling. A GLP-1 receptor antagonist (exendin [9-39]) and, more recently, a GIP receptor agonist (GIP [3-30] NH2 ) and, hopefully, longer-acting GIP receptor agonists for human use will be helpful tools to shed light on the open questions. A detailed knowledge of incretin physiology and pathophysiology will be a prerequisite for designing more effective incretin-based diabetes drugs.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Daniel R Quast
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jakob Wefers
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas F H Pfeiffer
- Charité - Universitätsmedizin Berlin, Klinik für Endokrinologie, Stoffwechsel- und Ernährungsmedizin, Berlin, Germany
| |
Collapse
|
24
|
Henquin JC. Non-glucose modulators of insulin secretion in healthy humans: (dis)similarities between islet and in vivo studies. Metabolism 2021; 122:154821. [PMID: 34174327 DOI: 10.1016/j.metabol.2021.154821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022]
Abstract
Optimal metabolic homeostasis requires precise temporal and quantitative control of insulin secretion. Both in vivo and in vitro studies have often focused on the regulation by glucose although many additional factors including other nutrients, neurotransmitters, hormones and drugs, modulate the secretory function of pancreatic β-cells. This review is based on the analysis of clinical investigations characterizing the effects of non-glucose modulators of insulin secretion in healthy subjects, and of experimental studies testing the same modulators in islets isolated from normal human donors. The aim was to determine whether the information gathered in vitro can reliably be translated to the in vivo situation. The comparison evidenced both convincing similarities and areas of discordance. The lack of coherence generally stems from the use of exceedingly high concentrations of test agents at too high or too low glucose concentrations in vitro, which casts doubts on the physiological relevance of a number of observations made in isolated islets. Future projects resorting to human islets should avoid extreme experimental conditions, such as oversized stimulations or inhibitions of β-cells, which are unlikely to throw light on normal insulin secretion and contribute to the elucidation of its defects.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium.
| |
Collapse
|
25
|
Rayner CK, Horowitz M. Twincretin therapy for type 2 diabetes: how do two do? Lancet 2021; 398:560-561. [PMID: 34370968 DOI: 10.1016/s0140-6736(21)01597-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Christopher K Rayner
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Michael Horowitz
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia.
| |
Collapse
|
26
|
Yuliantie E, van der Velden WJC, Labroska V, Dai A, Zhao F, Darbalaei S, Deganutti G, Xu T, Zhou Q, Yang D, Rosenkilde MM, Sexton PM, Wang MW, Wootten D. Insights into agonist-elicited activation of the human glucose-dependent insulinotropic polypeptide receptor. Biochem Pharmacol 2021; 192:114715. [PMID: 34339714 DOI: 10.1016/j.bcp.2021.114715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/30/2023]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and its receptor (GIPR) are part of the incretin system that regulates glucose homeostasis. A series of GIPR residues putatively important for ligand binding and receptor activation were mutated and pharmacologically evaluated using GIPR selective agonists in cAMP accumulation, ERK1/2 phosphorylation (pERK1/2) and β-arrestin 2 recruitment assays. The impact of mutation on ligand efficacy was determined by operational modelling of experimental data for each mutant, with results mapped onto the full-length, active-state GIPR structure. Two interaction networks, comprising transmembrane helix (TM) 7, TM1 and TM2, and extracellular loop (ECL) 2, TM5 and ECL3 were revealed, respectively. Both networks were critical for Gαs-mediated cAMP accumulation and the recruitment of β-arrestin 2, however, cAMP response was more sensitive to alanine substitution, with most mutated residues displaying reduced signaling. Unlike the other two assays, activation of ERK1/2 was largely independent of the network involving ECL2, TM5 and ECL3, indicating that pERK1/2 is at least partially distinct from Gαs or β-arrestin pathways and this network is also crucial for potential biased agonism at GIPR. Collectively, our work advances understanding of the structure-function relationship of GIPR and provides a framework for the design and/or interpretation of GIP analogues with unique signaling profiles.
Collapse
Affiliation(s)
- Elita Yuliantie
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Viktorija Labroska
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Antao Dai
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
| | - Fenghui Zhao
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Sanaz Darbalaei
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Giuseppe Deganutti
- Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Alison Gingell Building, Coventry University, Coventry, CV1 2DS, UK
| | - Tongyang Xu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Dehua Yang
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark.
| | - Patrick M Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Ming-Wei Wang
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| |
Collapse
|
27
|
Zhang L, Zhang L, Li Y, Li L, Melchiorsen JU, Rosenkilde M, Hölscher C. The Novel Dual GLP-1/GIP Receptor Agonist DA-CH5 Is Superior to Single GLP-1 Receptor Agonists in the MPTP Model of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 10:523-542. [PMID: 31958096 DOI: 10.3233/jpd-191768] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disease for which there is no cure. In a clinical trial, the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 has shown good protective effects in PD patients. The hormone glucose-dependent insulinotropic polypeptide (GIP) has also shown protective effects in animal models of PD. OBJECTIVE We tested DA-CH5, a novel dual GLP-1/GIP receptor agonist. METHODS DA-CH5 activity was tested on cells expressing GLP-1, GLP-2, GIP or glucagon receptors. The ability to cross the blood-brain barrier (BBB) of DA-CH5, exendin-4, liraglutide or other dual receptor agonists was tested with fluorescein-labelled peptides. DA-CH5, exendin-4 and liraglutide were tested in the MPTP mouse model of PD. RESULTS Analysing the receptor activating properties showed a balanced activation of GLP-1 and GIP receptors while not activating GLP-2 or glucagon receptors. DA-CH5 crossed the BBB better than other single or other dual receptor agonists. In a dose-response comparison, DA-CH5 was more effective than the GLP-1 receptor agonist exendin-4. When comparing the neuroprotective effect of DA-CH5 with Liraglutide, a GLP-1 analogue, both DA-CH5 and Liraglutide improved MPTP-induced motor impairments. In addition, the drugs reversed the decrease of the number of neurons expressing tyrosine hydroxylase (TH) in the SN, alleviated chronic inflammation, reduced lipid peroxidation, inhibited the apoptosis pathway (TUNEL assay) and increased autophagy -related proteins expression in the substantia nigra (SN) and striatum. Importantly, we found DA-CH5 was superior to Liraglutide in reducing microglia and astrocyte activation, improving mitochondrial activity by reducing the Bax/Bcl-2 ratio and normalising autophagy as found in abnormal expression of LC3 and p62. CONCLUSION The results demonstrate that the DA-CH5 is superior to liraglutide and could be a therapeutic treatment for PD.
Collapse
Affiliation(s)
- Lingyu Zhang
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Liping Zhang
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yanwei Li
- Department of Human Anatomy, Shaoyang Medical College, Shaoyang, Hunan, PR China
| | - Lin Li
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | | | - Mette Rosenkilde
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian Hölscher
- Department of Second Hospital Neurology, Shanxi Medical University, Taiyuan, Shanxi, PR China.,Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, Henan province, PR China
| |
Collapse
|
28
|
Holst JJ, Gasbjerg LS, Rosenkilde MM. The Role of Incretins on Insulin Function and Glucose Homeostasis. Endocrinology 2021; 162:6199910. [PMID: 33782700 PMCID: PMC8168943 DOI: 10.1210/endocr/bqab065] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Indexed: 12/14/2022]
Abstract
The incretin effect-the amplification of insulin secretion after oral vs intravenous administration of glucose as a mean to improve glucose tolerance-was suspected even before insulin was discovered, and today we know that the effect is due to the secretion of 2 insulinotropic peptides, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). But how important is it? Physiological experiments have shown that, because of the incretin effect, we can ingest increasing amounts of amounts of glucose (carbohydrates) without increasing postprandial glucose excursions, which otherwise might have severe consequences. The mechanism behind this is incretin-stimulated insulin secretion. The availability of antagonists for GLP-1 and most recently also for GIP has made it possible to directly estimate the individual contributions to postprandial insulin secretion of a) glucose itself: 26%; b) GIP: 45%; and c) GLP-1: 29%. Thus, in healthy individuals, GIP is the champion. When the action of both incretins is prevented, glucose tolerance is pathologically impaired. Thus, after 100 years of research, we now know that insulinotropic hormones from the gut are indispensable for normal glucose tolerance. The loss of the incretin effect in type 2 diabetes, therefore, contributes greatly to the impaired postprandial glucose control.
Collapse
Affiliation(s)
- Jens Juul Holst
- Department of Biomedical Sciences and the NovoNordisk Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, The Panum Institute, Copenhagen N, DK-2200 Denmark
- Correspondence: Jens Juul Holst, MD, University of Copenhagen, Department of Biomedical Sciences, The Panum Institute, 3 Blegdamsvej, Copenhagen, DK-2200 Denmark.
| | - Lærke Smidt Gasbjerg
- Department of Biomedical Sciences and the NovoNordisk Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, The Panum Institute, Copenhagen N, DK-2200 Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences and the NovoNordisk Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, The Panum Institute, Copenhagen N, DK-2200 Denmark
| |
Collapse
|
29
|
Petrov MS. Post-pancreatitis diabetes mellitus: investigational drugs in preclinical and clinical development and therapeutic implications. Expert Opin Investig Drugs 2021; 30:737-747. [PMID: 33993813 DOI: 10.1080/13543784.2021.1931118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Post-pancreatitis diabetes mellitus is one of the most common types of secondary diabetes. The pharmaceutical armamentarium in the field of diabetology can be broadened if the design of novel drugs is informed by pathogenetic insights from studies on post-pancreatitis diabetes mellitus.Areas covered: The article provides an overview of preclinical and clinical studies of compounds selectively antagonizing the gastric inhibitory peptide receptor, simultaneously stimulating both the glucagon-like peptide-1 and glucagon receptors, and activating ketogenesis.Expert opinion: The current pharmacotherapy for post-pancreatitis diabetes mellitus is relatively ineffective. This type of diabetes represents a unique platform for rigorous, efficient, and practical search for glucose-lowering therapeutic candidates. Various methods of gastric inhibitory peptide receptor (expressed in the pancreas) antagonism have undergone extensive preclinical testing in diabetes, with promising compounds being trialed in man. Molecular mimicry with oxyntomodulin ─ an extra-pancreatic hormone homologous with pancreatic hormone glucagon and involved in the regulation of exocrine pancreatic function ─ could be harnessed. The emerging findings of a salutary effect of ketosis mimetics in people with prediabetes set the stage for a novel approach to preventing diabetes.
Collapse
Affiliation(s)
- Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
30
|
Lu SC, Chen M, Atangan L, Killion EA, Komorowski R, Cheng Y, Netirojjanakul C, Falsey JR, Stolina M, Dwyer D, Hale C, Stanislaus S, Hager T, Thomas VA, Harrold JM, Lloyd DJ, Véniant MM. GIPR antagonist antibodies conjugated to GLP-1 peptide are bispecific molecules that decrease weight in obese mice and monkeys. Cell Rep Med 2021; 2:100263. [PMID: 34095876 PMCID: PMC8149376 DOI: 10.1016/j.xcrm.2021.100263] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/31/2020] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) regulate glucose and energy homeostasis. Targeting both pathways with GIP receptor (GIPR) antagonist antibody (GIPR-Ab) and GLP-1 receptor (GLP-1R) agonist, by generating GIPR-Ab/GLP-1 bispecific molecules, is an approach for treating obesity and its comorbidities. In mice and monkeys, these molecules reduce body weight (BW) and improve many metabolic parameters. BW loss is greater with GIPR-Ab/GLP-1 than with GIPR-Ab or a control antibody conjugate, suggesting synergistic effects. GIPR-Ab/GLP-1 also reduces the respiratory exchange ratio in DIO mice. Simultaneous receptor binding and rapid receptor internalization by GIPR-Ab/GLP-1 amplify endosomal cAMP production in recombinant cells expressing both receptors. This may explain the efficacy of the bispecific molecules. Overall, our GIPR-Ab/GLP-1 molecules promote BW loss, and they may be used for treating obesity.
Collapse
Affiliation(s)
- Shu-Chen Lu
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Michelle Chen
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Larissa Atangan
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Elizabeth A. Killion
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Renee Komorowski
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Yuan Cheng
- Amgen Research, Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Chawita Netirojjanakul
- Amgen Research, Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - James R. Falsey
- Amgen Research, Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Marina Stolina
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Denise Dwyer
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Clarence Hale
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Shanaka Stanislaus
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Todd Hager
- Amgen Research, Department of Translational Safety & Bioanalytical Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Veena A. Thomas
- Amgen Research, Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., 1140 Veterans Boulevard, South San Francisco, CA 94080, USA
| | - John M. Harrold
- Amgen Research, Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., 1140 Veterans Boulevard, South San Francisco, CA 94080, USA
| | - David J. Lloyd
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Murielle M. Véniant
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| |
Collapse
|
31
|
Smit FX, van der Velden WJC, Kizilkaya HS, Nørskov A, Lückmann M, Hansen TN, Sparre-Ulrich AH, Qvotrup K, Frimurer TM, Rosenkilde MM. Investigating GIPR (ant)agonism: A structural analysis of GIP and its receptor. Structure 2021; 29:679-693.e6. [PMID: 33891864 DOI: 10.1016/j.str.2021.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/01/2021] [Accepted: 04/02/2021] [Indexed: 12/21/2022]
Abstract
The glucose-dependent insulinotropic polypeptide (GIP) is a 42-residue metabolic hormone that is actively being targeted for its regulatory role of glycemia and energy balance. Limited structural data of its receptor has made ligand design tedious. This study investigates the structure and function of the GIP receptor (GIPR), using a homology model based on the GLP-1 receptor. Molecular dynamics combined with in vitro mutational data were used to pinpoint residues involved in ligand binding and/or receptor activation. Significant differences in binding mode were identified for the naturally occurring agonists GIP(1-30)NH2 and GIP(1-42) compared with high potency antagonists GIP(3-30)NH2 and GIP(5-30)NH2. Residues R1832.60, R1902.67, and R3005.40 are shown to be key for activation of the GIPR, and evidence suggests that a disruption of the K293ECL2-E362ECL3 salt bridge by GIPR antagonists strongly reduces GIPR activation. Combinatorial use of these findings can benefit rational design of ligands targeting the GIPR.
Collapse
Affiliation(s)
- Florent X Smit
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark; Section for Metabolic Receptology, Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Wijnand J C van der Velden
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Hüsün S Kizilkaya
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Amalie Nørskov
- Department of Chemistry, Technical University of Denmark, Lyngby 2800, Denmark
| | - Michael Lückmann
- Section for Metabolic Receptology, Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Tobias N Hansen
- Department of Chemistry, Technical University of Denmark, Lyngby 2800, Denmark
| | - Alexander H Sparre-Ulrich
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Katrine Qvotrup
- Department of Chemistry, Technical University of Denmark, Lyngby 2800, Denmark
| | - Thomas M Frimurer
- Section for Metabolic Receptology, Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark.
| |
Collapse
|
32
|
West JA, Tsakmaki A, Ghosh SS, Parkes DG, Grønlund RV, Pedersen PJ, Maggs D, Rajagopalan H, Bewick GA. Chronic peptide-based GIP receptor inhibition exhibits modest glucose metabolic changes in mice when administered either alone or combined with GLP-1 agonism. PLoS One 2021; 16:e0249239. [PMID: 33788878 PMCID: PMC8011784 DOI: 10.1371/journal.pone.0249239] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/13/2021] [Indexed: 12/04/2022] Open
Abstract
Combinatorial gut hormone therapy is one of the more promising strategies for identifying improved treatments for metabolic disease. Many approaches combine the established benefits of glucagon-like peptide-1 (GLP-1) agonism with one or more additional molecules with the aim of improving metabolic outcomes. Recent attention has been drawn to the glucose-dependent insulinotropic polypeptide (GIP) system due to compelling pre-clinical evidence describing the metabolic benefits of antagonising the GIP receptor (GIPR). We rationalised that benefit might be accrued from combining GIPR antagonism with GLP-1 agonism. Two GIPR peptide antagonists, GIPA-1 (mouse GIP(3–30)NH2) and GIPA-2 (NαAc-K10[γEγE-C16]-Arg18-hGIP(5–42)), were pharmacologically characterised and both exhibited potent antagonist properties. Acute in vivo administration of GIPA-1 during an oral glucose tolerance test (OGTT) had negligible effects on glucose tolerance and insulin in lean mice. In contrast, GIPA-2 impaired glucose tolerance and attenuated circulating insulin levels. A mouse model of diet-induced obesity (DIO) was used to investigate the potential metabolic benefits of chronic dosing of each antagonist, alone or in combination with liraglutide. Chronic administration studies showed expected effects of liraglutide, lowering food intake, body weight, fasting blood glucose and plasma insulin concentrations while improving glucose sensitivity, whereas delivery of either GIPR antagonist alone had negligible effects on these parameters. Interestingly, chronic dual therapy augmented insulin sensitizing effects and lowered plasma triglycerides and free-fatty acids, with more notable effects observed with GIPA-1 compared to GIPA-2. Thus, the co-administration of both a GIPR antagonist with a GLP1 agonist uncovers interesting beneficial effects on measures of insulin sensitivity, circulating lipids and certain adipose stores that seem influenced by the degree or nature of GIP receptor antagonism.
Collapse
Affiliation(s)
- Jason A. West
- Fractyl Laboratories Inc, Lexington, MA, United States of America
| | - Anastasia Tsakmaki
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London, England, United Kingdom
| | | | | | | | | | - David Maggs
- Fractyl Laboratories Inc, Lexington, MA, United States of America
| | | | - Gavin A. Bewick
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London, England, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Gasbjerg LS, Bari EJ, Stensen S, Hoe B, Lanng AR, Mathiesen DS, Christensen MB, Hartmann B, Holst JJ, Rosenkilde MM, Knop FK. Dose-dependent efficacy of the glucose-dependent insulinotropic polypeptide (GIP) receptor antagonist GIP(3-30)NH 2 on GIP actions in humans. Diabetes Obes Metab 2021; 23:68-74. [PMID: 32886401 DOI: 10.1111/dom.14186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/05/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
The glucose-dependent insulinotropic polypeptide (GIP) fragment GIP(3-30)NH2 is a selective, competitive GIP receptor antagonist, and doses of 800 to 1200 pmol/kg/min inhibit GIP-induced potentiation of glucose-stimulated insulin secretion by >80% in humans. We evaluated the effects of GIP(3-30)NH2 across a wider dose range in eight healthy men undergoing six separate and randomized 10-mmol/L hyperglycaemic clamps (A-F) with concomitant intravenous infusion of GIP (1.5 pmol/kg/min; A-E) or saline (F). Clamps A to E involved double-blinded, infusions of saline (A) and GIP(3-30)NH2 at four rates: 2 (B), 20 (C), 200 (D) and 2000 pmol/kg/min (E), respectively. Mean plasma concentrations of glucose (A-F) and GIP (A-E) were similar. GIP-induced potentiation of glucose-stimulated insulin secretion was reduced by 44 ± 10% and 84 ± 10% during clamps D and E, respectively. Correspondingly, the amounts of glucose required to maintain the clamp during D and E were not different from F. GIP-induced suppression of bone resorption and increase in heart rate were lowered by clamps D and E. In conclusion, GIP(3-30)NH2 provides extensive, dose-dependent inhibition of the GIP receptor in humans, with most pronounced effects of the doses 200 to 2000 pmol/kg/min within the tested range.
Collapse
Affiliation(s)
- Laerke Smidt Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Emilie J Bari
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn Hoe
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amalie R Lanng
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David S Mathiesen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Filip Krag Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Centre Copenhagen, Gentofte, Denmark
| |
Collapse
|
34
|
Grespan E, Giorgino T, Natali A, Ferrannini E, Mari A. Different mechanisms of GIP and GLP-1 action explain their different therapeutic efficacy in type 2 diabetes. Metabolism 2021; 114:154415. [PMID: 33137379 DOI: 10.1016/j.metabol.2020.154415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/08/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS The reduced action of incretin hormones in type 2 diabetes (T2D) is mainly attributed to GIP insensitivity, but efficacy estimates of GIP and GLP-1 differ among studies, and the negligible effects of pharmacological GIP doses remain unexplained. We aimed to characterize incretin action in vivo in subjects with normal glucose tolerance (NGT) or T2D and provide an explanation for the different insulinotropic activity of GIP and GLP-1 in T2D subjects. METHODS We used in vivo data from ten studies employing hormone infusion or an oral glucose test (OGTT). To homogeneously interpret and compare the results of the studies we performed the analysis using a mathematical model of the β-cell incorporating the effects of incretins on the triggering and amplifying pathways. The effect on the amplifying pathway was quantified by a time-dependent factor that is greater than one when insulin secretion (ISR) is amplified by incretins. To validate the model results for GIP in NGT subjects, we performed an extensive literature search of the available data. RESULTS a) the stimulatory effects of GIP and GLP-1 differ markedly: ISR potentiation increases linearly with GLP-1 over the whole dose range, while with GIP infusion it reaches a plateau at ~100 pmol/L GIP, with ISR potentiation of ~2 fold; b) ISR potentiation in T2D is reduced by ~50% for GIP and by ~40% for GLP-1; c) the literature search of GIP in NGT subjects confirmed the saturative effect on insulin secretion. CONCLUSION We show that incretin potentiation of ISR is reduced in T2D, but not abolished, and that the lack of effects of pharmacological GIP doses is due to saturation of the GIP effect more than insensitivity to GIP in T2D.
Collapse
Affiliation(s)
- Eleonora Grespan
- Institute of Neuroscience, National Research Council, Padua 35127, Italy
| | - Toni Giorgino
- Biophysics Institute, National Research Council, Milan 20133, Italy; Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Ele Ferrannini
- Institute of Clinical Physiology, National Research Council, Pisa 56124, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua 35127, Italy.
| |
Collapse
|
35
|
Boer GA, Holst JJ. Incretin Hormones and Type 2 Diabetes-Mechanistic Insights and Therapeutic Approaches. BIOLOGY 2020; 9:biology9120473. [PMID: 33339298 PMCID: PMC7766765 DOI: 10.3390/biology9120473] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Simple Summary When we ingest a meal, our intestine secretes hormones that are released into the bloodstream. Amongst these hormones are the incretins hormones which stimulate the release of insulin from the pancreas which is essential for the regulation of in particular postprandial glucose concentrations. In patients with type 2 diabetes, the effect of the incretins is diminished. This is thought to contribute importantly to the pathophysiology of the disease. However, in pharmacological amounts, the incretins may still influence insulin secretion and metabolism. Much research has therefore been devoted to the development of incretin-based therapies for type 2 diabetes. These therapies include compounds that strongly resemble the incretins, hereby stimulating their effects as well as inhibitors of the enzymatic degradation of the hormones, thereby increasing the concentration of incretins in the blood. Both therapeutic approaches have been implemented successfully, but research is still ongoing aimed at the development of further optimized therapies. Abstract Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted from the gut upon nutrient stimulation and regulate postprandial metabolism. These hormones are known as classical incretin hormones and are responsible for a major part of postprandial insulin release. The incretin effect is severely reduced in patients with type 2 diabetes, but it was discovered that administration of GLP-1 agonists was capable of normalizing glucose control in these patients. Over the last decades, much research has been focused on the development of incretin-based therapies for type 2 diabetes. These therapies include incretin receptor agonists and inhibitors of the incretin-degrading enzyme dipeptidyl peptidase-4. Especially the development of diverse GLP-1 receptor agonists has shown immense success, whereas studies of GIP monotherapy in patients with type 2 diabetes have consistently been disappointing. Interestingly, both GIP-GLP-1 co-agonists and GIP receptor antagonists administered in combination with GLP-1R agonists appear to be efficient with respect to both weight loss and control of diabetes, although the molecular mechanisms behind these effects remain unknown. This review describes our current knowledge of the two incretin hormones and the development of incretin-based therapies for treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Geke Aline Boer
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
- Correspondence: ; Tel.: +45-2875-7518
| |
Collapse
|
36
|
Campbell JE. Targeting the GIPR for obesity: To agonize or antagonize? Potential mechanisms. Mol Metab 2020; 46:101139. [PMID: 33290902 PMCID: PMC8085569 DOI: 10.1016/j.molmet.2020.101139] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic peptide (GIP) is one of two incretin hormones that communicate nutrient intake with systemic metabolism. Although GIP was the first incretin hormone to be discovered, the understanding of GIP's biology was quickly outpaced by research focusing on the other incretin hormone, glucagon-like peptide 1 (GLP-1). Early work on GIP produced the theory that GIP is obesogenic, limiting interest in developing GIPR agonists to treat type 2 diabetes. A resurgence of GIP research has occurred in the last five years, reinvigorating interest in this peptide. Two independent approaches have emerged for treating obesity, one promoting GIPR agonism and the other antagonism. In this report, evidence supporting both cases is discussed and hypotheses are presented to reconcile this apparent paradox. SCOPE OF THE REVIEW This review presents evidence to support targeting GIPR to reduce obesity. Most of the focus is on the effect of singly targeting the GIPR using both a gain- and loss-of-function approach, with additional sections that discuss co-targeting of the GIPR and GLP-1R. MAJOR CONCLUSIONS There is substantial evidence to support that GIPR agonism and antagonism can positively impact body weight. The long-standing theory that GIP drives weight gain is exclusively derived from loss-of-function studies, with no evidence to support that GIPR agonisms increases adiposity or body weight. There is insufficient evidence to reconcile the paradoxical observations that both GIPR agonism and antagonism can reduce body weight; however, two independent hypotheses centered on GIPR antagonism are presented based on new data in an effort to address this question. The first discusses the compensatory relationship between incretin receptors and how antagonism of the GIPR may enhance GLP-1R activity. The second discusses how chronic GIPR agonism may produce desensitization and ultimately loss of GIPR activity that mimics antagonism. Overall, it is clear that a deeper understanding of GIP biology is required to understand how modulating this system impacts metabolic homeostasis.
Collapse
Affiliation(s)
- Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
37
|
Deacon CF. Dipeptidyl peptidase 4 inhibitors in the treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 2020; 16:642-653. [PMID: 32929230 DOI: 10.1038/s41574-020-0399-8] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2020] [Indexed: 12/17/2022]
Abstract
Dipeptidyl peptidase 4 inhibitors (DPP4i) have been available for treating type 2 diabetes mellitus since 2006. Although they are a diverse group, DPP4i are all small, orally available molecules that interact with the catalytic site of DPP4 without disturbing any of its other known functions, including its effects on the immune system. DPP4i have no intrinsic glucose-lowering activity, so their efficacy as anti-diabetic agents is related directly to their ability to inhibit DPP4 activity and is mediated through the effects of the substrates they protect. Of these, the incretin hormone, glucagon-like peptide 1, is probably the most important. As the effects of glucagon-like peptide 1 are glucose-dependent, the risk of hypoglycaemia with DPP4i is low. Class effects, which are directly related to the mechanism of action, are common to all DPP4i; these include their overall good safety profile and tolerability, as well as their efficacy in improving glycaemic control, but also, potentially, a small increased risk of acute pancreatitis. Compound-specific effects are those related to their differing chemistries and/or pharmacokinetic profiles. These compound-specific effects could affect the way in which individual DPP4i are used therapeutically and potentially explain off-target adverse effects, such as hospitalization for heart failure, which is seen only with one DPP4i. Overall, DPP4i have a favourable therapeutic profile and are safe and effective in the majority of patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Carolyn F Deacon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
38
|
Helsted MM, Gasbjerg LS, Lanng AR, Bergmann NC, Stensen S, Hartmann B, Christensen MB, Holst JJ, Vilsbøll T, Rosenkilde MM, Knop FK. The role of endogenous GIP and GLP-1 in postprandial bone homeostasis. Bone 2020; 140:115553. [PMID: 32730920 DOI: 10.1016/j.bone.2020.115553] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/24/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023]
Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are well known for their insulinotropic effects and they are thought to affect bone homeostasis as mediators in the so-called entero-osseous axis. We examined the contributions of endogenous GIP and GLP-1, respectively, to postprandial bone homeostasis, in healthy subjects in two randomized and double-blind crossover studies. We included healthy men who received either four oral glucose tolerance tests (OGTTs) (n = 18, median age 27 (range 20-70), BMI 27.2 (22.4-37.0) kg/m2) or liquid mixed meal tests (MMTs) (n = 12, age 23 (19-65), BMI 23.7 (20.3-25.5) kg/m2) with infusions of 1) the GIP receptor antagonist GIP(3-30)NH2, 2) the GLP-1 receptor antagonist exendin(9-39)NH2, 3) both GIP(3-30)NH2 and exendin(9-39)NH2, or 4) placebo infusions (saline) on four separate visits. Bone resorption was evaluated from levels of circulating carboxy-terminal collagen crosslinks (CTX) and bone formation from levels of procollagen type 1 amino-terminal propeptide (P1NP). During placebo infusions, baseline-subtracted area under the curve values for CTX were -39 ± 5.0 (OGTT) and -57 ± 4.3 ng/ml × min (MMT). When GIP(3-30)NH2 was administered, CTX suppression was significantly diminished compared to placebo (-30 ± 4.8 (OGTT) and -45 ± 4.6 ng/ml × min (MMT), P = 0.0104 and P = 0.0288, respectively, compared to placebo. During exendin(9-39)NH2 infusion, CTX suppression after OGTT/MMT was similar to placebo (P = 0.28 (OGTT) and P = 0.93 (MMT)). The relative contribution of endogenous GIP to postprandial suppression of bone resorption during both OGTT and MMT was similar and reached 22-25%. There were no differences in P1NP concentrations between interventions. In conclusion, endogenous GIP contributes by up to 25% to postprandial suppression of bone resorption in humans whereas an effect of endogenous GLP-1 could not be demonstrated.
Collapse
Affiliation(s)
- Mads M Helsted
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amalie R Lanng
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Natasha C Bergmann
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark.
| |
Collapse
|
39
|
Lynggaard MB, Gasbjerg LS, Christensen MB, Knop FK. GIP(3-30)NH 2 - a tool for the study of GIP physiology. Curr Opin Pharmacol 2020; 55:31-40. [PMID: 33053504 DOI: 10.1016/j.coph.2020.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 12/25/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is a gut hormone impacting glucose, lipid and bone metabolism through the GIP receptor (GIPR). The GIP system has key species differences complicating the translation of findings from rodent to human physiology. Furthermore, the effects of endogenous GIP in humans have been difficult to tease out due to the lack of a suitable GIPR antagonist. The naturally occurring GIP(3-30)NH2 has turned out to constitute a safe and efficacious GIPR antagonist for rodent and human use. To study GIP physiology, it is recommended to use the species-specific GIP(3-30)NH2 peptide sequence, and for human intravenous infusions, an antagonist:agonist ratio of a minimum of 600 with a 20min infusion time before the intervention of interest is recommended. Several studies using GIP(3-30)NH2 are coming, hopefully providing new insights into the physiology of GIP, the pathophysiologic involvement of GIP in several diseases and the therapeutic potential of the GIPR.
Collapse
Affiliation(s)
- Mads Bank Lynggaard
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Lærke Smidt Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Bring Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Filip Krag Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
40
|
Killion EA, Chen M, Falsey JR, Sivits G, Hager T, Atangan L, Helmering J, Lee J, Li H, Wu B, Cheng Y, Véniant MM, Lloyd DJ. Chronic glucose-dependent insulinotropic polypeptide receptor (GIPR) agonism desensitizes adipocyte GIPR activity mimicking functional GIPR antagonism. Nat Commun 2020; 11:4981. [PMID: 33020469 PMCID: PMC7536395 DOI: 10.1038/s41467-020-18751-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/09/2020] [Indexed: 12/30/2022] Open
Abstract
Antagonism or agonism of the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) prevents weight gain and leads to dramatic weight loss in combination with glucagon-like peptide-1 receptor agonists in preclinical models. Based on the genetic evidence supporting GIPR antagonism, we previously developed a mouse anti-murine GIPR antibody (muGIPR-Ab) that protected diet-induced obese (DIO) mice against body weight gain and improved multiple metabolic parameters. This work reconciles the similar preclinical body weight effects of GIPR antagonists and agonists in vivo, and here we show that chronic GIPR agonism desensitizes GIPR activity in primary adipocytes, both differentiated in vitro and adipose tissue in vivo, and functions like a GIPR antagonist. Additionally, GIPR activity in adipocytes is partially responsible for muGIPR-Ab to prevent weight gain in DIO mice, demonstrating a role of adipocyte GIPR in the regulation of adiposity in vivo.
Collapse
Affiliation(s)
- Elizabeth A Killion
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Michelle Chen
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - James R Falsey
- Amgen Research, Department of Selection and Modality Engineering, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Glenn Sivits
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Todd Hager
- Amgen Research, Department of Translational Safety & Bioanalytical Sciences, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Larissa Atangan
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Joan Helmering
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Jae Lee
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Hongyan Li
- Amgen Research, Department of Translational Safety & Bioanalytical Sciences, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Bin Wu
- Amgen Research, Department of Selection and Modality Engineering, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Yuan Cheng
- Amgen Research, Department of Selection and Modality Engineering, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Murielle M Véniant
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - David J Lloyd
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA.
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Obesity affects over than 600 million adults worldwide resulting in multi-organ complications and major socioeconomic impact. The purpose of this review is to summarise the physiological effects as well as the therapeutic implications of the gut hormones glucagon-like peptide-1 (GLP-1), oxyntomodulin, peptide YY (PYY), and glucose-dependent insulinotropic peptide (GIP) in the treatment of obesity and type 2 diabetes. RECENT FINDINGS Clinical trials have proven that the widely used GLP-1 analogues have pleotropic effects beyond those on weight and glucose metabolism and appear to confer favourable cardiovascular and renal outcomes. However, GLP-1 analogues alone do not deliver sufficient efficacy for the treatment of obesity, being limited by their dose-dependent gastrointestinal side effects. Novel dual agonists for GLP-1/glucagon and GLP-1/GIP are being developed by the pharmaceutical industry and have demonstrated some promising results for weight loss and improvement in glycaemia over and above GLP-1 analogues. Triagonists (for example GLP-1/GIP/glucagon) are currently in pre-clinical or early clinical development. Gastrointestinal hormones possess complementary effects on appetite, energy expenditure, and glucose metabolism. We highlight the idea that combinations of these hormones may represent the way forward in obesity and diabetes therapeutics.
Collapse
Affiliation(s)
- Kleopatra Alexiadou
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
42
|
Marathe CS, Pham H, Marathe JA, Trahair LG, Huynh L, Wu T, Phillips LK, Rayner CK, Nauck MA, Horowitz M, Jones KL. The relationship between plasma GIP and GLP-1 levels in individuals with normal and impaired glucose tolerance. Acta Diabetol 2020; 57:583-587. [PMID: 31848710 DOI: 10.1007/s00592-019-01461-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
AIMS Glucose-dependent insulinotropic polypeptide (GIP) is released primarily from the proximal small intestine and glucagon-like peptide-1 (GLP-1) from the more distal small intestine and colon. Their relative importance to the incretin effect in health has been contentious in the past, although it now appears that GIP has the dominant role. It is uncertain whether there is a relationship between GIP and GLP-1 secretion. We aimed to evaluate the relationship between plasma GIP and GLP-1 responses to a 75-g oral glucose load in individuals with normal (NGT) and impaired glucose tolerance (IGT). METHODS One hundred healthy subjects had measurements of blood glucose, serum insulin, plasma GIP and GLP-1 concentrations for 240 min after a 300 mL drink containing 75 g glucose. RESULTS Fifty had NGT and 41 IGT; 9 had type 2 diabetes and were excluded from analysis. In both groups, there were increases in plasma GIP and GLP-1 following the glucose drink, with no difference in the magnitude of the responses between t = 0-240 min. There was a weak relationship between the iAUC0-240 min for GIP and GLP-1 in the combined (r = 0.23, P = 0.015) and in the IGT (r = 0.34, P = 0.01), but not in the NGT (r = 0.15, P = 0.14) group. CONCLUSIONS There is a weak relationship between oral glucose-induced GIP and GLP-1 secretions in non-diabetic subjects.
Collapse
Affiliation(s)
- Chinmay S Marathe
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Level 5 Adelaide Health and Medical Sciences Building, Cnr North Tce and George St, Adelaide, SA, 5005, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, 5005, Australia
| | - Hung Pham
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Level 5 Adelaide Health and Medical Sciences Building, Cnr North Tce and George St, Adelaide, SA, 5005, Australia
| | - Jessica A Marathe
- Department of Cardiology, Royal Adelaide Hospital, Adelaide, SA, 5005, Australia
| | - Laurence G Trahair
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Level 5 Adelaide Health and Medical Sciences Building, Cnr North Tce and George St, Adelaide, SA, 5005, Australia
| | - Lian Huynh
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Level 5 Adelaide Health and Medical Sciences Building, Cnr North Tce and George St, Adelaide, SA, 5005, Australia
| | - Tongzhi Wu
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Level 5 Adelaide Health and Medical Sciences Building, Cnr North Tce and George St, Adelaide, SA, 5005, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, 5005, Australia
| | - Liza K Phillips
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Level 5 Adelaide Health and Medical Sciences Building, Cnr North Tce and George St, Adelaide, SA, 5005, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, 5005, Australia
| | - Christopher K Rayner
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Level 5 Adelaide Health and Medical Sciences Building, Cnr North Tce and George St, Adelaide, SA, 5005, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5005, Australia
| | - Michael A Nauck
- Diabetes Center Bochum-Hattingen, St. Josef-Hospital, 44791, Bochum, Germany
| | - Michael Horowitz
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Level 5 Adelaide Health and Medical Sciences Building, Cnr North Tce and George St, Adelaide, SA, 5005, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, 5005, Australia
| | - Karen L Jones
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Level 5 Adelaide Health and Medical Sciences Building, Cnr North Tce and George St, Adelaide, SA, 5005, Australia.
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, 5005, Australia.
| |
Collapse
|
43
|
Gasbjerg LS, Helsted MM, Hartmann B, Sparre-Ulrich AH, Veedfald S, Stensen S, Lanng AR, Bergmann NC, Christensen MB, Vilsbøll T, Holst JJ, Rosenkilde MM, Knop FK. GIP and GLP-1 Receptor Antagonism During a Meal in Healthy Individuals. J Clin Endocrinol Metab 2020; 105:5741259. [PMID: 32077470 DOI: 10.1210/clinem/dgz175] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
CONTEXT The actions of both endogenous incretin hormones during a meal have not previously been characterized. OBJECTIVE Using specific receptor antagonists, we investigated the individual and combined contributions of endogenous glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) to postprandial glucose metabolism, energy expenditure, and gallbladder motility. DESIGN Randomized, double-blinded, placebo-controlled, crossover design. SETTING On four separate days, four liquid mixed meal tests (1894 kJ) over 270 minutes (min). PATIENTS OR OTHER PARTICIPANTS Twelve healthy male volunteers. INTERVENTIONS Infusions of the GIP receptor antagonist GIP(3-30)NH2 (800 pmol/kg/min), the GLP-1 receptor antagonist exendin(9-39)NH2 (0-20 min: 1000 pmol/kg/min; 20-270 min: 450 pmol/kg/min), GIP(3-30)NH2+exendin(9-39)NH2, or placebo/saline. MAIN OUTCOME MEASURE Baseline-subtracted area under the curve (bsAUC) of C-peptide. RESULTS Infusion of GIP(3-30)NH2+exendin(9-39)NH2 significantly increased plasma glucose excursions (bsAUC: 261 ± 142 mmol/L × min) during the liquid mixed meals compared with GIP(3-30)NH2 (180 ± 141 mmol/L × min; P = 0.048), exendin(9-39)NH2 (171 ± 114 mmol/L × min; P = 0.046), and placebo (116 ± 154 mmol/L × min; P = 0.015). Correspondingly, C-peptide:glucose ratios during GIP(3-30)NH2+exendin(9-39)NH2 infusion were significantly lower than during GIP(3-30)NH2 (P = 0.0057), exendin(9-39)NH2 (P = 0.0038), and placebo infusion (P = 0.014). GIP(3-30)NH2 resulted in significantly lower AUCs for glucagon than exendin(9-39)NH2 (P = 0.0417). Gallbladder ejection fraction was higher during GIP(3-30)NH2 compared with placebo (P = 0.004). For all interventions, energy expenditure and respiratory quotient were similar. CONCLUSIONS Endogenous GIP and GLP-1 lower postprandial plasma glucose excursions and stimulate insulin secretion but only endogenous GIP affects gallbladder motility. The two incretin hormones potentiate each other's effects in the control of postprandial glycemia in healthy men.
Collapse
Affiliation(s)
- Lærke S Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Mads M Helsted
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alexander H Sparre-Ulrich
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Antag Therapeutics ApS, Copenhagen, Denmark
| | - Simon Veedfald
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Amalie R Lanng
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Natasha C Bergmann
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Zealand Pharma A/S, Søborg, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Hellerup, Denmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Hellerup, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Hellerup, Denmark
| |
Collapse
|
44
|
Holst JJ, Rosenkilde MM. Recent advances of GIP and future horizons. Peptides 2020; 125:170230. [PMID: 31838219 DOI: 10.1016/j.peptides.2019.170230] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
Recently GIP-GLP-1 co-agonists with powerful effects on glycemic control and body weight in patients with type 2 diabetes have been described. While such effects are the expected ones from a glucagonlike peptide-1 receptor agonist, similar contributions from the GIP component of the co-agonist would be surprising and contrast to the existing literature. Conventionally, GIP is thought of as an important incretin hormone regulating postprandial insulin secretion in glucose tolerant individuals, but such effects are weak or absent in patients with type 2 diabetes, and GIP has been proposed to an obesity-promoting hormone, rather than the opposite. Recent studies with a GIP receptor antagonist suitable for human studies have confirmed these concepts regarding the actions of endogenous GIP and point to potential beneficial metabolic effects of GIP receptor antagonists rather than agonist in the treatment of obesity and type 2 diabetes. So how is it possible that apparently similar results can be obtained with GIP receptor agonists and antagonists? Maybe the explanation should be sought in GIP receptor dynamics, where the agonists clearly elicit beta-arrestin mediated receptor internalization, rendering the target tissues unresponsive, whereas antagonists block the internalization and increase receptor expression on the cell surfaces. This may explain that both antagonists and agonists show efficacy in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health Sciences, The Panum Institute, University of Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health Sciences, The Panum Institute, University of Copenhagen, Denmark.
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health Sciences, The Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
45
|
Alexiadou K, Cuenco J, Howard J, Wewer Albrechtsen NJ, Ilesanmi I, Kamocka A, Tharakan G, Behary P, Bech PR, Ahmed AR, Purkayastha S, Wheller R, Fleuret M, Holst JJ, Bloom SR, Khoo B, Tan TMM. Proglucagon peptide secretion profiles in type 2 diabetes before and after bariatric surgery: 1-year prospective study. BMJ Open Diabetes Res Care 2020; 8:8/1/e001076. [PMID: 32209584 PMCID: PMC7103850 DOI: 10.1136/bmjdrc-2019-001076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/20/2020] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Hyperglucagonemia is a key pathophysiological driver of type 2 diabetes. Although Roux-en-Y gastric bypass (RYGB) is a highly effective treatment for diabetes, it is presently unclear how surgery alters glucagon physiology. The aim of this study was to characterize the behavior of proglucagon-derived peptide (glucagon, glucagon-like peptide-1 (GLP-1), oxyntomodulin, glicentin) secretion after RYGB surgery. RESEARCH DESIGN AND METHODS Prospective study of 19 patients with obesity and pre-diabetes/diabetes undergoing RYGB. We assessed the glucose, insulin, GLP-1, glucose-dependent insulinotropic peptide (GIP), oxyntomodulin, glicentin and glucagon responses to a mixed-meal test (MMT) before and 1, 3 and 12 months after surgery. Glucagon was measured using a Mercodia glucagon ELISA using the 'Alternative' improved specificity protocol, which was validated against a reference liquid chromatography combined with mass spectrometry method. RESULTS After RYGB, there were early improvements in fasting glucose and glucose tolerance and the insulin response to MMT was accelerated and amplified, in parallel to significant increases in postprandial GLP-1, oxyntomodulin and glicentin secretion. There was a significant decrease in fasting glucagon levels at the later time points of 3 and 12 months after surgery. Glucagon was secreted in response to the MMT preoperatively and postoperatively in all patients and there was no significant change in this postprandial secretion. There was no significant change in GIP secretion. CONCLUSIONS There is a clear difference in the dynamics of secretion of proglucagon peptides after RYGB. The reduction in fasting glucagon secretion may be one of the mechanisms driving later improvements in glycemia after RYGB. TRIAL REGISTRATION NUMBER NCT01945840.
Collapse
Affiliation(s)
- Kleopatra Alexiadou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Joyceline Cuenco
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - James Howard
- Drug Development Solutions, LGC Bioscience, Fordham, Cambridgeshire, UK
| | - Nicolai Jacob Wewer Albrechtsen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- NNF Center for Protein Research, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Ibiyemi Ilesanmi
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Anna Kamocka
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - George Tharakan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Preeshila Behary
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Paul R Bech
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ahmed R Ahmed
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | | - Robert Wheller
- Drug Development Solutions, LGC Bioscience, Fordham, Cambridgeshire, UK
| | - Matthieu Fleuret
- Drug Development Solutions, LGC Bioscience, Fordham, Cambridgeshire, UK
| | - Jens Juul Holst
- Department of Biomedical Sciences and the NNF Center for Basic Metabolic Research, University of Copenhagen Panum Institute, Copenhagen, Denmark
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Bernard Khoo
- Division of Medicine, University College London, London, UK
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
46
|
Gasbjerg LS, Bergmann NC, Stensen S, Christensen MB, Rosenkilde MM, Holst JJ, Nauck M, Knop FK. Evaluation of the incretin effect in humans using GIP and GLP-1 receptor antagonists. Peptides 2020; 125:170183. [PMID: 31693916 DOI: 10.1016/j.peptides.2019.170183] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) potentiate glucose-induced insulin secretion and are therefore thought to be responsible for the incretin effect. The magnitude of the incretin effect, defined as the fraction of postprandial insulin secretion stimulated by intestinal factors, has been reported to be up to ∼60% in healthy individuals. In several pathological conditions but especially in patients with type 2 diabetes, the incretin effect is severely reduced or even absent. In line with this, the insulinotropic effects of GIP and GLP-1 are impaired in patients with type 2 diabetes, even when administered in supraphysiological doses. In healthy individuals, GIP has been proposed to be the most important incretin hormone of the two, but the individual contribution of the two is difficult to determine. However, using incretin hormone receptor antagonists: the novel GIP receptor antagonist GIP(3-30)NH2 and the widely used GLP-1 receptor antagonist exendin(9-39)NH2, we can now distinguish between the effects of the two hormones. In this review, we present and discuss studies in which the individual contribution of GIP and GLP-1 to the incretin effect in healthy individuals have been estimated and discuss the limitations of using incretin hormone receptor antagonists.
Collapse
Affiliation(s)
- Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Natasha C Bergmann
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nauck
- Diabetes Division, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
47
|
Thondam SK, Cuthbertson DJ, Wilding JPH. The influence of Glucose-dependent Insulinotropic Polypeptide (GIP) on human adipose tissue and fat metabolism: Implications for obesity, type 2 diabetes and Non-Alcoholic Fatty Liver Disease (NAFLD). Peptides 2020; 125:170208. [PMID: 31759125 DOI: 10.1016/j.peptides.2019.170208] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon like peptide (GLP-1) are the two incretin hormones secreted by the enteroendocrine system in response to nutrient ingestion. Compared with GLP-1, GIP is less well studied as a hormone or as a potential pharmacological treatment. Beyond its insulinotropic effects in the pancreas, GIP has important biological actions in many other tissues but its role in dietary fat metabolism and lipid storage in adipose tissue has been most studied. It is still unclear if such effects of GIP on adipose tissue/fat metabolism are protective or deleterious in the long term. Antagonising GIP actions through genetic and chemical disruption in mice models prevented diet induced obesity and improved insulin sensitivity. Whilst such effects of GIP antagonism are yet to be evaluated in humans, recent studies using combined GIP and GLP-1 agonists have shown weight reduction and improved glycaemic control in people with type 2 diabetes (T2D). Therapeutic manipulation of GIP physiology is intriguing in that both agonists and antagonists of GIP are being investigated to explore their potential weight-reducing and other metabolic benefits in people with obesity, T2D and non-alcoholic fatty liver disease (NAFLD). This review will discuss the physiological effects of GIP on fat metabolism in human adipose and other non-adipose tissues such as liver, pancreas, skeletal muscle and heart, describe where the actions of GIP may contribute to the pathophysiology of obesity, T2D and NAFLD and finally describe the therapeutic implications of GIP antagonism and agonism in these conditions.
Collapse
Affiliation(s)
- Sravan K Thondam
- Department of Diabetes and Endocrinology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Daniel J Cuthbertson
- Department of Diabetes and Endocrinology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom; Obesity and Endocrinology Research Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - John P H Wilding
- Department of Diabetes and Endocrinology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom; Obesity and Endocrinology Research Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
48
|
Bailey CJ. GIP analogues and the treatment of obesity-diabetes. Peptides 2020; 125:170202. [PMID: 31756366 DOI: 10.1016/j.peptides.2019.170202] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022]
Abstract
The potential application of glucose-dependent insulinotropic polypeptide (gastric inhibitory polypeptide, GIP) in the management of obesity and type 2 diabetes has been controversial. Initial interest in the therapeutic use of GIP was dampened by evidence that its insulinotropic activity was reduced in type 2 diabetes and by reports that it increased glucagon secretion and adipose deposition in non-diabetic individuals. Also, attention was diverted away from GIP by the successful development of glucagon-like peptide-1 (GLP-1) receptor agonists, and a therapeutic strategy for GIP became uncertain when evidence emerged that both inhibition and enhancement of GIP action could prevent or reverse obese non-insulin dependent forms of diabetes in rodents. Species differences in GIP receptor responsiveness complicated the extrapolation of evidence from rodents to humans, but initial clinical studies are investigating the effect of a GIP antagonist in non-diabetic individuals. A therapeutic role for GIP agonists was reconsidered when clinical studies noted that the insulinotropic effect of GIP was increased if near-normal glycaemia was re-established, and GIP was found to have little effect on glucagon secretion or adipose deposition in obese type 2 diabetes patients. This encouraged the development of designer peptides that act as GIP receptor agonists, including chimeric peptides that mimic the incretin partnership of GIP with GLP-1, where the two agents exert complementary and often additive effects to improve glycaemic control and facilitate weight loss. Polyagonist peptides that exert agonism at GIP, GLP-1 and glucagon receptors are also under investigation as potential treatments for obese type 2 diabetes.
Collapse
Affiliation(s)
- Clifford J Bailey
- School of Life and Health Sciences, Aston University, B4 7ET, Birmingham, UK.
| |
Collapse
|
49
|
Irwin N, Gault VA, O'Harte FPM, Flatt PR. Blockade of gastric inhibitory polypeptide (GIP) action as a novel means of countering insulin resistance in the treatment of obesity-diabetes. Peptides 2020; 125:170203. [PMID: 31733230 DOI: 10.1016/j.peptides.2019.170203] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/21/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022]
Abstract
Gastric inhibitory polypeptide (GIP) is a 42 amino acid hormone secreted from intestinal K-cells in response to nutrient ingestion. Despite a recognised physiological role for GIP as an insulin secretagogue to control postprandial blood glucose levels, growing evidence reveals important actions of GIP on adipocytes and promotion of fat deposition in tissues. As such, blockade of GIP receptor (GIPR) action has been proposed as a means to counter insulin resistance, and improve metabolic status in obesity and related diabetes. In agreement with this, numerous independent observations in animal models support important therapeutic applications of GIPR antagonists in obesity-diabetes. Sustained administration of peptide-based GIPR inhibitors, low molecular weight GIPR antagonists, GIPR neutralising antibodies as well as genetic knockout of GIPR's or vaccination against GIP all demonstrate amelioration of insulin resistance and reduced body weight gain in response to high fat feeding. These observations were consistently associated with decreased accumulation of lipids in peripheral tissues, thereby alleviating insulin resistance. Although the impact of prolonged GIPR inhibition on bone turnover still needs to be determined, evidence to date indicates that GIPR antagonists represent an exciting novel treatment option for obesity-diabetes.
Collapse
Affiliation(s)
- Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK.
| | - Victor A Gault
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Finbarr P M O'Harte
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| |
Collapse
|
50
|
Deacon CF. Metabolism of GIP and the contribution of GIP to the glucose-lowering properties of DPP-4 inhibitors. Peptides 2020; 125:170196. [PMID: 31706956 DOI: 10.1016/j.peptides.2019.170196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 01/26/2023]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone with insulinotropic and glucagonotropic actions, and is believed to be the more physiologically important incretin hormone in healthy humans. Together with the other incretin hormone, glucagon-like peptide-1 (GLP-1), it plays an important role in regulating glucose homeostasis. Both GLP-1 and GIP are substrates of the enzyme dipeptidyl peptidase-4 (DPP-4), and DPP-4 inhibitors, which potentiate their effects on glycaemic control, are now used to treat type 2 diabetes (T2D). This review describes how post-translational processing of the GIP precursor molecule and post-release degradation of the secretory products give rise to multiple isoforms of GIP, some, but not all of which are biologically active, and discusses how this impacts upon their measurement by immunological- and bioassay-based methods. DPP-4 inhibitors reduce degradation of GIP, and although the insulinotropic effects of GIP are impaired in patients with T2D, they can be at least partially restored if glycaemic control is improved. Therefore, given that studies with incretin receptor antagonists indicate that not all of the glucose-lowering effects of DPP-4 inhibition can be accounted for by GLP-1 alone, evidence supports the notion that GIP may play a role in mediating the anti-hyperglycaemic effects of DPP-4 inhibition, while its glucagonotropic actions at lower glucose levels may contribute to the low risk of hypoglycaemia associated with DPP-4 inhibitors.
Collapse
Affiliation(s)
- Carolyn F Deacon
- Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|