1
|
Yates JR. Aberrant glutamatergic systems underlying impulsive behaviors: Insights from clinical and preclinical research. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111107. [PMID: 39098647 PMCID: PMC11409449 DOI: 10.1016/j.pnpbp.2024.111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Impulsivity is a broad construct that often refers to one of several distinct behaviors and can be measured with self-report questionnaires and behavioral paradigms. Several psychiatric conditions are characterized by one or more forms of impulsive behavior, most notably the impulsive/hyperactive subtype of attention-deficit/hyperactivity disorder (ADHD), mood disorders, and substance use disorders. Monoaminergic neurotransmitters are known to mediate impulsive behaviors and are implicated in various psychiatric conditions. However, growing evidence suggests that glutamate, the major excitatory neurotransmitter of the mammalian brain, regulates important functions that become dysregulated in conditions like ADHD. The purpose of the current review is to discuss clinical and preclinical evidence linking glutamate to separate aspects of impulsivity, specifically motor impulsivity, impulsive choice, and affective impulsivity. Hyperactive glutamatergic activity in the corticostriatal and the cerebro-cerebellar pathways are major determinants of motor impulsivity. Conversely, hypoactive glutamatergic activity in frontal cortical areas and hippocampus and hyperactive glutamatergic activity in anterior cingulate cortex and nucleus accumbens mediate impulsive choice. Affective impulsivity is controlled by similar glutamatergic dysfunction observed for motor impulsivity, except a hyperactive limbic system is also involved. Loss of glutamate homeostasis in prefrontal and nucleus accumbens may contribute to motor impulsivity/affective impulsivity and impulsive choice, respectively. These results are important as they can lead to novel treatments for those with a condition characterized by increased impulsivity that are resistant to conventional treatments.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA.
| |
Collapse
|
2
|
Turan Ç, Şenormancı G, Neşelioğlu S, Budak Y, Erel Ö, Şenormancı Ö. Oxidative Stress and Inflammatory Biomarkers in People with Methamphetamine Use Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:572-582. [PMID: 37424424 PMCID: PMC10335902 DOI: 10.9758/cpn.22.1047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 07/11/2023]
Abstract
Objective This study aimed to investigate the blood serum levels of biomarkers specifying oxidative stress status and systemic inflammation between people using methamphetamine (METH) and the control group (CG). Serum thiol/disulfide balance and ischemia-modified albumin levels were studied to determine oxidative stress, and serum interleukin-6 (IL-6) levels and complete blood count (CBC) were to assess inflammation. Methods Fifty patients with METH use disorder (MUD) and 36 CG participants were included in the study. Two tubes of venous blood samples were taken to measure oxidative stress, serum thiol/disulfide balance, ischemia-modified albumin, and IL-6 levels between groups. The correlation of parameters measuring oxidative stress and inflammation between groups with sociodemographic data was investigated. Results In this study, serum total thiol, free thiol levels, disulfide/native thiol percentage ratios, and serum ischemia- modified albumin levels of the patients were statistically significantly higher than the healthy controls. No difference was observed between the groups in serum disulfide levels and serum IL-6 levels. Considering the regression analysis, only the duration of substance use was a statistically significant factor in explaining serum IL-6 levels. The parameters showing inflammation in the CBC were significantly higher in the patients than in the CG. Conclusion CBC can be used to evaluate systemic inflammation in patients with MUD. Parameters measuring thiol/disulfide homeostasis and ischemia-modified albumin can be, also, used to assess oxidative stress.
Collapse
Affiliation(s)
- Çetin Turan
- Department of Psychiatry, University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Güliz Şenormancı
- Department of Psychiatry, University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Salim Neşelioğlu
- Clinic of Clinical Biochemistry, Yıldırım Beyazıt University, Ankara City Hospital, Ankara, Turkey
| | - Yasemin Budak
- Department of Biochemistry, University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Özcan Erel
- Clinic of Clinical Biochemistry, Yıldırım Beyazıt University, Ankara City Hospital, Ankara, Turkey
| | - Ömer Şenormancı
- Department of Clinical Psychology, University of Beykent, Istanbul, Turkey
| |
Collapse
|
3
|
Hámor PU, Knackstedt LA, Schwendt M. The role of metabotropic glutamate receptors in neurobehavioral effects associated with methamphetamine use. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:177-219. [PMID: 36868629 DOI: 10.1016/bs.irn.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are expressed throughout the central nervous system and act as important regulators of drug-induced neuroplasticity and behavior. Preclinical research suggests that mGlu receptors play a critical role in a spectrum of neural and behavioral consequences arising from methamphetamine (meth) exposure. However, an overview of mGlu-dependent mechanisms linked to neurochemical, synaptic, and behavioral changes produced by meth has been lacking. This chapter provides a comprehensive review of the role of mGlu receptor subtypes (mGlu1-8) in meth-induced neural effects, such as neurotoxicity, as well as meth-associated behaviors, such as psychomotor activation, reward, reinforcement, and meth-seeking. Additionally, evidence linking altered mGlu receptor function to post-meth learning and cognitive deficits is critically evaluated. The chapter also considers the role of receptor-receptor interactions involving mGlu receptors and other neurotransmitter receptors in meth-induced neural and behavioral changes. Taken together, the literature indicates that mGlu5 regulates the neurotoxic effects of meth by attenuating hyperthermia and possibly through altering meth-induced phosphorylation of the dopamine transporter. A cohesive body of work also shows that mGlu5 antagonism (and mGlu2/3 agonism) reduce meth-seeking, though some mGlu5-blocking drugs also attenuate food-seeking. Further, evidence suggests that mGlu5 plays an important role in extinction of meth-seeking behavior. In the context of a history of meth intake, mGlu5 also co-regulates aspects of episodic memory, with mGlu5 stimulation restoring impaired memory. Based on these findings, we propose several avenues for the development of novel pharmacotherapies for Methamphetamine Use Disorder based on the selective modulation mGlu receptor subtype activity.
Collapse
Affiliation(s)
- Peter U Hámor
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States; Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Lori A Knackstedt
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
| | - Marek Schwendt
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
4
|
Fischer KD, Knackstedt LA, Rosenberg PA. Glutamate homeostasis and dopamine signaling: Implications for psychostimulant addiction behavior. Neurochem Int 2021; 144:104896. [PMID: 33159978 PMCID: PMC8489281 DOI: 10.1016/j.neuint.2020.104896] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
Cocaine, amphetamine, and methamphetamine abuse disorders are serious worldwide health problems. To date, there are no FDA-approved medications for the treatment of these disorders. Elucidation of the biochemical underpinnings contributing to psychostimulant addiction is critical for the development of effective therapies. Excitatory signaling and glutamate homeostasis are well known pathophysiological substrates underlying addiction-related behaviors spanning multiple types of psychostimulants. To alleviate relapse behavior to psychostimulants, considerable interest has focused on GLT-1, the major glutamate transporter in the brain. While many brain regions are implicated in addiction behavior, this review focuses on two regions well known for their role in mediating the effects of cocaine and amphetamines, namely the nucleus accumbens (NAc) and the ventral tegmental area (VTA). In addition, because many investigators have utilized Cre-driver lines to selectively control gene expression in defined cell populations relevant for psychostimulant addiction, we discuss potential off-target effects of Cre-recombinase that should be considered in the design and interpretation of such experiments.
Collapse
Affiliation(s)
- Kathryn D Fischer
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Lori A Knackstedt
- Psychology Department, University of Florida, Gainesville, FL, 32611, USA
| | - Paul A Rosenberg
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Oka M, Ito K, Koga M, Kusumi I. Changes in subunit composition of NMDA receptors in animal models of schizophrenia by repeated administration of methamphetamine. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:109984. [PMID: 32473191 DOI: 10.1016/j.pnpbp.2020.109984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 01/22/2023]
Abstract
The dopamine and glutamate hypotheses reflect only some of the pathophysiological changes associated with schizophrenia. We have proposed a new "comprehensive progressive pathophysiology model" based on the "dopamine to glutamate hypothesis." Repeated administration of methamphetamine (METH) at a dose of 2.5 mg/kg in rats has been used to assess dynamic changes in the pathophysiology of schizophrenia. Previous use of this model suggested N-methyl-d-aspartate receptor (NMDA-R) dysfunction, but the mechanism could only be inferred from limited, indirect observations. In the present study, we used this model to investigate changes in the expression of NMDA-R subunits. Repeated administration of METH significantly decreased the gene expression levels of glutamate ionotropic receptor NMDA type subunit (Grin) subtypes Grin1 and Grin2c in the prefrontal cortex (PFC), Grin1 and Grin2a in the hippocampus (HPC), and Grin1, Grin2b, and Grin2d in the striatum (ST).We observed a significant difference in Grin1 expression between the PFC and ST. Furthermore, repeated administration of METH significantly decreased the protein expression of GluN1 in both cytosolic and synaptosomal fractions isolated from the PFC, and significantly decreased the protein expression of GluN1 in the cytosolic fraction, but not the synaptosomal fraction from the ST. These regional differences may be due to variations in the synthesis of GluN1 or intracellular trafficking events in each area of the brain. Considering that knockdown of Grin1 in mice affects vulnerability to develop schizophrenia, these results suggest that this model reflects some of the pathophysiological changes of schizophrenia, combining both the dopamine and glutamate hypotheses.
Collapse
Affiliation(s)
- Matsuhiko Oka
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, West 7, North 15, Kita Ward, Sapporo City, Hokkaido 060-8638, JAPAN.
| | - Koki Ito
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, West 7, North 15, Kita Ward, Sapporo City, Hokkaido 060-8638, JAPAN
| | - Minori Koga
- Department of Psychiatry, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama 359-8513, Japan.
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, West 7, North 15, Kita Ward, Sapporo City, Hokkaido 060-8638, JAPAN.
| |
Collapse
|
6
|
Ota M, Ogawa S, Kato K, Masuda C, Kunugi H. Striatal and extrastriatal dopamine release in the common marmoset brain measured by positron emission tomography and [(18)F]fallypride. Neurosci Res 2015; 101:1-5. [PMID: 26232153 DOI: 10.1016/j.neures.2015.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/14/2015] [Accepted: 07/17/2015] [Indexed: 01/03/2023]
Abstract
Previous studies have demonstrated that patients with schizophrenia show greater sensitivity to psychostimulants than healthy subjects. Sensitization to psychostimulants and resultant alteration of dopaminergic neurotransmission in rodents has been suggested as a useful model of schizophrenia. This study sought to examine the use of methylphenidate as a psychostimulant to induce dopamine release and that of [(18)F]fallypride as a radioligand to quantify the release in a primate model of schizophrenia. Four common marmosets were scanned by positron emission tomography twice, before and after methylphenidate challenge, to evaluate dopamine release. Four other marmosets were sensitized by repeated methamphetamine (MAP) administration. Then, they were scanned twice, before and after methylphenidate challenge, to evaluate whether MAP-sensitization induced greater sensitivity to methylphenidate. We revealed a main effect of the methylphenidate challenge but not the MAP pretreatment on the striatal binding potential. These results suggest that methylphenidate-induced striatal dopamine release in the common marmoset could be evaluated by [(18)F]fallypride.
Collapse
Affiliation(s)
- Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.
| | - Shintaro Ogawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.
| | - Koichi Kato
- Organic Radiochemistry Section, Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center Hospital of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.
| | - Chiaki Masuda
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
7
|
Ota M, Ogawa S, Kato K, Wakabayashi C, Kunugi H. Methamphetamine-sensitized rats show augmented dopamine release to methylphenidate stimulation: a positron emission tomography using [18F]fallypride. Psychiatry Res 2015; 232:92-7. [PMID: 25703679 DOI: 10.1016/j.pscychresns.2015.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 10/10/2014] [Accepted: 01/28/2015] [Indexed: 12/23/2022]
Abstract
Previous studies demonstrated that patients with schizophrenia show greater sensitivity to psychostimulants than healthy subjects. Sensitization to psychostimulants and resultant alteration of dopaminergic neurotransmission in rodents have been suggested as a useful model of schizophrenia. This study was aimed to examine the use of methylphenidate as a psychostimulant to induce dopamine release and that of [18F]fallypride as a radioligand to estimate the release in a rat model of schizophrenia. Six rats were scanned by positron emission tomography (PET) twice before and after methylphenidate challenge to evaluate dopamine release. After the scans, these rats were sensitized by using repeated methamphetamine (MAP) administration. Then, they were re-scanned twice again before and after methylphenidate challenge to evaluate whether MAP-sensitized rats show greater sensitivity to methylphenidate. We revealed a main effect of MAP-pretreatment and that of metylphenidate challenge. We found that % change of distribution volume ratio after repeated administration of MAP was greater than that before sensitization. These results suggest that methylphenidate-induced striatal dopamine release increased after sensitization to MAP. PET scan using [18F]fallypride at methylphenidate-challenge may provide a biological marker for schizophrenia and be useful to diagnose schizophrenia.
Collapse
Affiliation(s)
- Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry4-1-1 Ogawa-Higashi, KodairaTokyo187-8502, Japan.
| | - Shintaro Ogawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry4-1-1 Ogawa-Higashi, KodairaTokyo187-8502, Japan
| | - Koichi Kato
- Organic Radiochemistry Section, Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center Hospital of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Chisato Wakabayashi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry4-1-1 Ogawa-Higashi, KodairaTokyo187-8502, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry4-1-1 Ogawa-Higashi, KodairaTokyo187-8502, Japan
| |
Collapse
|
8
|
Salamanca SA, Sorrentino EE, Nosanchuk JD, Martinez LR. Impact of methamphetamine on infection and immunity. Front Neurosci 2015; 8:445. [PMID: 25628526 PMCID: PMC4290678 DOI: 10.3389/fnins.2014.00445] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/17/2014] [Indexed: 12/21/2022] Open
Abstract
The prevalence of methamphetamine (METH) use is estimated at ~35 million people worldwide, with over 10 million users in the United States. METH use elicits a myriad of social consequences and the behavioral impact of the drug is well understood. However, new information has recently emerged detailing the devastating effects of METH on host immunity, increasing the acquisition of diverse pathogens and exacerbating the severity of disease. These outcomes manifest as modifications in protective physical and chemical defenses, pro-inflammatory responses, and the induction of oxidative stress pathways. Through these processes, significant neurotoxicities arise, and, as such, chronic abusers with these conditions are at a higher risk for heightened consequences. METH use also influences the adaptive immune response, permitting the unrestrained development of opportunistic diseases. In this review, we discuss recent literature addressing the impact of METH on infection and immunity, and identify areas ripe for future investigation.
Collapse
Affiliation(s)
- Sergio A Salamanca
- Department of Biomedical Sciences, Long Island University-Post Brookville, NY, USA
| | - Edra E Sorrentino
- Department of Biomedical Sciences, Long Island University-Post Brookville, NY, USA
| | - Joshua D Nosanchuk
- Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY, USA ; Medicine (Division of Infectious Diseases), Albert Einstein College of Medicine Bronx, NY, USA
| | - Luis R Martinez
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology Old Westbury, NY, USA
| |
Collapse
|
9
|
Implication of NMDA receptors in behavioural sensitization to psychostimulants: A short review. Eur J Pharmacol 2014; 730:77-81. [DOI: 10.1016/j.ejphar.2014.02.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/13/2013] [Accepted: 02/12/2014] [Indexed: 12/22/2022]
|
10
|
Kitaichi Y, Hashimoto R, Inoue T, Abekawa T, Kakuta A, Hattori S, Koyama T. Abnormalities in extracellular glycine and glutamate levels in the striatum of sandy mice. Acta Neuropsychiatr 2013; 25:215-20. [PMID: 25287634 DOI: 10.1111/acn.12018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Glycine regulates glutamatergic neurotransmission, and several papers have reported the relationship between glycine and schizophrenia. The dysbindin-1 (DTNBP1: dystrobrevin-binding protein 1) gene is related to glutamatergic neurotransmission and has been found to be a strong candidate gene for schizophrenia. In this study, we clarified the relationship between dysbindin, glutamate, and glycine with in vivo microdialysis methods. METHODS We measured extracellular glycine and glutamate levels in the striatum of sandy (sdy) mice using in vivo microdialysis methods. Sdy mice express no dysbindin protein owing to a deletion in the dysbindin-1 gene. In addition, we measured changes in those amino acids after methamphetamine (METH) administration. RESULTS The basal levels of extracellular glycine and glutamate in the striatum of sdy mice were elevated. These extracellular glutamate levels decreased gradually after METH administration and were not subsequently different from those of wild-type mice. CONCLUSIONS These results suggest that dysbindin might modulate glycine and glutamate release in vivo.
Collapse
Affiliation(s)
- Yuji Kitaichi
- 1 Department of Psychiatry, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
| | - Ryota Hashimoto
- 2 Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Takeshi Inoue
- 1 Department of Psychiatry, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
| | - Tomohiro Abekawa
- 1 Department of Psychiatry, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
| | - Aya Kakuta
- 1 Department of Psychiatry, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
| | - Satoko Hattori
- 4 Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tsukasa Koyama
- 1 Department of Psychiatry, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
| |
Collapse
|
11
|
Watterson LR, Kufahl PR, Nemirovsky NE, Sewalia K, Hood LE, Olive MF. Attenuation of reinstatement of methamphetamine-, sucrose-, and food-seeking behavior in rats by fenobam, a metabotropic glutamate receptor 5 negative allosteric modulator. Psychopharmacology (Berl) 2013; 225:151-9. [PMID: 22820868 PMCID: PMC3742304 DOI: 10.1007/s00213-012-2804-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 07/04/2012] [Indexed: 12/22/2022]
Abstract
RATIONALE Methamphetamine (METH) is a highly potent and addictive psychostimulant with severe detrimental effects to the health of users. Currently, METH addiction is treated with a combination of cognitive and behavioral therapies, but these traditional approaches suffer from high relapse rates. Furthermore, there are currently no pharmacological treatment interventions approved by the FDA specifically for the treatment of METH addiction. OBJECTIVES Metabotropic glutamate receptor 5 (mGluR5) negative allosteric modulators (NAMs) have shown promise in significantly attenuating drug self-administration and drug-seeking in reinstatement paradigms. However, studies assessing the potential efficacy of mGluR5 NAMs that have been tested in human subjects are lacking. The current study sought to assess the effect of the mGluR5 NAM fenobam on METH-seeking behavior. METHODS Rats were trained to self-administer METH (0.05 mg/kg i.v.), and following extinction, tested for effects of fenobam (5, 10, or 15 mg/kg intraperitoneal) on cue- and drug-induced reinstatement of METH-seeking. To determine if fenobam also alters reinstatement of seeking of natural reinforcers, separate groups of rats were trained to self-administer sucrose or food pellets and were tested for the effects of fenobam on cue-induced reinstatement of sucrose- and food-seeking. RESULTS Fenobam attenuated drug- and cue-induced reinstatement of METH-seeking behavior at doses of 10 and 15 mg/kg. Fenobam also attenuated cue-induced reinstatement of sucrose- and food-seeking at all doses tested. CONCLUSIONS The mGluR5 NAM fenobam attenuates the reinstatement of METH-seeking behavior, but these effects may be due to nonspecific suppression of general appetitive behaviors.
Collapse
|
12
|
Abulseoud OA, Miller JD, Wu J, Choi DS, Holschneider DP. Ceftriaxone upregulates the glutamate transporter in medial prefrontal cortex and blocks reinstatement of methamphetamine seeking in a condition place preference paradigm. Brain Res 2012; 1456:14-21. [PMID: 22521042 PMCID: PMC3922613 DOI: 10.1016/j.brainres.2012.03.045] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/27/2012] [Accepted: 03/20/2012] [Indexed: 01/20/2023]
Abstract
Glutamate signaling plays an essential role in drug-seeking behavior. Using reinstatement of conditioned place preference (CPP), we determined whether ceftriaxone, a β-lactam antibiotic known to increase the expression and activity of the glutamate transporter (EAAT₂) on glial cells, blocks methamphetamine-triggered reinstatement of CPP. Rats acquired methamphetamine CPP following 7 consecutive days of conditioning, during which each animal received pairings of alternating morning methamphetamine (2.5 mg/kg, IP) and afternoon saline (IP). Animals showing CPP were successfully extinguished with repeated twice daily saline administration over a 7-day period. Ceftriaxone (200 mg/kg, IP) was administered (vs. saline) once a day for 7 days during the extinction period. Upon successful extinction, animals received a single dose of methamphetamine (2.5 mg/kg, IP) for reinstatement and were tested for CPP one day later. Using real time PCR, EAAT₂ mRNA levels in the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) were quantified in response to ceftriaxone. Ceftriaxone blocked methamphetamine-triggered reinstatement of CPP and significantly increased EAAT₂ mRNA levels in the mPFC, with a trend towards significance in the NAc. In conclusion, Ceftriaxone modulated the expression of the glutamate transporter in a critical region of the cortico-striatal addiction circuitry and attenuated drug-seeking behavior in rats. Further research is needed to test the efficacy of compounds targeting the EAAT₂ in human methamphetamine-dependent users.
Collapse
Affiliation(s)
- Osama A Abulseoud
- Department of Psychiatry and Behavioral Science, University of Southern California, Los Angeles, CA, USA.
| | | | | | | | | |
Collapse
|
13
|
Roenker NL, Gudelsky GA, Ahlbrand R, Horn PS, Richtand NM. Evidence for involvement of nitric oxide and GABA(B) receptors in MK-801- stimulated release of glutamate in rat prefrontal cortex. Neuropharmacology 2012; 63:575-81. [PMID: 22579658 DOI: 10.1016/j.neuropharm.2012.04.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 03/23/2012] [Accepted: 04/30/2012] [Indexed: 01/18/2023]
Abstract
Systemic administration of NMDA receptor antagonists elevates extracellular glutamate within prefrontal cortex. The cognitive and behavioral effects of NMDA receptor blockade have direct relevance to symptoms of schizophrenia, and recent studies demonstrate an important role for nitric oxide and GABA(B) receptors in mediating the effects of NMDA receptor blockade on these behaviors. We sought to extend those observations by directly measuring the effects of nitric oxide and GABA(B) receptor mechanisms on MK-801-induced glutamate release in the prefrontal cortex. Systemic MK-801 injection (0.3 mg/kg) to male Sprague-Dawley rats significantly increased extracellular glutamate levels in prefrontal cortex, as determined by microdialysis. This effect was blocked by pre-treatment with the nitric oxide synthase inhibitor L-NAME (60 mg/kg). Reverse dialysis of the nitric oxide donor SNAP (0.5-5 mM) directly into prefrontal cortex mimicked the effect of systemic MK-801, dose-dependently elevating cortical extracellular glutamate. The effect of MK-801 was also blocked by systemic treatment with the GABA(B) receptor agonist baclofen (5 mg/kg). In combination, these data suggest increased nitric oxide formation is necessary for NMDA antagonist-induced elevations of extracellular glutamate in the prefrontal cortex. Additionally, the data suggest GABA(B) receptor activation can modulate the NMDA antagonist-induced increase in cortical glutamate release.
Collapse
Affiliation(s)
- Nicole L Roenker
- James Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA.
| | | | | | | | | |
Collapse
|
14
|
Ma X, Shi TF, Zhang M, Lu XY, Yang CX, Zhu D, Shi DX, Yang Y, Wang CL, Zhang S, Xu MY. Modulatory role of glutamic acid on the electrical activities of pain-related neurons in the hippocampal CA3 region. Neurosci Lett 2012; 513:67-71. [PMID: 22343020 DOI: 10.1016/j.neulet.2012.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 02/02/2012] [Accepted: 02/02/2012] [Indexed: 10/14/2022]
Abstract
Glutamic acid (Glu) participates in pain modulation of the central nervous system. The CA3 region of the hippocampal formation has been suggested to be involved in nociceptive perception. However, it is unknown whether Glu could modulate the electrical activities of pain-related neurons in the hippocampal CA3 region. The present study aimed to determine the effects of Glu and its receptor antagonist MK-801 in the pain-evoked response of both pain-excited neurons (PENs) and pain-inhibited neurons (PINs) in the hippocampal CA3 region of normal rats. We used a train of electric impulses applied to the sciatic nerve as noxious stimulation. The electrical activities of either PENs or PINs in the hippocampal CA3 region were recorded by a glass microelectrode. The results revealed that intra-CA3 region microinjection of Glu (0.5 μg/1 μl) increased the evoked firing frequency and shortened the firing latency of PEN, while decreased the evoked firing frequency and prolonged the inhibitory duration of PIN in the hippocampal CA3 region of rat evoked by the noxious stimulation. Intra-CA3 region administration of MK-801 (0.25 μg/1 μl) produced the opposite response. These results suggest that Glu and its receptors in hippocampal CA3 region are involved in the modulation of nociceptive information transmission by affecting the electric activities of PENs and PINs.
Collapse
Affiliation(s)
- Xu Ma
- Department of Neurology and Surgery of Second Affiliated Hospital, Harbin Medical University, 194 Xuefu Road, Nangang District, Harbin, Heilongjiang 150081, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Distinct neurochemical adaptations within the nucleus accumbens produced by a history of self-administered vs non-contingently administered intravenous methamphetamine. Neuropsychopharmacology 2012; 37:707-22. [PMID: 22030712 PMCID: PMC3260984 DOI: 10.1038/npp.2011.248] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Methamphetamine is a highly addictive psychomotor stimulant yet the neurobiological consequences of methamphetamine self-administration remain under-characterized. Thus, we employed microdialysis in rats trained to self-administer intravenous (IV) infusions of methamphetamine (METH-SA) or saline (SAL) and a group of rats receiving non-contingent IV infusions of methamphetamine (METH-NC) at 1 or 21 days withdrawal to determine the dopamine and glutamate responses in the nucleus accumbens (NAC) to a 2 mg/kg methamphetamine intraperitoneal challenge. Furthermore, basal NAC extracellular glutamate content was assessed employing no net-flux procedures in these three groups at both time points. At both 1- and 21-day withdrawal points, methamphetamine elicited a rise in extracellular dopamine in SAL animals and this effect was sensitized in METH-NC rats. However, METH-SA animals showed a much greater sensitized dopamine response to the drug challenge compared with the other groups. Additionally, acute methamphetamine decreased extracellular glutamate in both SAL and METH-NC animals at both time-points. In contrast, METH-SA rats exhibited a modest and delayed rise in glutamate at 1-day withdrawal and this rise was sensitized at 21 days withdrawal. Finally, no net-flux microdialysis revealed elevated basal glutamate and increased extraction fraction at both withdrawal time-points in METH-SA rats. Although METH-NC rats exhibited no change in the glutamate extraction fraction, they exhibited a time-dependent elevation in basal glutamate levels. These data illustrate for the first time that a history of methamphetamine self-administration produces enduring changes in NAC neurotransmission and that non-pharmacological factors have a critical role in the expression of these methamphetamine-induced neurochemical adaptations.
Collapse
|
16
|
Nakato Y, Abekawa T, Inoue T, Ito K, Koyama T. Lamotrigine blocks repeated high-dose methamphetamine-induced behavioral sensitization to dizocilpine (MK-801), but not methamphetamine in rats. Neurosci Lett 2011; 504:131-134. [DOI: 10.1016/j.neulet.2011.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 09/07/2011] [Accepted: 09/09/2011] [Indexed: 10/17/2022]
|
17
|
Nakato Y, Abekawa T, Ito K, Inoue T, Koyama T. Lamotrigine blocks apoptosis induced by repeated administration of high-dose methamphetamine in the medial prefrontal cortex of rats. Neurosci Lett 2011; 490:161-4. [DOI: 10.1016/j.neulet.2010.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/23/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
|
18
|
The effect of methamphetamine on social interaction of adult male rats. Behav Brain Res 2010; 214:423-7. [DOI: 10.1016/j.bbr.2010.06.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/09/2010] [Accepted: 06/13/2010] [Indexed: 11/20/2022]
|
19
|
Nakato Y, Abekawa T, Ito K, Inoue T, Koyama T. Lamotrigine blocks the initiation and expression of repeated high-dose methamphetamine-induced prepulse inhibition deficit in rats. Neurosci Lett 2010; 481:183-7. [DOI: 10.1016/j.neulet.2010.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/02/2010] [Accepted: 07/02/2010] [Indexed: 10/19/2022]
|
20
|
MK-801 changes the role of glutamic acid on modulation of algesia in nucleus accumbens. Biochem Biophys Res Commun 2010; 395:407-11. [PMID: 20382122 DOI: 10.1016/j.bbrc.2010.04.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 04/05/2010] [Indexed: 11/22/2022]
Abstract
Dizocilpine maleate (MK-801) causes the blockage of the glutamic acid (Glu) receptors in the central nervous system that are involved in pain transmission. However, the mechanism of action of MK-801 in pain-related neurons is not clear, and it is still unknown whether Glu is involved in the modulation of this processing. This study examines the effect of MK-801, Glu on the pain-evoked response of pain-excitation neurons (PENs) and pain-inhibition neurons (PINs) in the nucleus accumbens (NAc) of rats. The trains of electric impulses applied to the sciatic nerve were used as noxious stimulation. The electrical activities of PENs or PINs in NAc were recorded by a glass microelectrode. Our results revealed that the lateral ventricle injection of Glu increased the discharged frequency and shortened the discharged latency of PEN, and decreased the discharged frequency and prolonged the discharged inhibitory duration (ID) of PIN in NAc of rats evoked by the noxious stimulation, while intra-NAc administration of MK-801 produced the opposite response. On the basis of above findings we can deduce that Glu, MK-801 and N-methyl-D-aspartate (NMDA) receptor are involved in the modulation of nociceptive information transmission in NAc.
Collapse
|
21
|
Akiyama K, Isao T, Ide S, Ishikawa M, Saito A. mRNA expression of the Nurr1 and NGFI-B nuclear receptor families following acute and chronic administration of methamphetamine. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1957-66. [PMID: 18930103 DOI: 10.1016/j.pnpbp.2008.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 08/23/2008] [Accepted: 09/24/2008] [Indexed: 11/19/2022]
Abstract
Nur-related 1 (Nurr1) and nerve growth factor inducible-B (NGFI-B) constitute closely related subgroups of the nuclear receptor superfamily. One to three hours after 4 mg/kg acute methamphetamine (METH) administration, the levels of Nurr1 mRNA were significantly higher in the prelimbic (PrL), primary motor (M1) and primary somatosensory (S1) cortices and ventral tegmental area (VTA), as compared with the basal level. Pretreatment with 0.5 mg/kg of SCH23390 prevented the acute METH-induced increase in Nurr1 mRNA levels in these brain regions. One to three hours after 4-mg/kg acute METH administration, the levels of NGFI-B mRNA increased significantly in the PrL, M1, S1, striatum, and nucleus accumbens core (AcbC). Pretreatment with either 0.5 mg/kg of MK-801 or 0.5 mg/kg of SCH23390 prevented the acute METH-induced increase in NGFI-B mRNA levels in these brain regions. The levels of mRNAs were determined 3 h after a challenge injection of either saline or 4 mg/kg METH at the three-week withdrawal point in rats which had previously been exposed to either saline or METH (4 mg/kg/day) for 2 weeks. After the saline challenge, the group chronically exposed to METH displayed significantly higher levels of Nurr1 mRNA in the PrL, S1 and VTA, and of NGFI-B mRNA in the PrL, M1, S1, striatum and AcbC than did the group chronically treated with saline. The groups chronically exposed to METH failed to increase Nurr1 mRNA in the VTA, and NGFI-B mRNA in the AcbC, when challenged with 4 mg/kg METH. These results suggest that Nurr1 and NGFI-B mRNA play differential roles upon exposure to METH.
Collapse
Affiliation(s)
- Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan.
| | | | | | | | | |
Collapse
|
22
|
Osborne MPH, Olive MF. A role for mGluR5 receptors in intravenous methamphetamine self-administration. Ann N Y Acad Sci 2008; 1139:206-11. [PMID: 18991866 DOI: 10.1196/annals.1432.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Selective antagonists of the mGluR5 receptor attenuate rewarding and reinforcing effects of various drugs of abuse, including alcohol, nicotine, and cocaine. However, the ability of mGluR5 antagonists to alter the reinforcing effects of methamphetamine has not yet been explored. In this study, male Sprague-Dawley rats were trained to perform an operant lever-pressing task in order to obtain intravenous infusions of methamphetamine (0.2 mg/kg/infusion) or presentation of food pellets on a fixed ratio (FR1) schedule of reinforcement. After stabilization of methamphetamine or food self-administration, the selective mGluR5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl]pyridine (MTEP; 0.3, 1.0, or 3.0 mg/kg i.p.) or vehicle were administered to the animals in a randomized counterbalanced cross-over design. MTEP at doses of 1.0 and 3.0 mg/kg significantly reduced methamphetamine self-administration by 26 and 36%, respectively, but did not alter food reinforcement at any dose tested. These data suggest that mGluR5 receptors are involved in the reinforcing effects of methamphetamine, and that antagonists of this receptor may serve as novel pharmacologic agents for the treatment of addiction to methamphetamine.
Collapse
Affiliation(s)
- Megan P H Osborne
- Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | | |
Collapse
|
23
|
Abekawa T, Ito K, Nakagawa S, Nakato Y, Koyama T. Olanzapine and risperidone block a high dose of methamphetamine-induced schizophrenia-like behavioral abnormalities and accompanied apoptosis in the medial prefrontal cortex. Schizophr Res 2008; 101:84-94. [PMID: 18262394 DOI: 10.1016/j.schres.2007.12.488] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 12/18/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
Abstract
This study aims to propose a comprehensive new model for schizophrenia, which shows PPI disruption at baseline state as an endophenotype, the development of cross-sensitization to an NMDA receptor antagonist, MK-801 as a clinical phenotype of the progression into treatment-resistance, and accompanied induction of apoptosis in the medial prefrontal cortex as a critical possibility during the progression. Repeated administration of a high dose of methamphetamine (METH) (2.5 mg/kg), which could increase glutamate levels in the medial prefrontal cortex (mPFC), induced TUNEL-positive cells in this region, accompanied development of behavioral cross-sensitization to MK-801 in response to a challenge injection of MK-801, and PPI disruption at baseline state without a challenge injection. Olanzapine (OLZ) (1.0 mg/kg) and risperidone (RIS) (0.1 mg/kg), which inhibited and remarkably attenuated METH (2.5 mg/kg)-induced increases in glutamate levels, respectively, blocked not only the induction of TUNEL-positive cells in the mPFC but also the accompanied development of above behavioral abnormalities. These findings suggest that repeating the METH-induced glutamate release produces behavioral abnormalities as a clinical phenotype of schizophrenia, accompanied apoptosis as a critical possibility during the progression, and suggest that sufficient dose of olanzapine and risperidone can block the development of these behavioral abnormalities and accompanied apoptosis during the progression.
Collapse
Affiliation(s)
- Tomohiro Abekawa
- Hokkaido University, Graduate School of Medicine, Department of Psychiatry, Kita 15, Nishi 7, 060-8638, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
24
|
Szumlinski KK, Ary AW, Lominac KD. Homers regulate drug-induced neuroplasticity: implications for addiction. Biochem Pharmacol 2008; 75:112-33. [PMID: 17765204 PMCID: PMC2204062 DOI: 10.1016/j.bcp.2007.07.031] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 07/22/2007] [Accepted: 07/23/2007] [Indexed: 12/20/2022]
Abstract
Drug addiction is a chronic, relapsing disorder, characterized by an uncontrollable motivation to seek and use drugs. Converging clinical and preclinical observations implicate pathologies within the corticolimbic glutamate system in the genetic predisposition to, and the development of, an addicted phenotype. Such observations pose cellular factors regulating glutamate transmission as likely molecular candidates in the etiology of addiction. Members of the Homer family of proteins regulate signal transduction through, and the trafficking of, glutamate receptors, as well as maintain and regulate extracellular glutamate levels in corticolimbic brain regions. This review summarizes the existing data implicating the Homer family of protein in acute behavioral and neurochemical sensitivity to drugs of abuse, the development of drug-induced neuroplasticity, as well as other behavioral and cognitive pathologies associated with an addicted state.
Collapse
Affiliation(s)
- Karen K Szumlinski
- Behavioral and Neural Genetics Laboratory, Department of Psychology and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106-9660, USA.
| | | | | |
Collapse
|
25
|
Gass JT, Olive MF. Glutamatergic substrates of drug addiction and alcoholism. Biochem Pharmacol 2008; 75:218-65. [PMID: 17706608 PMCID: PMC2239014 DOI: 10.1016/j.bcp.2007.06.039] [Citation(s) in RCA: 355] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/22/2007] [Accepted: 06/26/2007] [Indexed: 12/20/2022]
Abstract
The past two decades have witnessed a dramatic accumulation of evidence indicating that the excitatory amino acid glutamate plays an important role in drug addiction and alcoholism. The purpose of this review is to summarize findings on glutamatergic substrates of addiction, surveying data from both human and animal studies. The effects of various drugs of abuse on glutamatergic neurotransmission are discussed, as are the effects of pharmacological or genetic manipulation of various components of glutamate transmission on drug reinforcement, conditioned reward, extinction, and relapse-like behavior. In addition, glutamatergic agents that are currently in use or are undergoing testing in clinical trials for the treatment of addiction are discussed, including acamprosate, N-acetylcysteine, modafinil, topiramate, lamotrigine, gabapentin and memantine. All drugs of abuse appear to modulate glutamatergic transmission, albeit by different mechanisms, and this modulation of glutamate transmission is believed to result in long-lasting neuroplastic changes in the brain that may contribute to the perseveration of drug-seeking behavior and drug-associated memories. In general, attenuation of glutamatergic transmission reduces drug reward, reinforcement, and relapse-like behavior. On the other hand, potentiation of glutamatergic transmission appears to facilitate the extinction of drug-seeking behavior. However, attempts at identifying genetic polymorphisms in components of glutamate transmission in humans have yielded only a limited number of candidate genes that may serve as risk factors for the development of addiction. Nonetheless, manipulation of glutamatergic neurotransmission appears to be a promising avenue of research in developing improved therapeutic agents for the treatment of drug addiction and alcoholism.
Collapse
Affiliation(s)
- Justin T Gass
- Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
26
|
Meyer PJ, Phillips TJ. Behavioral sensitization to ethanol does not result in cross-sensitization to NMDA receptor antagonists. Psychopharmacology (Berl) 2007; 195:103-15. [PMID: 17653696 DOI: 10.1007/s00213-007-0871-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 06/15/2007] [Indexed: 10/23/2022]
Abstract
RATIONALE Behavioral sensitization to the locomotor stimulant effects of ethanol may be related to neuroadaptations within glutamatergic systems. Previous research has suggested that the N-methyl-D: -aspartate (NMDA) subclass of glutamate receptors is critical for the development of ethanol sensitization. We hypothesized that sensitization to ethanol would be associated with changes in sensitivity to NMDA receptor ligands. MATERIALS AND METHODS DBA/2J and heterogeneous stock (HS) mice were injected with ethanol or saline for 12 days and tested for their acute and sensitized responses to the locomotor effects of ethanol in automated activity monitors. After this treatment phase, mice were challenged with MK-801, ethanol, or ketamine, and locomotor activity was measured for 20 to 60 min. Other ethanol-sensitized and nonsensitized mice were assessed for sensitivity to the effects of NMDA after tail-vein infusions. RESULTS There was no evidence for cross-sensitization to MK-801 or ketamine, or altered sensitivity to NMDA in ethanol-sensitized animals, in any experiment. In one experiment, previously ethanol-treated HS mice developed tolerance to the locomotor stimulant effects of ketamine. CONCLUSIONS These results indicate that ethanol-induced behavioral sensitization is not associated with increased behavioral sensitivity to NMDA receptor antagonists or altered sensitivity to NMDA receptor agonists. To the extent that changes in sensitivity to these ligands reflect changes in NMDA receptors, these results are inconsistent with the hypothesis that ethanol sensitization is associated with alterations in NMDA receptor-mediated processes.
Collapse
Affiliation(s)
- Paul J Meyer
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | | |
Collapse
|
27
|
Szumlinski KK, Liu A, Penzner JH, Lominac KD. Protracted 'pro-addictive' phenotype produced in mice by pre-adolescent phenylpropanolamine. Neuropsychopharmacology 2007; 32:1760-73. [PMID: 17251912 DOI: 10.1038/sj.npp.1301306] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
For decades, the sympathomimetic phenylpropanolamine (PPA; +/- -norepinephrine) was an active ingredient found in popular children's over-the-counter (OTC) cold, cough, and allergy medications. To examine the possibility that pre-adolescent PPA exposure may induce neuroadaptations that influence behavioral and neurochemical responding to cocaine, C57BL/6J mice were pretreated with PPA (0-40 mg/kg) during postnatal days 21-31. The behavioral and neurochemical responses to acute and repeated cocaine (4 x 15 mg/kg) were then assessed in adulthood when the mice were 10 weeks of age. Whereas pre-adolescent PPA exposure did not influence the acute locomotor response to 15 mg/kg cocaine, PPA pre-exposure dose-dependently enhanced the expression of cocaine-induced place conditioning, reduced the expression of locomotor sensitization, but did not influence cocaine-induced stereotypy. Pre-adolescent PPA exposure completely prevented the capacity of cocaine to elevate extracellular levels of catecholamines in the nucleus accumbens, but facilitated the development of cocaine-induced glutamate sensitization. Neither acute nor repeated cocaine altered extracellular GABA levels in the accumbens of control mice; however, 15 mg/kg cocaine lowered GABA levels by approximately 40% in PPA pretreated mice and this effect showed tolerance with repeated cocaine administration. These data provide the first evidence that early exposure to an OTC compound produces protracted effects upon cocaine-induced changes in nucleus accumbens neurotransmission that may contribute to a 'pro-addictive' phenotype in adulthood.
Collapse
Affiliation(s)
- Karen K Szumlinski
- Department of Psychology and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106-9660, USA.
| | | | | | | |
Collapse
|
28
|
Léna I, Chessel A, Le Pen G, Krebs MO, Garcia R. Alterations in prefrontal glutamatergic and noradrenergic systems following MK-801 administration in rats prenatally exposed to methylazoxymethanol at gestational day 17. Psychopharmacology (Berl) 2007; 192:373-83. [PMID: 17279373 DOI: 10.1007/s00213-007-0719-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 01/19/2007] [Indexed: 11/26/2022]
Abstract
RATIONALE Prenatal methylazoxymethanol (MAM) administration at gestational day 17 has been shown to induce in adult rats schizophrenia-like behaviours as well as morphological and/or functional abnormalities in structures such as the hippocampus, medial prefrontal cortex (mPFC) and nucleus accumbens (NAcc), consistent with human data. OBJECTIVES The aim of the present study was to further characterize the neurochemical alterations associated with this neurodevelopmental animal model of schizophrenia. MATERIALS AND METHODS We performed simultaneous measurements of locomotor activity and extracellular concentrations of glutamate, dopamine and noradrenaline in the mPFC and the NAcc of adult rats prenatally exposed to MAM or saline after acute systemic injection of a noncompetitive NMDA antagonist, MK-801 (0.1 mg/kg s.c.). RESULTS A significant attenuation of the MK-801-induced increase in glutamate levels associated with a potentiation of the increase in noradrenaline concentrations was found in the mPFC of MAM-exposed rats, whereas no significant change was observed in the NAcc. MAM-exposed rats also exhibited an exaggerated locomotor hyperactivity, in line with the exacerbation of symptoms reported in schizophrenic patients after administration of noncompetitive NMDA antagonists. CONCLUSIONS Given the importance of the mPFC in regulating the hyperlocomotor effect of NMDA antagonists, our results suggest that the prefrontal neurochemical alterations induced by MK-801 may sustain the exaggerated locomotor response in MAM-exposed rats.
Collapse
Affiliation(s)
- Isabelle Léna
- INSERM Equipe Avenir, JE 2441, Laboratoire de Neurobiologie et Psychopathologie, Université de Nice-Sophia Antipolis, Parc Valrose, 06108, Nice cedex 2, France.
| | | | | | | | | |
Collapse
|