1
|
Wong S, Le GH, Mansur R, Rosenblat JD, Kwan ATH, Teopiz KM, McIntyre RS. Effects of ketamine on metabolic parameters in depressive disorders: A systematic review. J Affect Disord 2024; 367:164-173. [PMID: 39218315 DOI: 10.1016/j.jad.2024.08.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Persons with Major Depressive Disorder (MDD), notably treatment-resistant depression (TRD), are differentially affected by type 2 diabetes mellitus and associated morbidity. Ketamine is highly efficacious in the treatment of adults living with MDD, notably TRD. Herein, we sought to determine the effect of ketamine on metabolic parameters in animal stress paradigms and human studies. METHODS We performed a comprehensive search on PubMed, OVID, and Scopus databases for primary research articles from inception to May 5, 2024. Study screening and data extraction were performed by two reviewers (S.W. and G.H.L.). Both preclinical and clinical studies were included in this review. RESULTS Results from the preclinical studies indicate that in experimental diabetic conditions, ketamine does not disrupt glucose-insulin homeostasis. Within adults with MDD, ketamine is associated with GLUT3 transporter upregulation and differentially affects metabolomic signatures. In adults with TRD, ketamine induces increased brain glucose uptake in the prefrontal cortex. Available evidence suggests that ketamine does not adversely affect metabolic parameters. LIMITATIONS There are a paucity of clinical studies evaluating the effects of ketamine on glucose-insulin homeostasis in adults with MDD. CONCLUSIONS Our results indicate that ketamine is not associated with significant and/or persistent disruptions in metabolic parameters. Available evidence indicates that ketamine does not adversely affect glucose-insulin homeostasis. These results underscore ketamine's efficacy and safety as an antidepressant treatment that is not associated with metabolic disturbances commonly reported with current augmentation therapies.
Collapse
Affiliation(s)
- Sabrina Wong
- Brain and Cognition Discovery Foundation, Toronto, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Canada; Department of Pharmacology & Toxicology, University of Toronto, Canada.
| | - Gia Han Le
- Brain and Cognition Discovery Foundation, Toronto, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Canada; Institute of Medical Sciences, University of Toronto, Canada.
| | - Rodrigo Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Canada.
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, University Health Network, Canada; Department of Pharmacology & Toxicology, University of Toronto, Canada; Institute of Medical Sciences, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Canada.
| | - Angela T H Kwan
- Brain and Cognition Discovery Foundation, Toronto, Canada; Faculty of Medicine, University of Ottawa, Ottawa, Canada.
| | - Kayla M Teopiz
- Brain and Cognition Discovery Foundation, Toronto, Canada.
| | - Roger S McIntyre
- Brain and Cognition Discovery Foundation, Toronto, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Canada; Department of Pharmacology & Toxicology, University of Toronto, Canada; Institute of Medical Sciences, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Canada.
| |
Collapse
|
2
|
Bertollo AG, Mingoti MED, Ignácio ZM. Neurobiological mechanisms in the kynurenine pathway and major depressive disorder. Rev Neurosci 2024:revneuro-2024-0065. [PMID: 39245854 DOI: 10.1515/revneuro-2024-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Major depressive disorder (MDD) is a prevalent psychiatric disorder that has damage to people's quality of life. Tryptophan is the precursor to serotonin, a critical neurotransmitter in mood modulation. In mammals, most free tryptophan is degraded by the kynurenine pathway (KP), resulting in a range of metabolites involved in inflammation, immune response, and neurotransmission. The imbalance between quinolinic acid (QA), a toxic metabolite, and kynurenic acid (KynA), a protective metabolite, is a relevant phenomenon involved in the pathophysiology of MDD. Proinflammatory cytokines increase the activity of the enzyme indoleamine 2,3-dioxygenase (IDO), leading to the degradation of tryptophan in the KP and an increase in the release of QA. IDO activates proinflammatory genes, potentiating neuroinflammation and deregulating other physiological mechanisms related to chronic stress and MDD. This review highlights the physiological mechanisms involved with stress and MDD, which are underlying an imbalance of the KP and discuss potential therapeutic targets.
Collapse
Affiliation(s)
- Amanda Gollo Bertollo
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Maiqueli Eduarda Dama Mingoti
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| |
Collapse
|
3
|
Bartoli F, Cavaleri D, Riboldi I, Crocamo C, de Filippis R, Zandonella Callegher R, Paglia G, Albert U, De Fazio P, Carrà G. The Resistant Depression Response to Esketamine Assessing Metabolomics (ReDREAM) Project-Untargeted Metabolomics to Identify Biomarkers of Treatment Response to Intranasal Esketamine in Individuals with Treatment-Resistant Depression: A Study Protocol. ALPHA PSYCHIATRY 2024; 25:555-560. [PMID: 39360294 PMCID: PMC11443282 DOI: 10.5152/alphapsychiatry.2024.241549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/07/2024] [Indexed: 10/04/2024]
Abstract
Objective Treatment-resistant depression (TRD) affects around 20-30% of people with major depressive disorder. In 2019, esketamine nasal spray was approved for TRD by both the US Food and Drug Administration and the European Medicines Agency. While its clinical efficacy and safety are proven, the mechanisms underlying its antidepressant effect remain unclear. The use of metabolomics may allow understanding the metabolic effects of esketamine and predicting biological features associated with clinical response in TRD. Nonetheless, there is a lack of studies exploring the predictive value of metabolomics. The Resistant Depression Response to Esketamine Assessing Metabolomics (ReDREAM) project aims at identifying metabolic biosignatures that may represent novel correlates of response to esketamine treatment. Study Design This is the protocol of an observational, prospective study. Methods We plan to select 60 people with TRD from 3 clinical sites in Italy. The participants will be administered with esketamine nasal spray, following standard clinical practice, twice a week for 4 weeks ("induction phase"), then once a week for 4 additional weeks ("maintenance phase"). We will test the correlations between baseline metabolic profile and depressive symptom improvement at study endpoints (weeks 4 and 8) and we will explore the likelihood of different metabolic phenotypes between responders and non-responders. Expected results An involvement of energy metabolism, amino acid metabolism, urea cycle, and nitric oxide synthesis in response to treatment with esketamine nasal spray is hypothesized. Conclusion Unbiased data from untargeted metabolomics associated with clinical changes after esketamine treatment may contribute to define new paradigms for precision psychiatry-oriented, personalized care of TRD.
Collapse
Affiliation(s)
- Francesco Bartoli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Daniele Cavaleri
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Ilaria Riboldi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cristina Crocamo
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Renato de Filippis
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | | | - Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Umberto Albert
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Pasquale De Fazio
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Giuseppe Carrà
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
4
|
Kumar R, Nuñez NA, Joshi N, Joseph B, Verde A, Seshadri A, Cuellar Barboza AB, Prokop LJ, Medeiros GC, Singh B. Metabolomic biomarkers for (R, S)-ketamine and (S)-ketamine in treatment-resistant depression and healthy controls: A systematic review. Bipolar Disord 2024; 26:321-330. [PMID: 38326104 DOI: 10.1111/bdi.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
BACKGROUND Ketamine is increasingly used for treatment-resistant depression (TRD) while its mechanism of action is still being investigated. In this systematic review, we appraise the current evidence of metabolomic biomarkers for racemic ketamine and esketamine in patients with TRD and healthy controls (HCs). METHODS A comprehensive search of several databases (Ovid MEDLINE®, Embase, and Epub Ahead of Print) was performed from each database's inception to June 29, 2022, in any language, was conducted. We included studies wherein the metabolomic biomarkers for racemic ketamine or esketamine were investigated in TRD or HCs. Our main outcomes were to examine changes in metabolites among patients treated with ketamine/esketamine and explore the association with response to ketamine/esketamine. RESULTS A total of 1859 abstracts were screened of which 11 were included for full-text review. Of these, a total of five articles were included (N = 147), including three RCTs (n = 129) and two open-label trials (n = 18). All studies used racemic ketamine; one study additionally used esketamine. The included studies evaluated patients with treatment-resistant bipolar depression (n = 22), unipolar depression (n = 91), and HCs (n = 34). The included studies reported alteration in several metabolites including acylcarnitines, lipids, kynurenine (KYN), and arginine with ketamine in TRD. Studies suggest the involvement of energy metabolism, KYN, and arginine pathways. In HCs, acetylcarnitine decreased post-infusion, whereas inconsistent findings were observed after the ketamine infusion in TRD patients. CONCLUSIONS This systematic review provides preliminary evidence that ketamine may cause changes in several important pathways involved in energy metabolism and inflammation. Larger and more rigorous studies are needed.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicolas A Nuñez
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Neha Joshi
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Boney Joseph
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Alessandra Verde
- Section of Pediatrics, Department of Translational Medical Science, Federico II University, Naples, Italy
- Division of Medical Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Ashok Seshadri
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Larry J Prokop
- Mayo Medical Libraries, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Gustavo C Medeiros
- Department of Psychiatry & Behavioral Sciences, John Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Balwinder Singh
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Cavaleri D, Riboldi I, Crocamo C, Paglia G, Carrà G, Bartoli F. Evidence from preclinical and clinical metabolomics studies on the antidepressant effects of ketamine and esketamine. Neurosci Lett 2024; 831:137791. [PMID: 38670523 DOI: 10.1016/j.neulet.2024.137791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
The antidepressant effects of ketamine and esketamine are well-documented. Nonetheless, most of the underlying molecular mechanisms have to be uncovered yet. In the last decade, metabolomics has emerged as a useful means to investigate the metabolic phenotype associated with depression as well as changes induced by antidepressant treatments. This mini-review aims at summarizing the main findings from preclinical and clinical studies that used metabolomics to investigate the metabolic effects of subanesthetic, antidepressant doses of ketamine and esketamine and their relationship with clinical response. Both animal and human studies report alterations in several metabolic pathways - including the tricarboxylic acid cycle, glycolysis, the pentose phosphate pathway, lipid metabolism, amino acid metabolism, the kynurenine pathway, and the urea cycle - following the administration of ketamine or its enantiomers. Although more research is needed to clarify commonalities and differences in molecular mechanisms of action between the racemic compound and its enantiomers, these findings comprehensively support an influence of ketamine and esketamine on mitochondrial and cellular energy production, membrane homeostasis, neurotransmission, and signaling. Metabolomics may thus represent a promising strategy to clarify molecular mechanisms underlying treatment-resistant depression and related markers of clinical response to ketamine and esketamine. This body of preclinical and clinical evidence, if further substantiated, has the potential to guide clinicians towards personalized approaches, contributing to new paradigms in the clinical management of depression.
Collapse
Affiliation(s)
- Daniele Cavaleri
- Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Ilaria Riboldi
- Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Cristina Crocamo
- Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Giuseppe Paglia
- Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Giuseppe Carrà
- Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; Division of Psychiatry, University College London, 149 Tottenham Ct Rd, London W1T 7NF, United Kingdom
| | - Francesco Bartoli
- Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy.
| |
Collapse
|
6
|
Zinellu A, Tommasi S, Sedda S, Mangoni AA. Arginine metabolomics in mood disorders. Heliyon 2024; 10:e27292. [PMID: 38515671 PMCID: PMC10955251 DOI: 10.1016/j.heliyon.2024.e27292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Alterations of nitric oxide (NO) homeostasis have been described in mood disorders. However, the analytical challenges associated with the direct measurement of NO have prompted the search for alternative biomarkers of NO synthesis. We investigated the published evidence of the association between these alternative biomarkers and mood disorders (depressive disorder or bipolar disorder). Electronic databases were searched from inception to the June 30, 2023. In 20 studies, there was a trend towards significantly higher asymmetric dimethylarginine (ADMA) in mood disorders vs. controls (p = 0.072), and non-significant differences in arginine (p = 0.29), citrulline (p = 0.35), symmetric dimethylarginine (SDMA; p = 0.23), and ornithine (p = 0.42). In subgroup analyses, the SMD for ADMA was significant in bipolar disorder (p < 0.001) and European studies (p = 0.02), the SMDs for SDMA (p = 0.001) and citrulline (p = 0.038) in European studies, and the SMD for ornithine in bipolar disorder (p = 0.007), Asian (p = 0.001) and American studies (p = 0.005), and patients treated with antidepressants (p = 0.029). The abnormal concentrations of ADMA, SDMA, citrulline, and ornithine in subgroups of mood disorders, particularly bipolar disorder, warrant further research to unravel their pathophysiological role and identify novel treatments in this group (The protocol was registered in PROSPERO: CRD42023445962).
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Sara Tommasi
- Department of Clinical Pharmacology, Southern Adelaide Local Health Network, Australia
- Discipline of Clinical Pharmacology, Flinders University, Adelaide, Australia
| | - Stefania Sedda
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A. Mangoni
- Department of Clinical Pharmacology, Southern Adelaide Local Health Network, Australia
- Discipline of Clinical Pharmacology, Flinders University, Adelaide, Australia
| |
Collapse
|
7
|
Ho CSH, Tan TWK, Khoe HCH, Chan YL, Tay GWN, Tang TB. Using an Interpretable Amino Acid-Based Machine Learning Method to Enhance the Diagnosis of Major Depressive Disorder. J Clin Med 2024; 13:1222. [PMID: 38592058 PMCID: PMC10931723 DOI: 10.3390/jcm13051222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Major depressive disorder (MDD) is a leading cause of disability worldwide. At present, however, there are no established biomarkers that have been validated for diagnosing and treating MDD. This study sought to assess the diagnostic and predictive potential of the differences in serum amino acid concentration levels between MDD patients and healthy controls (HCs), integrating them into interpretable machine learning models. Methods: In total, 70 MDD patients and 70 HCs matched in age, gender, and ethnicity were recruited for the study. Serum amino acid profiling was conducted by means of chromatography-mass spectrometry. A total of 21 metabolites were analysed, with 17 from a preset amino acid panel and the remaining 4 from a preset kynurenine panel. Logistic regression was applied to differentiate MDD patients from HCs. Results: The best-performing model utilised both feature selection and hyperparameter optimisation and yielded a moderate area under the receiver operating curve (AUC) classification value of 0.76 on the testing data. The top five metabolites identified as potential biomarkers for MDD were 3-hydroxy-kynurenine, valine, kynurenine, glutamic acid, and xanthurenic acid. Conclusions: Our study highlights the potential of using an interpretable machine learning analysis model based on amino acids to aid and increase the diagnostic accuracy of MDD in clinical practice.
Collapse
Affiliation(s)
- Cyrus Su Hui Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore;
| | - Trevor Wei Kiat Tan
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore;
- Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore 117456, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Howard Cai Hao Khoe
- Singapore Psychiatry Residency, National Healthcare Group, Singapore 308433, Singapore;
| | - Yee Ling Chan
- Centre for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Perak, Malaysia; (Y.L.C.); (T.B.T.)
| | - Gabrielle Wann Nii Tay
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore;
| | - Tong Boon Tang
- Centre for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Perak, Malaysia; (Y.L.C.); (T.B.T.)
| |
Collapse
|
8
|
Montanari S, Jansen R, Schranner D, Kastenmüller G, Arnold M, Janiri D, Sani G, Bhattacharyya S, Dehkordi SM, Dunlop BW, Rush AJ, Penninx BWHJ, Kaddurah-Daouk R, Milaneschi Y. Acylcarnitines metabolism in depression: association with diagnostic status, depression severity and symptom profile in the NESDA cohort. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.14.24302813. [PMID: 38405847 PMCID: PMC10889013 DOI: 10.1101/2024.02.14.24302813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Background Acylcarnitines (ACs) are involved in bioenergetics processes that may play a role in the pathophysiology of depression. Studies linking AC levels to depression are few and provide mixed findings. We examined the association of circulating ACs levels with Major Depressive Disorder (MDD) diagnosis, overall depression severity and specific symptom profiles. Methods The sample from the Netherlands Study of Depression and Anxiety included participants with current (n=1035) or remitted (n=739) MDD and healthy controls (n=800). Plasma levels of four ACs (short-chain: acetylcarnitine C2 and propionylcarnitine C3; medium-chain: octanoylcarnitine C8 and decanoylcarnitine C10) were measured. Overall depression severity as well as atypical/energy-related (AES), anhedonic and melancholic symptom profiles were derived from the Inventory of Depressive Symptomatology. Results As compared to healthy controls, subjects with current or remitted MDD presented similarly lower mean C2 levels (Cohen's d=0.2, p≤1e-4). Higher overall depression severity was significantly associated with higher C3 levels (ß=0.06, SE=0.02, p=1.21e-3). No associations were found for C8 and C10. Focusing on symptom profiles, only higher AES scores were linked to lower C2 (ß=-0.05, SE=0.02, p=1.85e-2) and higher C3 (ß=0.08, SE=0.02, p=3.41e-5) levels. Results were confirmed in analyses pooling data with an additional internal replication sample from the same subjects measured at 6-year follow-up (totaling 4195 observations). Conclusions Small alterations in levels of short-chain acylcarnitine levels were related to the presence and severity of depression, especially for symptoms reflecting altered energy homeostasis. Cellular metabolic dysfunctions may represent a key pathway in depression pathophysiology potentially accessible through AC metabolism.
Collapse
Affiliation(s)
- Silvia Montanari
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rick Jansen
- Department of Psychiatry, Amsterdam UMC,Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, The Netherlands
| | - Daniela Schranner
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Delfina Janiri
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gabriele Sani
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Sudeepa Bhattacharyya
- Arkansas Biosciences Institute, Department of Biological Sciences, Arkansas State University, AR, USA
| | | | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - A. John Rush
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke-National University of Singapore, Singapore
| | - Brenda W. H. J. Penninx
- Department of Psychiatry, Amsterdam UMC,Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, The Netherlands
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC,Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, The Netherlands
| |
Collapse
|
9
|
You Z, Wang C, Lan X, Li W, Shang D, Zhang F, Ye Y, Liu H, Zhou Y, Ning Y. The contribution of polyamine pathway to determinations of diagnosis for treatment-resistant depression: A metabolomic analysis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110849. [PMID: 37659714 DOI: 10.1016/j.pnpbp.2023.110849] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
OBJECTIVES Approximately one-third of major depressive disorder (MDD) patients do not respond to standard antidepressants and develop treatment-resistant depression (TRD). We aimed to reveal metabolic differences and discover promising potential biomarkers in TRD. METHODS Our study recruited 108 participants including healthy controls (n = 40) and patients with TRD (n = 35) and first-episode drug-naive MDD (DN-MDD) (n = 33). Plasma samples were presented to ultra performance liquid chromatography-tandem mass spectrometry. Then, a machine-learning algorithm was conducted to facilitate the selection of potential biomarkers. RESULTS TRD appeared to be a distinct metabolic disorder from DN-MDD and healthy controls (HCs). Compared to HCs, 199 and 176 differentially expressed metabolites were identified in TRD and DN-MDD, respectively. Of all the metabolites that were identified, spermine, spermidine, and carnosine were considered the most promising biomarkers for diagnosing TRD and DN-MDD patients, with the resulting area under the ROC curve of 0.99, 0.99, and 0.93, respectively. Metabolic pathway analysis yielded compelling evidence of marked changes or imbalances in both polyamine metabolism and energy metabolism, which could potentially represent the primary altered pathways associated with MDD. Additionally, L-glutamine, Beta-alanine, and spermine were correlated with HAMD score. CONCLUSIONS A more disordered metabolism structure is found in TRD than in DN-MDD and HCs. Future investigations should prioritize the comprehensive analysis of potential roles played by these differential metabolites and disturbances in polyamine pathways in the pathophysiology of TRD and depression.
Collapse
Affiliation(s)
- Zerui You
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Chengyu Wang
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaofeng Lan
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Weicheng Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Dewei Shang
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Fan Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yanxiang Ye
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Haiyan Liu
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yanling Zhou
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| | - Yuping Ning
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| |
Collapse
|
10
|
Nguyen TML, Jollant F, Tritschler L, Colle R, Corruble E, Gardier AM. [Ketamine and suicidal behavior: Contribution of animal models of aggression-impulsivity to understanding its mechanism of action]. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:3-14. [PMID: 37890717 DOI: 10.1016/j.pharma.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
More than two-thirds of suicides occur during a major depressive episode. Acting out prevention measures and therapeutic options to manage the suicidal crisis are limited. The impulsive-aggressive dimensions are vulnerability factors associated with suicide in patients suffering from a characterized depressive episode: this can be a dimension involved in animals. Impulsive and aggressive rodent models can help analyze, at least in part, the neurobiology of suicide and the beneficial effects of treatments. Ketamine, a glutamatergic antagonist, by rapidly improving the symptoms of depressive episodes, would help reduce suicidal thoughts in the short term. Animal models share with humans impulsive and aggressive endophenotypes modulated by the serotonergic system (5-HTB receptor, MAO-A enzyme), neuroinflammation or the hypothalamic-pituitary-adrenal axis and stress. Significant effects of ketamine on these endophenotypes remain to be demonstrated.
Collapse
Affiliation(s)
- Thi Mai Loan Nguyen
- Inserm CESP/UMR 1018, équipe MOODS, faculté de pharmacie, université Paris-Saclay, 91400 Orsay, France
| | - Fabrice Jollant
- Inserm CESP/UMR 1018, équipe MOODS, faculté de médecine, université Paris-Saclay, 94270 Le Kremin-Bicêtre, France; Service hospitalo-universitaire de psychiatrie, hôpital de Bicêtre, hôpitaux universitaires Paris-Saclay, Assistance publique-Hôpitaux de Paris (AP-HP), 94275 Le Kremlin-Bicêtre, France; Pôle de psychiatrie, CHU de Nîmes, Nîmes, France; Département de psychiatrie, Université McGill et Groupe McGill d'études sur le suicide, Montréal, Canada
| | - Laurent Tritschler
- Inserm CESP/UMR 1018, équipe MOODS, faculté de pharmacie, université Paris-Saclay, 91400 Orsay, France
| | - Romain Colle
- Inserm CESP/UMR 1018, équipe MOODS, faculté de médecine, université Paris-Saclay, 94270 Le Kremin-Bicêtre, France; Service hospitalo-universitaire de psychiatrie, hôpital de Bicêtre, hôpitaux universitaires Paris-Saclay, Assistance publique-Hôpitaux de Paris (AP-HP), 94275 Le Kremlin-Bicêtre, France
| | - Emmanuelle Corruble
- Inserm CESP/UMR 1018, équipe MOODS, faculté de médecine, université Paris-Saclay, 94270 Le Kremin-Bicêtre, France; Service hospitalo-universitaire de psychiatrie, hôpital de Bicêtre, hôpitaux universitaires Paris-Saclay, Assistance publique-Hôpitaux de Paris (AP-HP), 94275 Le Kremlin-Bicêtre, France
| | - Alain M Gardier
- Inserm CESP/UMR 1018, équipe MOODS, faculté de pharmacie, université Paris-Saclay, 91400 Orsay, France.
| |
Collapse
|
11
|
Moaddel R, Farmer CA, Yavi M, Kadriu B, Zhu M, Fan J, Chen Q, Lehrmann E, Fantoni G, De S, Mazucanti CH, Acevedo-Diaz EE, Yuan P, Gould TD, Park LT, Egan JM, Ferrucci L, Zarate CA. Cerebrospinal fluid exploratory proteomics and ketamine metabolite pharmacokinetics in human volunteers after ketamine infusion. iScience 2023; 26:108527. [PMID: 38162029 PMCID: PMC10755719 DOI: 10.1016/j.isci.2023.108527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/13/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Ketamine is a treatment for both refractory depression and chronic pain syndromes. In order to explore ketamine's potential mechanism of action and whether ketamine or its metabolites cross the blood brain barrier, we examined the pharmacokinetics of ketamine and its metabolites-norketamine (NK), dehydronorketamine (DHNK), and hydroxynorketamines (HNKs)-in cerebrospinal fluid (CSF) and plasma, as well as in an exploratory proteomic analysis in the CSF of nine healthy volunteers who received ketamine intravenously (0.5 mg/kg IV). We found that ketamine, NK, and (2R,6R;2S,6S)-HNK readily crossed the blood brain barrier. Additionally, 354 proteins were altered in the CSF in at least two consecutive timepoints (p < 0.01). Proteins in the classes of tyrosine kinases, cellular adhesion molecules, and growth factors, including insulin, were most affected, suggesting an interplay of altered neurotransmission, neuroplasticity, neurogenesis, synaptogenesis, and neural network functions following ketamine administration.
Collapse
Affiliation(s)
- Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Cristan A. Farmer
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Mani Yavi
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Min Zhu
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jinshui Fan
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Qinghua Chen
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Elin Lehrmann
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Giovanna Fantoni
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Caio H. Mazucanti
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Elia E. Acevedo-Diaz
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Peixiong Yuan
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Todd D. Gould
- Departments of Psychiatry, Pharmacology, and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Veterans Affairs Maryland Health Care System, Baltimore, MD 21201, USA
| | - Lawrence T. Park
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Josephine M. Egan
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Mrštná K, Kujovská Krčmová L, Švec F. Advances in kynurenine analysis. Clin Chim Acta 2023:117441. [PMID: 37321530 DOI: 10.1016/j.cca.2023.117441] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Kynurenine, the first product of tryptophan degradation via the kynurenine pathway, has become one of the most frequently mentioned biomarkers in recent years. Its levels in the body indicate the state of the human physiology. Human serum and plasma are the main matrixes used to evaluate kynurenine levels and liquid chromatography is the dominant technique for its determination. However, their concentrations in blood do not always correspond to the levels in other matrixes obtained from the affected individuals. It is therefore important to decide when it is appropriate to analyse kynurenine in alternative matrices. However, liquid chromatography may not be the best option for the analysis. This review presents alternatives that can be used and summarizes the features that need to be considered prior to kynurenine determination. Possible approaches to kynurenine analysis in a variety of human matrixes, their challenges, and limitations are critically discussed.
Collapse
Affiliation(s)
- K Mrštná
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic; The Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic
| | - L Kujovská Krčmová
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic; The Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic.
| | - F Švec
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic
| |
Collapse
|
13
|
Zoicas I, Mühle C, Schumacher F, Kleuser B, Kornhuber J. Development of Comorbid Depression after Social Fear Conditioning in Mice and Its Effects on Brain Sphingolipid Metabolism. Cells 2023; 12:1355. [PMID: 37408189 DOI: 10.3390/cells12101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
Currently, there are no animal models for studying both specific social fear and social fear with comorbidities. Here, we investigated whether social fear conditioning (SFC), an animal model with face, predictive and construct validity for social anxiety disorder (SAD), leads to the development of comorbidities at a later stage over the course of the disease and how this affects the brain sphingolipid metabolism. SFC altered both the emotional behavior and the brain sphingolipid metabolism in a time-point-dependent manner. While social fear was not accompanied by changes in non-social anxiety-like and depressive-like behavior for at least two to three weeks, a comorbid depressive-like behavior developed five weeks after SFC. These different pathologies were accompanied by different alterations in the brain sphingolipid metabolism. Specific social fear was accompanied by increased activity of ceramidases in the ventral hippocampus and ventral mesencephalon and by small changes in sphingolipid levels in the dorsal hippocampus. Social fear with comorbid depression, however, altered the activity of sphingomyelinases and ceramidases as well as the sphingolipid levels and sphingolipid ratios in most of the investigated brain regions. This suggests that changes in the brain sphingolipid metabolism might be related to the short- and long-term pathophysiology of SAD.
Collapse
Affiliation(s)
- Iulia Zoicas
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
14
|
Ait Tayeb AEK, Colle R, El-Asmar K, Chappell K, Acquaviva-Bourdain C, David DJ, Trabado S, Chanson P, Feve B, Becquemont L, Verstuyft C, Corruble E. Plasma acetyl-l-carnitine and l-carnitine in major depressive episodes: a case-control study before and after treatment. Psychol Med 2023; 53:2307-2316. [PMID: 35115069 DOI: 10.1017/s003329172100413x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is the main cause of disability worldwide, its outcome is poor, and its underlying mechanisms deserve a better understanding. Recently, peripheral acetyl-l-carnitine (ALC) has been shown to be lower in patients with major depressive episodes (MDEs) than in controls. l-Carnitine is involved in mitochondrial function and ALC is its short-chain acetyl-ester. Our first aim was to compare the plasma levels of l-carnitine and ALC, and the l-carnitine/ALC ratio in patients with a current MDE and healthy controls (HCs). Our second aim was to assess their changes after antidepressant treatment. METHODS l-Carnitine and ALC levels and the carnitine/ALC ratio were measured in 460 patients with an MDE in a context of MDD and in 893 HCs. Depressed patients were re-assessed after 3 and 6 months of antidepressant treatment for biology and clinical outcome. RESULTS As compared to HC, depressed patients had lower ALC levels (p < 0.00001), higher l-carnitine levels (p < 0.00001) and higher l-carnitine/ALC ratios (p < 0.00001). ALC levels increased [coefficient: 0.18; 95% confidence interval (CI) 0.12-0.24; p < 0.00001], and l-carnitine levels (coefficient: -0.58; 95% CI -0.75 to -0.41; p < 0.00001) and l-carnitine/ALC ratios (coefficient: -0.41; 95% CI -0.47 to -0.34; p < 0.00001), decreased after treatment. These parameters were completely restored after 6 months of antidepressant. Moreover, the baseline l-carnitine/ALC ratio predicted remission after 3 months of treatment (odds ratio = 1.14; 95% CI 1.03-1.27; p = 0.015). CONCLUSIONS Our data suggest a decreased mitochondrial metabolism of l-carnitine into ALC during MDE. This decreased mitochondrial metabolism is restored after a 6-month antidepressant treatment. Moreover, the magnitude of mitochondrial dysfunction may predict remission after 3 months of antidepressant treatment. New strategies targeting mitochondria should be explored to improve treatments of MDD.
Collapse
Affiliation(s)
- Abd El Kader Ait Tayeb
- CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
| | - Romain Colle
- CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
| | - Khalil El-Asmar
- CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
- Department of Epidemiology and Population Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Kenneth Chappell
- CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
| | - Cécile Acquaviva-Bourdain
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et Pathologie Est, Groupement Hospitalier Est (GHE), Hospices Civils de Lyon, Bron, France
| | - Denis J David
- CESP, MOODS Team, INSERM, Faculté de Pharmacie, Univ Paris-Saclay, Châtenay-Malabry, France
| | - Séverine Trabado
- INSERM UMR-S U1185, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
| | - Philippe Chanson
- INSERM UMR-S U1185, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
- Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
| | - Bruno Feve
- Sorbonne Université-INSERM, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire ICAN, Service d'Endocrinologie, CRMR PRISIS, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris F-75012, France
| | - Laurent Becquemont
- CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
- Centre de Recherche Clinique, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
| | - Céline Verstuyft
- CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
| | - Emmanuelle Corruble
- CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
| |
Collapse
|
15
|
Johnston JN, Greenwald MS, Henter ID, Kraus C, Mkrtchian A, Clark NG, Park LT, Gold P, Zarate CA, Kadriu B. Inflammation, stress and depression: An exploration of ketamine's therapeutic profile. Drug Discov Today 2023; 28:103518. [PMID: 36758932 PMCID: PMC10050119 DOI: 10.1016/j.drudis.2023.103518] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/13/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
Well-established animal models of depression have described a proximal relationship between stress and central nervous system (CNS) inflammation - a relationship mirrored in the peripheral inflammatory biomarkers of individuals with depression. Evidence also suggests that stress-induced proinflammatory states can contribute to the neurobiology of treatment-resistant depression. Interestingly, ketamine, a rapid-acting antidepressant, can partially exert its therapeutic effects via anti-inflammatory actions on the hypothalamic-pituitary adrenal (HPA) axis, the kynurenine pathway or by cytokine suppression. Further investigations into the relationship between ketamine, inflammation and stress could provide insight into ketamine's unique therapeutic mechanisms and stimulate efforts to develop rapid-acting, anti-inflammatory-based antidepressants.
Collapse
Affiliation(s)
- Jenessa N Johnston
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Maximillian S Greenwald
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Ioline D Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Kraus
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Anahit Mkrtchian
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Neil G Clark
- US School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Lawrence T Park
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Philip Gold
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Johnston JN, Kadriu B, Allen J, Gilbert JR, Henter ID, Zarate CA. Ketamine and serotonergic psychedelics: An update on the mechanisms and biosignatures underlying rapid-acting antidepressant treatment. Neuropharmacology 2023; 226:109422. [PMID: 36646310 PMCID: PMC9983360 DOI: 10.1016/j.neuropharm.2023.109422] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The discovery of ketamine as a rapid-acting antidepressant spurred significant research to understand its underlying mechanisms of action and to identify other novel compounds that may act similarly. Serotonergic psychedelics (SPs) have shown initial promise in treating depression, though the challenge of conducting randomized controlled trials with SPs and the necessity of long-term clinical observation are important limitations. This review summarizes the similarities and differences between the psychoactive effects associated with both ketamine and SPs and the mechanisms of action of these compounds, with a focus on the monoaminergic, glutamatergic, gamma-aminobutyric acid (GABA)-ergic, opioid, and inflammatory systems. Both molecular and neuroimaging aspects are considered. While their main mechanisms of action differ-SPs increase serotonergic signaling while ketamine is a glutamatergic modulator-evidence suggests that the downstream mechanisms of action of both ketamine and SPs include mechanistic target of rapamycin complex 1 (mTORC1) signaling and downstream GABAA receptor activity. The similarities in downstream mechanisms may explain why ketamine, and potentially SPs, exert rapid-acting antidepressant effects. However, research on SPs is still in its infancy compared to the ongoing research that has been conducted with ketamine. For both therapeutics, issues with regulation and proper controls should be addressed before more widespread implementation. This article is part of the Special Issue on "Ketamine and its Metabolites".
Collapse
Affiliation(s)
- Jenessa N Johnston
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Josh Allen
- The Alfred Centre, Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.
| | - Jessica R Gilbert
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Ioline D Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Lee JL, Zhang C, Westbrook R, Gabrawy MM, Nidadavolu L, Yang H, Marx R, Wu Y, Anders NM, Ma L, Bichara MD, Kwak MJ, Buta B, Khadeer M, Yenokyan G, Tian J, Xue QL, Siragy HM, Carey RM, de Cabo R, Ferrucci L, Moaddel R, Rudek MA, Le A, Walston JD, Abadir PM. Serum Concentrations of Losartan Metabolites Correlate With Improved Physical Function in a Pilot Study of Prefrail Older Adults. J Gerontol A Biol Sci Med Sci 2022; 77:2356-2366. [PMID: 35511890 PMCID: PMC9799219 DOI: 10.1093/gerona/glac102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 01/20/2023] Open
Abstract
Losartan is an oral antihypertensive agent that is rapidly metabolized to EXP3174 (angiotensin-subtype-1-receptor blocker) and EXP3179 (peroxisome proliferator-activated receptor gamma [PPARγ] agonist), which was shown in animal studies to reduce inflammation, enhance mitochondrial energetics, and improve muscle repair and physical performance. We conducted an exploratory pilot study evaluating losartan treatment in prefrail older adults (age 70-90 years, N = 25). Participants were randomized to control (placebo) or treatment (daily oral losartan beginning at 25 mg per day and increasing every 8 weeks) for a total of 6 months. Fatigue, hyperkalemia, and hypotension were the most observed side effects of losartan treatment. Participants in the losartan group had an estimated 89% lower odds of frailty (95% confidence interval [CI]: 18% to 99% lower odds, p = .03), with a 0.3-point lower frailty score than the placebo group (95% CI: 0.01-0.5 lower odds, p = .04). Frailty score was also negatively associated with serum losartan and EXP3179 concentrations. For every one standard deviation increase in EXP3179 (ie, 0.0011 ng/μL, based on sample values above detection limit) and EXP3174 (ie, 0.27 ng/μL, based on sample values above detection limit), there was a 0.0035 N (95% CI: 0.0019-0.0051, p < .001) and a 0.0027 N (95% CI: 0.00054-0.0043, p = .007) increase in average knee strength, respectively.
Collapse
Affiliation(s)
- Jessica L Lee
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland,USA
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Cissy Zhang
- Department of Oncology, Division of Cancer Chemical and Structural Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Reyhan Westbrook
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mariann M Gabrawy
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lolita Nidadavolu
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Huanle Yang
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruth Marx
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yuqiong Wu
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicole M Anders
- Department of Oncology, Division of Cancer Chemical and Structural Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Analytical Pharmacology Core Laboratory, Clinical Pharmacology, Baltimore, MD, USA
| | - Lina Ma
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, China National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Marcela-Dávalos Bichara
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Min-Ji Kwak
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Brian Buta
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mohammed Khadeer
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Gayane Yenokyan
- Johns Hopkins Biostatistics Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jing Tian
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qian-Li Xue
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Helmy M Siragy
- Department of Medicine, Division of Endocrine and Metabolism, University of Virginia, Charlottesville, Virginia, USA
| | - Robert M Carey
- Department of Medicine, Division of Endocrine and Metabolism, University of Virginia, Charlottesville, Virginia, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Ruin Moaddel
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Michelle A Rudek
- The Johns Hopkins Analytical Pharmacology Core Laboratory, Clinical Pharmacology, Baltimore, MD, USA
- Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anne Le
- The Johns Hopkins Analytical Pharmacology Core Laboratory, Clinical Pharmacology, Baltimore, MD, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeremy D Walston
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter M Abadir
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Almulla AF, Thipakorn Y, Vasupanrajit A, Abo Algon AA, Tunvirachaisakul C, Hashim Aljanabi AA, Oxenkrug G, Al-Hakeim HK, Maes M. The tryptophan catabolite or kynurenine pathway in major depressive and bipolar disorder: A systematic review and meta-analysis. Brain Behav Immun Health 2022; 26:100537. [PMID: 36339964 PMCID: PMC9630622 DOI: 10.1016/j.bbih.2022.100537] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/09/2022] [Indexed: 11/09/2022] Open
Abstract
Background There is now evidence that affective disorders including major depressive disorder (MDD) and bipolar disorder (BD) are mediated by immune-inflammatory and nitro-oxidative pathways. Activation of these pathways may be associated with activation of the tryptophan catabolite (TRYCAT) pathway by inducing indoleamine 2,3-dioxygenase (IDO, the rate-limiting enzyme) leading to depletion of tryptophan (TRP) and increases in tryptophan catabolites (TRYCATs). Aims To systematically review and meta-analyze central and peripheral (free and total) TRP levels, its competing amino-acids (CAAs) and TRYCATs in MDD and BD. Methods This review searched PubMed, Google Scholar and SciFinder and included 121 full-text articles and 15470 individuals, including 8024 MDD/BD patients and 7446 healthy controls. Results TRP levels (either free and total) and the TRP/CAAs ratio were significantly decreased (p < 0.0001) in MDD/BD as compared with controls with a moderate effect size (standardized mean difference for TRP: SMD = -0.513, 95% confidence interval, CI: -0.611; -0.414; and TRP/CAAs: SMD = -0.558, CI: -0.758; -0.358). Kynurenine (KYN) levels were significantly decreased in patients as compared with controls with a small effect size (p < 0.0001, SMD = -0.213, 95%CI: -0.295; -0.131). These differences were significant in plasma (p < 0.0001, SMD = -0.304, 95%CI: -0.415, -0.194) but not in serum (p = 0.054) or the central nervous system (CNS, p = 0.771). The KYN/TRP ratio, frequently used as an index of IDO activity, and neurotoxicity indices based on downstream TRYCATs were unaltered or even lowered in MDD/BD. Conclusions Our findings suggest that MDD and BD are accompanied by TRP depletion without IDO and TRYCAT pathway activation. Lowered TRP availability is probably the consequence of lowered serum albumin during the inflammatory response in affective disorders.
Collapse
Affiliation(s)
- Abbas F. Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yanin Thipakorn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asara Vasupanrajit
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Gregory Oxenkrug
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, 02111, USA
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Department of Psychiatry, IMPACT Strategic Research Centre, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
19
|
Medeiros GC, Gould TD, Prueitt WL, Nanavati J, Grunebaum MF, Farber NB, Singh B, Selvaraj S, Machado-Vieira R, Achtyes ED, Parikh SV, Frye MA, Zarate CA, Goes FS. Blood-based biomarkers of antidepressant response to ketamine and esketamine: A systematic review and meta-analysis. Mol Psychiatry 2022; 27:3658-3669. [PMID: 35760879 PMCID: PMC9933928 DOI: 10.1038/s41380-022-01652-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 02/08/2023]
Abstract
(R,S)-ketamine (ketamine) and its enantiomer (S)-ketamine (esketamine) can produce rapid and substantial antidepressant effects. However, individual response to ketamine/esketamine is variable, and there are no well-accepted methods to differentiate persons who are more likely to benefit. Numerous potential peripheral biomarkers have been reported, but their current utility is unclear. We conducted a systematic review/meta-analysis examining the association between baseline levels and longitudinal changes in blood-based biomarkers, and response to ketamine/esketamine. Of the 5611 citations identified, 56 manuscripts were included (N = 2801 participants), and 26 were compatible with meta-analytical calculations. Random-effect models were used, and effect sizes were reported as standardized mean differences (SMD). Our assessments revealed that more than 460 individual biomarkers were examined. Frequently studied groups included neurotrophic factors (n = 15), levels of ketamine and ketamine metabolites (n = 13), and inflammatory markers (n = 12). There were no consistent associations between baseline levels of blood-based biomarkers, and response to ketamine. However, in a longitudinal analysis, ketamine responders had statistically significant increases in brain-derived neurotrophic factor (BDNF) when compared to pre-treatment levels (SMD [95% CI] = 0.26 [0.03, 0.48], p = 0.02), whereas non-responders showed no significant changes in BDNF levels (SMD [95% CI] = 0.05 [-0.19, 0.28], p = 0.70). There was no consistent evidence to support any additional longitudinal biomarkers. Findings were inconclusive for esketamine due to the small number of studies (n = 2). Despite a diverse and substantial literature, there is limited evidence that blood-based biomarkers are associated with response to ketamine, and no current evidence of clinical utility.
Collapse
Affiliation(s)
- Gustavo C. Medeiros
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Todd D. Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Departments of Pharmacology and Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | | | - Julie Nanavati
- Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael F. Grunebaum
- Columbia University Irving Medical Center and New York State Psychiatric Institute, New York City, NY, USA
| | - Nuri B. Farber
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Balwinder Singh
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Sudhakar Selvaraj
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Rodrigo Machado-Vieira
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Eric D. Achtyes
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA.,Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| | - Sagar V. Parikh
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Carlos A. Zarate
- Experimental Therapeutics & Pathophysiology Branch, NIMH-NIH, Bethesda, MD, USA
| | - Fernando S. Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Correspondence and requests for materials should be addressed to Fernando S. Goes.,
| |
Collapse
|
20
|
Milaneschi Y, Arnold M, Kastenmüller G, Dehkordi SM, Krishnan RR, Dunlop BW, Rush AJ, Penninx BWJH, Kaddurah-Daouk R. Genomics-based identification of a potential causal role for acylcarnitine metabolism in depression. J Affect Disord 2022; 307:254-263. [PMID: 35381295 DOI: 10.1016/j.jad.2022.03.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Altered metabolism of acylcarnitines - transporting fatty acids to mitochondria - may link cellular energy dysfunction to depression. We examined the potential causal role of acylcarnitine metabolism in depression by leveraging genomics and Mendelian randomization. METHODS Summary statistics were obtained from large GWAS: the Fenland Study (N = 9363), and the Psychiatric Genomics Consortium (246,363 depression cases and 561,190 controls). Two-sample Mendelian randomization analyses tested the potential causal link of 15 endogenous acylcarnitines with depression. RESULTS In univariable analyses, genetically-predicted lower levels of short-chain acylcarnitines C2 (odds ratio [OR] 0.97, 95% confidence intervals [CIs] 0.95-1.00) and C3 (OR 0.97, 95%CIs 0.96-0.99) and higher levels of medium-chain acylcarnitines C8 (OR 1.04, 95%CIs 1.01-1.06) and C10 (OR 1.04, 95%CIs 1.02-1.06) were associated with increased depression risk. No reverse potential causal role of depression genetic liability on acylcarnitines levels was found. Multivariable analyses showed that the association with depression was driven by the medium-chain acylcarnitines C8 (OR 1.04, 95%CIs 1.02-1.06) and C10 (OR 1.04, 95%CIs 1.02-1.06), suggesting a potential causal role in the risk of depression. Causal estimates for C8 (OR = 1.05, 95%CIs = 1.02-1.07) and C10 (OR = 1.05, 95%CIs = 1.02-1.08) were confirmed in follow-up analyses using genetic instruments derived from a GWAS meta-analysis including up to 16,841 samples. DISCUSSION Accumulation of medium-chain acylcarnitines is a signature of inborn errors of fatty acid metabolism and age-related metabolic conditions. Our findings point to a link between altered mitochondrial energy production and depression pathogenesis. Acylcarnitine metabolism represents a promising access point for the development of novel therapeutic approaches for depression.
Collapse
Affiliation(s)
- Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, The Netherlands; Amsterdam Neuroscience, Complex Trait Genetics, Amsterdam, The Netherlands.
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Ranga R Krishnan
- Department of Psychiatry, Rush Medical College, Chicago, IL, USA
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - A John Rush
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Duke-National University of Singapore, Singapore; Department of Psychiatry, Texas Tech University, Health Sciences Center, Permian Basin, TX, USA
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Duke Institute of Brain Sciences, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA
| | | |
Collapse
|
21
|
Moaddel R, Zanos P, Farmer CA, Kadriu B, Morris PJ, Lovett J, Acevedo-Diaz EE, Cavanaugh GW, Yuan P, Yavi M, Thomas CJ, Park LT, Ferrucci L, Gould TD, Zarate CA. Comparative metabolomic analysis in plasma and cerebrospinal fluid of humans and in plasma and brain of mice following antidepressant-dose ketamine administration. Transl Psychiatry 2022; 12:179. [PMID: 35501309 PMCID: PMC9061764 DOI: 10.1038/s41398-022-01941-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022] Open
Abstract
Subanesthetic-dose racemic (R,S)-ketamine (ketamine) produces rapid, robust, and sustained antidepressant effects in major depressive disorder (MDD) and bipolar disorder (BD) and has also been shown to effectively treat neuropathic pain, complex regional pain syndrome, and post-traumatic stress disorder (PTSD). However, to date, its mechanism of action remains unclear. Preclinical studies found that (2 R,6 R;2 S,6 S)-hydroxynorketamine (HNK), a major circulating metabolite of ketamine, elicits antidepressant effects similar to those of ketamine. To help determine how (2 R,6 R)-HNK contributes to ketamine's mechanism of action, an exploratory, targeted, metabolomic analysis was carried out on plasma and CSF of nine healthy volunteers receiving a 40-minute ketamine infusion (0.5 mg/kg). A parallel targeted metabolomic analysis in plasma, hippocampus, and hypothalamus was carried out in mice receiving either 10 mg/kg of ketamine, 10 mg/kg of (2 R,6 R)-HNK, or saline. Ketamine and (2 R,6 R)-HNK both affected multiple pathways associated with inflammatory conditions. In addition, several changes were unique to either the healthy human volunteers and/or the mouse arm of the study, indicating that different pathways may be differentially involved in ketamine's effects in mice and humans. Mechanisms of action found to consistently underlie the effects of ketamine and/or (2 R,6 R)-HNK across both the human metabolome in plasma and CSF and the mouse arm of the study included LAT1, IDO1, NAD+, the nitric oxide (NO) signaling pathway, and sphingolipid rheostat.
Collapse
Affiliation(s)
- Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA.
| | - Panos Zanos
- Departments of Psychiatry, Pharmacology, and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
- Department of Psychology, University of Cyprus, 2109, Nicosia, Cyprus
| | - Cristan A Farmer
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Patrick J Morris
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Jacqueline Lovett
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Elia E Acevedo-Diaz
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Grace W Cavanaugh
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Peixiong Yuan
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Mani Yavi
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Lawrence T Park
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Luigi Ferrucci
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Todd D Gould
- Departments of Psychiatry, Pharmacology, and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Liu T, Deng K, Xue Y, Yang R, Yang R, Gong Z, Tang M. Carnitine and Depression. Front Nutr 2022; 9:853058. [PMID: 35369081 PMCID: PMC8964433 DOI: 10.3389/fnut.2022.853058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Depression has become one of the most common mental diseases in the world, but the understanding of its pathogenesis, diagnosis and treatments remains insufficient. Carnitine is a natural substance that exists in organisms, which can be synthesized in vivo or supplemented by intake. Relationships of carnitine with depression, bipolar disorder and other mental diseases have been reported in different studies. Several studies show that the level of acylcarnitines (ACs) changes significantly in patients with depression compared with healthy controls while the supplementation of acetyl-L-carnitine is beneficial to the treatment of depression. In this review, we aimed to clarify the effects of ACs in depressive patients and to explore whether ACs might be the biomarkers for the diagnosis of depression and provide new ideas to treat depression.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Kunhong Deng
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ying Xue
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Rui Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Rong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| |
Collapse
|
23
|
F Guerreiro Costa LN, Carneiro BA, Alves GS, Lins Silva DH, Faria Guimaraes D, Souza LS, Bandeira ID, Beanes G, Miranda Scippa A, Quarantini LC. Metabolomics of Major Depressive Disorder: A Systematic Review of Clinical Studies. Cureus 2022; 14:e23009. [PMID: 35415046 PMCID: PMC8993993 DOI: 10.7759/cureus.23009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2022] [Indexed: 11/24/2022] Open
Abstract
Although the understanding of the pathophysiology of major depressive disorder (MDD) has advanced greatly, this has not been translated into improved outcomes. To date, no biomarkers have been identified for the diagnosis, prognosis, and therapeutic management of MDD. Thus, we aim to review the biomarkers that are differentially expressed in MDD. A systematic review was conducted in January 2022 in the PubMed/MEDLINE, Scopus, Embase, PsycINFO, and Gale Academic OneFile databases for clinical studies published from January 2001 onward using the following terms: "Depression" OR "Depressive disorder" AND "Metabolomic." Multiple metabolites were found at altered levels in MDD, demonstrating the involvement of cellular signaling metabolites, components of the cell membrane, neurotransmitters, inflammatory and immunological mediators, hormone activators and precursors, and sleep controllers. Kynurenine and acylcarnitine were identified as consistent with depression and response to treatment. The most consistent evidence found was regarding kynurenine and acylcarnitine. Although the data obtained allow us to identify how metabolic pathways are affected in MDD, there is still not enough evidence to propose changes to current diagnostic and therapeutic actions. Some limitations are the heterogeneity of studies on metabolites, methods for detection, analyzed body fluids, and treatments used. The experiments contemplated in the review identified increased or reduced levels of metabolites, but not necessarily increased or reduced the activity of the associated pathways. The information acquired through metabolomic analyses does not specify whether the changes identified in the metabolites are a cause or a consequence of the pathology.
Collapse
Affiliation(s)
- Livia N F Guerreiro Costa
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Beatriz A Carneiro
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil, Salvador, BRA
- Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Gustavo S Alves
- Medicine, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Daniel H Lins Silva
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Daniela Faria Guimaraes
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Lucca S Souza
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Igor D Bandeira
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Graziele Beanes
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Angela Miranda Scippa
- Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Departamento de Neurociências e Saúde Mental, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Lucas C Quarantini
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Departamento de Neurociências e Saúde Mental, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| |
Collapse
|
24
|
Kojic M, Saelens J, Kadriu B, Zarate CA, Kraus C. Ketamine for Depression: Advances in Clinical Treatment, Rapid Antidepressant Mechanisms of Action, and a Contrast with Serotonergic Psychedelics. Curr Top Behav Neurosci 2022; 56:141-167. [PMID: 35312993 PMCID: PMC10500612 DOI: 10.1007/7854_2022_313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The approval of ketamine for treatment-resistant depression has created a model for a novel class of rapid-acting glutamatergic antidepressants. Recent research into other novel rapid-acting antidepressants - most notably serotonergic psychedelics (SPs) - has also proven promising. Presently, the mechanisms of action of these substances are under investigation to improve these novel treatments, which also exhibit considerable side effects such as dissociation. This chapter lays out the historical development of ketamine as an antidepressant, outlines its efficacy and safety profile, reviews the evidence for ketamine's molecular mechanism of action, and compares it to the proposed mechanism of SPs. The evidence suggests that although ketamine and SPs act on distinct primary targets, both may lead to rapid restoration of synaptic deficits and downstream network reconfiguration. In both classes of drugs, a glutamate surge activates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) throughput and increases in brain-derived neurotrophic factor (BDNF) levels. Taken together, these novel antidepressant mechanisms may serve as a framework to explain the rapid and sustained antidepressant effects of ketamine and may be crucial for developing new rapid-acting antidepressants with an improved side effect profile.
Collapse
Affiliation(s)
- Marina Kojic
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Johan Saelens
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Bashkim Kadriu
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Neuroscience, Janssen Research & Development, LLC, San Diego, CA, USA
| | - Carlos A Zarate
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Hung CI, Lin G, Chiang MH, Chiu CY. Metabolomics-based discrimination of patients with remitted depression from healthy controls using 1H-NMR spectroscopy. Sci Rep 2021; 11:15608. [PMID: 34341439 PMCID: PMC8329159 DOI: 10.1038/s41598-021-95221-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022] Open
Abstract
The aim of the study was to investigate differences in metabolic profiles between patients with major depressive disorder (MDD) with full remission (FR) and healthy controls (HCs). A total of 119 age-matched MDD patients with FR (n = 47) and HCs (n = 72) were enrolled and randomly split into training and testing sets. A 1H-nuclear magnetic resonance (NMR) spectroscopy-based metabolomics approach was used to identify differences in expressions of plasma metabolite biomarkers. Eight metabolites, including histidine, succinic acid, proline, acetic acid, creatine, glutamine, glycine, and pyruvic acid, were significantly differentially-expressed in the MDD patients with FR in comparison with the HCs. Metabolic pathway analysis revealed that pyruvate metabolism via the tricarboxylic acid cycle linked to amino acid metabolism was significantly associated with the MDD patients with FR. An algorithm based on these metabolites employing a linear support vector machine differentiated the MDD patients with FR from the HCs with a predictive accuracy, sensitivity, and specificity of nearly 0.85. A metabolomics-based approach could effectively differentiate MDD patients with FR from HCs. Metabolomic signatures might exist long-term in MDD patients, with metabolic impacts on physical health even in patients with FR.
Collapse
Affiliation(s)
- Ching-I Hung
- Department of Psychiatry, Chang-Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Gigin Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Medical Imaging and Intervention, Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
| | - Meng-Han Chiang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Medical Imaging and Intervention, Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
| | - Chih-Yung Chiu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC.
- Division of Pediatric Pulmonology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, 5 Fu-Shing St., Kweishan, Taoyuan, 333, Taiwan, ROC.
| |
Collapse
|
26
|
Marx W, McGuinness AJ, Rocks T, Ruusunen A, Cleminson J, Walker AJ, Gomes-da-Costa S, Lane M, Sanches M, Diaz AP, Tseng PT, Lin PY, Berk M, Clarke G, O'Neil A, Jacka F, Stubbs B, Carvalho AF, Quevedo J, Soares JC, Fernandes BS. The kynurenine pathway in major depressive disorder, bipolar disorder, and schizophrenia: a meta-analysis of 101 studies. Mol Psychiatry 2021; 26:4158-4178. [PMID: 33230205 DOI: 10.1038/s41380-020-00951-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/29/2020] [Accepted: 11/02/2020] [Indexed: 12/29/2022]
Abstract
The importance of tryptophan as a precursor for neuroactive compounds has long been acknowledged. The metabolism of tryptophan along the kynurenine pathway and its involvement in mental disorders is an emerging area in psychiatry. We performed a meta-analysis to examine the differences in kynurenine metabolites in major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ). Electronic databases were searched for studies that assessed metabolites involved in the kynurenine pathway (tryptophan, kynurenine, kynurenic acid, quinolinic acid, 3-hydroxykynurenine, and their associate ratios) in people with MDD, SZ, or BD, compared to controls. We computed the difference in metabolite concentrations between people with MDD, BD, or SZ, and controls, presented as Hedges' g with 95% confidence intervals. A total of 101 studies with 10,912 participants were included. Tryptophan and kynurenine are decreased across MDD, BD, and SZ; kynurenic acid and the kynurenic acid to quinolinic acid ratio are decreased in mood disorders (i.e., MDD and BD), whereas kynurenic acid is not altered in SZ; kynurenic acid to 3-hydroxykynurenine ratio is decreased in MDD but not SZ. Kynurenic acid to kynurenine ratio is decreased in MDD and SZ, and the kynurenine to tryptophan ratio is increased in MDD and SZ. Our results suggest that there is a shift in the tryptophan metabolism from serotonin to the kynurenine pathway, across these psychiatric disorders. In addition, a differential pattern exists between mood disorders and SZ, with a preferential metabolism of kynurenine to the potentially neurotoxic quinolinic acid instead of the neuroprotective kynurenic acid in mood disorders but not in SZ.
Collapse
Affiliation(s)
- Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Amelia J McGuinness
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Tetyana Rocks
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Anu Ruusunen
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Department of Psychiatry, Kuopio University Hospital, Kuopio, Finland
| | - Jasmine Cleminson
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adam J Walker
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Susana Gomes-da-Costa
- Bipolar and Depression Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Melissa Lane
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Marsal Sanches
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Alexandre P Diaz
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Ping-Tao Tseng
- Institute of Biomedical Sciences and Prospect Clinic for Otorhinolaryngology & Neurology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice Jacka
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.,South London and Maudsley NHS Foundation Trust, London, UK
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - João Quevedo
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Jair C Soares
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Brisa S Fernandes
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA. .,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| |
Collapse
|
27
|
The kynurenine pathway and bipolar disorder: intersection of the monoaminergic and glutamatergic systems and immune response. Mol Psychiatry 2021; 26:4085-4095. [PMID: 31732715 PMCID: PMC7225078 DOI: 10.1038/s41380-019-0589-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Abstract
Dysfunction in a wide array of systems-including the immune, monoaminergic, and glutamatergic systems-is implicated in the pathophysiology of depression. One potential intersection point for these three systems is the kynurenine (KYN) pathway. This study explored the impact of the prototypic glutamatergic modulator ketamine on the endogenous KYN pathway in individuals with bipolar depression (BD), as well as the relationship between response to ketamine and depression-related behavioral and peripheral inflammatory markers. Thirty-nine participants with treatment-resistant BD (23 F, ages 18-65) received a single ketamine infusion (0.5 mg/kg) over 40 min. KYN pathway analytes-including plasma concentrations of indoleamine 2,3-dioxygenase (IDO), KYN, kynurenic acid (KynA), and quinolinic acid (QA)-were assessed at baseline (pre-infusion), 230 min, day 1, and day 3 post-ketamine. General linear models with restricted maximum likelihood estimation and robust sandwich variance estimators were implemented. A repeated effect of time was used to model the covariance of the residuals with an unstructured matrix. After controlling for age, sex, and body mass index (BMI), post-ketamine IDO levels were significantly lower than baseline at all three time points. Conversely, ketamine treatment significantly increased KYN and KynA levels at days 1 and 3 versus baseline. No change in QA levels was observed post-ketamine. A lower post-ketamine ratio of QA/KYN was observed at day 1. In addition, baseline levels of proinflammatory cytokines and behavioral measures predicted KYN pathway changes post ketamine. The results suggest that, in addition to having rapid and sustained antidepressant effects in BD participants, ketamine also impacts key components of the KYN pathway.
Collapse
|
28
|
Kopra E, Mondelli V, Pariante C, Nikkheslat N. Ketamine's effect on inflammation and kynurenine pathway in depression: A systematic review. J Psychopharmacol 2021; 35:934-945. [PMID: 34180293 PMCID: PMC8358579 DOI: 10.1177/02698811211026426] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ketamine is a novel rapid-acting antidepressant with high efficacy in treatment-resistant patients. Its exact therapeutic mechanisms of action are unclear; however, in recent years its anti-inflammatory properties and subsequent downstream effects on tryptophan (TRP) metabolism have sparked research interest. AIM This systematic review examined the effect of ketamine on inflammatory markers and TRP-kynurenine (KYN) pathway metabolites in patients with unipolar and bipolar depression and in animal models of depression. METHODS MEDLINE, Embase, and PsycINFO databases were searched on October 2020 (1806 to 2020). RESULTS Out of 807 initial results, nine human studies and 22 animal studies on rodents met the inclusion criteria. Rodent studies provided strong support for ketamine-induced decreases in pro-inflammatory cytokines, namely in interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α and indicated anti-inflammatory effects on TRP metabolism, including decreases in the enzyme indoleamine 2,3-dioxygenase (IDO). Clinical evidence was less robust with high heterogeneity between sample characteristics, but most experiments demonstrated decreases in peripheral inflammation including in IL-1β, IL-6, and TNF-α. Preliminary support was also found for reduced activation of the neurotoxic arm of the KYN pathway. CONCLUSION Ketamine appears to induce anti-inflammatory effects in at least a proportion of depressed patients. Suggestions for future research include investigation of markers in the central nervous system and examination of clinical relevance of inflammatory changes.
Collapse
Affiliation(s)
- Emma Kopra
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, UK
| | - Carmine Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, UK
| | - Naghmeh Nikkheslat
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
29
|
Alhazzani K, Alotaibi MR, Alotaibi FN, Aljerian K, As Sobeai HM, Alhoshani AR, Alanazi AZ, Alanazi WA, Alswayyed M. Protective effect of valsartan against doxorubicin-induced cardiotoxicity: Histopathology and metabolomics in vivo study. J Biochem Mol Toxicol 2021; 35:e22842. [PMID: 34273911 DOI: 10.1002/jbt.22842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/08/2021] [Accepted: 07/01/2021] [Indexed: 12/28/2022]
Abstract
Doxorubicin (DOX) treatment has been associated with cardiotoxicity. Therefore, it is crucial to search for a therapeutic that can effectively mitigate DOX-induced cardiotoxicity. This study was conducted to investigate the protective effects of valsartan (VAL) against DOX-induced cardiotoxicity. Sprague-Dawley rats were divided into four treatment groups: Group I: Control, Group II: VAL (30 mg/kg, ip), Group III: DOX (15 mg/kg, ip), and Group IV: VAL + DOX (30 + 15 mg/kg, ip). All groups were treated every other day for 14 days. Blood was isolated for biochemical and metabolomics studies, and sections of the heart were also analyzed for histopathological and immunohistochemical alterations to detect changes in P53, BAX, BCL-2, and P62 expression. The combination of VAL + DOX resulted in a marked decrease in cardiac biomarker enzymes (aminotransferase and creatine phosphokinase) compared to DOX monotherapy. In addition, the histopathological examination of the VAL + DOX combination revealed a low percentage of fibrosis and inflammation. Immunohistochemical expression of p53 and BAX was significantly reduced, whereas BCL-2 expression was significantly increased in the VAL + DOX treatment group compared to DOX monotherapy. Also, the combination of VAL + DOX reverses the negative effect of DOX on nuclear p62 expression. Analysis of serum metabolites showed that DOX monotherapy reduced the number of several amino acids, whereas the combination of VAL + DOX restored these metabolic pathways. This study revealed the potential cardioprotective effect of VAL, which may provide novel and promising approaches for managing cardiotoxicity induced by DOX.
Collapse
Affiliation(s)
- Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faisal N Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khaldoon Aljerian
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Homood M As Sobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali R Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael A Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Alswayyed
- Department of Pathology and Laboratory Medicine, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Lucido MJ, Bekhbat M, Goldsmith DR, Treadway MT, Haroon E, Felger JC, Miller AH. Aiding and Abetting Anhedonia: Impact of Inflammation on the Brain and Pharmacological Implications. Pharmacol Rev 2021; 73:1084-1117. [PMID: 34285088 PMCID: PMC11060479 DOI: 10.1124/pharmrev.120.000043] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Exogenous administration of inflammatory stimuli to humans and laboratory animals and chronic endogenous inflammatory states lead to motivational deficits and ultimately anhedonia, a core and disabling symptom of depression present in multiple other psychiatric disorders. Inflammation impacts neurotransmitter systems and neurocircuits in subcortical brain regions including the ventral striatum, which serves as an integration point for reward processing and motivational decision-making. Many mechanisms contribute to these effects of inflammation, including decreased synthesis, release and reuptake of dopamine, increased synaptic and extrasynaptic glutamate, and activation of kynurenine pathway metabolites including quinolinic acid. Neuroimaging data indicate that these inflammation-induced neurotransmitter effects manifest as decreased activation of ventral striatum and decreased functional connectivity in reward circuitry involving ventral striatum and ventromedial prefrontal cortex. Neurocircuitry changes in turn mediate nuanced effects on motivation that include decreased willingness to expend effort for reward while maintaining the ability to experience reward. Taken together, the data reveal an inflammation-induced pathophysiologic phenotype that is agnostic to diagnosis. Given the many mechanisms involved, this phenotype represents an opportunity for development of novel and/or repurposed pharmacological strategies that target inflammation and associated cellular and systemic immunometabolic changes and their downstream effects on the brain. To date, clinical trials have failed to capitalize on the unique nature of this transdiagnostic phenotype, leaving the field bereft of interpretable data for meaningful clinical application. However, novel trial designs incorporating established targets in the brain and/or periphery using relevant outcome variables (e.g., anhedonia) are the future of targeted therapy in psychiatry. SIGNIFICANCE STATEMENT: Emerging understanding of mechanisms by which peripheral inflammation can affect the brain and behavior has created unprecedented opportunities for development of pharmacological strategies to treat deficits in motivation including anhedonia, a core and disabling symptom of depression well represented in multiple psychiatric disorders. Mechanisms include inflammation and cellular and systemic immunometabolism and alterations in dopamine, glutamate, and kynurenine metabolites, revealing a target-rich environment that nevertheless has yet to be fully exploited by current clinical trial designs and drugs employed.
Collapse
Affiliation(s)
- Michael J Lucido
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Mandy Bekhbat
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - David R Goldsmith
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Michael T Treadway
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Ebrahim Haroon
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Jennifer C Felger
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Andrew H Miller
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| |
Collapse
|
31
|
Rhein C, Zoicas I, Marx LM, Zeitler S, Hepp T, von Zimmermann C, Mühle C, Richter-Schmidinger T, Lenz B, Erim Y, Reichel M, Gulbins E, Kornhuber J. mRNA Expression of SMPD1 Encoding Acid Sphingomyelinase Decreases upon Antidepressant Treatment. Int J Mol Sci 2021; 22:ijms22115700. [PMID: 34071826 PMCID: PMC8198802 DOI: 10.3390/ijms22115700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/14/2021] [Accepted: 05/23/2021] [Indexed: 12/24/2022] Open
Abstract
Major depressive disorder (MDD) is a severe psychiatric condition with key symptoms of low mood and lack of motivation, joy, and pleasure. Recently, the acid sphingomyelinase (ASM)/ceramide system has been implicated in the pathogenesis of MDD. ASM is a lysosomal glycoprotein that catalyzes the hydrolysis of sphingomyelin, an abundant component of membranes, into the bioactive sphingolipid ceramide, which impacts signaling pathways. ASM activity is inhibited by several common antidepressant drugs. Human and murine studies have confirmed that increased ASM activity and ceramide levels are correlated with MDD. To define a molecular marker for treatment monitoring, we investigated the mRNA expression of SMPD1, which encodes ASM, in primary cell culture models, a mouse study, and a human study with untreated MDD patients before and after antidepressive treatment. Our cell culture study showed that a common antidepressant inhibited ASM activity at the enzymatic level and also at the transcriptional level. In a genetically modified mouse line with depressive-like behavior, Smpd1 mRNA expression in dorsal hippocampal tissue was significantly decreased after treatment with a common antidepressant. The large human study showed that SMPD1 mRNA expression in untreated MDD patients decreased significantly after antidepressive treatment. This translational study shows that SMPD1 mRNA expression could serve as a molecular marker for treatment and adherence monitoring of MDD.
Collapse
Affiliation(s)
- Cosima Rhein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany; (T.H.); (Y.E.)
- Correspondence: ; Tel.: +49-9131-85-44542
| | - Iulia Zoicas
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
| | - Lena M. Marx
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
| | - Stefanie Zeitler
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
| | - Tobias Hepp
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany; (T.H.); (Y.E.)
- Institute of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany
| | - Claudia von Zimmermann
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
| | - Tanja Richter-Schmidinger
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, D-68159 Mannheim, Germany
| | - Yesim Erim
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany; (T.H.); (Y.E.)
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
| | - Erich Gulbins
- Department of Molecular Biology, University Hospital, University of Duisburg-Essen, D-45147 Essen, Germany;
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany; (I.Z.); (L.M.M.); (S.Z.); (C.v.Z.); (C.M.); (T.R.-S.); (B.L.); (M.R.); (J.K.)
| |
Collapse
|
32
|
The kynurenine pathway in major depression: What we know and where to next. Neurosci Biobehav Rev 2021; 127:917-927. [PMID: 34029552 DOI: 10.1016/j.neubiorev.2021.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022]
Abstract
Major depression is a serious psychiatric disorder, occurring in up to 20 % of the population. Despite its devastating burden, the neurobiological changes associated with depression are not fully understood. A growing body of evidence suggests the kynurenine pathway is implicated in the pathophysiology of depression. In this review, we bring together the literature examining elements of the kynurenine pathway in depression and explore the implications for the pathophysiology and treatment of depression, while highlighting the gaps in the current knowledge. Current research indicates an increased potential for neurotoxic activity of the kynurenine pathway in peripheral blood samples but an increased activation of the putative neuroprotective arm in some brain regions in depression. The disconnect between these findings requires further investigation, with a greater research effort on elucidating the central effects of the kynurenine pathway in driving depression symptomology. Research investigating the benefits of targeting the kynurenine pathway centred on human brain findings and the heterogenous subtypes of depression will help guide the identification of effective drug targets in depression.
Collapse
|
33
|
MahmoudianDehkordi S, Ahmed AT, Bhattacharyya S, Han X, Baillie RA, Arnold M, Skime MK, John-Williams LS, Moseley MA, Thompson JW, Louie G, Riva-Posse P, Craighead WE, McDonald W, Krishnan R, Rush AJ, Frye MA, Dunlop BW, Weinshilboum RM, Kaddurah-Daouk R. Alterations in acylcarnitines, amines, and lipids inform about the mechanism of action of citalopram/escitalopram in major depression. Transl Psychiatry 2021; 11:153. [PMID: 33654056 PMCID: PMC7925685 DOI: 10.1038/s41398-020-01097-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 10/01/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for major depressive disorder (MDD), yet their mechanisms of action are not fully understood and their therapeutic benefit varies among individuals. We used a targeted metabolomics approach utilizing a panel of 180 metabolites to gain insights into mechanisms of action and response to citalopram/escitalopram. Plasma samples from 136 participants with MDD enrolled into the Mayo Pharmacogenomics Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS) were profiled at baseline and after 8 weeks of treatment. After treatment, we saw increased levels of short-chain acylcarnitines and decreased levels of medium-chain and long-chain acylcarnitines, suggesting an SSRI effect on β-oxidation and mitochondrial function. Amines-including arginine, proline, and methionine sulfoxide-were upregulated while serotonin and sarcosine were downregulated, suggesting an SSRI effect on urea cycle, one-carbon metabolism, and serotonin uptake. Eighteen lipids within the phosphatidylcholine (PC aa and ae) classes were upregulated. Changes in several lipid and amine levels correlated with changes in 17-item Hamilton Rating Scale for Depression scores (HRSD17). Differences in metabolic profiles at baseline and post-treatment were noted between participants who remitted (HRSD17 ≤ 7) and those who gained no meaningful benefits (<30% reduction in HRSD17). Remitters exhibited (a) higher baseline levels of C3, C5, alpha-aminoadipic acid, sarcosine, and serotonin; and (b) higher week-8 levels of PC aa C34:1, PC aa C34:2, PC aa C36:2, and PC aa C36:4. These findings suggest that mitochondrial energetics-including acylcarnitine metabolism, transport, and its link to β-oxidation-and lipid membrane remodeling may play roles in SSRI treatment response.
Collapse
Affiliation(s)
- Siamak MahmoudianDehkordi
- grid.26009.3d0000 0004 1936 7961Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC USA
| | - Ahmed T. Ahmed
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN USA
| | - Sudeepa Bhattacharyya
- grid.252381.f0000 0001 2169 5989Department of Biological Sciences and Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR USA
| | - Xianlin Han
- grid.267309.90000 0001 0629 5880University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | | | - Matthias Arnold
- grid.26009.3d0000 0004 1936 7961Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC USA ,grid.4567.00000 0004 0483 2525Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michelle K. Skime
- grid.66875.3a0000 0004 0459 167XDepartment of Psychiatry and Psychology, Mayo Clinic, Rochester, MN USA
| | - Lisa St. John-Williams
- grid.26009.3d0000 0004 1936 7961Proteomics and Metabolomics Shared Resource, Center for Genomic and Computational Biology, Duke University, Durham, NC 27710 USA
| | - M. Arthur Moseley
- grid.26009.3d0000 0004 1936 7961Proteomics and Metabolomics Shared Resource, Center for Genomic and Computational Biology, Duke University, Durham, NC 27710 USA
| | - J. Will Thompson
- grid.26009.3d0000 0004 1936 7961Proteomics and Metabolomics Shared Resource, Center for Genomic and Computational Biology, Duke University, Durham, NC 27710 USA
| | - Gregory Louie
- grid.26009.3d0000 0004 1936 7961Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC USA
| | - Patricio Riva-Posse
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - W. Edward Craighead
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - William McDonald
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - Ranga Krishnan
- grid.262743.60000000107058297Department of Psychiatry, Rush Medical College, Chicago, IL USA
| | - A. John Rush
- grid.26009.3d0000 0004 1936 7961Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC USA ,grid.26009.3d0000 0004 1936 7961Professor Emeritus, Department of Pediatrics, Duke University School of Medicine, Durham, NC USA ,grid.416992.10000 0001 2179 3554Department of Psychiatry, Texas Tech University, Health Sciences Center, Permian Basin, TX USA
| | - Mark A. Frye
- grid.66875.3a0000 0004 0459 167XDepartment of Psychiatry and Psychology, Mayo Clinic, Rochester, MN USA
| | - Boadie W. Dunlop
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - Richard M. Weinshilboum
- grid.66875.3a0000 0004 0459 167XDepartment of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC, USA. .,Department of Medicine, Duke University, Durham, NC, USA. .,Duke Institute of Brain Sciences, Duke University, Durham, NC, USA.
| | | |
Collapse
|
34
|
Yamaguchi Y, Zampino M, Moaddel R, Chen TK, Tian Q, Ferrucci L, Semba RD. Plasma metabolites associated with chronic kidney disease and renal function in adults from the Baltimore Longitudinal Study of Aging. Metabolomics 2021; 17:9. [PMID: 33428023 PMCID: PMC9220986 DOI: 10.1007/s11306-020-01762-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Chronic kidney disease (CKD) is an important cause of disability and death, but its pathogenesis is poorly understood. Plasma metabolites can provide insights into underlying processes associated with CKD. OBJECTIVES To clarify the relationship of plasma metabolites with CKD and renal function in human. METHODS We used a targeted metabolomics approach to characterize the relationship of 450 plasma metabolites with CKD and estimated glomerular filtration rate (eGFR) in 616 adults, aged 38-94 years, who participated in the Baltimore Longitudinal Study of Aging. RESULTS There were 74 (12.0%) adults with CKD. Carnitine, acetylcarnitine, propionylcarnitine, butyrylcarnitine, trigonelline, trimethylamine N-oxide (TMAO), 1-methylhistidine, citrulline, homoarginine, homocysteine, sarcosine, symmetric dimethylarginine, aspartate, phenylalanine, taurodeoxycholic acid, 3-indolepropionic acid, phosphatidylcholines (PC).aa.C40:2, PC.aa.C40:3, PC.ae.C40:6, triglycerides (TG) 20:4/36:3, TG 20:4/36:4, and choline were associated with higher odds of CKD in multivariable analyses adjusting for potential confounders and using a false discovery rate (FDR) to address multiple testing. Six acylcarnitines, trigonelline, TMAO, 18 amino acids and biogenic amines, taurodeoxycholic acid, hexoses, cholesteryl esters 22:6, dehydroepiandrosterone sulfate, 3-indolepropionic acid, 2 PCs, 17 TGs, and choline were negatively associated with eGFR, and hippuric acid was positively associated with eGFR in multivariable analyses adjusting for potential confounders and using a FDR approach. CONCLUSION The metabolites associated with CKD and reduced eGFR suggest that several pathways, such as the urea cycle, the arginine-nitric oxide pathway, the polyamine pathway, and short chain acylcarnitine metabolism are altered in adults with CKD and impaired renal function.
Collapse
Affiliation(s)
- Yuko Yamaguchi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Smith Building, M015, 400 N. Broadway, Baltimore, MD, 21287, USA.
| | - Marta Zampino
- National Institutes On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ruin Moaddel
- National Institutes On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Teresa K Chen
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Qu Tian
- National Institutes On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Luigi Ferrucci
- National Institutes On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Smith Building, M015, 400 N. Broadway, Baltimore, MD, 21287, USA
| |
Collapse
|
35
|
Du Y, Wei J, Zhang Z, Yang X, Wang M, Wang Y, Qi X, Zhao L, Tian Y, Guo W, Wang Q, Deng W, Li M, Lin D, Li T, Ma X. Plasma Metabolomics Profiling of Metabolic Pathways Affected by Major Depressive Disorder. Front Psychiatry 2021; 12:644555. [PMID: 34646171 PMCID: PMC8502978 DOI: 10.3389/fpsyt.2021.644555] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/17/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Major depressive disorder (MDD) is a common disease which is complicated by metabolic disorder. Although MDD has been studied relatively intensively, its metabolism is yet to be elucidated. Methods: To profile the global pathophysiological processes of MDD patients, we used metabolomics to identify differential metabolites and applied a new database Metabolite set enrichment analysis (MSEA) to discover dysfunctions of metabolic pathways of this disease. Hydrophilic metabolomics were applied to identify metabolites by profiling the plasma from 55 MDD patients and 100 sex-, gender-, BMI-matched healthy controls. The metabolites were then analyzed in MSEA in an attempt to discover different metabolic pathways. To investigate dysregulated pathways, we further divided MDD patients into two cohorts: (1) MDD patients with anxiety symptoms and (2) MDD patients without anxiety symptoms. Results: Metabolites which were hit in those pathways correlated with depressive and anxiety symptoms. Altogether, 17 metabolic pathways were enriched in MDD patients, and 23 metabolites were hit in those pathways. Three metabolic pathways were enriched in MDD patients without anxiety, including glycine and serine metabolism, arginine and proline metabolism, and phenylalanine and tyrosine metabolism. In addition, L-glutamic acid was positively correlated with the severity of depression and retardation if hit in MDD patients without anxiety symptoms. Conclusions: Different kinds of metabolic pathophysiological processes were found in MDD patients. Disorder of glycine and serine metabolism was observed in both MDD patients with anxiety and those without.
Collapse
Affiliation(s)
- Yue Du
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jinxue Wei
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Zijian Zhang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Yang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Min Wang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yu Wang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiongwei Qi
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Liansheng Zhao
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yang Tian
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Wanjun Guo
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Wang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Deng
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Minli Li
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Dongtao Lin
- College of Foreign Languages and Cultures, Sichuan University, Chengdu, China
| | - Tao Li
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Fan M, Gao X, Li L, Ren Z, Lui LMW, McIntyre RS, Teopiz KM, Deng P, Cao B. The Association Between Concentrations of Arginine, Ornithine, Citrulline and Major Depressive Disorder: A Meta-Analysis. Front Psychiatry 2021; 12:686973. [PMID: 34867503 PMCID: PMC8636832 DOI: 10.3389/fpsyt.2021.686973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
Alterations in the peripheral (e.g., serum, plasma, platelet) concentrations of arginine and its related catabolic products (i.e., ornithine, citrulline) in the urea and nitric oxide cycles have been reported to be associated with major depressive disorder (MDD). The meta-analysis herein aimed to explore the association between the concentration of peripheral arginine, its catabolic products and MDD, as well as to discuss the possible role of arginine catabolism in the onset and progression of MDD. PubMed, EMBASE, PsycINFO and Web of Science were searched from inception to June 2020. The protocol for the meta-analysis herein has been registered at the Open Science Framework [https://doi.org/10.17605/osf.io/7fn59]. In total, 745 (47.5%) subjects with MDD and 823 (52.5%) healthy controls (HCs) from 13 articles with 16 studies were included. Fifteen of the included studies assessed concentrations of peripheral arginine, eight assessed concentrations of ornithine, and six assessed concentrations of citrulline. Results indicated that: (1) the concentrations of arginine, ornithine, and citrulline were not significantly different between individuals with MDD and HCs when serum, plasma and platelet are analyzed together, (2) in the subgroups of serum samples, the concentrations of arginine were lower in individuals with MDD than HCs, and (3) concurrent administration of psychotropic medications may be a confounding variable affecting the concentrations of arginine, ornithine, and citrulline. Our findings herein do not support the hypothesis that arginine catabolism between individuals with MDD and HCs are significantly different. The medication status and sample types should be considered as a key future research avenue for assessing arginine catabolism in MDD.
Collapse
Affiliation(s)
- Mingyue Fan
- Department of Public Health and Management, Chongqing Three Gorges Medical College, Chongqing, China
| | - Xiao Gao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, China.,National Demonstration Center for Experimental Psychology Education, Southwest University, Chongqing, China
| | - Li Li
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, China
| | - Zhongyu Ren
- College of Physical Education, Southwest University, Chongqing, China
| | - Leanna M W Lui
- Mood Disorders Psychopharmacology Unit, Toronto, ON, Canada
| | | | - Kayla M Teopiz
- Mood Disorders Psychopharmacology Unit, Toronto, ON, Canada
| | - Peng Deng
- Yubei Center for Disease Control and Prevention, Chongqing, China
| | - Bing Cao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, China.,National Demonstration Center for Experimental Psychology Education, Southwest University, Chongqing, China
| |
Collapse
|
37
|
Cross-sectional analysis of plasma and CSF metabolomic markers in Huntington's disease for participants of varying functional disability: a pilot study. Sci Rep 2020; 10:20490. [PMID: 33235276 PMCID: PMC7686309 DOI: 10.1038/s41598-020-77526-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/04/2020] [Indexed: 01/24/2023] Open
Abstract
Huntington’s Disease (HD) is a progressive, fatal neurodegenerative condition. While generally considered for its devastating neurological phenotype, disturbances in other organ systems and metabolic pathways outside the brain have attracted attention for possible relevance to HD pathology, potential as therapeutic targets, or use as biomarkers of progression. In addition, it is not established how metabolic changes in the HD brain correlate to progression across the full spectrum of early to late-stage disease. In this pilot study, we sought to explore the metabolic profile across manifest HD from early to advanced clinical staging through metabolomic analysis by mass spectrometry in plasma and cerebrospinal fluid (CSF). With disease progression, we observed nominally significant increases in plasma arginine, citrulline, and glycine, with decreases in total and d-serine, cholesterol esters, diacylglycerides, triacylglycerides, phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins. In CSF, worsening disease was associated with nominally significant increases in NAD+, arginine, saturated long chain free fatty acids, diacylglycerides, triacylglycerides, and sphingomyelins. Notably, diacylglycerides and triacylglyceride species associated with clinical progression were different between plasma and CSF, suggesting different metabolic preferences for these compartments. Increasing NAD+ levels strongly correlating with disease progression was an unexpected finding. Our data suggest that defects in the urea cycle, glycine, and serine metabolism may be underrecognized in the progression HD pathology, and merit further study for possible therapeutic relevance.
Collapse
|
38
|
Gao Y, Mu J, Xu T, Linghu T, Zhao H, Tian J, Qin X. Metabolomic analysis of the hippocampus in a rat model of chronic mild unpredictable stress-induced depression based on a pathway crosstalk and network module approach. J Pharm Biomed Anal 2020; 193:113755. [PMID: 33190083 DOI: 10.1016/j.jpba.2020.113755] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/16/2020] [Accepted: 11/04/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND The molecular alterations underlying the pathogenesis of depression have not been systematically defined. Increasing evidence suggests that hippocampus metabolism is strongly involved in the pathogenesis of chronic mild unpredictable stress (CUMS)-induced depression. The principal objective of this study was to reveal important information concerning the pathogenesis of depression through a comprehensive analysis of metabolites in the hippocampus in a CUMS rat model. METHODS Metabolites related to metabolic changes in the hippocampus in the CUMS model were collected from a depression-specific database and published literature. Potential metabolite pathways were identified by the Omicsolution tool. Then, crosstalk analysis was carried out to investigate the relationship between different important pathways. In addition, MetaboAnalyst was used to analyze potential metabolites for drug-related metabolite enrichment analysis, which was used to study hippocampus metabolite-related drug pathways in a CUMS model. Then, a metabolite-protein interaction (MPI) network was constructed and analyzed to identify important metabolites and proteins. The functional modules were extracted using the CNM network decomposition algorithm. Finally, neurotransmitters in the hippocampus of rats with CUMS depression were detected to verify the important pathways. RESULTS In the current study, 53 significantly enriched pathways related to the 107 identified metabolites were selected, and the top ranked enriched pathways included arginine and proline metabolism, neuroactive ligand-receptor interaction, phenylalanine metabolism, bile secretion, and glutathione metabolism. Pathway crosstalk analysis showed that the significantly enriched pathways were divided into two interrelated modules, which were mainly involved in metabolism, signal transduction, neurotransmitters, and the endocrine system. Enrichment analysis of drug-related metabolic KEGG pathways identified the antibiotic pathways as the most important pathways. In the MPI network, the hub metabolites were phosphate, arachidonic acid, oxoglutaric acid, l-glutamic acid, and glutathione, and the hub proteins were Got1, Got2, Tat, Ccbl1, Ccbl2, Il4i1. A total of 16 functional modules were extracted from the MPI network by using the CNM algorithm. Finally, metabolites related to serotonergic synapses, dopaminergic synapses, and glutamatergic synapses were found to be involved in the pathology of depression. CONCLUSION We found that neurotransmitter pathways (serotonergic synapses, dopaminergic synapses and glutamatergic synapses) in the hippocampus play a crucial role in the underlying molecular mechanism of depression, which provides useful clues for identifying the detailed depression-associated metabolic profiles.
Collapse
Affiliation(s)
- Yao Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Taiyuan, 030006, Shanxi, China
| | - Junfang Mu
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Teng Xu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Taiyuan, 030006, Shanxi, China
| | - Ting Linghu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Taiyuan, 030006, Shanxi, China
| | - Huiliang Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Taiyuan, 030006, Shanxi, China
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Taiyuan, 030006, Shanxi, China.
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
39
|
Westbrook R, Chung T, Lovett J, Ward C, Joca H, Yang H, Khadeer M, Tian J, Xue QL, Le A, Ferrucci L, Moaddel R, de Cabo R, Hoke A, Walston J, Abadir PM. Kynurenines link chronic inflammation to functional decline and physical frailty. JCI Insight 2020; 5:136091. [PMID: 32814718 PMCID: PMC7455140 DOI: 10.1172/jci.insight.136091] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/15/2020] [Indexed: 12/27/2022] Open
Abstract
Chronic inflammation is associated with physical frailty and functional decline in older adults; however, the molecular mechanisms of this linkage are not understood. A mouse model of chronic inflammation showed reduced motor function and partial denervation at the neuromuscular junction. Metabolomic profiling of these mice and further validation in frail human subjects showed significant dysregulation in the tryptophan degradation pathway, including decreased tryptophan and serotonin, and increased levels of some neurotoxic kynurenines. In humans, kynurenine strongly correlated with age, frailty status, TNF-αR1 and IL-6, weaker grip strength, and slower walking speed. To study the effects of elevated neurotoxic kynurenines on motor neuronal cell viability and axonal degeneration, we used motor neuronal cells treated with 3-hydroxykynurenine and quinolinic acid and observed neurite degeneration in a dose-dependent manner and potentiation of toxicity between 3-hydroxykynurenine and quinolinic acid. These results suggest that kynurenines mediate neuromuscular dysfunction associated with chronic inflammation and aging. Tryptophan-related toxic metabolites known as kynurenines are altered with chronic inflammation, which damages nerves in aged and frail mice and humans.
Collapse
Affiliation(s)
| | - Tae Chung
- Department of Physical Medicine and Rehabilitation, and.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Chris Ward
- Department of Orthopedics and Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Humberto Joca
- Department of Orthopedics and Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Huanle Yang
- Division of Geriatric Medicine and Gerontology
| | | | - Jing Tian
- Division of Geriatric Medicine and Gerontology
| | - Qian-Li Xue
- Division of Geriatric Medicine and Gerontology
| | - Anne Le
- Department of Oncology and.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Luigi Ferrucci
- National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Ruin Moaddel
- National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Rafa de Cabo
- National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Ahmet Hoke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeremy Walston
- Division of Geriatric Medicine and Gerontology.,Department of Medicine, Kyung Hee University, Seoul, South Korea
| | | |
Collapse
|
40
|
Cao B, Deng R, Wang D, Li L, Ren Z, Xu L, Gao X. Association between arginine catabolism and major depressive disorder: A protocol for the systematic review and meta-analysis of metabolic pathway. Medicine (Baltimore) 2020; 99:e21068. [PMID: 32629736 PMCID: PMC7337538 DOI: 10.1097/md.0000000000021068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Alterations in the levels of arginine and its related catabolic products (ie, ornithine, citrulline, and argininosuccinate) in the urea and nitric oxide cycles were reported to play roles in the pathogenesis of major depressive disorder (MDD). The aim of this meta-analysis study is to explore the associations between arginine with its related catabolic products and MDD, and to discuss the possible role of arginine catabolism in the pathoetiology of MDD. METHODS This study will be conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The English language literature published in the databases of PubMed, EMBASE, PsycINFO and Web of Science will be systematically searched. Forest plots will be used to estimate the associations between arginine and its related catabolic products with MDD. Subgroup analysis and meta-regression will also be performed to investigate the source of the potential heterogeneity. Sensitivity analysis will be performed to strengthen the results and to investigate whether any single study would have a significant effect on the results of meta-analysis. Publication bias will be tested for using the funnel plot with Begg test and Egger test. The Newcastle-Ottawa Scale will be applied to assess the risk of bias of observational studies. RESULTS An integrated assessment of arginine with its related catabolic products may contribute to predict the risk of MDD. ETHICS AND DISSEMINATION The results of associations between arginine with its related catabolic products and MDD will be reported in a peer-reviewed publication. With our findings from this meta-analysis, we hope to provide the most up-to-date evidence for the contributions of arginine and related catabolic products to predict the risk of MDD. SYSTEMATIC REVIEW REGISTRATION The protocol of current meta-analysis has been registered at the Open Science Framework [Available at: https://doi.org/10.17605/osf.io/7fn59].
Collapse
Affiliation(s)
- Bing Cao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education
- National Demonstration Center for Experimental Psychology Education, Southwest University
| | - Runze Deng
- Chongqing University Three Gorges Hospital
- Chongqing Three Gorges Central Hospital
| | | | - Li Li
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education
| | - Zhongyu Ren
- College of Physical Education, Southwest University, Chongqing, China
| | - Lixin Xu
- Chongqing University Three Gorges Hospital
- Chongqing Three Gorges Central Hospital
| | - Xiao Gao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education
- National Demonstration Center for Experimental Psychology Education, Southwest University
| |
Collapse
|
41
|
Neurobiological biomarkers of response to ketamine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 89:195-235. [PMID: 32616207 DOI: 10.1016/bs.apha.2020.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As a field, psychiatry is undergoing an exciting paradigm shift toward early identification and intervention that will likely minimize both the burden associated with severe mental illnesses as well as their duration. In this context, the rapid-acting antidepressant ketamine has revolutionized our understanding of antidepressant response and greatly expanded the pharmacologic armamentarium for treatment-resistant depression. Efforts to characterize biomarkers of ketamine response support a growing emphasis on early identification, which would allow clinicians to identify biologically enriched subgroups with treatment-resistant depression who are more likely to benefit from ketamine therapy. This chapter presents a broad overview of a range of translational biomarkers, including those drawn from imaging and electrophysiological studies, sleep and circadian rhythms, and HPA axis/endocrine function as well as metabolic, immune, (epi)genetic, and neurotrophic biomarkers related to ketamine response. Ketamine's unique, rapid-acting properties may serve as a model to explore a whole new class of novel rapid-acting treatments with the potential to revolutionize drug development and discovery. However, it should be noted that although several of the biomarkers reviewed here provide promising insights into ketamine's mechanism of action, most studies have focused on acute rather than longer-term antidepressant effects and, at present, none of the biomarkers are ready for clinical use.
Collapse
|
42
|
Emmerzaal TL, Preston G, Geenen B, Verweij V, Wiesmann M, Vasileiou E, Grüter F, de Groot C, Schoorl J, de Veer R, Roelofs M, Arts M, Hendriksen Y, Klimars E, Donti TR, Graham BH, Morava E, Rodenburg RJ, Kozicz T. Impaired mitochondrial complex I function as a candidate driver in the biological stress response and a concomitant stress-induced brain metabolic reprogramming in male mice. Transl Psychiatry 2020; 10:176. [PMID: 32488052 PMCID: PMC7266820 DOI: 10.1038/s41398-020-0858-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 12/25/2022] Open
Abstract
Mitochondria play a critical role in bioenergetics, enabling stress adaptation, and therefore, are central in biological stress responses and stress-related complex psychopathologies. To investigate the effect of mitochondrial dysfunction on the stress response and the impact on various biological domains linked to the pathobiology of depression, a novel mouse model was created. These mice harbor a gene trap in the first intron of the Ndufs4 gene (Ndufs4GT/GT mice), encoding the NDUFS4 protein, a structural component of complex I (CI), the first enzyme of the mitochondrial electron transport chain. We performed a comprehensive behavioral screening with a broad range of behavioral, physiological, and endocrine markers, high-resolution ex vivo brain imaging, brain immunohistochemistry, and multi-platform targeted mass spectrometry-based metabolomics. Ndufs4GT/GT mice presented with a 25% reduction of CI activity in the hippocampus, resulting in a relatively mild phenotype of reduced body weight, increased physical activity, decreased neurogenesis and neuroinflammation compared to WT littermates. Brain metabolite profiling revealed characteristic biosignatures discriminating Ndufs4GT/GT from WT mice. Specifically, we observed a reversed TCA cycle flux and rewiring of amino acid metabolism in the prefrontal cortex. Next, exposing mice to chronic variable stress (a model for depression-like behavior), we found that Ndufs4GT/GT mice showed altered stress response and coping strategies with a robust stress-associated reprogramming of amino acid metabolism. Our data suggest that impaired mitochondrial CI function is a candidate driver for altered stress reactivity and stress-induced brain metabolic reprogramming. These changes result in unique phenomic and metabolomic signatures distinguishing groups based on their mitochondrial genotype.
Collapse
Affiliation(s)
- Tim L Emmerzaal
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Graeme Preston
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA
- Hayward Genetics Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Bram Geenen
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Vivienne Verweij
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Maximilian Wiesmann
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Elisavet Vasileiou
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Femke Grüter
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Corné de Groot
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Jeroen Schoorl
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Renske de Veer
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Monica Roelofs
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Martijn Arts
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Yara Hendriksen
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Eva Klimars
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | | | - Brett H Graham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Richard J Rodenburg
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tamas Kozicz
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands.
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
43
|
Zoicas I, Schumacher F, Kleuser B, Reichel M, Gulbins E, Fejtova A, Kornhuber J, Rhein C. The Forebrain-Specific Overexpression of Acid Sphingomyelinase Induces Depressive-Like Symptoms in Mice. Cells 2020; 9:cells9051244. [PMID: 32443534 PMCID: PMC7290754 DOI: 10.3390/cells9051244] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022] Open
Abstract
Human and murine studies identified the lysosomal enzyme acid sphingomyelinase (ASM) as a target for antidepressant therapy and revealed its role in the pathophysiology of major depression. In this study, we generated a mouse model with overexpression of Asm (Asm-tgfb) that is restricted to the forebrain to rule out any systemic effects of Asm overexpression on depressive-like symptoms. The increase in Asm activity was higher in male Asm-tgfb mice than in female Asm-tgfb mice due to the breeding strategy, which allows for the generation of wild-type littermates as appropriate controls. Asm overexpression in the forebrain of male mice resulted in a depressive-like phenotype, whereas in female mice, Asm overexpression resulted in a social anxiogenic-like phenotype. Ceramides in male Asm-tgfb mice were elevated specifically in the dorsal hippocampus. mRNA expression analyses indicated that the increase in Asm activity affected other ceramide-generating pathways, which might help to balance ceramide levels in cortical brain regions. This forebrain-specific mouse model offers a novel tool for dissecting the molecular mechanisms that play a role in the pathophysiology of major depression.
Collapse
Affiliation(s)
- Iulia Zoicas
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.Z.); (M.R.); (A.F.); (J.K.)
| | - Fabian Schumacher
- Department of Toxicology, University of Potsdam, 14558 Nuthetal, Germany; (F.S.); (B.K.)
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Burkhard Kleuser
- Department of Toxicology, University of Potsdam, 14558 Nuthetal, Germany; (F.S.); (B.K.)
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.Z.); (M.R.); (A.F.); (J.K.)
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Anna Fejtova
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.Z.); (M.R.); (A.F.); (J.K.)
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.Z.); (M.R.); (A.F.); (J.K.)
| | - Cosima Rhein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (I.Z.); (M.R.); (A.F.); (J.K.)
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-44542
| |
Collapse
|
44
|
Zoicas I, Mühle C, Schmidtner AK, Gulbins E, Neumann ID, Kornhuber J. Anxiety and Depression Are Related to Higher Activity of Sphingolipid Metabolizing Enzymes in the Rat Brain. Cells 2020; 9:cells9051239. [PMID: 32429522 PMCID: PMC7290887 DOI: 10.3390/cells9051239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
Changes in sphingolipid metabolism have been suggested to contribute to the pathophysiology of major depression. In this study, we investigated the activity of acid and neutral sphingomyelinases (ASM, NSM) and ceramidases (AC, NC), respectively, in twelve brain regions of female rats selectively bred for high (HAB) versus low (LAB) anxiety-like behavior. Concomitant with their highly anxious and depressive-like phenotype, HAB rats showed increased activity of ASM and NSM as well as of AC and NC in multiple brain regions associated with anxiety- and depressive-like behavior, including the lateral septum, hypothalamus, ventral hippocampus, ventral and dorsal mesencephalon. Strong correlations between anxiety-like behavior and ASM activity were found in female HAB rats in the amygdala, ventral hippocampus and dorsal mesencephalon, whereas NSM activity correlated with anxiety levels in the dorsal mesencephalon. These results provide novel information about the sphingolipid metabolism, especially about the sphingomyelinases and ceramidases, in major depression and comorbid anxiety.
Collapse
Affiliation(s)
- Iulia Zoicas
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.M.); (J.K.)
- Correspondence: ; Tel.: +49-9131-85-46005; Fax: +49-9131-85-36381
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.M.); (J.K.)
| | - Anna K. Schmidtner
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93040 Regensburg, Germany; (A.K.S.); (I.D.N.)
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93040 Regensburg, Germany; (A.K.S.); (I.D.N.)
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (C.M.); (J.K.)
| |
Collapse
|
45
|
Golzio Dos Santos S, Fernandes Gomes I, Fernandes de Oliveira Golzio AM, Lopes Souto A, Scotti MT, Fechine Tavares J, Chavez Gutierrez SJ, Nóbrega de Almeida R, Barbosa-Filho JM, Sobral da Silva M. Psychopharmacological effects of riparin III from Aniba riparia (Nees) Mez. (Lauraceae) supported by metabolic approach and multivariate data analysis. BMC Complement Med Ther 2020; 20:149. [PMID: 32416725 PMCID: PMC7229579 DOI: 10.1186/s12906-020-02938-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Background Currently there is a high prevalence of humor disorders such as anxiety and depression throughout the world, especially concerning advanced age patients. Aniba riparia (Nees) Mez. (Lauraceae), popular known as “louro”, can be found from the Amazon through Guianas until the Andes. Previous studies have already reported the isolation of alkamide-type alkaloids such as riparin III (O-methyl-N-2,6-dyhydroxy-benzoyl tyramine) which has demonstrated anxiolytic and antidepressant-like effects in high doses by intraperitoneal administration. Methods Experimental protocol was conducted in order to analyze the anxiolytic-like effect of riparin III at lower doses by intravenous administration to Wistar rats (Rattus norvegicus) (n = 5). The experimental approach was designed to last 15 days, divided in 3 distinct periods of five days: control, anxiogenic and treatment periods. The anxiolytic-like effect was evaluated by experimental behavior tests such as open field and elevated plus-maze test, combined with urine metabolic footprint analysis. The urine was collected daily and analyzed by 1H NMR. Generated data were statistically treated by Principal Component Analysis in order to detect patterns among the distinct periods evaluated as well as biomarkers responsible for its distinction. Results It was observed on treatment group that cortisol, biomarker related to physiological stress was reduced, indicating anxiolytic-like effect of riparin III, probably through activation of 5-HT2A receptors, which was corroborated by behavioral tests. Conclusion 1H NMR urine metabolic footprint combined with multivariate data analysis have demonstrated to be an important diagnostic tool to prove the anxiolytic-like effect of riparin III in a more efficient and pragmatic way.
Collapse
Affiliation(s)
- Sócrates Golzio Dos Santos
- Instituto de Pesquisa de Fármacos e Medicamentos - IPeFarM, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Isis Fernandes Gomes
- Instituto de Pesquisa de Fármacos e Medicamentos - IPeFarM, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | | | - Augusto Lopes Souto
- Instituto de Pesquisa de Fármacos e Medicamentos - IPeFarM, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Marcus Tullius Scotti
- Instituto de Pesquisa de Fármacos e Medicamentos - IPeFarM, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Josean Fechine Tavares
- Instituto de Pesquisa de Fármacos e Medicamentos - IPeFarM, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Stanley Juan Chavez Gutierrez
- Instituto de Pesquisa de Fármacos e Medicamentos - IPeFarM, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Reinaldo Nóbrega de Almeida
- Instituto de Pesquisa de Fármacos e Medicamentos - IPeFarM, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - José Maria Barbosa-Filho
- Instituto de Pesquisa de Fármacos e Medicamentos - IPeFarM, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Marcelo Sobral da Silva
- Instituto de Pesquisa de Fármacos e Medicamentos - IPeFarM, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil.
| |
Collapse
|
46
|
Haroon E, Welle JR, Woolwine BJ, Goldsmith DR, Baer W, Patel T, Felger JC, Miller AH. Associations among peripheral and central kynurenine pathway metabolites and inflammation in depression. Neuropsychopharmacology 2020; 45:998-1007. [PMID: 31940661 PMCID: PMC7162907 DOI: 10.1038/s41386-020-0607-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 12/17/2022]
Abstract
Kynurenine pathway (KP) metabolites are believed to be a link between inflammation and depression through effects on brain glutamate receptors. However, neither the relationship between plasma and cerebrospinal fluid (CSF) KP metabolites nor their association with inflammatory mediators is well-established in depression. Moreover, the clinical profile associated with combined activation of plasma inflammatory and kynurenine pathways is unknown. Accordingly, plasma and CSF-KP metabolites and inflammatory markers along with depressive symptoms and antidepressant treatment response were measured in 72 unmedicated depressed patients. Following bivariate analyses, component factors representing immune and kynurenine variables in the plasma and CSF were extracted and were used to examine directionality of associations in a path model. In addition, patients were clustered using individual markers that most accounted for the association between plasma immune and KP systems. Path analysis revealed a directional association extending from plasma inflammatory markers to plasma kynurenines, to CSF kynurenines. Among immune markers, plasma tumor necrosis factor (TNF) was robustly associated with plasma kynurenine (KYN) and KYN/tryptophan (TRP), which was in turn significantly associated with CSF KYN, kynurenic acid, and quinolinic acid. Clustering of patients based on plasma TNF and KYN/TRP yielded subgroups of high (N = 17) and low (N = 55) TNF-KYN/TRP groups. High TNF-KYN/TRP subjects exhibited greater depression severity, anhedonia, and treatment nonresponse. In conclusion, plasma-KP metabolites may mediate an inflammation-associated depressive symptom profile via CNS KP metabolites that can serve as a target for intervention at the level of inflammation, peripheral KYN metabolism, KYN transport to the brain, or effects of KP metabolites on glutamate receptors.
Collapse
Affiliation(s)
- Ebrahim Haroon
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - James R. Welle
- 0000000107903411grid.241116.1Department of Primary Care and Internal Medicine, University of Colorado School of Medicine, Denver, CO 80045 USA
| | - Bobbi J. Woolwine
- 0000 0001 0941 6502grid.189967.8Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - David R. Goldsmith
- 0000 0001 0941 6502grid.189967.8Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Wendy Baer
- 0000 0001 0941 6502grid.189967.8Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Trusharth Patel
- 0000 0001 0941 6502grid.189967.8Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Jennifer C. Felger
- 0000 0001 0941 6502grid.189967.8Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Andrew H. Miller
- 0000 0001 0941 6502grid.189967.8Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
47
|
Park LT, Kadriu B, Gould TD, Zanos P, Greenstein D, Evans JW, Yuan P, Farmer CA, Oppenheimer M, George JM, Adeojo LW, Snodgrass HR, Smith MA, Henter ID, Machado-Vieira R, Mannes AJ, Zarate CA. A Randomized Trial of the N-Methyl-d-Aspartate Receptor Glycine Site Antagonist Prodrug 4-Chlorokynurenine in Treatment-Resistant Depression. Int J Neuropsychopharmacol 2020; 23:417-425. [PMID: 32236521 PMCID: PMC7387765 DOI: 10.1093/ijnp/pyaa025] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ketamine has rapid-acting antidepressant effects but is associated with psychotomimetic and other adverse effects. A 7-chlorokynurenic acid is a potent and specific glycine site N-methyl-d-aspartate receptor antagonist but crosses the blood-brain barrier inefficiently. Its prodrug, L-4-chlorokynurenine (4-Cl-KYN), exerts acute and sustained antidepressant-like effects in rodents and has no reported psychotomimetic effects in either rodents or healthy volunteers. This study examined whether 4-Cl-KYN has rapid antidepressant effects in individuals with treatment-resistant depression. METHODS After a 2-week drug-free period, 19 participants with treatment-resistant depression were randomized to receive daily oral doses of 4-Cl-KYN monotherapy (1080 mg/d for 7 days, then 1440 mg/d for 7 days) or placebo for 14 days in a randomized, placebo-controlled, double-blind, crossover manner. The primary outcome measure was the Hamilton Depression Rating Scale score, assessed at several time points over a 2-week period; secondary outcome measures included additional rating scale scores. Pharmacokinetic measures of 7-chlorokynurenic acid and 4-Cl-KYN and pharmacodynamic assessments were obtained longitudinally and included 1H-magnetic resonance spectroscopy brain glutamate levels, resting-state functional magnetic resonance imaging, and plasma and cerebrospinal fluid measures of kynurenine metabolites and neurotrophic factors. RESULTS Linear mixed models detected no treatment effects, as assessed by primary and secondary outcome measures. No difference was observed for any of the peripheral or central biological indices or for adverse effects at any time between groups. A 4-Cl-KYN was safe and well-tolerated, with generally minimal associated adverse events. CONCLUSIONS In this small crossover trial, 4-Cl-KYN monotherapy exerted no antidepressant effects at the doses and treatment duration studied.ClinicalTrials.gov identifier: NCT02484456.
Collapse
Affiliation(s)
- Lawrence T Park
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD,Correspondence: Lawrence Park, MD, 10 Center Drive, CRC, Unit 7 Southeast, Room 7-3465, Bethesda, Maryland, 20892 ()
| | - Bashkim Kadriu
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Todd D Gould
- Veterans Affairs Maryland Health Care System, Baltimore, MD,Departments of Psychiatry, Pharmacology, Anatomy & Neurobiology and Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Panos Zanos
- Departments of Psychiatry, Pharmacology, Anatomy & Neurobiology and Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Deanna Greenstein
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Jennifer W Evans
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Peixiong Yuan
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Cristan A Farmer
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Mark Oppenheimer
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Jomy M George
- Clinical Pharmacokinetics Research Unit, Pharmacy Department, National Institutes of Health, Bethesda, MD
| | - Lilian W Adeojo
- Clinical Pharmacokinetics Research Unit, Pharmacy Department, National Institutes of Health, Bethesda, MD
| | | | - Mark A Smith
- VistaGen Therapeutics, Inc., San Francisco, CA,Medical College of Georgia, Augusta, GA
| | - Ioline D Henter
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Rodrigo Machado-Vieira
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Science Center, Houston, TX
| | - Andrew J Mannes
- Clinical Center, Department of Perioperative Medicine, National Institutes of Health, Bethesda, MD
| | - Carlos A Zarate
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| |
Collapse
|
48
|
Feature of Heart Rate Variability and Metabolic Mechanism in Female College Students with Depression. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5246350. [PMID: 32190670 PMCID: PMC7064846 DOI: 10.1155/2020/5246350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 01/19/2023]
Abstract
Purpose To explore the effects of depression on cardiac autonomic nerve function and related metabolic pathways, the heart rate variability (HRV) and urinary differential metabolites were detected on the college students with depression. Methods 12 female freshmen with depression were filtered by the Beck Depression Inventory (BDI-II) and Self-rating Depression Scale (SDS). By wearing an HRV monitoring system, time domain indexes and frequency domain indexes were measured over 24 hours. Liquid chromatography–mass spectrometry (LC-MS) was used to detect their urinary differential metabolites. Differential metabolites were identified by principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA). The metabolic pathways related to these differential metabolites were analyzed by the MetPA database. Results Stress time was significantly increased, and recovery time was markedly decreased in the depression group compared with the control group (p < 0.001). Standard deviation of the normal-to-normal R interval (SDNN), root mean square of the beat-to-beat differences (RMSSD), high frequency (HF), and low frequency (LF) were decreased significantly (p < 0.001). Standard deviation of the normal-to-normal R interval (SDNN), root mean square of the beat-to-beat differences (RMSSD), high frequency (HF), and low frequency (LF) were decreased significantly ( Conclusion Some autonomic nervous system disruption, high stress, and poor fatigue recovery were confirmed in college students with depression. The metabolic mechanism involved the disruption of coenzyme Q biosynthesis, glycine-serine-threonine metabolism, tyrosine metabolism, pyrimidine metabolism, and steroid metabolism under daily stress.
Collapse
|
49
|
mGlu2/3 receptor antagonism: A mechanism to induce rapid antidepressant effects without ketamine-associated side-effects. Pharmacol Biochem Behav 2020; 190:172854. [DOI: 10.1016/j.pbb.2020.172854] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 12/28/2022]
|
50
|
Ahmed AT, MahmoudianDehkordi S, Bhattacharyya S, Arnold M, Liu D, Neavin D, Moseley MA, Thompson JW, Williams LSJ, Louie G, Skime MK, Wang L, Riva-Posse P, McDonald W, Bobo WV, Craighead WE, Krishnan R, Weinshilboum RM, Dunlop BW, Millington DS, Rush AJ, Frye MA, Kaddurah-Daouk R. Acylcarnitine metabolomic profiles inform clinically-defined major depressive phenotypes. J Affect Disord 2020; 264:90-97. [PMID: 32056779 PMCID: PMC7024064 DOI: 10.1016/j.jad.2019.11.122] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/17/2019] [Accepted: 11/29/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Acylcarnitines have important functions in mitochondrial energetics and β-oxidation, and have been implicated to play a significant role in metabolic functions of the brain. This retrospective study examined whether plasma acylcarnitine profiles can help biochemically distinguish the three phenotypic subtypes of major depressive disorder (MDD): core depression (CD+), anxious depression (ANX+), and neurovegetative symptoms of melancholia (NVSM+). METHODS Depressed outpatients (n = 240) from the Mayo Clinic Pharmacogenomics Research Network were treated with citalopram or escitalopram for eight weeks. Plasma samples collected at baseline and after eight weeks of treatment with citalopram or escitalopram were profiled for short-, medium- and long-chain acylcarnitine levels using AbsoluteIDQ®p180-Kit and LC-MS. Linear mixed effects models were used to examine whether acylcarnitine levels discriminated the clinical phenotypes at baseline or eight weeks post-treatment, and whether temporal changes in acylcarnitine profiles differed between groups. RESULTS Compared to ANX+, CD+ and NVSM+ had significantly lower concentrations of short- and long-chain acylcarnitines at both baseline and week 8. In NVSM+, the medium- and long-chain acylcarnitines were also significantly lower in NVSM+ compared to ANX+. Short-chain acylcarnitine levels increased significantly from baseline to week 8 in CD+ and ANX+, whereas medium- and long-chain acylcarnitines significantly decreased in CD+ and NVSM+. CONCLUSIONS In depressed patients treated with SSRIs, β-oxidation and mitochondrial energetics as evaluated by levels and changes in acylcarnitines may provide the biochemical basis of the clinical heterogeneity of MDD, especially when combined with clinical characteristics.
Collapse
Affiliation(s)
- Ahmed T. Ahmed
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Siamak MahmoudianDehkordi
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States; Department of Medicine, Duke University, Durham, NC, United States; Duke Institute of Brain Sciences, Duke University, Durham, NC, United States.
| | - Sudeepa Bhattacharyya
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States; Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| | - Duan Liu
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States.
| | - Drew Neavin
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States.
| | - M. Arthur Moseley
- Duke Proteomics and Metabolomics Shared Resource, Center for Genomic and Computational Biology, Durham, NC, USA
| | - J. Will Thompson
- Duke Proteomics and Metabolomics Shared Resource, Center for Genomic and Computational Biology, Durham, NC, USA
| | - Lisa St John Williams
- Duke Proteomics and Metabolomics Shared Resource, Center for Genomic and Computational Biology, Durham, NC, United States.
| | - Gregory Louie
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States.
| | - Michelle K. Skime
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Liewei Wang
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States.
| | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.
| | - William McDonald
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - William V. Bobo
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - W. Edward Craighead
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Ranga Krishnan
- Department of Psychiatry, Rush Medical College, Chicago, IL, United States.
| | - Richard M. Weinshilboum
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Boadie W. Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - David S. Millington
- Professor Emeritus, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - A. John Rush
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC.,Department of Psychiatry, Texas Tech University, Health Sciences Center, Permian Basin, TX, USA,Professor Emeritus, Duke-National University of Singapore, Singapore
| | - Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States; Department of Medicine, Duke University, Durham, NC, United States; Duke Institute of Brain Sciences, Duke University, Durham, NC, United States.
| |
Collapse
|