1
|
Patel S, Govindarajan V, Chakravarty S, Dubey N. From blood to brain: Exploring the role of fibrinogen in the pathophysiology of depression and other neurological disorders. Int Immunopharmacol 2024; 143:113326. [PMID: 39388892 DOI: 10.1016/j.intimp.2024.113326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Recent findings indicate that fibrinogen, a protein involved in blood clotting, plays a significant role in neuroinflammation and mood disorders. Elevated fibrinogen levels are consistently observed in individuals with depression, potentially contributing to microglial activation. This could impair fibrinolysis and contribute to a pro-inflammatory environment in the brain. This neuroinflammatory response can impair neuroplasticity, a key process for learning, memory, and mood regulation. Fibrinogen may also indirectly influence neurotransmitters like serotonin, which play a vital role in mood regulation. Furthermore, fibrinogen's interaction with astrocytes may trigger a cascade of events leading to demyelination, a process where the protective sheath around nerve fibers deteriorates. This can disrupt communication within the nervous system and contribute to depression symptoms. Intriguingly, targeting fibrinogen or related pathways holds promise for therapeutic interventions. For instance, modulating PAI-1 (Plasminogen activator inhibitor-1) activity or inhibiting fibrinogen's interaction with brain cells could be potential strategies. This review explores the multifaceted relationship between fibrinogen and neurological disorders with a focus on depression highlighting its potential as a therapeutic target. Further research is necessary to fully elucidate the mechanisms underlying this association and develop effective therapeutic strategies targeting the fibrinolytic system for mood disorders.
Collapse
Affiliation(s)
- Shashikant Patel
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, India
| | - Venkatesh Govindarajan
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India
| | - Sumana Chakravarty
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, India.
| | - Neelima Dubey
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India.
| |
Collapse
|
2
|
Villoria GEM, Fischer RG, Tinoco EMB, Meyle J, Loos BG. Periodontal disease: A systemic condition. Periodontol 2000 2024. [PMID: 39494478 DOI: 10.1111/prd.12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024]
Abstract
For decades, periodontitis has been considered to be a local inflammatory disease of the periodontal tissues in the oral cavity. Initially, associations of periodontitis with a multitude of noncommunicable diseases were each studied separately, and relationships were shown. The associations of periodontitis with morbidities, such as cardiovascular diseases, rheumatoid arthritis, diabetes mellitus, respiratory diseases, have been demonstrated. As most such studies were cross-sectional in nature, questions about causality cannot be univocally answered. And periodontitis as an independent risk factor for one systemic disease, becomes even more difficult to assess since recently periodontitis has also been associated with multimorbidity. Periodontitis and many systemic diseases share environmental, lifestyle and genetic risk factors, and share immunopathology. Moreover, suffering from one common noncommunicable disease may increase the susceptibility for another such chronic disease; the systemic effects of one condition may be one of various risk factors for another such disease. The overarching effect of any systemic disease is it causing a pro-inflammatory state in the individual; this has also been shown for periodontitis. Moreover, in periodontitis a prothrombotic state and elevated immunological activity have been shown. As such, when we consider periodontal disease as another systemic disease, it can affect the susceptibility and progression of other systemic diseases, and importantly, vice versa. And with this, it is not surprising that periodontitis is associated with a variety of other noncommunicable diseases. The medical definition of a systemic disease includes diseases that affect different organs and systems. Thus, the aim of this opinion paper is to propose that periodontitis should be considered a systemic disease in its own right and that it affects the individual's systemic condition and wellbeing. The dental and medical profession and researchers alike, should adapt this paradigm shift, advancing periodontal disease out of its isolated anatomical location into the total of chronic noncommunicable diseases, being for some conditions a comorbid disease and, vice versa, comorbidities can affect initiation and progression of periodontal disease.
Collapse
Affiliation(s)
- German E M Villoria
- Department of Periodontology, School of Dentistry, Rio de Janeiro State University, Rio de Janeiro, Brazil
- Department of Periodontology, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo G Fischer
- Department of Periodontology, School of Dentistry, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Eduardo M B Tinoco
- Department of Periodontology, School of Dentistry, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Joerg Meyle
- Dental School, University of Berne, Berne, Switzerland
| | - Bruno G Loos
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Zhou S, Li B, Wu D, Chen Y, Zeng W, Huang J, Tan L, Mao G, Liu F. Mechanisms of fibrinogen trans-activation of the EGFR/Ca2+ signaling axis to regulate mitochondrial transport and energy transfer and inhibit axonal regeneration following cerebral ischemia. J Neuropathol Exp Neurol 2024:nlae114. [PMID: 39495964 DOI: 10.1093/jnen/nlae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
Ischemic stroke results in inhibition of axonal regeneration but the roles of fibrinogen (Fg) in neuronal signaling and energy crises in experimental stroke are under-investigated. We explored the mechanism of Fg modulation of axonal regeneration and neuronal energy crisis after cerebral ischemia using a permanent middle cerebral artery occlusion (MCAO) rat model and primary cortical neurons under low glucose-low oxygen. Behavioral tests assessed neurological deficits; immunofluorescence, immunohistochemistry, and Western-blot analyzed Fg and protein levels. Fluo-3/AM fluorescence measured free Ca2+ and ATP levels were gauged via specific assays and F560nm/F510nm ratio calculations. Mito-Tracker Green labeled mitochondria and immunoprecipitation studied protein interactions. Our comprehensive study revealed that Fg inhibited axonal regeneration post-MCAO as indicated by reduced GAP43 expression along with elevated free Ca2+, both suggesting an energy crisis. Fg impeded mitochondrial function and mediated impairment through the EGFR/Ca2+ axis by trans-activating EGFR via integrin αvβ3 interaction. These results indicate that the binding of Fg with integrin αvβ3 leads to the trans-activation of the EGFR/Ca2+ signaling axis thereby disrupting mitochondrial energy transport and axonal regeneration and exacerbating the detrimental effects of ischemic neuronal injury.
Collapse
Affiliation(s)
- Shengqiang Zhou
- National TCM Master Liu Zuyi Inheritance Studio, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha City, Hunan Province, China
| | - Bo Li
- Department of Pediatrics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha City, Hunan Province, China
| | - Dahua Wu
- Department of Neurology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha City, Hunan Province, China
| | - Yanjun Chen
- Graduate School, Hunan University of Chinese Medicine, Changsha City, Hunan Province, China
| | - Wen Zeng
- Graduate School, Hunan University of Chinese Medicine, Changsha City, Hunan Province, China
| | - Jia Huang
- Graduate School, Hunan University of Chinese Medicine, Changsha City, Hunan Province, China
| | - Lingjuan Tan
- Graduate School, Hunan University of Chinese Medicine, Changsha City, Hunan Province, China
| | - Guo Mao
- Key Project Office, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha City, Hunan Province, China
| | - Fang Liu
- National TCM Master Liu Zuyi Inheritance Studio, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha City, Hunan Province, China
| |
Collapse
|
4
|
Chen T, Yang Y. Immunologic and inflammatory pathogenesis of chronic coronary syndromes: A review. Medicine (Baltimore) 2024; 103:e40354. [PMID: 39496055 PMCID: PMC11537619 DOI: 10.1097/md.0000000000040354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Chronic coronary syndrome (CCS) is a major cause of progression to acute coronary syndrome. Due to its insidious onset and complex etiology, this condition is often underestimated and insufficiently recognized, and traditional interventions for risk factors do not effectively control the disease progression. Current research suggests that immune and inflammatory pathways contribute to atherosclerosis and its clinical complications, thereby triggering the progression of CCS to acute coronary syndrome. This article primarily reviews the possible mechanisms of immune and inflammatory responses in CCS, with the aim of providing references for the diagnosis, treatment, and prevention of CCS.
Collapse
Affiliation(s)
- Tingting Chen
- Dali University School of Clinical Medicine, Yunnan, China
| | - Ying Yang
- Department of Cardiology, The First Affiliated Hospital of Dali University, Yunnan, China
| |
Collapse
|
5
|
Le TN, Bright R, Truong VK, Li J, Juneja R, Vasilev K. Key biomarkers in type 2 diabetes patients: A systematic review. Diabetes Obes Metab 2024. [PMID: 39355932 DOI: 10.1111/dom.15991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is not just a local health issue but a significant global health burden, affecting patient outcomes and clinical management worldwide. Despite the wealth of studies reporting T2DM biomarkers, there is an urgent need for a comparative review. This review aims to provide a comprehensive analysis based on the reported T2DM biomarkers and how these are linked with other conditions, such as inflammation and wound healing. A comparative review was conducted on 24 001 study participants, including 10 024 T2DM patients and 13 977 controls (CTL; age 30-90 years). Four main profiles were extracted and analysed from the clinical reports over the past 11 years: haematological (1084 cases vs. 1458 CTL), protein (6753 cases vs. 9613 CTL), cytokine (975 cases vs. 1350 CTL) and lipid (1212 cases vs. 1556 CTL). This review provides a detailed analysis of the haematological profile in T2DM patients, highlighting fundamental changes such as increased white blood cells and platelet counts, accompanied by decreases in red blood cell counts and iron absorption. In the serum protein profile, a reduction in albumin and anti-inflammatory cytokines was noted along with an increase in globulin levels and pro-inflammatory cytokines. Furthermore, changes in lipid profiles were discussed, specifically the decreases in high-density lipoprotein (HDL) and the increases in low-density lipoprotein (LDL) and triglycerides. Understanding the changes in these four biomarker profiles is essential for developing innovative strategies to create diagnostic and prognostic tools for diabetes management.
Collapse
Affiliation(s)
- Thien Ngoc Le
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Richard Bright
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Vi-Khanh Truong
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Jordan Li
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Department of Renal Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Rajiv Juneja
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Department of Renal Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Feng L, Xie Z, Zhou X, Yang Y, Liang Z, Hou C, Liu L, Zhang D. Diagnostic value of fibrinogen in lower extremity deep vein thrombosis caused by rib fracture: A retrospective study. Phlebology 2024; 39:592-600. [PMID: 38822566 DOI: 10.1177/02683555241258274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Objectives: To investigate the diagnostic value of fibrinogen (FIB) in patients with rib fractures complicated by lower extremity deep venous thrombosis (DVT).Methods: Analyzing data from 493 patients at Shijiazhuang Third Hospital, FIB levels at 24, 48, and 72 h post-injury were compared between DVT and non-DVT groups.Results: DVT group had elevated FIB levels at all times (p < .001). FIB at 24 h showed highest AUC, particularly in patients with BMI <28.Conclusion: In conclusion, measuring FIB at 24 h post-injury enhances DVT detection in rib fracture patients, with potential BMI-related variations.
Collapse
Affiliation(s)
- Lei Feng
- Department of Cardiothoracic Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang, China
| | - Zexin Xie
- Department of Cardiothoracic Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang, China
| | - Xuetao Zhou
- Department of Cardiothoracic Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang, China
| | - Yang Yang
- Department of Cardiothoracic Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang, China
| | - Zheng Liang
- Department of Cardiothoracic Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang, China
| | - Chunjuan Hou
- Department of Cardiothoracic Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang, China
| | - Lili Liu
- Department of Cardiology, The Third Hospital of Shijiazhuang, Shijiazhuang, China
| | - Dongsheng Zhang
- Department of Cardiothoracic Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang, China
| |
Collapse
|
7
|
Magrini E, Garlanda C. COVID-19 thromboinflammation: adding inflammatory fibrin to the puzzle. Trends Immunol 2024; 45:721-723. [PMID: 39327204 DOI: 10.1016/j.it.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Thromboinflammation is a peculiar and key component of acute COVID-19 pathogenesis, which contributes to long COVID. In a recent study, Ryu et al. demonstrate that the SARS-CoV-2 spike protein interacts with fibrinogen, promoting fibrin polymerization and its inflammatory activity. Targeting the inflammatory fibrin peptide protected mice from spike-dependent fibrin clotting and neuropathology.
Collapse
Affiliation(s)
- Elena Magrini
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy.
| |
Collapse
|
8
|
Hansildaar R, Raadsen R, Gerritsen M, Nagy M, Dijkshoorn B, Spronk HMH, Ten Cate H, Nurmohamed MT. Comparative Analysis of Coagulation Activation in Rheumatoid Arthritis Patients Treated With TNF Inhibitors Versus JAK Inhibitors: A Prospective Study. J Clin Rheumatol 2024:00124743-990000000-00250. [PMID: 39342416 DOI: 10.1097/rhu.0000000000002136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
OBJECTIVES This study aims to investigate the activation of the coagulation system of RA patients and assess changes during anti-inflammatory treatment with tumor necrosis factor blockers (anti-TNF) and Janus kinase inhibitors (JAKi). METHODS Biomarkers for the coagulation system, including D-dimer, fibrinogen, prothrombin time, activated partial thrombin time, prothrombin fragment 1 + 2, thrombin-antithrombin complex (TAT), activated factor IX, antithrombin complex, and von Willebrand factor (vWF), were longitudinally measured in 83 RA patients treated with anti-TNF and 38 RA patients with JAKi. Data were collected at baseline, after 1, 3, and 6 months. RESULTS The mean age was 57 (±14) years; 76% was female. The mean DAS28-CRP was 3.6 (±1.3) for anti-TNF users and 4.1 (±1.4) for JAKi users at baseline and declined in both groups. Baseline coagulation markers levels were comparable between groups. In anti-TNF users, D-dimer and fibrinogen levels significantly declined (-0.31 mg/L, p = 0.01 and -0.71 g/L, p < 0.001, respectively), whereas TAT significantly increased after 6 months follow-up (1.46 μg/L, p = 0.03) and no effect on vWF (p = 0.98). In JAKi users, vWF declined significantly during the 6 months follow-up (-37.41%, p < 0.001); additionally, there were reductions of D-dimer, fibrinogen, and TAT that did not reach significance (-0.17 mg/L, p = 0.59; -0.49 g/L, p = 0.12; and 0.68 μg/L, p = 0.27, respectively). CONCLUSIONS The prothrombotic tendency in active RA declined during effective treatment with both anti-TNF and JAKi. Altogether, the biomarkers used in this study suggest that an increased VTE risk in the first 6 months due to either treatment with anti-TNF or JAKi is unlikely.
Collapse
Affiliation(s)
- Romy Hansildaar
- From the Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, Location Reade, Amsterdam, the Netherlands
| | - Reinder Raadsen
- From the Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, Location Reade, Amsterdam, the Netherlands
| | - Martijn Gerritsen
- From the Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, Location Reade, Amsterdam, the Netherlands
| | - Magdolna Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Bas Dijkshoorn
- From the Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, Location Reade, Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
9
|
Rodriguez Moore G, Melo-Escobar I, Stegner D, Bracko O. One immune cell to bind them all: platelet contribution to neurodegenerative disease. Mol Neurodegener 2024; 19:65. [PMID: 39334369 PMCID: PMC11438031 DOI: 10.1186/s13024-024-00754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease (AD) and related dementias (ADRD) collectively affect a significant portion of the aging population worldwide. The pathological progression of AD involves not only the classical hallmarks of amyloid beta (Aβ) plaque buildup and neurofibrillary tangle development but also the effects of vasculature and chronic inflammatory processes. Recently, platelets have emerged as central players in systemic and neuroinflammation. Studies have shown that patients with altered platelet receptor expression exhibit accelerated cognitive decline independent of traditional risk factors. Additionally, platelets from AD patients exhibit heightened unstimulated activation compared to control groups. Platelet granules contain crucial AD-related proteins like tau and amyloid precursor protein (APP). Dysregulation of platelet exocytosis contributes to disease phenotypes characterized by increased bleeding, stroke, and cognitive decline risk. Recent studies have indicated that these effects are not associated with the quantity of platelets present in circulation. This underscores the hypothesis that disruptions in platelet-mediated inflammation and healing processes may play a crucial role in the development of ADRD. A thorough look at platelets, encompassing their receptors, secreted molecules, and diverse roles in inflammatory interactions with other cells in the circulatory system in AD and ADRD, holds promising prospects for disease management and intervention. This review discusses the pivotal roles of platelets in ADRD.
Collapse
Affiliation(s)
| | - Isabel Melo-Escobar
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - David Stegner
- Institute for Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Oliver Bracko
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
10
|
Kim E, Park Y, Yun M, Kim B. Functions of Hemp-Induced Exosomes against Periodontal Deterioration Caused by Fine Dust. Int J Mol Sci 2024; 25:10331. [PMID: 39408660 PMCID: PMC11477052 DOI: 10.3390/ijms251910331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Although fine dust is linked to numerous health issues, including cardiovascular, neurological, respiratory, and cancerous diseases, research on its effects on oral health remains limited. In this study, we investigated the protective effects of mature hemp stem extract-induced exosomes (MSEIEs) on periodontal cells exposed to fine dust. Using various methods, including microRNA profiling, PCR, flow cytometry, immunocytochemistry, ELISA, and Alizarin O staining, we found that MSE treatment upregulated key microRNAs, such as hsa-miR-122-5p, hsa-miR-1301-3p, and hsa-let-7e-5p, associated with vital biological functions. MSEIEs exhibited three primary protective functions: suppressing inflammatory genes while activating anti-inflammatory ones, promoting the differentiation of periodontal ligament stem cells (PDLSCs) into osteoblasts and other cells, and regulating LL-37 and MCP-1 expression. These findings suggest that MSEIEs have potential as functional biomaterials for applications in pharmaceuticals, cosmetics, and food industries.
Collapse
Affiliation(s)
- Eunhee Kim
- Department of Food Science and Biotechnology, Andong National University, Andong 36729, Republic of Korea;
| | - Yoonjin Park
- Department of Bio-Hemp Technology, Andong Science College, Andong 36616, Republic of Korea;
| | - Mihae Yun
- Department of Dental Hygiene, Andong Science College, Andong 36616, Republic of Korea
| | - Boyong Kim
- EVERBIO, 131, Jukhyeon-gil, Gwanghyewon-myeon, Jincheon-gun 27809, Republic of Korea
| |
Collapse
|
11
|
Li Y, Hirayasu K, Hasegawa G, Tomita Y, Hashikawa Y, Hiwa R, Arase H, Hanayama R. Fibrinogen induces inflammatory responses via the immune activating receptor LILRA2. Front Immunol 2024; 15:1435236. [PMID: 39376567 PMCID: PMC11456740 DOI: 10.3389/fimmu.2024.1435236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/21/2024] [Indexed: 10/09/2024] Open
Abstract
The leukocyte immunoglobulin-like receptor (LILR) family, a group of primate-specific immunoreceptors, is widely expressed on most immune cells and regulates immune responses through interactions with various ligands. The inhibitory type, LILRB, has been extensively studied, and many ligands, such as HLA class I, have been identified. However, the activating type, LILRA, is less understood. We have previously identified microbially cleaved immunoglobulin as a non-self-ligand for LILRA2. In this study, we identified fibrinogen as an endogenous ligand for LILRA2 using mass spectrometry. Although human plasma contains fibrinogen in abundance in its soluble form, LILRA2 only recognizes solid-phase fibrinogen. In addition to the activating LILRA2, fibrinogen was also recognized by the inhibitory LILRB2 and by soluble LILRA3. In contrast, fibrin was recognized by LILRB2 and LILRA3, but not by LILRA2. Moreover, LILRA3 bound more strongly to fibrin than to fibrinogen and blocked the LILRB2-fibrinogen/fibrin interaction. These results suggest that morphological changes in fibrinogen determine whether activating or inhibitory immune responses are induced. Upon recognizing solid-phase fibrinogen, LILRA2 activated human primary monocytes and promoted the expression of various inflammation-related genes, such as chemokines, as revealed by RNA-seq analysis. A blocking antibody against LILRA2 inhibited the fibrinogen-induced inflammatory responses, indicating that LILRA2 is the primary receptor of fibrinogen. Taken together, our findings suggest that solid-phase fibrinogen is an inflammation-inducing endogenous ligand for LILRA2, and this interaction may represent a novel therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Yifan Li
- Department of Evolutionary Immunology, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kouyuki Hirayasu
- Department of Evolutionary Immunology, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Gen Hasegawa
- Department of Evolutionary Immunology, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yosei Tomita
- Department of Evolutionary Immunology, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuko Hashikawa
- Department of Evolutionary Immunology, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Ryosuke Hiwa
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Rikinari Hanayama
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
12
|
Park KI, Hwang S, Son H, Moon J, Lee ST, Jung KH, Jung KY, Chu K, Lee SK. Prognostication in Epilepsy with Integrated Analysis of Blood Parameters and Clinical Data. J Clin Med 2024; 13:5517. [PMID: 39337003 PMCID: PMC11432444 DOI: 10.3390/jcm13185517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Determining the outcome of epilepsy is crucial for making proactive and timely treatment decisions and for counseling patients. Recent research efforts have focused on using various imaging techniques and EEG for prognostication; however, there is insufficient evidence regarding the role of blood parameters. Our study aimed to investigate the additional prognostic value of routine blood parameters in predicting epilepsy outcomes. Methods: We analyzed data from 1782 patients who underwent routine blood tests within 90 days of their first visit and had a minimum follow-up duration of three years. The etiological types were structural (35.1%), genetic (14.2%), immune (4.7%), infectious (2.9%), and unknown (42.6%). The outcome was defined as the presence of seizures in the last year. Results: Initially, a multivariate analysis was conducted based on clinical variables, MRI data, and EEG data. This analysis revealed that sex, age of onset, referred cases, epileptiform discharge, structural etiology, and the number of antiseizure medications were related to the outcome, with an area under the curve (AUC) of 0.705. Among the blood parameters, fibrinogen, bilirubin, uric acid, and aPTT were significant, with AUCs of 0.602, 0.597, 0.455, and 0.549, respectively. Including these blood parameters in the analysis slightly improved the AUC to 0.710. Conclusions: Some blood parameters were found to be related to the final outcome, potentially paving the way to understanding the mechanisms of epileptogenesis and drug resistance.
Collapse
Affiliation(s)
- Kyung-Il Park
- Department of Neurology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (K.-I.P.); (J.M.); (S.-T.L.); (K.-H.J.); (K.-Y.J.); (K.C.)
- Department of Neurology, Seoul National University Healthcare System Gangnam Center, Seoul 06236, Republic of Korea
| | - Sungeun Hwang
- Department of Neurology, Ewha Womans University Mokdong Hospital, Seoul 07985, Republic of Korea;
| | - Hyoshin Son
- Department of Neurology, Catholic University of Korea Eunpyeong St Mary’s Hospital, Seoul 03312, Republic of Korea;
| | - Jangsup Moon
- Department of Neurology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (K.-I.P.); (J.M.); (S.-T.L.); (K.-H.J.); (K.-Y.J.); (K.C.)
- Department of Genomic Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (K.-I.P.); (J.M.); (S.-T.L.); (K.-H.J.); (K.-Y.J.); (K.C.)
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Keun-Hwa Jung
- Department of Neurology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (K.-I.P.); (J.M.); (S.-T.L.); (K.-H.J.); (K.-Y.J.); (K.C.)
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Ki-Young Jung
- Department of Neurology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (K.-I.P.); (J.M.); (S.-T.L.); (K.-H.J.); (K.-Y.J.); (K.C.)
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Kon Chu
- Department of Neurology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (K.-I.P.); (J.M.); (S.-T.L.); (K.-H.J.); (K.-Y.J.); (K.C.)
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Sang Kun Lee
- Department of Neurology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (K.-I.P.); (J.M.); (S.-T.L.); (K.-H.J.); (K.-Y.J.); (K.C.)
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Republic of Korea
| |
Collapse
|
13
|
Hahn J, Temprano-Sagrera G, Hasbani NR, Ligthart S, Dehghan A, Wolberg AS, Smith NL, Sabater-Lleal M, Morrison AC, de Vries PS. Bivariate genome-wide association study of circulating fibrinogen and C-reactive protein levels. J Thromb Haemost 2024:S1538-7836(24)00544-0. [PMID: 39299614 DOI: 10.1016/j.jtha.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Fibrinogen and C-reactive protein (CRP) play an important role in inflammatory pathways and share multiple genetic loci reported in previously published genome-wide association studies (GWAS), highlighting their common genetic background. Leveraging the shared biology may identify further loci pleiotropically associated with both fibrinogen and CRP. OBJECTIVES To identify novel genetic variants that are pleiotropic and associated with both fibrinogen and CRP, by integrating both phenotypes in a bivariate GWAS by using a multitrait GWAS. METHODS We performed a bivariate GWAS to identify further pleiotropic genetic loci, using summary statistics of previously published GWAS on fibrinogen (n = 120 246) from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium, consisting of European ancestry samples and CRP (n = 363 228) from UK Biobank, including 5 different population groups. The main analysis was performed using metaUSAT and N-GWAMA. We conducted replication for novel CRP associations to test the robustness of the findings using an independent GWAS for CRP (n = 148 164). We also performed colocalization analysis to compare the associations in identified loci for the 2 traits and Genotype-Tissue Expression data. RESULTS We identified 87 pleiotropic loci that overlapped between metaUSAT and N-GWAMA, including 23 previously known for either fibrinogen or CRP, 58 novel loci for fibrinogen, and 6 novel loci for both fibrinogen and CRP. Overall, there were 30 pleiotropic and novel loci for both traits, and 7 of these showed evidence of colocalization, located in or near ZZZ3, NR1I2, RP11-72L22.1, MICU1, ARL14EP, SOCS2, and PGM5. Among these 30 loci, 13 replicated for CRP in an independent CRP GWAS. CONCLUSION Bivariate GWAS identified additional associated loci for fibrinogen and CRP. This analysis suggests fibrinogen and CRP share a common genetic architecture with many pleiotropic loci.
Collapse
Affiliation(s)
- Julie Hahn
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| | - Gerard Temprano-Sagrera
- Genomics of Complex Diseases Unit, Institut d'Investigació Biomèdica Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Natalie R Hasbani
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Symen Ligthart
- Department of Intensive Care, Antwerp University Hospital, Edegem, Belgium
| | - Abbas Dehghan
- UK Dementia Research Institute at Imperial College London, London, United Kingdom; Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Alisa S Wolberg
- Pathology and Laboratory Medicine and University of North Carolina Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, Washington, USA; Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA; Department of Veterans Affairs Office of Research and Development, Seattle Epidemiologic Research and Information Center, Seattle, Washington, USA
| | - Maria Sabater-Lleal
- Genomics of Complex Diseases Unit, Institut d'Investigació Biomèdica Sant Pau, IIB Sant Pau, Barcelona, Spain; Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Center for Molecular Medicine and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
14
|
Zhou HZ, Liu X, Zhou D, Shao F, Li Q, Li D, He T, Ren Y, Lu CW. Effects of Air Pollution and Meteorological Conditions on DED: Associated Manifestations and Underlying Mechanisms. Klin Monbl Augenheilkd 2024; 241:1062-1070. [PMID: 38688324 DOI: 10.1055/a-2316-6808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This study aims to explore the associations and the underlying mechanism among dry eye disease (DED), air pollution, and meteorological conditions. DED is positively correlated with air pollutants (i.e., PM2.5, PM10, O3, NO2, CO, and SO2) and meteorological conditions (i.e., high altitude and wind speed), while negatively associated with relative humidity. Both low and high air temperatures effect DED. Atmospheric pollutants affect DED mainly through necroptosis or autophagy, inflammatory responses, and oxidative stress. Meteorological factors affect DED not only by their own affects but also by dispersing the concentration of air pollutants, and then reducing the negative exposure. In summary, this review may expand the understanding of the effects of air pollution and meteorological factors on DED and emphasize the importance of air environmental protection.
Collapse
Affiliation(s)
- Hui-Zhong Zhou
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| | - Xiufen Liu
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| | - Dandan Zhou
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Fei Shao
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| | - Qian Li
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| | - Dan Li
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| | - Tianlong He
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| | - Yu Ren
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| | - Cheng-Wei Lu
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Ma LY, Song JH, Gao PY, Ou YN, Fu Y, Huang LY, Wang ZT, Zhang DD, Cui RP, Mi YC, Tan L. Amyloid pathology mediates the associations between plasma fibrinogen and cognition in non-demented adults. J Neurochem 2024; 168:2532-2542. [PMID: 38533619 DOI: 10.1111/jnc.16105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
Though previous studies revealed the potential associations of elevated levels of plasma fibrinogen with dementia, there is still limited understanding regarding the influence of Alzheimer's disease (AD) biomarkers on these associations. We sought to investigate the interrelationships among fibrinogen, cerebrospinal fluid (CSF) AD biomarkers, and cognition in non-demented adults. We included 1996 non-demented adults from the Chinese Alzheimer's Biomarker and LifestylE (CABLE) study and 337 from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The associations of fibrinogen with AD biomarkers and cognition were explored using multiple linear regression models. The mediation analyses with 10 000 bootstrapped iterations were conducted to explore the mediating effects of AD biomarkers on cognition. In addition, interaction analyses and subgroup analyses were conducted to assess the influence of covariates on the relationships between fibrinogen and AD biomarkers. Participants exhibiting low Aβ42 were designated as A+, while those demonstrating high phosphorylated tau (P-tau) and total tau (Tau) were labeled as T+ and N+, respectively. Individuals with normal measures of Aβ42 and P-tau were categorized as the A-T- group, and those with abnormal levels of both Aβ42 and P-tau were grouped under A+T+. Fibrinogen was higher in the A+ subgroup compared to that in the A- subgroup (p = 0.026). Fibrinogen was higher in the A+T+ subgroup compared to that in the A-T- subgroup (p = 0.011). Higher fibrinogen was associated with worse cognition and Aβ pathology (all p < 0.05). Additionally, the associations between fibrinogen and cognition were partially mediated by Aβ pathology (mediation proportion range 8%-28%). Interaction analyses and subgroup analyses showed that age and ApoE ε4 affect the relationships between fibrinogen and Aβ pathology. Fibrinogen was associated with both cognition and Aβ pathology. Aβ pathology may be a critical mediator for impacts of fibrinogen on cognition.
Collapse
Affiliation(s)
- Li-Yun Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jing-Hui Song
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Pei-Yang Gao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Liang-Yu Huang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Dan-Dan Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Rui-Ping Cui
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yin-Chu Mi
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Lan H, Zhao S, Xiong Y, Yan XZ. The emerging role of fibrin(ogen) in cardiovascular disease. Inflamm Res 2024; 73:1435-1444. [PMID: 39020021 DOI: 10.1007/s00011-024-01916-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024] Open
Abstract
OBJECTIVE A coagulation factor called fibrinogen is produced by the liver and is proteolyzed by thrombin to become fibrin. The latest studies have revealed that fibrin(ogen) palys an essential role in the regulation of cardiovascular disease. Understanding the relationship and mechanism between fibrin(ogen) and cardiovascular disease is of great significance for maintaining overall health. The objective of this review is to discuss the specific involvement and underlying mechanisms of fibrin(ogen) in cardiovascular disease. METHODS A review was conducted using the PubMed database to identify and analyze the emerging role of fibrinogen in cardiovascular disease. RESULTS The literature review revealed that fibrin(ogen) plays a pivotal role in maintaining cardiovascular disease and are involved in the pathogenesis of cardiovascular disease. Fibrin(ogen) mainly influence various pathophysiological processes, such as participating in thrombosis formation, stimulating the inflammatory response, and other molecular pathways. CONCLUSION This review focuses on the involvement of fibrin(ogen) in cardiovascular disease, with a particular emphasis on the main functions and underlying mechanisms by which fibrin(ogen) influence the pathogenesis and progression of these conditions. This review underscores the potential of fibrin(ogen) as therapeutic targets in managing cardiovascular disease.
Collapse
Affiliation(s)
- Hong Lan
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Periodontology, Stomatological Hospital and Dental School, Tongji University, Yanchang Road 399, Shanghai, 200072, P. R. China
| | - Shengtao Zhao
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Periodontology, Stomatological Hospital and Dental School, Tongji University, Yanchang Road 399, Shanghai, 200072, P. R. China
| | - Yuting Xiong
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Periodontology, Stomatological Hospital and Dental School, Tongji University, Yanchang Road 399, Shanghai, 200072, P. R. China
| | - Xiang-Zhen Yan
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Periodontology, Stomatological Hospital and Dental School, Tongji University, Yanchang Road 399, Shanghai, 200072, P. R. China.
| |
Collapse
|
17
|
Ryu JK, Yan Z, Montano M, Sozmen EG, Dixit K, Suryawanshi RK, Matsui Y, Helmy E, Kaushal P, Makanani SK, Deerinck TJ, Meyer-Franke A, Rios Coronado PE, Trevino TN, Shin MG, Tognatta R, Liu Y, Schuck R, Le L, Miyajima H, Mendiola AS, Arun N, Guo B, Taha TY, Agrawal A, MacDonald E, Aries O, Yan A, Weaver O, Petersen MA, Meza Acevedo R, Alzamora MDPS, Thomas R, Traglia M, Kouznetsova VL, Tsigelny IF, Pico AR, Red-Horse K, Ellisman MH, Krogan NJ, Bouhaddou M, Ott M, Greene WC, Akassoglou K. Fibrin drives thromboinflammation and neuropathology in COVID-19. Nature 2024; 633:905-913. [PMID: 39198643 PMCID: PMC11424477 DOI: 10.1038/s41586-024-07873-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/24/2024] [Indexed: 09/01/2024]
Abstract
Life-threatening thrombotic events and neurological symptoms are prevalent in COVID-19 and are persistent in patients with long COVID experiencing post-acute sequelae of SARS-CoV-2 infection1-4. Despite the clinical evidence1,5-7, the underlying mechanisms of coagulopathy in COVID-19 and its consequences in inflammation and neuropathology remain poorly understood and treatment options are insufficient. Fibrinogen, the central structural component of blood clots, is abundantly deposited in the lungs and brains of patients with COVID-19, correlates with disease severity and is a predictive biomarker for post-COVID-19 cognitive deficits1,5,8-10. Here we show that fibrin binds to the SARS-CoV-2 spike protein, forming proinflammatory blood clots that drive systemic thromboinflammation and neuropathology in COVID-19. Fibrin, acting through its inflammatory domain, is required for oxidative stress and macrophage activation in the lungs, whereas it suppresses natural killer cells, after SARS-CoV-2 infection. Fibrin promotes neuroinflammation and neuronal loss after infection, as well as innate immune activation in the brain and lungs independently of active infection. A monoclonal antibody targeting the inflammatory fibrin domain provides protection from microglial activation and neuronal injury, as well as from thromboinflammation in the lung after infection. Thus, fibrin drives inflammation and neuropathology in SARS-CoV-2 infection, and fibrin-targeting immunotherapy may represent a therapeutic intervention for patients with acute COVID-19 and long COVID.
Collapse
Affiliation(s)
- Jae Kyu Ryu
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Zhaoqi Yan
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Mauricio Montano
- Gladstone Institute of Virology, San Francisco, CA, USA
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA, USA
| | - Elif G Sozmen
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Karuna Dixit
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | | | - Yusuke Matsui
- Gladstone Institute of Virology, San Francisco, CA, USA
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA, USA
| | - Ekram Helmy
- Gladstone Institute of Virology, San Francisco, CA, USA
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA, USA
| | - Prashant Kaushal
- Department of Microbiology, Immunology and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences (QCBio), University of California Los Angeles, Los Angeles, CA, USA
| | - Sara K Makanani
- Department of Microbiology, Immunology and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences (QCBio), University of California Los Angeles, Los Angeles, CA, USA
| | - Thomas J Deerinck
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, University of California San Diego, La Jolla, CA, USA
| | | | | | - Troy N Trevino
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Min-Gyoung Shin
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Reshmi Tognatta
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Yixin Liu
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Renaud Schuck
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Lucas Le
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Hisao Miyajima
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Andrew S Mendiola
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Nikhita Arun
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Brandon Guo
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Taha Y Taha
- Gladstone Institute of Virology, San Francisco, CA, USA
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA, USA
| | - Ayushi Agrawal
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Eilidh MacDonald
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Oliver Aries
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Aaron Yan
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Olivia Weaver
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Mark A Petersen
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Rosa Meza Acevedo
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Maria Del Pilar S Alzamora
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Reuben Thomas
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Michela Traglia
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Valentina L Kouznetsova
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, USA
- CureScience Institute, San Diego, CA, USA
| | - Igor F Tsigelny
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, USA
- CureScience Institute, San Diego, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Alexander R Pico
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Nevan J Krogan
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- COVID-19 Research Group (QCRG), University of California San Francisco, San Francisco, CA, USA
| | - Mehdi Bouhaddou
- Department of Microbiology, Immunology and Molecular Genetics (MIMG), University of California Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences (QCBio), University of California Los Angeles, Los Angeles, CA, USA
| | - Melanie Ott
- Gladstone Institute of Virology, San Francisco, CA, USA
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA, USA
- COVID-19 Research Group (QCRG), University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Warner C Greene
- Gladstone Institute of Virology, San Francisco, CA, USA.
- Michael Hulton Center for HIV Cure Research at Gladstone, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
| | - Katerina Akassoglou
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA.
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Buzoianu-Anguiano V, Arriero-Cabañero A, Fernández-Mayoralas A, Torres-Llacsa M, Doncel-Pérez E. Axonal Growth and Fasciculation of Spinal Neurons Promoted by Aldynoglia in Alkaline Fibrin Hydrogel: Influence of Tol-51 Sulfoglycolipid. Int J Mol Sci 2024; 25:9173. [PMID: 39273121 PMCID: PMC11395328 DOI: 10.3390/ijms25179173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Traumatic spinal cord injury (tSCI) has complex pathophysiological events that begin after the initial trauma. One such event is fibroglial scar formation by fibroblasts and reactive astrocytes. A strong inhibition of axonal growth is caused by the activated astroglial cells as a component of fibroglial scarring through the production of inhibitory molecules, such as chondroitin sulfate proteoglycans or myelin-associated proteins. Here, we used neural precursor cells (aldynoglia) as promoters of axonal growth and a fibrin hydrogel gelled under alkaline conditions to support and guide neuronal cell growth, respectively. We added Tol-51 sulfoglycolipid as a synthetic inhibitor of astrocyte and microglia in order to test its effect on the axonal growth-promoting function of aldynoglia precursor cells. We obtained an increase in GFAP expression corresponding to the expected glial phenotype for aldynoglia cells cultured in alkaline fibrin. In co-cultures of dorsal root ganglia (DRG) and aldynoglia, the axonal growth promotion of DRG neurons by aldynoglia was not affected. We observed that the neural precursor cells first clustered together and then formed niches from which aldynoglia cells grew and connected to groups of adjacent cells. We conclude that the combination of alkaline fibrin with synthetic sulfoglycolipid Tol-51 increased cell adhesion, cell migration, fasciculation, and axonal growth capacity, promoted by aldynoglia cells. There was no negative effect on the behavior of aldynoglia cells after the addition of sulfoglycolipid Tol-51, suggesting that a combination of aldynoglia plus alkaline fibrin and Tol-51 compound could be useful as a therapeutic strategy for tSCI repair.
Collapse
Affiliation(s)
| | | | - Alfonso Fernández-Mayoralas
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, 28006 Madrid, Spain
| | - Mabel Torres-Llacsa
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, 45071 Toledo, Spain
| | - Ernesto Doncel-Pérez
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, 45071 Toledo, Spain
| |
Collapse
|
19
|
de Garnica García MG, Mola Solà L, Pérez-Martínez C, Duocastella Codina L, Molina Crisol M, Gómez Castel A, Pérez de Prado A. Comparative evaluation of local and downstream responses in two commercially available paclitaxel-coated balloons in healthy peripheral arteries of a swine model. Cardiovasc Pathol 2024; 74:107688. [PMID: 39179125 DOI: 10.1016/j.carpath.2024.107688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
OBJECTIVE To investigate the local, downstream, and systemic effects of 2 different paclitaxel-coated balloons. DESIGN Preclinical study in healthy peripheral arteries of a swine model, with randomized allocation of the distribution of the devices: the test paclitaxel-coated balloon (PCB) (LuminorⓇ), a control PCB (IN.PACTⓇ), and a plain angioplasty balloon (OceanusⓇ), considering single (1×) and overlapping (3×) doses with simple blind histologic analysis. METHODS Twenty animals underwent balloon angioplasty at 1× or 3× doses in the external and internal branches of both femoral arteries and were followed-up for 28 days. Postprocedural and follow-up angiography were carried out. Comprehensive necropsy and histology were used to evaluate the local, downstream and systemic effects. RESULTS Angioplasty was successfully carried out in all animals. Significant protocol deviations appeared in 3 arteries (treated with Oceanus®) without clinical relevance. Those samples were excluded from the analysis. All the animals survived the follow-up period without major clinical issues. Local signs of drug toxicity were less marked with Luminor® than IN.PACT® at 1× dose, including endothelial loss (P = .0828), intima/media inflammation (P = .0004), transmural medial smooth muscle cell (SMC) loss (P = .0016), wall thickness loss (P = .0141), presence of fibrin in the vascular wall (P = .0054), and adventitial inflammation (P = .0080). A similar pattern was observed at the 3× dose for endothelial loss (P = .0011), intima/media inflammation (P < .0001), circumferential SMC loss (P = .0004), medial SMC replacement with proteoglycans (P = .0014), fibrin (P = .0034), and collagen content (P = .0205). Downstream vascular histologic changes were mild although more prevalent in the IN.PACT® 3× group (P = .006). No systemic effects of toxicity were detected in any of the samples analyzed. CONCLUSION Luminor® showed better healing pattern (lower inflammation, and endothelial and muscular loss) than IN.PACT® balloon. The effect was evident at single and triple doses. The prevalence of downstream lesions, albeit low, was higher with the triple dose of IN.PACT® compared with Luminor®.
Collapse
Affiliation(s)
- María Gracia de Garnica García
- Department of Animal Health, Section of Pathology, Veterinary School, University of León, León, Spain; Micros Veterinaria S.L., León, Spain
| | | | - Claudia Pérez-Martínez
- Department of Animal Health, Section of Pathology, Veterinary School, University of León, León, Spain.
| | | | | | | | | |
Collapse
|
20
|
Gessner-Knepel A, Gentry J, Schmalz S, Russell KE, Heatley JJ. Select Venous Analytes and Fibrinogen Determination Using Two Methods in Brown Pelicans. Animals (Basel) 2024; 14:2364. [PMID: 39199898 PMCID: PMC11350753 DOI: 10.3390/ani14162364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
The brown pelican (Pelecanus occidentalis) is a species often affected by natural and man-made disasters such as hurricanes and oil spills, as well as general human activities; that subsequently receives medical care and rehabilitation. During rehabilitation, blood may be collected for various tests to help with diagnosis, treatment, and monitoring. Reference intervals for this species are limited, dated, and typically from small sample sizes. Seventy-one presumed healthy brown pelicans were sampled as part of their pre-release examination from rehabilitation at the Wildlife Center of Texas after a large volume stranding from December 2014 to January 2015, and various venous analytes were measured to establish updated reference intervals for brown pelicans. Fibrinogen was measured via heat precipitation and the Abaxis VSPro equine fibrinogen cartridge to determine reference intervals and in an attempt to validate the VSPro for use in avian species. Abaxis VS2 Avian/Reptile Chemistry panel, iSTAT CG4+, and iSTAT Chem8+ results, in addition to body condition score, spun PCV, cloacal temperature, and fibrinogen were measured. Proposed reference intervals for brown pelicans are presented. Fibrinogen results were not comparable between the gold standard method and the VSPro, indicating that the VSPro is not appropriate for use in brown pelicans.
Collapse
Affiliation(s)
- Amelia Gessner-Knepel
- Zoological Medicine, Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (A.G.-K.)
| | - Jordan Gentry
- Zoological Medicine, Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (A.G.-K.)
| | - Sharon Schmalz
- Houston SPCA’s Wildlife Center of Texas, Old Katy Road, Houston, TX 77024, USA
| | - Karen E. Russell
- Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - J. Jill Heatley
- Zoological Medicine, Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (A.G.-K.)
| |
Collapse
|
21
|
Kandell RM, Wu JR, Kwon EJ. Reprograming Clots for In Vivo Chemical Targeting in Traumatic Brain Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301738. [PMID: 38780012 PMCID: PMC11293973 DOI: 10.1002/adma.202301738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2024] [Indexed: 05/25/2024]
Abstract
Traumatic brain injury (TBI) is a critical public health concern, yet there are no therapeutics available to improve long-term outcomes. Drug delivery to TBI remains a challenge due to the blood-brain barrier and increased intracranial pressure. In this work, a chemical targeting approach to improve delivery of materials to the injured brain, is developed. It is hypothesized that the provisional fibrin matrix can be harnessed as an injury-specific scaffold that can be targeted by materials via click chemistry. To accomplish this, the brain clot is engineered in situ by delivering fibrinogen modified with strained cyclooctyne (SCO) moieties, which incorporated into the injury lesion and is retained there for days. Improved intra-injury capture and retention of diverse, clickable azide-materials including a small molecule azide-dye, 40 kDa azide-PEG nanomaterial, and a therapeutic azide-protein in multiple dosing regimens is subsequently observed. To demonstrate therapeutic translation of this approach, a reduction in reactive oxygen species levels in the injured brain after delivery of the antioxidant catalase, is achieved. Further, colocalization between azide and SCO-fibrinogen is specific to the brain over off-target organs. Taken together, a chemical targeting strategy leveraging endogenous clot formation is established which can be applied to improve therapeutic delivery after TBI.
Collapse
Affiliation(s)
- Rebecca M. Kandell
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Jason R. Wu
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Ester J. Kwon
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
22
|
Song S, Wang A, Wu S, Li H, He H. Biomaterial Fg/P(LLA-CL) regulates macrophage polarization and recruitment of mesenchymal stem cells after endometrial injury. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:39. [PMID: 39073624 PMCID: PMC11286705 DOI: 10.1007/s10856-024-06807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/14/2024] [Indexed: 07/30/2024]
Abstract
The process of endometrial repair after injury involves the synergistic action of various cells including immune cells and stem cells. In this study, after combing Fibrinogen(Fg) with poly(L-lacticacid)-co-poly(ε-caprolactone)(P(LLA-CL)) by electrospinning, we placed Fg/P(LLA-CL) into the uterine cavity of endometrium-injured rats, and bioinformatic analysis revealed that Fg/P(LLA-CL) may affect inflammatory response and stem cell biological behavior. Therefore, we verified that Fg/P(LLA-CL) could inhibit the lipopolysaccharide (LPS)-stimulated macrophages from switching to the pro-inflammatory M1 phenotype in vitro. Moreover, in the rat model of endometrial injury, Fg/P(LLA-CL) effectively promoted the polarization of macrophages towards the anti-inflammatory M2 phenotype and enhanced the presence of mesenchymal stem cells at the injury site. Overall, Fg/P(LLA-CL) exhibits significant influence on macrophage polarization and stem cell behavior in endometrial injury, justifying further exploration for potential therapeutic applications in endometrial and other tissue injuries.
Collapse
Affiliation(s)
- Sirui Song
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Anfeng Wang
- Department of Obstetrics and Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Siyu Wu
- Department of Gynecology and Obstetrics, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266000, China
| | - Huaifang Li
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Hongbing He
- Shanghai Pine & Power Biotech Co. Ltd, Shanghai, 201108, China.
| |
Collapse
|
23
|
Long J, Chen J, Huang G, Chen Z, Zhang H, Zhang Y, Duan Q, Wu B, He J. The differences of fibrinogen levels in various types of hemorrhagic transformations. Front Neurol 2024; 15:1364875. [PMID: 39119563 PMCID: PMC11306044 DOI: 10.3389/fneur.2024.1364875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Hemorrhagic transformation (HT) is a serious complication that can occur spontaneously after an acute ischemic stroke (AIS) or after a thrombolytic/mechanical thrombectomy. Our study aims to explore the potential correlations between fibrinogen levels and the occurrence of spontaneous HT (sHT) and HT after mechanical thrombectomy (tHT). Methods A total of 423 consecutive AIS patients diagnosed HT who did not undergone thrombolysis and 423 age- and sex-matched patients without HT (non-HT) were enrolled. Fibrinogen levels were measured within 24 h of admission after stroke. The cohorts were trisected according to fibrinogen levels. The HT were further categorized into hemorrhagic infarction (HI) or parenchymal hematoma (PH) based on their imaging characteristics. Results In sHT cohort, fibrinogen levels were higher in HT patients than non-HT patients (p < 0.001 versus p = 0.002). High fibrinogen levels were associated with the severity of HT. HT patients without atrial fibrillation (AF) had higher levels of fibrinogen compared to non-HT (median 3.805 vs. 3.160, p < 0.001). This relationship did not differ among AF patients. In tHT cohort, fibrinogen levels were lower in HT patients than non-HT patients (p = 0.002). Lower fibrinogen levels were associated with the severity of HT (p = 0.004). The highest trisection of fibrinogen both in two cohorts were associated with HT [sHT cohort: OR = 2.515 (1.339-4.725), p = 0.016; that cohort: OR = 0.238 (0.108-0.523), p = 0.003]. Conclusion Our study suggests that lower fibrinogen level in sHT without AF and higher fibrinogen level in tHT are associated with more severe HT.
Collapse
Affiliation(s)
- Jingfang Long
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Neurology, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| | - Jiahao Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guiqian Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Heyu Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ye Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Duan
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Beilan Wu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jincai He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
24
|
Li X, Du H, Song Z, Meiqi, Zhang G, Yuan S, Yuanfeng, Wang H. Association between fibrinogen levels and stroke-associated pneumonia in acute ischemic stroke patients. BMC Neurol 2024; 24:256. [PMID: 39048948 PMCID: PMC11267856 DOI: 10.1186/s12883-024-03752-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
PURPOSE Prior research had indicated a relationship between fibrinogen and stroke-associated pneumonia (SAP), yet the nature of this relationship had not been thoroughly investigated. Therefore, this study was designed to elucidate the prognostic value of fibrinogen levels in forecasting the occurrence of SAP among patients with acute ischemic stroke (AIS). PATIENTS AND METHODS In this retrospective cross-sectional analysis, we included 1092 patients who had experienced AIS and were admitted to our facility within 72 h of the onset of their symptoms. Based on the SAP diagnostic criteria, patients were classified into two groups: SAP and non-SAP. The correlation between serum fibrinogen concentration and SAP was examined using univariate analysis. Curve fitting and multivariable logistic regression model were utilized for statistical evaluation. RESULTS Out of the ischemic stroke patients included in the study, SAP was identified in 112 (10.26%) patients. A direct correlation was observed between fibrinogen levels and the incidence of SAP. An increase in fibrinogen levels corresponded with a heightened incidence of SAP. Multivariable logistic regression revealed a significant positive association between fibrinogen levels and SAP incidence (OR = 1.53, 95% confidence interval [CI]: 1.18, 1.99)). CONCLUSION A linear relationship between serum fibrinogen levels and the incidence of SAP in ischemic stroke patients was shown. The serum fibrinogen levels were positively and linearly correlated to SAP risk.
Collapse
Affiliation(s)
- Xiaoqiang Li
- Department of Neurology, Xiaolan People's Hospital of Zhongshan, No. 65, Jucheng Rd. Xiaolan Dist, Zhongshan, Guangdong Prov, 528415, P.R. China
| | - Hui Du
- Department of Blood Transfusion, Xiaolan People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Zhibin Song
- Department of Neurology, Xiaolan People's Hospital of Zhongshan, No. 65, Jucheng Rd. Xiaolan Dist, Zhongshan, Guangdong Prov, 528415, P.R. China
| | - Meiqi
- Department of Neurology, Xiaolan People's Hospital of Zhongshan, No. 65, Jucheng Rd. Xiaolan Dist, Zhongshan, Guangdong Prov, 528415, P.R. China
| | - Guifeng Zhang
- Department of Neurology, Xiaolan People's Hospital of Zhongshan, No. 65, Jucheng Rd. Xiaolan Dist, Zhongshan, Guangdong Prov, 528415, P.R. China
| | - Suhua Yuan
- Medical Records Room, Xiaolan People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Yuanfeng
- Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Wang
- Department of Neurology, Xiaolan People's Hospital of Zhongshan, No. 65, Jucheng Rd. Xiaolan Dist, Zhongshan, Guangdong Prov, 528415, P.R. China.
| |
Collapse
|
25
|
Chen S, Zhang Y, Xiao Y, Cheng X, Peng L, Tian Y, Li T, He J, Hao P, Chong W, Hai Y, You C, Fang F. Association of high fibrinogen to albumin ratio with long-term mortality in patients with spontaneous intracerebral hemorrhage. Front Neurol 2024; 15:1412804. [PMID: 39099785 PMCID: PMC11294216 DOI: 10.3389/fneur.2024.1412804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024] Open
Abstract
Background The association between fibrinogen-to-albumin ratio (FAR) and in-hospital mortality in patients with spontaneous intracerebral hemorrhage (ICH) has been established. However, the association with long-term mortality in spontaneous ICH remains unclear. This study aims to investigate the association between FAR and long-term mortality in these patients. Methods Our retrospective study involved 3,538 patients who were diagnosed with ICH at West China Hospital, Sichuan University. All serum fibrinogen and serum albumin samples were collected within 24 h of admission and participants were divided into two groups according to the FAR. We conducted a Cox proportional hazard analysis to evaluate the association between FAR and long-term mortality. Results Out of a total of 3,538 patients, 364 individuals (10.3%) experienced in-hospital mortality, and 750 patients (21.2%) succumbed within one year. The adjusted hazard ratios (HR) showed significant associations with in-hospital mortality (HR 1.61, 95% CI 1.31-1.99), 1-year mortality (HR 1.45, 95% CI 1.25-1.67), and long-term mortality (HR 1.45, 95% CI 1.28-1.64). Notably, the HR for long-term mortality remained statistically significant at 1.47 (95% CI, 1.15-1.88) even after excluding patients with 1-year mortality. Conclusion A high admission FAR was significantly correlated with an elevated HR for long-term mortality in patients with ICH. The combined assessment of the ICH score and FAR at admission showed higher predictive accuracy for long-term mortality than using the ICH score in isolation.
Collapse
Affiliation(s)
- Shiping Chen
- Department of Neurosurgery, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Yu Zhang
- Department of Neurosurgery, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Yangchun Xiao
- Department of Neurosurgery, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Xin Cheng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liyuan Peng
- Department of Neurosurgery, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Yixin Tian
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tiangui Li
- Department of Neurosurgery, The First People's Hospital of Longquanyi District Chengdu, Chengdu, Sichuan, China
| | - Jialing He
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pengfei Hao
- Department of Neurosurgery, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, China
| | - Weelic Chong
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Yang Hai
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Fang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
26
|
Li Z, Yang M, Zhou C, Shi P, Hu P, Liang B, Jiang Q, Zhang L, Liu X, Lai C, Zhang T, Song H. Deciphering the molecular toolkit: regulatory elements governing shell biomineralization in marine molluscs. Integr Zool 2024. [PMID: 39030865 DOI: 10.1111/1749-4877.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
The intricate process of shell biomineralization in marine molluscs is governed by a complex interplay of regulatory elements, encompassing secretomes, transporters, and noncoding RNA. This review delves into recent advancements in understanding these regulatory mechanisms, emphasizing their significance in elucidating the functions and evolutionary dynamics of the molluscan shell biomineralization process. Central to this intricate orchestration are secretomes with diverse functional domains, selectively exported to the extrapallial space, which directly regulate crystal growth and morphology. Transporters are crucial for substrate transportation in the calcification and maintenance of cellular homeostasis. Beyond proteins and transporters, noncoding RNA molecules are integral components influencing shell biomineralization. This review underscores the nonnegligible roles played by these genetic elements at the molecular level. To comprehend the complexity of biomineralization in mollusc, we explore the origin and evolutionary history of regulatory elements, primarily secretomes. While some elements have recently evolved, others are ancient genes that have been co-opted into the biomineralization toolkit. These elements undergo structural and functional evolution through rapidly evolving repetitive low-complexity domains and domain gain/loss/rearrangements, ultimately shaping a distinctive set of secretomes characterized by both conserved features and evolutionary innovations. This comprehensive review enhances our understanding of molluscan biomineralization at the molecular and genetic levels.
Collapse
Affiliation(s)
- Zhuoqing Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meijie Yang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cong Zhou
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pu Shi
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengpeng Hu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Liang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingtian Jiang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Lili Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaoyan Liu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Agricultural University, Qingdao, China
| | - Changping Lai
- Lianyungang Blue Carbon Marine Technology Co., Lianyungang, China
| | - Tao Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Song
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Han X, Liu Z, Cui M, Lin J, Li Y, Qin H, Sheng J, Zhang X. FGA influences invasion and metastasis of hepatocellular carcinoma through the PI3K/AKT pathway. Aging (Albany NY) 2024; 16:12806-12819. [PMID: 39227068 PMCID: PMC11501378 DOI: 10.18632/aging.206011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/03/2024] [Indexed: 09/05/2024]
Abstract
Fibrinogen is an important plasma protein composed of three polypeptide chains, fibrinogen alpha (FGA), beta, and gamma. Apart from being an inflammation regulator, fibrinogen also plays a role in tumor progression. Liver cancer usually has a poor prognosis, with chronic hepatitis being the main cause of liver cirrhosis and hepatocellular carcinoma (HCC). FGA serves as a serological marker for chronic hepatitis, but its relationship with liver cancer remains unclear. Through bioinformatics analysis and agarose gel electrophoresis, we found that FGA was downregulated in HCC and correlated with tumor stage and grade. By constructing both FGA gene knockout and overexpression cell models, we demonstrated that overexpressing FGA inhibited migration and invasion of liver cancer cells through Transwell migration/invasion and wound healing assays. Western blotting experiments showed that FGA overexpression increased the expression of the epithelial-mesenchymal transition marker protein E-cadherin while decreasing N-cadherin and slug protein expression. In addition, FGA knockout activated the PI3K/AKT pathway. In a mouse model of metastatic tumors, overexpression of FGA restricted the spread of tumor cells. In conclusion, FGA exhibits an inhibitory effect on tumor metastasis, providing new insights for the treatment of advanced HCC metastatic tumors.
Collapse
Affiliation(s)
- Xi Han
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Zefeng Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Jie Lin
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Yongzhi Li
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Hanjiao Qin
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| |
Collapse
|
28
|
Natarajan C, Le LHD, Gunasekaran M, Tracey KJ, Chernoff D, Levine YA. Electrical stimulation of the vagus nerve ameliorates inflammation and disease activity in a rat EAE model of multiple sclerosis. Proc Natl Acad Sci U S A 2024; 121:e2322577121. [PMID: 38968104 PMCID: PMC11252997 DOI: 10.1073/pnas.2322577121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
Multiple sclerosis (MS) is a demyelinating central nervous system (CNS) disorder that is associated with functional impairment and accruing disability. There are multiple U.S. Food and Drug Administration (FDA)-approved drugs that effectively dampen inflammation and slow disability progression. However, these agents do not work well for all patients and are associated with side effects that may limit their use. The vagus nerve (VN) provides a direct communication conduit between the CNS and the periphery, and modulation of the inflammatory reflex via electrical stimulation of the VN (VNS) shows efficacy in ameliorating pathology in several CNS and autoimmune disorders. We therefore investigated the impact of VNS in a rat experimental autoimmune encephalomyelitis (EAE) model of MS. In this study, VNS-mediated neuroimmune modulation is demonstrated to effectively decrease EAE disease severity and duration, infiltration of neutrophils and pathogenic lymphocytes, myelin damage, blood-brain barrier disruption, fibrinogen deposition, and proinflammatory microglial activation. VNS modulates expression of genes that are implicated in MS pathogenesis, as well as those encoding myelin proteins and transcription factors regulating new myelin synthesis. Together, these data indicate that neuroimmune modulation via VNS may be a promising approach to treat MS, that not only ameliorates symptoms but potentially also promotes myelin repair (remyelination).
Collapse
Affiliation(s)
| | | | | | - Kevin J. Tracey
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY11030
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
| | | | - Yaakov A. Levine
- SetPoint Medical, Valencia, CA91355
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm171 76, Sweden
| |
Collapse
|
29
|
Gao Y, Zong C, Yao Y, Zhao H, Song Y, Zhang K, Yang H, Liu H, Wang Y, Li Y, Yang J, Song B, Xu Y. Elevated Fibrinogen-to-Albumin Ratio Correlates with Incident Stroke in Cerebral Small Vessel Disease. J Inflamm Res 2024; 17:4331-4343. [PMID: 38979435 PMCID: PMC11230119 DOI: 10.2147/jir.s466879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
Purpose We aimed to explore the association between fibrinogen-to-albumin ratio (FAR) and the risk of incident stroke (IS) in a cohort of cerebral small vessel disease (CSVD) patients. Patients and Methods Participants were screened from a prospective CSVD database. Clinical data, hematologic measures and imaging findings were collected. The primary outcome was IS during follow-up, with a secondary outcome of composite vascular events (CVE) including IS, myocardial infarction (MI), and vascular deaths. Univariate and multivariate COX proportional risk models, along with competing risk models, were employed to identify factors associated with outcomes. Restricted cubic spline (RCS) and subgroup analyses were conducted to assess the association between FAR and the risk of IS and CVE in CSVD patients. Results In the final analysis of 682 CSVD patients over a median observation period of 34.0 [24.0-53.0] months, there were 33 cases of IS (4.84%, 1.55/100 person-years), 4 incidents of MI (0.59%, 0.19/100 person-years), 15 non-vascular deaths (2.20%, 0.70/100 person-years), and 37 occurrences of CVE (5.43%, 1.74/100 person-years). Multivariate Cox regression analysis revealed a significant positive correlation between elevated FAR and both IS (HR 1.146; 95% CI 1.043-1.259; P=0.004) and CVE (HR 1.156; 95% CI 1.063-1.257; P=0.001) in CSVD patients. Multivariate competing risk model showed the similar results (IS: HR 1.16; 95% CI 1.06-1.27; P=0.001, CVE: HR 1.15; 95% CI 1.05-1.26; P=0.003). RCS analysis indicated a linear relationship between FAR and the risks of both IS (P for non-linearity =0.7016) and CVE (P for non-linearity =0.6475), with an optimal cutoff value of 8.69, particularly in individuals over 60 years of age. Conclusion Elevated FAR demonstrated an independent and linear association with IS and the development of CVE in CSVD patients.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, People's Republic of China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou, Henan, People's Republic of China
| | - Ce Zong
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Ying Yao
- School of Health and Nursing, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Haixu Zhao
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yuan Song
- School of Health and Nursing, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Ke Zhang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Hongxun Yang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Hongbing Liu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yunchao Wang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yusheng Li
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, People's Republic of China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou, Henan, People's Republic of China
| | - Jing Yang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, People's Republic of China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou, Henan, People's Republic of China
| | - Bo Song
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, People's Republic of China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou, Henan, People's Republic of China
| | - Yuming Xu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, People's Republic of China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
30
|
Zapolski T, Kornecki W, Jaroszyński A. The Influence of Balneotherapy Using Salty Sulfide-Hydrogen Sulfide Water on Selected Markers of the Cardiovascular System: A Prospective Study. J Clin Med 2024; 13:3526. [PMID: 38930055 PMCID: PMC11204439 DOI: 10.3390/jcm13123526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Background: The sulfide-hydrogen sulfide brine balneotherapy (HSBB), including a combination of dissolved hydrogen sulfide (H2S) gas, inorganic sulfur ions (S2-), and hydrosulfide ions (HS-), is one of the most important and most effective forms of spa treatment in patients with osteoarticular disorders (OADs). Some cardiovascular diseases (CVDs) are often considered to be contraindications to HSBB since the presence of thiol groups may lead to an increased quantity of reactive oxygen species (ROS), which damage the vascular endothelium, and endothelial dysfunction is considered to be the main cause of atherosclerosis. However, there are a number of literature reports suggesting this theory to be false. H2S is a member of the endogenous gaseous transmitter family and, since it is a relatively recent addition, it has the least well-known biological properties. H2S-NO interactions play an important role in oxidative stress in CVDs. The general objective of this study was to assess the cardiovascular safety of HSBB and analyze the effect of HSBB on selected cardiovascular risk markers. Methods: A total of 100 patients at the age of 76.3 (±7.5) years from the Włókniarz Sanatorium in Busko-Zdrój were initially included in the study. The following parameters were assessed: age, sex, height, body weight, body surface area (BSA), body mass index (BMI), systolic (SBP) and diastolic blood pressure (DBP), heart rate, the diagnosis of OAD that was the indication for balneotherapy, creatinine (CREAT), glomerular filtration rate (GFR), lipid panel, C-reactive protein (CRP), uric acid (UA), and fibrinogen (FIBR) and cardiovascular markers: (cardiac troponin T (cTnT), N-terminal pro-B-type natriuretic peptide (NT-proBNP). Results: A significant decrease in DBP and a trend towards SBP reduction were observed over the course of the study. A significant decrease was observed in CRP levels decreasing from 2.7 (±3.6) mg/L to 2.06 (±1.91) mg/L, whereas FIBR rose significantly from 2.95 (±0.59) g/L to 3.23 (±1.23) g/L. LDL-C levels decreased slightly, statistically significant, from 129.36 (±40.67) mg/dL to 123.74 (±36.14) mg/dL. HSBB did not affect the levels of evaluated cardiovascular biomarkers, namely NT-proBNP (137.41 (±176.52) pg/mL vs. 142.89 (±182.82) pg/mL; p = 0.477) and cTnT (9.64 (±4.13) vs. 9.65 (±3.91) ng/L; p = 0.948). A multiple regression analysis of pre-balneotherapy and post-balneotherapy values showed cTnT levels to be independently correlated only with CREAT levels and GFR values. None of the assessed parameters independently correlated with the NT-proBNP level. Conclusions: HSBB resulted in a statistically significant improvement in a subclinical pro-inflammatory state. HSBB has a beneficial effect in modifying key cardiovascular risk factors by reducing LDL-C levels and DBP values. HSBB has a neutral effect on cardiovascular ischemia/injury. Despite slightly elevated baseline levels of the biochemical marker of HF (NT-proBNP), HSBB causes no further increase in this marker. The use of HSBB in patients with OAD has either a neutral effect or a potentially beneficial effect on the cardiovascular system, which may constitute grounds for further studies to verify the current cardiovascular contraindications for this form of therapy.
Collapse
Affiliation(s)
- Tomasz Zapolski
- Department of Cardiology, Medical University of Lublin, 20-093 Lublin, Poland
| | | | - Andrzej Jaroszyński
- Department of Internal Medicine and Family Medicine, Collegium Medicum, Jan Kochanowski University in Kielce, 25-369 Kielce, Poland;
| |
Collapse
|
31
|
Li X, Li Q, Wang L, Ding H, Wang Y, Liu Y, Gong T. The interaction between oral microbiota and gut microbiota in atherosclerosis. Front Cardiovasc Med 2024; 11:1406220. [PMID: 38932989 PMCID: PMC11199871 DOI: 10.3389/fcvm.2024.1406220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis (AS) is a complex disease caused by multiple pathological factors threatening human health-the pathogenesis is yet to be fully elucidated. In recent years, studies have exhibited that the onset of AS is closely involved with oral and gut microbiota, which may initiate or worsen atherosclerotic processes through several mechanisms. As for how the two microbiomes affect AS, existing mechanisms include invading plaque, producing active metabolites, releasing lipopolysaccharide (LPS), and inducing elevated levels of inflammatory mediators. Considering the possible profound connection between oral and gut microbiota, the effect of the interaction between the two microbiomes on the initiation and progression of AS has been investigated. Findings are oral microbiota can lead to gut dysbiosis, and exacerbate intestinal inflammation. Nevertheless, relevant research is not commendably refined and a concrete review is needed. Hence, in this review, we summarize the most recent mechanisms of the oral microbiota and gut microbiota on AS, illustrate an overview of the current clinical and epidemiological evidence to support the bidirectional connection between the two microbiomes and AS.
Collapse
Affiliation(s)
- Xinsi Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Qian Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Li Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Huifen Ding
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yizhong Wang
- Department of Research & Development, Zhejiang Charioteer Pharmaceutical Co., Ltd, Taizhou, China
| | - Yunfei Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Gong
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Li W, Zhao S, Chen X, Zhang Y, Lin P, Huang X, Yi S, Deng X, Ding J, Xia M, Tang P, Tang X, Zhao L. Predictive Value of Fibrin Fibrinogen Degradation Products-to-Potassium Ratio for Poor Functional Outcome in Patients with Aneurysmal Subarachnoid Hemorrhage: A Retrospective Case-Control Study. Neurocrit Care 2024; 40:1013-1024. [PMID: 37833519 PMCID: PMC11147889 DOI: 10.1007/s12028-023-01865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND The relationship of fibrin(ogen) degradation products (FDPs) and potassium with the functional outcomes of patients with aneurysmal subarachnoid hemorrhage (aSAH) is still uncertain. This study aims to evaluate the predictive value of a novel combination biomarker, the FDP-to-potassium ratio (FPR), for poor functional outcomes in patients with aSAH. METHODS A total of 425 consecutive patients with aSAH at a single center were retrospectively enrolled in our study. An unfavorable outcome was defined as a modified Rankin Scale (mRS) score of 3-6 at 3 months after discharge. Univariate analysis and multivariable logistic regression were performed for baseline information and laboratory parameters recorded at admission. In addition, the receiver operating characteristic curve was plotted, and propensity score matching was performed based on the FPR. RESULTS On the basis of mRS grade, 301 patients were classified as having favorable outcomes, and 124 patients were assessed as having unfavorable outcomes. FPR levels were significantly correlated with mRS grade (r[Spearman] = 0.410; P < 0.001). Multivariate logistic regression analysis showed that age (odds ratio [OR] 1.043, 95% confidence interval [CI] 1.016-1.071; P = 0.002), white blood cell count (OR 1.150, 95% CI 1.044-1.267; P = 0.005), potassium (OR 0.526, 95% CI 0.291-0.949; P = 0.033), World Federation of Neurosurgical Societies grade (OR 1.276, 95% CI 1.055-1.544; P = 0.012), and FPR (OR 1.219, 95% CI 1.102-1.349; P < 0.001) at admission were independently associated with poor functional outcomes. The DeLong test showed that the area under the receiver operating characteristic curve of FPR was higher than that of age, white blood cell count, potassium, World Federation of Neurosurgical Societies grade, or FDP alone, indicating that FPR had better predictive potential than these other variables. After 1:1 propensity score matching (FPR ≥ 1.45 vs. FPR < 1.45), the rate of poor prognosis was still significantly increased in the high-FPR group (48/121 [39.7%] vs. 16/121 [13.2%], P < 0.001). CONCLUSIONS Fibrin(ogen) degradation product-to-potassium ratio is an independent predictor of poor outcomes for patients with aSAH and may be a promising tool for clinicians to evaluate patients' functional prognosis.
Collapse
Affiliation(s)
- Weida Li
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
- Neurosurgical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Shuangquan Zhao
- Neurosurgical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Xinlong Chen
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Yi Zhang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Ping Lin
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Xingyuan Huang
- School of Psychiatry, North Sichuan Medical College, Nanchong, 637000, China
| | - Simeng Yi
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Xuehai Deng
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Jianlin Ding
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Mingkai Xia
- School of Medical Imaging, North Sichuan Medical College, Nanchong, 637000, China
| | - Peijun Tang
- School of Medical Imaging, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiaoping Tang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
- Neurosurgical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Long Zhao
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China.
- Neurosurgical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
33
|
Uzair M, Singhal C, Ali A, Rajak S, Kapoor A, Agarwal SK, Tiwari S, Pande S, Prakash P. Myocardial ischemia-reperfusion injury released cellular fibronectin containing domain A (CFN-EDA): A destructive positive loop amplifying arterial thrombosis formation and exacerbating myocardial reperfusion injury. Thromb Res 2024; 238:117-128. [PMID: 38703585 DOI: 10.1016/j.thromres.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
Previous research has identified intravascular platelet thrombi in regions affected by myocardial ischemia-reperfusion (MI/R) injury and neighbouring areas. However, the occurrence of arterial thrombosis in the context of MI/R injury remains unexplored. This study utilizes intravital microscopy to investigate carotid artery thrombosis during MI/R injury in rats, establishing a connection with the presence of prothrombotic cellular fibronectin containing extra domain A (CFN-EDA) protein. Additionally, the study examines samples from patients with coronary artery disease (CAD) both before and after coronary artery bypass grafting (CABG). Levels of CFN-EDA significantly increase following MI with further elevation observed following reperfusion of the ischemic myocardium. Thrombotic events, such as thrombus formation and growth, show a significant increase, while the time to complete cessation of blood flow in the carotid artery significantly decreases following MI/R injury induced by ferric chloride. The acute infusion of purified CFN-EDA protein accelerates in-vivo thrombotic events in healthy rats and significantly enhances in-vitro adenosine diphosphate and collagen-induced platelet aggregation. Treatment with anti-CFN-EDA antibodies protected the rat against MI/R injury and significantly improved cardiac function as evidenced by increased end-systolic pressure-volume relationship slope and preload recruitable stroke work compared to control. Similarly, in a human study, plasma CFN-EDA levels were notably elevated in CAD patients undergoing CABG. Post-surgery, these levels continued to rise over time, alongside cardiac injury biomarkers such as cardiac troponin and B-type natriuretic peptide. The study highlights that increased CFN-EDA due to CAD or MI initiates a destructive positive feedback loop by amplifying arterial thrombus formation, potentially exacerbating MI/R injury.
Collapse
Affiliation(s)
- Moh Uzair
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, Delhi 110062, India; Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, Delhi 110062, India
| | - Chahak Singhal
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, Delhi 110062, India
| | - Azeem Ali
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, Delhi 110062, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Aditya Kapoor
- Department of Cardiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Surendra Kumar Agarwal
- Department of Cardiovascular and Thoracic Surgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Shantanu Pande
- Department of Cardiovascular and Thoracic Surgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Prem Prakash
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, Delhi 110062, India.
| |
Collapse
|
34
|
Yang C, Zhu CG, Sui YG, Guo YL, Wu NQ, Dong Q, Xu RX, Qian J, Li JJ. Synergetic impact of lipoprotein(a) and fibrinogen on stroke in coronary artery disease patients. Eur J Clin Invest 2024; 54:e14179. [PMID: 38363025 DOI: 10.1111/eci.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Emerging data suggested that lipoprotein(a) [Lp(a)] is an independent risk factor for atherosclerotic cardiovascular disease. Previous studies indicated fibrinogen (Fib) had synergetic effect on Lp(a)-induced events. However, combined impact of Fib and Lp(a) on ischemic stroke has not been elucidated. METHODS In this prospective study, we consecutively enrolled 8263 patients with stable coronary artery diseases (CAD) from 2011 to 2017. Patients were categorized into three groups according to tertiles of Lp(a) levels [Lp(a)-low, Lp(a)-medium, and Lp(a)-high] and further divided into nine groups by Lp(a) and Fib levels. All subjects were followed up for the occurrence of ischemic stroke. RESULTS During a median follow-up of 37.7 months, 157 (1.9%) ischemic strokes occurred. Stroke incidence increased by Lp(a) (1.1 vs. 2.1 vs. 2.5%, Cochran-Armitage p < .001) and Fib (1.1 vs. 2.0 vs. 2.6%, Cochran-Armitage p < .001) categories. When further classified into nine groups by Lp(a) and Fib levels, the incidence of ischemic stroke in group 9 [Lp(a)-high and Fib-high] was significantly higher than that in group 1 [Lp(a)-low and Fib-low] (3.1 vs. 6%, p < .001). The group 9 was associated with a highest risk for ischemic stroke (adjusted HR 4.907, 95% CI: 2.154-11.18, p < .001), compared with individuals in the Lp(a)-high (adjusted HR 2.290, 95% CI: 1.483-3.537, p < .001) or Fib-high (adjusted HR 1.184, 95% CI: 1.399-3.410, p = .001). Furthermore, combining Lp(a) with Fib increased C-statistics by .045 (p = .004). CONCLUSIONS Current study first demonstrated that elevated Lp(a) combining with Fib evaluation enhanced the risk of ischemic stroke in patients with CAD beyond Lp(a) or Fib alone.
Collapse
Affiliation(s)
- Cheng Yang
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng-Gang Zhu
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong-Gang Sui
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan-Lin Guo
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na-Qiong Wu
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Dong
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui-Xia Xu
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Qian
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Jun Li
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Dravid AA, Singh A, García AJ. Biomaterial-Based Therapeutic Delivery of Immune Cells. Adv Healthc Mater 2024:e2400586. [PMID: 38813869 DOI: 10.1002/adhm.202400586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Immune cell therapy (ICT) is a transformative approach used to treat a wide range of diseases including type 1 diabetes, sickle cell disease, disorders of the hematopoietic system, and certain forms of cancers. Despite excellent clinical successes, the scope of adoptively transferred immune cells is limited because of toxicities like cytokine release syndrome and immune effector cell-associated neurotoxicity in patients. Furthermore, reports suggest that such treatment can impact major organ systems including cardiac, renal, pulmonary, and hepatic systems in the long term. Additionally, adoptively transferred immune cells cannot achieve significant penetration into solid tissues, thus limiting their therapeutic potential. Recent studies suggest that biomaterial-assisted delivery of immune cells can address these challenges by reducing toxicity, improving localization, and maintaining desired phenotypes to eventually regain tissue function. In this review, recent efforts in the field of biomaterial-based immune cell delivery for the treatment of diseases, their pros and cons, and where these approaches stand in terms of clinical treatment are highlighted.
Collapse
Affiliation(s)
- Ameya A Dravid
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ankur Singh
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
36
|
Farhana A, Alsrhani A, Khan YS, Salahuddin M, Sayeed MU, Rasheed Z. Apigenin Provides Structural Protection to Human Fibrinogen against Nitrosative Stress: Biochemical and Molecular Insights. Biomolecules 2024; 14:576. [PMID: 38785983 PMCID: PMC11117476 DOI: 10.3390/biom14050576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Peroxynitrite (ONOO-) is an oxidant linked with several human pathologies. Apigenin, a natural flavonoid known for its health benefits, remains unexplored in relation to ONOO- effects. This study investigated the potential of apigenin to structurally protect fibrinogen, an essential blood clotting factor, from ONOO--induced damage. METHODS Multi-approach analyses were carried out where fibrinogen was exposed to ONOO- generation while testing the efficacy of apigenin. The role of apigenin against ONOO--induced modifications in fibrinogen was investigated using UV spectroscopy, tryptophan or tyrosine fluorescence, protein hydrophobicity, carbonylation, and electrophoretic analyses. RESULTS The findings demonstrate that apigenin significantly inhibits ONOO--induced oxidative damage in fibrinogen. ONOO- caused reduced UV absorption, which was reversed by apigenin treatment. Moreover, ONOO- diminished tryptophan and tyrosine fluorescence, which was effectively restored by apigenin treatment. Apigenin also reduced the hydrophobicity of ONOO--damaged fibrinogen. Moreover, apigenin exhibited protective effects against ONOO--induced protein carbonylation. SDS-PAGE analyses revealed that ONOO-treatment eliminated bands corresponding to fibrinogen polypeptide chains Aα and γ, while apigenin preserved these changes. CONCLUSIONS This study highlights, for the first time, the role of apigenin in structural protection of human fibrinogen against peroxynitrite-induced nitrosative damage. Our data indicate that apigenin offers structural protection to all three polypeptide chains (Aα, Bβ, and γ) of human fibrinogen. Specifically, apigenin prevents the dislocation or breakdown of the amino acids tryptophan, tyrosine, lysine, arginine, proline, and threonine and also prevents the exposure of hydrophobic sites in fibrinogen induced by ONOO-.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf Province, Saudi Arabia;
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf Province, Saudi Arabia;
| | - Yusuf Saleem Khan
- Department of Anatomy, College of Medicine, University of Hail, Hail 55476, Hail Province, Saudi Arabia
| | - Mohammad Salahuddin
- Department of Physiology, College of Medicine, Jouf University, Sakaka 72388, Aljouf Province, Saudi Arabia;
| | - Mohammed Ubaidullah Sayeed
- Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Aljouf Province, Saudi Arabia;
| | - Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, Buraidah 51452, Qassim Province, Saudi Arabia;
| |
Collapse
|
37
|
Cipryan L, Litschmannova M, Barot T, Dostal T, Sindler D, Kutac P, Jandacka D, Hofmann P. Air pollution, cardiorespiratory fitness and biomarkers of oxidative status and inflammation in the 4HAIE study. Sci Rep 2024; 14:9620. [PMID: 38671019 PMCID: PMC11053001 DOI: 10.1038/s41598-024-60388-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to investigate the associations between cardiorespiratory fitness (CRF), long-term air pollution exposure and biochemical markers of oxidative status and inflammation. This is a cross-sectional investigation focusing on biochemical markers of oxidative status and inflammation. Participants were Caucasian (N = 1188; age 18-65 years) who lived for at least 5 years in a high air-polluted (Moravian-Silesian; MS) or low air-polluted (South Bohemia; SB) region of the Czech Republic. Healthy runners and inactive individuals were recruited. A multiple regression analysis was used to explain the relationship between multiple independent variables (CRF, trunk fat mass, sex, socioeconomic status, and region (MS region vs. SB region) and dependent variables (oxidative status, inflammation). CRF, trunk fat mass, age and sex significantly predicted almost all selected markers of oxidative status and inflammation (except GSSG, GSH/GSSG and BDNF). Participants living in the MS region presented significantly higher GPx (by 3.1%) and lower BDNF values (by 4.5%). All other investigated biochemical markers were not significantly influenced by region. We did not find meaningful interactions between long-term air-pollution exposure versus markers of oxidative status and inflammation. However, we showed various significant interactions with sex, age, CRF and body composition. The significant association of living in the high air polluted MS region with the BDNF level warrants further attention.
Collapse
Affiliation(s)
- Lukas Cipryan
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic.
| | - Martina Litschmannova
- Department of Applied Mathematics, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, Ostrava, Czech Republic
| | - Tomas Barot
- Department of Mathematics with Didactics, The University of Ostrava, Ostrava, Czech Republic
| | - Tomas Dostal
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic
| | - Dominik Sindler
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic
| | - Petr Kutac
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic
| | - Daniel Jandacka
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic
| | - Peter Hofmann
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| |
Collapse
|
38
|
Dean T, Mendiola AS, Yan Z, Meza-Acevedo R, Cabriga B, Akassoglou K, Ryu JK. Fibrin promotes oxidative stress and neuronal loss in traumatic brain injury via innate immune activation. J Neuroinflammation 2024; 21:94. [PMID: 38622640 PMCID: PMC11017541 DOI: 10.1186/s12974-024-03092-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) causes significant blood-brain barrier (BBB) breakdown, resulting in the extravasation of blood proteins into the brain. The impact of blood proteins, especially fibrinogen, on inflammation and neurodegeneration post-TBI is not fully understood, highlighting a critical gap in our comprehension of TBI pathology and its connection to innate immune activation. METHODS We combined vascular casting with 3D imaging of solvent-cleared organs (uDISCO) to study the spatial distribution of the blood coagulation protein fibrinogen in large, intact brain volumes and assessed the temporal regulation of the fibrin(ogen) deposition by immunohistochemistry in a murine model of TBI. Fibrin(ogen) deposition and innate immune cell markers were co-localized by immunohistochemistry in mouse and human brains after TBI. We assessed the role of fibrinogen in TBI using unbiased transcriptomics, flow cytometry and immunohistochemistry for innate immune and neuronal markers in Fggγ390-396A knock-in mice, which express a mutant fibrinogen that retains normal clotting function, but lacks the γ390-396 binding motif to CD11b/CD18 integrin receptor. RESULTS We show that cerebral fibrinogen deposits were associated with activated innate immune cells in both human and murine TBI. Genetic elimination of fibrin-CD11b interaction reduced peripheral monocyte recruitment and the activation of inflammatory and reactive oxygen species (ROS) gene pathways in microglia and macrophages after TBI. Blockade of the fibrin-CD11b interaction was also protective from oxidative stress damage and cortical loss after TBI. CONCLUSIONS These data suggest that fibrinogen is a regulator of innate immune activation and neurodegeneration in TBI. Abrogating post-injury neuroinflammation by selective blockade of fibrin's inflammatory functions may have implications for long-term neurologic recovery following brain trauma.
Collapse
Affiliation(s)
- Terry Dean
- Gladstone Institute for Neurological Disease, San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone, University of California San Francisco, San Francisco, CA, USA
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Andrew S Mendiola
- Gladstone Institute for Neurological Disease, San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone, University of California San Francisco, San Francisco, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Zhaoqi Yan
- Gladstone Institute for Neurological Disease, San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone, University of California San Francisco, San Francisco, CA, USA
| | - Rosa Meza-Acevedo
- Gladstone Institute for Neurological Disease, San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone, University of California San Francisco, San Francisco, CA, USA
| | - Belinda Cabriga
- Gladstone Institute for Neurological Disease, San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone, University of California San Francisco, San Francisco, CA, USA
| | - Katerina Akassoglou
- Gladstone Institute for Neurological Disease, San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jae Kyu Ryu
- Gladstone Institute for Neurological Disease, San Francisco, CA, USA.
- Center for Neurovascular Brain Immunology at Gladstone, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
39
|
Ma J, Wu H, Ma Z, Wu Z. Bacterial and host factors involved in zoonotic Streptococcal meningitis. Microbes Infect 2024:105335. [PMID: 38582147 DOI: 10.1016/j.micinf.2024.105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Zoonotic streptococci cause several invasive diseases with high mortality rates, especially meningitis. Numerous studies elucidated the meningitis pathogenesis of zoonotic streptococci, some specific to certain bacterial species. In contrast, others are shared among different bacterial species, involving colonization and invasion of mucosal barriers, survival in the bloodstream, breaching the blood-brain and/or blood-cerebrospinal fluid barrier to access the central nervous system, and triggering inflammation of the meninges. This review focuses on the recent advancements in comprehending the molecular and cellular events of five major zoonotic streptococci responsible for causing meningitis in humans or animals, including Streptococcus agalactiae, Streptococcus equi subspecies zooepidemicus, Streptococcus suis, Streptococcus dysgalactiae, and Streptococcus iniae. The underlying mechanism was summarized into four themes, including 1) bacterial survival in blood, 2) brain microvascular endothelial cell adhesion and invasion, 3) penetration of the blood-brain barrier, and 4) activation of the immune system and inflammatory reaction within the brain. This review may contribute to developing therapeutics to prevent or mitigate injury of streptococcal meningitis and improve risk stratification.
Collapse
Affiliation(s)
- Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Huizhen Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China; Guangdong Provincial Key Laboratory of Research on the Technology of Pig-breeding and Pig-disease Prevention, Guangzhou 511400, China.
| |
Collapse
|
40
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
41
|
Wang C, Cui T, Li S, Wang T, Cui J, Zhong L, Jiang S, Zhu Q, Chen M, Yang Y, Wang A, Zhang X, Shang W, Hao Z, Wu B. The Change in Fibrinogen is Associated with Outcome in Patients with Acute Ischemic Stroke Treated with Endovascular Thrombectomy. Neurocrit Care 2024; 40:506-514. [PMID: 37316678 DOI: 10.1007/s12028-023-01768-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Fibrinogen has been identified as a modulator of the coagulation and inflammatory process. There is uncertainty about the relationship between the dynamic profile of fibrinogen levels and its impact on clinical outcomes in patients with acute ischemic stroke treated with endovascular thrombectomy. METHODS We consecutively enrolled patients with acute ischemic stroke who underwent endovascular thrombectomy. Fibrinogen was measured on admission and during hospitalization. The change in fibrinogen (Δfibrinogen) was calculated as the highest follow-up fibrinogen minus admission fibrinogen, with a positive Δfibrinogen indicating an increase in fibrinogen level. Functional outcome was assessed by the modified Rankin Scale at 3 months. Poor outcome was defined as modified Rankin Scale > 2. RESULTS A total of 346 patients were included (mean age 67.4 ± 13.6 years, 52.31% men). The median fibrinogen on admission was 2.77 g/L (interquartile range 2.30-3.39 g/L). The median Δfibrinogen was 1.38 g/L (interquartile range 0.27-2.79 g/L). Hyperfibrinogenemia (> 4.5 g/L) on admission was associated with an increased risk of poor outcome [odds ratio (OR) 5.93, 95% confidence interval (CI) 1.44-24.41, p = 0.014]. There was a possible U-shaped association of Δfibrinogen with outcomes, with an inflection point of - 0.43 g/L (p = 0.04). When Δfibrinogen was < - 0.43 g/L, a higher decrease in fibrinogen (lower Δfibrinogen value) was associated with a higher risk of poor outcome (OR 0.22, 95% CI 0.02-2.48, p = 0.219). When Δfibrinogen was > - 0.43 g/L, the risk of poor outcome increased with increasing fibrinogen (OR 1.27, 95% CI 1.04-1.54, p = 0.016). CONCLUSIONS In patients with endovascular thrombectomy, hyperfibrinogenemia on admission was associated with poor functional outcomes at 3 months, whereas Δfibrinogen was associated with poor 3-month outcomes in a possible U-shaped manner.
Collapse
Affiliation(s)
- Changyi Wang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Cui
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shucheng Li
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tiantian Wang
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingyu Cui
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Luyao Zhong
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shuai Jiang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiange Zhu
- The Second Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Mingxi Chen
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuan Yang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Anmo Wang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuening Zhang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenzuo Shang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zilong Hao
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bo Wu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
42
|
Jia C, Wu W, Lu H, Liu J, Chen S, Liang G, Zhou Y, Yu S, Qiao L, Chen J, Tan N, Liu Y, Chen J. Fibrinogen to HDL-Cholesterol ratio as a predictor of mortality risk in patients with acute myocardial infarction. Lipids Health Dis 2024; 23:86. [PMID: 38528580 DOI: 10.1186/s12944-024-02071-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/05/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is characterized by inflammation, oxidative stress, and atherosclerosis, contributing to increased mortality risk. High-density lipoprotein (HDL) takes a crucial part in mitigating atherosclerosis and inflammation through its diverse functionalities. Conversely, fibrinogen is implicated in the development of atherosclerotic plaques. However, the mortality risk predictive capacity of fibrinogen to HDL-cholesterol ratio (FHR) in AMI patients remains unexplored. This research aimed to evaluate the effectiveness of FHR for mortality risk prediction in relation to AMI. METHODS A retrospective study involving 13,221 AMI patients from the Cardiorenal ImprovemeNt II cohort (NCT05050877) was conducted. Baseline FHR levels were used to categorize patients into quartiles. The assessment of survival disparities among various groups was conducted by employing Kaplan‒Meier diagram. Cox regression was performed for investigating the correlation between FHR and adverse clinical outcomes, while the Fine-Gray model was applied to evaluate the subdistribution hazard ratios for cardiovascular death. RESULTS Over a median follow-up of 4.66 years, 2309 patients experienced all-cause death, with 1007 deaths attributed to cardiovascular disease (CVD). The hazard ratio (HR) and its 95% confidence interval (CI) for cardiac and all-cause death among individuals in the top quartile of FHR were 2.70 (1.99-3.65) and 1.48 (1.26-1.75), respectively, in comparison to ones in the first quartile, after covariate adjustment. Restricted cubic spline analysis revealed that FHR was linearly correlated with all-cause mortality, irrespective of whether models were adjusted or unadjusted (all P for nonlinearity > 0.05). CONCLUSION AMI patients with increased baseline FHR values had higher all-cause and cardiovascular mortality, regardless of established CVD risk factors. FHR holds promise as a valuable tool for evaluating mortality risk in AMI patients. TRIAL REGISTRATION The Cardiorenal ImprovemeNt II registry NCT05050877.
Collapse
Affiliation(s)
- Congzhuo Jia
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Wanying Wu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Huan Lu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Cardiology, Yangjiang People's Hospital, Yangjiang, 529500, China
| | - Jin Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Shiqun Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Global Health Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, 510100, China
| | - Guoxiao Liang
- The School of Pharmacy, Guangdong Medical University, Dongguan, 523000, China
| | - Yang Zhou
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Sijia Yu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Linfang Qiao
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jinming Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ning Tan
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Yong Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Jiyan Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|
43
|
Sulimai N, Brown J, Lominadze D. The Effect of Reduced Fibrinogen on Cerebrovascular Permeability during Traumatic Brain Injury in Fibrinogen Gene Heterozygous Knockout Mice. Biomolecules 2024; 14:385. [PMID: 38672403 PMCID: PMC11048347 DOI: 10.3390/biom14040385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Vascular contribution to cognitive impairment and dementia (VCID) is a term referring to all types of cerebrovascular and cardiovascular disease-related cognitive decline, spanning many neuroinflammatory diseases including traumatic brain injury (TBI). This becomes particularly important during mild-to-moderate TBI (m-mTBI), which is characterized by short-term memory (STM) decline. Enhanced cerebrovascular permeability for proteins is typically observed during m-mTBI. We have previously shown that an increase in the blood content of fibrinogen (Fg) during m-mTBI results in enhanced cerebrovascular permeability. Primarily extravasated via a transcellular pathway, Fg can deposit into the parenchyma and exacerbate inflammatory reactions that can lead to neurodegeneration, resulting in cognitive impairment. In the current study, we investigated the effect of a chronic reduction in Fg concentration in blood on cerebrovascular permeability and the interactions of extravasated Fg with astrocytes and neurons. Cortical contusion injury (CCI) was used to generate m-mTBI in transgenic mice with a deleted Fg γ chain (Fg γ+/-), resulting in a low blood content of Fg, and in control C57BL/6J wild-type (WT) mice. Cerebrovascular permeability was tested in vivo. Interactions of Fg with astrocytes and neurons and the expression of neuronal nuclear factor-кB (NF-кB) were assessed via immunohistochemistry. The results showed that 14 days after CCI, there was less cerebrovascular permeability, lower extravascular deposition of Fg, less activation of astrocytes, less colocalization of Fg with neurons, and lower expression of neuronal pro-inflammatory NF-кB in Fg γ+/- mice compared to that found in WT mice. Combined, our data provide strong evidence that increased Fg extravasation, and its resultant extravascular deposition, triggers astrocyte activation and leads to potential interactions of Fg with neurons, resulting in the overexpression of neuronal NF-кB. These effects suggest that reduced blood levels of Fg can be beneficial in mitigating the STM reduction seen in m-mTBI.
Collapse
Affiliation(s)
- Nurul Sulimai
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA; (N.S.); (J.B.)
| | - Jason Brown
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA; (N.S.); (J.B.)
| | - David Lominadze
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA; (N.S.); (J.B.)
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
| |
Collapse
|
44
|
Chi M, An Q, Feng X, He L, Pan Y. Associations of Digital Ulcers in Patients with Systemic Sclerosis: An 8-Year Retrospective Study. Dermatology 2024; 240:387-396. [PMID: 38442697 DOI: 10.1159/000536030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/25/2023] [Indexed: 03/07/2024] Open
Abstract
INTRODUCTION This study aimed to investigate the associations of digital ulcers (DUs) in patients with systemic sclerosis (SSc). METHODS This retrospective study investigated the demographic characteristics, specific autoantibodies, organ involvement, and laboratory tests in patients with SSc from our hospital. RESULTS This study enrolled 144 patients with SSc. The DU+ group consisted of 15 (10.4%) patients. Patients with SSc having DUs have longer disease duration, higher fibrinogen, higher fibrin degradation product, and lower cholesterol. None of the patients used cholesterol-lowering drugs before onset of DUs. The study also demonstrated a higher prevalence of anti-dsDNA and anti-histone antibodies in patients with SSc with DUs. Anti-dsDNA antibody is a specific antibody for SLE with a specificity of 96-99%. A total of 86.1% (124/144) of patients suffered from diffuse cutaneous SSc, and 28.5% (41/144) of patients suffered from overlap syndrome. CONCLUSION Our study indicated that patients with SSc with fibrinogen of >2.895 g/L (p = 0.043) and cholesterol of <3.340 mmol/L (p = 0.036), which is equal to 129.258 mg/dL, are at high risk of developing DUs.
Collapse
Affiliation(s)
- Miaomiao Chi
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qi An
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiuyuan Feng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lan He
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Pan
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
45
|
Kanno Y. The Roles of Fibrinolytic Factors in Bone Destruction Caused by Inflammation. Cells 2024; 13:516. [PMID: 38534360 DOI: 10.3390/cells13060516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, Crohn's disease, periodontitis, and carcinoma metastasis frequently result in bone destruction. Pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and IL-17 are known to influence bone loss by promoting the differentiation and activation of osteoclasts. Fibrinolytic factors, such as plasminogen (Plg), plasmin, urokinase-type plasminogen activator (uPA), its receptor (uPAR), tissue-type plasminogen activator (tPA), α2-antiplasmin (α2AP), and plasminogen activator inhibitor-1 (PAI-1) are expressed in osteoclasts and osteoblasts and are considered essential in maintaining bone homeostasis by regulating the functions of both osteoclasts and osteoblasts. Additionally, fibrinolytic factors are associated with the regulation of inflammation and the immune system. This review explores the roles of fibrinolytic factors in bone destruction caused by inflammation.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyotanabe, Kyoto 610-0395, Japan
| |
Collapse
|
46
|
Stampe NK, Ottenheijm ME, Drici L, Wewer Albrechtsen NJ, Nielsen AB, Christoffersen C, Warming PE, Engstrøm T, Winkel BG, Jabbari R, Tfelt-Hansen J, Glinge C. Discovery of plasma proteins associated with ventricular fibrillation during first ST-elevation myocardial infarction via proteomics. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2024; 13:264-272. [PMID: 37811694 DOI: 10.1093/ehjacc/zuad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
AIMS The underlying biological mechanisms of ventricular fibrillation (VF) during acute myocardial infarction are largely unknown. To our knowledge, this is the first proteomic study for this trait, with the aim to identify and characterize proteins that are associated with VF during first ST-elevation myocardial infarction (STEMI). METHODS AND RESULTS We included 230 participants from a Danish ongoing case-control study on patients with first STEMI with VF (case, n = 110) and without VF (control, n = 120) before guided catheter insertion for primary percutaneous coronary intervention. The plasma proteome was investigated using mass spectrometry-based proteomics on plasma samples collected within 24 h of symptom onset, and one patient was excluded in quality control. In 229 STEMI patients {72% men, median age 62 years [interquartile range (IQR): 54-70]}, a median of 257 proteins (IQR: 244-281) were quantified per patient. A total of 26 proteins were associated with VF; these proteins were involved in several biological processes including blood coagulation, haemostasis, and immunity. After correcting for multiple testing, two up-regulated proteins remained significantly associated with VF, actin beta-like 2 [ACTBL2, fold change (FC) 2.25, P < 0.001, q = 0.023], and coagulation factor XIII-A (F13A1, FC 1.48, P < 0.001, q = 0.023). None of the proteins were correlated with anterior infarct location. CONCLUSION Ventricular fibrillation due to first STEMI was significantly associated with two up-regulated proteins (ACTBL2 and F13A1), suggesting that they may represent novel underlying molecular VF mechanisms. Further research is needed to determine whether these proteins are predictive biomarkers or acute phase response proteins to VF during acute ischaemia.
Collapse
Affiliation(s)
- Niels Kjær Stampe
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital-Rigshospitalet, Inge Lehmanns Vej 7, Copenhagen 2100, Denmark
| | - Maud Eline Ottenheijm
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital Bispebjerg Hospital, Copenhagen, Denmark
| | - Lylia Drici
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital Bispebjerg Hospital, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital Bispebjerg Hospital, Copenhagen, Denmark
| | - Annelaura Bach Nielsen
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital Bispebjerg Hospital, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Centre of Diagnostic Investigation, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peder Emil Warming
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital-Rigshospitalet, Inge Lehmanns Vej 7, Copenhagen 2100, Denmark
| | - Thomas Engstrøm
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital-Rigshospitalet, Inge Lehmanns Vej 7, Copenhagen 2100, Denmark
| | - Bo Gregers Winkel
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital-Rigshospitalet, Inge Lehmanns Vej 7, Copenhagen 2100, Denmark
| | - Reza Jabbari
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital-Rigshospitalet, Inge Lehmanns Vej 7, Copenhagen 2100, Denmark
| | - Jacob Tfelt-Hansen
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital-Rigshospitalet, Inge Lehmanns Vej 7, Copenhagen 2100, Denmark
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Glinge
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital-Rigshospitalet, Inge Lehmanns Vej 7, Copenhagen 2100, Denmark
| |
Collapse
|
47
|
Ngwenya T, Grundlingh D, Ngoepe MN. Influence of vortical structures on fibrin clot formation in cerebral aneurysms: A two-dimensional computational study. J Biomech 2024; 165:111994. [PMID: 38394954 DOI: 10.1016/j.jbiomech.2024.111994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Thrombosis is an important contributor to cerebral aneurysm growth and progression. A number of sophisticated multiscale and multiphase in silico models have been developed with a view towards interventional planning. Many of these models are able to account for clotting outcomes, but do not provide detailed insight into the role of flow during clot development. In this study, we present idealised, two-dimensional in silico cerebral fibrin clot model based on computational fluid dynamics (CFD), biochemical modelling and variable porosity, permeability, and diffusivity. The model captures fibrin clot growth in cerebral aneurysms over a period at least 1000 s in five different geometries. The fibrin clot growth results were compared to an experiment presented in literature. The biochemistry was found to be more sensitive to mesh size compared to the haemodynamics, while larger timesteps overpredicted clot size in pulsatile flow. When variable diffusivity was used, the predicted clot size was 25.4% lesser than that with constant diffusivity. The predicted clot size in pulsatile flow was 14.6% greater than in plug flow. Different vortex modes were observed in plug and pulsatile flow; the latter presented smaller intermediate modes where the main vortex was smaller and less likely to disrupt the growing fibrin clot. Furthermore, smaller vortex modes were seen to support fibrin clot propagation across geometries. The model clearly demonstrates how the growing fibrin clot alters vortical structures within the aneurysm sac and how this changing flow, in turn, shapes the growing fibrin clot.
Collapse
Affiliation(s)
- Tinashe Ngwenya
- Centre for Research in Computational and Applied Mechanics (CERECAM), University of Cape Town, South Africa; Department of Mechanical Engineering, University of Cape Town, South Africa
| | - Divan Grundlingh
- Department of Mechanical Engineering, University of Cape Town, South Africa
| | - Malebogo N Ngoepe
- Centre for Research in Computational and Applied Mechanics (CERECAM), University of Cape Town, South Africa; Department of Mechanical Engineering, University of Cape Town, South Africa.
| |
Collapse
|
48
|
Wang Q, Bu C, Wang H, Zhang B, Chen Q, Shi D, Chi L. Distinct mechanisms underlying the therapeutic effects of low-molecular-weight heparin and chondroitin sulfate on Parkinson's disease. Int J Biol Macromol 2024; 262:129846. [PMID: 38296150 DOI: 10.1016/j.ijbiomac.2024.129846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder influenced by various factors, including age, genetics, and the environment. Current treatments provide symptomatic relief without impeding disease progression. Previous studies have demonstrated the therapeutic potential of exogenous heparin and chondroitin sulfate in PD. However, their therapeutic mechanisms and structure-activity relationships remain poorly understood. In this study, low-molecular-weight heparin (L-HP) and chondroitin sulfate (L-CS) exhibited favorable therapeutic effects in a mouse model of PD. Proteomics revealed that L-HP attenuated mitochondrial dysfunction through its antioxidant properties, whereas L-CS suppressed neuroinflammation by inhibiting platelet activation. Two glycosaminoglycan (GAG)-binding proteins, manganese superoxide dismutase (MnSOD2) and fibrinogen beta chain (FGB), were identified as potential targets of L-HP and L-CS, and we investigated their structure-activity relationships. The IdoA2S-GlcNS6S/GlcNAc6S unit in HP bound to SOD2, whereas the GlcA-GalNAc4S and GlcA-GalNAc4S6S units in CS preferred FGB. Furthermore, N-S and 2-O-S in L-HP, and 4-O-S, 6-O-S, and -COOH in L-CS contributed significantly to the binding process. These findings provide new insights and evidence for the development and use of glycosaminoglycan-based therapeutics for PD.
Collapse
Affiliation(s)
- Qingchi Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China; Xianghu Laboratory, Hangzhou 311231, China
| | - Changkai Bu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Haoran Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Bin Zhang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Qingqing Chen
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Deling Shi
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Lianli Chi
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China.
| |
Collapse
|
49
|
Deng M, Song K, Tong Y, Chen S, Xu W, He G, Hu J, Xiao H, Wan C, Wang Z, Li F. Higher fibrinogen and neutrophil-to-lymphocyte ratio are associated with the early poor response to intravenous thrombolysis in acute ischemic stroke. Front Neurol 2024; 15:1291950. [PMID: 38456149 PMCID: PMC10919149 DOI: 10.3389/fneur.2024.1291950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
Background Inflammation and platelet activation play pivotal roles in acute ischemic stroke (AIS) pathogenesis. Early response to thrombolysis is a vital indicator for the long-term prognosis of AIS. However, the correlation between fibrinogen or the neutrophil-to-lymphocyte ratio (NLR) and the early response to intravenous thrombolysis in patients with AIS remains unclear. Methods AIS patients undergoing intravenous thrombolysis were enrolled between January 2018 and May 2023. Blood cell counts were sampled before thrombolysis. A good response was defined as a National Institutes of Health Stroke Scale (NIHSS) score decreased ≥4 or complete recovery 24 h after thrombolysis treatment. A poor response was defined as any increase in the NIHSS score or a decrease in the NIHSS score <4 at the 24 h after thrombolysis treatment compared with that at admission. Logistic regression analysis was performed to explore the relationship of the fibrinogen level and NLR with a poor thrombolysis response. Receiver operating characteristic (ROC) analysis was used to assess the ability of the fibrinogen level and NLR to discriminate poor responders. Results Among 700 recruited patients, 268 (38.29%) were diagnosed with a good response, and 432 (61.71%) were diagnosed with a poor response to intravenous thrombolysis. A binary logistic regression model indicated that an elevated fibrinogen level (odds ratio [OR], 1.693; 95% confidence interval [CI] 1.325-2.122, P < 0.001) and NLR (OR, 1.253; 95% CI, 1.210-2.005, P = 0.001) were independent factors for a poor response. The area under the curve (AUC) values for the fibrinogen level, NLR and fibrinogen level combined with the NLR for a poor response were 0.708, 0.605, and 0.728, respectively. Conclusions Our research indicates that the levels of fibrinogen and NLR at admission can be used as a prognostic factor to predict early poor response to intravenous thrombolysis.
Collapse
Affiliation(s)
- Mingzhu Deng
- Department of Neurology, Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, Hunan, China
| | - Kangping Song
- Department of Neurology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Yangping Tong
- Department of Neurology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Sufen Chen
- Department of Neurology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Wei Xu
- Department of Neurology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Guohua He
- Department of Neurology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Jue Hu
- Department of Neurology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Hui Xiao
- Department of Neurology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Changmin Wan
- Department of Neurology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Zhen Wang
- Department of Neurology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Fangyi Li
- Department of Neurology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| |
Collapse
|
50
|
Yang Y, Tan H, Lu Y, Mei J, Zhang M, Bai M, Wang X, Ge S, Ning T, Zhang L, Ji Z, Duan J, Sun Y, Wang F, Liu R, Li H, Deng T. Combined score based on plasma fibrinogen and platelet-lymphocyte ratio as a prognostic biomarker in esophageal squamous cell carcinoma. BMC Cancer 2024; 24:249. [PMID: 38389042 PMCID: PMC10885567 DOI: 10.1186/s12885-024-11968-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Increasing evidence has showed that inflammatory biomarkers, including neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR) and fibrinogen can be used as predictors in the prognosis of esophageal squamous cell carcinoma (ESCC). The aim of this study was to explore prognostic value of these biomarkers and evaluate the clinicopathological and prognostic significance of combined score based on plasma fibrinogen and platelet-lymphocyte ratio (F-PLR score). METHODS A total of 506 patients with ESCC were enrolled in this study. Harrell's concordance index (c-index) was used to determine the optimal cut-off values of these markers and evaluate their prognostic significance. The relationship between factors with survival rates (including overall survival [OS] and disease-free survival [DFS]) was explored by Kaplan-Meier curve, univariate analysis and multivariate cox hazard analysis. RESULTS Our result indicated that high F-PLR score was significantly associated with longer tumor length and deeper depth of tumor invasion (p < 0.01). The result of Cox multivariable analysis showed that F-PLR score was an independent prognostic factor for OS (p = 0.002) and DFS (p = 0.003). In addition, F-PLR score presented the greater c-index values for OS and DFS compared with NLR, PLR and fibrinogen level. Our result also showed that the c-index values for OS and DFS were both greater in TNM + F-PLR than those in TNM stage alone. CONCLUSIONS In conclusion, F-PLR score is a predictive biomarker for prognosis in patients with ESCC.
Collapse
Affiliation(s)
- Yuchong Yang
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi District, 300060, Tianjin, China
| | - Hui Tan
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yao Lu
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi District, 300060, Tianjin, China
| | - Jipeng Mei
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengqi Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ming Bai
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi District, 300060, Tianjin, China
| | - Xia Wang
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi District, 300060, Tianjin, China
| | - Shaohua Ge
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi District, 300060, Tianjin, China
| | - Tao Ning
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi District, 300060, Tianjin, China
| | - Le Zhang
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi District, 300060, Tianjin, China
| | - Zhi Ji
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi District, 300060, Tianjin, China
| | - Jingjing Duan
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi District, 300060, Tianjin, China
| | - Yansha Sun
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi District, 300060, Tianjin, China
| | - Feixue Wang
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi District, 300060, Tianjin, China
| | - Rui Liu
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi District, 300060, Tianjin, China
| | - Hongli Li
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi District, 300060, Tianjin, China
| | - Ting Deng
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi District, 300060, Tianjin, China.
| |
Collapse
|