1
|
Medina-Rodriguez EM, Han D, Zeltzer SE, Moraskie Alvarez-Tabío MP, O'Connor G, Daunert S, Beurel E. Stress-induced VIPergic activation mediates microbiota/Th17cell-dependent depressive-like behaviors. Brain Behav Immun 2025; 123:739-751. [PMID: 39419356 DOI: 10.1016/j.bbi.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Chronic stress often has deleterious effects leading to the development of psychiatric diseases. The gut-brain axis represents a novel avenue for stress research. The negative effects of stress on the gut physiology have been well-described, whereas the pathways whereby stress controls microbial composition to modulate behaviors remains mainly unknown. We discovered that vasoactive intestinal peptide (VIP) activation promoted stress-induced microbial changes leading to increased infiltration of T helper (Th) 17 cells and microglial activation in the hippocampus and depressive-like behaviors, uncovering a close crosstalk between intestinal VIPergic release and the gut microbiota during stress and providing a new interaction between the nervous system and the gut microbiome after stress. Neutralization of the signature cytokine of Th17 cells, interleukin (IL)-17A, was sufficient to block depressive-like behaviors, reduce neuronal VIPergic activation and microglia activation induced by VIPergic activation after stress, opening new potential therapeutic targets for depression.
Collapse
Affiliation(s)
- Eva M Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Dongmei Han
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Shanie E Zeltzer
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Michael P Moraskie Alvarez-Tabío
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Gregory O'Connor
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
2
|
Park SK, Oh CM, Ryoo JH, Jung JY. The possible association of dietary fiber intake with the incidence of depressive symptoms in the Korean population. Nutr Neurosci 2025; 28:98-106. [PMID: 38753996 DOI: 10.1080/1028415x.2024.2352194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
OBJECTIVES This study investigates the effect of dietary fiber on the prevention of depressive symptoms. METHODS In a cohort of 88,826 Korean adults (57,284 men and 31,542 women), we longitudinally evaluated the risk of depressive symptoms according to quartiles of dietary fiber intake for 5.8 years of follow-up. A food frequency questionnaire was used in evaluating dietary fiber intake. Depressive symptoms were assessed by the Center for Epidemiological Studies-Depression (CES-D) scale, in which CES-D ≥ 16 was defined as depressive symptoms. The Cox proportional hazards model was used to calculate the adjusted hazard ratio (HR) and 95% confidence intervals (CI) for depressive symptoms (adjusted HR [95% CI]). Subgroup analysis was performed for gender and BMI (≥25 or <25). RESULT In men, the risk of depressive symptoms significantly decreased with the increase of dietary fiber (quartile 1: reference, quartile 2: 0.93 [0.87-0.99], quartile 3: 0.91 [0.85-0.98] and quartile 4: 0.84 [0.77-0.92]). This association was more prominently observed in men with BMI ≥ 25 (quartile 1: reference, quartile 2: 0.95 [0.86-1.06], quartile 3: 0.88 [0.79-0.99] and quartile 4: 0.84 [0.73-0.97]). Women did not show a significant association between quartile groups of dietary fiber intake and the risk of depressive symptoms across subgroup analysis for BMI. CONCLUSION High intake of dietary fiber is potentially effective in reducing depressive symptoms in Korean men. The protective effect of dietary fiber on depressive symptoms may vary by gender and obesity.
Collapse
Affiliation(s)
- Sung Keun Park
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chang-Mo Oh
- Departments of Preventive Medicine, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Jae-Hong Ryoo
- Departments of Occupational and Environmental Medicine, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Ju Young Jung
- Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Changela S, Ashraf S, Lu JY, Duong KE, Henry S, Wang SH, Duong TQ. New-onset gastrointestinal disorders in COVID-19 patients 3.5 years post-infection in the inner-city population in the Bronx. Sci Rep 2024; 14:31850. [PMID: 39738536 DOI: 10.1038/s41598-024-83232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
This study examined the incidence, characteristics, and risk factors of new gastrointestinal disorders (GID) associated with SARS-CoV-2 infection up to 3.5 years post-infection. This retrospective study included 35,102 COVID-19 patients and 682,594 contemporary non-COVID-19 patients without past medical history of GID (controls) from the Montefiore Health System in the Bronx (3/1/2020 to 7/31/2023). Comparisons were made with unmatched and propensity-matched (1:2) controls. The primary outcome was new GID which included peptic ulcer, inflammatory bowel disease, irritable bowel syndrome, diverticulosis, diverticulitis, and biliary disease. Multivariate Cox proportional hazards model analysis was performed with adjustment for covariates. There were 2,228 (6.34%) COVID-19 positive patients who developed new GID compared to 38,928 (5.70%) controls. COVID-19 patients had an elevated risk of developing new GID (adjusted HR = 1.18 (95% CI 1.12-1.25) compared to propensity-matched controls, after adjusting for confounders that included smoking, obesity, diabetes, hypertension. These findings underscore the need for additional research and follow-up of at-risk individuals for developing GID post infection.
Collapse
Affiliation(s)
- Sagar Changela
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Samad Ashraf
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Justin Y Lu
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Kevin E Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Sonya Henry
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Stephen H Wang
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tim Q Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Center for Health & Data Innovation, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
4
|
Wang XJ. Traditional Chinese medicine treatment of insomnia based on microbial-gut-brain axis theory. World J Clin Cases 2024; 12:6867-6870. [PMID: 39726932 PMCID: PMC11531981 DOI: 10.12998/wjcc.v12.i36.6867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 10/31/2024] Open
Abstract
In recent years, insomnia has gradually become a common disease in society, which seriously affects people's quality of life. At present, with the deepening of research on intestinal microbiota-gut-brain axis in Western medicine, many studies suggest that regulating the gastrointestinal tract can treat brain-related diseases. It is found that brain-gut-bacteria axis plays an important role in the prevention and treatment of primary insomnia. At present, although the clinical treatment of insomnia with Western medicine can improve the insomnia symptoms of patients to a certain extent, there are still obvious adverse reactions, such as anxiety and depression, drug addiction, etc., so long-term oral drug therapy cannot be carried out. Traditional Chinese medicine (TCM) and acupuncture techniques have certain therapeutic effects on insomnia. TCM believes that the brain and gastrointestinal system are connected through the meridian, and the pathophysiology is closely related. This paper will discuss the theory and feasibility of TCM for the treatment of insomnia from the pathological relationship between brain-gut axis, intestinal flora and insomnia.
Collapse
Affiliation(s)
- Xue-Jian Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Nantong University, Nantong 226000, Jiangsu Province, China
- Department of Neurosurgery, Lueyang People's Hospital, Hanzhong 723000, Shaanxi Province, China
| |
Collapse
|
5
|
Xia W, Li X, Han R, Liu X. Microbial Champions: The Influence of Gut Microbiota on Athletic Performance via the Gut-Brain Axis. Open Access J Sports Med 2024; 15:209-228. [PMID: 39691802 PMCID: PMC11651067 DOI: 10.2147/oajsm.s485703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024] Open
Abstract
In recent years, exercise has shown a powerful ability to regulate the gut microbiota received with concern. For instance, compared with the sedentary group, high-level athletes showed a different gut microbiota composition and remarkable capability of physiological metabolism. In addition, different diet patterns (eg, high-fat diet, high carbohydrate diet et.al) have different effects on gut microbiota, which can also affect exercise performance. Furthermore, adaptations to exercise also might be influenced by the gut microbiota, due to its important role in the transformation and expenditure of energy obtained from the diet. Therefore, appropriate dietary supplementation is important during exercise. And exploring the mechanisms by which dietary supplements affect exercise performance by modulating gut microbiota is of considerable interest to athletes wishing to achieve health and athletic performance. In this narrative review, the relationship between gut microbiota, dietary supplements, training adaptations and performance is discussed as follows. (i) The effects of the three main nutritional supplements on gut microbiota and athlete fitness. (ii) Strategies for dietary supplements and how they exerted function through gut microbiota alteration based on the gut-brain axis. (iii) Why dietary supplement interventions on gut microbiota should be tailored to different types of exercise. Our work integrates these factors to elucidate how specific nutritional supplements can modulate gut microbiota composition and, consequently, influence training adaptations and performance outcomes, unlike previous literature that often focuses solely on the effects of exercise or diet independently. And provides a comprehensive framework for athletes seeking to optimize their health and performance through a microbiota-centric approach.
Collapse
Affiliation(s)
- Wenrui Xia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaoang Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Ruixuan Han
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, People’s Republic of China
| | - Xiaoke Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
6
|
Giraud C, Wabete N, Lemeu C, Selmaoui-Folcher N, Pham D, Boulo V, Callac N. Environmental factors and potential probiotic lineages shape the active prokaryotic communities associated with healthy Penaeus stylirostris larvae and their rearing water. FEMS Microbiol Ecol 2024; 100:fiae156. [PMID: 39562288 PMCID: PMC11636268 DOI: 10.1093/femsec/fiae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 09/30/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Microbial dysbiosis is hypothesized to cause larval mass mortalities in New Caledonian shrimp hatcheries. In order to confirm this hypothesis and allow further microbial comparisons, we studied the active prokaryotic communities of healthy Penaeus stylirostris larvae and their surrounding environment during the first 10 days of larval rearing. Using daily nutrient concentration quantitative analyses and spectrophotometric organic matter analyses, we highlighted a global eutrophication of the rearing environment. We also evidenced drastic bacterial community modifications in the water and the larvae samples using Illumina HiSeq sequencing of the V4 region of the 16S rRNA gene. We confirmed that Alteromonadales, Rhodobacterales, Flavobacteriales, Oceanospirillales, and Vibrionales members formed the core bacteriota of shrimp larvae. We also identified, in the water and the larvae samples, several potential probiotic bacterial strains that could lead to rethink probiotic use in aquaculture (AEGEAN 169 marine group, OM27 clade, Ruegeria, Leisingera, Pseudoalteromonas, and Roseobacter). Finally, investigating the existing correlations between the environmental factors and the major bacterial taxa of the water and the larvae samples, we suggested that deterministic and stochastic processes were involved in the assembly of prokaryotic communities during the larval rearing of P. stylirostris. Overall, our results showed that drastic changes mostly occurred during the zoea stages suggesting that this larval phase is crucial during shrimp larval development.
Collapse
Affiliation(s)
- Carolane Giraud
- Ifremer, CNRS, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, ENTROPIE, F-98800, Nouméa, Nouvelle-Calédonie, France
- University of New Caledonia, Institut des Sciences Exactes et Appliquées (ISEA), 98800 Noumea, New Caledonia
| | - Nelly Wabete
- Ifremer, CNRS, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, ENTROPIE, F-98800, Nouméa, Nouvelle-Calédonie, France
| | - Célia Lemeu
- Ifremer, CNRS, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, ENTROPIE, F-98800, Nouméa, Nouvelle-Calédonie, France
| | - Nazha Selmaoui-Folcher
- University of New Caledonia, Institut des Sciences Exactes et Appliquées (ISEA), 98800 Noumea, New Caledonia
| | - Dominique Pham
- Ifremer, CNRS, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, ENTROPIE, F-98800, Nouméa, Nouvelle-Calédonie, France
| | - Viviane Boulo
- IHPE,Université de Montpellier, CNRS, Ifremer, Université de Perpignan via Domitia, 34000 Montpellier, France
| | - Nolwenn Callac
- Ifremer, CNRS, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, ENTROPIE, F-98800, Nouméa, Nouvelle-Calédonie, France
| |
Collapse
|
7
|
Merino del Portillo M, Clemente-Suárez VJ, Ruisoto P, Jimenez M, Ramos-Campo DJ, Beltran-Velasco AI, Martínez-Guardado I, Rubio-Zarapuz A, Navarro-Jiménez E, Tornero-Aguilera JF. Nutritional Modulation of the Gut-Brain Axis: A Comprehensive Review of Dietary Interventions in Depression and Anxiety Management. Metabolites 2024; 14:549. [PMID: 39452930 PMCID: PMC11509786 DOI: 10.3390/metabo14100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Mental health is an increasing topic of focus since more than 500 million people in the world suffer from depression and anxiety. In this multifactorial disorder, parameters such as inflammation, the state of the microbiota and, therefore, the patient's nutrition are receiving more attention. In addition, food products are the source of many essential ingredients involved in the regulation of mental processes, including amino acids, neurotransmitters, vitamins, and others. For this reason, this narrative review was carried out with the aim of analyzing the role of nutrition in depression and anxiety disorders. To reach the review aim, a critical review was conducted utilizing both primary sources, such as scientific publications and secondary sources, such as bibliographic indexes, web pages, and databases. The search was conducted in PsychINFO, MedLine (Pubmed), Cochrane (Wiley), Embase, and CinAhl. The results show a direct relationship between what we eat and the state of our nervous system. The gut-brain axis is a complex system in which the intestinal microbiota communicates directly with our nervous system and provides it with neurotransmitters for its proper functioning. An imbalance in our microbiota due to poor nutrition will cause an inflammatory response that, if sustained over time and together with other factors, can lead to disorders such as anxiety and depression. Changes in the functions of the microbiota-gut-brain axis have been linked to several mental disorders. It is believed that the modulation of the microbiome composition may be an effective strategy for a new treatment of these disorders. Modifications in nutritional behaviors and the use of ergogenic components are presented as important non-pharmacological interventions in anxiety and depression prevention and treatment. It is desirable that the choice of nutritional and probiotic treatment in individual patients be based on the results of appropriate biochemical and microbiological tests.
Collapse
Affiliation(s)
- Mariana Merino del Portillo
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (M.M.d.P.); (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (M.M.d.P.); (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
- Studies Centre in Applied Combat (CESCA), 45007 Toledo, Spain
| | - Pablo Ruisoto
- Department of Health Sciences, Public University of Navarre, 31006 Pamplona, Spain;
| | - Manuel Jimenez
- Departamento de Didáctica de la Educación Física y Salud, Universidad Internacional de La Rioja, 26006 Logroño, Spain;
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Ana Isabel Beltran-Velasco
- Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, 28240 Madrid, Spain
| | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain;
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (M.M.d.P.); (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | | | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (M.M.d.P.); (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Studies Centre in Applied Combat (CESCA), 45007 Toledo, Spain
| |
Collapse
|
8
|
Gonia S, Heisel T, Miller N, Haapala J, Harnack L, Georgieff MK, Fields DA, Knights D, Jacobs K, Seburg E, Demerath EW, Gale CA, Swanson MH. Maternal oral probiotic use is associated with decreased breastmilk inflammatory markers, infant fecal microbiome variation, and altered recognition memory responses in infants-a pilot observational study. Front Nutr 2024; 11:1456111. [PMID: 39385777 PMCID: PMC11462058 DOI: 10.3389/fnut.2024.1456111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Early life gut microbiomes are important for brain and immune system development in animal models. Probiotic use has been proposed as a strategy to promote health via modulation of microbiomes. In this observational study, we explore if early life exposure to probiotics via the mother during pregnancy and lactation, is associated with decreased inflammation in breastmilk, maternal and infant microbiome variation, and altered infant neurodevelopmental features. Methods Exclusively breastfeeding mother-infant dyads were recruited as part of the "Mothers and Infants Linked for Healthy Growth (MILk) Study." Probiotic comparison groups were defined by exposure to maternal probiotics (NO/YES) and by timing of probiotic exposure (prenatal, postnatal, total). C-reactive protein (CRP) and IL-6 levels were determined in breastmilk by immunoassays, and microbiomes were characterized from 1-month milk and from 1- and 6-month infant feces by 16S rDNA sequencing. Infant brain function was profiled via electroencephalogram (EEG); we assessed recognition memory using event-related potential (ERP) responses to familiar and novel auditory (1 month) and visual (6 months) stimuli. Statistical comparisons of study outcomes between probiotic groups were performed using permutational analysis of variance (PERMANOVA) (microbiome) and linear models (all other study outcomes), including relevant covariables as indicated. Results We observed associations between probiotic exposure and lower breastmilk CRP and IL-6 levels, and infant gut microbiome variation at 1- and 6-months of age (including higher abundances of Bifidobacteria and Lactobacillus). In addition, maternal probiotic exposure was associated with differences in infant ERP features at 6-months of age. Specifically, infants who were exposed to postnatal maternal probiotics (between the 1- and 6-month study visits) via breastfeeding/breastmilk, had larger differential responses between familiar and novel visual stimuli with respect to the late slow wave component of the EEG, which may indicate greater memory updating potential. The milk of mothers of this subgroup of infants had lower IL-6 levels and infants had different 6-month fecal microbiomes as compared to those in the "NO" maternal probiotics group. Discussion These results support continued research into "Microbiota-Gut-Brain" connections during early life and the role of pre- and postnatal probiotics in mothers to promote healthy microbiome-associated outcomes in infants.
Collapse
Affiliation(s)
- Sara Gonia
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Timothy Heisel
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Neely Miller
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| | - Jacob Haapala
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Lisa Harnack
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Michael K. Georgieff
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - David A. Fields
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Dan Knights
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Katherine Jacobs
- Division of Maternal-Fetal Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Elisabeth Seburg
- Pregnancy and Child Health Research Center, HealthPartners Institute, Bloomington, MN, United States
| | - Ellen W. Demerath
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Cheryl A. Gale
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Marie H. Swanson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
9
|
Perz M, Szymanowska D, Kostrzewa-Susłow E. The Influence of Flavonoids with -Br, -Cl Atoms and -NO 2, -CH 3 Groups on the Growth Kinetics and the Number of Pathogenic and Probiotic Microorganisms. Int J Mol Sci 2024; 25:9269. [PMID: 39273218 PMCID: PMC11395712 DOI: 10.3390/ijms25179269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/14/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
The pursuit of novel or modified substances based on a natural origin, like flavonoids, is essential in addressing the increasing number of diseases and bacterial resistance to antibiotics, as well as in maintaining intestinal balance and enhancing overall gut health. The primary goal of this research was to evaluate the impact of specific flavonoid compounds-chalcones, flavanones, and flavones-substituted with -Br, -Cl, -CH3, and -NO2 on both pathogenic and probiotic microorganisms. Additionally, this study aimed to understand these compounds' influence on standardized normal and pathologically altered intestinal microbiomes. 8-Bromo-6-chloroflavone 4'-O-β-D-(4″-O-methyl)-glucopyranoside and 8-bromo-6-chloroflavanone showed the most promising results as bactericidal agents. They significantly limited or inhibited the growth of pathogenic bacteria without adversely affecting the probiotic's growth. Digestion in vitro studies indicated that 6-methyl-8-nitroflavone and 8-bromo-6-chloroflavone positively modulated the gut microbiome by increasing beneficial bacteria and reducing potentially pathogenic microbes. This effect was most notable in microbiomes characteristic of older individuals and those recovering from chemotherapy or antibiotic treatments. This study underscores the therapeutic potential of flavonoid compounds, particularly those with specific halogen and nitro substitutions, in enhancing gut health.
Collapse
Affiliation(s)
- Martyna Perz
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Daria Szymanowska
- Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-627 Poznań, Poland
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznań University of Medical Sciences, 60-806 Poznań, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| |
Collapse
|
10
|
Sealschott S, Pickler R, Fortney C, Bailey M, Loman B. Gut Microbiota and Symptom Expression and Severity in Neonatal Abstinence Syndrome. Biol Res Nurs 2024; 26:460-468. [PMID: 38528812 DOI: 10.1177/10998004241242102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Problem: Neonatal abstinence syndrome (NAS) affecting neonates with fetal exposure to opioids, is defined by expression and severity of symptoms. The pathophysiology behind symptoms variability is lacking. The study aims were to examine (a) differences in gut microbiota of neonates with and without NAS, (b) the relationships between gut microbiota and symptom expression and NAS severity, and (c) the changes in the neonate gut microbiota diversity during the course of NAS treatment. Methods: A cross-sectional observational design was used to examine differences in microbiota and a longitudinal, repeated measures approach was used to determine relationships between gut microbiota and NAS symptoms. Symptom data were collected using the Finnegan Neonatal Abstinence Scoring Tool and the Neonatal Pain Agitation and Sedation Scale. Stool samples were collected for microbiome analyses with 16S rRNA microbiome sequencing. Results: Differences in alpha and beta diversity between neonates with and without NAS were seen. Relative abundance results revealed 18 taxa were different in neonates with NAS compared to neonates without NAS. No differences were found in alpha or beta diversity in neonates with NAS between enrollment and hospital discharge. There was increased abundance of Escherichia-Shigella and Bacteriodes genera related to higher symptom scores. Discussion: Differences in alpha and beta diversity between neonates with and without NAS may be due to differences in birth mode and type of feeding. The findings of specific increased bacteria related to increased symptoms in the neonates with NAS may also be influenced by birth mode and type of feeding.
Collapse
Affiliation(s)
| | - Rita Pickler
- The Ohio State University College of Nursing, Columbus, OH, USA
| | | | - Michael Bailey
- The Ohio State University College of Nursing, Columbus, OH, USA
- Center for Microbial Pathogenesis, Columbus, The Research Institute at Nationwide Children's Hospital, OH, USA
| | - Brett Loman
- University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
11
|
Ryan N, Leahy-Warren P, Mulcahy H, O’Mahony S, Philpott L. The impact of perinatal maternal stress on the maternal and infant gut and human milk microbiomes: A scoping review protocol. PLoS One 2024; 19:e0304787. [PMID: 38837966 PMCID: PMC11152305 DOI: 10.1371/journal.pone.0304787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
OBJECTIVE The objective of this scoping review is to review the research evidence regarding the impact of perinatal maternal stress on the maternal and infant gut and human milk microbiomes. INTRODUCTION Perinatal stress which refers to psychological stress experienced by individuals during pregnancy and the postpartum period is emerging as a public health concern. Early exposure of infants to perinatal maternal stress can potentially lead to metabolic, immune, and neurobehavioral disorders that extend into adulthood. The role of the gut and human milk microbiome in the microbiome-gut-brain axis as a mechanism of stress transfer has been previously reported. A transfer of colonised aberrant microbiota from mother to infant is proposed to predispose the infant to a pro- inflammatory microbiome with dysregulated metabolic process thereby initiating early risk of chronic diseases. The interplay of perinatal maternal stress and its relationship to the maternal and infant gut and human milk microbiome requires further systematic examination in the literature. INCLUSION CRITERIA This scoping review is an exploratory mapping review which will focus on the population of mothers and infants with the exploration of the key concepts of maternal stress and its impact on the maternal and infant gut and human milk microbiome in the context of the perinatal period. It will focus on the pregnancy and the post-natal period up to 6 months with infants who are exclusively breastfed. METHODS This study will be guided by the Joanna Briggs Institute's (JBI) methodology for scoping reviews along with use of the Prisma Scr reporting guideline. A comprehensive search will be conducted using the following databases, CINAHL Complete; MEDLINE; PsycINFO, Web of Science and Scopus. A search strategy with pre-defined inclusion and exclusion criteria will be used to retrieve peer reviewed data published in English from 2014 to present. Screening will involve a three-step process with screening tool checklists. Results will be presented in tabular and narrative summaries, covering thematic concepts and their relationships. This protocol is registered with Open Science Framework DOI 10.17605/OSF.IO/5SRMV.
Collapse
Affiliation(s)
- Niamh Ryan
- School of Nursing and Midwifery, University College Cork, Wilton, Cork, Ireland
| | | | - Helen Mulcahy
- School of Nursing and Midwifery, University College Cork, Wilton, Cork, Ireland
| | - Siobhain O’Mahony
- Department of Anatomy and Neuroscience, APC Microbiome Ireland, University College Cork, Ireland
| | - Lloyd Philpott
- School of Nursing and Midwifery, University College Cork, Wilton, Cork, Ireland
| |
Collapse
|
12
|
Xiao L, Zuo Z, Zhao F. Microbiome in Female Reproductive Health: Implications for Fertility and Assisted Reproductive Technologies. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzad005. [PMID: 38862423 PMCID: PMC11104452 DOI: 10.1093/gpbjnl/qzad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 06/13/2024]
Abstract
The microbiome plays a critical role in the process of conception and the outcomes of pregnancy. Disruptions in microbiome homeostasis in women of reproductive age can lead to various pregnancy complications, which significantly impact maternal and fetal health. Recent studies have associated the microbiome in the female reproductive tract (FRT) with assisted reproductive technology (ART) outcomes, and restoring microbiome balance has been shown to improve fertility in infertile couples. This review provides an overview of the role of the microbiome in female reproductive health, including its implications for pregnancy outcomes and ARTs. Additionally, recent advances in the use of microbial biomarkers as indicators of pregnancy disorders are summarized. A comprehensive understanding of the characteristics of the microbiome before and during pregnancy and its impact on reproductive health will greatly promote maternal and fetal health. Such knowledge can also contribute to the development of ARTs and microbiome-based interventions.
Collapse
Affiliation(s)
- Liwen Xiao
- CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Beijing Institutes of Life Science/Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenqiang Zuo
- Beijing Institutes of Life Science/Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangqing Zhao
- CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Beijing Institutes of Life Science/Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Yu J, Zhang Y, Wells JCK, Wei Z, Bajaj-Elliott M, Nielsen DS, Fewtrell MS. A Stress Reduction Intervention for Lactating Mothers Alters Maternal Gut, Breast Milk, and Infant Gut Microbiomes: Data from a Randomized Controlled Trial. Nutrients 2024; 16:1074. [PMID: 38613107 PMCID: PMC11013067 DOI: 10.3390/nu16071074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND This secondary analysis of data from a randomized controlled trial (RCT) investigated how the maternal gut, breast milk, and infant gut microbiomes may contribute to the effects of a relaxation intervention, which reduced maternal stress and promoted infant weight gain. METHODS An RCT was undertaken in healthy Chinese primiparous mother-infant pairs (340/7-376/7gestation weeks). Mothers were randomly allocated to either the intervention group (IG, listening to relaxation meditation) or the control group (CG). Outcomes were the differences in microbiome composition and the diversity in the maternal gut, breast milk, and infant gut at 1 (baseline) and 8 weeks (post-intervention) between IG and CG, assessed using 16S rRNA gene amplicon sequencing of fecal and breastmilk samples. RESULTS In total, 38 mother-infant pairs were included in this analysis (IG = 19, CG = 19). The overall microbiome community structure in the maternal gut was significantly different between the IG and CG at 1 week, with the difference being more significant at 8 weeks (Bray-Curtis distance R2 = 0.04 vs. R2 = 0.13). Post-intervention, a significantly lower α-diversity was observed in IG breast milk (observed features: CG = 295 vs. IG = 255, p = 0.032); the Bifidobacterium genera presented a higher relative abundance. A significantly higher α-diversity was observed in IG infant gut (observed features: CG = 73 vs. IG = 113, p < 0.001). CONCLUSIONS The findings were consistent with the hypothesis that the microbiome might mediate observed relaxation intervention effects via gut-brain axis and entero-mammary pathways; but confirmation is required.
Collapse
Affiliation(s)
- Jinyue Yu
- Childhood Nutrition Research Group, Population, Policy & Practice Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; (J.Y.); (J.C.K.W.)
| | - Yan Zhang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Jonathan C. K. Wells
- Childhood Nutrition Research Group, Population, Policy & Practice Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; (J.Y.); (J.C.K.W.)
| | - Zhuang Wei
- Department of Child Healthcare, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China;
| | - Mona Bajaj-Elliott
- Infection, Immunity & Inflammation Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK;
| | | | - Mary S. Fewtrell
- Childhood Nutrition Research Group, Population, Policy & Practice Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; (J.Y.); (J.C.K.W.)
| |
Collapse
|
14
|
Marosvölgyi T, Mintál K, Farkas N, Sipos Z, Makszin L, Szabó É, Tóth A, Kocsis B, Kovács K, Hormay E, Lénárd L, Karádi Z, Bufa A. Antibiotics and probiotics-induced effects on the total fatty acid composition of feces in a rat model. Sci Rep 2024; 14:6542. [PMID: 38503819 PMCID: PMC10951306 DOI: 10.1038/s41598-024-57046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
Fatty acids (FAs) play important roles as membrane components and signal transduction molecules. Changes in short chain FA (SCFA) composition are associated with gut microbiota modifications. However, the effect of bacteria-driven changes on the detailed FA spectrum has not been explored yet. We investigated the effect of antibiotics (ABx) and/or probiotics, in four treatment groups on rat stool FA composition. Principal component analysis indicated that the chromatogram profiles of the treatment groups differ, which was also observed at different time points. Linear mixed effects models showed that in the parameters compared (sampling times, treatments. and their interactions), both the weight percentage and the concentration of FAs were affected by ABx and probiotic administration. This study found that the gut microbiome defines trans and branched saturated FAs, most saturated FAs, and unsaturated FAs with less carbon atoms. These results are among the first ones to demonstrate the restoring effects of a probiotic mixture on a substantial part of the altered total FA spectrum, and also revealed a previously unknown relationship between gut bacteria and a larger group of FAs. These findings suggest that intestinal bacteria produce not only SCFAs but also other FAs that may affect the host's physiological processes.
Collapse
Affiliation(s)
- Tamás Marosvölgyi
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Kitti Mintál
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Nelli Farkas
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Zoltán Sipos
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Lilla Makszin
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Éva Szabó
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, 7624, Hungary.
| | - Attila Tóth
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Krisztina Kovács
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Edina Hormay
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - László Lénárd
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Anita Bufa
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| |
Collapse
|
15
|
Fan S, Guo W, Xiao D, Guan M, Liao T, Peng S, Feng A, Wang Z, Yin H, Li M, Chen J, Xiong W. Microbiota-gut-brain axis drives overeating disorders. Cell Metab 2023; 35:2011-2027.e7. [PMID: 37794596 DOI: 10.1016/j.cmet.2023.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/10/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
Overeating disorders (ODs), usually stemming from dieting history and stress, remain a pervasive issue in contemporary society, with the pathological mechanisms largely unresolved. Here, we show that alterations in intestinal microbiota are responsible for the excessive intake of palatable foods in OD mice and patients with bulimia nervosa (BN). Stress combined with a history of dieting causes significant changes in the microbiota and the intestinal metabolism, which disinhibit the vagus nerve terminals in the gut and thereby lead to a subsequent hyperactivation of the gut-brain axis passing through the vagus, the solitary tract nucleus, and the paraventricular nucleus of the thalamus. The transplantation of a probiotic Faecalibacterium prausnitzii or dietary supplement of key metabolites restores the activity of the gut-to-brain pathway and thereby alleviates the OD symptoms. Thus, our study delineates how the microbiota-gut-brain axis mediates energy balance, unveils the underlying pathogenesis of the OD, and provides potential therapeutic strategies.
Collapse
Affiliation(s)
- Sijia Fan
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Weiwei Guo
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Dan Xiao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Mengyuan Guan
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Tiepeng Liao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Sufang Peng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Airong Feng
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Ziyi Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Hao Yin
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Min Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230026, China.
| | - Jue Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Wei Xiong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; Anhui Province Key Laboratory of Biomedical Aging Research, Hefei 230026, China.
| |
Collapse
|
16
|
Wei M, Gao Q, Liu J, Yang Y, Yang J, Fan J, Lv S, Yang S. Development programming: Stress during gestation alters offspring development in sheep. Reprod Domest Anim 2023; 58:1497-1511. [PMID: 37697713 DOI: 10.1111/rda.14465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/05/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023]
Abstract
Inappropriate management practices of domestic animals during pregnancy can be potential stressors, resulting in complex behavioural, physiological and neurological consequences in the developing offspring. Some of these consequences can last into adulthood or propagate to subsequent generations. We systematically summarized the results of different experimental patterns using artificially increased maternal glucocorticoid levels or prenatal maternal physiological stress paradigms, mediators between prenatal maternal stress (PMS) and programming effects in the offspring and the effects of PMS on offspring phenotypes in sheep. PMS can impair birthweight, regulate the development of the hypothalamic-pituitary-adrenal axis, modify behavioural patterns and cognitive abilities and alter gene expression and brain morphology in offspring. Further research should focus on the effects of programming on gene expression, immune function, gut microbiome, sex-specific effects and maternal behaviour of offspring, especially comparative studies of gestational periods when PMS is applied, continual studies of programming effects on offspring and treatment strategies that effectively reverse the detrimental programming effects of prenatal stress.
Collapse
Affiliation(s)
- Mingji Wei
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Qian Gao
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Junjun Liu
- Hebei Agriculture University, Baoding, China
| | - Yan Yang
- Linyi Academy of Agricultural Sciences, Linyi, China
| | - Jinyan Yang
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Jingchang Fan
- Jiaxiang County Sheep Breeding Farm, Jiaxiang, China
| | - Shenjin Lv
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Shengmei Yang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| |
Collapse
|
17
|
Akwu NA, Lekhooa M, Deqiang D, Aremu AO. Antidepressant effects of coumarins and their derivatives: A critical analysis of research advances. Eur J Pharmacol 2023; 956:175958. [PMID: 37543158 DOI: 10.1016/j.ejphar.2023.175958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/04/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Coumarins and their derivatives are non-flavonoids polyphenols with diverse pharmacological activities including anti-depressant effects. This study systematically examines the antidepressant effects of coumarins and their derivatives in relation to time series of research progress in the pharmacological pathways, association with other diseases, toxicity and bibliometric analysis. The review was approached using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) coupled with R package involving Biblioshiny, a web interface for Bibliometrix analysis and VOSviewer software analytic tools. Literature searches were conducted in Scopus, Web of Science, and PubMed from the inception through January 21, 2023. Coumarins, depression, coumarin derivatives and treatment were the main search terms used which resulted in the inclusion of 46 eligible publications. Scopoletin, psoralen, 7-hydroxycoumarin, meranzin hydrate, osthole, esculetin/umbelliferone were the most studied coumarins with antidepressant effects. Coumarins and their derivatives exerted antidepressant effects with a stronger affinity for monoamine oxidase-B (MAO-B) inhibition and, their inhibitory effect via neurotransmitter pathway on MAO is well-studied. However, epigenetic modification, neuroendocrine, neurotrophic pathways are understudied. Recent research focuses on their antidepressant effects which targeted cytokines and fibromyalgia. There is a link between the gut microbiome, the brain, and depression; meranzin hydrate exerts an antidepressant activity by remodelling the gastrointestinal system. We established that empirical data on some coumarins and their derivatives to support their antidepressant effects are limited. Likewise, the safe dose range for several coumarins and their derivatives is yet to be fully determined.
Collapse
Affiliation(s)
- Nneka Augustina Akwu
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2790, South Africa; Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Makhotso Lekhooa
- Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Dou Deqiang
- Liaoning University of Traditional Chinese Medicine, 77 Life one Road, DD port, Dalian Economic and Technical Development Zone, Dalian, 116600, China
| | - Adeyemi Oladapo Aremu
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2790, South Africa; School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa.
| |
Collapse
|
18
|
Kearns PJ, Winter AS, Woodhams DC, Northup DE. The Mycobiome of Bats in the American Southwest Is Structured by Geography, Bat Species, and Behavior. MICROBIAL ECOLOGY 2023; 86:1565-1574. [PMID: 37126126 DOI: 10.1007/s00248-023-02230-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/23/2023] [Indexed: 06/19/2023]
Abstract
Bats are widespread mammals that play key roles in ecosystems as pollinators and insectivores. However, there is a paucity of information about bat-associated microbes, in particular their fungal communities, despite the important role microbes play in host health and overall host function. The emerging fungal disease, white-nose syndrome, presents a potential challenge to the bat microbiome and understanding healthy bat-associated taxa will provide valuable information about potential microbiome-pathogen interactions. To address this knowledge gap, we collected 174 bat fur/skin swabs from 14 species of bats captured in five locations in New Mexico and Arizona and used high-throughput sequencing of the fungal internal transcribed (ITS) region to characterize bat-associated fungal communities. Our results revealed a highly heterogeneous bat mycobiome that was structured by geography and bat species. Furthermore, our data suggest that bat-associated fungal communities are affected by bat foraging, indicating the bat skin microbiota is dynamic on short time scales. Finally, despite the strong effects of site and species, we found widespread and abundant taxa from several taxonomic groups including the genera Alternaria and Metschnikowia that have the potential to be inhibitory towards fungal and bacterial pathogens.
Collapse
Affiliation(s)
- Patrick J Kearns
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.
| | - Ara S Winter
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Diana E Northup
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
19
|
Li Y, Cheng M, Zha Y, Yang K, Tong Y, Wang S, Lu Q, Ning K. Gut microbiota and inflammation patterns for specialized athletes: a multi-cohort study across different types of sports. mSystems 2023; 8:e0025923. [PMID: 37498086 PMCID: PMC10470055 DOI: 10.1128/msystems.00259-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/09/2023] [Indexed: 07/28/2023] Open
Abstract
Regular high-intensity exercise can cause changes in athletes' gut microbiota, and the extent and nature of these changes may be affected by the athletes' exercise patterns. However, it is still unclear to what extent different types of athletes have distinct gut microbiome profiles and whether we can effectively monitor an athlete's inflammatory risk based on their microbiota. To address these questions, we conducted a multi-cohort study of 543 fecal samples from athletes in three different sports: aerobics (n = 316), wrestling (n = 53), and rowing (n = 174). We sought to investigate how athletes' gut microbiota was specialized for different types of sports, and its associations with inflammation, diet, anthropometrics, and anaerobic measurements. We established a microbiota catalog of multi-cohort athletes and found that athletes have specialized gut microbiota specific to the type of sport they engaged in. Using latent Dirichlet allocation, we identified 10 microbial subgroups of athletes' gut microbiota, each of which had specific correlations with inflammation, diet, and anaerobic performance in different types of athletes. Notably, most inflammation indicators were associated with Prevotella-driven subgroup 7. Finally, we found that the effects of sport types and exercise intensity on the gut microbiota were sex-dependent. These findings shed light on the complex associations between physical factors, gut microbiota, and inflammation in athletes of different sports types and could have significant implications for monitoring potential inflammation risk and developing personalized exercise programs. IMPORTANCE This study is the first multi-cohort investigation of athletes across a range of sports, including aerobics, wrestling, and rowing, with the goal of establishing a multi-sport microbiota catalog. Our findings highlight that athletes' gut microbiota is sport-specific, indicating that exercise patterns may play a significant role in shaping the microbiome. Additionally, we observed distinct associations between gut microbiota and markers of inflammation, diet, and anaerobic performance in athletes of different sports. Moreover, we expanded our analysis to include a non-athlete cohort and found that exercise intensity had varying effects on the gut microbiota of participants, depending on sex.
Collapse
Affiliation(s)
- Yuxue Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mingyue Cheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuguo Zha
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Yang
- Exercise Immunology Center, Wuhan Sports University, Wuhan, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Song Wang
- Exercise Immunology Center, Wuhan Sports University, Wuhan, China
| | - Qunwei Lu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Rusch JA, Layden BT, Dugas LR. Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. Front Endocrinol (Lausanne) 2023; 14:1130689. [PMID: 37404311 PMCID: PMC10316519 DOI: 10.3389/fendo.2023.1130689] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Cognitive function in humans depends on the complex and interplay between multiple body systems, including the hypothalamic-pituitary-adrenal (HPA) axis. The gut microbiota, which vastly outnumbers human cells and has a genetic potential that exceeds that of the human genome, plays a crucial role in this interplay. The microbiota-gut-brain (MGB) axis is a bidirectional signalling pathway that operates through neural, endocrine, immune, and metabolic pathways. One of the major neuroendocrine systems responding to stress is the HPA axis which produces glucocorticoids such as cortisol in humans and corticosterone in rodents. Appropriate concentrations of cortisol are essential for normal neurodevelopment and function, as well as cognitive processes such as learning and memory, and studies have shown that microbes modulate the HPA axis throughout life. Stress can significantly impact the MGB axis via the HPA axis and other pathways. Animal research has advanced our understanding of these mechanisms and pathways, leading to a paradigm shift in conceptual thinking about the influence of the microbiota on human health and disease. Preclinical and human trials are currently underway to determine how these animal models translate to humans. In this review article, we summarize the current knowledge of the relationship between the gut microbiota, HPA axis, and cognition, and provide an overview of the main findings and conclusions in this broad field.
Collapse
Affiliation(s)
- Jody A. Rusch
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- C17 Chemical Pathology Laboratory, Groote Schuur Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Lara R. Dugas
- Division of Epidemiology and Biostatistics, School of Public Health, University of Cape Town, Cape Town, South Africa
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
21
|
Sasso J, Ammar RM, Tenchov R, Lemmel S, Kelber O, Grieswelle M, Zhou QA. Gut Microbiome-Brain Alliance: A Landscape View into Mental and Gastrointestinal Health and Disorders. ACS Chem Neurosci 2023; 14:1717-1763. [PMID: 37156006 PMCID: PMC10197139 DOI: 10.1021/acschemneuro.3c00127] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Gut microbiota includes a vast collection of microorganisms residing within the gastrointestinal tract. It is broadly recognized that the gut and brain are in constant bidirectional communication, of which gut microbiota and its metabolic production are a major component, and form the so-called gut microbiome-brain axis. Disturbances of microbiota homeostasis caused by imbalance in their functional composition and metabolic activities, known as dysbiosis, cause dysregulation of these pathways and trigger changes in the blood-brain barrier permeability, thereby causing pathological malfunctions, including neurological and functional gastrointestinal disorders. In turn, the brain can affect the structure and function of gut microbiota through the autonomic nervous system by regulating gut motility, intestinal transit and secretion, and gut permeability. Here, we examine data from the CAS Content Collection, the largest collection of published scientific information, and analyze the publication landscape of recent research. We review the advances in knowledge related to the human gut microbiome, its complexity and functionality, its communication with the central nervous system, and the effect of the gut microbiome-brain axis on mental and gut health. We discuss correlations between gut microbiota composition and various diseases, specifically gastrointestinal and mental disorders. We also explore gut microbiota metabolites with regard to their impact on the brain and gut function and associated diseases. Finally, we assess clinical applications of gut-microbiota-related substances and metabolites with their development pipelines. We hope this review can serve as a useful resource in understanding the current knowledge on this emerging field in an effort to further solving of the remaining challenges and fulfilling its potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Ramy M. Ammar
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Rumiana Tenchov
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Steven Lemmel
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Olaf Kelber
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Malte Grieswelle
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Qiongqiong Angela Zhou
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| |
Collapse
|
22
|
Luo R, Chang Y, Liang H, Zhang W, Song Y, Li G, Yang C. Interactions between extracellular vesicles and microbiome in human diseases: New therapeutic opportunities. IMETA 2023; 2:e86. [PMID: 38868436 PMCID: PMC10989913 DOI: 10.1002/imt2.86] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/21/2022] [Accepted: 01/14/2023] [Indexed: 06/14/2024]
Abstract
In recent decades, accumulating research on the interactions between microbiome homeostasis and host health has broadened new frontiers in delineating the molecular mechanisms of disease pathogenesis and developing novel therapeutic strategies. By transporting proteins, nucleic acids, lipids, and metabolites in their versatile bioactive molecules, extracellular vesicles (EVs), natural bioactive cell-secreted nanoparticles, may be key mediators of microbiota-host communications. In addition to their positive and negative roles in diverse physiological and pathological processes, there is considerable evidence to implicate EVs secreted by bacteria (bacterial EVs [BEVs]) in the onset and progression of various diseases, including gastrointestinal, respiratory, dermatological, neurological, and musculoskeletal diseases, as well as in cancer. Moreover, an increasing number of studies have explored BEV-based platforms to design novel biomedical diagnostic and therapeutic strategies. Hence, in this review, we highlight the recent advances in BEV biogenesis, composition, biofunctions, and their potential involvement in disease pathologies. Furthermore, we introduce the current and emerging clinical applications of BEVs in diagnostic analytics, vaccine design, and novel therapeutic development.
Collapse
Affiliation(s)
- Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Spine Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anChina
| | - Yanmin Chang
- Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Weifeng Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
23
|
Baskin BM, Logsdon AF, Janet Lee S, Foresi BD, Peskind E, Banks WA, Cook DG, Schindler AG. Timing matters: Sex differences in inflammatory and behavioral outcomes following repetitive blast mild traumatic brain injury. Brain Behav Immun 2023; 110:222-236. [PMID: 36907289 PMCID: PMC10106404 DOI: 10.1016/j.bbi.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Repetitive blast-related mild traumatic brain injury (mTBI) caused by exposure to high explosives is increasingly common among warfighters as well as civilians. While women have been serving in military positions with increased risk of blast exposure since 2016, there are few published reports examining sex as a biological variable in models of blast mTBI, greatly limiting diagnosis and treatment capabilities. As such, here we examined outcomes of repetitive blast trauma in female and male mice in relation to potential behavioral, inflammatory, microbiome, and vascular dysfunction at multiple timepoints. METHODS In this study we utilized a well-established blast overpressure model to induce repetitive (3x) blast-mTBI in both female and male mice. Acutely following repetitive exposure, we measured serum and brain cytokine levels, blood-brain barrier (BBB) disruption, fecal microbial abundance, and locomotion and anxiety-like behavior in the open field assay. At the one-month timepoint, in female and male mice we assessed behavioral correlates of mTBI and PTSD-related symptoms commonly reported by Veterans with a history of blast-mTBI using the elevated zero maze, acoustic startle, and conditioned odorant aversion paradigms. RESULTS Repetitive blast exposure resulted in both similar (e.g., increased IL-6), and disparate (e.g., IL-10 increase only in females) patterns of acute serum and brain cytokine as well as gut microbiome changes in female and male mice. Acute BBB disruption following repetitive blast exposure was apparent in both sexes. While female and male blast mice both exhibited acute locomotor and anxiety-like deficits in the open field assay, only male mice exhibited adverse behavioral outcomes that lasted at least one-month. DISCUSSION Representing a novel survey of potential sex differences following repetitive blast trauma, our results demonstrate unique similar yet divergent patterns of blast-induced dysfunction in female vs. male mice and highlight novel targets for future diagnosis and therapeutic development.
Collapse
Affiliation(s)
- Britahny M Baskin
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA; Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Aric F Logsdon
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Suhjung Janet Lee
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Brian D Foresi
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Elaine Peskind
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - William A Banks
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - David G Cook
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA; Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Abigail G Schindler
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA; Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA.
| |
Collapse
|
24
|
Traini C, Idrizaj E, Biagioni C, Baccari MC, Vannucchi MG. Otilonium Bromide Prevents Cholinergic Changes in the Distal Colon Induced by Chronic Water Avoidance Stress, a Rat Model of Irritable Bowel Syndrome. Int J Mol Sci 2023; 24:ijms24087440. [PMID: 37108603 PMCID: PMC10139220 DOI: 10.3390/ijms24087440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Irritable Bowel syndrome (IBS) is a highly widespread gastrointestinal disorder whose symptomatology mainly affect the large intestine. Among the risk factors, psychosocial stress is the most acknowledged. The repeated water avoidance stress (rWAS) is considered an animal model of psychosocial stress that is capable of mimicking IBS. Otilonium bromide (OB), which is orally administered, concentrates in the large bowel and controls most of the IBS symptoms in humans. Several reports have shown that OB has multiple mechanisms of action and cellular targets. We investigated whether the application of rWAS to rats induced morphological and functional alterations of the cholinergic neurotransmission in the distal colon and whether OB prevented them. The results demonstrated that rWAS affects cholinergic neurotransmission by causing an increase in acid mucin secretion, in the amplitude of electrically evoked contractile responses, abolished by atropine, and in the number of myenteric neurons expressing choline acetyltransferase. OB counteracted these changes and also showed an intrinsic antimuscarinic effect on the post-synaptic muscular receptors. We assume that the rWAS consequences on the cholinergic system are linked to corticotrophin-releasing factor-1 (CRF1) receptor activation by the CRF hypothalamic hormone. OB, by interfering with the CFR/CRFr activation, interrupted the cascade events responsible for the changes affecting the rWAS rat colon.
Collapse
Affiliation(s)
- Chiara Traini
- Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Eglantina Idrizaj
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Cristina Biagioni
- Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Maria Caterina Baccari
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Maria Giuliana Vannucchi
- Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| |
Collapse
|
25
|
Deshpande SN, Simkin DR. Complementary and Integrative Approaches to Prevention and Treatment of Child and Adolescent Obesity. Child Adolesc Psychiatr Clin N Am 2023; 32:395-419. [PMID: 37147044 DOI: 10.1016/j.chc.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Childhood obesity is a significant global challenge with increasing prevalence. It is associated with long-term health risks. Interventions especially early on can be effective in the prevention and reducing the impact on health in children. In children, dysbiosis and inflammation are associated with obesity. Studies demonstrate that intensive lifestyle interventions in form of parent education, motivational interviewing to improve diet and exercise as well as mindfulness, and sleep improvement can help alleviate the risk. The article outlines the current research describing complementary and integrative approaches to the prevention and treatment of obesity in children.
Collapse
Affiliation(s)
- Swapna N Deshpande
- Department of Psychiatry, Oklahoma State University, 5310 E 31st St, Tulsa, OK 74135, USA.
| | - Deborah R Simkin
- Department of Psychiatry, Emory University School of Medicine, 4641 Gulfstarr Dr., Suite 106, Destin, FL 32541, USA
| |
Collapse
|
26
|
Bubnov R, Spivak M. Pathophysiology-Based Individualized Use of Probiotics and Prebiotics for Metabolic Syndrome: Implementing Predictive, Preventive, and Personalized Medical Approach. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2023:133-196. [DOI: 10.1007/978-3-031-19564-8_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Mingoti MED, Bertollo AG, de Oliveira T, Ignácio ZM. Stress and Kynurenine-Inflammation Pathway in Major Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:163-190. [PMID: 36949310 DOI: 10.1007/978-981-19-7376-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Major depressive disorder (MDD) is one of the most prevalent disorders and causes severe damage to people's quality of life. Lifelong stress is one of the major villains in triggering MDD. Studies have shown that both stress and MDD, especially the more severe conditions of the disorder, are associated with inflammation and neuroinflammation and the relationship to an imbalance in tryptophan metabolism towards the kynurenine pathway (KP) through the enzymes indoleamine-2,3-dioxygenase (IDO), which is mainly stimulated by pro-inflammatory cytokines and tryptophan-2,3-dioxygenase (TDO) which is activated primarily by glucocorticoids. Considering that several pathophysiological mechanisms of MDD underlie or interact with biological processes from KP metabolites, this chapter addresses and discusses the function of these mechanisms. Activities triggered by stress and the hypothalamic-pituitary-adrenal (HPA) axis and immune and inflammatory processes, in addition to epigenetic phenomena and the gut-brain axis (GBA), are addressed. Finally, studies on the function and mechanisms of physical exercise in the KP metabolism and MDD are pointed out and discussed.
Collapse
Affiliation(s)
- Maiqueli Eduarda Dama Mingoti
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Amanda Gollo Bertollo
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Tácio de Oliveira
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| |
Collapse
|
28
|
Yan JT, Zhu YZ, Liang L, Feng XY. NE-activated β 2-AR/β-arrestin 2/Src pathway mediates duodenal hyperpermeability induced by water-immersion restraint stress. Am J Physiol Cell Physiol 2023; 324:C133-C141. [PMID: 36440855 DOI: 10.1152/ajpcell.00412.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stress causes a rapid spike in norepinephrine (NE) levels, leading to gastrointestinal dysfunction. NE reduces the expression of tight junctions (TJs) and aggravates intestinal mucosal damage, but the regulatory mechanism is still unclear. The present study aimed to investigate the molecular mechanisms underlying the regulation of stress-associated duodenal hyperpermeability by NE. Fluorescein isothiocyanate-dextran permeability, transepithelial resistance, immunofluorescence, Western blot, and high-performance liquid chromatography analysis were used in water-immersion restraint stress (WIRS) rats in this study. The results indicate that the duodenal permeability, degradation of TJs, mucosal NE, and β2-adrenergic receptor (β2-AR) increased in WIRS rats. The duodenal intracellular cyclic adenosine monophosphate levels were decreased, whereas the expression of β-arrestin 2 negatively regulates G protein-coupled receptors signaling, was significantly increased. Src recruitment was mediated by β-arrestin; thus, the levels of Src kinase activation were enhanced in WIRS rats. NE depletion, β2-AR, or β-arrestin 2 blockade significantly decreased mucosal permeability and increased TJs expression, suggesting improved mucosal barrier function. Moreover, NE induced an increased duodenal permeability of normal rats with activated β-arrestin 2/Src signaling, which was significantly inhibited by β2-AR blockade. The present findings demonstrate that the enhanced NE induced an increased duodenal permeability in WIRS rats through the activated β2-AR/β-arrestin 2/Src pathway. This study provides novel insight into the molecular mechanism underlying the regulation of NE on the duodenal mucosal barrier and a new target for treating duodenal ulcers induced by stress.
Collapse
Affiliation(s)
- Jing-Ting Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
| | - Yin-Zhe Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Liang Liang
- Grade 2020 Pediatrics, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Xiao-Yan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
ERTAL E, ÖZKAYA V. Düşük veya Yüksek Karbonhidratlı Diyetlerin Beyin, Beyin-Bağırsak Aksı ve Bilişsel İşlevler Üzerine Etkisi. İSTANBUL GELIŞIM ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2022. [DOI: 10.38079/igusabder.1140592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
İntestinal mikrobiyota sağlığın korunmasında anahtar bir rol oynamaktadır. Mikrobiyota üzerine önemli etkileri olan beslenme, beyin-bağırsak aksındaki bozuklukları hafifletmek, nöroinflamasyonu ve bilişsel bozulmayı iyileştirmek için büyük önem taşımaktadır. Bağırsak bakterileri, diyetle alınan besin ögelerini kullanarak çeşitli metabolitleri (örn., kısa zincirli yağ asitleri, amino asitler, vitaminler) üretebilme yeteneğine sahiptir. Üretilen bu metabolitler, periferik sinir sistemi, enteroendokrin hücreler ve merkezi sinir sistemine sinyal gönderen immün hücreler aracılığıyla beyin fonksiyonlarını ve bilişsel davranış değişikliğini etkilemektedir. Karbonhidratlar, çoğu durumda intestinal mikrobiyota tarafından substrat olarak kullanılmakta ve fermente edilmektedir. Karbonhidratların bu etkileri kimyasal yapılarına, sindirilmeden kolona ulaşıp ulaşamamalarına ve konağın karbonhidratı enerji kaynağı olarak kullanabilme yeteneğine bağlıdır. Karbonhidratın türü ve miktarı mikrobiyota, beyin bağırsak aksı ve bilişsel işlevlerdeki etkiyi belirleyen ana faktörlerden biridir. Bu derlemede, düşük veya yüksek karbonhidrat içeren diyetlerin beyin-bağırsak aksı ve bilişsel fonksiyonlara olan etkilerinin güncel literatür verileri ışığında değerlendirilmesi amaçlanmıştır.
Collapse
Affiliation(s)
- Ezgi ERTAL
- BİRUNİ ÜNİVERSİTESİ, SAĞLIK BİLİMLERİ FAKÜLTESİ, BESLENME VE DİYETETİK BÖLÜMÜ
| | - Volkan ÖZKAYA
- İSTANBUL MEDİPOL ÜNİVERSİTESİ, SAĞLIK BİLİMLERİ FAKÜLTESİ, BESLENME VE DİYETETİK BÖLÜMÜ
| |
Collapse
|
30
|
The Role of Gut Dysbiosis in the Pathophysiology of Neuropsychiatric Disorders. Cells 2022; 12:cells12010054. [PMID: 36611848 PMCID: PMC9818777 DOI: 10.3390/cells12010054] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Mounting evidence shows that the complex gut microbial ecosystem in the human gastrointestinal (GI) tract regulates the physiology of the central nervous system (CNS) via microbiota and the gut-brain (MGB) axis. The GI microbial ecosystem communicates with the brain through the neuroendocrine, immune, and autonomic nervous systems. Recent studies have bolstered the involvement of dysfunctional MGB axis signaling in the pathophysiology of several neurodegenerative, neurodevelopmental, and neuropsychiatric disorders (NPDs). Several investigations on the dynamic microbial system and genetic-environmental interactions with the gut microbiota (GM) have shown that changes in the composition, diversity and/or functions of gut microbes (termed "gut dysbiosis" (GD)) affect neuropsychiatric health by inducing alterations in the signaling pathways of the MGB axis. Interestingly, both preclinical and clinical evidence shows a positive correlation between GD and the pathogenesis and progression of NPDs. Long-term GD leads to overstimulation of hypothalamic-pituitary-adrenal (HPA) axis and the neuroimmune system, along with altered neurotransmitter levels, resulting in dysfunctional signal transduction, inflammation, increased oxidative stress (OS), mitochondrial dysfunction, and neuronal death. Further studies on the MGB axis have highlighted the significance of GM in the development of brain regions specific to stress-related behaviors, including depression and anxiety, and the immune system in the early life. GD-mediated deregulation of the MGB axis imbalances host homeostasis significantly by disrupting the integrity of the intestinal and blood-brain barrier (BBB), mucus secretion, and gut immune and brain immune functions. This review collates evidence on the potential interaction between GD and NPDs from preclinical and clinical data. Additionally, we summarize the use of non-therapeutic modulators such as pro-, pre-, syn- and post-biotics, and specific diets or fecal microbiota transplantation (FMT), which are promising targets for the management of NPDs.
Collapse
|
31
|
Holzhausen EA, Malecki KC, Sethi AK, Gangnon R, Cadmus-Bertram L, Deblois CL, Suen G, Safdar N, Peppard PE. Assessing the relationship between physical activity and the gut microbiome in a large, population-based sample of Wisconsin adults. PLoS One 2022; 17:e0276684. [PMID: 36288361 PMCID: PMC9605031 DOI: 10.1371/journal.pone.0276684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/11/2022] [Indexed: 11/18/2022] Open
Abstract
The gut microbiome is an important factor in human health and disease. While preliminary studies have found some evidence that physical activity is associated with gut microbiome richness, diversity, and composition, this relationship is not fully understood and has not been previously characterized in a large, population-based cohort. In this study, we estimated the association between several measures of physical activity and the gut microbiota in a cohort of 720 Wisconsin residents. Our sample had a mean age of 55 years (range: 18, 94), was 42% male, and 83% of participants self-identified as White. Gut microbial composition was assessed using gene sequencing of the V3-V4 region of 16S rRNA extracted from stool. We found that an increase of one standard deviation in weekly minutes spent in active transportation was associated with an increase in alpha diversity, particularly in Chao1's richness (7.57, 95% CI: 2.55, 12.59) and Shannon's diversity (0.04, 95% CI: 0.0008, 0.09). We identified interactions in the association between Inverse Simpson's diversity and physical activity, wherein active transportation for individuals living in a rural environment was associated with additional increases in diversity (4.69, 95% CI: 1.64, 7.73). We also conducted several permutational ANOVAs (PERMANOVA) and negative binomial regression analyses to estimate the relationship between physical activity and microbiome composition. We found that being physically active and increased physical activity time were associated with increased abundance of bacteria in the family Erysipelotrichaceae. Active transportation was associated with increased abundance of bacteria in the genus Phascolarctobacterium, and decreased abundance of Clostridium. Minutes in active transportation was associated with a decreased abundance of the family Clostridiaceae.
Collapse
Affiliation(s)
- Elizabeth A. Holzhausen
- Department of Integrative Physiology, University of Colorado-Boulder, Boulder, Colorado, United States of America
| | - Kristen C. Malecki
- Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ajay K. Sethi
- Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ronald Gangnon
- Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lisa Cadmus-Bertram
- Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Courtney L. Deblois
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nasia Safdar
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- The William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States of America
| | - Paul E. Peppard
- Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
32
|
Sundarraman D, Smith TJ, Kast JVZ, Guillemin K, Parthasarathy R. Disaggregation as an interaction mechanism among intestinal bacteria. Biophys J 2022; 121:3458-3473. [PMID: 35982615 PMCID: PMC9515126 DOI: 10.1016/j.bpj.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/22/2022] [Accepted: 08/11/2022] [Indexed: 12/01/2022] Open
Abstract
The gut microbiome contains hundreds of interacting species that together influence host health and development. The mechanisms by which intestinal microbes can interact, however, remain poorly mapped and are often modeled as spatially unstructured competitions for chemical resources. Recent imaging studies examining the zebrafish gut have shown that patterns of aggregation are central to bacterial population dynamics. In this study, we focus on bacterial species of genera Aeromonas and Enterobacter. Two zebrafish gut-derived isolates, Aeromonas ZOR0001 (AE) and Enterobacter ZOR0014 (EN), when mono-associated with the host, are highly aggregated and located primarily in the intestinal midgut. An Aeromonas isolate derived from the commensal strain, Aeromonas-MB4 (AE-MB4), differs from the parental strain in that it is composed mostly of planktonic cells localized to the anterior gut. When challenged by AE-MB4, clusters of EN rapidly fragment into non-motile, slow-growing, dispersed individual cells with overall abundance two orders of magnitude lower than the mono-association value. In the presence of a certain set of additional gut bacterial species, these effects on EN are dampened. In particular, if AE-MB4 invades an already established multi-species community, EN persists in the form of large aggregates. These observations reveal an unanticipated competition mechanism based on manipulation of bacterial spatial organization, namely dissolution of aggregates, and provide evidence that multi-species communities may facilitate stable intestinal co-existence.
Collapse
Affiliation(s)
- Deepika Sundarraman
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon
| | - T Jarrod Smith
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon
| | - Jade V Z Kast
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon; Humans and the Microbiome Program, CIFAR, Toronto, Ontario
| | - Raghuveer Parthasarathy
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon; Institute of Molecular Biology, University of Oregon, Eugene, Oregon.
| |
Collapse
|
33
|
Caswell G, Eshelby B. Skin microbiome considerations for long haul space flights. Front Cell Dev Biol 2022; 10:956432. [PMID: 36158225 PMCID: PMC9493037 DOI: 10.3389/fcell.2022.956432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Dysbiosis of the human skin microbiome has long been associated with changes to the pH of the skin, dermal immune function and chronic skin conditions. Dermatological issues have been noted as the most prevalent medical presentation in the microgravity environment of space. The change in gravitational forces has been implicated in human immuno-suppression, also impacted by changes in the gastrointestinal-skin axis and its impact on Vitamin D metabolism, altered microbial gene expression in resident flora (leading changes in biofilm formation) and increased virulence factors in potential pathogens. There are also other stressors to the skin microbiome unique to space travel, including increased exposure to radiation, prolonged periods of dry washing technique, air quality and changes in microbe replication and growth parameters. Optimal microbiome health leads to enhanced skin barrier manufacture and maintenance, along with improved skin immune function and healing. In a microgravity environment expected to be experienced during long space flights, disruptions to the skin microbiome, coupled with increased virulence of pathological viruses and bacteria has implications for holistic skin health, astronaut cognitive function and mental health, and is coupled with slowed rates of wound healing. Scenario management for holistic skin health and restoration of microbiome homeostasis on long space flights require consideration.
Collapse
|
34
|
Wozniak H, Beckmann TS, Fröhlich L, Soccorsi T, Le Terrier C, de Watteville A, Schrenzel J, Heidegger CP. The central and biodynamic role of gut microbiota in critically ill patients. Crit Care 2022; 26:250. [PMID: 35982499 PMCID: PMC9386657 DOI: 10.1186/s13054-022-04127-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
Gut microbiota plays an essential role in health and disease. It is constantly evolving and in permanent communication with its host. The gut microbiota is increasingly seen as an organ, and its failure, reflected by dysbiosis, is seen as an organ failure associated with poor outcomes. Critically ill patients may have an altered gut microbiota, namely dysbiosis, with a severe reduction in "health-promoting" commensal intestinal bacteria (such as Firmicutes or Bacteroidetes) and an increase in potentially pathogenic bacteria (e.g. Proteobacteria). Many factors that occur in critically ill patients favour dysbiosis, such as medications or changes in nutrition patterns. Dysbiosis leads to several important effects, including changes in gut integrity and in the production of metabolites such as short-chain fatty acids and trimethylamine N-oxide. There is increasing evidence that gut microbiota and its alteration interact with other organs, highlighting the concept of the gut-organ axis. Thus, dysbiosis will affect other organs and could have an impact on the progression of critical diseases. Current knowledge is only a small part of what remains to be discovered. The precise role and contribution of the gut microbiota and its interactions with various organs is an intense and challenging research area that offers exciting opportunities for disease prevention, management and therapy, particularly in critical care where multi-organ failure is often the focus. This narrative review provides an overview of the normal composition of the gut microbiota, its functions, the mechanisms leading to dysbiosis, its consequences in an intensive care setting, and highlights the concept of the gut-organ axis.
Collapse
Affiliation(s)
- Hannah Wozniak
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| | - Tal Sarah Beckmann
- Division of Anesthesiology, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Lorin Fröhlich
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Tania Soccorsi
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Christophe Le Terrier
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Aude de Watteville
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Jacques Schrenzel
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Claudia-Paula Heidegger
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
35
|
Haque R, Das II, Sawant PB, Chadha NK, Sahoo L, Kumar R, Sundaray JK. Tenets in Microbial Endocrinology: A New Vista in Teleost Reproduction. Front Physiol 2022; 13:871045. [PMID: 36035477 PMCID: PMC9411670 DOI: 10.3389/fphys.2022.871045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Climate vulnerability and induced changes in physico-chemical properties of aquatic environment can bring impairment in metabolism, physiology and reproduction in teleost. Variation in environmental stimuli mainly acts on reproduction by interfering with steroidogenesis, gametogenesis and embryogenesis. The control on reproductive function in captivity is essential for the sustainability of aquaculture production. There are more than 3,000 teleost species across the globe having commercial importance; however, adequate quality and quantity of seed production have been the biggest bottleneck. Probiotics are widely used in aquaculture as a growth promoter, stress tolerance, pathogen inhibition, nutrient digestibility and metabolism, reproductive performance and gamete quality. As the gut microbiota exerts various effects on the intestinal milieu which influences distant organs and pathways, therefore it is considered to be a full-fledged endocrine organ. Researches on Gut-Brain-Gonad axis (GBG axis) and its importance on physiology and reproduction have already been highlighted for higher mammals; however, the study on fish physiology and reproduction is limited. While looking into the paucity of information, we have attempted to review the present status of microbiome and its interaction between the brain and gut. This review will address a process of the microbiome physiological mechanism involved in fish reproduction. The gut microbiota influences the BPG axis through a wide variety of compounds, including neuropeptides, neurotransmitter homologs and transmitters. Currently, research is being conducted to determine the precise process by which gut microbial composition influences brain function in fish. The gut-brain bidirectional interaction can influence brain biochemistry such as GABA, serotonin and tryptophan metabolites which play significant roles in CNS regulation. This review summarizes the fact, how microbes from gut, skin and other parts of the body influence fish reproduction through the Gut-Brain-Gonad axis.
Collapse
Affiliation(s)
- Ramjanul Haque
- Division of Aquaculture, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Ipsita Iswari Das
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | | | - Narinder Kumar Chadha
- Division of Aquaculture, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Lakshman Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Rajesh Kumar
- Aquaculture Production and Environment Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Jitendra Kumar Sundaray
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
- *Correspondence: Jitendra Kumar Sundaray,
| |
Collapse
|
36
|
Hickmott AJ, Boose KJ, Wakefield ML, Brand CM, Snodgrass JJ, Ting N, White FJ. A comparison of faecal glucocorticoid metabolite concentration and gut microbiota diversity in bonobos ( Pan paniscus). MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35960548 DOI: 10.1099/mic.0.001226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sex, age, diet, stress and social environment have all been shown to influence the gut microbiota. In several mammals, including humans, increased stress is related to decreasing gut microbial diversity and may differentially impact specific taxa. Recent evidence from gorillas shows faecal glucocorticoid metabolite concentration (FGMC) did not significantly explain gut microbial diversity, but it was significantly associated with the abundance of the family Anaerolineaceae. These patterns have yet to be examined in other primates, like bonobos (Pan paniscus). We compared FGMC to 16S rRNA amplicons for 202 bonobo faecal samples collected across 5 months to evaluate the impact of stress, measured with FGMC, on the gut microbiota. Alpha diversity measures (Chao's and Shannon's indexes) were not significantly related to FGMC. FGMC explained 0.80 % of the variation in beta diversity for Jensen-Shannon and 1.2% for weighted UniFrac but was not significant for unweighted UniFrac. We found that genus SHD-231, a member of the family Anaerolinaceae had a significant positive relationship with FGMC. These results suggest that bonobos are relatively similar to gorillas in alpha diversity and family Anaerolinaceae responses to FGMC, but different from gorillas in beta diversity. Members of the family Anaerolinaceae may be differentially affected by FGMC across great apes. FGMC appears to be context dependent and may be species-specific for alpha and beta diversity but this study provides an example of consistent change in two African apes. Thus, the relationship between physiological stress and the gut microbiome may be difficult to predict, even among closely related species.
Collapse
Affiliation(s)
- Alexana J Hickmott
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA.,Texas Biomedical Research Institute, San Antonio, TX 78227, USA.,Southwest National Primate Research Center, San Antonio, TX, USA
| | - Klaree J Boose
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA
| | - Monica L Wakefield
- Sociology, Anthropology, and Philosophy, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Colin M Brand
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA.,Bakar Computational Health Sciences Institute, University of California, San Francisco, USA
| | - J Josh Snodgrass
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA
| | - Nelson Ting
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA.,Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Frances J White
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
37
|
Torres LS, Asada N, Weiss MJ, Trumpp A, Suda T, Scadden DT, Ito K. Recent advances in "sickle and niche" research - Tribute to Dr. Paul S Frenette. Stem Cell Reports 2022; 17:1509-1535. [PMID: 35830837 PMCID: PMC9287685 DOI: 10.1016/j.stemcr.2022.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 10/27/2022] Open
Abstract
In this retrospective, we review the two research topics that formed the basis of the outstanding career of Dr. Paul S. Frenette. In the first part, we focus on sickle cell disease (SCD). The defining feature of SCD is polymerization of the deoxygenated mutant hemoglobin, which leads to a vicious cycle of hemolysis and vaso-occlusion. We survey important discoveries in SCD pathophysiology that have led to recent advances in treatment of SCD. The second part focuses on the hematopoietic stem cell (HSC) niche, the complex microenvironment within the bone marrow that controls HSC function and homeostasis. We detail the cells that constitute this niche, and the factors that these cells use to exert control over hematopoiesis. Here, we trace the scientific paths of Dr. Frenette, highlight key aspects of his research, and identify his most important scientific contributions in both fields.
Collapse
Affiliation(s)
- Lidiane S Torres
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Einstein Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
38
|
Mao Y, Li X, Zhu S, Geng Y. Association Between Dietary Fiber Intake and Risk of Depression in Patients With or Without Type 2 Diabetes. Front Neurosci 2022; 16:920845. [PMID: 36389250 PMCID: PMC9642095 DOI: 10.3389/fnins.2022.920845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/23/2022] [Indexed: 01/20/2024] Open
Abstract
BACKGROUND Depression and type 2 diabetes (T2D) are both serious public health problems, with morbidity and mortality in people increasing year by year, resulting in a heavy economic burden. A correlation between dietary fiber and both has been reported. Nevertheless, few data are available concerning dietary fiber and the risk of depression with or without T2D, which deserve further attention. MATERIALS AND METHODS We assessed the relationship between dietary fiber intake and risk of depression with or without T2D in the 2007-2014 National Health and Nutrition Examination Survey (NHANES) population. A 24-h dietary review was used to assess fiber intake. The Patient Health Questionnaire-9 was used to assess depression. Stability of the results was assessed using restricted cubic spline models and logistic regression, as well as sensitivity analyses. RESULTS A total of 17,866 adults aged 20 years and older with a mean age of 49.3 ± 17.7 years were included in this study, of whom 49.5% were male. After adjusting for covariates, the association of dietary fiber intake with the risk of depression appeared to differ between non-T2D group and T2D group (OR, 0.987; 95% CI, 0.979-0.995 vs. OR, 1.003; 95% CI, 0.988-1.017). Furthermore, when dietary fiber was converted to a categorical variable, there was evidence of interaction between T2D status and fiber intake on decreasing the prevalence of depression (P-value for interaction = 0.015). Sensitivity analysis showed stable results. CONCLUSION Our findings indicated that whether a patient has T2D may affect the relationship between dietary fiber intake and the risk of depression, which still needs to be confirmed by further randomized controlled trials.
Collapse
Affiliation(s)
| | | | | | - Yulan Geng
- Department of Laboratory Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
39
|
Martínez-Mota R, Righini N, Mallott EK, Palme R, Amato KR. Environmental Stress and the Primate Microbiome: Glucocorticoids Contribute to Structure Gut Bacterial Communities of Black Howler Monkeys in Anthropogenically Disturbed Forest Fragments. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.863242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animals living in anthropogenically disturbed habitats are exposed to environmental stressors which can trigger physiological reactions, such as chronic elevations of glucocorticoid hormones. Physiological responses to stressors may induce changes in the gut microbiome, most likely, facilitated by the gut–brain communication. Although these effects have been observed in humans and animal models, elucidating gut bacterial changes in wild animals under natural stressful conditions is still an ongoing task. Here we analyzed the association between physiological stress related to anthropogenic forest disturbance and changes in gut bacterial communities of black howler monkeys (Alouatta pigra) living in forest fragments in Mexico. We measured individuals’ fecal glucocorticoid metabolites (fGCMs) as an index of physiological stress and created inventories of fecal bacterial communities sequencing the 16S rRNA gene to assess gut microbiome change. We evaluated environmental stress by estimating differences in food availability – feeding tree diversity and biomass – in each group’s habitat. We found that both fGCMs and food availability indices were related to gut bacterial community shifts in black howler monkeys. Furthermore, using structural equation modeling, we found that a decrease in food availability, estimated through reductions in feeding tree basal area, increased fGCMs, which in turn induced increases in bacterial richness. Our findings show that the activation of the hypothalamic–pituitary–adrenal (HPA)-axis, which is a physiological response sensitive to environmental stressors such as the ecological disturbance of a habitat, contributes to structure the gut microbiome of arboreal primates in disturbed forests.
Collapse
|
40
|
Hua Y, Shen J, Fan R, Xiao R, Ma W. High-fat diets containing different types of fatty acids modulate gut-brain axis in obese mice. Nutr Metab (Lond) 2022; 19:40. [PMID: 35739547 PMCID: PMC9219185 DOI: 10.1186/s12986-022-00675-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Excessive consumption of high-fat diets is associated with disordered metabolic responses, which may lead to chronic diseases. High-fat diets containing different types of fatty acids lead to distinct alterations in metabolic responses of gut-brain axis. Methods In our study, normal male C57BL/6J mice were fed to multiple high fatty acid diets (long-chain and medium-chain saturated fatty acid, LCSFA and MCSFA group; n-3 and n-6 polyunsaturated fatty acid, n-3 and n-6 PUFA group; monounsaturated fatty acid, MUFA group; trans fatty acid, TFA group) and a basic diet (control, CON group) for 19 weeks. To investigate the effects of high-fat diets on metabolic responses of gut-brain axis in obese mice, blood lipids were detected by fast gas chromatography, and related proteins in brain and intestine were detected using Western blotting, ELISA, and immunochemistry analysis. Results All high-fat diets regardless of their fatty acid composition induced obesity, lipid disorders, intestinal barrier dysfunction, and changes in gut-brain axis related factors except basal diet in mice. For example, the protein expression of zonula occludens-1 (ZO-1) in ileum in the n-3 PUFA group was higher than that in the MCSFA group (P < 0.05). The expressions of insulin in hippocampus and leptin in ileum in the MCSFA group significantly increased, compared with other groups (all Ps < 0.05). Conclusion The high MCSFA diet had the most effect on metabolic disorders in gut-brain axis, but the high n-3 PUFA diet had the least effect on changes in metabolism.
Collapse
Affiliation(s)
- Yinan Hua
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, People's Republic of China
| | - Jingyi Shen
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, People's Republic of China
| | - Rong Fan
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, People's Republic of China
| | - Rong Xiao
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, People's Republic of China.
| | - Weiwei Ma
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, People's Republic of China.
| |
Collapse
|
41
|
The increasing importance of the gut microbiome in acne vulgaris. Folia Microbiol (Praha) 2022; 67:825-835. [PMID: 35711021 DOI: 10.1007/s12223-022-00982-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/26/2022] [Indexed: 11/04/2022]
Abstract
Acne is a frequently presented dermatological condition brought about by an interplay among inflammation, increased sebum production, hyperkeratinisation, and predominantly Propionibacterium acnes (renamed as Cutibacterium acnes) proliferation, leading to debilitating psychological scars. However, it has been shown that it is the loss of microbial diversity in the skin and the imbalance among C. acnes phylotypes that brings about acne rather than the C. acnes species as a whole. Interestingly, recent evidence suggests that other microorganisms may be implicated, such as the fungi Malassezia and the bacteria Cutibacterium granulosum. A plethora of scientific evidence suggests that the gut microbiome is implicated in the overall health and physiology of the host; studies show that the gut microbiome of acne patients is distinct and depicts less microbial diversity compared to individuals without acne. Herein, using the key terms: acne, C. acnes, IGF-1, sebum, and gut microbiome, we carried out a review of the literature, using Google Scholar and PubMed, and discussed the role of the gut and skin microbiome in relation to acne, as a narrative review. The role of hormones, diet, sebum, and stress in relation to the gut microbiome was also investigated. Therapeutic implications and the use of pre-/postbiotics are also deliberated upon. In this light, future research should investigate the relationship between the gut microbiome and the agreed upon factors of acne pathology, potentially leading to the discovery of novel acne treatments with milder side effects.
Collapse
|
42
|
Viciani E, Barone M, Bongiovanni T, Quercia S, Di Gesu R, Pasta G, Manetti P, Iaia FM, Trecroci A, Rampelli S, Candela M, Biagi E, Castagnetti A. Fecal microbiota monitoring in elite soccer players along the 2019-2020 competitive season. Int J Sports Med 2022; 43:1137-1147. [PMID: 35595508 DOI: 10.1055/a-1858-1810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Physical exercise affects the human gut microbiota that, in turn, influences athletes' performance. The current understanding of how the microbiota of professional athletes changes along with different phases of training is sparse. We aim to characterize the fecal microbiota in elite soccer players along with different phases of a competitive season using 16S rRNA gene sequencing. Fecal samples were collected after the summer off-season period, the pre-season retreat, the first half of the competitive season, and the 8 weeks COVID-19 lockdown that interrupted the season 2019-2020. According to our results, the gut microbiota of professional athletes changes along with the phases of the season, characterized by different training, diet, nutritional surveillance, and environment sharing. Pre-season retreat, during which nutritional surveillance and exercise intensity were at their peak, caused a decrease in bacterial groups related to unhealthy lifestyle and an increase in health-promoting symbionts. The competitive season and forced interruption affected other features of the athletes' microbiota, i.e. bacterial groups that respond to dietary fibers load and stress levels. Our longitudinal study, focusing on one of the most followed sports worldwide, provides baseline data for future comparisons and microbiome-targeting interventions aimed at developing personalized training and nutrition plans for performances maximization.
Collapse
Affiliation(s)
| | - Monica Barone
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Tindaro Bongiovanni
- Department of Health, Nutrition and Exercise Physiology, Parma Calcio 1913, Parma, Italy.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | | | | | - Giulio Pasta
- Medical Department, Parma Calcio 1913, Parma, Italy
| | | | - F Marcello Iaia
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Athos Trecroci
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, BOLOGNA, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Elena Biagi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | |
Collapse
|
43
|
Horwitz RI, Singer BH, Hayes-Conroy A, Cullen MR, Mawn M, Colella K, Sim I. Biosocial Pathogenesis. PSYCHOTHERAPY AND PSYCHOSOMATICS 2022; 91:73-77. [PMID: 35104822 DOI: 10.1159/000521567] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Ralph I Horwitz
- Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Burton H Singer
- Department of Mathematics, University of Florida, Gainesville, Florida, USA
| | | | - Mark R Cullen
- Stanford Center for Population Health Sciences, Palo Alto, California, USA
| | - McKayla Mawn
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Katharine Colella
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Ida Sim
- Division of General Internal Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
44
|
Ganci M, Suleyman E, Butt H, Ball M. Associations between self-reported psychological symptom severity and gut microbiota: further support for the microgenderome. BMC Psychiatry 2022; 22:307. [PMID: 35501777 PMCID: PMC9059404 DOI: 10.1186/s12888-022-03947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Research into the brain-gut-microbiota axis (BGMA) continues to reveal associations between gut microbiota (GM) and psychological symptom expression, inspiring new ways of conceptualising psychological disorders. However, before GM modulation can be touted as a possible auxiliary treatment option, more research is needed as inconsistencies in previous findings regarding these associations are prevalent. Additionally, the concept of the microgenderome, which proposes that GM may interact with sex hormones, has received limited attention in studies using human samples to date. However, such research has demonstrated sex specific associations between GM and psychological symptom expression. METHOD This cross-sectional retrospective study explores associations between GM species (identified through faecal microbial analysis) and symptom severity across four psychological domains (Depressive, Neurocognitive, Stress and Anxiety, and Sleep and Fatigue) for males (N = 1143) and females (N = 3467) separately. RESULTS GM species from several genera including Bifidobacterium, Clostridium, Enterococcus, and Leuconostoc were found to be differentially associated with psychological symptom severity for males and females. As such, the findings of the current study provide support for the concept of the microgenderome. CONCLUSION While further research is needed before their implementation in psychological treatment plans, the current findings suggest that modulation of GM at the species level may hold promise as auxiliary diagnostic or treatment options. These findings may give further insight into a client's presenting problem from a more holistic, multidisciplinary perspective. The clear sex divergence in associations between GM and symptoms give insight into sex discrepancies in susceptibility to psychological disorders.
Collapse
Affiliation(s)
- Michael Ganci
- Psychology Department, Institute for Health and Sport, Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia.
| | - Emra Suleyman
- grid.1019.90000 0001 0396 9544Psychology Department, Institute for Health and Sport, Victoria University, PO Box 14428, Melbourne, VIC 8001 Australia
| | - Henry Butt
- grid.1019.90000 0001 0396 9544Psychology Department, Institute for Health and Sport, Victoria University, PO Box 14428, Melbourne, VIC 8001 Australia ,Bioscreen Yarraville (Aust) Pty Ltd, Melbourne, VIC Australia
| | - Michelle Ball
- grid.1019.90000 0001 0396 9544Psychology Department, Institute for Health and Sport, Victoria University, PO Box 14428, Melbourne, VIC 8001 Australia
| |
Collapse
|
45
|
Robinson JM, Redvers N, Camargo A, Bosch CA, Breed MF, Brenner LA, Carney MA, Chauhan A, Dasari M, Dietz LG, Friedman M, Grieneisen L, Hoisington AJ, Horve PF, Hunter A, Jech S, Jorgensen A, Lowry CA, Man I, Mhuireach G, Navarro-Pérez E, Ritchie EG, Stewart JD, Watkins H, Weinstein P, Ishaq SL. Twenty Important Research Questions in Microbial Exposure and Social Equity. mSystems 2022; 7:e0124021. [PMID: 35089060 PMCID: PMC8725600 DOI: 10.1128/msystems.01240-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Social and political policy, human activities, and environmental change affect the ways in which microbial communities assemble and interact with people. These factors determine how different social groups are exposed to beneficial and/or harmful microorganisms, meaning microbial exposure has an important socioecological justice context. Therefore, greater consideration of microbial exposure and social equity in research, planning, and policy is imperative. Here, we identify 20 research questions considered fundamentally important to promoting equitable exposure to beneficial microorganisms, along with safeguarding resilient societies and ecosystems. The 20 research questions we identified span seven broad themes, including the following: (i) sociocultural interactions; (ii) Indigenous community health and well-being; (iii) humans, urban ecosystems, and environmental processes; (iv) human psychology and mental health; (v) microbiomes and infectious diseases; (vi) human health and food security; and (vii) microbiome-related planning, policy, and outreach. Our goal was to summarize this growing field and to stimulate impactful research avenues while providing focus for funders and policymakers.
Collapse
Affiliation(s)
- Jake M. Robinson
- University of Sheffield, Department of Landscape Architecture, Sheffield, United Kingdom
| | - Nicole Redvers
- Department of Family & Community Medicine, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | | | - Christina A. Bosch
- Department of Literacy, Early, Bilingual and Special Education, Kremen School of Education and Human Development, California State University, Fresno, California, USA
| | - Martin F. Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Lisa A. Brenner
- University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Megan A. Carney
- School of the Environment, Florida Agricultural and Mechanical University, Tallahassee, Florida, USA
| | - Ashvini Chauhan
- University of Arizona, School of Anthropology and Center for Regional Food Studies, Tucson, Arizona, USA
| | - Mauna Dasari
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Leslie G. Dietz
- University of Oregon, Biology and the Built Environment Center, Eugene, Oregon, USA
| | - Michael Friedman
- American International College of Arts and Sciences of Antigua, Antigua and Barbuda, West Indies
| | - Laura Grieneisen
- Department of Genetics, Cell, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Patrick F. Horve
- University of Oregon, Institute of Molecular Biology, Eugene, Oregon, USA
| | - Ally Hunter
- Department of Student Development, University of Massachusetts, Amherst, Massachusetts, USA
| | - Sierra Jech
- University of Colorado Boulder, Department of Ecology and Evolutionary Biology, Boulder, Colorado, USA
| | - Anna Jorgensen
- Department of Landscape Architecture, University of Sheffield, Sheffield, United Kingdom
| | - Christopher A. Lowry
- Department of Integrative Physiology, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, Colorado, USA
| | - Ioana Man
- Architectural Association School of Architecture, London, United Kingdom
| | - Gwynne Mhuireach
- Department of Architecture, University of Oregon, Eugene, Oregon, USA
| | - Edauri Navarro-Pérez
- Program of Environmental Life Sciences, School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Euan G. Ritchie
- School of Life and Environmental Sciences and Centre for Integrative Ecology, Deakin University, Burwood, VIC, Australia
| | - Justin D. Stewart
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Harry Watkins
- St. Andrews Botanic Garden, Canongate, St. Andrews, Fife, United Kingdom
- Bio-integrated Design Lab, Bartlett School of Architecture, London, United Kingdom
| | - Philip Weinstein
- School of Public Health, The University of Adelaide, Adelaide, SA, Australia
| | - Suzanne L. Ishaq
- University of Maine, School of Food and Agriculture, Orono, Maine, USA
| |
Collapse
|
46
|
Sharma VK, Singh TG, Prabhakar NK, Mannan A. Kynurenine Metabolism and Alzheimer's Disease: The Potential Targets and Approaches. Neurochem Res 2022; 47:1459-1476. [PMID: 35133568 DOI: 10.1007/s11064-022-03546-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
L-tryptophan, an essential amino acid, regulates protein homeostasis and plays a role in neurotransmitter-mediated physiological events. It also influences age-associated neurological alterations and neurodegenerative changes. The metabolism of tryptophan is carried majorly through the kynurenine route, leading to the production of several pharmacologically active enzymes, substrates, and metabolites. These metabolites and enzymes influence a variety of physiological and pathological outcomes of the majority of systems, including endocrine, haemopoietic, gastrointestinal, immunomodulatory, inflammatory, bioenergetic metabolism, and neuronal functions. An extensive literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on the kynurenine metabolites that influence cellular redox potential, immunoregulatory mechanisms, inflammatory pathways, cell survival channels, and cellular communication in close association with several neurodegenerative changes. The imbalanced state of kynurenine pathways has found a close association to several pathological disorders, including HIV infections, cancer, autoimmune disorders, neurodegenerative and neurological disorders including Parkinson's disease, epilepsy and has found special attention in Alzheimer's disease (AD). Kynurenine pathway (KP) is intricately linked to AD pathogenesis owing to the influence of kynurenine metabolites on excitotoxic neurotransmission, oxidative stress, uptake of neurotransmitters, and modulation of neuroinflammation, amyloid aggregation, microtubule disruption, and their ability to induce a state of dysbiosis. Pharmacological modulation of KP pathways has shown encouraging results, indicating that it may be a viable and explorable target for the therapy of AD.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | | | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
47
|
Li X, Chen LM, Kumar G, Zhang SJ, Zhong QH, Zhang HY, Gui G, Wu LL, Fan HZ, Sheng JW. Therapeutic Interventions of Gut-Brain Axis as Novel Strategies for Treatment of Alcohol Use Disorder Associated Cognitive and Mood Dysfunction. Front Neurosci 2022; 16:820106. [PMID: 35185459 PMCID: PMC8847450 DOI: 10.3389/fnins.2022.820106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
Alcohol use disorders (AUD) is characterized by persistent or intermittent alcohol cravings and compulsive drinking. The functional changes in the central nervous system (CNS) after alcohol consumption are alcohol-associated cognitive impairment and mood disorders, which are major health issues reported in AUDs. Studies have shown that transferring the intestinal microbiota from AUDs patients to germ-free animals causes learning and memory dysfunction, depression and anxiety-like behavior, indicating the vital role of intestinal microbiota in development of neuropsychiatric disorders in AUD. Intestinal flora composition of AUD patients are significantly different from normal people, suggesting that intestinal flora imbalance orchestrate the development of neuropsychiatric disorders in AUD. Studies suggests that gut microbiome links bidirectional signaling network of the enteric nervous system (ENS) to central nervous system (CNS), forming gut-microbe-brain axis (brain-gut axis). In this review, we discussed pathogenesis and possible treatment of AUD-induced cognitive deficits, anxiety, and depression disorders. Further, we described the mechanism of intestinal flora imbalance and dysfunction of hippocampus-amygdala-frontal cortex (gut-limbic circuit system dysfunction). Therefore, we postulate therapeutic interventions of gut-brain axis as novel strategies for treatment of AUD-induced neuropsychiatric disorders.
Collapse
Affiliation(s)
- Xin Li
- Department of Gastroenterology, The People’s Hospital of Zhangshu City, Jiangxi, China
| | - Le-Mei Chen
- Department of Pharmacy, Guangdong Provincial People’s Hospital Ganzhou Hospital, Ganzhou Municipal Hospital, Jiangxi, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Shan-Jin Zhang
- Department of Gastroenterology, The People’s Hospital of Yichun City, Jiangxi, China
| | - Quan-hai Zhong
- School of Chemistry and Bioengineering, Yichun University, Jiangxi, China
| | - Hong-Yan Zhang
- School of Chemistry and Bioengineering, Yichun University, Jiangxi, China
| | - Guan Gui
- Department of Gastroenterology, The People’s Hospital of Yichun City, Jiangxi, China
| | - Lv-Le Wu
- Department of Gastroenterology, The People’s Hospital of Yichun City, Jiangxi, China
| | - Hui-Zhen Fan
- Department of Gastroenterology, The People’s Hospital of Yichun City, Jiangxi, China
- School of Chemistry and Bioengineering, Yichun University, Jiangxi, China
- *Correspondence: Hui-Zhen Fan,
| | - Jian-Wen Sheng
- Department of Gastroenterology, The People’s Hospital of Yichun City, Jiangxi, China
- Jian-Wen Sheng,
| |
Collapse
|
48
|
What do experimental animal models of mood disorders tell clinicians about influence of probiotics on the gut-brain axis? POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
It is commonly pointed out that enteric microbiota have a significant impact on the behavioral and neurophysiological parameters relevant to brain-gut axis disorders. Accordingly, many data have demonstrated that probiotics can alter the central nervous system function via this gut-brain axis and commensal bacteria consumption can ameliorate stress-related neuropsychiatric disorders. Thus, modulating the enteric microbiota is increasingly considered a new therapeutic approach for these disorders, although so far there is a lack of reliable pre-clinical and clinical data confirming the usefulness of probiotics in the treatment of affective disorders. In this review, we discuss various mechanisms linking specific probiotic bacteria with behaviors related to anhedonia and the exact mechanisms of their action, including data provided by using animal models and tests. Finally, we point to potential clinical impact resulting from future studies investigating the gut-brain axis activity with respect to the efficacy of probiotic treatment of mental disorders.
Collapse
|
49
|
A Double-Edged Sword: Thioxanthenes Act on Both the Mind and the Microbiome. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010196. [PMID: 35011432 PMCID: PMC8746497 DOI: 10.3390/molecules27010196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
The rising tide of antibacterial drug resistance has given rise to the virtual elimination of numerous erstwhile antibiotics, intensifying the urgent demand for novel agents. A number of drugs have been found to possess potent antimicrobial action during the past several years and have the potential to supplement or even replace the antibiotics. Many of these ‘non-antibiotics’, as they are referred to, belong to the widely used class of neuroleptics, the phenothiazines. Another chemically and pharmacologically related class is the thioxanthenes, differing in that the aromatic N of the central phenothiazine ring has been replaced by a C atom. Such “carbon-analogues” were primarily synthesized with the hope that these would be devoid of some of the toxic effects of phenothiazines. Intensive studies on syntheses, as well as chemical and pharmacological properties of thioxanthenes, were initiated in the late 1950s. Although a rather close parallelism with respect to structure activity relationships could be observed between phenothiazines and thioxanthenes; several thioxanthenes were synthesized in pharmaceutical industries and applied for human use as neuroleptics. Antibacterial activities of thioxanthenes came to be recognized in the early 1980s in Europe. During the following years, many of these drugs were found not only to be antibacterial agents but also to possess anti-mycobacterial, antiviral (including anti-HIV and anti-SARS-CoV-2) and anti-parasitic properties. Thus, this group of drugs, which has an inhibitory effect on the growth of a wide variety of microorganisms, needs to be explored for syntheses of novel antimicrobial agents. The purpose of this review is to summarize the neuroleptic and antimicrobial properties of this exciting group of bioactive molecules with a goal of identifying potential structures worthy of future exploration.
Collapse
|
50
|
Giraud C, Callac N, Beauvais M, Mailliez JR, Ansquer D, Selmaoui-Folcher N, Pham D, Wabete N, Boulo V. Potential lineage transmission within the active microbiota of the eggs and the nauplii of the shrimp Litopenaeus stylirostris: possible influence of the rearing water and more. PeerJ 2021; 9:e12241. [PMID: 34820157 PMCID: PMC8601056 DOI: 10.7717/peerj.12241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/12/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Microbial communities associated with animals are known to be key elements in the development of their hosts. In marine environments, these communities are largely under the influence of the surrounding water. In aquaculture, understanding the interactions existing between the microbiotas of farmed species and their rearing environment could help establish precise bacterial management. METHOD In light of these facts, we studied the active microbial communities associated with the eggs and the nauplii of the Pacific blue shrimp (Litopenaeus stylirostris) and their rearing water. All samples were collected in September 2018, November 2018 and February 2019. After RNA extractions, two distinct Illumina HiSeq sequencings were performed. Due to different sequencing depths and in order to compare samples, data were normalized using the Count Per Million method. RESULTS We found a core microbiota made of taxa related to Aestuariibacter, Alteromonas, Vibrio, SAR11, HIMB11, AEGEAN 169 marine group and Candidatus Endobugula associated with all the samples indicating that these bacterial communities could be transferred from the water to the animals. We also highlighted specific bacterial taxa in the eggs and the nauplii affiliated to Pseudomonas, Corynebacterium, Acinetobacter, Labrenzia, Rothia, Thalassolituus, Marinobacter, Aureispira, Oleiphilus, Profundimonas and Marinobacterium genera suggesting a possible prokaryotic vertical transmission from the breeders to their offspring. This study is the first to focus on the active microbiota associated with early developmental stages of a farmed shrimp species and could serve as a basis to comprehend the microbial interactions involved throughout the whole rearing process.
Collapse
Affiliation(s)
- Carolane Giraud
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Noumea, New Caledonia
- University of New Caledonia, Institut des Sciences Exactes et Appliquées (ISEA), Noumea, New Caledonia
| | - Nolwenn Callac
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Noumea, New Caledonia
| | - Maxime Beauvais
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Noumea, New Caledonia
- Sorbonne Université, UMR 7261, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, CNRS, Banyuls-sur-Mer, France
| | - Jean-René Mailliez
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Noumea, New Caledonia
| | - Dominique Ansquer
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Noumea, New Caledonia
| | - Nazha Selmaoui-Folcher
- University of New Caledonia, Institut des Sciences Exactes et Appliquées (ISEA), Noumea, New Caledonia
| | - Dominique Pham
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Noumea, New Caledonia
| | - Nelly Wabete
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Noumea, New Caledonia
| | - Viviane Boulo
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Noumea, New Caledonia
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan via Domitia, Montpellier, France
| |
Collapse
|