1
|
Prida E, Pérez-Lois R, Jácome-Ferrer P, Muñoz-Moreno D, Brea-García B, Villalón M, Pena-Leon V, Vázquez-Cobela R, Aguilera CM, Conde-Aranda J, Costas J, Estany-Gestal A, Quiñones M, Leis R, Seoane LM, Al-Massadi O. The PTK2B gene is associated with obesity, adiposity, and leptin levels in children and adolescents. iScience 2024; 27:111120. [PMID: 39498303 PMCID: PMC11533559 DOI: 10.1016/j.isci.2024.111120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/06/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024] Open
Abstract
Previous studies determined that Pyk2 is involved in several diseases in which the symptomatology presents alterations in energy balance. However, its role in obesity is poorly understood. To evaluate the metabolic role of the Pyk2 gene (PTK2B) in children and adolescents with obesity we measured its mRNA expression levels in peripheral blood mononuclear cells. For that we performed a cross-sectional study involving 130 Caucasian subjects that was divided into two groups according to BMI. Data showed increased PTK2B mRNA expression in children and adolescents with obesity. Interestingly, a positive correlation has been found between the levels of PTK2B with weight, BMI, BMI Z score, fat mass, waist circumference, waist to height ratio, diastolic blood pressure, and leptin. In addition, it is indicated that high levels of PTK2B gene expression might be a predictor of obesity development. This work provides important insights into the previously undescribed role of Pyk2 in obesity.
Collapse
Affiliation(s)
- Eva Prida
- Translational Endocrinology Group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS)/Complexo Hospitalario Universitario de Santiago (SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av Monforte de Lemos3-5, 28029 Madrid, Spain
| | - Raquel Pérez-Lois
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av Monforte de Lemos3-5, 28029 Madrid, Spain
- Grupo Fisiopatología Endocrina, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago (SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
| | - Pablo Jácome-Ferrer
- Psychiatric Genetics group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
- Universidade de Santiago de Compostela (USC), Rua san francisco s/n, 15782 Santiago de Compostela, Galicia, Spain
| | - Diego Muñoz-Moreno
- Translational Endocrinology Group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS)/Complexo Hospitalario Universitario de Santiago (SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av Monforte de Lemos3-5, 28029 Madrid, Spain
| | - Beatriz Brea-García
- Translational Endocrinology Group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS)/Complexo Hospitalario Universitario de Santiago (SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
| | - María Villalón
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av Monforte de Lemos3-5, 28029 Madrid, Spain
- Grupo Fisiopatología Endocrina, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago (SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
| | - Verónica Pena-Leon
- Grupo Fisiopatología Endocrina, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago (SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
| | - Rocío Vázquez-Cobela
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av Monforte de Lemos3-5, 28029 Madrid, Spain
- Pediatric Nutrition Research Group. Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS). Santiago de Compostela Spain Unit of Investigation in Human Nutrition, Growth and Development of Galicia (GALINUT), University of Santiago de Compostela (USC), Santiago de Compostela, Galicia, Spain
- Unit of Pediatric Gastroenterology, Hepatology and Nutrition. Pediatric Service. University Clinical Hospital of Santiago (CHUS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
| | - Concepción M. Aguilera
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av Monforte de Lemos3-5, 28029 Madrid, Spain
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Armilla, Granada, Spain
- Biosanitary Research Institute (IBS), University of Granada, Av de Madrid 15, 18012 Granada, Andalusia, Spain
| | - Javier Conde-Aranda
- Molecular and Cellular Gastroenterology Group, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706 Galicia, Spain
| | - Javier Costas
- Psychiatric Genetics group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
| | - Ana Estany-Gestal
- Plataforma de Metodología de la Investigación, Instituto de Investigación de Santiago (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
| | - Mar Quiñones
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av Monforte de Lemos3-5, 28029 Madrid, Spain
- Grupo Fisiopatología Endocrina, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago (SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
| | - Rosaura Leis
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av Monforte de Lemos3-5, 28029 Madrid, Spain
- Pediatric Nutrition Research Group. Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS). Santiago de Compostela Spain Unit of Investigation in Human Nutrition, Growth and Development of Galicia (GALINUT), University of Santiago de Compostela (USC), Santiago de Compostela, Galicia, Spain
- Unit of Pediatric Gastroenterology, Hepatology and Nutrition. Pediatric Service. University Clinical Hospital of Santiago (CHUS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
| | - Luisa María Seoane
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av Monforte de Lemos3-5, 28029 Madrid, Spain
- Grupo Fisiopatología Endocrina, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago (SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
| | - Omar Al-Massadi
- Translational Endocrinology Group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS)/Complexo Hospitalario Universitario de Santiago (SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Galicia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Av Monforte de Lemos3-5, 28029 Madrid, Spain
| |
Collapse
|
2
|
Cifre M, Palou A, Oliver P. The Metabolically Obese, Normal-Weight Phenotype in Young Rats Is Associated with Cognitive Impairment and Partially Preventable with Leptin Intake during Lactation. Int J Mol Sci 2023; 25:228. [PMID: 38203399 PMCID: PMC10778589 DOI: 10.3390/ijms25010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
The intake of high-fat diets (HFDs) and obesity are linked to cognitive impairment. Here, we aimed to investigate whether an early metabolically obese, normal-weight (MONW) phenotype, induced with an HFD in young rats, also leads to cognitive dysfunction and to evaluate the potential cognitive benefits of neonatal intake of leptin. To achieve this, Wistar rats orally received physiological doses of leptin or its vehicle during lactation, followed by 11 weeks of pair-feeding with an HFD or control diet post-weaning. Working memory was assessed using a T-maze, and gene expression in the hippocampus and peripheral blood mononuclear cells (PBMCs) was assessed with real-time RT-qPCR to identify cognition biomarkers. Young MONW-like rats showed hippocampal gene expression changes and decreased working memory. Animals receiving leptin during lactation presented similar gene expression changes but preserved working memory despite HFD intake, partly due to improved insulin sensitivity. Notably, PBMC Syn1 expression appears as an accessible biomarker of cognitive health, reflecting both the detrimental effect of HFD intake at early ages despite the absence of obesity and the positive effects of neonatal leptin treatment on cognition. Thus, the MONW phenotype developed at a young age is linked to cognitive dysfunction, which is reflected at the transcriptomic level in PBMCs. Neonatal leptin intake can partly counteract this impaired cognition resulting from early HFD consumption.
Collapse
Affiliation(s)
- Margalida Cifre
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands (UIB), 07122 Palma, Spain (A.P.)
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Andreu Palou
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands (UIB), 07122 Palma, Spain (A.P.)
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Paula Oliver
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands (UIB), 07122 Palma, Spain (A.P.)
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| |
Collapse
|
3
|
Rashid M, Al Qarni A, Al Mahri S, Mohammad S, Khan A, Abdullah ML, Lehe C, Al Amoudi R, Aldibasi O, Bouchama A. Transcriptome Changes and Metabolic Outcomes After Bariatric Surgery in Adults With Obesity and Type 2 Diabetes. J Endocr Soc 2023; 8:bvad159. [PMID: 38162016 PMCID: PMC10755185 DOI: 10.1210/jendso/bvad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Indexed: 01/03/2024] Open
Abstract
Context Bariatric surgery has been shown to be effective in inducing complete remission of type 2 diabetes in adults with obesity. However, its efficacy in achieving complete diabetes remission remains variable and difficult to predict before surgery. Objective We aimed to characterize bariatric surgery-induced transcriptome changes associated with diabetes remission and the predictive role of the baseline transcriptome. Methods We performed a whole-genome microarray in peripheral mononuclear cells at baseline (before surgery) and 2 and 12 months after bariatric surgery in a prospective cohort of 26 adults with obesity and type 2 diabetes. We applied machine learning to the baseline transcriptome to identify genes that predict metabolic outcomes. We validated the microarray expression profile using a real-time polymerase chain reaction. Results Sixteen patients entered diabetes remission at 12 months and 10 did not. The gene-expression analysis showed similarities and differences between responders and nonresponders. The difference included the expression of critical genes (SKT4, SIRT1, and TNF superfamily), metabolic and signaling pathways (Hippo, Sirtuin, ARE-mediated messenger RNA degradation, MSP-RON, and Huntington), and predicted biological functions (β-cell growth and proliferation, insulin and glucose metabolism, energy balance, inflammation, and neurodegeneration). Modeling the baseline transcriptome identified 10 genes that could hypothetically predict the metabolic outcome before bariatric surgery. Conclusion The changes in the transcriptome after bariatric surgery distinguish patients in whom diabetes enters complete remission from those who do not. The baseline transcriptome can contribute to the prediction of bariatric surgery-induced diabetes remission preoperatively.
Collapse
Affiliation(s)
- Mamoon Rashid
- Department of AI and Bioinformatics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Ali Al Qarni
- Endocrinology and Metabolism, Department of Medicine, King Abdulaziz Hospital, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Al Ahsa 31982, Saudi Arabia
| | - Saeed Al Mahri
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Sameer Mohammad
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Altaf Khan
- Department of Biostatistics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mashan L Abdullah
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Cynthia Lehe
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Reem Al Amoudi
- Endocrinology and Metabolism, Department of Medicine, King Abdulaziz Hospital, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Al Ahsa 31982, Saudi Arabia
| | - Omar Aldibasi
- Department of Biostatistics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Abderrezak Bouchama
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| |
Collapse
|
4
|
Picó C, Lurbe E, Keijer J, Kopecky J, Landrier JF, Álvarez-Pitti J, Martin JC, Oliver P, Palou A, Palou M, Zouhar P, Ribot J, Rodríguez AM, Sánchez J, Serra F, Bonet ML. Study protocol: Identification and validation of integrative biomarkers of physical activity level and health in children and adolescents (INTEGRActiv). Front Pediatr 2023; 11:1250731. [PMID: 37772038 PMCID: PMC10522911 DOI: 10.3389/fped.2023.1250731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023] Open
Abstract
Background Physical activity (PA) provides health benefits across the lifespan and improves many established cardiovascular risk factors that have a significant impact on overall mortality. However, discrepancies between self-reported and device-based measures of PA make it difficult to obtain consistent results regarding PA and its health effects. Moreover, PA may produce different health effects depending on the type, intensity, duration, and frequency of activities and individual factors such as age, sex, body weight, early life conditions/exposures, etc. Appropriate biomarkers relating the degree of PA level with its effects on health, especially in children and adolescents, are required and missing. The main objective of the INTEGRActiv study is to identify novel useful integrative biomarkers of PA and its effects on the body health in children and adolescents, who represent an important target population to address personalized interventions to improve future metabolic health. Methods/design The study is structured in two phases. First, biomarkers of PA and health will be identified at baseline in a core cohort of 180 volunteers, distributed into two age groups: prepubertal (n = 90), and postpubertal adolescents (n = 90). Each group will include three subgroups (n = 30) with subjects of normal weight, overweight, and obesity, respectively. Identification of new biomarkers will be achieved by combining physical measures (PA and cardiorespiratory and muscular fitness, anthropometry) and molecular measures (cardiovascular risk factors, endocrine markers, cytokines and circulating miRNA in plasma, gene expression profile in blood cells, and metabolomics profiling in plasma). In the second phase, an educational intervention and its follow-up will be carried out in a subgroup of these subjects (60 volunteers), as a first validation step of the identified biomarkers. Discussion The INTEGRActiv study is expected to provide the definition of PA and health-related biomarkers (PA-health biomarkers) in childhood and adolescence. It will allow us to relate biomarkers to factors such as age, sex, body weight, sleep behavior, dietary factors, and pubertal status and to identify how these factors quantitatively affect the biomarkers' responses. Taken together, the INTEGRActiv study approach is expected to help monitor the efficacy of interventions aimed to improve the quality of life of children/adolescents through physical activity. Clinical Trial Registration ClinicalTrials.gov, Identifier NCT05907785.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Empar Lurbe
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- Department of Pediatrics (Innovation in Paediatrics and Technologies-iPEDITEC- research group), Fundación de Investigación, Consorcio Hospital General, University of Valencia, Valencia, Spain
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, Netherlands
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Julio Álvarez-Pitti
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- Department of Pediatrics (Innovation in Paediatrics and Technologies-iPEDITEC- research group), Fundación de Investigación, Consorcio Hospital General, University of Valencia, Valencia, Spain
| | | | - Paula Oliver
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Petr Zouhar
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Ana M. Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - M. Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands (UIB), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| |
Collapse
|
5
|
Cirelli T, Nicchio IG, Bussaneli DG, Silva BR, Nepomuceno R, Orrico SRP, Cirelli JA, Theodoro LH, Barros SP, Scarel-Caminaga RM. Evidence Linking PPARG Genetic Variants with Periodontitis and Type 2 Diabetes Mellitus in a Brazilian Population. Int J Mol Sci 2023; 24:ijms24076760. [PMID: 37047733 PMCID: PMC10095581 DOI: 10.3390/ijms24076760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 04/14/2023] Open
Abstract
The peroxisome proliferator-activated receptor gamma (PPARG) gene encodes a transcription factor involved in the regulation of complex metabolic and inflammatory diseases. We investigated whether single nucleotide polymorphisms (SNPs) and haplotypes of the PPARG gene could contribute with susceptibility to develop periodontitis alone or together with type 2 diabetes mellitus (T2DM). Moreover, we evaluated the gene-phenotype association by assessing the subjects' biochemical and periodontal parameters, and the expression of PPARG and other immune response-related genes. We examined 345 subjects with a healthy periodontium and without T2DM, 349 subjects with moderate or severe periodontitis but without T2DM, and 202 subjects with moderate or severe periodontitis and T2DM. PPARG SNPs rs12495364, rs1801282, rs1373640, and rs1151999 were investigated. Multiple logistic regressions adjusted for age, sex, and smoking status showed that individuals carrying rs1151999-GG had a 64% lower chance of developing periodontitis together with T2DM. The CCGT haplotype increased the risk of developing periodontitis together with T2DM. The rs1151999-GG and rs12495364-TC were associated with reduced risk of obesity, periodontitis, elevated triglycerides, and elevated glycated hemoglobin, but there was no association with gene expression. Polymorphisms of the PPARG gene were associated with developing periodontitis together with T2DM, and with obesity, lipid, glycemic, and periodontal characteristics.
Collapse
Affiliation(s)
- Thamiris Cirelli
- Department of Dentistry, School of Dentistry, University Center-UNIFAE, São João da Boa Vista 13870-377, SP, Brazil
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil
| | - Ingra G Nicchio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil
| | - Diego G Bussaneli
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil
| | - Bárbara R Silva
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil
| | - Rafael Nepomuceno
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil
| | - Silvana R P Orrico
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil
- Advanced Research Center in Medicine, Union of the Colleges of the Great Lakes-UNILAGO, São José do Rio Preto 15030-070, SP, Brazil
| | - Joni A Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil
| | - Letícia H Theodoro
- Department of Diagnosis and Surgery, School of Dentistry at Araçatuba, São Paulo State University-UNESP, Araçatuba 16015-050, SP, Brazil
| | - Silvana P Barros
- Department of Periodontology, School of Dentistry, University of North Carolina at Chapel Hill-UNC, Chapel Hill, NC 27599, USA
| | - Raquel M Scarel-Caminaga
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil
| |
Collapse
|
6
|
The physical exercise-induced oxidative/inflammatory response in peripheral blood mononuclear cells: Signaling cellular energetic stress situations. Life Sci 2023; 321:121440. [PMID: 36921686 DOI: 10.1016/j.lfs.2023.121440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/14/2023] [Accepted: 01/22/2023] [Indexed: 03/14/2023]
Abstract
Peripheral blood mononuclear cells (PBMCs) are a variety of specialized immune cells produced in the bone marrow from hematopoietic stem cells (HSCs) that work together to protect our bodies from harmful pathogens. From a metabolic point of view, these cells can serve as sentinel tissue source for distinguishing multiple types of whole-body physiological perturbations. The significant interaction of PBMCs with systemic physiology makes these cells an attractive target for several interventions such as physical exercise. Analyses of oxidative/inflammatory and metabolic markers of PBMCs obtained from unhealthy and healthy humans have been used in monitoring immune response in different exercise conditions. It is already a common consensus that regular practice of physical exercise, that is planned, structured, and repetitive, influences personal health by altering the metabolic state and the immune system. However, the role of distinct metabolic processes responsible for maintaining metabolic balance during physical exercise in PBMCs is not fully understood. Furthermore, a complete dose-response analysis between different exercise protocols and biomarkers capable of predicting physical performance needs to be better elucidated. The absence of published reviews on this topic compromises the understanding of the crosstalk between the metabolic adaptations of PBMCs and exercise-induced changes in the immune system. Given the above, this review highlights the main findings in the literature involving the responses of PBMCs in the inflammatory/oxidative stress induced by physical exercise. The present review also highlights how distinct phenotypes and functional diversity of PBMCs make these cells an accessible alternative for assessing exercise-induced metabolic adaptations.
Collapse
|
7
|
Barradas M, Plaza A, Colmenarejo G, Lázaro I, Costa-Machado LF, Martín-Hernández R, Micó V, López-Aceituno JL, Herranz J, Pantoja C, Tejero H, Diaz-Ruiz A, Al-Shahrour F, Daimiel L, Loria-Kohen V, de Molina AR, Efeyan A, Serrano M, Pozo OJ, Sala-Vila A, Fernandez-Marcos PJ. Fatty acids homeostasis during fasting predicts protection from chemotherapy toxicity. Nat Commun 2022; 13:5677. [PMID: 36167809 PMCID: PMC9515185 DOI: 10.1038/s41467-022-33352-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/09/2022] [Indexed: 12/27/2022] Open
Abstract
Fasting exerts beneficial effects in mice and humans, including protection from chemotherapy toxicity. To explore the involved mechanisms, we collect blood from humans and mice before and after 36 or 24 hours of fasting, respectively, and measure lipid composition of erythrocyte membranes, circulating micro RNAs (miRNAs), and RNA expression at peripheral blood mononuclear cells (PBMCs). Fasting coordinately affects the proportion of polyunsaturated versus saturated and monounsaturated fatty acids at the erythrocyte membrane; and reduces the expression of insulin signaling-related genes in PBMCs. When fasted for 24 hours before and 24 hours after administration of oxaliplatin or doxorubicin, mice show a strong protection from toxicity in several tissues. Erythrocyte membrane lipids and PBMC gene expression define two separate groups of individuals that accurately predict a differential protection from chemotherapy toxicity, with important clinical implications. Our results reveal a mechanism of fasting associated with lipid homeostasis, and provide biomarkers of fasting to predict fasting-mediated protection from chemotherapy toxicity. Fasting has been reported to protect from chemotherapy-associated toxicity. Here, the authors show that fatty acid profiles in erythrocyte membranes and gene expression from peripheral blood mononuclear cells are associated to the fasting-mediated benefits during cancer treatment in mice and patients.
Collapse
Affiliation(s)
- Marta Barradas
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain.
| | - Adrián Plaza
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain.
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Iolanda Lázaro
- Cardiovascular risk and nutrition, Hospital del Mar Medical Research Institute-IMIM, Barcelona, Spain
| | - Luis Filipe Costa-Machado
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Roberto Martín-Hernández
- Biostatistics and Bioinformatics Unit, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Victor Micó
- Nutritional Genomics of Cardiovascular Disease and Obesity, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - José Luis López-Aceituno
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Jesús Herranz
- Biostatistics and Bioinformatics Unit, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Cristina Pantoja
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Hector Tejero
- Bioinformatics Unit, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Alberto Diaz-Ruiz
- Nutritional Interventions Group, Precision Nutrition and Aging, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Fatima Al-Shahrour
- Bioinformatics Unit, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Lidia Daimiel
- Nutritional Genomics of Cardiovascular Disease and Obesity, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Viviana Loria-Kohen
- Nutrition and Clinical Trials Unit, Platform GENYAL, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Ana Ramirez de Molina
- Nutrition and Clinical Trials Unit, Platform GENYAL, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain.,Molecular Oncology and Nutritional Genomics of Cancer Group, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Alejo Efeyan
- Metabolism and Cell Signaling Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Oscar J Pozo
- Applied Metabolomics Research Group, Hospital del Mar Medical Research Institute-(IMIM), Barcelona, Spain
| | - Aleix Sala-Vila
- Cardiovascular risk and nutrition, Hospital del Mar Medical Research Institute-IMIM, Barcelona, Spain.,Fatty Acid Research Institute, Sioux Falls, SD, USA
| | - Pablo J Fernandez-Marcos
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain.
| |
Collapse
|
8
|
Reynés B, Palou M, Palou A, Serra F. The intake of β-sitosterol partially counteracts metformin beneficial effects in diet-induced obese rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
9
|
Increased mRNA Levels of ADAM17, IFITM3, and IFNE in Peripheral Blood Cells Are Present in Patients with Obesity and May Predict Severe COVID-19 Evolution. Biomedicines 2022; 10:biomedicines10082007. [PMID: 36009555 PMCID: PMC9406212 DOI: 10.3390/biomedicines10082007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
Gene expression patterns in blood cells from SARS-CoV-2 infected individuals with different clinical phenotypes and body mass index (BMI) could help to identify possible early prognosis factors for COVID-19. We recruited patients with COVID-19 admitted in Hospital Universitari Son Espases (HUSE) between March 2020 and November 2021, and control subjects. Peripheral blood cells (PBCs) and plasma samples were obtained on hospital admission. Gene expression of candidate transcriptomic biomarkers in PBCs were compared based on the patients’ clinical status (mild, severe and critical) and BMI range (normal weight, overweight, and obesity). mRNA levels of ADAM17, IFITM3, IL6, CXCL10, CXCL11, IFNG and TYK2 were increased in PBCs of COVID-19 patients (n = 73) compared with controls (n = 47), independently of sex. Increased expression of IFNE was observed in the male patients only. PBC mRNA levels of ADAM17, IFITM3, CXCL11, and CCR2 were higher in those patients that experienced a more serious evolution during hospitalization. ADAM17, IFITM3, IL6 and IFNE were more highly expressed in PBCs of patients with obesity. Interestingly, the expression pattern of ADAM17, IFITM3 and IFNE in PBCs was related to both the severity of COVID-19 evolution and obesity status, especially in the male patients. In conclusion, gene expression in PBCs can be useful for the prognosis of COVID-19 evolution.
Collapse
|
10
|
Costa A, Reynés B, Konieczna J, Martín M, Fiol M, Palou A, Romaguera D, Oliver P. Use of human PBMC to analyse the impact of obesity on lipid metabolism and metabolic status: a proof-of-concept pilot study. Sci Rep 2021; 11:18329. [PMID: 34526523 PMCID: PMC8443582 DOI: 10.1038/s41598-021-96981-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Peripheral blood mononuclear cells (PBMC) are widely used as a biomarker source in nutrition/obesity studies because they reflect gene expression profiles of internal tissues. In this pilot proof-of-concept study we analysed in humans if, as we previously suggested in rodents, PBMC could be a surrogate tissue to study overweight/obesity impact on lipid metabolism. Pre-selected key lipid metabolism genes based in our previous preclinical studies were analysed in PBMC of normoglycemic normal-weight (NW), and overweight-obese (OW-OB) subjects before and after a 6-month weight-loss plan. PBMC mRNA levels of CPT1A, FASN and SREBP-1c increased in the OW-OB group, according with what described in liver and adipose tissue of humans with obesity. This altered expression pattern was related to increased adiposity and early signs of metabolic impairment. Greater weight loss and/or metabolic improvement as result of the intervention was related to lower CPT1A, FASN and SREBP-1c gene expression in an adjusted linear mixed-effects regression analysis, although no gene expression recovery was observed when considering mean comparisons. Thus, human PBMC reflect lipid metabolism expression profile of energy homeostatic tissues, and early obesity-related alterations in metabolic at-risk subjects. Further studies are needed to understand PBMC usefulness for analysis of metabolic recovery in weigh management programs.
Collapse
Affiliation(s)
- Andrea Costa
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands (UIB), Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Bàrbara Reynés
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands (UIB), Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Jadwiga Konieczna
- Research Group on Nutritional Epidemiology and Cardiovascular Physiopathology (NUTRECOR), University Hospital Son Espases (HUSE), Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Marian Martín
- Research Group on Nutritional Epidemiology and Cardiovascular Physiopathology (NUTRECOR), University Hospital Son Espases (HUSE), Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Miquel Fiol
- Research Group on Nutritional Epidemiology and Cardiovascular Physiopathology (NUTRECOR), University Hospital Son Espases (HUSE), Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Andreu Palou
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands (UIB), Palma, Spain. .,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain. .,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain.
| | - Dora Romaguera
- Research Group on Nutritional Epidemiology and Cardiovascular Physiopathology (NUTRECOR), University Hospital Son Espases (HUSE), Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Paula Oliver
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands (UIB), Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| |
Collapse
|
11
|
Costa A, Konieczna J, Reynés B, Martín M, Fiol M, Palou A, Romaguera D, Oliver P. CUN-BAE Index as a Screening Tool to Identify Increased Metabolic Risk in Apparently Healthy Normal-Weight Adults and Those with Obesity. J Nutr 2021; 151:2215-2225. [PMID: 33978191 DOI: 10.1093/jn/nxab117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/02/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Imbalanced dietary intake is related to increased adiposity, which is linked to increased metabolic risk even in the absence of obesity. BMI is traditionally used to classify body fatness and weight range, but it only considers body weight and height. The Clínica Universidad de Navarra-Body Adiposity Estimator (CUN-BAE) equation has appeared as an additional tool to estimate adiposity considering also other relevant parameters, i.e., sex and age. OBJECTIVES We aimed to determine whether the CUN-BAE index could estimate adiposity-related metabolic risk in apparently healthy, normoglycemic adults. METHODS In this case-control study, men and women (18-45 y old) were classified as normal-weight (NW) [n = 20; BMI (in kg/m2) <25] or overweight-obese (OW-OB) (n = 34; BMI ≥25). The primary outcome was body fat content and clinical circulating parameters to assess by correlation analysis CUN-BAE's usefulness as a predictor of metabolic risk. In addition, transcriptomic biomarkers of lipid metabolism were analyzed in peripheral blood mononuclear cells (PBMCs) as secondary outcome indicators of metabolic impairment. Data were analyzed by correlation analysis and comparison of means. RESULTS CUN-BAE values correlated directly with body fatness obtained by DXA (r = 0.89, P < 0.01), with classical molecular biomarkers of metabolic risk, and with PBMC gene expression of carnitine palmitoyltransferase 1A (CPT1A), sterol regulatory element binding transcription factor 1c (SREBP-1c), and fatty acid synthase (FASN), early markers of metabolic impairment (P < 0.05). Moreover, CUN-BAE allowed identification of NW individuals with excessive body fatness, who were not yet presenting obesity-related molecular alterations. In these subjects, visceral fat correlated directly with circulating glucose, triglycerides, and total and LDL cholesterol, and with triglyceride-glucose and fatty liver indexes (P < 0.05). This is indicative of a metabolically obese NW phenotype. CONCLUSIONS Data obtained in our cohort of young normoglycemic volunteers support the use of the CUN-BAE index as a tool to estimate accurately body fat mass, but also as a first easy/effective screening tool to identify lean people with increased fat mass and increased metabolic risk.This trial was registered at clinicaltrials.gov as NCT04402697.
Collapse
Affiliation(s)
- Andrea Costa
- Nutrigenomics and Obesity Group, University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Jadwiga Konieczna
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain.,Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR), University Hospital Son Espases (HUSE), Palma, Spain
| | - Bàrbara Reynés
- Nutrigenomics and Obesity Group, University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Marian Martín
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain.,Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR), University Hospital Son Espases (HUSE), Palma, Spain
| | - Miquel Fiol
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain.,Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR), University Hospital Son Espases (HUSE), Palma, Spain
| | - Andreu Palou
- Nutrigenomics and Obesity Group, University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Dora Romaguera
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain.,Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR), University Hospital Son Espases (HUSE), Palma, Spain
| | - Paula Oliver
- Nutrigenomics and Obesity Group, University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| |
Collapse
|
12
|
Moderate-intensity functional training improves mitochondrial capability and redox state in peripheral blood mononuclear cells of metabolic syndrome women. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-020-00657-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Zhao Z, Zhang J. Lower Expression of miR-26a in PBMCs Indicates the Occurrence of Early-Onset Neonatal Sepsis and Is Partly Mediated by the Upregulation of PTEN. Front Pediatr 2021; 9:678205. [PMID: 34504813 PMCID: PMC8422988 DOI: 10.3389/fped.2021.678205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
Aim: It is difficult to identify neonatal sepsis early due to the lack of specific markers. The aim of the present study was to explore whether miR-26a expression in peripheral blood mononuclear cells (PBMCs) could be used as a diagnostic marker of the disease and whether phosphatase and tensin homolog (PTEN) was involved in suppressing miR-26a expression. Methods: A total of 51 early-onset septic newborns and 102 healthy newborns were included. Blood specimens were collected from septic newborns at the time of clinical diagnosis (baseline) and again between 72 and 96 h after birth. Blood specimens were collected from healthy newborns on admission. The expressions of miR-26a and PTEN in PBMCs were measured using real-time quantitative PCR (RT-qPCR). Other data, including hemoculture, were collected from medical records. Results: In septic newborns with and without a positive hemoculture, a lower baseline level of miR-26a in PBMCs was associated with a higher risk of disease. Additionally, at baseline, there was a certain linear relationship between the levels of miR-26a and two serological inflammatory markers (i.e., white blood cell count and C-reactive protein level) in septic newborns. In addition, the baseline expressions of miR-26a and PTEN showed a reverse linear relationship. Compared with those at baseline, the expression of miR-26a was higher and the expression of PTEN was lower in septic newborns starting at 72 h after birth. Conclusion: A lower baseline miR-26a expression in PBMCs indicated the occurrence of early-onset neonatal sepsis, and a reduced miR-26a expression might be partly related to the inflammatory process and PTEN upregulation.
Collapse
Affiliation(s)
- Ziyan Zhao
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiajie Zhang
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Cifre M, Palou A, Oliver P. Impaired CPT1A Gene Expression Response to Retinoic Acid Treatment in Human PBMC as Predictor of Metabolic Risk. Nutrients 2020; 12:E2269. [PMID: 32751185 PMCID: PMC7468959 DOI: 10.3390/nu12082269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 01/05/2023] Open
Abstract
Ex vivo human peripheral blood mononuclear cell (PBMC) systems offer the possibility to test transcriptomic effects of food bioactive compounds with potential health effects. We investigated all-trans retinoic acid (ATRA) effect on mRNA expression of key lipid metabolism and inflammatory genes in PBMCs from normal-weight (NW) and overweight-obese (OW-OB) men with different metabolic syndrome-related features. PBMCs were incubated with 10 µM ATRA and mRNA levels of selected genes were analyzed using real-time RT-qPCR. Human ex vivo PBMCs responded to ATRA treatment, but the response for some genes was dependent on body mass index (BMI), with a lower response in PBMC from OW-OB than from NW donors. Moreover, gene expression response was affected by circulating high-density lipoprotein (HDL)-cholesterol levels. Particularly, the response to ATRA of CPT1A, previously reported as a sensitive metabolic risk predictive biomarker, was dependent on HDL levels and not on BMI, being impaired in those individuals with lower HDL levels, specifically in OW-OB. Thus, PBMCs' insensitivity to ATRA, which can be considered as indicative of impaired metabolism, was observed in individuals with higher metabolic risk (OW-OB with low HDL levels). In conclusion, an ex vivo human PBMC system indicates that ATRA response could be influenced by metabolic syndrome features. Moreover, our study reinforces the role of CPT1A as a marker of metabolic risk and points to plasmatic HDL-cholesterol levels as a parameter to take into consideration when the effects of nutritional factors and/or dietary interventions on humans are under study. Further studies including women are required to detect potential gender differences in the observed effects.
Collapse
Affiliation(s)
- Margalida Cifre
- Nutrigenomics and Obesity Group, University of the Balearic Islands, 07122 Palma, Spain; (M.C.); (P.O.)
- CIBER of Pathophysiology of Obesity and Nutrition (CIBEROBN), 28029 Madrid, Spain
| | - Andreu Palou
- Nutrigenomics and Obesity Group, University of the Balearic Islands, 07122 Palma, Spain; (M.C.); (P.O.)
- CIBER of Pathophysiology of Obesity and Nutrition (CIBEROBN), 28029 Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
| | - Paula Oliver
- Nutrigenomics and Obesity Group, University of the Balearic Islands, 07122 Palma, Spain; (M.C.); (P.O.)
- CIBER of Pathophysiology of Obesity and Nutrition (CIBEROBN), 28029 Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
| |
Collapse
|
15
|
Szostaczuk N, van Schothorst EM, Sánchez J, Priego T, Palou M, Bekkenkamp-Grovenstein M, Faustmann G, Obermayer-Pietsch B, Tiran B, Roob JM, Winklhofer-Roob BM, Keijer J, Palou A, Picó C. Identification of blood cell transcriptome-based biomarkers in adulthood predictive of increased risk to develop metabolic disorders using early life intervention rat models. FASEB J 2020; 34:9003-9017. [PMID: 32474969 DOI: 10.1096/fj.202000071rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022]
Abstract
Calorie restriction during gestation in rats has long-lasting adverse effects in the offspring. It induces metabolic syndrome-related alterations, which are partially reversed by leptin supplementation during lactation. We employed these conditions to identify transcript-based nutrient sensitive biomarkers in peripheral blood mononuclear cells (PBMCs) predictive of later adverse metabolic health. The best candidate was validated in humans. Transcriptome analysis of PBMCs from adult male Wistar rats of three experimental groups was performed: offspring of control dams (CON), and offspring of 20% calorie-restricted dams during gestation without (CR) and with leptin supplementation throughout lactation (CR-LEP). The expression of 401 genes was affected by gestational calorie restriction and reversed by leptin. The changes preceded metabolic syndrome-related phenotypic alterations. Of these genes, Npc1 mRNA levels were lower in CR vs CON, and normalized to CON in CR-LEP. In humans, NPC1 mRNA levels in peripheral blood cells (PBCs) were decreased in subjects with mildly impaired metabolic health compared to healthy subjects. Therefore, a set of potential transcript-based biomarkers indicative of a predisposition to metabolic syndrome-related alterations were identified, including NPC1, which was validated in humans. Low NPC1 transcript levels in PBCs are a candidate biomarker of increased risk for impaired metabolic health in humans.
Collapse
Affiliation(s)
- Nara Szostaczuk
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), University of the Balearic Islands, Palma de Mallorca, Spain
| | | | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), University of the Balearic Islands, Palma de Mallorca, Spain.,Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Teresa Priego
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), University of the Balearic Islands, Palma de Mallorca, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), University of the Balearic Islands, Palma de Mallorca, Spain.,Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | | | - Gernot Faustmann
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, Karl-Franzens University of Graz, Graz, Austria.,Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Beate Tiran
- Clinical Institute of Medical and Clinical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Johannes M Roob
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Brigitte M Winklhofer-Roob
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, Karl-Franzens University of Graz, Graz, Austria
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), University of the Balearic Islands, Palma de Mallorca, Spain.,Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), University of the Balearic Islands, Palma de Mallorca, Spain.,Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| |
Collapse
|
16
|
Jang K, Tong T, Lee J, Park T, Lee H. Altered Gene Expression Profiles in Peripheral Blood Mononuclear Cells in Obese Subjects. Obes Facts 2020; 13:375-385. [PMID: 32544907 PMCID: PMC7445570 DOI: 10.1159/000507817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 04/02/2020] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Gene expression profiles in human peripheral blood mononuclear cells (PBMCs) may act as a useful tool to better understand obesity. We investigated gene expression levels in PMBCs for possible differences between obese and non-obese subjects (19-55 years) and evaluated correlations between gene expression in PBMCs and clinical obesity indices. METHODS Body weight, BMI, fat amount, fat percentage, waist/hip ratio, leptin, and adiponectin levels were determined in 30 obese and 20 non-obese subjects. Expression levels of 19 genes, which were differentially expressed by clinical obesity indices in the PBMCs of high fat-fed rats, were determined in their PBMCs using real-time PCR. RESULTS The expression of 9 of 19 previously selected genes was significantly correlated with one or more clinical obesity indices. Both TFEC and CCL2 expression were negatively correlated with BMI, fat amount, fat percentage, waist/hip ratio, and leptin concentration. Similarly, TNFAIP2, VCAN, ASSI, IRF1, and HK3 expression negatively correlated with some clinical obesity indices, such as TNFAIP2 for BMI, fat amount, fat percentage, and waist/hip ratio, VCAN for fat amount, fat percentage, and waist/hip ratio, ASS1 for BMI and fat amount, IRF1 for BMI, fat amount, and fat percentage, and HK3 for fat amount. In contrast, both TNF-α and LPL expression were positively correlated with waist/hip ratio. CONCLUSION We identified 9 of 19 genes in human PBMCs that significantly correlated with one or more clinical obesity indices. Because these genes have a mechanistic basis for the development or progression of obesity and its metabolic derangements, they may help to determine possible underlying mechanisms for obesity.
Collapse
Affiliation(s)
- Kyungho Jang
- Center for Clinical Pharmacology, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Tao Tong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jinhui Lee
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, Yonsei University, Seoul, Republic of Korea
| | - Taesun Park
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, Yonsei University, Seoul, Republic of Korea
- **Taesun Park, Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120749 (South Korea),
| | - Howard Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- *Howard Lee, Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 103 Daehak-ro, Jongno-gu, Seoul 110799 (South Korea),
| |
Collapse
|
17
|
Zhang S, Zhao M, Wang F, Liu J, Zheng H, Lei P. Relationship between normal weight obesity and mild cognitive impairment is reflected in cognitive-related genes in human peripheral blood mononuclear cells. Psychogeriatrics 2020; 20:35-43. [PMID: 30950168 DOI: 10.1111/psyg.12452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 01/31/2019] [Accepted: 03/06/2019] [Indexed: 01/12/2023]
Abstract
AIM Obesity contributes to the development of mild cognitive impairment, but the potential role of normal weight obesity in this disease has not been explored in humans. The aim of the study was to reveal the relationship between normal weight obesity and mild cognitive impairment in elderly individuals. METHODS This study consisted of 360 patients with amnestic mild cognitive impairment and 360 cognitively normal controls. Normal weight obesity was defined as having metabolic syndrome but a normal weight. Metabolic health meant having no metabolic syndrome. Reverse transcription quantitative real-time polymerase chain reaction was adopted to measure the messenger RNA expression of four cognitive-related genes (amyloid precursor protein, cyclic adenosine monophosphate-responsive element-binding protein 1, sortilin-related receptor 1, and synapsin I) in peripheral blood mononuclear cells. RESULTS Normal weight obesity was related to a higher risk of amnestic mild cognitive impairment (odds ratio = 3.14, 95% confidence interval: 2.13-4.60). In the patients, the expression of each gene in the peripheral blood mononuclear cells was linearly related to Mini-Mental State Examination and Montreal Cognitive Assessment scores (P < 0.05). The expression of these genes in the patients with metabolic health deviated from the normal levels found in the controls (P < 0.05), and the deviations were more significant in the patients with normal weight obesity (P < 0.05). CONCLUSION Normal weight obesity may be a potential risk factor for amnestic mild cognitive impairment in elderly. This relationship was reflected in the abnormal expression of several cognitive-related genes in peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- Shishuang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital; Tianjin Geriatrics Institute, Tianjin, China
| | - Minghui Zhao
- Department of Geriatrics, Tianjin Medical University General Hospital; Tianjin Geriatrics Institute, Tianjin, China
| | - Feng Wang
- Department of Geriatrics, Tianjin Medical University General Hospital; Tianjin Geriatrics Institute, Tianjin, China
| | - Juan Liu
- Department of Ultrasound, Tianjin People's Hospital, Tianjin, China
| | - Hui Zheng
- Nankai Center for Disease Control and Prevention, Tianjin, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital; Tianjin Geriatrics Institute, Tianjin, China
| |
Collapse
|
18
|
Reynés B, van Schothorst EM, Keijer J, Palou A, Oliver P. Effects of cold exposure revealed by global transcriptomic analysis in ferret peripheral blood mononuclear cells. Sci Rep 2019; 9:19985. [PMID: 31882687 PMCID: PMC6934835 DOI: 10.1038/s41598-019-56354-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022] Open
Abstract
Animal studies, mostly performed in rodents, show the beneficial anti-obesity effects of cold studies. This is due to thermogenic activation of brown adipose tissue (BAT), a tissue also recently discovered in adult humans. Studies in humans, however, are hampered by the accessibility of most tissues. In contrast, peripheral blood mononuclear cells (PBMC) are accessible and share the expression profile of different sets of genes with other tissues, including those that reflect metabolic responses. Ferrets are an animal model physiologically closer to humans than rodents. Here, we investigated the effects on ferrets of one-week acclimation to 4 °C by analysing the PBMC transcriptome. Cold exposure deeply affected PBMC gene expression, producing a widespread down-regulation of genes involved in different biological pathways (cell cycle, gene expression regulation/protein synthesis, immune response, signal transduction, and genes related to extracellular matrix/cytoskeleton), while thermogenic and glycogenolysis-related processes were increased. Results obtained in PBMC reflected those of adipose tissue, but hardly those of the liver. Our study, using ferret as a model, reinforce PBMC usefulness as sentinel biological material for cold-exposure studies in order to deepen our understanding of the general and specific pathways affected by cold acclimation. This is relevant for future development of therapies to be used clinically.
Collapse
Affiliation(s)
- Bàrbara Reynés
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity group), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | | | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity group), University of the Balearic Islands, Palma, Spain.
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain.
| | - Paula Oliver
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity group), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| |
Collapse
|
19
|
Picó C, Serra F, Rodríguez AM, Keijer J, Palou A. Biomarkers of Nutrition and Health: New Tools for New Approaches. Nutrients 2019; 11:E1092. [PMID: 31100942 PMCID: PMC6567133 DOI: 10.3390/nu11051092] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
A main challenge in nutritional studies is the valid and reliable assessment of food intake, as well as its effects on the body. Generally, food intake measurement is based on self-reported dietary intake questionnaires, which have inherent limitations. They can be overcome by the use of biomarkers, capable of objectively assessing food consumption without the bias of self-reported dietary assessment. Another major goal is to determine the biological effects of foods and their impact on health. Systems analysis of dynamic responses may help to identify biomarkers indicative of intake and effects on the body at the same time, possibly in relation to individuals' health/disease states. Such biomarkers could be used to quantify intake and validate intake questionnaires, analyse physiological or pathological responses to certain food components or diets, identify persons with specific dietary deficiency, provide information on inter-individual variations or help to formulate personalized dietary recommendations to achieve optimal health for particular phenotypes, currently referred as "precision nutrition." In this regard, holistic approaches using global analysis methods (omics approaches), capable of gathering high amounts of data, appear to be very useful to identify new biomarkers and to enhance our understanding of the role of food in health and disease.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands.
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| |
Collapse
|
20
|
Alvarez-Pitti J, Ros-Forés MA, Bayo-Pérez A, Palou M, Lurbe E, Palou A, Picó C. Blood cell transcript levels in 5-year-old children as potential markers of breastfeeding effects in those small for gestational age at birth. J Transl Med 2019; 17:145. [PMID: 31064394 PMCID: PMC6505189 DOI: 10.1186/s12967-019-1896-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/25/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Nutrition of the newborn during the early postnatal period seems to be of capital importance and there is clinical evidence showing the protective effect of breastfeeding compared with formula feeding on childhood obesity and its comorbidities. Infants born small for gestation age may be more sensitive to the type of feeding during lactation. Here, we aimed to analyze the impact of birth weight and the type of infant feeding on the expression levels in peripheral blood cells of selected candidate genes involved in energy homeostasis in 5-year-old children, to find out potential early biomarkers of metabolic programming effects during this period of metabolic plasticity. METHODS Forty subjects were recruited at birth and divided in four groups according to birth weight (adequate or small for gestational age) and type of infant feeding (breastfeeding or formula feeding). They were followed from birth to the age of 5 years. RESULTS At 5 years, no significant differences regarding anthropometric parameters were found between groups, and all children had normal biochemical values. Expression levels of UCP2 and MC4R in peripheral blood cells were lower and higher, respectively, in formula feeding children compared with breastfeeding ones (P = 0.002 and P = 0.064, two-way ANOVA). Differences were more marked and significant by Student's t test in small for gestation age children (P < 0.001 and P = 0.017, respectively). Transcript levels of FASN and FTO in peripheral blood cells were also different according to the type of infant feeding, but only in small for gestation age children. CONCLUSIONS Altogether, these results suggest that small for gestation age infants are more sensitive to the type of feeding during lactation, and transcript levels of particular genes in peripheral blood cells, especially the MC4R/UCP2 mRNA ratio, may precisely reflect these effects in the absence of clear differences in phenotypic traits.
Collapse
Affiliation(s)
- Julio Alvarez-Pitti
- Pediatric Department, Consorcio Hospital General, University of Valencia, Valencia, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- INCLIVA Biomedical Research Institute, Hospital Clínico. University of Valencia, Valencia, Spain
| | - Maria Amparo Ros-Forés
- Pediatric Department, Consorcio Hospital General, University of Valencia, Valencia, Spain
| | - Ana Bayo-Pérez
- Pediatric Department, Consorcio Hospital General, University of Valencia, Valencia, Spain
| | - Mariona Palou
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands (UIB), Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Empar Lurbe
- Pediatric Department, Consorcio Hospital General, University of Valencia, Valencia, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- INCLIVA Biomedical Research Institute, Hospital Clínico. University of Valencia, Valencia, Spain
| | - Andreu Palou
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands (UIB), Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Catalina Picó
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands (UIB), Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| |
Collapse
|
21
|
Pomar CA, Castro H, Picó C, Serra F, Palou A, Sánchez J. Cafeteria Diet Consumption during Lactation in Rats, Rather than Obesity Per Se, alters miR-222, miR-200a, and miR-26a Levels in Milk. Mol Nutr Food Res 2019; 63:e1800928. [DOI: 10.1002/mnfr.201800928] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/09/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Catalina A. Pomar
- Laboratory of Molecular Biology; Nutrition and Biotechnology (Nutrigenomics and Obesity); University of the Balearic Islands; Palma de Mallorca Spain
- CIBER Fisiopatología de la Obesidad y Nutrición; Madrid Spain C.P. 28029
| | - Heriberto Castro
- Laboratory of Molecular Biology; Nutrition and Biotechnology (Nutrigenomics and Obesity); University of the Balearic Islands; Palma de Mallorca Spain
- Universidad Autónoma de Nuevo León; Facultad de Salud Pública y Nutrición; Nuevo León México C.P. 64460
| | - Catalina Picó
- Laboratory of Molecular Biology; Nutrition and Biotechnology (Nutrigenomics and Obesity); University of the Balearic Islands; Palma de Mallorca Spain
- CIBER Fisiopatología de la Obesidad y Nutrición; Madrid Spain C.P. 28029
- Instituto de Investigación Sanitaria Illes Balears; Palma de Mallorca Spain C.P. 07120
| | - Francisca Serra
- Laboratory of Molecular Biology; Nutrition and Biotechnology (Nutrigenomics and Obesity); University of the Balearic Islands; Palma de Mallorca Spain
- CIBER Fisiopatología de la Obesidad y Nutrición; Madrid Spain C.P. 28029
- Instituto de Investigación Sanitaria Illes Balears; Palma de Mallorca Spain C.P. 07120
| | - Andreu Palou
- Laboratory of Molecular Biology; Nutrition and Biotechnology (Nutrigenomics and Obesity); University of the Balearic Islands; Palma de Mallorca Spain
- CIBER Fisiopatología de la Obesidad y Nutrición; Madrid Spain C.P. 28029
- Instituto de Investigación Sanitaria Illes Balears; Palma de Mallorca Spain C.P. 07120
| | - Juana Sánchez
- Laboratory of Molecular Biology; Nutrition and Biotechnology (Nutrigenomics and Obesity); University of the Balearic Islands; Palma de Mallorca Spain
- CIBER Fisiopatología de la Obesidad y Nutrición; Madrid Spain C.P. 28029
- Instituto de Investigación Sanitaria Illes Balears; Palma de Mallorca Spain C.P. 07120
| |
Collapse
|
22
|
Zeng Y, David J, Rémond D, Dardevet D, Savary-Auzeloux I, Polakof S. Peripheral Blood Mononuclear Cell Metabolism Acutely Adapted to Postprandial Transition and Mainly Reflected Metabolic Adipose Tissue Adaptations to a High-Fat Diet in Minipigs. Nutrients 2018; 10:nu10111816. [PMID: 30469379 PMCID: PMC6267178 DOI: 10.3390/nu10111816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/26/2018] [Accepted: 11/15/2018] [Indexed: 11/16/2022] Open
Abstract
Although peripheral blood mononuclear cells (PBMCs) are widely used as a valuable tool able to provide biomarkers of health and diseases, little is known about PBMC functional (biochemistry-based) metabolism, particularly following short-term nutritional challenges. In the present study, the metabolic capacity of minipig PBMCs to respond to nutritional challenges was explored at the biochemical and molecular levels. The changes observed in enzyme activities following a control test meal revealed that PBMC metabolism is highly reactive to the arrival of nutrients and hormones in the circulation. The consumption, for the first time, of a high fat⁻high sucrose (HFHS) meal delayed or sharply reduced most of the observed postprandial metabolic features. In a second experiment, minipigs were subjected to two-month HFHS feeding. The time-course follow-up of metabolic changes in PBMCs showed that most of the adaptations to the new diet took place during the first week. By comparing metabolic (biochemical and molecular) PMBC profiles to those of the liver, skeletal muscle, and adipose tissue, we concluded that although PBMCs conserved common features with all of them, their response to the HFHS diet was closely related to that of the adipose tissue. As a whole, our results show that PBMC metabolism, particularly during short-term (postprandial) challenges, could be used to evaluate the whole-body metabolic status of an individual. This could be particularly interesting for early diagnosis of metabolic disease installation, when fasting clinical analyses fail to diagnose the path towards the pathology.
Collapse
Affiliation(s)
- Yuchun Zeng
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| | - Jérémie David
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| | - Didier Rémond
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| | - Dominique Dardevet
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| | - Isabelle Savary-Auzeloux
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| | - Sergio Polakof
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
23
|
Critical Evaluation of Gene Expression Changes in Human Tissues in Response to Supplementation with Dietary Bioactive Compounds: Moving Towards Better-Quality Studies. Nutrients 2018; 10:nu10070807. [PMID: 29932449 PMCID: PMC6073419 DOI: 10.3390/nu10070807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 12/28/2022] Open
Abstract
Pre-clinical cell and animal nutrigenomic studies have long suggested the modulation of the transcription of multiple gene targets in cells and tissues as a potential molecular mechanism of action underlying the beneficial effects attributed to plant-derived bioactive compounds. To try to demonstrate these molecular effects in humans, a considerable number of clinical trials have now explored the changes in the expression levels of selected genes in various human cell and tissue samples following intervention with different dietary sources of bioactive compounds. In this review, we have compiled a total of 75 human studies exploring gene expression changes using quantitative reverse transcription PCR (RT-qPCR). We have critically appraised the study design and methodology used as well as the gene expression results reported. We herein pinpoint some of the main drawbacks and gaps in the experimental strategies applied, as well as the high interindividual variability of the results and the limited evidence supporting some of the investigated genes as potential responsive targets. We reinforce the need to apply normalized procedures and follow well-established methodological guidelines in future studies in order to achieve improved and reliable results that would allow for more relevant and biologically meaningful results.
Collapse
|
24
|
Reynés B, Priego T, Cifre M, Oliver P, Palou A. Peripheral Blood Cells, a Transcriptomic Tool in Nutrigenomic and Obesity Studies: Current State of the Art. Compr Rev Food Sci Food Saf 2018; 17:1006-1020. [DOI: 10.1111/1541-4337.12363] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Bàrbara Reynés
- Laboratory of Molecular Biology, Nutrition and Biotechnology; Univ. de les Illes Balears; Palma Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Madrid Spain
- Inst. d'Investigació Sanitària Illes Balears (IdISBa); Palma Spain
| | - Teresa Priego
- Dept. of Physiology, Faculty of Medicine; Univ. Complutense de Madrid; Madrid Spain
| | - Margalida Cifre
- Laboratory of Molecular Biology, Nutrition and Biotechnology; Univ. de les Illes Balears; Palma Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Madrid Spain
| | - Paula Oliver
- Laboratory of Molecular Biology, Nutrition and Biotechnology; Univ. de les Illes Balears; Palma Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Madrid Spain
- Inst. d'Investigació Sanitària Illes Balears (IdISBa); Palma Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology; Univ. de les Illes Balears; Palma Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Madrid Spain
- Inst. d'Investigació Sanitària Illes Balears (IdISBa); Palma Spain
| |
Collapse
|
25
|
Cifre M, Palou A, Oliver P. Cognitive impairment in metabolically-obese, normal-weight rats: identification of early biomarkers in peripheral blood mononuclear cells. Mol Neurodegener 2018; 13:14. [PMID: 29566703 PMCID: PMC5863821 DOI: 10.1186/s13024-018-0246-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 03/13/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Metabolically-obese, normal-weight (MONW) individuals are not obese in terms of weight and height but have a number of obesity-related features (e.g. greater visceral adiposity, insulin resistance, and increased risk of cardiovascular disease). The MONW phenotype is related to the intake of unbalanced diets, such as those rich in fat. Increasing evidence shows a relationship between high-fat diet consumption and mild cognitive impairment and dementia. Thus, MONW individuals could be at a greater risk of cognitive dysfunction. We aimed to evaluate whether MONW-like animals present gene expression alterations in the hippocampus associated with an increased risk of cognitive impairment, and to identify early biomarkers of cognitive dysfunction in peripheral blood mononuclear cells (PBMC). METHODS Wistar rats were chronically fed with a 60% (HF60) or a 45% (HF45) high-fat diet administered isocalorically to control animals to mimic MONW features. Expression analysis of cognitive decline-related genes was performed using RT-qPCR, and working memory was assessed using a T-maze. RESULTS High-fat diet consumption altered the pattern of gene expression in the hippocampus, clearly pointing to cognitive decline, which was accompanied by a worse performance in the T-maze in HF60 animals. Remarkably, Syn1 and Sorl1 mRNA showed the same expression pattern in both the hippocampus and the PBMC obtained at different time-points in the HF60 group, even before other pathological signs were observed. CONCLUSIONS Our results demonstrate that long-term intake of high-fat diets, even in the absence of obesity, leads to cognitive disruption that is reflected in PBMC transcriptome. Therefore, PBMC are revealed as a plausible, minimally-invasive source of early biomarkers of cognitive impairment associated with increased fat intake.
Collapse
Affiliation(s)
- Margalida Cifre
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Cra. Valldemossa Km 7.5, E-07122, Palma de Mallorca, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Cra. Valldemossa Km 7.5, E-07122, Palma de Mallorca, Spain.
| | - Paula Oliver
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Cra. Valldemossa Km 7.5, E-07122, Palma de Mallorca, Spain
| |
Collapse
|
26
|
Sadeghabadi ZA, Nourbakhsh M, Alaee M, Larijani B, Razzaghy-Azar M. Peroxisome proliferator-activated receptor gamma expression in peripheral blood mononuclear cells and angiopoietin-like protein 4 levels in obese children and adolescents. J Endocrinol Invest 2018; 41:241-247. [PMID: 28733963 DOI: 10.1007/s40618-017-0730-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/10/2017] [Indexed: 01/20/2023]
Abstract
PURPOSE The peroxisome proliferator-activated receptor γ (PPARγ) is highly expressed in adipose tissue and functions as transcriptional regulator of metabolism and adipocyte differentiation. Angiopoietin-like protein 4 (ANGPTL4), a central player in various aspects of energy homoeostasis, is induced by PPARγ. The aim of this study was to evaluate ANGPTL4 plasma levels and PPARγ gene expression in peripheral blood mononuclear cells (PBMCs) of children and adolescents with obesity and their association with metabolic parameters. METHODS Seventy children and adolescents (35 obese and 35 age- and gender-matched control subjects), were selected. PBMCs were separated and their total RNA was extracted. After cDNA synthesis, PPARG gene expression was analyzed by real-time PCR. Relative differences in gene expression were calculated by ΔCt method using β-actin as a normalizer. Serum ANGPTL4 and insulin were measured using ELISA, and insulin resistance (IR) was calculated by the homeostatic model assessment of insulin resistance (HOMA-IR). Fasting plasma glucose (FPG), triglyceride, total cholesterol, LDL-C and HDL-C were also measured. RESULTS The expression of the PPARG gene as well as the plasma ANGPTL4 levels were significantly diminished in obese subjects as compared to control ones. However, they were not significantly different in obese children with IR compared to obese children without IR or in those with or without metabolic syndrome. A significant positive correlation was found between PPARγ and ANGPTL4 (r = 0.364, p = 0.002). PPARγ expression levels were also significantly correlated with FPG (r = -0.35, p = 0.003). CONCLUSION PPARγ is decreased in childhood obesity and may be responsible for diminished ANGPTL4 levels.
Collapse
Affiliation(s)
- Z A Sadeghabadi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - M Nourbakhsh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - M Alaee
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - B Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - M Razzaghy-Azar
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- H. Aliasghar Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Reynés B, van Schothorst E, García-Ruiz E, Keijer J, Oliver P, Palou A. Cold exposure down-regulates immune response pathways in ferret aortic perivascular adipose tissue. Thromb Haemost 2017; 117:981-991. [DOI: 10.1160/th16-12-0931] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/27/2017] [Indexed: 11/05/2022]
Abstract
SummaryPerivascular adipose tissue (PVAT) surrounds blood vessels and releases paracrine factors, such as cytokines, which regulate local inflammation. The inflammatory state of PVAT has an important role in vascular disease; a pro-inflammatory state has been related with atherosclerosis development, whereas an anti-inflammatory one is protective. Cold exposure beneficially affects immune responses and, could thus impact the pathogenesis of cardiovascular diseases. In this study, we investigated the effects of one-week of cold exposure at 4°C of ferrets on aortic PVAT (aPVAT) versus subcutaneous adipose tissue. Ferrets were used because of the similarity of their adipose tissues to those of humans. A ferret-specific Agilent microarray was designed to cover the complete ferret genome and global gene expression analysis was performed. The data showed that cold exposure altered gene expression mainly in aPVAT. Most of the regulated genes were associated with cell cycle, immune response and gene expression regulation, and were mainly down-regulated. Regarding the effects on immune response, cold acclimation decreased the expression of genes involved in antigen recognition and presentation, cytokine signalling and immune system maturation and activation. This immunosuppressive gene expression pattern was depot-specific, as it was not observed in the inguinal subcutaneous depot. Interestingly, this depression in immune response related genes was also evident in peripheral blood mononuclear cells (PBMC). In conclusion, these results reveal that cold acclimation produces an inhibition of immune response-related pathways in aPVAT, reflected in PBMC, indicative of an anti-inflammatory response, which can potentially be exploited for the enhancement or maintenance of cardiovascular health.Supplementary Material to this article is available online at www.thrombosis-online.com.
Collapse
|
28
|
Nathan AA, Dixit M, Babu S, Balakrishnan AS. Comparison and functional characterisation of peripheral blood mononuclear cells isolated from filarial lymphoedema and endemic normals of a South Indian population. Trop Med Int Health 2017; 22:1414-1427. [PMID: 28869696 DOI: 10.1111/tmi.12969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The underlying problem in lymphatic filariasis is irreversible swelling of the limbs (lymphoedema), which is a unique feature of lymphatic insufficiency. It is still unclear whether the natural ability of lymphatics to form functional lymphatic vasculature is achieved or attenuated in the lymphoedemal pathology. Clinical studies have clearly shown that circulating lymphatic progenitors (CLPs), a subset of bone marrow-derived mononuclear cells (PBMCs), contribute to post-natal lymph vasculogenesis. CLP-based revascularisation could be a promising strategy to bypass the endothelial disruption and damage incurred by the filarial parasites. Thus our aim was to compare and characterise the functional prowess of PBMCs in physiological and lymphoedemal pathology. METHODS PBMCs were isolated from venous blood sample from drug-naive endemic normals (EN) and drug-deprived filarial lymphoedema (FL) individuals using density gradient centrifugation. Adhesion, transwell migration and in vitro matrigel assays were employed to characterise the lymphvasculogenic potential of PBMCs. CLPs were phenotypically characterised using flow cytometry; expression levels of lymphatic markers and inflammatory cytokines were quantified using qRT-PCR and ELISA, respectively. RESULTS PBMCs from FL group display poor adherence to fibronectin (P = 0.040), reduced migration towards SDF-1α (P = 0.035), impaired tubular network (P = 0.004) and branching point (P = 0.048) formation. The PBMC mRNA expression of VEGFR3 (P = 0.039) and podoplanin (P = 0.050) was elevated, whereas integrin α9 (P = 0.046) was inhibited in FL individuals; additionally, the surface expression of CD34 (P = 0.048) was significantly reduced in the FL group compared to the EN group. CONCLUSION PBMCs from filarial lymphoedema show defective and dysregulated lymphvasculogenic function compared to endemic normals.
Collapse
Affiliation(s)
- Abel Arul Nathan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Madhulika Dixit
- Laboratory of Vascular Biology, Department of Biotechnology, Bhupat Joyti Metha School of Biosciences and Bioengineering, Indian Institute of Technology Madras, Chennai, India
| | - Subash Babu
- NIH-ICER, National Institute for Research in Tuberculosis, Chennai, India
| | - Anand Setty Balakrishnan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
29
|
Reynés B, Klein Hazebroek M, García-Ruiz E, Keijer J, Oliver P, Palou A. Specific Features of the Hypothalamic Leptin Signaling Response to Cold Exposure Are Reflected in Peripheral Blood Mononuclear Cells in Rats and Ferrets. Front Physiol 2017; 8:581. [PMID: 28860997 PMCID: PMC5559547 DOI: 10.3389/fphys.2017.00581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/27/2017] [Indexed: 01/06/2023] Open
Abstract
Objectives: Cold exposure induces hyperphagia to counteract fat loss related to lipid mobilization and thermogenic activation. The aim of this study was investigate on the molecular mechanisms involved in cold-induced compensatory hyperphagia. Methods: We analyzed the effect of cold exposure on gene expression of orexigenic and anorexigenic peptides, and of leptin signaling-related genes in the hypothalamus of rats at different ages (1, 2, 4, and 6 months), as well as in ferrets. We also evaluated the potential of peripheral blood mononuclear cells to reflect hypothalamic molecular responses. Results: As expected, cold exposure induced hypoleptinemia in rats, which could be responsible for the increased ratio of orexigenic/anorexigenic peptides gene expression in the hypothalamus, mainly due to decreased anorexigenic gene expression, especially in young animals. In ferrets, which resemble humans more closely, cold exposure induced greater changes in hypothalamic mRNA levels of orexigenic genes. Despite the key role of leptin in food intake control, the effect of cold exposure on the expression of key hypothalamic leptin signaling cascade genes is not clear. In our study, cold exposure seemed to affect leptin signaling in 4-month-old rats (increased Socs3 and Lepr expression), likely associated with the smaller-increase in food intake and decreased body weight observed at this particular age. Similarly, cold exposed ferrets showed greater hypothalamic Socs3 and Stat3 gene expression. Interestingly, peripheral blood mononuclear cells (PBMC) mimicked the hypothalamic increase in Lepr and Socs3 observed in 4-month-old rats, and the increased Socs3 mRNA expression observed in ferrets in response to cold exposure. Conclusions: The most outstanding result of our study is that PBMC reflected the specific modulation of leptin signaling observed in both animal models, rats and ferrets, which points forwards PBMC as easily obtainable biological material to be considered as a potential surrogate tissue to perform further studies on the regulation of hypothalamic leptin signaling in response to cold exposure.
Collapse
Affiliation(s)
- Bàrbara Reynés
- Laboratory of Molecular Biology, Nutrition, and Biotechnology, Universitat de les Illes BalearsPalma, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn)Palma, Spain.,Balearic Islands Health Research Institute (IdISBa)Palma, Spain
| | - Marlou Klein Hazebroek
- Human and Animal Physiology Group, Wageningen University and Research CentreWageningen, Netherlands
| | - Estefanía García-Ruiz
- Laboratory of Molecular Biology, Nutrition, and Biotechnology, Universitat de les Illes BalearsPalma, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn)Palma, Spain
| | - Jaap Keijer
- Human and Animal Physiology Group, Wageningen University and Research CentreWageningen, Netherlands
| | - Paula Oliver
- Laboratory of Molecular Biology, Nutrition, and Biotechnology, Universitat de les Illes BalearsPalma, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn)Palma, Spain.,Balearic Islands Health Research Institute (IdISBa)Palma, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition, and Biotechnology, Universitat de les Illes BalearsPalma, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn)Palma, Spain.,Balearic Islands Health Research Institute (IdISBa)Palma, Spain
| |
Collapse
|
30
|
Lemos V, de Oliveira RM, Naia L, Szegö É, Ramos E, Pinho S, Magro F, Cavadas C, Rego AC, Costa V, Outeiro TF, Gomes P. The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes. Hum Mol Genet 2017; 26:4105-4117. [DOI: 10.1093/hmg/ddx298] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 07/23/2017] [Indexed: 01/11/2023] Open
|
31
|
Transcriptome analysis in blood cells from children reveals potential early biomarkers of metabolic alterations. Int J Obes (Lond) 2017; 41:1481-1488. [PMID: 28584296 DOI: 10.1038/ijo.2017.132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/06/2017] [Accepted: 05/23/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The development of effective strategies to prevent childhood obesity and its comorbidities requires new, reliable early biomarkers. Here, we aimed to identify in peripheral blood cells potential transcript-based biomarkers of unhealthy metabolic profile associated to overweight/obesity in children. METHODS We performed a whole-genome microarray analysis in blood cells to identify genes differentially expressed between overweight and normal weight children to obtain novel transcript-based biomarkers predictive of metabolic complications. RESULTS The most significant enriched pathway of differentially expressed genes was related to oxidative phosphorylation, for which most of genes were downregulated in overweight versus normal weight children. Other genes were involved in carbohydrate metabolism/glucose homoeostasis or in lipid metabolism (for example, TCF7L2, ADRB3, LIPE, GIPR), revealing plausible mechanisms according to existing biological knowledge. A set of differentially expressed genes was identified to discriminate in overweight children those with high or low triglyceride levels. CONCLUSIONS Functional microarray analysis has revealed a set of potential blood-cell transcript-based biomarkers that may be a useful approach for early identification of children with higher predisposition to obesity-related metabolic alterations.
Collapse
|
32
|
Leite F, Lima M, Marino F, Cosentino M, Ribeiro L. β 2 Adrenoceptors are underexpressed in peripheral blood mononuclear cells and associated with a better metabolic profile in central obesity. Int J Med Sci 2017; 14:853-861. [PMID: 28824322 PMCID: PMC5562192 DOI: 10.7150/ijms.19638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/17/2017] [Indexed: 11/05/2022] Open
Abstract
Background: Central obesity (CO) is an inflammatory disease. Because immune cells and adipocytes are catecholamines(CA)-producing cells, we studied the expression of adrenoceptors (AR) in peripheral blood mononuclear cells (PBMCs) hypothesizing a distinct adrenergic pattern in inflammatory obesity. Methods: AR expression was assessed in blood donors categorized by waist circumference (WC) (CO: WC≥0.80 m in women and ≥0.94 m in men). Following a pilot study for all AR subtypes, we measured β2AR expression in fifty-seven individuals and correlated this result with anthropometric, metabolic and inflammatory parameters. A ratio (R) between AR mRNA of CO and non-CO<0.5 was considered under and >2.0 over expression. Results: The pilot study revealed no differences between groups, except for β2AR mRNA. CO individuals showed underexpression of β2AR relatively to those without CO (R=0.08; p=0.009). β2AR expression inversely correlated with triacylglycerol (r=-0.271; p=0.041), very low-density lipoprotein-cholesterol (r=-0.313; p=0.018) and leptin (r=-0.392; p=0.012) and positively with high-density lipoprotein-cholesterol (r=0.310: p=0.045) plasma levels. Multiple logistic regression analysis showed a protective effect of β2AR expression (≥2x10-6) [odds ratio (OR) 0.177 with respective confidence interval of 95% (95% CI) (0.040- 0.796)] for the occurrence of CO. A higher association was found for women as compared to men (Ξ9:1) [OR 8.972 (95% CI) (1.679-47.949)]. Conclusion: PBMCs β2AR, underexpressed in centrally obese, are associated with a better metabolic profile and showed a protective role for the development of CO. The discovery of β2AR as a new molecular marker of obesity subphenotypes in PBMCs might contribute to clarify the adrenergic immunomodulation of inflammatory obesity.
Collapse
Affiliation(s)
- Fernanda Leite
- Department of Biomedicine, Faculty of Medicine, University of Porto, Portugal.,Department of Clinical Haematology, Centro Hospitalar of Porto, Portugal.,UMIB/ICBAS - Unit for Multidisciplinary Investigation in Biomedicine- Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Margarida Lima
- Department of Clinical Haematology, Centro Hospitalar of Porto, Portugal.,UMIB/ICBAS - Unit for Multidisciplinary Investigation in Biomedicine- Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Franca Marino
- Center of Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Laura Ribeiro
- Department of Biomedicine, Faculty of Medicine, University of Porto, Portugal.,Department of Public Health Sciences, Forensic and Medical Education, Faculty of Medicine, University of Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal
| |
Collapse
|
33
|
Reynés B, Palou M, Palou A. Gene expression modulation of lipid and central energetic metabolism related genes by high-fat diet intake in the main homeostatic tissues. Food Funct 2017; 8:629-650. [DOI: 10.1039/c6fo01473a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
HF diet feeding affects the energy balance by transcriptional metabolic adaptations, based in direct gene expression modulation, perinatal programing and transcriptional factor regulation, which could be affected by the animal model, gender or period of dietary treatment.
Collapse
Affiliation(s)
- Bàrbara Reynés
- Laboratory of Molecular Biology
- Nutrition and Biotechnology
- Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn)
- Palma de Mallorca
- Spain
| | - Mariona Palou
- Alimentómica SL (Spin off no. 001 from UIB)
- Palma Mallorca
- Spain
| | - Andreu Palou
- Laboratory of Molecular Biology
- Nutrition and Biotechnology
- Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn)
- Palma de Mallorca
- Spain
| |
Collapse
|
34
|
Cifre M, Díaz-Rúa R, Varela-Calviño R, Reynés B, Pericás-Beltrán J, Palou A, Oliver P. Human peripheral blood mononuclear cell in vitro system to test the efficacy of food bioactive compounds: Effects of polyunsaturated fatty acids and their relation with BMI. Mol Nutr Food Res 2016; 61. [PMID: 27873461 DOI: 10.1002/mnfr.201600353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 01/04/2023]
Abstract
SCOPE To analyse the usefulness of isolated human peripheral blood mononuclear cells (PBMC) to rapidly/easily reflect n-3 long-chain polyunsaturated fatty acid (LCPUFA) effects on lipid metabolism/inflammation gene profile, and evaluate if these effects are body mass index (BMI) dependent. METHODS AND RESULTS PBMC from normoweight (NW) and overweight/obese (OW/OB) subjects were incubated with physiological doses of docosahexaenoic (DHA), eicosapentaenoic acid (EPA), or their combination. PBMC reflected increased beta-oxidation-like capacity (CPT1A expression) in OW/OB but only after DHA treatment. However, insensitivity to n-3 LCPUFA was evident in OW/OB for lipogenic genes: both PUFA diminished FASN and SREBP1C expression in NW, but no effect was observed for DHA in PBMC from high-BMI subjects. This insensitivity was also evident for inflammation gene profile: all treatments inhibited key inflammatory genes in NW; nevertheless, no effect was observed in OW/OB after DHA treatment, and EPA effect was impaired. SLC27A2, IL6 and TNFα PBMC expression analysis resulted especially interesting to determine obesity-related n-3 LCPUFA insensitivity. CONCLUSION A PBMC-based human in vitro system reflects n-3 LCPUFA effects on lipid metabolism/inflammation which is impaired in OW/OB. These results confirm the utility of PBMC ex vivo systems for bioactive-compound screening to promote functional food development and to establish appropriate dietary strategies for obese population.
Collapse
Affiliation(s)
- Margalida Cifre
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - Rubén Díaz-Rúa
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - Rubén Varela-Calviño
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Bàrbara Reynés
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - Jordi Pericás-Beltrán
- Research Group on Evidence, Lifestyles & Health, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - Paula Oliver
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| |
Collapse
|
35
|
Díaz-Rúa R, Palou A, Oliver P. Cpt1a gene expression in peripheral blood mononuclear cells as an early biomarker of diet-related metabolic alterations. Food Nutr Res 2016; 60:33554. [PMID: 27885970 PMCID: PMC5123217 DOI: 10.3402/fnr.v60.33554] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Research on biomarkers that provide early information about the development of future metabolic alterations is an emerging discipline. Gene expression analysis in peripheral blood mononuclear cells (PBMC) is a promising tool to identify subjects at risk of developing diet-related diseases. OBJECTIVE We analysed PBMC expression of key energy homeostasis-related genes in a time-course analysis in order to find out early markers of metabolic alterations due to sustained intake of high-fat (HF) and high-protein (HP) diets. DESIGN We administered HF and HP diets (4 months) to adult Wistar rats in isocaloric conditions to a control diet, mainly to avoid overweight associated with the intake of hyperlipidic diets and, thus, to be able to characterise markers of metabolically obese normal-weight (MONW) syndrome. PBMC samples were collected at different time points of dietary treatment and expression of relevant energy homeostatic genes analysed by real-time reverse transcription-polymerase chain reaction. Serum parameters related with metabolic syndrome, as well as fat deposition in liver, were also analysed. RESULTS The most outstanding results were those obtained for the expression of the lipolytic gene carnitine palmitoyltransferase 1a (Cpt1a). Cpt1a expression in PBMC increased after only 1 month of exposure to both unbalanced diets, and this increased expression was maintained thereafter. Interestingly, in the case of the HF diet, Cpt1a expression was altered even in the absence of increased body weight but correlated with alterations such as higher insulin resistance, alteration of serum lipid profile and, particularly, increased fat deposition in liver, a feature characteristic of metabolic syndrome, which was even observed in animals fed with HP diet. CONCLUSIONS We propose Cpt1a gene expression analysis in PBMC as an early biomarker of metabolic alterations associated with MONW phenotype due to the intake of isocaloric HF diets, as well as a marker of increased risk of metabolic diseases associated with the intake of HF or HP diets.
Collapse
Affiliation(s)
- Rubén Díaz-Rúa
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain;
| | - Paula Oliver
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| |
Collapse
|
36
|
Mellouk Z, Agustina M, Ramirez M, Pena K, Arivalo J. [The therapeutic effects of dietary krill oil (Euphausia superba) supplementation on oxidative stress and DNA damages markers in cafeteria diet-overfed rats]. Ann Cardiol Angeiol (Paris) 2016; 65:223-8. [PMID: 27184514 DOI: 10.1016/j.ancard.2016.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/12/2016] [Indexed: 01/09/2023]
Abstract
AIM To evaluate the therapeutic effects of dietary krill oil supplementation in modulation of oxidative stress components and DNA oxidative damages marker in cafeteria diet-overfed-rats. MATERIAL AND METHODS Eighteen aging male Wistar rats were divided into three groups of six each and were exposed for the ensuing 8 weeks to one of the diets: control group (TS) which was submitted to standard chow (330kcal/100g), containing 24% of proteins, 5% of lipids and 70% of carbohydrates. Cafeteria standard group (TC) exposed to cafeteria diet (420kcal/100g). The last group received a cafeteria diet enriched in oral force-feeding krill oil 2% (CK). The plasma and tissues pro-oxydant status were assessed by assaying thiobarbituric acid reactive substances, hydroperoxydes, and isoprostans. The determination of DNA oxidative damages was evaluated by the measurement of the major products of DNA oxidation (8-OHdG). RESULTS Exposure to a cafeteria diet increases the metabolic response to the radical attack and DNA oxidative damages in both plasma and key tissues involved in antioxidant defense. Krill oil supplementation in cafeteria diet relieves oxidative stress and DNA damages by lowering several lipid peroxidation components and the main marker of DNA oxidation in obese rats.
Collapse
Affiliation(s)
- Z Mellouk
- Département de biologie, laboratoire de biochimie clinique et métabolique, université d'Oran 1 Ahmed Ben Bella, BP 1524, El M'Naouer, 31100 Oran, Algérie.
| | - M Agustina
- Unité de recherche, nutrition et maladies métaboliques, université d'Alicante, 03690 Alicante, Espagne
| | - M Ramirez
- Unité de recherche, nutrition et maladies métaboliques, université d'Alicante, 03690 Alicante, Espagne
| | - K Pena
- Unité de recherche, nutrition et maladies métaboliques, université d'Alicante, 03690 Alicante, Espagne
| | - J Arivalo
- Unité de recherche, nutrition et maladies métaboliques, université d'Alicante, 03690 Alicante, Espagne
| |
Collapse
|
37
|
Whole Blood RNA as a Source of Transcript-Based Nutrition- and Metabolic Health-Related Biomarkers. PLoS One 2016; 11:e0155361. [PMID: 27163124 PMCID: PMC4862680 DOI: 10.1371/journal.pone.0155361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/27/2016] [Indexed: 12/17/2022] Open
Abstract
Blood cells are receiving an increasing attention as an easily accessible source of transcript-based biomarkers. We studied the feasibility of using mouse whole blood RNA in this context. Several paradigms were studied: (i) metabolism-related transcripts known to be affected in rat tissues and peripheral blood mononuclear cells (PBMC) by fasting and upon the development of high fat diet (HFD)-induced overweight were assessed in whole blood RNA of fasted rats and mice and of HFD-fed mice; (ii) retinoic acid (RA)-responsive genes in tissues were assessed in whole blood RNA of control and RA-treated mice; (iii) lipid metabolism-related transcripts previously identified in PBMC as potential biomarkers of metabolic health in a rat model were assessed in whole blood in an independent model, namely retinoblastoma haploinsufficient (Rb+/-) mice. Blood was collected and stored in RNAlater® at -80°C until analysis of selected transcripts by real-time RT-PCR. Comparable changes with fasting were detected in the expression of lipid metabolism-related genes when RNA from either PBMC or whole blood of rats or mice was used. HFD-induced excess body weight and fat mass associated with expected changes in the expression of metabolism-related genes in whole blood of mice. Changes in gene expression in whole blood of RA-treated mice reproduced known transcriptional actions of RA in hepatocytes and adipocytes. Reduced expression of Fasn, Lrp1, Rxrb and Sorl1 could be validated as early biomarkers of metabolic health in young Rb+/- mice using whole blood RNA. Altogether, these results support the use of whole blood RNA in studies aimed at identifying blood transcript-based biomarkers of nutritional/metabolic status or metabolic health. Results also support reduced expression of Fasn, Lrp1, Rxrb and Sorl1 in blood cells at young age as potential biomarkers of metabolic robustness.
Collapse
|
38
|
The intake of high-fat diets induces an obesogenic-like gene expression profile in peripheral blood mononuclear cells, which is reverted by dieting. Br J Nutr 2016; 115:1887-95. [DOI: 10.1017/s0007114516001173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AbstractPeripheral blood mononuclear cells (PBMC) are increasingly used for nutrigenomic studies. In this study, we aimed to identify whether these cells could reflect the development of an obesogenic profile associated with the intake of high-fat (HF) diets. We analysed, by real-time RT-PCR, the dietary response of key genes related to lipid metabolism, obesity and inflammation in PBMC of control rats, rats fed a cafeteria or a commercial HF diet and rats fed a control diet after the intake of a cafeteria diet (post-cafeteria model). Cafeteria diet intake, which resulted in important overweight and related complications, altered the expressions of most of the studied genes in PBMC, evidencing the development of an obesogenic profile. Commercial HF diet, which produced metabolic alterations but in the absence of noticeably increased body weight, also altered PBMC gene expression, inducing a similar regulatory pattern as that observed for the cafeteria diet. Regulation of carnitine palmitoyltransferase I (Cpt1a) mRNA expression was of special interest; its expression reflected metabolic alterations related to the intake of both obesogenic diets (independently of increased body weight) even at an early stage as well as metabolic recovery in post-cafeteria animals. Thus, PBMC constitute an important source of biomarkers that reflect the increased adiposity and metabolic deregulation associated with the intake of HF diets. In particular, we propose an analysis of Cpt1a expression as a good biomarker to detect the early metabolic alterations caused by the consumption of hyperlipidic diets, and also as a marker of metabolic recovery associated to weight loss.
Collapse
|
39
|
Dopaminergic Receptors and Tyrosine Hydroxylase Expression in Peripheral Blood Mononuclear Cells: A Distinct Pattern in Central Obesity. PLoS One 2016; 11:e0147483. [PMID: 26808524 PMCID: PMC4726756 DOI: 10.1371/journal.pone.0147483] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/05/2016] [Indexed: 01/11/2023] Open
Abstract
Background Dopamine (DA) may be involved in central obesity (CO), an inflammatory condition, through its role in the central nervous system and in periphery, where it may affect immune cell function through five different DA receptors (DR). Whether dopaminergic pathways in peripheral immune cells are implicated in the inflammatory condition linked to CO is however unknown. Methods In a cohort of blood donors with and without CO, categorized by waist circumference (WC) (CO: WC ≥0.80 m in women and ≥0.94 m in men), we studied the expression of DR and tyrosine hydroxylase (TH), the rate-limiting enzyme in the synthesis of DA, in peripheral blood mononuclear cells (PBMCs) and their relation with anthropometric and metabolic/endocrine and inflammatory parameters. DR D1-5 and TH expression was assessed by semi quantitative real-time PCR. As inflammatory markers we investigated the immunophenotype of monocyte subsets by flow cytometry, staining for CD14, CD16, CD11b and CD36. Results CO individuals showed higher plasma levels of leptin and higher inflammatory pattern of monocytes compared with non-CO. PBMC expression of DR D2, DR D4 and DR D5 as well as of TH were lower in CO in comparison with non-CO. DR D2, and DR D5 expression correlated with lower WC and weight, and with lower inflammatory pattern of monocytes, and TH expression correlated with lower WC. DR D4 expression correlated with lower plasma levels of glycosylated hemoglobin, and DR D2 expression correlated with lower CO. Conclusions Results show that CO is associated with peripheral inflammation and downregulation of dopaminergic pathways in PBMCs, possibly suggesting DR expressed on immune cells as pharmacological targets in obesity for better metabolic outcome.
Collapse
|
40
|
Whole Blood Transcriptomics Is Relevant to Identify Molecular Changes in Response to Genetic Selection for Feed Efficiency and Nutritional Status in the Pig. PLoS One 2016; 11:e0146550. [PMID: 26752050 PMCID: PMC4709134 DOI: 10.1371/journal.pone.0146550] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/19/2015] [Indexed: 11/24/2022] Open
Abstract
The molecular mechanisms underlying feed efficiency need to be better understood to improve animal efficiency, a research priority to support a competitive and sustainable livestock production. This study was undertaken to determine whether pig blood transcriptome was affected by differences in feed efficiency and by ingested nutrients. Growing pigs from two lines divergently selected for residual feed intake (RFI) and fed isoproteic and isocaloric diets contrasted in energy source and nutrients were considered. Between 74 and 132 days of age, pigs (n = 12 by diet and by line) received a regular diet rich in cereals and low in fat (LF) or a diet where cereals where partially substituted by lipids and fibers (HF). At the end of the feeding trial, the total number of white blood cells was not affected by the line or by the diet, whereas the red blood cell number was higher (P<0.001) in low RFI than in high RFI pigs. Analysis of the whole blood transcriptome using a porcine microarray reveals a higher number of probes differentially expressed (DE) between RFI lines than between diets (2,154 versus 92 probes DE, P<0.01). This corresponds to 528 overexpressed genes and 477 underexpressed genes in low RFI pigs compared with high RFI pigs, respectively. Overexpressed genes were predominantly associated with translational elongation. Underexpressed genes were mainly involved in the immune response, regulation of inflammatory response, anti-apoptosis process, and cell organization. These findings suggest that selection for RFI has affected the immune status and defense mechanisms of pigs. Genes DE between diets were mainly related to the immune system and lipid metabolism. Altogether, this study demonstrates the usefulness of the blood transcriptome to identify the main biological processes affected by genetic selection and feeding strategies.
Collapse
|
41
|
Reynés B, García-Ruiz E, Oliver P, Palou A. Gene expression of peripheral blood mononuclear cells is affected by cold exposure. Am J Physiol Regul Integr Comp Physiol 2015; 309:R824-34. [PMID: 26246506 DOI: 10.1152/ajpregu.00221.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/03/2015] [Indexed: 12/25/2022]
Abstract
Because of the discovery of brown adipose tissue (BAT) in humans, there is increased interest in the study of induction of this thermogenic tissue as a basis to combat obesity and related complications. Cold exposure is one of the strongest stimuli able to activate BAT and to induce the appearance of brown-like (brite) adipocytes in white fat depots (browning process). We analyzed the potential of peripheral blood mononuclear cells (PBMCs) to reflect BAT and retroperitoneal white adipose tissue (rWAT) response to 1-wk cold acclimation (4°C) at different ages of rat development (1, 2, 4, and 6 mo). As expected, cold exposure increased fatty acid β-oxidation capacity in BAT and rWAT (increased Cpt1a expression), explaining increased circulating nonesterified free fatty acids and decreased adiposity. Cold exposure increased expression of the key thermogenic gene, Ucp1, in BAT and rWAT, but only in 1-mo-old animals. Additionally, other brown/brite markers were affected by cold during the whole developmental period studied in BAT. However, in rWAT, cold exposure increased studied markers mainly at early age. PBMCs did not express Ucp1, but expressed other brown/brite markers, which were cold regulated. Of particular interest, PBMCs reflected adipose tissue-increased Cpt1a mRNA expression in response to cold (in older animals) and browning induction occurring in rWAT of young animals (1 mo) characterized by increased Cidea expression and by the appearance of a high number of multilocular CIDE-A positive adipocytes. These results provide evidence pointing to PBMCs as an easily obtainable biological material to be considered to perform browning studies with minimum invasiveness.
Collapse
Affiliation(s)
- Bàrbara Reynés
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and Centro de Investigación Biomedica en Red de Fisiopatología de la Obesidad y Nutrición, Palma de Mallorca, Spain
| | - Estefanía García-Ruiz
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and Centro de Investigación Biomedica en Red de Fisiopatología de la Obesidad y Nutrición, Palma de Mallorca, Spain
| | - Paula Oliver
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and Centro de Investigación Biomedica en Red de Fisiopatología de la Obesidad y Nutrición, Palma de Mallorca, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and Centro de Investigación Biomedica en Red de Fisiopatología de la Obesidad y Nutrición, Palma de Mallorca, Spain
| |
Collapse
|
42
|
Voigt A, Ribot J, Sabater AG, Palou A, Bonet ML, Klaus S. Identification of Mest/Peg1 gene expression as a predictive biomarker of adipose tissue expansion sensitive to dietary anti-obesity interventions. GENES AND NUTRITION 2015; 10:27. [PMID: 26143179 DOI: 10.1007/s12263-015-0477-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/17/2015] [Indexed: 01/18/2023]
Abstract
Food components with anti-obesity properties are commonly evaluated using mouse models of diet-induced obesity. The ability of these components to reduce or prevent white adipose tissue (WAT) accumulation is usually tested in feeding trials of several weeks duration in order to detect significant effects on fat mass expansion. Here, we aimed to identify early, predictive biomarkers for WAT expansion. We performed a 5-day high-fat diet (HFD) feeding trial with C57BL/6J mice using different established anti-obesity interventions: epigallocatechin gallate, replacing dietary lipids by n-3 PUFA, and increasing dietary protein. WAT gene expression was analyzed of genes known to be similarly affected by short- and long-term HFD. Gene expression of Leptin and Mest (mesoderm-specific transcript) was increased by HFD and normalized by all anti-obesity interventions. In a second experiment, translatability to whole blood-based expression data was assessed. Mice were challenged for 21 days with a HFD without or with simultaneous treatment with anti-obesity bioactives, hydroxytyrosol or resveratrol, and compared for parameters including Leptin and Mest expression in whole blood at day 5. While Leptin mRNA could not be detected in mouse whole blood, there was an induction of Mest mRNA by HFD which was suppressed by hydroxytyrosol. Moreover, Mest expression in whole blood at day 5 positively correlated with adiposity and negatively with lean body mass and the subcutaneous/visceral fat ratio at day 21. We conclude that gene expression of Leptin and Mest in WAT and of Mest in whole blood represent early, predictive markers of adipose tissue expansion of potential usefulness in nutritional studies and trials.
Collapse
Affiliation(s)
- Anja Voigt
- Group of Energy Metabolism, German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology-Nutrigenomics, Universitat de les Illes Balears, Palma de Mallorca, and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Cra. Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | - Agustín G Sabater
- Laboratory of Molecular Biology, Nutrition and Biotechnology-Nutrigenomics, Universitat de les Illes Balears, Palma de Mallorca, and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Cra. Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology-Nutrigenomics, Universitat de les Illes Balears, Palma de Mallorca, and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Cra. Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | - M Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology-Nutrigenomics, Universitat de les Illes Balears, Palma de Mallorca, and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Cra. Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | - Susanne Klaus
- Group of Energy Metabolism, German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| |
Collapse
|
43
|
García-Ruiz E, Reynés B, Díaz-Rúa R, Ceresi E, Oliver P, Palou A. The intake of high-fat diets induces the acquisition of brown adipocyte gene expression features in white adipose tissue. Int J Obes (Lond) 2015; 39:1619-29. [PMID: 26063331 DOI: 10.1038/ijo.2015.112] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 06/02/2015] [Accepted: 06/07/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND/OBJECTIVE White-to-brown adipose tissue remodeling (browning) in response to different stimuli constitutes an active research area for obesity treatment. The emergence in traditional white adipose tissue (WAT) depots of multilocular adipocytes that express uncoupling protein 1 (UCP1) and resemble brown adipocytes, the so called 'brite' adipocytes, could contribute to increased energy expenditure. In rodents, obesogenic stimuli such as the intake of hyperlipidic diets can increase brown adipose tissue (BAT) thermogenic capacity and contribute to maintaining body weight. The aim of this study was to investigate the potential of two different hyperlipidic diets, a commercial high-fat (HF) diet and a highly palatable cafeteria (CAF) diet, to induce WAT browning. METHODS We analyzed gene expression of a wide number of brown/brite adipocyte markers in different WAT depots, in BAT and in peripheral blood mononuclear cells (PBMCs) increasingly being used in nutrition studies as a potential source of biomarkers of physiological effects. We also performed morphological analysis of adipose tissue. RESULTS Both HF diets studied were able to increase the expression of the markers studied in WAT in a depot-specific manner, as well as in BAT; some of these changes were also reflected in PBMCs. This increased browning capacity was translated into the appearance of UCP1- and CIDE-A (cell death-inducing DFFA-like effector A)-positive brite adipocytes in retroperitoneal WAT. Administration of the CAF diet, associated with higher adiposity, produced the strongest impact on the parameters studied while its withdrawal restored basal conditions. CONCLUSIONS Acquisition of brown adipocyte features in WAT could evidence an adaptation to try to counteract increased adiposity due to the intake of HF diets. Additionally, PBMCs could constitute an interesting easily obtainable material to assess the effect of nutritional interventions on browning capacity.
Collapse
Affiliation(s)
- E García-Ruiz
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - B Reynés
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - R Díaz-Rúa
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - E Ceresi
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - P Oliver
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - A Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| |
Collapse
|
44
|
Huerta AE, Prieto-Hontoria PL, Sáinz N, Martínez JA, Moreno-Aliaga MJ. Supplementation with α-Lipoic Acid Alone or in Combination with Eicosapentaenoic Acid Modulates the Inflammatory Status of Healthy Overweight or Obese Women Consuming an Energy-Restricted Diet. J Nutr 2015; 146:889S-896S. [PMID: 26962183 DOI: 10.3945/jn.115.224105] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/21/2015] [Accepted: 12/28/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The proinflammatory state induced by obesity plays an important role in obesity-related metabolic complications. OBJECTIVE Our objective was to evaluate whether dietary supplementation with α-lipoic acid (LA) and eicosapentaenoic acid (EPA), separately or in combination, could improve inflammatory and cardiovascular disease risk markers in healthy overweight or obese women consuming an energy-restricted diet. METHODS Within the context of the Effects of Lipoic Acid and Eicosapentaenoic Acid in Human Obesity (OBEPALIP) study, Caucasian women (n = 73) aged 20-50 y with a BMI (in kg/m2) between 27.5 and 40 consumed an energy-restricted diet for 10 wk after being randomly assigned to 1 of 4 parallel experimental groups: a control group or groups supplemented with 1.3 g EPA/d, 0.3 g LA/d, or both. Secondary outcomes were measured at baseline and at the end of the study. These included circulating inflammatory [C-reactive protein (CRP), adiponectin, interleukin 6 (IL-6), chemerin, haptoglobin, amyloid A, and leukocytes] and cardiovascular disease risk markers (platelet count and circulating apelin, asymmetric dimethylarginine, vascular endothelial growth factor, and plasminogen activator inhibitor 1). Gene expression of IL6, adhesion G protein-coupled receptor E1 (ADGRE1), interleukin 10 (IL10), chemokine (C-C motif) ligand 2, and adiponectin was measured in subcutaneous abdominal adipose tissue biopsies at endpoint. RESULTS Supplementation with LA caused a greater reduction in some circulating inflammatory risk markers, such as CRP (-0.13 ± 0.07 mg/dL compared with 0.06 ± 0.07 mg/dL, P < 0.05) and leukocyte count (-0.74 ± 0.18 × 103/mm3 compared with 0.06 ± 0.18 × 103/mm3, P < 0.01), than in the groups that were not supplemented with LA. In contrast, the fall in apelin concentrations that accompanied weight loss was less pronounced in groups that were supplemented with LA (-1.1 ± 4.9 pg/mL) than in those that were not (-21.3 ± 4.8 pg/mL, P < 0.01). In adipose tissue, compared with those who did not receive EPA, EPA-supplemented groups exhibited a downregulation of ADGRE1 (0.7 ± 0.1-fold compared with 1.0 ± 0.1-fold) (P < 0.05) and an upregulation of IL10 (1.8 ± 0.2-fold compared with 1.0 ± 0.2-fold) (P < 0.05) gene expression. CONCLUSIONS Dietary supplementation with LA improves some systemic inflammatory and cardiovascular disease-related risk markers in healthy overweight or obese women independently of weight loss, whereas EPA modulates inflammation-related genes in adipose tissue. This trial was registered at clinicaltrials.gov as NCT01138774.
Collapse
Affiliation(s)
- Ana E Huerta
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Pedro L Prieto-Hontoria
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain
| | - Neira Sáinz
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), National Institute of Health Carlos III, Madrid, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - María J Moreno-Aliaga
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), National Institute of Health Carlos III, Madrid, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| |
Collapse
|
45
|
Blood cell transcriptomic-based early biomarkers of adverse programming effects of gestational calorie restriction and their reversibility by leptin supplementation. Sci Rep 2015; 5:9088. [PMID: 25766068 PMCID: PMC4357898 DOI: 10.1038/srep09088] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/19/2015] [Indexed: 11/08/2022] Open
Abstract
The challenge of preventing major chronic diseases requires reliable, early biomarkers. Gestational mild undernutrition in rats is enough to program the offspring to develop later pathologies; the intake of leptin, a breastmilk component, during lactation may reverse these programming effects. We used these models to identify, in peripheral blood mononuclear cells (PBMCs), transcriptomic-based early biomarkers of programmed susceptibility to later disorders, and explored their response to neonatal leptin intake. Microarray analysis was performed in PBMCs from the offspring of control and 20% gestational calorie-restricted dams (CR), and CR-rats supplemented with physiological doses of leptin throughout lactation. Notably, leptin supplementation normalised 218 of the 224 mRNA-levels identified in PBMCs associated to undernutrition during pregnancy. These markers may be useful for early identification and subsequent monitoring of individuals who are at risk of later diseases and would specifically benefit from the intake of appropriate amounts of leptin during lactation.
Collapse
|
46
|
Reynés B, Díaz-Rúa R, Cifre M, Oliver P, Palou A. Peripheral blood mononuclear cells as a potential source of biomarkers to test the efficacy of weight-loss strategies. Obesity (Silver Spring) 2015; 23:28-31. [PMID: 25294800 DOI: 10.1002/oby.20918] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/12/2014] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Peripheral blood mononuclear cells (PBMC) constitute an easily obtainable blood cell fraction useful in nutrition and obesity studies. Our aim was to study the potential use of PBMC to reflect metabolic recovery associated with weight loss in rats. METHODS By real-time PCR, the fasting response of key energy homeostatic genes in PBMC samples of control and cafeteria-obese rats and of rats fed a control diet after the intake of a cafeteria diet (post-cafeteria model) was analyzed. RESULTS Fasting caused decreased mRNA expression of lipogenic (Fasn and Srebp1a) and adipogenic (Pparγ) genes in PBMC, whereas it increased the expression of the key beta-oxidation gene Cpt1a and the orexigenic gene Npy. Fasting response of the genes studied was impaired in cafeteria-obese animals but was recovered in post-cafeteria rats, which showed a significant body weight decrease and normalization of adipose and metabolic parameters. Npy expression analyzed in PBMC has been revealed to be especially useful as a marker of fasting sensitivity, as its fasting response is not affected by the age of the animals and it is recovered even after shorter time of exposure to a balanced diet. CONCLUSIONS PBMC reflect homeostatic balance recovery associated with weight loss in obese animals, when reverting from a hyperlipidic to a control balanced diet.
Collapse
Affiliation(s)
- Bàrbara Reynés
- Laboratory of Molecular Biology, Nutrition and Biotechnology (LBNB), Universitat de les Illes Balears and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | | | | | | | | |
Collapse
|
47
|
The intake of a high-fat diet and grape seed procyanidins induces gene expression changes in peripheral blood mononuclear cells of hamsters: capturing alterations in lipid and cholesterol metabolisms. GENES AND NUTRITION 2014; 10:438. [PMID: 25403094 DOI: 10.1007/s12263-014-0438-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/23/2014] [Indexed: 10/24/2022]
Abstract
We previously demonstrated that hamsters that were fed either a standard diet (STD) or a high-fat diet (HFD) and treated with a grape seed procyanidin extract (GSPE) showed decreased adiposity and circulating levels of free fatty acids compared with hamsters treated with a vehicle (Caimari et al. in Int J Obes 37:576-83, 2013, doi: 10.1038/ijo.2012.75 ). Here, we tested whether the gene expression changes in peripheral blood mononuclear cells (PBMCs) can reflect these metabolic effects and the dyslipidaemia produced by the HFD feeding in the same cohort of animals. The mRNA levels of a subset of genes were also studied in the liver in order to evaluate the capacity of PBMCs to reflect the metabolic adaptations that occur in this organ. In PBMCs, we reported a simultaneous up-regulation of the lipid-related genes involved in both the anabolic (pparγ, acc1 and gpat) and the catabolic (pparα, ucp2, atgl and hsl) pathways in response to the GSPE treatment, similar but no identical to previous observations in retroperitoneal white adipose tissues of these animals. Furthermore, the key cholesterol metabolism genes srebp2 and ldlr were significantly down-regulated in PBMCs of both HFD-fed groups compared with the STD groups. Although the expression of srebp2 in the liver followed a similar pattern to that obtained in PBMCs, no comparable changes were found between the liver and PBMCs in the expression of most of the studied genes. In conclusion, our results highlight the potential of PBMCs as a high accessible tissue for the indirect study of cholesterol and adipose tissue metabolism dynamics.
Collapse
|
48
|
Reversion to a control balanced diet is able to restore body weight and to recover altered metabolic parameters in adult rats long-term fed on a cafeteria diet. Food Res Int 2014; 64:839-848. [DOI: 10.1016/j.foodres.2014.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/28/2014] [Accepted: 08/14/2014] [Indexed: 12/16/2022]
|
49
|
Sánchez J, Bonet ML, Keijer J, van Schothorst EM, Mölller I, Chetrit C, Martinez-Puig D, Palou A. Blood cells transcriptomics as source of potential biomarkers of articular health improvement: effects of oral intake of a rooster combs extract rich in hyaluronic acid. GENES AND NUTRITION 2014; 9:417. [PMID: 25024048 DOI: 10.1007/s12263-014-0417-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/02/2014] [Indexed: 12/19/2022]
Abstract
The aim of the study was to explore peripheral blood gene expression as a source of biomarkers of joint health improvement related to glycosaminoglycan (GAG) intake in humans. Healthy individuals with joint discomfort were enrolled in a randomized, double-blind, placebo-controlled intervention study in humans. Subjects ate control yoghurt or yoghurt supplemented with a recently authorized novel food in Europe containing hyaluronic acid (65 %) from rooster comb (Mobilee™ as commercial name) for 90 days. Effects on functional quality-of-life parameters related to joint health were assessed. Whole-genome microarray analysis of peripheral blood samples from a subset of 20 subjects (10 placebo and 10 supplemented) collected pre- and post-intervention was performed. Mobilee™ supplementation reduced articular pain intensity and synovial effusion and improved knee muscular strength indicators as compared to placebo. About 157 coding genes were differentially expressed in blood cells between supplemented and placebo groups post-intervention, but not pre-intervention (p < 0.05; fold change ≥1.2). Among them, a reduced gene expression of glucuronidase-beta (GUSB), matrix metallopeptidase 23B (MMP23B), xylosyltransferase II (XYLT2), and heparan sulfate 6-O-sulfotransferase 1 (HS6ST1) was found in the supplemented group. Correlation analysis indicated a direct relationship between blood cell gene expression of MMP23B, involved in the breakdown of the extracellular matrix, and pain intensity, and an inverse relationship between blood cell gene expression of HS6ST1, responsible for 6-O-sulfation of heparan sulfate, and indicators of knee muscular strength. Expression levels of specific genes in blood cells, in particular genes related to GAG metabolism and extracellular matrix dynamics, are potential biomarkers of beneficial effects on articular health.
Collapse
Affiliation(s)
- Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Edifici Mateu Orfila. Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Identification of early transcriptome-based biomarkers related to lipid metabolism in peripheral blood mononuclear cells of rats nutritionally programmed for improved metabolic health. GENES AND NUTRITION 2013; 9:366. [PMID: 24343050 DOI: 10.1007/s12263-013-0366-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/06/2013] [Indexed: 10/25/2022]
Abstract
Moderate maternal calorie restriction during lactation protects rat offspring against obesity development in adulthood, due to an improved ability to handle and store excess dietary fuel. We used this model to identify early transcriptome-based biomarkers of metabolic health using peripheral blood mononuclear cells (PBMCs), an easily accessible surrogate tissue, by focusing on molecular markers of lipid handling. Male and female offspring of control and 20 % calorie-restricted lactating dams (CR) were studied. At weaning, a set of pups was killed, and PBMCs were isolated for whole-genome microarray analysis. The remaining pups were killed at 6 months of age. CR gave lower body weight, food intake and fat accumulation, and improved levels of insulin and leptin throughout life, particularly in females. Microarray analysis of weaned rat PBMCs identified 278 genes significantly differentially expressed between control and CR. Among lipid metabolism-related genes, expression of Cpt1a, Lipe and Star was increased and Fasn, Lrp1 and Rxrb decreased in CR versus control, with changes fully confirmed by qPCR. Among them, Cpt1a, Fasn and Star emerged as particularly interesting. Transcript levels of Cpt1a in PBMCs correlated with their levels in WAT and liver at both ages examined; Fasn expression levels in PBMCs at an early age correlated with their expression levels in WAT; and early changes in Star expression levels in PBMCs correlated with their expression levels in liver and were sustained in adulthood. These findings reveal the possibility of using transcript levels of lipid metabolism-related genes in PBMCs as early biomarkers of metabolic health status.
Collapse
|