1
|
Jiang X, Zhang Z, Wu X, Li C, Sun X, Wu F, Yang A, Yang C. Heterologous biosynthesis of betanin triggers metabolic reprogramming in tobacco. Metab Eng 2024; 86:308-325. [PMID: 39505140 DOI: 10.1016/j.ymben.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/04/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Engineering of a specialized metabolic pathway in plants is a promising approach to produce high-value bioactive compounds to address the challenges of climate change and population growth. Understanding the interaction between the heterologous pathway and the native metabolic network of the host plant is crucial for optimizing the engineered system and maximizing the yield of the target compound. In this study, we performed transcriptomic, metabolomic and metagenomic analysis of tobacco (Nicotiana tabacum) plants engineered to produce betanin, an alkaloid pigment that is found in Caryophyllaceae plants. Our data reveals that, in a dose-dependent manor, the biosynthesis of betanin promotes carbohydrate metabolism and represses nitrogen metabolism in the leaf, but enhances nitrogen assimilation and metabolism in the root. By supplying nitrate or ammonium, the accumulation of betanin increased by 1.5-3.8-fold in leaves and roots of the transgenic plants, confirming the pivotal role of nitrogen in betanin production. In addition, the rhizosphere microbial community is reshaped to reduce denitrification and increase respiration and oxidation, assistant to suppress nitrogen loss. Our analysis not only provides a framework for evaluating the pleiotropic effects of an engineered metabolic pathway on the host plant, but also facilitates the development of novel strategies to balance the heterologous process and the native metabolic network for the high-yield and nutrient-efficient production of bioactive compounds in plants.
Collapse
Affiliation(s)
- Xun Jiang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, PR China
| | - Zhuoxiang Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, PR China
| | - Xiuming Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, PR China
| | - Changmei Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, PR China
| | - Xuan Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, PR China
| | - Fengyan Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, PR China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, PR China
| | - Changqing Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, PR China.
| |
Collapse
|
2
|
Zhang C, Liu Y, Liu Y, Li H, Chen Y, Li B, He S, Chen Q, Yang J, Gao Q, Wang Z. Transcription factor NtMYB59 targets NtMYB12 to negatively regulate the biosynthesis of polyphenols in Nicotiana tabacum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109181. [PMID: 39369647 DOI: 10.1016/j.plaphy.2024.109181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
MYB12 is a key regulator that has been shown to promote the accumulation of various phenylpropanoid compounds in plants. However, the regulation of MYB12 gene is largely unknown. In this study, we found that overexpression of the NtMYB59 gene significantly inhibited the accumulation of chlorogenic acid (CGA), flavonols, and anthocyanins in tobacco, while knock-down and knock-out of NtMYB59 significantly increased the contents of these polyphenol compounds. Transcriptome analysis between WT and NtMYB59-OE plants revealed several differentially expressed genes (DEGs) encoding crucial enzymes in the phenylpropanoid pathway and the transcription factor NtMYB12. ChIP-seq assay further indicated that NtMYB12 might be a direct target of NtMYB59. Subsequent yeast one-hybrid, electrophoretic mobility shift assay, and Dual-Luciferase assays confirmed that NtMYB59 directly binds to the promoter of NtMYB12 to inhibit its expression. Moreover, loss-function of NtMYB59 significantly promoted the accumulation of flavonols and anthocyanins in ntmyb59, but their contents in ntmyb59/ntmyb12 double mutants were significantly lower than that of WT and ntmyb59 plants, indicating that the regulation of NtMYB59 on flavonoids biosynthesis depends on the activity of NtMYB12. Our study revealed that NtMYB59 regulates the expression of NtMYB12, and provided new potential strategies for modulating phenylpropanoids biosynthesis in tobacco.
Collapse
Affiliation(s)
- Chi Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China; College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Yongbin Liu
- Chenzhou Branch of Hunan Provincial Tobacco Company, Chenzhou, 423000, China
| | - Yali Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Hongguang Li
- Chenzhou Branch of Hunan Provincial Tobacco Company, Chenzhou, 423000, China
| | - Yudong Chen
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650202, China
| | - Bingyu Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Shun He
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Qiansi Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Qian Gao
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650202, China.
| | - Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
He S, Gao J, Li B, Luo Z, Liu P, Xu X, Wu M, Yang J, He X, Wang Z. NtWIN1 regulates the biosynthesis of scopoletin and chlorogenic acid by targeting NtF6'H1 and NtCCoAMT genes in Nicotiana tabacum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108937. [PMID: 39018774 DOI: 10.1016/j.plaphy.2024.108937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Scopoletin and chlorogenic acid (CGA) are important polyphenols that regulate plant growth, development, and stress resistance. The ERF transcription factor WAX INDUCER1 (WIN1) promotes the biosynthesis of cutin, suberine, and wax. However, its full roles in regulating the accumulation of plant secondary metabolites still remain to be further clarified. In this study, NtWIN1 gene encoding a SHINE-type AP2/ERF transcription factor of the Va subgroup was identified from N. tabacum. NtWIN1 showed high expression levels in tobacco stems, sepals, and pistils. Overexpression (OE) and knock-out of NtWIN1 showed that it promoted the accumulation of total polyphenols and altered their composition. Compare to that of WT plants, the CGA contents significantly increased by 25%-50% in the leaves, flowers, and capsules of OE lines, while the scopoletin contents in the OE plants significantly decreased by 30%-67%. In contrast, the CGA contents in ntwin1 lines reduced by 23%-26%, and the scopoletin contents in ntwin1 increased by 38%-75% compare to that of WT plants. Chromatin immunoprecipitation and Dual-Luc transcription activation assays showed that NtWIN1 could bind to the promoters of NtF6'H1 and NtCCoAMT, thereby modulating their expression. The scopoletin content in ntwin1/ntf6'h1 double mutant was significantly lower than that in ntwin1 and WT plants, but showed no significant differences with that in ntf6'h1 mutant, further indicating that the inhibition of NtWIN1 on scopoletin accumulation depends on the activity of NtF6'H1. Our study illustrates the new roles of NtWIN1, and provides a possible target for regulating the synthesis of polyphenols in tobacco.
Collapse
Affiliation(s)
- Shun He
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Junping Gao
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, 410007, China
| | - Bingyu Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Xin Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Mingzhu Wu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Xinxi He
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, 410007, China.
| | - Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Wang Z, Luo Z, Li Z, Liu P, He S, Yu S, Zhao H, Yang J, Zhang Z, Cao P, Jin S, Yang Y, Yang J. NtMYB27 acts downstream of NtBES1 to modulate flavonoids accumulation in response to UV-B radiation in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2867-2884. [PMID: 39133822 DOI: 10.1111/tpj.16958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 11/15/2024]
Abstract
UV-B radiation can induce the accumulation of many secondary metabolites, including flavonoids, in plants to protect them from oxidative damage. BRI1-EMS-SUPPRESSOR1 (BES1) has been shown to mediate the biosynthesis of flavonoids in response to UV-B. However, the detailed mechanism by which it acts still needs to be further elucidated. Here, we revealed that UV-B significantly inhibited the transcription of multiple transcription factor genes in tobacco, including NtMYB27, which was subsequently shown to be a repressor of flavonoids synthesis in tobacco. We further demonstrated that NtBES1 directly binds to the E-box motifs present in the promoter of NtMYB27 to mediate its transcriptional repression upon UV-B exposure. The UV-B-repressed NtMYB27 could bind to the ACCT-containing element (ACE) in the promoters of Nt4CL and NtCHS and served as a modulator that promoted the biosynthesis of lignin and chlorogenic acid (CGA) but inhibited the accumulation of flavonoids in tobacco. The expression of NtMYB27 was also significantly repressed by heat stress, suggesting its putative roles in regulating heat-induced flavonoids accumulation. Taken together, our results revealed the role of NtBES1 and NtMYB27 in regulating the synthesis of flavonoids during the plant response to UV-B radiation in tobacco.
Collapse
Affiliation(s)
- Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Shun He
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Shizhou Yu
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Huina Zhao
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450000, China
| | - Zhan Zhang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450000, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongfeng Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450000, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy (BLSA), Beijing, 102209, China
| |
Collapse
|
5
|
Jiang J, Mu C, Bai Y, Cheng W, Geng R, Xu J, Dou Y, Cheng Z, Gao J. Selection and Validation of Reference Genes in Dendrocalamus brandisii for Quantitative Real-Time PCR. PLANTS (BASEL, SWITZERLAND) 2024; 13:2363. [PMID: 39273847 PMCID: PMC11396877 DOI: 10.3390/plants13172363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
Dendrocalamus brandisii (Munro) Kurz is a sympodial bamboo species with a wide distribution in tropical and subtropical regions. Due to its remarkable regenerative ability and exceptional flavor, this species plays a pivotal role in bolstering the economies of numerous nations across these regions. We recently published a high-quality genome of this species. To date, no study results have identified the optimal reference genes for quantitative real-time polymerase chain reaction (qRT-PCR) normalization in Dendrocalamus brandisii. qRT-PCR offers a highly accurate and effective approach to analyzing gene expression. However, the precision of the resulting quantitative data hinges on the correct choice of reference genes. Twenty-one potential reference genes were identified from the D. brandisii transcriptomes. Their expression in 23 samples, including 8 different tissue organs and 15 samples of D. brandisii under various treatment conditions, were evaluated through qRT-PCR. Subsequently, four software programs-Delta CT, geNorm, NormFinder, and RefFinder-were employed to compare their expression stability. The results revealed that the selection of optimal reference genes varied based on the particular organ and condition being examined. EF-1-α-2 consistently exhibits the most stable expression across diverse tissues, while ACTIN-1, TUBULIN-1, and EF-1-α-2 were the most consistent reference genes in roots, culms, and leaves under various treatments, respectively. In this study, we identified and characterized appropriate internal genes utilized for calibrating qRT-PCR analyses of D. brandisii across different tissue organs and under various treatments. This research will provide key insights for advancing the study of gene functionality and molecular biology in D. brandisii and related species.
Collapse
Affiliation(s)
- Jutang Jiang
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Changhong Mu
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Yucong Bai
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Wenlong Cheng
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Ruiman Geng
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Junlei Xu
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Yuping Dou
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Zhanchao Cheng
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| |
Collapse
|
6
|
Jiang X, Zhang Z, Wu X, Li C, Sun X, Li Y, Chang A, Yang A, Yang C. Multiplex Expression Cassette Assembly: A flexible and versatile method for building complex genetic circuits in conventional vectors. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39175411 DOI: 10.1111/pbi.14454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
The manipulation of multiple transcription units for simultaneous and coordinated expression is not only key to building complex genetic circuits to accomplish diverse functions in synthetic biology, but is also important in crop breeding for significantly improved productivity and overall performance. However, building constructs with multiple independent transcription units for fine-tuned and coordinated regulation is complicated and time-consuming. Here, we introduce the Multiplex Expression Cassette Assembly (MECA) method, which modifies canonical vectors compatible with Golden Gate Assembly, and then uses them to produce multi-cassette constructs. By embedding the junction syntax in primers that are used to amplify functional elements, MECA is able to make complex constructs using only one intermediate vector and one destination vector via two rounds of one-pot Golden Gate assembly reactions, without the need for dedicated vectors and a coherent library of standardized modules. As a proof-of-concept, we modified eukaryotic and prokaryotic expression vectors to generate constructs for transient expression of green fluorescent protein and β-glucuronidase in Nicotiana benthamiana, genome editing to block monoterpene metabolism in tomato glandular trichomes, production of betanin in tobacco and synthesis of β-carotene in Escherichia coli. Additionally, we engineered the stable production of thymol and carvacrol, bioactive compounds from Lamiaceae family plants, in glandular trichomes of tobacco. These results demonstrate that MECA is a flexible, efficient and versatile method for building complex genetic circuits, which will not only play a critical role in plant synthetic biology, but also facilitate improving agronomic traits and pyramiding traits for the development of next-generation elite crops.
Collapse
Affiliation(s)
- Xun Jiang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhuoxiang Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiuming Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Changmei Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xuan Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yiting Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Aixia Chang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Changqing Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
7
|
Arce RC, Mayta ML, Melzer M, Hajirezaei MR, Lodeyro AF, Carrillo N. Introduction of a terminal electron sink in chloroplasts decreases leaf cell expansion associated with higher proteasome activity and lower endoreduplication. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4625-4640. [PMID: 38364822 DOI: 10.1093/jxb/erae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Foliar development involves successive phases of cell proliferation and expansion that determine the final leaf size, and is characterized by an early burst of reactive oxygen species generated in the photosynthetic electron transport chain (PETC). Introduction of the alternative PETC acceptor flavodoxin in tobacco chloroplasts led to a reduction in leaf size associated to lower cell expansion, without affecting cell number per leaf. Proteomic analysis showed that the biogenesis of the PETC proceeded stepwise in wild-type leaves, with accumulation of light-harvesting proteins preceding that of electron transport components, which might explain the increased energy and electron transfer to oxygen and reactive oxygen species build-up at this stage. Flavodoxin expression did not affect biogenesis of the PETC but prevented hydroperoxide formation through its function as electron sink. Mature leaves from flavodoxin-expressing plants were shown to contain higher levels of transcripts encoding components of the proteasome, a key negative modulator of organ size. Proteome profiling revealed that this differential accumulation was initiated during expansion and led to increased proteasomal activity, whereas a proteasome inhibitor reverted the flavodoxin-dependent size phenotype. Cells expressing plastid-targeted flavodoxin displayed lower endoreduplication, also associated to decreased organ size. These results provide novel insights into the regulation of leaf growth by chloroplast-generated redox signals, and highlight the potential of alternative electron shuttles to investigate the link(s) between photosynthesis and plant development.
Collapse
Affiliation(s)
- Rocío C Arce
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina
| | - Martín L Mayta
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina
- Centro Interdisciplinario de Investigaciones en Ciencias de la Salud y del Comportamiento (CIICSAC), Facultad de Ciencias de la Salud, Universidad Adventista del Plata, 25 de Mayo 99, E3103XAF, Libertador San Martín, Entre Ríos, Argentina
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Corrensstrasse, D-06466 Stadt Seeland, Germany
| | - Mohammad-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Corrensstrasse, D-06466 Stadt Seeland, Germany
| | - Anabella F Lodeyro
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina
| |
Collapse
|
8
|
Tao X, Yang L, Zhang M, Li Y, Xiao H, Yu L, Jiang C, Long Z, Zhang Y. Shallow water seeding cultivation enhances cold tolerance in tobacco seedlings. BMC PLANT BIOLOGY 2024; 24:698. [PMID: 39044176 PMCID: PMC11267769 DOI: 10.1186/s12870-024-05422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Cold stress can impact plant biology at both the molecular and morphological levels. We cultivated two different types of tobacco seedlings using distinct seeding methods, observing significant differences in their cold tolerance at 4 °C. After 12 h cold stress, shallow water seeding cultivation treatment demonstrates a relatively good growth state with slight wilting of the leaves. Tobacco grown using the float system exhibited short, thick roots, while those cultivated through shallow water seeding had elongated roots with more tips and forks. After cold stress, the shallow water seeding cultivation treatment demonstrated higher antioxidant enzyme activity, and lower malondialdehyde (MDA) content.Transcriptome analysis was performed on the leaves of these tobacco seedlings at three stages of cold treatment (before cold stress, after cold stress, and after 3 days of recovery). Upon analyzing the raw data, we found that the shallow water seeding cultivation treatment was associated with significant functional enrichment of nicotinamide adenine dinucleotide (NAD) biosynthesis and NAD metabolism before cold stress, enrichment of functions related to the maintenance of cellular structure after cold stress, and substantial functional enrichment related to photosynthesis during the recovery period. Weighted gene co-expression network analysis (WGCNA) was conducted, identifying several hub genes that may contribute to the differences in cold tolerance between the two tobacco seedlings. Hub genes related to energy conversion were predominantly identified in shallow water seeding cultivation treatment during our analysis, surpassing findings in other areas. These include the AS gene, which controls the synthesis of NAD precursors, the PED1 gene, closely associated with fatty acid β-oxidation, and the RROP1 gene, related to ATP production.Overall, our study provides a valuable theoretical basis for exploring improved methods of cultivating tobacco seedlings. Through transcriptome sequencing technology, we have elucidated the differences in gene expression in different tobacco seedlings at three time points, identifying key genes affecting cold tolerance in tobacco and providing possibilities for future gene editing.
Collapse
Affiliation(s)
- Xuan Tao
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Lei Yang
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Mingfa Zhang
- Xiangxi Branch of Hunan Provincial Tobacco Corporation, Xiangxi, China
| | - Yangyang Li
- Hunan Research Institute of Tobacco Science, Changsha, China
- Hunan Provincial Tobacco Corporation, Changsha, China
| | - Hanqian Xiao
- Hunan Research Institute of Tobacco Science, Changsha, China
- Hunan Provincial Tobacco Corporation, Changsha, China
| | - Lingyi Yu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Chaowei Jiang
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Zeyu Long
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yiyang Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
9
|
Lin J, Zheng X, Xia J, Xie R, Gao J, Ye R, Liang T, Qu M, Luo Y, Wang Y, Ke Y, Li C, Guo J, Lu J, Tang W, Li W, Chen S. Integrative analysis of the transcriptome and proteome reveals the molecular responses of tobacco to boron deficiency. BMC PLANT BIOLOGY 2024; 24:689. [PMID: 39030471 PMCID: PMC11264865 DOI: 10.1186/s12870-024-05391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 07/05/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Boron (B) is an essential micronutrient for plants. Inappropriate B supply detrimentally affects the productivity of numerous crops. Understanding of the molecular responses of plants to different B supply levels would be of significance in crop improvement and cultivation practices to deal with the problem. RESULTS We conducted a comprehensive analysis of the transcriptome and proteome of tobacco seedlings to investigate the expression changes of genes/proteins in response to different B supply levels, with a particular focus on B deficiency. The global gene and protein expression profiles revealed the potential mechanisms involved in the responses of tobacco to B deficiency, including up-regulation of the NIP5;1-BORs module, complex regulation of genes/proteins related to cell wall metabolism, and up-regulation of the antioxidant machinery. CONCLUSION Our results demonstrated that B deficiency caused severe morphological and physiological disorders in tobacco seedlings, and revealed dynamic expression changes of tobacco genes/proteins in response to different B supply levels, especially to B deficiency, thus offering valuable insights into the molecular responses of tobacco to B deficiency.
Collapse
Affiliation(s)
- Jinbin Lin
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Xiangli Zheng
- Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Jing Xia
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongrong Xie
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
- International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingjuan Gao
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
- International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongrong Ye
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Tingmin Liang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengyu Qu
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yaxin Luo
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yuemin Wang
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
| | - Yuqin Ke
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chunying Li
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
| | - Jinping Guo
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
| | - Jianjun Lu
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Weiqi Tang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
| | - Wenqing Li
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China.
| | - Songbiao Chen
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
10
|
Wu M, Li Y, Liu Z, Xia L, Xiang Y, Zhao L, Yang X, Li Z, Xie X, Wang L, Wang R, Xu S, Yang J. Genome-wide identification of the CAD gene family and functional analysis of putative bona fide CAD genes in tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1400213. [PMID: 39040505 PMCID: PMC11261167 DOI: 10.3389/fpls.2024.1400213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024]
Abstract
Cinnamyl alcohol dehydrogenase (CAD) plays a crucial role in lignin biosynthesis, and the gene family encoding various CAD isozymes has been cloned and characterized in numerous plant species. However, limited information regarding the CAD gene family in tobacco is currently available. In this study, we identified 10 CAD genes in Nicotiana tabacum, four in N. tomentosiformis, and six in N. sylvestris. The nucleotide and amino acid sequences of these tobacco CADs demonstrate high levels of similarity, whereas the putative protein sequences conservatively possessed two Zn2+ binding motifs and an NADP(H) cofactor binding motif. Both NtCAD1 and NtCAD2 had conservative substrate binding sites, similar to those possessed by bona fide CADs, and evidence from phylogenetic analysis as well as expression profiling supported their role as bona fide CADs involved in lignin biosynthesis. NtCAD1 has two paralogous genes, NtCAD1-1 and NtCAD1-2. Enzyme activity analysis revealed that NtCAD1-1 and NtCAD1-2 had a high affinity to coniferyl aldehyde, p-coumaryl aldehyde, and sinapyl aldehyde, whereas NtCAD2 preferred coniferyl aldehyde and p-coumaryl aldehyde as substrates. The kinetic parameter assay revealed that NtCAD1-2 functions as the most efficient enzyme. Downregulation of both NtCAD1-1 and NtCAD1-2 resulted in reddish-brown stems without significant changes in lignin content. Furthermore, NtCAD1-1, NtCAD1-2, and NtCAD2 showed distinct expression patterns in response to biotic and abiotic stresses, as well as different phytohormones. Our findings suggest that NtCAD1-1 and NtCAD1-2 are involved in lignin biosynthesis, with NtCAD1-2 also participating in both biological and abiotic stresses, whereas NtCAD2 plays a distinct role mainly in responding to biological and abiotic stresses in tobacco.
Collapse
Affiliation(s)
- Mingzhu Wu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yijun Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Zhengtai Liu
- Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Lin Xia
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yiyu Xiang
- Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Lijie Zhao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaobei Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Lin Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Ren Wang
- Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Sheng Xu
- Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| |
Collapse
|
11
|
Chang W, Zhao H, Chen H, Jiao G, Yu J, Wang B, Xia H, Meng B, Li X, Yu M, Li S, Qian M, Fan Y, Zhang K, Lei B, Lu K. Transcription factor NtNAC56 regulates jasmonic acid-induced leaf senescence in tobacco. PLANT PHYSIOLOGY 2024; 195:1925-1940. [PMID: 38427921 DOI: 10.1093/plphys/kiae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
Leaf senescence is a vital aspect of plant physiology and stress responses and is induced by endogenous factors and environmental cues. The plant-specific NAC (NAM, ATAF1/2, CUC2) transcription factor family influences growth, development, and stress responses in Arabidopsis (Arabidopsis thaliana) and other species. However, the roles of NACs in tobacco (Nicotiana tabacum) leaf senescence are still unclear. Here, we report that NtNAC56 regulates leaf senescence in tobacco. Transgenic plants overexpressing NtNAC56 (NtNAC56-OE) showed induction of senescence-related genes and exhibited early senescence and lower chlorophyll content compared to wild-type (WT) plants and the Ntnac56-19 mutant. In addition, root development and seed germination were inhibited in the NtNAC56-OE lines. Transmission electron microscopy observations accompanied by physiological and biochemical assays revealed that NtNAC56 overexpression triggers chloroplast degradation and reactive oxygen species accumulation in tobacco leaves. Transcriptome analysis demonstrated that NtNAC56 activates leaf senescence-related genes and jasmonic acid (JA) biosynthesis pathway genes. In addition, the JA content of NtNAC56-OE plants was higher than in WT plants, and JA treatment induced NtNAC56 expression. We performed DNA affinity purification sequencing to identify direct targets of NtNAC56, among which we focused on LIPOXYGENASE 5 (NtLOX5), a key gene in JA biosynthesis. A dual-luciferase reporter assay and a yeast one-hybrid assay confirmed that NtNAC56 directly binds to the TTTCTT motif in the NtLOX5 promoter. Our results reveal a mechanism whereby NtNAC56 regulates JA-induced leaf senescence in tobacco and provide a strategy for genetically manipulating leaf senescence and plant growth.
Collapse
Affiliation(s)
- Wei Chang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Huina Zhao
- Molecular Genetics Key Laboratory of China Tobacco, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Hongqiao Chen
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Guixiang Jiao
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Jing Yu
- Molecular Genetics Key Laboratory of China Tobacco, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Bing Wang
- Molecular Genetics Key Laboratory of China Tobacco, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Haiqian Xia
- Molecular Genetics Key Laboratory of China Tobacco, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Boyu Meng
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Xiaodong Li
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Mengna Yu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Shengting Li
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Mingchao Qian
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Yonghai Fan
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Kai Zhang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Bo Lei
- Molecular Genetics Key Laboratory of China Tobacco, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Kun Lu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
12
|
Shi H, Jiang J, Yu W, Cheng Y, Wu S, Zong H, Wang X, Ding A, Wang W, Sun Y. Naringenin restricts the colonization and growth of Ralstonia solanacearum in tobacco mutant KCB-1. PLANT PHYSIOLOGY 2024; 195:1818-1834. [PMID: 38573326 PMCID: PMC11213252 DOI: 10.1093/plphys/kiae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
Bacterial wilt severely jeopardizes plant growth and causes enormous economic loss in the production of many crops, including tobacco (Nicotiana tabacum). Here, we first demonstrated that the roots of bacterial wilt-resistant tobacco mutant KCB-1 can limit the growth and reproduction of Ralstonia solanacearum. Secondly, we demonstrated that KCB-1 specifically induced an upregulation of naringenin content in root metabolites and root secretions. Further experiments showed that naringenin can disrupt the structure of R. solanacearum, inhibit the growth and reproduction of R. solanacearum, and exert a controlling effect on bacterial wilt. Exogenous naringenin application activated the resistance response in tobacco by inducing the burst of reactive oxygen species and salicylic acid deposition, leading to transcriptional reprogramming in tobacco roots. Additionally, both external application of naringenin in CB-1 and overexpression of the Nicotiana tabacum chalcone isomerase (NtCHI) gene, which regulates naringenin biosynthesis, in CB-1 resulted in a higher complexity of their inter-root bacterial communities than in untreated CB-1. Further analysis showed that naringenin could be used as a marker for resistant tobacco. The present study provides a reference for analyzing the resistance mechanism of bacterial wilt-resistant tobacco and controlling tobacco bacterial wilt.
Collapse
Affiliation(s)
- Haoqi Shi
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiale Jiang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Yu
- Fujian Institute of Tobacco Agricultural Sciences, Fuzhou 350003, China
| | - Yazhi Cheng
- Fujian Institute of Tobacco Agricultural Sciences, Fuzhou 350003, China
| | - Shengxin Wu
- Fujian Institute of Tobacco Agricultural Sciences, Fuzhou 350003, China
| | - Hao Zong
- Shandong Linyi Tobacco Co., Ltd., Linyi 276000, China
| | - Xiaoqiang Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Anming Ding
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Weifeng Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yuhe Sun
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
13
|
Sapara VJ, Shankhapal AR, Reddy PS. Genome-wide screening and characterization of phospholipase A (PLA)-like genes in sorghum (Sorghum bicolor L.). PLANTA 2024; 260:35. [PMID: 38922509 DOI: 10.1007/s00425-024-04467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
MAIN CONCLUSION The characterisation of PLA genes in the sorghum genome using in-silico methods revealed their essential roles in cellular processes, providing a foundation for further detailed studies. Sorghum bicolor (L.) Moench is the fifth most cultivated crop worldwide, and it is used in many ways, but it has always gained less popularity due to the yield, pest, and environmental constraints. Improving genetic background and developing better varieties is crucial for better sorghum production in semi-arid tropical regions. This study focuses on the phospholipase A (PLA) family within sorghum, comprehensively characterising PLA genes and their expression across different tissues. The investigation identified 32 PLA genes in the sorghum genome, offering insights into their chromosomal localization, molecular weight, isoelectric point, and subcellular distribution through bioinformatics tools. PLA-like family genes are classified into three groups, namely patatin-related phospholipase A (pPLA), phospholipase A1 (PLA1), and phospholipase A2 (PLA2). In-silico chromosome localization studies revealed that these genes are unevenly distributed in the sorghum genome. Cis-motif analysis revealed the presence of several developmental, tissue and hormone-specific elements in the promoter regions of the PLA genes. Expression studies in different tissues such as leaf, root, seedling, mature seed, immature seed, anther, and pollen showed differential expression patterns. Taken together, genome-wide analysis studies of PLA genes provide a better understanding and critical role of this gene family considering the metabolic processes involved in plant growth, defence and stress response.
Collapse
Affiliation(s)
- Vidhi J Sapara
- Cell Molecular Biology and Trait Engineering, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
- Department of Genetics, Osmania University, Hyderabad, Telangana, India
| | - Aishwarya R Shankhapal
- Cell Molecular Biology and Trait Engineering, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
- Plant Sciences for the Bio-Economy, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Palakolanu Sudhakar Reddy
- Cell Molecular Biology and Trait Engineering, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India.
| |
Collapse
|
14
|
Shi X, Du J, Wang X, Zhang X, Yan X, Yang Y, Jia H, Zhang S. NtGCN2 confers cadmium tolerance in Nicotiana tabacum L. by regulating cadmium uptake, efflux, and subcellular distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172695. [PMID: 38663613 DOI: 10.1016/j.scitotenv.2024.172695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 05/04/2024]
Abstract
General control non-derepressible-2 (GCN2) is widely expressed in eukaryotes and responds to biotic and abiotic stressors. However, the precise function and mechanism of action of GCN2 in response to cadmium (Cd) stress in Nicotiana tabacum L. (tobacco) remains unclear. We investigated the role of NtGCN2 in Cd tolerance and explored the mechanism by which NtGCN2 responds to Cd stress in tobacco by exposing NtGCN2 transgenic tobacco lines to different concentrations of CdCl2. NtGCN2 was activated under 50 μmol·L-1 CdCl2 stress and enhanced the Cd tolerance and photosynthetic capacities of tobacco by increasing chlorophyll content and antioxidant capacity by upregulating NtSOD, NtPOD, and NtCAT expression and corresponding enzyme activities and decreasing malondialdehyde and O2·- contents. NtGCN2 enhanced the osmoregulatory capacity of tobacco by elevating proline (Pro) and soluble sugar contents and maintaining low levels of relative conductivity. Finally, NtGCN2 enhanced Cd tolerance in tobacco by reducing Cd uptake and translocation, promoting Cd efflux, and regulating Cd subcellular distribution. In conclusion, NtGCN2 improves the tolerance of tobacco to Cd through a series of mechanisms, namely, increasing antioxidant, photosynthetic, and osmoregulation capacities and regulating Cd uptake, translocation, efflux, and subcellular distribution. This study provides a scientific basis for further exploration of the role of NtGCN2 in plant responses to Cd stress and enhancement of the Cd stress signaling network in tobacco.
Collapse
Affiliation(s)
- Xiaotian Shi
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Jiao Du
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xu Wang
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xiaoquan Zhang
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xiaoxiao Yan
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yongxia Yang
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Hongfang Jia
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Songtao Zhang
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| |
Collapse
|
15
|
Zhang C, Li Z, Sun T, Zang S, Wang D, Su Y, Wu Q, Que Y. Sugarcane ScCAX4 is a Negative Regulator of Resistance to Pathogen Infection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13205-13216. [PMID: 38809782 DOI: 10.1021/acs.jafc.4c00805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Calcium (Ca2+) is a second messenger in various physiological processes within plants. The significance of the Ca2+/H+ exchanger (CAX) has been established in facilitating Ca2+ transport in plants; however, disease resistance functions of the CAX gene remain elusive. In this study, we conducted sequence characterization and expression analysis for a sugarcane CAX gene, ScCAX4 (GenBank Accession Number: MW206380). In order to further investigate the disease resistance functions, this gene was then transiently overexpressed in Nicotiana benthamiana leaves, which were subsequently inoculated with Fusarium solani var. coeruleum. Results showed that ScCAX4 overexpression increased the susceptibility of N. benthamiana to pathogen infection by regulating the expression of genes related to salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) pathways, suggesting its negative role in disease resistance. Furthermore, we genetically transformed the ScCAX4 gene into N. benthamiana and obtained three positive T2 generation lines. Interestingly, the symptomatology of transgenic plants was consistent with that of transient overexpression after pathogen inoculation. Notably, the JA content in transgenic overexpression lines was significantly higher than that in the wild-type. RNA-seq revealed that ScCAX4 could mediate multiple signaling pathways, and the JA signaling pathway played a key role in modulating disease resistance. Finally, a regulatory model was depicted for the increased susceptibility to pathogen infection conferred by the ScCAX4 gene. This study provides genetic resources for sugarcane molecular breeding and the research direction for plant CAX genes.
Collapse
Affiliation(s)
- Chang Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, Haikou, 571101 Hainan, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenxiang Li
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tingting Sun
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, Haikou, 571101 Hainan, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qibin Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, Haikou, 571101 Hainan, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youxiong Que
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, Haikou, 571101 Hainan, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
16
|
Nicolas-Francès V, Besson-Bard A, Meschini S, Klinguer A, Bonnotte A, Héloir MC, Citerne S, Inès D, Hichami S, Wendehenne D, Rosnoblet C. CDC48 regulates immunity pathway in tobacco plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108714. [PMID: 38749374 DOI: 10.1016/j.plaphy.2024.108714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/18/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
The CDC48 protein, highly conserved in the living kingdom, is a player of the ubiquitin proteasome system and contributes to various cellular processes. In plants, CDC48 is involved in cell division, plant growth and, as recently highlighted in several reports, in plant immunity. In the present study, to further extend our knowledge about CDC48 functions in plants, we analysed the incidence of its overexpression on tobacco development and immune responses. CDC48 overexpression disrupted plant development and morphology, induced changes in plastoglobule appearance and exacerbated ROS production. In addition, levels of salicylic acid (SA) and glycosylated SA were higher in transgenic plants, both in the basal state and in response to cryptogein, a protein produced by the oomycete Phytophthora cryptogea triggering defence responses. The expression of defence genes, notably those coding for some pathogenesis-related (PR) proteins, was also exacerbated in the basal state in transgenic plant lines. Finally, tobacco plants overexpressing CDC48 did not develop necrosis in response to tobacco mosaic virus (TMV) infection, suggesting a role for CDC48 in virus resistance.
Collapse
Affiliation(s)
- Valérie Nicolas-Francès
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Angélique Besson-Bard
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Stefano Meschini
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Agnès Klinguer
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Aline Bonnotte
- Plateforme DImaCell, Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Marie-Claire Héloir
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Sylvie Citerne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Damien Inès
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Siham Hichami
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - David Wendehenne
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France.
| | - Claire Rosnoblet
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
17
|
Wang J, Wang X, Wang L, Nazir MF, Fu G, Peng Z, Chen B, Xing A, Zhu M, Ma X, Wang X, Jia Y, Pan Z, Wang L, Xia Y, He S, Du X. Exploring the regulatory role of non-coding RNAs in fiber development and direct regulation of GhKCR2 in the fatty acid metabolic pathway in upland cotton. Int J Biol Macromol 2024; 266:131345. [PMID: 38574935 DOI: 10.1016/j.ijbiomac.2024.131345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Cotton fiber holds immense importance as the primary raw material for the textile industry. Consequently, comprehending the regulatory mechanisms governing fiber development is pivotal for enhancing fiber quality. Our study aimed to construct a regulatory network of competing endogenous RNAs (ceRNAs) and assess the impact of non-coding RNAs on gene expression throughout fiber development. Through whole transcriptome data analysis, we identified differentially expressed genes (DEGs) regulated by non-coding RNA (ncRNA) that were predominantly enriched in phenylpropanoid biosynthesis and the fatty acid elongation pathway. This analysis involved two contrasting phenotypic materials (J02-508 and ZRI015) at five stages of fiber development. Additionally, we conducted a detailed analysis of genes involved in fatty acid elongation, including KCS, KCR, HACD, ECR, and ACOT, to unveil the factors contributing to the variation in fatty acid elongation between J02-508 and ZRI015. Through the integration of histochemical GUS staining, dual luciferase assay experiments, and correlation analysis of expression levels during fiber development stages for lncRNA MSTRG.44818.23 (MST23) and GhKCR2, we elucidated that MST23 positively regulates GhKCR2 expression in the fatty acid elongation pathway. This identification provides valuable insights into the molecular mechanisms underlying fiber development, emphasizing the intricate interplay between non-coding RNAs and protein-coding genes.
Collapse
Affiliation(s)
- Jingjing Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoyang Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Liyuan Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Mian Faisal Nazir
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Guoyong Fu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhen Peng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Baojun Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Aishuang Xing
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Mengchen Zhu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xinli Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Xiuxiu Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yinhua Jia
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Zhaoe Pan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Liru Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yingying Xia
- National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou 455001, China
| | - Shoupu He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Xiongming Du
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China.
| |
Collapse
|
18
|
Rashid Z, Nabi A, Nabi N, Lateef I, Nisa Q, Fayaz T, Gulzar G, Bashir A, Shah MD, Zargar SM, Khan I, Nahvi AI, Itoo H, Shah RA, Padder BA. Selection of stable reference genes for qPCR expression of Colletotrichum lindemuthianum, the bean anthracnose pathogen. Fungal Biol 2024; 128:1771-1779. [PMID: 38796261 DOI: 10.1016/j.funbio.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/10/2024] [Accepted: 03/19/2024] [Indexed: 05/28/2024]
Abstract
Phaseolus vulgaris L., commonly known as the common bean, is a highly nutritious crop often called the "poor man's meat". However, it is susceptible to various diseases throughout the cropping season, with anthracnose caused by Colletotrichum lindemuthianum being a significant threat that leads to substantial losses. There is still a lack of understanding about the molecular basis of C. lindemuthianum pathogenicity. The first step in understanding this is to identify pathogenicity genes that express more during infection of common beans. A reverse transcription quantitative real-time PCR (qPCR) method can be used for virulence gene expression. However, this approach requires selecting appropriate reference genes to normalize relative gene expression data. Currently, there is no reference gene available for C. lindemuthianum. In this study, we selected eight candidate reference genes from the available genome of C. lindemuthianum to bridge the gap. These genes were ACT (Actin), β-tub (β-tubulin), EF (Elongation Factor), Cyt C (Cytochrome C), His H3 (Histone H3), CHS1 (Chitin synthetase), GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) and abfA (Alpha-l-Arabinofuranosidase A). The primers for these candidate reference genes were able to amplify cDNA only from the pathogen, demonstrating their specificity. The qPCR efficiency of the primers ranged from 80% to 103%. We analyzed the stability of gene expression in C. lindemuthianum by exposing the mycelium to nine different stress conditions. We employed algorithms, such as GeNorm, NormFinder, BestKeeper, and RefFinder tools, to identify the most stable gene. The analysis using these tools revealed that EF, GAPDH, and β-tub most stable genes, while ACT and CHS1 showed relatively low expression stability. A large number of potential effector genes have been identified through bioinformatics analysis in C. lindemuthianum. The stable genes for qPCR (EF and GAPDH) discovered in this study will aid the scientific community in determining the relative expression of C. lindemuthianum effector genes.
Collapse
Affiliation(s)
- Zainab Rashid
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Aasiya Nabi
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Naziya Nabi
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Irtifa Lateef
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Qadrul Nisa
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Tabia Fayaz
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Gazala Gulzar
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Adfar Bashir
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - M D Shah
- Research Center for Residue and Quality Control Analysis, SKUAST-Kashmir, 190025, India
| | - Sajad M Zargar
- Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Imran Khan
- Division of Agricultural Statistics, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Afsah Iqbal Nahvi
- Extension Training Centre, Malangpora, Pulwama, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - H Itoo
- Ambri Apple Research Centre, Pahnoo, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Rafiq A Shah
- Ambri Apple Research Centre, Pahnoo, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India
| | - Bilal A Padder
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India.
| |
Collapse
|
19
|
Zhang L, Wang X, Dong K, Tan B, Zheng X, Ye X, Wang W, Cheng J, Feng J. Tandem transcription factors PpNAC1 and PpNAC5 synergistically activate the transcription of the PpPGF to regulate peach softening during fruit ripening. PLANT MOLECULAR BIOLOGY 2024; 114:46. [PMID: 38630415 DOI: 10.1007/s11103-024-01429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/18/2024] [Indexed: 04/19/2024]
Abstract
Peach fruit rapidly soften after harvest, a significant challenge for producers and marketers as it results in rotting fruit and significantly reduces shelf life. In this study, we identified two tandem genes, PpNAC1 and PpNAC5, within the sr (slow ripening) locus. Phylogenetic analysis showed that NAC1 and NAC5 are highly conserved in dicots and that PpNAC1 is the orthologous gene of Non-ripening (NOR) in tomato. PpNAC1 and PpNAC5 were highly expressed in peach fruit, with their transcript levels up-regulated at the onset of ripening. Yeast two-hybrid and bimolecular fluorescence complementation assays showed PpNAC1 interacting with PpNAC5 and this interaction occurs with the tomato and apple orthologues. Transient gene silencing experiments showed that PpNAC1 and PpNAC5 positively regulate peach fruit softening. Yeast one-hybrid and dual luciferase assays and LUC bioluminescence imaging proved that PpNAC1 and PpNAC5 directly bind to the PpPGF promoter and activate its transcription. Co-expression of PpNAC1 and PpNAC5 showed higher levels of PpPGF activation than expression of PpNAC1 or PpNAC5 alone. In summary, our findings demonstrate that the tandem transcription factors PpNAC1 and PpNAC5 synergistically activate the transcription of PpPGF to regulate fruit softening during peach fruit ripening.
Collapse
Affiliation(s)
- Langlang Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaofei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Kang Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
20
|
Sato Y, Minamikawa MF, Pratama BB, Koyama S, Kojima M, Takebayashi Y, Sakakibara H, Igawa T. Autonomous differentiation of transgenic cells requiring no external hormone application: the endogenous gene expression and phytohormone behaviors. FRONTIERS IN PLANT SCIENCE 2024; 15:1308417. [PMID: 38633452 PMCID: PMC11021773 DOI: 10.3389/fpls.2024.1308417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
The ectopic overexpression of developmental regulator (DR) genes has been reported to improve the transformation in recalcitrant plant species because of the promotion of cellular differentiation during cell culture processes. In other words, the external plant growth regulator (PGR) application during the tissue and cell culture process is still required in cases utilizing DR genes for plant regeneration. Here, the effect of Arabidopsis BABY BOOM (BBM) and WUSCHEL (WUS) on the differentiation of tobacco transgenic cells was examined. We found that the SRDX fusion to WUS, when co-expressed with the BBM-VP16 fusion gene, significantly influenced the induction of autonomous differentiation under PGR-free culture conditions, with similar effects in some other plant species. Furthermore, to understand the endogenous background underlying cell differentiation toward regeneration, phytohormone and RNA-seq analyses were performed using tobacco leaf explants in which transgenic cells were autonomously differentiating. The levels of active auxins, cytokinins, abscisic acid, and inactive gibberellins increased as cell differentiation proceeded toward organogenesis. Gene Ontology terms related to phytohormones and organogenesis were identified as differentially expressed genes, in addition to those related to polysaccharide and nitrate metabolism. The qRT-PCR four selected genes as DEGs supported the RNA-seq data. This differentiation induction system and the reported phytohormone and transcript profiles provide a foundation for the development of PGR-free tissue cultures of various plant species, facilitating future biotechnological breeding.
Collapse
Affiliation(s)
- Yuka Sato
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Mai F. Minamikawa
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, Japan
| | - Berbudi Bintang Pratama
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Shohei Koyama
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tomoko Igawa
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
- Plant Molecular Science Center, Chiba University, Chiba, Japan
- Research Center for Space Agriculture and Horticulture, Chiba University, Matsudo, Japan
| |
Collapse
|
21
|
Sun H, Kalluri A, Tang D, Ding J, Zhai L, Gu X, Li Y, Yer H, Yang X, Tuskan GA, Deng Z, Gmitter Jr FG, Duan H, Kumar C, Li Y. Engineered dsRNA-protein nanoparticles for effective systemic gene silencing in plants. HORTICULTURE RESEARCH 2024; 11:uhae045. [PMID: 39445111 PMCID: PMC11497610 DOI: 10.1093/hr/uhae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/06/2024] [Indexed: 10/25/2024]
Abstract
Long-distance transport or systemic silencing effects of exogenous biologically active RNA molecules in higher plants have not been reported. Here, we report that cationized bovine serum albumin (cBSA) avidly binds double-stranded beta-glucuronidase RNA (dsGUS RNA) to form nucleic acid-protein nanocomplexes. In our experiments with tobacco and poplar plants, we have successfully demonstrated systemic gene silencing effects of cBSA/dsGUS RNA nanocomplexes when we locally applied the nanocomplexes from the basal ends of leaf petioles or shoots. We have further demonstrated that the cBSA/dsGUS RNA nanocomplexes are highly effective in silencing both the conditionally inducible DR5-GUS gene and the constitutively active 35S-GUS gene in leaf, shoot, and shoot meristem tissues. This cBSA/dsRNA delivery technology may provide a convenient, fast, and inexpensive tool for characterizing gene functions in plants and potentially for in planta gene editing.
Collapse
Affiliation(s)
- Huayu Sun
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Ankarao Kalluri
- Department of Material Science, University of Connecticut, Storrs, CT 06269, USA
| | - Dan Tang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| | - Jingwen Ding
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Longmei Zhai
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| | - Xianbin Gu
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| | - Yanjun Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| | - Huseyin Yer
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| | - Xiaohan Yang
- Biosciences Division, Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A Tuskan
- Biosciences Division, Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zhanao Deng
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL 33850, USA
| | - Frederick G Gmitter Jr
- USDA-ARS, U.S. National Arboretum, Floral and Nursery Plants Research Unit, Beltsville Agricultural Research Center (BARC)-West, Beltsville, MD 20705, USA
| | - Hui Duan
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Challa Kumar
- Department of Material Science, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
22
|
Naseema Rasheed R, Suhara Beevy S. Reliable reference gene selection for quantitative real-time PCR (qRT-PCR) in floral developmental phases of dioecious species Coccinia grandis. Gene 2024; 900:148143. [PMID: 38195051 DOI: 10.1016/j.gene.2024.148143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
The flowering process is intricate and regulated by a combination of external and internal factors. Delving into gene expression research has the potential to enhance our comprehension of the molecular foundations underlying floral development. Because of its accuracy, specificity, reproducibility, and efficiency, qRT-PCR is now a biological research tool for studying expression pattern of desired genes. The gene expression investigations using qRT-PCR required a reference gene with relatively uniform expression levels in multiple biological samples, including different developmental stages, tissues, and experimental conditions. In this study, experimental sets offloral and floral organ development in the male and female plants of C. grandis, a dioecious Cucurbitaceae species, qRT-PCR profiling was performed using six reference genes as internal control with B-class floral identity gene, PISTILLATA (PI). To analyse the data, algorithms such as geNorm, NormFinder, RefFinder, and BestKeeper were used to pick out the best internal controls from a group of candidates. The optimal reference gene for qRT-PCR studies with floral samples has been recommended as β-actin combined with β-tubulin. This is the first report on the validation of candidate reference genes across flower developmental stages in the dioecious species C. grandis, which will provide basic data for research on the molecular mechanism underlying flower development in this species and lay the groundwork for similar studies in other related species.
Collapse
Affiliation(s)
| | - S Suhara Beevy
- Department of Botany, University of Kerala, Kariavattom Campus, Kerala, India
| |
Collapse
|
23
|
Wei X, Tao K, Liu Z, Qin B, Su J, Luo Y, Zhao C, Liao J, Zhang J. The PPO family in Nicotiana tabacum is an important regulator to participate in pollination. BMC PLANT BIOLOGY 2024; 24:102. [PMID: 38331761 PMCID: PMC10854075 DOI: 10.1186/s12870-024-04769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Polyphenol oxidases (PPOs) are type-3 copper enzymes and are involved in many biological processes. However, the potential functions of PPOs in pollination are not fully understood. In this work, we have screened 13 PPO members in Nicotiana. tabacum (named NtPPO1-13, NtPPOs) to explore their characteristics and functions in pollination. The results show that NtPPOs are closely related to PPOs in Solanaceae and share conserved domains except NtPPO4. Generally, NtPPOs are diversely expressed in different tissues and are distributed in pistil and male gametes. Specifically, NtPPO9 and NtPPO10 are highly expressed in the pistil and mature anther. In addition, the expression levels and enzyme activities of NtPPOs are increased after N. tabacum self-pollination. Knockdown of NtPPOs would affect pollen growth after pollination, and the purines and flavonoid compounds are accumulated in self-pollinated pistil. Altogether, our findings demonstrate that NtPPOs potentially play a role in the pollen tube growth after pollination through purines and flavonoid compounds, and will provide new insights into the role of PPOs in plant reproduction.
Collapse
Affiliation(s)
- Xuemei Wei
- School of Engineering, Dali University, Dali, 671000, Yunnan Province, China
| | - Keliang Tao
- School of Life Science, Biocontrol Engineering Research Center of Plant Diseases & Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China
| | - Zhengmei Liu
- School of Engineering, Dali University, Dali, 671000, Yunnan Province, China
| | - Boyuan Qin
- School of Engineering, Dali University, Dali, 671000, Yunnan Province, China
| | - Jie Su
- School of Life Science, Biocontrol Engineering Research Center of Plant Diseases & Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China
| | - Yanbi Luo
- School of Engineering, Dali University, Dali, 671000, Yunnan Province, China
| | - Chunwen Zhao
- School of Engineering, Dali University, Dali, 671000, Yunnan Province, China
| | - Jugou Liao
- School of Life Science, Biocontrol Engineering Research Center of Plant Diseases & Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China.
| | - Junpeng Zhang
- School of Engineering, Dali University, Dali, 671000, Yunnan Province, China.
| |
Collapse
|
24
|
He L, Wang JY, Su QJ, Chen ZH, Xie F. Selection and validation of reference genes for RT-qPCR in ophiocordyceps sinensis under different experimental conditions. PLoS One 2024; 19:e0287882. [PMID: 38319940 PMCID: PMC10846742 DOI: 10.1371/journal.pone.0287882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/14/2023] [Indexed: 02/08/2024] Open
Abstract
The Chinese caterpillar mushroom, Ophiocordyceps sinensis (O. sinensis), is a rarely medicinal fungus in traditional chinese herbal medicine due to its unique medicinal values, and the expression stability of reference genes is essential to normalize its gene expression analysis. In this study, BestKeeper, NormFinder and geNorm, three authoritative statistical arithmetics, were applied to evaluate the expression stability of sixteen candidate reference genes (CRGs) in O. sinensis under different stress [low temperature (4°C), light treatment (300 lx), NaCl (3.8%)] and different development stages (mycelia, primordia and fruit bodies) and formation of morphologic mycelium (aeriasubstrate, hyphae knot mycelium). The paired variation values indicated that two genes could be enough to accurate standardization exposed to different conditions of O.sinensis. Among these sixteen CRGs, 18S ribosomal RNA (18S rRNA) and beta-Tubulin (β-TUB) showed the topmost expression stability in O.sinensis exposed to all conditions, while glutathione hydrolase proenzym (GGT) and Phosphoglucose isomerase (PGI) showed the least expression stability. The optimal reference gene in different conditions was various. β-TUB and Ubiquitin (UBQ) were identified as the two most stable genes in different primordia developmental stage, while phosphoglucomutase (PGM) with elongation factor 1-alpha (EF1-α) and 18S rRNA with UBQ were the most stably expressed for differentially morphologic mycelium stages and different stresses, respectively. These results will contribute to more accurate evaluation of the gene relative expression levels in O.sinensis under different conditions using the optimal reference gene in real-time quantitative PCR (RT-qPCR) analysis.
Collapse
Affiliation(s)
- Li He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P. R. China
| | - Jin Yi Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P. R. China
| | - Qiang Jun Su
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P. R. China
| | - Zhao He Chen
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P. R. China
| | - Fang Xie
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P. R. China
| |
Collapse
|
25
|
Guo N, Ling H, Yu R, Gao F, Cao Y, Tao J. Expression of Sailx suchowensis SsIRT9 enhances cadmium accumulation and alters metal homeostasis in tobacco. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132958. [PMID: 37951176 DOI: 10.1016/j.jhazmat.2023.132958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Cadmium (Cd) contamination in soils is of great concern for plant growth and human health. Willow (Salix spp.) is a promising phytoextractor because of its high biomass production. However, as a non-hyperaccumulator, willow has a low competitive ability in extraction of Cd. Thus, improving Cd concentrations in developing tissues is one of the primary tasks. Here, our study uncovers a novel SsIRT9 gene from Sailx suchowensis which manipulates plant Cd accumulation. SsIRT9 was more highly expressed in willow roots than other SsIRT genes. As a plasma membrane-localized protein, when expressed in yeast, SsIRT9 retarded cell growth more severely than other SsIRT proteins in the presence of Cd. Furthermore, SsIRT9 was cloned and expressed in tobacco and SsIRT9 did not affect plant growth. In hydroponic experiments, SsIRT9 lines displayed higher Cd in the shoots than the wild type. When grown in Cd-contaminated soils, Cd levels in transgenic tobacco increased by 152-364% in roots and by 135-444% in shoots, demonstrating significant superiority in Cd accumulation over other functional IRT/ZIP transporters. Moreover, expressing SsIRT9 in tobacco altered metal homeostasis, especially manganese and zinc. Taken together, we envision that SsIRT9 expression in plants is a promising strategy for upgrading extraction of Cd from soils.
Collapse
Affiliation(s)
- Nan Guo
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Hui Ling
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Renkui Yu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Fei Gao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yue Cao
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
26
|
Sankar K, Lee KY, Kwak KW, Lee SJ, Lee YB. Seasonal Stability Assessment of Reference Genes for Quantitative Real-Time Polymerase Chain Reaction Normalization in Bombus terrestris. Curr Issues Mol Biol 2024; 46:1335-1347. [PMID: 38392203 PMCID: PMC10887669 DOI: 10.3390/cimb46020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Bumblebees (B. terrestris) play a crucial role as highly efficient biological agents in commercial pollination. Understanding the molecular mechanisms governing their adaptation to diverse seasonal environments may pave the way for effective management strategies in the future. With the burgeoning advancement in post-genetic studies focusing on B. terrestris, there is a critical need to normalize quantitative real-time PCR (qRT-PCR) data using suitable reference genes. To address this necessity, we employed RefFinder, a software-based tool, to assess the suitability of several candidate endogenous control genes, including actin (ACT), arginine kinase (AK), elongation factor 1 alpha (EF1), glyceraldehyde-3-phosphate (GAPDH), phospholipase (PLA2), and ribosomal proteins (S18, S28). These genes were evaluated for their efficacy as biological endogenous controls by examining their expression patterns across various environmental conditions corresponding to different seasons (Spring, Summer, Autumn, Winter) and tissues (ovary, fat body, thorax, head) in bumblebees. Moreover, the study investigated the significance of selecting appropriate reference genes for three key genes involved in the juvenile hormone (JH) signaling pathways: Krüppel homolog 1 (Kr-h1), methyl farnesoate epoxidase (MFE), and Vitellogenin (Vg). Our research identifies specific genes suitable for normalization in B. terrestris, thereby offering valuable insights into gene expression and functional metabolic genetics under varying seasonal conditions. This catalog of reference genes will serve as a valuable resource for future research endeavors.
Collapse
Affiliation(s)
- Kathannan Sankar
- Agricultural Biology Department, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Kyeong-Yong Lee
- Agricultural Biology Department, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Kyu-Won Kwak
- Agricultural Biology Department, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Su-Jin Lee
- Agricultural Biology Department, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Young-Bo Lee
- Agricultural Biology Department, National Institute of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea
| |
Collapse
|
27
|
Xu L, Liu P, Li X, Mi Q, Zheng Q, Xing J, Yang W, Zhou H, Cao P, Gao Q, Xu G. NtERF283 positively regulates water deficit tolerance in tobacco (Nicotianatabacum L.) by enhancing antioxidant capacity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108413. [PMID: 38330776 DOI: 10.1016/j.plaphy.2024.108413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Ethylene responsive factor (ERF) is a plant-specific transcription factor that plays a pivotal regulatory role in various stress responses. Although the genome of tobacco harbors 375 ER F genes, the functional roles of the majority of these genes remain unknown. Expression pattern analysis revealed that NtERF283 was induced by water deficit and salt stresses and mainly expressed in the roots and leaves. Subcellular localization and transcriptional activity assays confirmed that NtERF283 was localized in the nucleus and exhibited transcriptional activity. In comparison to the wild-type (WT), the NtERF283-overexpressing transgenic plants (OE) exhibited enhanced water deficit tolerance, whereas the knockout mutant erf283 displayed contrasting phenotypes. Transcriptional analysis demonstrated that several oxidative stress response genes were significantly altered in OE plants under water deficit conditions. 3,3'-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining showed that erf283 accumulated a higher level of reactive oxygen species (ROS) compared to the WT under water deficit conditions. Conversely, OE plants displayed the least amount of ROS accumulation. Furthermore, the activities of POD and SOD were higher in OE plants and lower in erf283, suggesting that NtERF283 enhanced the capacity to effectively eliminate ROS, consequently enhancing water deficit tolerance in tobacco. These findings strongly indicate the significance of NtERF283 in promoting tobacco water deficit tolerance through the activation of the antioxidant system.
Collapse
Affiliation(s)
- Li Xu
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650106, PR China
| | - Pingping Liu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Xuemei Li
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650106, PR China
| | - Qili Mi
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650106, PR China
| | - Qingxia Zheng
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Jiaxin Xing
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650106, PR China
| | - Wenwu Yang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650106, PR China
| | - Huina Zhou
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Peijian Cao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Qian Gao
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650106, PR China.
| | - Guoyun Xu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China.
| |
Collapse
|
28
|
Schmidt FJ, Grundmann L, Lahme M, Seidemann M, Schwarze A, Lichtenauer S, Twyman RM, Prüfer D, Noll GA. COL2-dependent photoperiodic floral induction in Nicotiana sylvestris seems to be lost in the N. sylvestris × N. tomentosiformis hybrid N. tabacum. FRONTIERS IN PLANT SCIENCE 2024; 14:1249879. [PMID: 38239221 PMCID: PMC10794312 DOI: 10.3389/fpls.2023.1249879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/10/2023] [Indexed: 01/22/2024]
Abstract
Introduction Plants are sessile organisms that maximize reproductive success by adapting to their environment. One of the key steps in the reproductive phase of angiosperms is flower development, requiring the perception of multiple endogenous and exogenous signals integrated via a complex regulatory network. Key floral regulators, including the main transcription factor of the photoperiodic pathway (CONSTANS, CO) and the central floral pathway integrator (FLOWERING LOCUS T, FT), are known in many species. Methods and results We identified several CO-like (COL) proteins in tobacco (Nicotiana tabacum). The NtCOL2a/b proteins in the day-neutral plant N. tabacum were most closely related to Arabidopsis CO. We characterized the diurnal expression profiles of corresponding genes in leaves under short-day (SD) and long-day (LD) conditions and confirmed their expression in phloem companion cells. Furthermore, we analyzed the orthologs of NtCOL2a/b in the maternal LD ancestor (N. sylvestris) and paternal, facultative SD ancestor (N. tomentosiformis) of N. tabacum and found that they were expressed in the same diurnal manner. NtCOL2a/b overexpression or knock-out using the CRISPR/Cas9 system did not support a substantial role for the CO homologs in the control of floral transition in N. tabacum. However, NsCOL2 overexpression induced flowering in N. sylvestris under typically non-inductive SD conditions, correlating with the upregulation of the endogenous NsFTd gene. Discussion Our results suggest that NsFTd is transcriptionally regulated by NsCOL2 and that this COL2-dependent photoperiodic floral induction seems to be lost in N. tabacum, providing insight into the diverse genetics of photoperiod-dependent flowering in different Nicotiana species.
Collapse
Affiliation(s)
- Florentin J. Schmidt
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Lena Grundmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Münster, Germany
| | - Michael Lahme
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Münster, Germany
| | - Marvin Seidemann
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Axel Schwarze
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | | | - Dirk Prüfer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Münster, Germany
| | - Gundula A. Noll
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Münster, Germany
| |
Collapse
|
29
|
He S, Xu X, Gao Q, Huang C, Luo Z, Liu P, Wu M, Huang H, Yang J, Zeng J, Wang Z. NtERF4 promotes the biosynthesis of chlorogenic acid and flavonoids by targeting PAL genes in Nicotiana tabacum. PLANTA 2023; 259:31. [PMID: 38150094 DOI: 10.1007/s00425-023-04301-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023]
Abstract
Chlorogenic acid (CGA) and flavonoids are important secondary metabolites, which modulate plant growth and development, and contribute to plant resistance to various environmental stresses. ERF4 has been shown to be a repressor of anthocyanin accumulation in grape, but its full roles in regulating the biosynthesis of other phenylpropanoid compounds still needs to be further studied. In the present study, two NtERF4 genes were identified from N. tabacum genome. The expression level of NtERF4a was higher than that of NtERF4b in all the tobacco tissues examined. Over-expression of NtERF4a significantly promoted the accumulation of CGA and flavonoids in tobacco leaves, while silencing of NtERF4a significantly repressed the biosynthesis of CGA and flavonoids. RNA-seq analysis of NtERF4a-OE and WT plants revealed 8 phenylpropanoids-related differentially expressed genes (DEGs), including 4 NtPAL genes that encode key enzymes in the phenylpropanoid pathway. Activation of NtERF4a-GR fusion protein in tobacco significantly induced the transcription of NtPAL1 and NtPAL2 in the presence of protein synthesis inhibitor. Chromatin immunoprecipitation and Dual-Luc assays further indicated that NtERF4a could bind to the GCC box presented in the promoters of NtPAL1 and NtPAL2, thereby activating their transcription. Moreover, ectopic expression of NtERF4a induced the transcription of NtGSK1, NtMYC2, and NtJAZ3 genes, and enhanced the resistance of tobacco seedlings to salt and drought stresses, indicating multiple roles of NtERF4a in plants. Our findings revealed new roles of NtERF4a in modulating the accumulation of phenylpropanoid compounds in tobacco, and provided a putative target for improving phenylpropanoids synthesis and stress resistance in plants.
Collapse
Affiliation(s)
- Shun He
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Xin Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Qian Gao
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650202, China
| | - Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Mingzhu Wu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Haitao Huang
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650202, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jianmin Zeng
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China.
| | - Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| |
Collapse
|
30
|
Zhang W, Xu J, Wang Q, Li J, Li Y, Dong M, Sun H. Transcriptome-Based Identification of the Optimal Reference Genes for Quantitative Real-Time Polymerase Chain Reaction Analyses of Lingonberry Fruits throughout the Growth Cycle. PLANTS (BASEL, SWITZERLAND) 2023; 12:4180. [PMID: 38140507 PMCID: PMC10748091 DOI: 10.3390/plants12244180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
(1) Background: Vaccinium vitis-idaea is a nutritionally and economically valuable natural wild plant species that produces berries useful for treating various diseases. There is growing interest in lingonberry, but there is limited information regarding lingonberry reference genes suitable for gene expression analyses of different tissues under various abiotic stress conditions. The objective of this study was to identify stable reference genes suitable for different lingonberry tissues in response to abiotic stress. (2) Methods: The delta Ct method and the GeNorm v3.5 and NormFinder v20 programs were used to comprehensively analyze gene expression stability. (3) Results: Actin Unigene23839 was the best reference gene for analyzing different cultivars, whereas Actin CL5740.Contig2 was the most suitable reference gene for analyzing different tissues and alkali stress. In contrast, 18S rRNA CL5051.Contig1 was the most stable reference gene under drought conditions. (4) Conclusions: These suitable reference genes may be used in future qRT-PCR analyses of different lingonberry tissues and the effects of abiotic stresses. Furthermore, the study data may be useful for functional genomics studies and the molecular breeding of lingonberry. In summary, internal reference genes or internal reference gene combinations should be carefully selected according to the experimental conditions to ensure that the generated gene expression data are accurate.
Collapse
Affiliation(s)
- Wanchen Zhang
- Joint International Research Laboratory of Modern Agricultural Technology, College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (W.Z.); (J.X.); (Y.L.)
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Jian Xu
- Joint International Research Laboratory of Modern Agricultural Technology, College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (W.Z.); (J.X.); (Y.L.)
| | - Qiang Wang
- Research Institute of Pomology of CAAS, Xingcheng 125100, China; (Q.W.); (J.L.)
| | - Jing Li
- Research Institute of Pomology of CAAS, Xingcheng 125100, China; (Q.W.); (J.L.)
| | - Yadong Li
- Joint International Research Laboratory of Modern Agricultural Technology, College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (W.Z.); (J.X.); (Y.L.)
| | - Mei Dong
- Joint International Research Laboratory of Modern Agricultural Technology, College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (W.Z.); (J.X.); (Y.L.)
| | - Haiyue Sun
- Joint International Research Laboratory of Modern Agricultural Technology, College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (W.Z.); (J.X.); (Y.L.)
| |
Collapse
|
31
|
Wang W, Zhang X, Xu X, Xu X, Fu L, Chen H. Systematic identification of reference genes for qRT-PCR of Ardisia kteniophylla A. DC under different experimental conditions and for anthocyanin-related genes studies. FRONTIERS IN PLANT SCIENCE 2023; 14:1284007. [PMID: 38023897 PMCID: PMC10656778 DOI: 10.3389/fpls.2023.1284007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
Ardisia kteniophylla A. DC, widely known as folk medicinal herb and ornamental plant, has been extensively investigated due to its unique leaf color, anti-cancer and other pharmacological activities. The quantitative real-time PCR (qRT-PCR) was an excellent tool for the analysis of gene expression with its high sensitivity and quantitative properties. Normalizing gene expression with stable reference genes was essential for qRT-PCR accuracy. In addition, no studies have yet been performed on the selection, verification and stability of internal reference genes suitable for A. kteniophylla, which has greatly hindered the biomolecular researches of this species. In this study, 29 candidate genes were successfully screened according to stable expression patterns of large-scale RNA seq data that from a variety of tissues and the roots of different growth stages in A. kteniophylla. The candidates were then further determined via qRT-PCR in various experimental samples, including MeJA, ABA, SA, NaCl, CuSO4, AgNO3, MnSO4, CoCl2, drought, low temperature, heat, waterlogging, wounding and oxidative stress. To assess the stability of the candidates, five commonly used strategies were employed: delta-CT, geNorm, BestKeeper, NormFinder, and the comprehensive tool RefFinder. In summary, UBC2 and UBA1 were found to be effective in accurately normalizing target gene expression in A. kteniophella regardless of experimental conditions, while PP2A-2 had the lowest stability. Additionally, to verify the reliability of the recommended reference genes under different colored leaf samples, we examined the expression patterns of six genes associated with anthocyanin synthesis and regulation. Our findings suggested that PAP1 and ANS3 may be involved in leaf color change in A. kteniphella. This study successfully identified the ideal reference gene for qRT-PCR analysis in A. kteniphella, providing a foundation for future research on gene function, particularly in the biosynthesis of anthocyanins.
Collapse
Affiliation(s)
- Wentao Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Modern Agricultural Sciences, University of Chinese Acadamy of Science, Beijing, China
| | - Xiaohang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Modern Agricultural Sciences, University of Chinese Acadamy of Science, Beijing, China
| | - Xiaoxia Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Modern Agricultural Sciences, University of Chinese Acadamy of Science, Beijing, China
| | - Xingchou Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Science, Gannan Normal University, Ganzhou, China
| | - Lin Fu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hongfeng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
32
|
Bhargav P, Chaurasia S, Kumar A, Srivastava G, Pant Y, Chanotiya CS, Ghosh S. Unraveling the terpene synthase family and characterization of BsTPS2 contributing to (S)-( +)-linalool biosynthesis in Boswellia. PLANT MOLECULAR BIOLOGY 2023; 113:219-236. [PMID: 37898975 DOI: 10.1007/s11103-023-01384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023]
Abstract
Boswellia tree bark exudes oleo-gum resin in response to wounding, which is rich in terpene volatiles. But, the molecular and biochemical basis of wound-induced formation of resin volatiles remains poorly understood. Here, we combined RNA-sequencing (RNA-seq) and metabolite analysis to unravel the terpene synthase (TPS) family contributing to wound-induced biosynthesis of resin volatiles in B. serrata, an economically-important Boswellia species. The analysis of large-scale RNA-seq data of bark and leaf samples representing more than 600 million sequencing reads led to the identification of 32 TPSs, which were classified based on phylogenetic relationship into various TPSs families found in angiosperm species such as TPS-a, b, c, e/f, and g. Moreover, RNA-seq analysis of bark samples collected at 0-24 h post-wounding shortlisted 14 BsTPSs that showed wound-induced transcriptional upregulation in bark, suggesting their important role in wound-induced biosynthesis of resin volatiles. Biochemical characterization of a bark preferentially-expressed and wound-inducible TPS (BsTPS2) in vitro and in planta assays revealed its involvement in resin terpene biosynthesis. Bacterially-expressed recombinant BsTPS2 catalyzed the conversion of GPP and FPP into (S)-( +)-linalool and (E)-(-)-nerolidol, respectively, in vitro assays. However, BsTPS2 expression in Nicotiana benthamiana found that BsTPS2 is a plastidial linalool synthase. In contrast, cytosolic expression of BsTPS2 did not form any product. Overall, the present work unraveled a suite of TPSs that potentially contributed to the biosynthesis of resin volatiles in Boswellia and biochemically characterized BsTPS2, which is involved in wound-induced biosynthesis of (S)-( +)-linalool, a monoterpene resin volatile with a known role in plant defense.
Collapse
Affiliation(s)
- Pravesh Bhargav
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Seema Chaurasia
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Aashish Kumar
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Gaurav Srivastava
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Yatish Pant
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Phytochemistry Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Chandan Singh Chanotiya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Phytochemistry Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Sumit Ghosh
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
33
|
Renganathan VG, Renuka R, Vanniarajan C, Raveendran M, Elangovan A. Selection and validation of reliable reference genes for quantitative real-time PCR in Barnyard millet (Echinochloa spp.) under varied abiotic stress conditions. Sci Rep 2023; 13:15573. [PMID: 37731036 PMCID: PMC10511452 DOI: 10.1038/s41598-023-40526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/11/2023] [Indexed: 09/22/2023] Open
Abstract
Quantitative real-time polymerase chain reaction (RT-qPCR) using a stable reference gene is widely used for gene expression research. Barnyard millet (Echinochloa spp.) is an ancient crop in Asia and Africa that is widely cultivated for food and fodder. It thrives well under drought, salinity, cold, and heat environmental conditions, besides adapting to any soil type. To date, there are no gene expression studies performed to identify the potential candidate gene responsible for stress response in barnyard millet, due to lack of reference gene. Here, 10 candidate reference genes, Actin (ACT), α-tubulin (α-TUB), β-tubulin (β-TUB), RNA pol II (RP II), elongation factor-1 alpha (EF-1α), adenine phosphoribosyltransferase (APRT), TATA-binding protein-like factor (TLF), ubiquitin-conjugating enzyme 2 (UBC2), ubiquitin-conjugating enzyme E2L5 (UBC5) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were selected from mRNA sequences of E. crus-galli and E. colona var frumentacea. Five statistical algorithms (geNorm, NormFinder, BestKeeper, ΔCt, and RefFinder) were applied to determine the expression stabilities of these genes in barnyard millet grown under four different abiotic stress (drought, salinity, cold and heat) exposed at different time points. The UBC5 and ɑ-TUB in drought, GAPDH in salinity, GAPDH and APRT in cold, and EF-1α and RP II in heat were the most stable reference genes, whereas ß-TUB was the least stable irrespective of stress conditions applied. Further Vn/Vn + 1 analysis revealed two reference genes were sufficient to normalize gene expression across all sample sets. The suitability of identified reference genes was validated with Cu-ZnSOD (SOD1) in the plants exposed to different abiotic stress conditions. The results revealed that the relative quantification of the SOD1 gene varied according to reference genes and the number of reference genes used, thus highlighting the importance of the choice of a reference gene in such experiments. This study provides a foundational framework for standardizing RT-qPCR analyses, enabling accurate gene expression profiling in barnyard millet.
Collapse
Affiliation(s)
- Vellaichamy Gandhimeyyan Renganathan
- Department of Biotechnology, Centre of Excellence for Innovations, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Raman Renuka
- Department of Biotechnology, Centre of Excellence for Innovations, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India.
| | - Chockalingam Vanniarajan
- Anbil Dharmalingam Agricultural College & Research Institute, Tamil Nadu Agricultural University, Tiruchirappalli, India
| | - Muthurajan Raveendran
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Allimuthu Elangovan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
34
|
Yuan L, Liu H, Cao Y, Wu W. Transcription factor TERF1 promotes seed germination through HEXOKINASE 1 (HXK1)-mediated signaling pathway. JOURNAL OF PLANT RESEARCH 2023; 136:743-753. [PMID: 37233958 DOI: 10.1007/s10265-023-01471-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Seed germination, a vital process for plant growth and development, is regulated by ethylene. Previously, we showed that Tomato Ethylene Responsive Factor 1 (TERF1), an ethylene-responsive factor (ERF) transcription factor, could significantly promote seed germination by increasing glucose content. As glucose can function as a signaling molecule to regulate plant growth and development through HEXOKINASE 1 (HXK1), we aim to illustrate how TERF1 promotes seed germination through the HXK1-mediated signaling pathway. We showed that seeds overexpressing TERF1 exhibited more resistance to N-acetylglucosamine (NAG), an inhibitor of the HXK1- mediated signaling pathway. We identified genes regulated by TERF1 through HXK1 based on transcriptome analysis. Gene expression and phenotype analysis demonstrated that TERF1 repressed the ABA signaling pathway through HXK1, which promoted germination through activating the plasma membrane (PM) H+-ATPase. TERF1 also alleviated the endoplasmic reticulum (ER) stress to accelerate germination by maintaining reactive oxygen species (ROS) homeostasis through HXK1. Our findings provide new insights into the mechanism regulated by ethylene through the glucose-HXK1 signaling pathway during seed germination.
Collapse
Affiliation(s)
- Long Yuan
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing, 100081, China
| | - Hongzhi Liu
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing, 100081, China
| | - Yupeng Cao
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing, 100081, China
| | - Wei Wu
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing, 100081, China.
| |
Collapse
|
35
|
Xu G, Zheng Q, Wei P, Zhang J, Liu P, Zhang H, Zhai N, Li X, Xu X, Chen Q, Cao P, Zhao J, Zhou H. Metabolic engineering of a 1,8-cineole synthase enhances aphid repellence and increases trichome density in transgenic tobacco (Nicotiana tabacum L.). PEST MANAGEMENT SCIENCE 2023; 79:3342-3353. [PMID: 37132116 DOI: 10.1002/ps.7520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND The green peach aphid (Myzus persicae Sulzer) is a harmful agricultural pest that causes severe crop damage by directly feeding or indirectly vectoring viruses. 1,8-cineole synthase (CINS) is a multiproduct enzyme that synthesizes monoterpenes, with 1,8-cineole dominating the volatile organic compound profile. However, the relationship between aphid preference and CINS remains elusive. RESULTS Here, we present evidence that SoCINS, a protein from garden sage (Salvia officinalis), enhanced aphid repellence and increased trichome density in transgenic tobacco. Our results demonstrated that overexpression of SoCINS (SoCINS-OE) led to the emission of 1,8-cineole at a level of up to 181.5 ng per g fresh leaf. Subcellular localization assay showed that SoCINS localized to chloroplasts. A Y-tube olfactometer assay and free-choice assays revealed that SoCINS-OE plants had a repellent effect on aphids, without incurring developmental or fecundity-related penalties. Intriguingly, the SoCINS-OE plants displayed an altered trichome morphology, showing increases in trichome density and in the relative proportion of glandular trichomes, as well as enlarged glandular cells. We also found that SoCINS-OE plants had significantly higher jasmonic acid (JA) levels than wild-type plants. Furthermore, application of 1,8-cineole elicited increased JA content and trichome density. CONCLUSION Our results demonstrate that SoCINS-OE plants have a repellent effect on aphids, and suggest an apparent link between 1,8-cineole, JA and trichome density. This study presents a viable and sustainable approach for aphid management by engineering the expression of 1,8-cineole synthase gene in plants, and underscores the potential usefulness of monoterpene synthase for pest control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guoyun Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Qingxia Zheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Pan Wei
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Jianfeng Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Hui Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Niu Zhai
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Xiaoxu Li
- Tobacco Research Center, Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, P.R. China
| | - Xiangli Xu
- Tobacco Research Center, Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, P.R. China
| | - Qiansi Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| | - Jian Zhao
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, P.R. China
| | - Huina Zhou
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P.R. China
| |
Collapse
|
36
|
Lu J, Ye R, Qu M, Wang Y, Liang T, Lin J, Xie R, Ke Y, Gao J, Li C, Guo J, Tang W, Li W, Chen S. Combined transcriptome and proteome analysis revealed the molecular regulation mechanisms of zinc homeostasis and antioxidant machinery in tobacco in response to different zinc supplies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107919. [PMID: 37557018 DOI: 10.1016/j.plaphy.2023.107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
Zinc (Zn) is an essential micronutrient for plants. Adequate regulation of Zn uptake, transport and distribution, and adaptation to Zn-deficiency stress or Zn-excess toxicity are crucial for plant growth and development. However, little has been done to understand the molecular responses of plants toward different Zn supply levels. In the present study, we investigated the growth and physiological responses of tobacco seedlings grown under Zn-completely deficient, Zn-limiting, Zn-normal, and Zn-4-fold sufficient conditions, respectively, and demonstrated that Zn deficiency/limitation caused oxidative stress and impaired growth of tobacco plants. Combined transcriptome and proteome analysis revealed up-regulation of genes/proteins associated with Zn uptake and distribution, including ZIPs, NAS3s, and HMA1s, and up-regulation of genes/proteins involved in regulation of oxidative stress, including SODs, APX1s, GPX6, and GSTs in tobacco seedlings in response to Zn deficiency/limitation, suggesting that tobacco possessed mechanisms to regulate Zn homeostasis primarily through up-regulation of the ZIPs-NAS3s module, and to alleviate Zn deficiency/limitation-induced oxidative stress through activation of the antioxidant machinery. Our results provide novel insights into the adaptive mechanisms of tobacco in response to different Zn supplies, and would lay a theoretical foundation for development of varieties of tobacco or its relatives with high tolerance to Zn-deficiency.
Collapse
Affiliation(s)
- Jianjun Lu
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Rongrong Ye
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Mengyu Qu
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuemin Wang
- Fujian Institute of Tobacco Sciences, Fuzhou 350003, China
| | - Tingmin Liang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinbin Lin
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongrong Xie
- Fujian Institute of Tobacco Sciences, Fuzhou 350003, China; International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqin Ke
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingjuan Gao
- Fujian Institute of Tobacco Sciences, Fuzhou 350003, China; International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunying Li
- Fujian Institute of Tobacco Sciences, Fuzhou 350003, China
| | - Jinping Guo
- Fujian Institute of Tobacco Sciences, Fuzhou 350003, China
| | - Weiqi Tang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China.
| | - Wenqing Li
- Fujian Institute of Tobacco Sciences, Fuzhou 350003, China.
| | - Songbiao Chen
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
37
|
Wu Q, Zheng D, Lian N, Zhu X, Wu J. Hormonal Regulation and Stimulation Response of Jatropha curcas L. Homolog Overexpression on Tobacco Leaf Growth by Transcriptome Analysis. Int J Mol Sci 2023; 24:13183. [PMID: 37685991 PMCID: PMC10487882 DOI: 10.3390/ijms241713183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
The Flowering locus T (FT) gene encodes the florigen protein, which primarily regulates the flowering time in plants. Recent studies have shown that FT genes also significantly affect plant growth and development. The FT gene overexpression in plants promotes flowering and suppresses leaf and stem development. This study aimed to conduct a transcriptome analysis to investigate the multiple effects of Jatropha curcas L. homolog (JcFT) overexpression on leaf growth in tobacco plants. The findings revealed that JcFT overexpression affected various biological processes during leaf development, including plant hormone levels and signal transduction, lipid oxidation metabolism, terpenoid metabolism, and the jasmonic-acid-mediated signaling pathway. These results suggested that the effects of FT overexpression in plants were complex and multifaceted, and the combination of these factors might contribute to a reduction in the leaf size. This study comprehensively analyzed the effects of JcFT on leaf development at the transcriptome level and provided new insights into the function of FT and its homologous genes.
Collapse
Affiliation(s)
- Qiuhong Wu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.W.); (N.L.)
| | - Dongchao Zheng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
| | - Na Lian
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.W.); (N.L.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
| | - Xuli Zhu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.W.); (N.L.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
| | - Jun Wu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
- Sichuan-Chongqing Key Laboratory of Characteristic Biological Resources Research and Utilization, Chengdu 610065, China
| |
Collapse
|
38
|
Karki U, Perez Sanchez P, Chakraborty S, Dickey B, Vargas Ulloa J, Zhang N, Xu J. Intracellular trafficking and glycosylation of hydroxyproline-O-glycosylation module in tobacco BY-2 cells is dependent on medium composition and transcriptome analysis. Sci Rep 2023; 13:13506. [PMID: 37598266 PMCID: PMC10439957 DOI: 10.1038/s41598-023-40723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
Expression of recombinant proteins in plant cells with a "designer" hydroxyproline (Hyp)-O-glycosylated peptide (HypGP), such as tandem repeats of a "Ser-Pro" motif, has been shown to boost the secreted protein yields. However, dramatic secretion and Hyp-O-glycosylation of HypGP-tagged proteins can only be achieved when the plant cells were grown in nitrogen-deficient SH medium. Only trace amounts of secreted fusion protein were detected in MS medium. This study aims to gain a deeper understanding of the possible mechanism underlying these results by examining the intracellular trafficking and Hyp-O-glycosylation of enhanced green fluorescent protein (EGFP) fused with a (SP)32 tag, consisting of 32 repeats of a "Ser-Pro" motif, in tobacco BY-2 cells. When cells were grown in MS medium, the (SP)32-EGFP formed protein body-like aggregate and was retained in the ER, without undergoing Hyp-O-glycosylation. In contrast, the fusion protein becomes fully Hyp-O-glycosylated, and then secreted in SH medium. Transcriptome analysis of the BY-2 cells grown in SH medium vs. MS medium revealed over 16,000 DEGs, with many upregulated DEGs associated with the microtubule-based movement, movement of subcellular component, and microtubule binding. These DEGs are presumably responsible for the enhanced ER-Golgi transport of HypGP-tagged proteins, enabling their glycosylation and secretion in SH medium.
Collapse
Affiliation(s)
- Uddhab Karki
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA
- Molecular BioSciences Program, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Paula Perez Sanchez
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Sankalpa Chakraborty
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA
- Molecular BioSciences Program, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Berry Dickey
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, 72401, USA
| | | | - Ningning Zhang
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA
- Molecular BioSciences Program, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, 72401, USA.
- Molecular BioSciences Program, Arkansas State University, Jonesboro, AR, 72401, USA.
- College of Agriculture, Arkansas State University, Jonesboro, AR, 72401, USA.
| |
Collapse
|
39
|
Yang J, Xu J, Zhang Y, Cui J, Hu H, Xue J, Zhu L. Two R2R3-MYB transcription factors from Chinese cedar (Cryptomeria fortunei Hooibrenk) are involved in the regulation of secondary cell wall formation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107879. [PMID: 37422947 DOI: 10.1016/j.plaphy.2023.107879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/06/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
As the most abundant renewable energy source, wood comprises the secondary cell wall (SCW). SCW biosynthesis involves lignin and cellulose deposition. Increasing studies have illustrated that R2R3-MYB transcription factors (TFs) play pivotal roles in affecting lignin accumulation and SCW formation. Nevertheless, the regulatory roles of R2R3-MYBs are still unresolved in Cryptomeria fortunei Hooibrenk cambium and wood formation. To dissect the potentials of CfMYBs, we successfully cloned and intensively studied the functions of CfMYB4 and CfMYB5 in SCW formation and abiotic stress response. They both contained the conserved MYB domain capable of forming a special structure that could bind to the core motifs of downstream genes. The phylogenetic tree implied that two CfMYBs clustered into different evolutionary branches. They were predominantly expressed in the stem and were localized to the nucleus. Furthermore, CfMYB4 functioned as an activator to enhance lignin and cellulose accumulation, and increase the SCW thickness by elevating the expression levels of SCW-related genes. By contrast, CfMYB5 negatively regulated lignin and cellulose biosynthesis, and decreased SCW formation by reducing the expression of SCW biosynthetic genes. Our data not only highlight the regulatory functions of CfMYBs in lignin deposition but also provide critical insights into the development of strategies for the genetic improvement of Cryptomeria fortunei wood biomass.
Collapse
Affiliation(s)
- Junjie Yang
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Jin Xu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yingting Zhang
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiebing Cui
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Hailiang Hu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinyu Xue
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Lijuan Zhu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
40
|
Zhang X, Li J, Li M, Zhang S, Song S, Wang W, Wang S, Chang J, Xia Z, Zhang S, Jia H. NtHSP70-8b positively regulates heat tolerance and seed size in Nicotiana tabacum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107901. [PMID: 37494824 DOI: 10.1016/j.plaphy.2023.107901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/02/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Heat stress considerably restricts the geographical distribution of crops and affects their growth, development, and productivity. HSP70 plays a critical regulatory role in plant growth response to heat stress. However, the mechanisms of this regulatory remain poorly understood. Here, an HSP70 gene, NtHSP70-8b, which is involved in the heat stress response of tobacco, was cloned and identified. The expression of NtHSP70-8b was induced by exogenous abscisic acid (ABA) treatment and abiotic stress, including heat, drought, and salt. Notably, high NtHSP70-8b expression occurred under heat stress conditions, which was consistent with the β-glucuronidase histochemical analysis. Moreover, NtHSP70-8b overexpression markedly enhanced heat stress tolerance by changing the stomatal conductance and antioxidant capacity in tobacco leaves. qRT-PCR showed that the expression levels of ABA synthesis and response genes (NtNCED3 and NtAREB), stress defence genes (NtERD10C and NtLEA5), and other HSP genes (NtHSP90 and NtHSP26a) in NtHSP70-8b-overexpressing tobacco were high under heat stress. The interaction of NtHSP70-8b with NtHSP26a was further confirmed by a luciferase complementation imaging assay. In contrast, NtHSP70-8b knockout mutants showed significantly reduced antioxidant capacity compared to the wild type (WT) under heat stress conditions, suggesting that NtHSP70-8b acts as a positive regulator of heat stress in tobacco. Moreover, NtHSP70-8b overexpression increased the 1000-seed weight. Taken together, NtHSP70-8b is involved in the heat stress response, and NtHSP70-8b overexpression contributed to enhanced tolerance to heat stress, which is thus an essential gene with potential application value for developing heat stress-tolerant crops.
Collapse
Affiliation(s)
- Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Juxu Li
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Man Li
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shuaitao Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shanshan Song
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Weimin Wang
- China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou, 310024, China
| | - Shuai Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jianbo Chang
- Sanmenxia Branch of Henan Provincial Tobacco Corporation, Sanmenxia, 472000, China
| | - Zongliang Xia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Songtao Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Hongfang Jia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
41
|
Jiang J, Huang H, Gao Q, Li Y, Xiang H, Zeng W, Xu L, Liu X, Li J, Mi Q, Deng L, Yang W, Zhang J, Yang G, Li X. Effects of editing DFR genes on flowers, leaves, and roots of tobacco. BMC PLANT BIOLOGY 2023; 23:349. [PMID: 37407922 PMCID: PMC10320895 DOI: 10.1186/s12870-023-04307-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 05/22/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND DFR is a crucial structural gene in plant flavonoid and polyphenol metabolism, and DFR knockout (DFR-KO) plants may have increased biomass accumulation. It is uncertain whether DFR-KO has comparable effects in tobacco and what the molecular mechanism is. We employed the CRISPR/Cas9 method to generate a knockout homozygous construct and collected samples from various developmental phases for transcriptome and metabolome detection and analysis. RESULTS DFR-KO turned tobacco blossoms white on homozygous tobacco (Nicotiana tabacum) plants with both NtDFR1 and NtDFR2 knockout. RNA-seq investigation of anthesis leaf (LF), anthesis flower (FF), mature leaf (LM), and mature root (RM) variations in wild-type (CK) and DFR-KO lines revealed 2898, 276, 311, and 101 differentially expressed genes (DEGs), respectively. DFR-KO primarily affected leaves during anthesis. According to KEGG and GSEA studies, DFR-KO lines upregulated photosynthetic pathway carbon fixation and downregulated photosystem I and II genes. DFR-KO may diminish tobacco anthesis leaf photosynthetic light reaction but boost dark reaction carbon fixation. DFR-KO lowered the expression of pathway-related genes in LF, such as oxidative phosphorylation and proteasome, while boosting those in the plant-pathogen interaction and MAPK signaling pathways, indicating that it may increase biological stress resistance. DFR-KO greatly boosted the expression of other structural genes involved in phenylpropanoid production in FF, which may account for metabolite accumulation. The metabolome showed that LF overexpressed 8 flavonoid metabolites and FF downregulated 24 flavone metabolites. In DFR-KO LF, proteasome-related genes downregulated 16 amino acid metabolites and reduced free amino acids. Furthermore, the DEG analysis on LM revealed that the impact of DFR-KO on tobacco growth may progressively diminish with time. CONCLUSION The broad impact of DFR-KO on different phases and organs of tobacco development was thoroughly and methodically investigated in this research. DFR-KO decreased catabolism and photosynthetic light reactions in leaves during the flowering stage while increasing carbon fixation and disease resistance pathways. However, the impact of DFR-KO on tobacco growth steadily declined as it grew and matured, and transcriptional and metabolic modifications were consistent. This work offers a fresh insight and theoretical foundation for tobacco breeding and the development of gene-edited strains.
Collapse
Affiliation(s)
- Jiarui Jiang
- Technology Center, China Tobacco Yunnan Industrial Co. LTD, No. 181 Hongjin Road, Kunming, 650000, Yunnan Province, China
| | - Haitao Huang
- Technology Center, China Tobacco Yunnan Industrial Co. LTD, No. 181 Hongjin Road, Kunming, 650000, Yunnan Province, China
| | - Qian Gao
- Technology Center, China Tobacco Yunnan Industrial Co. LTD, No. 181 Hongjin Road, Kunming, 650000, Yunnan Province, China
| | - Yong Li
- Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, Jiangsu Province, China
| | - Haiying Xiang
- Technology Center, China Tobacco Yunnan Industrial Co. LTD, No. 181 Hongjin Road, Kunming, 650000, Yunnan Province, China
| | - Wanli Zeng
- Technology Center, China Tobacco Yunnan Industrial Co. LTD, No. 181 Hongjin Road, Kunming, 650000, Yunnan Province, China
| | - Li Xu
- Technology Center, China Tobacco Yunnan Industrial Co. LTD, No. 181 Hongjin Road, Kunming, 650000, Yunnan Province, China
| | - Xin Liu
- Technology Center, China Tobacco Yunnan Industrial Co. LTD, No. 181 Hongjin Road, Kunming, 650000, Yunnan Province, China
| | - Jing Li
- Technology Center, China Tobacco Yunnan Industrial Co. LTD, No. 181 Hongjin Road, Kunming, 650000, Yunnan Province, China
| | - Qili Mi
- Technology Center, China Tobacco Yunnan Industrial Co. LTD, No. 181 Hongjin Road, Kunming, 650000, Yunnan Province, China
| | - Lele Deng
- Technology Center, China Tobacco Yunnan Industrial Co. LTD, No. 181 Hongjin Road, Kunming, 650000, Yunnan Province, China
| | - Wenwu Yang
- Technology Center, China Tobacco Yunnan Industrial Co. LTD, No. 181 Hongjin Road, Kunming, 650000, Yunnan Province, China
| | - Jianduo Zhang
- Technology Center, China Tobacco Yunnan Industrial Co. LTD, No. 181 Hongjin Road, Kunming, 650000, Yunnan Province, China
| | - Guangyu Yang
- Technology Center, China Tobacco Yunnan Industrial Co. LTD, No. 181 Hongjin Road, Kunming, 650000, Yunnan Province, China
| | - Xuemei Li
- Technology Center, China Tobacco Yunnan Industrial Co. LTD, No. 181 Hongjin Road, Kunming, 650000, Yunnan Province, China.
| |
Collapse
|
42
|
Vysotskaya L, Akhiyarova G, Seldimirova O, Nuzhnaya T, Galin I, Ivanov R, Kudoyarova G. Effect of ipt Gene Induction in Transgenic Tobacco Plants on Hydraulic Conductance, Formation of Apoplastic Barriers and Aquaporin Activity under Heat Shock. Int J Mol Sci 2023; 24:9860. [PMID: 37373010 DOI: 10.3390/ijms24129860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Cytokinins are known to keep stomata open, which supports gas exchange and correlates with increased photosynthesis. However, keeping the stomata open can be detrimental if the increased transpiration is not compensated for by water supply to the shoots. In this study, we traced the effect of ipt (isopentenyl transferase) gene induction, which increases the concentration of cytokinins in transgenic tobacco plants, on transpiration and hydraulic conductivity. Since water flow depends on the conductivity of the apoplast, the deposition of lignin and suberin in the apoplast was studied by staining with berberine. The effect of an increased concentration of cytokinins on the flow of water through aquaporins (AQPs) was revealed by inhibition of AQPs with HgCl2. It was shown that an elevated concentration of cytokinins in ipt-transgenic plants increases hydraulic conductivity by enhancing the activity of aquaporins and reducing the formation of apoplastic barriers. The simultaneous effect of cytokinins on both stomatal and hydraulic conductivity makes it possible to coordinate the evaporation of water from leaves and its flow from roots to leaves, thereby maintaining the water balance and leaf hydration.
Collapse
Affiliation(s)
- Lidiya Vysotskaya
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Pr. Octyabrya 69, 450054 Ufa, Russia
| | - Guzel Akhiyarova
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Pr. Octyabrya 69, 450054 Ufa, Russia
| | - Oksana Seldimirova
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Pr. Octyabrya 69, 450054 Ufa, Russia
| | - Tatiana Nuzhnaya
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Pr. Octyabrya 69, 450054 Ufa, Russia
| | - Ilshat Galin
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Pr. Octyabrya 69, 450054 Ufa, Russia
| | - Ruslan Ivanov
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Pr. Octyabrya 69, 450054 Ufa, Russia
| | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Pr. Octyabrya 69, 450054 Ufa, Russia
| |
Collapse
|
43
|
Zhao Y, Mao W, Tang W, Soares MA, Li H. Wild Rosa Endophyte M7SB41-Mediated Host Plant's Powdery Mildew Resistance. J Fungi (Basel) 2023; 9:620. [PMID: 37367556 DOI: 10.3390/jof9060620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Our previous studies indicated that endophyte M7SB41 (Seimatosporium sp.) can significantly enhance host plants powdery mildew (PM) resistance. To recover the mechanisms, differentially expressed genes (DEGs) were compared between E+ (endophte-inoculated) and E- (endophyte-free) plants by transcriptomics. A total of 4094, 1200 and 2319 DEGs between E+ and E- were identified at 0, 24, and 72 h after plants had been infected with PM pathogen Golovinomyces cichoracearum, respectively. Gene expression pattern analysis displayed a considerable difference and temporality in response to PM stress between the two groups. Transcriptional profiling analysis revealed that M7SB41 induced plant resistance to PM through Ca2+ signaling, salicylic acid (SA) signaling, and the phenylpropanoid biosynthesis pathway. In particular, we investigated the role and the timing of the SA and jasmonic acid (JA)-regulated defensive pathways. Both transcriptomes and pot experiments showed that SA-signaling may play a prominent role in PM resistance conferred by M7SB41. Additionally, the colonization of M7SB41 could effectively increase the activities and the expression of defense-related enzymes under PM pathogen stress. Meanwhile, our study revealed reliable candidate genes from TGA (TGACG motif-binding factor), WRKY, and pathogenesis-related genes related to M7SB41-mediate resistance. These findings offer a novel insight into the mechanisms of endophytes in activating plant defense responses.
Collapse
Affiliation(s)
- Yi Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming 650500, China
| | - Wenqin Mao
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Wenting Tang
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Marcos Antônio Soares
- Department of Botany and Ecology, Federal University of Mato Grosso, Cuiabá 78060-900, Brazil
| | - Haiyan Li
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
44
|
Wei X, Shu J, Fahad S, Tao K, Zhang J, Chen G, Liang Y, Wang M, Chen S, Liao J. Polyphenol oxidases regulate pollen development through modulating flavonoids homeostasis in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107702. [PMID: 37099880 DOI: 10.1016/j.plaphy.2023.107702] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023]
Abstract
Pollen development is critical in plant reproduction. Polyphenol oxidases (PPOs) genes encode defense-related enzymes, but the role of PPOs in pollen development remains largely unexplored. Here, we characterized NtPPO genes, and then investigated their function in pollen via creating NtPPO9/10 double knockout mutant (cas-1), overexpression 35S::NtPPO10 (cosp) line and RNAi lines against all NtPPOs in Nicotiana tabacum. NtPPOs were abundantly expressed in the anther and pollen (especially NtPPO9/10). The pollen germination, polarity ratio and fruit weights were significantly reduced in the NtPPO-RNAi and cosp lines, while they were normal in cas-1 likely due to compensation by other NtPPO isoforms. Comparisons of metabolites and transcripts between the pollen of WT and NtPPO-RNAi, or cosp showed that decreased enzymatic activity of NtPPOs led to hyper-accumulation of flavonoids. This accumulation might reduce the content of ROS. Ca2+ and actin levels also decreased in pollen of the transgenic lines.Thus, the NtPPOs regulate pollen germination through the flavonoid homeostasis and ROS signal pathway. This finding provides novel insights into the native physiological functions of PPOs in pollen during reproduction.
Collapse
Affiliation(s)
- Xuemei Wei
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China; School of Engineering, Dali University, Dali, Yunnan Province, China
| | - Jie Shu
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Keliang Tao
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | - Jingwen Zhang
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | - Gonglin Chen
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | - Yingchong Liang
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China
| | | | - Suiyun Chen
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China.
| | - Jugou Liao
- School of Ecology and Environmental Sciences, Yunnan University, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming, 650091, China.
| |
Collapse
|
45
|
Vinodhini J, Rajendran L, Karthikeyan G. Engineering resistance against Cucumber mosaic virus in Nicotiana tabacum through virus derived transgene expressing hairpin RNA. 3 Biotech 2023; 13:143. [PMID: 37124993 PMCID: PMC10140202 DOI: 10.1007/s13205-023-03576-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/19/2023] [Indexed: 05/02/2023] Open
Abstract
Cucumber mosaic virus (CMV) is the one of notorious virus known for its ubiquitous nature and causes substantial yield loss worldwide. The resistance against the Cucumber mosaic virus (CMV) was envisaged in Nicotiana tabacum transgenic lines by introducing viral gene fragments. The chimeric hairpin RNA constructs incorporating 401 bp of coat protein, 411 bp of replicase protein and 361 bp of 2b gene were developed respectively and transformed into N. tabacum. The regenerated transgenic lines introduced with inverted repeats of CMV gene fragments exhibited enhanced resistance against CMV. The preliminary molecular screening and qPCR confirmed the integration of transgene in the transgenic lines. The spectrum of resistance in transgenic lines was evaluated by challenge inoculation with CMV and the resistance was determined through DAC-ELISA. The complete resistance was achieved in the hpRNA-CP transformant with a very low titre (0.029) of CMV followed by hpRNA-REP (0.099) with no symptoms. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03576-1.
Collapse
Affiliation(s)
- J. Vinodhini
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - L. Rajendran
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - G. Karthikeyan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| |
Collapse
|
46
|
Gossart N, Berhin A, Sergeant K, Alam I, André C, Hausman JF, Boutry M, Hachez C. Engineering Nicotiana tabacum trichomes for triterpenic acid production. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111573. [PMID: 36563941 DOI: 10.1016/j.plantsci.2022.111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
In this work, we aimed at implementing the biosynthesis of triterpenic acids in Nicotiana tabacum glandular trichomes. Although endogenous genes coding for enzymes involved in such biosynthetic pathway are found in the Nicotiana tabacum genome, implementing such pathway specifically in glandular trichomes required to boost endogenous enzymatic activities. Five transgenes coding for a farnesyl-diphosphate synthase, a squalene synthase, a squalene epoxidase, a beta-amyrin synthase and a beta-amyrin 28-monooxygenase were introduced in N.tabacum, their expression being driven by pMALD1, a trichome-specific transcriptional promoter. This study aimed at testing whether sinking isoprenoid precursors localized in plastids, by exploiting potential cross-talks allowing the exchange of terpenoid pools from the chloroplast to the cytosol, could be a way to improve overall yield. By analyzing metabolites extracted from entire leaves, a low amount of ursolic acid was detected in plants expressing the five transgenes. Our study shows that the terpene biosynthetic pathway could be, in part, redirected in N.tabacum glandular trichomes with no deleterious phenotype at the whole plant level (chlorosis, dwarfism,…). In light of our results, possible ways to improve the final yield are discussed.
Collapse
Affiliation(s)
- Nicola Gossart
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Alice Berhin
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Kjell Sergeant
- Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Iftekhar Alam
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium; Plant Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| | - Christelle André
- Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg; The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, New Zealand
| | - Jean-François Hausman
- Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Marc Boutry
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Charles Hachez
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
47
|
Wu C, Xiang Y, Huang P, Zhang M, Fang M, Yang W, Li W, Cao F, Liu LH, Pu W, Duan S. Molecular identification and physiological functional analysis of NtNRT1.1B that mediated nitrate long-distance transport and improved plant growth when overexpressed in tobacco. FRONTIERS IN PLANT SCIENCE 2023; 14:1078978. [PMID: 36925751 PMCID: PMC10011135 DOI: 10.3389/fpls.2023.1078978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Although recent physiological studies demonstrate that flue-cured tobacco preferentially utilizes nitrate ( NO 3 - ) or ammonium nitrate (NH4NO3), and possesses both high- and low-affinity uptake systems for NO 3 - , little is known about the molecular component(s) responsible for acquisition and translocation in this crop. Here we provide experimental data showing that NtNRT1.1B with a 1,785-bp coding sequence exhibited a function in mediating NO 3 - transport associated with tobacco growth on NO 3 - nutrition. Heterologous expression of NtNRT1.1B in the NO 3 - uptake-defective yeast Hp△ynt1 enabled a growth recovery of the mutant on 0.5 mM NO 3 - , suggesting a possible molecular function of NtNRT1.1B in the import of NO 3 - into cells. Transient expression of NtNRT1.1B::green fluorescent protein (GFP) in tobacco leaf cells revealed that NtNRT1.1B targeted mainly the plasma membrane, indicating the possibility of NO 3 - permeation across cell membranes via NtNRT1.1B. Furthermore, promoter activity assays using a GFP marker clearly indicated that NtNRT1.1B transcription in roots may be down-regulated by N starvation and induced by N resupply, including NO 3 - , after 3 days' N depletion. Significantly, constitutive overexpression of NtNRT1.1B could remarkably enhance tobacco growth by showing a higher accumulation of biomass and total N, NO 3 - , and even NH 4 + in plants supplied with NO 3 - ; this NtNRT1.1B-facilitated N acquisition/accumulation could be strengthened by short-term 15N- NO 3 - root influx assays, which showed 15%-20% higher NO 3 - deposition in NtNRT1.1B-overexpressors as well as a high affinity of NtNRT1.1B for NO 3 - at a K m of around 30-45 µM. Together with the detection of NtNRT1.1B promoter activity in the root stele and shoot-stem vascular tissues, and higher NO 3 - in both xylem exudate and the apoplastic washing fluid of NtNRT1.1B-transgenic lines, NtNRT1.1B could be considered as a valuable molecular breeding target aiming at improving crop N-use efficiency by manipulating the absorption and long-distance distribution/transport of nitrate, thus adding a new functional homolog as a nitrate permease to the plant NRT1 family.
Collapse
Affiliation(s)
- Changzheng Wu
- College of Resources and Environmental Sciences, Department of Plant Nutrition, Key Lab of Plant-Soil Interaction of Ministry of Education, China Agricultural University, Beijing, China
| | - Yucheng Xiang
- College of Resources and Environmental Sciences, Department of Plant Nutrition, Key Lab of Plant-Soil Interaction of Ministry of Education, China Agricultural University, Beijing, China
| | - Pingjun Huang
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Mingfa Zhang
- Hunan Tobacco Research Institute (Changsha, Chenzhou, Xiangxi), China National Tobacco Corporation Hunan Company, Changsha, China
| | - Ming Fang
- Hunan Tobacco Research Institute (Changsha, Chenzhou, Xiangxi), China National Tobacco Corporation Hunan Company, Changsha, China
| | - Weiqin Yang
- College of Resources and Environmental Sciences, Department of Plant Nutrition, Key Lab of Plant-Soil Interaction of Ministry of Education, China Agricultural University, Beijing, China
| | - Wenrui Li
- College of Resources and Environmental Sciences, Department of Plant Nutrition, Key Lab of Plant-Soil Interaction of Ministry of Education, China Agricultural University, Beijing, China
| | - Fengchun Cao
- College of Resources and Environmental Sciences, Department of Plant Nutrition, Key Lab of Plant-Soil Interaction of Ministry of Education, China Agricultural University, Beijing, China
| | - Lai-Hua Liu
- College of Resources and Environmental Sciences, Department of Plant Nutrition, Key Lab of Plant-Soil Interaction of Ministry of Education, China Agricultural University, Beijing, China
| | - Wenxuan Pu
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Shuhui Duan
- Hunan Tobacco Research Institute (Changsha, Chenzhou, Xiangxi), China National Tobacco Corporation Hunan Company, Changsha, China
| |
Collapse
|
48
|
Overexpression of TgERF1, a Transcription Factor from Tectona grandis, Increases Tolerance to Drought and Salt Stress in Tobacco. Int J Mol Sci 2023; 24:ijms24044149. [PMID: 36835560 PMCID: PMC9961280 DOI: 10.3390/ijms24044149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Teak (Tectona grandis) is one of the most important wood sources, and it is cultivated in tropical regions with a significant market around the world. Abiotic stresses are an increasingly common and worrying environmental phenomenon because it causes production losses in both agriculture and forestry. Plants adapt to these stress conditions by activation or repression of specific genes, and they synthesize numerous stress proteins to maintain their cellular function. For example, APETALA2/ethylene response factor (AP2/ERF) was found to be involved in stress signal transduction. A search in the teak transcriptome database identified an AP2/ERF gene named TgERF1 with a key AP2/ERF domain. We then verified that the TgERF1 expression is rapidly induced by Polyethylene Glycol (PEG), NaCl, and exogenous phytohormone treatments, suggesting a potential role in drought and salt stress tolerance in teak. The full-length coding sequence of TgERF1 gene was isolated from teak young stems, characterized, cloned, and constitutively overexpressed in tobacco plants. In transgenic tobacco plants, the overexpressed TgERF1 protein was localized exclusively in the cell nucleus, as expected for a transcription factor. Furthermore, functional characterization of TgERF1 provided evidence that TgERF1 is a promising candidate gene to be used as selective marker on plant breeding intending to improve plant stress tolerance.
Collapse
|
49
|
Zhang G, Zhang Z, Wan Q, Zhou H, Jiao M, Zheng H, Lu Y, Rao S, Wu G, Chen J, Yan F, Peng J, Wu J. Selection and Validation of Reference Genes for RT-qPCR Analysis of Gene Expression in Nicotiana benthamiana upon Single Infections by 11 Positive-Sense Single-Stranded RNA Viruses from Four Genera. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040857. [PMID: 36840204 PMCID: PMC9964245 DOI: 10.3390/plants12040857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 05/17/2023]
Abstract
Quantitative real-time PCR (RT-qPCR) is a widely used method for studying alterations in gene expression upon infections caused by diverse pathogens such as viruses. Positive-sense single-stranded (ss(+)) RNA viruses form a major part of all known plant viruses, and some of them are damaging pathogens of agriculturally important crops. Analysis of gene expression following infection by ss(+) RNA viruses is crucial for the identification of potential anti-viral factors. However, viral infections are known to globally affect gene expression and therefore selection and validation of reference genes for RT-qPCR is particularly important. In this study, the expression of commonly used reference genes for RT-qPCR was studied in Nicotiana benthamiana following single infection by 11 ss(+) RNA viruses, including five tobamoviruses, four potyviruses, one potexvirus and one polerovirus. Stability of gene expression was analyzed in parallel by four commonly used algorithms: geNorm, NormFinder, BestKeeper, and Delta CT, and RefFinder was finally used to summarize all the data. The most stably expressed reference genes differed significantly among the viruses, even when those viruses were from the same genus. Our study highlights the importance of the selection and validation of reference genes upon different viral infections.
Collapse
Affiliation(s)
- Ge Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhuo Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Qionglian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Huijie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Mengting Jiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Correspondence: (J.P.); (J.W.)
| | - Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Correspondence: (J.P.); (J.W.)
| |
Collapse
|
50
|
Wang Q, Guo C, Yang S, Zhong Q, Tian J. Screening and Verification of Reference Genes for Analysis of Gene Expression in Garlic ( Allium sativum L.) under Cold and Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:763. [PMID: 36840111 PMCID: PMC9963267 DOI: 10.3390/plants12040763] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The principal objective of this study was to screen and verify reference genes appropriate for gene expression evaluation during plant growth and development under distinct growth conditions. Nine candidate reference genes were screened based on garlic transcriptome sequence data. RT-qPCR was used to detect the expression levels of the aforementioned reference genes in specific tissues under drought and cold stress. Then, geNorm, NormFinder, BestKeeper, and ReFinder were used to consider the consistency of the expression levels of candidate reference genes. Finally, the stress-responsive gene expression of ascorbate peroxidase (APX) was quantitatively evaluated to confirm the chosen reference genes. Our results indicated that there were variations in the abundance and stability of nine reference gene transcripts underneath cold and drought stress, among which ACT and UBC-E2 had the highest transcript abundance, and 18S rRNA and HIS3 had the lowest transcript abundance. UBC and UBC-E2 were the most stably expressed genes throughout all samples; UBC and UBC-E2 were the most stably expressed genes during cold stress, and ACT and UBC were the most stably expressed genes under drought stress. The most stably expressed genes in roots, pseudostems, leaves, and cloves were EF1, ACT, HIS3, UBC, and UBC-E2, respectively, while GAPDH was the most unstable gene during drought and cold stress conditions and in exclusive tissues. Taking the steady reference genes UBC-E2, UBC, and ACT as references during drought and cold stress, the reliability of the expression levels was further demonstrated by detecting the expression of AsAPX. Our work thereby offers a theoretical reference for the evaluation of gene expression in garlic in various tissues and under stress conditions.
Collapse
Affiliation(s)
- Qizhang Wang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences of Qinghai University, Xining 810016, China
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chunqian Guo
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences of Qinghai University, Xining 810016, China
| | - Shipeng Yang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences of Qinghai University, Xining 810016, China
| | - Qiwen Zhong
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences of Qinghai University, Xining 810016, China
| | - Jie Tian
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences of Qinghai University, Xining 810016, China
| |
Collapse
|