1
|
Wilson KM, Dwyer T, Ramirez AV, Arquilla AM, Seelke AMH, Trainor BC, Saltzman W. Parenthood and gene expression of oxytocin receptors and vasopressin receptors in sensory cortices of the male California mouse (Peromyscus californicus). Horm Behav 2024; 167:105661. [PMID: 39549482 DOI: 10.1016/j.yhbeh.2024.105661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/18/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
The onset of parental care is associated with shifts in parents' perception of sensory stimuli from infants, mediated by neural plasticity in sensory systems. In new mothers, changes in auditory and olfactory processing have been linked to plasticity at several points along both sensory pathways, including cortical changes that are modulated, at least in part, by oxytocin. In males of biparental species, vasopressin, in addition to oxytocin, is important for modulating parental behavior; however, little is known about sensory plasticity in new fathers. We examined variation in the mRNA expression of oxytocin and vasopressin receptors (Oxtr and Avpr1a) in sensory cortices of virgin males, paired nonbreeding males, and new fathers in the biparental California mouse (Peromyscus californicus), and variation among cortices using the visual cortex for comparison. Reproductive status did not affect gene expression for either receptor, but compared to the visual cortex, expression of both receptors was higher in the left auditory cortex and lower in the anterior olfactory nucleus. Additionally, expression for both receptors was higher in the left auditory cortex compared to the right auditory cortex. While oxytocin and vasopressin receptor expression may remain stable across reproductive stages in male California mice, our findings provide support for auditory cortex lateralization, with the left auditory cortex possibly displaying higher sensitivity to both oxytocin and vasopressin compared to the right.
Collapse
Affiliation(s)
- Kerianne M Wilson
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA; Department of Biology, Pomona College, Claremont, CA, USA
| | - Tjien Dwyer
- Department of Psychology and Center for Neuroscience, University of California, Davis, CA, USA
| | - Alison V Ramirez
- Department of Psychology and Center for Neuroscience, University of California, Davis, CA, USA
| | - April M Arquilla
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Adele M H Seelke
- Department of Psychology and Center for Neuroscience, University of California, Davis, CA, USA
| | - Brian C Trainor
- Department of Psychology and Center for Neuroscience, University of California, Davis, CA, USA.
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA; Neuroscience Graduate Program, University of California Riverside, CA, USA
| |
Collapse
|
2
|
Fang S, Luo Z, Wei Z, Qin Y, Zheng J, Zhang H, Jin J, Li J, Miao C, Yang S, Li Y, Liang Z, Yu XD, Zhang XM, Xiong W, Zhu H, Gan WB, Huang L, Li B. Sexually dimorphic control of affective state processing and empathic behaviors. Neuron 2024; 112:1498-1517.e8. [PMID: 38430912 DOI: 10.1016/j.neuron.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Recognizing the affective states of social counterparts and responding appropriately fosters successful social interactions. However, little is known about how the affective states are expressed and perceived and how they influence social decisions. Here, we show that male and female mice emit distinct olfactory cues after experiencing distress. These cues activate distinct neural circuits in the piriform cortex (PiC) and evoke sexually dimorphic empathic behaviors in observers. Specifically, the PiC → PrL pathway is activated in female observers, inducing a social preference for the distressed counterpart. Conversely, the PiC → MeA pathway is activated in male observers, evoking excessive self-grooming behaviors. These pathways originate from non-overlapping PiC neuron populations with distinct gene expression signatures regulated by transcription factors and sex hormones. Our study unveils how internal states of social counterparts are processed through sexually dimorphic mechanisms at the molecular, cellular, and circuit levels and offers insights into the neural mechanisms underpinning sex differences in higher brain functions.
Collapse
Affiliation(s)
- Shunchang Fang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhengyi Luo
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zicheng Wei
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuxin Qin
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jieyan Zheng
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hongyang Zhang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jianhua Jin
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiali Li
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Chenjian Miao
- Institute on Aging, Hefei, China and Brain Disorders, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Shana Yang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yonglin Li
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zirui Liang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiao-Dan Yu
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiao Min Zhang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wei Xiong
- Institute on Aging, Hefei, China and Brain Disorders, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Hongying Zhu
- Institute on Aging, Hefei, China and Brain Disorders, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | | | - Lianyan Huang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou 510655, China.
| | - Boxing Li
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou 510655, China.
| |
Collapse
|
3
|
Mishra S, Grewal J, Wal P, Bhivshet GU, Tripathi AK, Walia V. Therapeutic potential of vasopressin in the treatment of neurological disorders. Peptides 2024; 174:171166. [PMID: 38309582 DOI: 10.1016/j.peptides.2024.171166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Vasopressin (VP) is a nonapeptide made of nine amino acids synthesized by the hypothalamus and released by the pituitary gland. VP acts as a neurohormone, neuropeptide and neuromodulator and plays an important role in the regulation of water balance, osmolarity, blood pressure, body temperature, stress response, emotional challenges, etc. Traditionally VP is known to regulate the osmolarity and tonicity. VP and its receptors are widely expressed in the various region of the brain including cortex, hippocampus, basal forebrain, amygdala, etc. VP has been shown to modulate the behavior, stress response, circadian rhythm, cerebral blood flow, learning and memory, etc. The potential role of VP in the regulation of these neurological functions have suggested the therapeutic importance of VP and its analogues in the management of neurological disorders. Further, different VP analogues have been developed across the world with different pharmacotherapeutic potential. In the present work authors highlighted the therapeutic potential of VP and its analogues in the treatment and management of various neurological disorders.
Collapse
Affiliation(s)
- Shweta Mishra
- SGT College of Pharmacy, SGT University, Gurugram, India
| | - Jyoti Grewal
- Maharisi Markandeshwar University, Sadopur, India
| | - Pranay Wal
- Pranveer Singh Institute of Pharmacy, Kanpur, India
| | | | | | - Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, India.
| |
Collapse
|
4
|
Lee S, Cheong Y, Ryu Y, Kosaka H, Jung M. Vasotocin receptor gene genotypes moderate the relationship between cortical thickness and sensory processing. Transl Psychiatry 2023; 13:356. [PMID: 37990008 PMCID: PMC10663457 DOI: 10.1038/s41398-023-02657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Sensory processing is the process by which the central nervous system gathers, interprets, and regulates sensory stimuli in response to environmental cues. However, our understanding of the genetic factors and neuroanatomical correlations that influence sensory processing is limited. The vasotocin system modulates sensory input responsiveness, making it a potential candidate for further investigation. Additionally, human neuroimaging studies have demonstrated that the ability to modulate sensory stimuli is related to neuroanatomical features such as cortical thickness. Therefore, this study aimed to examine the relationship between functional polymorphisms in vasotocin receptor (VTR) genes, sensory profiles, and neuroanatomical correlations. We used structural magnetic resonance imaging (MRI) and the Adolescent/Adult Sensory Profile (AASP) questionnaire in 98 healthy adult participants to assess sensory processing and identified seven single nucleotide polymorphisms. We found that A-allele carriers of rs1042615 in VTR had higher scores for "sensory sensitivity" and "sensation avoiding". Moreover, higher scores for three AASP subscales were associated with decreased cortical thickness in various regions, including the right precentral, paracentral, and fusiform gyri, as well as bilateral inferior temporal gyri. This study sheds light on the potential role of genetic variations in the VTR in modulating sensory processing and correlation with cortical thickness which has future implications for better understanding sensory abnormalities in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Seonkyoung Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Yongjeon Cheong
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Yeseul Ryu
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, University of Fukui, Eiheiji, Fukui, Japan.
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Eiheiji, Japan.
| | - Minyoung Jung
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
| |
Collapse
|
5
|
Fam BSDO, Vargas-Pinilla P, Paré P, Landau L, Viscardi LH, Pissinatti A, Falótico T, Maestri R, Bortolini MC. Exploring the diversity of AVPR2 in Primates and its evolutionary implications. Genet Mol Biol 2023; 46:e20230045. [PMID: 37930141 PMCID: PMC10626583 DOI: 10.1590/1678-4685-gmb-2023-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/09/2023] [Indexed: 11/07/2023] Open
Abstract
The current study focuses on the investigation of AVPR2 (VTR2C) protein-coupled receptor variants specific to different primate taxa. AVPR2 is activated by the neurohormone AVP, which modulates physiological processes, including water homeostasis. Our findings reveal positive selection at three AVPR2 sites at positions 190, 250, and 346. Variation at position 250 is associated with human Congenital Nephrogenic Diabetes Insipidus (cNDI), a condition characterized by excessive water loss. Other 13 functional sites with potential adaptive relevance include positions 185, 202, 204, and 252 associated with cNDI. We identified SH3-binding motifs in AVPR2's ICL3 and N-terminus domains, with some losses observed in clades of Cercopithecidae, Callitrichinae, and Atelidae. SH3-binding motifs are crucial in regulating cellular physiology, indicating that the differences may be adaptive. Co-evolution was found between AVPR2 residues and those in the AVP signal peptide/Neurophysin-2 and AQP2, other molecules in the same signaling cascade. No significant correlation was found between these Primates' taxon-specific variants and the bioclimatic variables of the areas where they live. Distinct co-evolving amino acid sequences in functional sites were found in Platyrrhini and Catarrhini, which may have adaptive implications involving glucocorticoid hormones, suggesting varied selective pressures. Further studies are required to confirm these results.
Collapse
Affiliation(s)
- Bibiana Sampaio de Oliveira Fam
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| | - Pedro Vargas-Pinilla
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
- Universidade de São Paulo, Faculdade de Medicina, Departamento de
Bioquímica e Imunologia, Ribeirão Preto, SP, Brazil
| | - Pâmela Paré
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| | - Luane Landau
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| | - Lucas H. Viscardi
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| | | | - Tiago Falótico
- Universidade de São Paulo, Escola de Artes, Ciências e Humanidades,
São Paulo, SP, Brazil
| | - Renan Maestri
- Universidade Federal do Rio Grande do Sul, Departamento de Ecologia,
Laboratório de Ecomorfologia e Macroevolução, Porto Alegre, RS, Brazil
| | - Maria Cátira Bortolini
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Hernández-Pérez OR, Hernández VS, Zetter MA, Eiden LE, Zhang L. Nucleus of the lateral olfactory tract: A hub linking the water homeostasis-associated supraoptic nucleus-arginine vasopressin circuit and neocortical regions to promote social behavior under osmotic challenge. J Neuroendocrinol 2023; 35:e13202. [PMID: 36283814 PMCID: PMC10027625 DOI: 10.1111/jne.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
Homeostatic challenges may alter the drive for social interaction. The neural activity that prompts this motivation remains poorly understood. In the present study, we identify direct projections from the hypothalamic supraoptic nucleus to the cortico-amygdalar nucleus of the lateral olfactory tract (NLOT). Dual in situ hybridization with probes for pituitary adenylate cyclase-activating polypeptide (PACAP), as well as vesicular glutamate transporter (VGLUT)1, VGLUT2, V1a and V1b, revealed a population of vasopressin-receptive PACAPergic neurons in NLOT layer 2 (NLOT2). Water deprivation (48 h, WD48) increased sociability compared to euhydrated subjects, as assessed with the three-chamber social interaction test (3CST). Fos expression immunohistochemistry showed NLOT and its main efferent regions had further increases in rats subjected to WD48 + 3CST. These regions strongly expressed PAC1 mRNA. Microinjections of arginine vasopressin (AVP) into the NLOT produced similar changes in sociability to water deprivation, and these were reduced by co-injection of V1a or V1b antagonists along with AVP. We conclude that, during challenge to water homeostasis, there is a recruitment of a glutamatergic-multi-peptidergic cooperative circuit that promotes social behavior.
Collapse
Affiliation(s)
- Oscar R. Hernández-Pérez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico
- Authors contributed equally to this work
| | - Vito S. Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico
- Authors contributed equally to this work
| | - Mario A. Zetter
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico
| | - Lee E. Eiden
- National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA
| | - Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico
| |
Collapse
|
7
|
Brunert D, Quintela RM, Rothermel M. The anterior olfactory nucleus revisited - an emerging role for neuropathological conditions? Prog Neurobiol 2023:102486. [PMID: 37343762 DOI: 10.1016/j.pneurobio.2023.102486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Olfaction is an important sensory modality for many species and greatly influences animal and human behavior. Still, much about olfactory perception remains unknown. The anterior olfactory nucleus is one of the brain's central early olfactory processing areas. Located directly posterior to the olfactory bulb in the olfactory peduncle with extensive in- and output connections and unique cellular composition, it connects olfactory processing centers of the left and right hemispheres. Almost 20 years have passed since the last comprehensive review on the anterior olfactory nucleus has been published and significant advances regarding its anatomy, function, and pathophysiology have been made in the meantime. Here we briefly summarize previous knowledge on the anterior olfactory nucleus, give detailed insights into the progress that has been made in recent years, and map out its emerging importance in translational research of neurological diseases.
Collapse
Affiliation(s)
- Daniela Brunert
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | | | - Markus Rothermel
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany.
| |
Collapse
|
8
|
Rigney N, de Vries GJ, Petrulis A. Modulation of social behavior by distinct vasopressin sources. Front Endocrinol (Lausanne) 2023; 14:1127792. [PMID: 36860367 PMCID: PMC9968743 DOI: 10.3389/fendo.2023.1127792] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
The neuropeptide arginine-vasopressin (AVP) is well known for its peripheral effects on blood pressure and antidiuresis. However, AVP also modulates various social and anxiety-related behaviors by its actions in the brain, often sex-specifically, with effects typically being stronger in males than in females. AVP in the nervous system originates from several distinct sources which are, in turn, regulated by different inputs and regulatory factors. Based on both direct and indirect evidence, we can begin to define the specific role of AVP cell populations in social behavior, such as, social recognition, affiliation, pair bonding, parental behavior, mate competition, aggression, and social stress. Sex differences in function may be apparent in both sexually-dimorphic structures as well as ones without prominent structural differences within the hypothalamus. The understanding of how AVP systems are organized and function may ultimately lead to better therapeutic interventions for psychiatric disorders characterized by social deficits.
Collapse
Affiliation(s)
- Nicole Rigney
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | | | | |
Collapse
|
9
|
Johnson CE, Hammock EAD, Dewan AK. Vasopressin receptor 1a, oxytocin receptor, and oxytocin knockout male and female mice display normal perceptual abilities towards non-social odorants. Horm Behav 2023; 148:105302. [PMID: 36628861 PMCID: PMC10067158 DOI: 10.1016/j.yhbeh.2022.105302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
Genetic knockouts of the vasopressin receptor 1a (Avpr1a), oxytocin receptor (Oxtr), or oxytocin (Oxt) gene in mice have helped cement the causal relationship between these neuropeptide systems and various social behaviors (e.g., social investigation, recognition, and communication, as well as territoriality and aggression). In mice, these social behaviors depend upon the olfactory system. Thus, it is critical to assess the olfactory capabilities of these knockout models to accurately interpret the observed differences in social behavior. Prior studies utilizing these transgenic mice have sought to test for baseline deficits in olfactory processing; predominantly through use of odor habituation/dishabituation tasks, buried food tests, or investigation assays using non-social odorants. While informative, these assays rely on the animal's intrinsic motivation and locomotor behavior to measure olfactory capabilities and thus, often yield mixed results. Instead, psychophysical analyses using operant conditioning procedures and flow-dilution olfactometry are ideally suited to precisely quantify olfactory perception. In the present study, we used these methods to assess the main olfactory capabilities of adult male and female Avpr1a, Oxtr, and Oxt transgenic mice to volatile non-social odorants. Our results indicate that homozygous and heterozygous knockout mice of all three strains have the same sensitivity and discrimination ability as their wild-type littermates. These data strongly support the hypothesis that the observed social deficits of these global knockout mice are not due to baseline deficits of their main olfactory system.
Collapse
Affiliation(s)
- Chloe Elise Johnson
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL, United States.
| | - Elizabeth Anne Dunn Hammock
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL, United States.
| | - Adam Kabir Dewan
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL, United States.
| |
Collapse
|
10
|
Szczepańska-Sadowska E, Żera T. Vasopressin: a possible link between hypoxia and hypertension. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cardiovascular and respiratory diseases are frequently associated with transient and prolonged hypoxia, whereas hypoxia exerts pro-hypertensive effects, through stimulation of the sympathetic system and release of pressor endocrine factors. This review is focused on the role of arginine vasopressin (AVP) in dysregulation of the cardiovascular system during hypoxia associated with cardiovascular disorders. AVP is synthesized mainly in the neuroendocrine neurons of the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON), which send axons to the posterior pituitary and various regions of the central nervous system (CNS). Vasopressinergic neurons are innervated by multiple neuronal projections releasing several neurotransmitters and other regulatory molecules. AVP interacts with V1a, V1b and V2 receptors that are present in the brain and peripheral organs, including the heart, vessels, lungs, and kidneys. Release of vasopressin is intensified during hypernatremia, hypovolemia, inflammation, stress, pain, and hypoxia which frequently occur in cardiovascular patients, and blood AVP concentration is markedly elevated in cardiovascular diseases associated with hypoxemia. There is evidence that hypoxia stimulates AVP release through stimulation of chemoreceptors. It is suggested that acting in the carotid bodies, AVP may fine-tune respiratory and hemodynamic responses to hypoxia and that this effect is intensified in hypertension. There is also evidence that during hypoxia, augmentation of pro-hypertensive effects of vasopressin may result from inappropriate interaction of this hormone with other compounds regulating the cardiovascular system (catecholamines, angiotensins, natriuretic peptides, steroids, nitric oxide). In conclusion, current literature indicates that abnormal mutual interactions between hypoxia and vasopressin may significantly contribute to pathogenesis of hypertension.
Collapse
Affiliation(s)
- Ewa Szczepańska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Tymoteusz Żera
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
11
|
Baba K, Kawasaki M, Nishimura H, Suzuki H, Matsuura T, Ikeda N, Fujitani T, Yamanaka Y, Tsukamoto M, Ohnishi H, Yoshimura M, Maruyama T, Sanada K, Sonoda S, Nishimura K, Tanaka K, Onaka T, Ueta Y, Sakai A. Upregulation of the hypothalamo-neurohypophysial system and activation of vasopressin neurones attenuates hyperalgesia in a neuropathic pain model rat. Sci Rep 2022; 12:13046. [PMID: 35906406 PMCID: PMC9338054 DOI: 10.1038/s41598-022-17477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022] Open
Abstract
Arginine vasopressin (AVP) is a hypothalamic neurosecretory hormone well known as an antidiuretic, and recently reported to be involved in pain modulation. The expression kinetics of AVP and its potential involvement in the descending pain modulation system (DPMS) in neuropathic pain (NP) remains unclear. We investigated AVP expression and its effects on mechanical and thermal nociceptive thresholds using a unilateral spinal nerve ligation (SNL) model. All rats with SNL developed NP. Intensities of enhanced green fluorescent protein (eGFP) in the supraoptic and paraventricular nuclei, median eminence, and posterior pituitary were significantly increased at 7 and 14 days post-SNL in AVP-eGFP rats. In situ hybridisation histochemistry revealed significantly increased AVP mRNA expression at 14 days post-SNL compared with the sham control group. The chemogenetic activation of AVP neurones significantly attenuated mechanical and thermal hyperalgesia with elevated plasma AVP concentration. These analgesic effects were suppressed by pre-administration with V1a receptor antagonist. AVP neurones increased the neuronal activity of serotonergic dorsal raphe, noradrenergic locus coeruleus, and inhibitory interneurones in the spinal dorsal horn. These results suggest that the hypothalamo-neurohypophysial system of AVP is upregulated in NP and activated endogenous AVP exerts analgesic effects via the V1a receptors. AVP neurones may activate the DPMS.
Collapse
Affiliation(s)
- Kazuhiko Baba
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Makoto Kawasaki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Haruki Nishimura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hitoshi Suzuki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Takanori Matsuura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Naofumi Ikeda
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Teruaki Fujitani
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Manabu Tsukamoto
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hideo Ohnishi
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Kentaro Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, 329-0498, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| |
Collapse
|
12
|
Arakawa H, Higuchi Y. Exocrine scent marking: Coordinative role of arginine vasopressin in the systemic regulation of social signaling behaviors. Neurosci Biobehav Rev 2022; 136:104597. [PMID: 35248677 DOI: 10.1016/j.neubiorev.2022.104597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022]
Abstract
Arginine vasopressin (AVP) is a neurohypophysial hormone that coordinatively regulates central socio-emotional behavior and peripheral control of antidiuretic fluid homeostasis. Most mammals, including rodents, utilize exocrine or urine-contained scent marking as a social signaling tool that facilitates social adaptation. The exocrine scent marking behavior is postulated to fine-tune sensory and cognitive abilities to recognize key social features via exocrine/urinary olfactory cues and subsequently control exocrine deposition or urinary marking through the mediation of osmotic fluid balance. AVP is implicated as a major player in controlling both recognition and signaling responses. This review provides constructive hypotheses on the coordinative processes of the AVP neurohypophysial circuits in the systemic regulations of fluid control and social-communicative behavior, via the expression of exocrine scent marking, and further emphasizes a potential role of AVP in a common mechanism underlying social communication in rodents.
Collapse
Affiliation(s)
- Hiroyuki Arakawa
- Depertment of Systems Physiology, University of the Ryukyus School of Medicine, Okinawa, Japan.
| | - Yuki Higuchi
- Depertment of Systems Physiology, University of the Ryukyus School of Medicine, Okinawa, Japan
| |
Collapse
|
13
|
De-Miguel FF. The Thermodynamically Expensive Contribution of Three Calcium Sources to Somatic Release of Serotonin. Int J Mol Sci 2022; 23:1495. [PMID: 35163419 PMCID: PMC8836226 DOI: 10.3390/ijms23031495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
The soma, dendrites and axon of neurons may display calcium-dependent release of transmitters and peptides. Such release is named extrasynaptic for occurring in absence of synaptic structures. This review describes the cooperative actions of three calcium sources on somatic exocytosis. Emphasis is given to the somatic release of serotonin by the classical leech Retzius neuron, which has allowed detailed studies on the fine steps from excitation to exocytosis. Trains of action potentials induce transmembrane calcium entry through L-type channels. For action potential frequencies above 5 Hz, summation of calcium transients on individual action potentials activates the second calcium source: ryanodine receptors produce calcium-induced calcium release. The resulting calcium tsunami activates mitochondrial ATP synthesis to fuel transport of vesicles to the plasma membrane. Serotonin that is released maintains a large-scale exocytosis by activating the third calcium source: serotonin autoreceptors coupled to phospholipase C promote IP3 production. Activated IP3 receptors in peripheral endoplasmic reticulum release calcium that promotes vesicle fusion. The Swiss-clock workings of the machinery for somatic exocytosis has a striking disadvantage. The essential calcium-releasing endoplasmic reticulum near the plasma membrane hinders the vesicle transport, drastically reducing the thermodynamic efficiency of the ATP expenses and elevating the energy cost of release.
Collapse
Affiliation(s)
- Francisco F De-Miguel
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
14
|
Tabbaa M, Moses A, Hammock EAD. Oxytocin receptor disruption in Avil-expressing cells results in blunted sociability and increased inter-male aggression. PLoS One 2021; 16:e0260199. [PMID: 34847180 PMCID: PMC8631681 DOI: 10.1371/journal.pone.0260199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/05/2021] [Indexed: 11/19/2022] Open
Abstract
Social behaviors are foundational to society and quality of life while social behavior extremes are core symptoms in a variety of psychopathologies and developmental disabilities. Oxytocin (OXT) is a neuroactive hormone that regulates social behaviors through its receptor (OXTR), with all previously identified social behavior effects attributed to the central nervous system, which has developmental origins in the neural tube. However, OXTR are also present in neural crest-derived tissue including sensory ganglia of the peripheral nervous system. Avil encodes for the actin-binding protein ADVILLIN, is expressed in neural crest-derived cells, and was therefore used as a target in this study to knock out OXTR expression in neural-crest derived cells. Here, we tested if OXTRs specifically expressed in Avil positive neural crest-derived cells are necessary for species-typical adult social behaviors using a Cre-LoxP strategy. Genetically modified male and female mice lacking OXTR in Avil expressing cells (OXTRAvil KO) were tested for sociability and preference for social novelty. Males were also tested for resident intruder aggression. OXTRAvil KO males and females had reduced sociability compared to OXTRAvil WT controls. Additionally, OXTRAvil KO males had increased aggressive behaviors compared to controls. These data indicate that OXTRs in cells of neural crest origin are important regulators of typical social behaviors in C57BL/6J adult male and female mice and point to needed directions of future research.
Collapse
Affiliation(s)
- Manal Tabbaa
- Department of Psychology and Program in Neuroscience, The Florida State University, Tallahassee, FL, United States of America
| | - Ashley Moses
- Department of Psychology and Program in Neuroscience, The Florida State University, Tallahassee, FL, United States of America
| | - Elizabeth A. D. Hammock
- Department of Psychology and Program in Neuroscience, The Florida State University, Tallahassee, FL, United States of America
| |
Collapse
|
15
|
Intranasal vasopressin like oxytocin increases social attention by influencing top-down control, but additionally enhances bottom-up control. Psychoneuroendocrinology 2021; 133:105412. [PMID: 34537624 DOI: 10.1016/j.psyneuen.2021.105412] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022]
Abstract
The respective roles of the neuropeptides arginine vasopressin (AVP) and oxytocin (OXT) in modulating social cognition and for therapeutic intervention in autism spectrum disorder have not been fully established. In particular, while numerous studies have demonstrated effects of oxytocin in promoting social attention the role of AVP has not been examined. The present study employed a randomized, double-blind, placebo (PLC)-controlled between-subject design to explore the social- and emotion-specific effects of AVP on both bottom-up and top-down attention processing with a validated emotional anti-saccade eye-tracking paradigm in 80 healthy male subjects (PLC = 40, AVP = 40). Our findings showed that AVP increased the error rate for social (angry, fearful, happy, neutral and sad faces) but not non-social (oval shapes) stimuli during the anti-saccade condition and reduced error rates in the pro-saccade condition. Comparison of these findings with a previous study (sample size: PLC = 33, OXT = 33) using intranasal oxytocin revealed similar effects of the two peptides on anti-saccade errors, although with some difference in effects of specific face emotions, but a significantly greater effect of AVP on pro-saccades. Both peptides also produced a post-task anxiolytic effect by reducing state anxiety. Together these findings suggested that both AVP and OXT decrease goal-directed top-down attention control to social salient stimuli but that AVP more potently increased bottom-up social attentional processing.
Collapse
|
16
|
Ueta Y. Transgenic approaches to opening up new fields of vasopressin and oxytocin research. J Neuroendocrinol 2021; 33:e13055. [PMID: 34713515 DOI: 10.1111/jne.13055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022]
Abstract
Transgenic approaches have been applied to generate transgenic rats that express exogenous genes in arginine vasopressin (AVP)- and oxytocin (OXT)-producing magnocellular neurosecretory cells (MNCs) of the hypothalamic-neurohypophyseal system (HNS). First, the fusion gene that expresses AVP-enhanced green fluorescent protein (eGFP) and OXT-monomeric red fluorescent protein 1 (mRFP1) was used to visualize AVP- and OXT-producing MNCs and their axon terminals in the HNS under fluorescence microscopy. Second, the fusion gene that expresses c-fos-eGFP and c-fos-mRFP1 was used to identify activated neurons physiologically in the central nervous system, including MNCs, circumventricular organs and spinal cord. In addition, AVP-eGFP x c-fos-mRFP1 and OXT-mRFP1 × c-fos-eGFP double transgenic rats were generated to identify activated AVP- and OXT-producing MNCs using appropriate physiological stimuli. Third, the fusion gene that expresses AVP-chanelrhodopsin 2 (ChR2)-eGFP and AVP-hM3Dq-mCherry was used to activate AVP- and OXT-producing MNCs by optogenetic and chemogenetic approaches. In each step, these transgenic approaches in rats have provided new insights on the physiological roles of AVP and OXT not only in the HNS, but also in the whole body. In this review, we summarize the transgenic rats that we generated, as well as related physiological findings.
Collapse
Affiliation(s)
- Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
17
|
Neural and Hormonal Basis of Opposite-Sex Preference by Chemosensory Signals. Int J Mol Sci 2021; 22:ijms22158311. [PMID: 34361077 PMCID: PMC8347621 DOI: 10.3390/ijms22158311] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
In mammalian reproduction, sexually active males seek female conspecifics, while estrous females try to approach males. This sex-specific response tendency is called sexual preference. In small rodents, sexual preference cues are mainly chemosensory signals, including pheromones. In this article, we review the physiological mechanisms involved in sexual preference for opposite-sex chemosensory signals in well-studied laboratory rodents, mice, rats, and hamsters of both sexes, especially an overview of peripheral sensory receptors, and hormonal and central regulation. In the hormonal regulation section, we discuss potential rodent brain bisexuality, as it includes neural substrates controlling both masculine and feminine sexual preferences, i.e., masculine preference for female odors and the opposite. In the central regulation section, we show the substantial circuit regulating sexual preference and also the influence of sexual experience that innate attractants activate in the brain reward system to establish the learned attractant. Finally, we review the regulation of sexual preference by neuropeptides, oxytocin, vasopressin, and kisspeptin. Through this review, we clarified the contradictions and deficiencies in our current knowledge on the neuroendocrine regulation of sexual preference and sought to present problems requiring further study.
Collapse
|
18
|
Campos SM, Belkasim SS. Chemical Communication in Lizards and a Potential Role for Vasotocin in Modulating Social Interactions. Integr Comp Biol 2021; 61:205-220. [PMID: 33940600 DOI: 10.1093/icb/icab044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lizards use chemical communication to mediate many reproductive, competitive, and social behaviors, but the neuroendocrine mechanisms underlying chemical communication in lizards are not well understood and understudied. By implementing a neuroendocrine approach to the study of chemical communication in reptiles, we can address a major gap in our knowledge of the evolutionary mechanisms shaping chemical communication in vertebrates. The neuropeptide arginine vasotocin (AVT) and its mammalian homolog vasopressin are responsible for a broad spectrum of diversity in competitive and reproductive strategies in many vertebrates, mediating social behavior through the chemosensory modality. In this review, we posit that, though limited, the available data on AVT-mediated chemical communication in lizards reveal intriguing patterns that suggest AVT plays a more prominent role in lizard chemosensory behavior than previously appreciated. We argue that these results warrant more research into the mechanisms used by AVT to modify the performance of chemosensory behavior and responses to conspecific chemical signals. We first provide a broad overview of the known social functions of chemical signals in lizards, the glandular sources of chemical signal production in lizards (e.g., epidermal secretory glands), and the chemosensory detection methods and mechanisms used by lizards. Then, we review the locations of vasotocinergic populations and neuronal projections in lizard brains, as well as sites of peripheral receptors for AVT in lizards. Finally, we end with a case study in green anoles (Anolis carolinensis), discussing findings from recently published work on the impact of AVT in adult males on chemosensory communication during social interactions, adding new data from a similar study in which we tested the impact of AVT on chemosensory behavior of adult females. We offer concluding remarks on addressing several fundamental questions regarding the role of AVT in chemosensory communication and social behavior in lizards.
Collapse
Affiliation(s)
- Stephanie M Campos
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA
| | - Selma S Belkasim
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA
| |
Collapse
|
19
|
Yang L, Demetriou L, Wall MB, Mills EG, Wing VC, Thurston L, Schaufelberger CN, Owen BM, Abbara A, Rabiner EA, Comninos AN, Dhillo WS. The Effects of Kisspeptin on Brain Response to Food Images and Psychometric Parameters of Appetite in Healthy Men. J Clin Endocrinol Metab 2021; 106:e1837-e1848. [PMID: 33075807 PMCID: PMC7993584 DOI: 10.1210/clinem/dgaa746] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022]
Abstract
CONTEXT The hormone kisspeptin has crucial and well-characterized roles in reproduction. Emerging data from animal models also suggest that kisspeptin has important metabolic effects including modulation of food intake. However, to date there have been no studies exploring the effects of kisspeptin on brain responses to food stimuli in humans. OBJECTIVE This work aims to investigate the effects of kisspeptin administration on brain responses to visual food stimuli and psychometric parameters of appetite, in healthy men. DESIGN A double-blinded, randomized, placebo-controlled, crossover study was conducted. PARTICIPANTS Participants included 27 healthy, right-handed, eugonadal men (mean ± SEM: age 26.5 ± 1.1 years; body mass index 23.9 ± 0.4 kg/m2). INTERVENTION Participants received an intravenous infusion of 1 nmol/kg/h of kisspeptin or rate-matched vehicle over 75 minutes. MAIN OUTCOME MEASURES Measurements included change in brain activity on functional magnetic resonance imaging in response to visual food stimuli and change in psychometric parameters of appetite, during kisspeptin administration compared to vehicle. RESULTS Kisspeptin administration at a bioactive dose did not affect brain responses to visual food stimuli or psychometric parameters of appetite compared to vehicle. CONCLUSIONS This is the first study in humans investigating the effects of kisspeptin on brain regions regulating appetite and demonstrates that peripheral administration of kisspeptin does not alter brain responses to visual food stimuli or psychometric parameters of appetite in healthy men. These data provide key translational insights to further our understanding of the interaction between reproduction and metabolism.
Collapse
Affiliation(s)
- Lisa Yang
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | | | | | - Edouard G Mills
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Victoria C Wing
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Layla Thurston
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | | | - Bryn M Owen
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Ali Abbara
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | | | - Alexander N Comninos
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
20
|
Grebe NM, Sharma A, Freeman SM, Palumbo MC, Patisaul HB, Bales KL, Drea CM. Neural correlates of mating system diversity: oxytocin and vasopressin receptor distributions in monogamous and non-monogamous Eulemur. Sci Rep 2021; 11:3746. [PMID: 33580133 PMCID: PMC7881006 DOI: 10.1038/s41598-021-83342-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/01/2021] [Indexed: 01/30/2023] Open
Abstract
Contemporary theory that emphasizes the roles of oxytocin and vasopressin in mammalian sociality has been shaped by seminal vole research that revealed interspecific variation in neuroendocrine circuitry by mating system. However, substantial challenges exist in interpreting and translating these rodent findings to other mammalian groups, including humans, making research on nonhuman primates crucial. Both monogamous and non-monogamous species exist within Eulemur, a genus of strepsirrhine primate, offering a rare opportunity to broaden a comparative perspective on oxytocin and vasopressin neurocircuitry with increased evolutionary relevance to humans. We performed oxytocin and arginine vasopressin 1a receptor autoradiography on 12 Eulemur brains from seven closely related species to (1) characterize receptor distributions across the genus, and (2) examine differences between monogamous and non-monogamous species in regions part of putative "pair-bonding circuits". We find some binding patterns across Eulemur reminiscent of olfactory-guided rodents, but others congruent with more visually oriented anthropoids, consistent with lemurs occupying an 'intermediary' evolutionary niche between haplorhine primates and other mammalian groups. We find little evidence of a "pair-bonding circuit" in Eulemur akin to those proposed in previous rodent or primate research. Mapping neuropeptide receptors in these nontraditional species questions existing assumptions and informs proposed evolutionary explanations about the biological bases of monogamy.
Collapse
Affiliation(s)
- Nicholas M Grebe
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.
| | - Annika Sharma
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Sara M Freeman
- Department of Psychology, California National Primate Research Center, University of California-Davis, Davis, CA, USA
- Department of Biology, Utah State University, Logan, UT, USA
| | - Michelle C Palumbo
- Department of Psychology, California National Primate Research Center, University of California-Davis, Davis, CA, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Karen L Bales
- Department of Psychology, California National Primate Research Center, University of California-Davis, Davis, CA, USA
| | - Christine M Drea
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| |
Collapse
|
21
|
Sparapani S, Millet-Boureima C, Oliver J, Mu K, Hadavi P, Kalostian T, Ali N, Avelar CM, Bardies M, Barrow B, Benedikt M, Biancardi G, Bindra R, Bui L, Chihab Z, Cossitt A, Costa J, Daigneault T, Dault J, Davidson I, Dias J, Dufour E, El-Khoury S, Farhangdoost N, Forget A, Fox A, Gebrael M, Gentile MC, Geraci O, Gnanapragasam A, Gomah E, Haber E, Hamel C, Iyanker T, Kalantzis C, Kamali S, Kassardjian E, Kontos HK, Le TBU, LoScerbo D, Low YF, Mac Rae D, Maurer F, Mazhar S, Nguyen A, Nguyen-Duong K, Osborne-Laroche C, Park HW, Parolin E, Paul-Cole K, Peer LS, Philippon M, Plaisir CA, Porras Marroquin J, Prasad S, Ramsarun R, Razzaq S, Rhainds S, Robin D, Scartozzi R, Singh D, Fard SS, Soroko M, Soroori Motlagh N, Stern K, Toro L, Toure MW, Tran-Huynh S, Trépanier-Chicoine S, Waddingham C, Weekes AJ, Wisniewski A, Gamberi C. The Biology of Vasopressin. Biomedicines 2021; 9:89. [PMID: 33477721 PMCID: PMC7832310 DOI: 10.3390/biomedicines9010089] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Vasopressins are evolutionarily conserved peptide hormones. Mammalian vasopressin functions systemically as an antidiuretic and regulator of blood and cardiac flow essential for adapting to terrestrial environments. Moreover, vasopressin acts centrally as a neurohormone involved in social and parental behavior and stress response. Vasopressin synthesis in several cell types, storage in intracellular vesicles, and release in response to physiological stimuli are highly regulated and mediated by three distinct G protein coupled receptors. Other receptors may bind or cross-bind vasopressin. Vasopressin is regulated spatially and temporally through transcriptional and post-transcriptional mechanisms, sex, tissue, and cell-specific receptor expression. Anomalies of vasopressin signaling have been observed in polycystic kidney disease, chronic heart failure, and neuropsychiatric conditions. Growing knowledge of the central biological roles of vasopressin has enabled pharmacological advances to treat these conditions by targeting defective systemic or central pathways utilizing specific agonists and antagonists.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Chiara Gamberi
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada; (S.S.); (C.M.-B.); (J.O.); (K.M.); (P.H.); (T.K.); (N.A.); (C.M.A.); (M.B.); (B.B.); (M.B.); (G.B.); (R.B.); (L.B.); (Z.C.); (A.C.); (J.C.); (T.D.); (J.D.); (I.D.); (J.D.); (E.D.); (S.E.-K.); (N.F.); (A.F.); (A.F.); (M.G.); (M.C.G.); (O.G.); (A.G.); (E.G.); (E.H.); (C.H.); (T.I.); (C.K.); (S.K.); (E.K.); (H.K.K.); (T.B.U.L.); (D.L.); (Y.F.L.); (D.M.R.); (F.M.); (S.M.); (A.N.); (K.N.-D.); (C.O.-L.); (H.W.P.); (E.P.); (K.P.-C.); (L.S.P.); (M.P.); (C.-A.P.); (J.P.M.); (S.P.); (R.R.); (S.R.); (S.R.); (D.R.); (R.S.); (D.S.); (S.S.F.); (M.S.); (N.S.M.); (K.S.); (L.T.); (M.W.T.); (S.T.-H.); (S.T.-C.); (C.W.); (A.J.W.); (A.W.)
| |
Collapse
|
22
|
Sonker P, Singaravel M. Gender difference in circadian clock responses for social interaction with conspecific of the opposite-sex. Chronobiol Int 2021; 38:212-223. [PMID: 33435752 DOI: 10.1080/07420528.2020.1844724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Social cues are potent non-photic modulators of the circadian clock and play a vital role in resetting the endogenous clock. Several lines of evidence strongly suggest a functional link between olfactory cues and the circadian clock. However, there is a paucity of information on the effects of social interaction with the conspecifics of the opposite sex on the circadian clock. Hence, we studied the effect of social cues of sexually mature naïve opposite sex of the conspecific on the phase resetting of the circadian clock at various circadian times (CT) and molecular changes at the suprachiasmatic nuclei (SCN) and odor responsive structure in the brain of mice. Sexually naïve adult male and female free-running mice (designated as 'runners') were exposed to the conspecifics of the opposite-sex ('strangers') for 30 min at CT3, CT9, CT15, and CT21. Both male and female 'runners' exhibited a phase advance at CT3, delay at CT21, and no response at CT9. However, at CT15 only the male 'runners' exhibited phase advance but not the female 'runners'. Control mice did not elicit any significant phase shifts at all CTs. Social interactions with conspecifics of the opposite-sex up-regulated c-fos/C-FOS, omp in the olfactory bulb, per-1/PER-1 in the SCN, C-FOS, and PER-1 in the piriform cortex of both male and female runners at CT3. However, at CT15 up-regulation of variables only occurred in male but not in female runners. Together, the present investigation has shown the gender difference in circadian clock responses for social cues with conspecific of the opposite-sex in mice.
Collapse
Affiliation(s)
- Pratishtha Sonker
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi, India
| | - Muniyandi Singaravel
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi, India
| |
Collapse
|
23
|
Processing of intraspecific chemical signals in the rodent brain. Cell Tissue Res 2021; 383:525-533. [PMID: 33404846 DOI: 10.1007/s00441-020-03383-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/06/2020] [Indexed: 12/24/2022]
Abstract
In the rodent brain, the central processing of ecologically relevant chemical stimuli involves many different areas located at various levels within the neuraxis: the main and accessory olfactory bulbs, some nuclei in the amygdala, the hypothalamus, and brainstem. These areas allow the integration of the chemosensory stimuli with other sensory information and the selection of the appropriate neurohormonal and behavioral response. This review is a brief introduction to the processing of intraspecific chemosensory stimuli beyond the secondary projection, focusing on the activity of the relevant amygdala and hypothalamic nuclei, namely the medial amygdala and ventromedial hypothalamus. These areas are involved in the appropriate interpretation of chemosensory information and drive the selection of the proper response, which may be behavioral or hormonal and may affect the neural activity of other areas in the telencephalon and brainstem.Recent data support the notion that the processing of intraspecific chemical signals is not unique to one chemosensory system and some molecules may activate both the main and the accessory olfactory system. Moreover, both these systems have mixed projections and cooperate for the correct identification of the stimuli and selection of relevant responses.
Collapse
|
24
|
Althammer F, Eliava M, Grinevich V. Central and peripheral release of oxytocin: Relevance of neuroendocrine and neurotransmitter actions for physiology and behavior. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:25-44. [PMID: 34225933 DOI: 10.1016/b978-0-12-820107-7.00003-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The hypothalamic neuropeptide oxytocin (OT) is critically involved in the modulation of socio-emotional behavior, sexual competence, and pain perception and anticipation. While intracellular signaling of OT and its receptor (OTR), as well as the functional connectivity of hypothalamic and extra-hypothalamic OT projections, have been recently explored, it remains elusive how one single molecule has pleotropic effects from cell proliferation all the way to modulation of complex cognitive processes. Moreover, there are astonishing species-dependent differences in the way OT regulates various sensory modalities such as touch, olfaction, and vision, which can be explained by differences in OTR expression in brain regions processing sensory information. Recent research highlights a small subpopulation of OT-synthesizing cells, namely, parvocellular cells, which merely constitute 1% of the total number of OT cells but act as "master cells' that regulate the activity of the entire OT system. In this chapter, we summarize the latest advances in the field of OT research with a particular focus on differences between rodents, monkeys and humans and highlight the main differences between OT and its "sister" peptide arginine-vasopressin, which often exerts opposite effects on physiology and behavior.
Collapse
Affiliation(s)
- Ferdinand Althammer
- Neuroscience Department, Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, United States
| | - Marina Eliava
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
25
|
Makwana R, Loy J, Adebibe M, Devalia K, Andrews PL, Sanger GJ. Copeptin, a surrogate marker of arginine 8 vasopressin, has no ability to modulate human and mouse gastric motility. Eur J Pharmacol 2020; 892:173740. [PMID: 33220268 DOI: 10.1016/j.ejphar.2020.173740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 11/15/2022]
Abstract
Copeptin, a glycosylated peptide fragment derived from the C-terminal region of the precursor of arginine8 vasopressin (AVP), is co-secreted with AVP in equimolar amounts. Elevated plasma AVP modulates gastric motility so we investigated whether copeptin had a similar effect. Copeptin (10-9-10-7M), and AVP (10-12-10-5M), were evaluated for their ability to modulate spontaneous and electrically-evoked (EFS) contractions of human proximal and distal gastric circular muscle in vitro. Similar experiments were performed on the mouse stomach and we re-examined the published effect of copeptin on the mouse aorta. In the presence of tetrodotoxin (10-6M), atropine (10-6M) and L-NAME (3 × 10-4M), human proximal and distal stomach muscle contracted spontaneously and rhythmically as did mouse distal stomach. Copeptin (10-9-10-7M), had no effect on baseline muscle tone or myogenic spontaneous contractions of either human or mouse stomach. However, AVP concentration-dependently increased tone, amplitude and frequency of contractions in both regions of human stomach with similar potency (pEC50 9.0-9.5; n = 4) and threshold concentration (10-11-10-10M). AVP was similarly active in the mouse stomach. EFS-evoked cholinergic contractions (human and mouse) were unaffected by both peptides EFS-evoked relaxations of mouse stomach were unaffected by copeptin. In sub-maximally contracted mouse aorta the elevated tone was unaffected by copeptin (10-7M) (cf. previously published study) but was reduced by carbachol (10-6M) and sodium nitroprusside (10-3M). We conclude that in contrast to AVP, copeptin over a concentration range reported in the plasma has no direct ability to modulate the motility of the human and mouse stomach.
Collapse
Affiliation(s)
- Raj Makwana
- Blizard Institute and the National Centre for Bowel Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom.
| | - John Loy
- Bariatric Surgery Department, Homerton University Hospital, London, United Kingdom
| | - Miriam Adebibe
- Bariatric Surgery Department, Homerton University Hospital, London, United Kingdom
| | - Kalpana Devalia
- Bariatric Surgery Department, Homerton University Hospital, London, United Kingdom
| | - Paul Lr Andrews
- Division of Biomedical Sciences, St George's University of London, London, United Kingdom
| | - Gareth J Sanger
- Bariatric Surgery Department, Homerton University Hospital, London, United Kingdom
| |
Collapse
|
26
|
Japundžić-Žigon N, Lozić M, Šarenac O, Murphy D. Vasopressin & Oxytocin in Control of the Cardiovascular System: An Updated Review. Curr Neuropharmacol 2020; 18:14-33. [PMID: 31544693 PMCID: PMC7327933 DOI: 10.2174/1570159x17666190717150501] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/03/2019] [Accepted: 07/06/2019] [Indexed: 01/19/2023] Open
Abstract
Since the discovery of vasopressin (VP) and oxytocin (OT) in 1953, considerable knowledge has been gathered about their roles in cardiovascular homeostasis. Unraveling VP vasoconstrictor properties and V1a receptors in blood vessels generated powerful hemostatic drugs and drugs effective in the treatment of certain forms of circulatory collapse (shock). Recognition of the key role of VP in water balance via renal V2 receptors gave birth to aquaretic drugs found to be useful in advanced stages of congestive heart failure. There are still unexplored actions of VP and OT on the cardiovascular system, both at the periphery and in the brain that may open new venues in treatment of cardiovascular diseases. After a brief overview on VP, OT and their peripheral action on the cardiovascular system, this review focuses on newly discovered hypothalamic mechanisms involved in neurogenic control of the circulation in stress and disease.
Collapse
Affiliation(s)
| | - Maja Lozić
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Olivera Šarenac
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - David Murphy
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
27
|
Bubak AN, Watt MJ, Yaeger JDW, Renner KJ, Swallow JG. The stalk-eyed fly as a model for aggression - is there a conserved role for 5-HT between vertebrates and invertebrates? ACTA ACUST UNITED AC 2020; 223:223/1/jeb132159. [PMID: 31896721 DOI: 10.1242/jeb.132159] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Serotonin (5-HT) has largely been accepted to be inhibitory to vertebrate aggression, whereas an opposing stimulatory role has been proposed for invertebrates. Herein, we argue that critical gaps in our understanding of the nuanced role of 5-HT in invertebrate systems drove this conclusion prematurely, and that emerging data suggest a previously unrecognized level of phylogenetic conservation with respect to neurochemical mechanisms regulating the expression of aggressive behaviors. This is especially apparent when considering the interplay among factors governing 5-HT activity, many of which share functional homology across taxa. We discuss recent findings using insect models, with an emphasis on the stalk-eyed fly, to demonstrate how particular 5-HT receptor subtypes mediate the intensity of aggression with respect to discrete stages of the interaction (initiation, escalation and termination), which mirrors the complex behavioral regulation currently recognized in vertebrates. Further similarities emerge when considering the contribution of neuropeptides, which interact with 5-HT to ultimately determine contest progression and outcome. Relative to knowledge in vertebrates, much less is known about the function of 5-HT receptors and neuropeptides in invertebrate aggression, particularly with respect to sex, species and context, prompting the need for further studies. Our Commentary highlights the need to consider multiple factors when determining potential taxonomic differences, and raises the possibility of more similarities than differences between vertebrates and invertebrates with regard to the modulatory effect of 5-HT on aggression.
Collapse
Affiliation(s)
- Andrew N Bubak
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael J Watt
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Jazmine D W Yaeger
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Kenneth J Renner
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - John G Swallow
- Department of Integrative Biology, University of Colorado-Denver, Denver, CO 80217, USA
| |
Collapse
|
28
|
|