1
|
Wang J, Tao R, Hu H, Gao J, Liu Y, Xia J, Lan X, Di Y. miR-320b, a Future Expected New Biomarker for Type 2 Diabetes Mellitus Induces Dysglycemia by Targeting PTEN. Int J Endocrinol 2024; 2024:5540062. [PMID: 39502509 PMCID: PMC11535181 DOI: 10.1155/2024/5540062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM) has emerged as a global epidemic issue, with high rates of disability and fatality. Traditional diagnostic biomarkers are typically detected once a metabolic imbalance has already occurred, thus the development of early diagnostic biomarkers is crucial for T2DM. Metabolomics studies have identified several predictive biomarkers for T2DM, including miR-320. Our previous research found that miR-320b was significantly downregulated in T2DM patients, but the underlying mechanism remains unclear. Therefore, this study was designed to investigate the significance of miR-320b for T2DM diagnosis and to explore the involved molecular mechanism. Methods: A total of 50 patients with T2DM and 80 sex- and age-matched healthy subjects were selected. The plasma miR-320b of all participations was detected by qRT-PCR and its correlations with other biomarkers of T2DM were analyzed. Besides, the expression of miR-320b in HepG2 cells was suppressed by miRNA inhibitors. Then the glucose consumption of HepG2 cells was measured. The target gene of miR-320b was predicted by four bioinformatics tools and intersected these prediction results by Venny method. The T2DM relevant target genes were identified by the GeneCards database. To ensure disease relevance, these T2DM relevant target genes were subsequently intersected with the target genes of miR-320b. Protein-protein analysis (PPI) was used to screening the gene with the most connections in these target genes. Finally, the target gene of miR-320b specific to T2DM was confirmed directly by luciferase reporter assay. The expression of target gene in HepG2 cell culture supernatant and plasma of all participations was detected. Results: Our results showed that the expression level of miR-320b was significantly lower in T2DM patients compared to the healthy controls. It was negatively correlated with fasting plasma glucose (FPG), glycated hemoglobin (HbA1C), and homeostasis model assessment of insulin resistance (HOMA-IR), but positively with HOMA-β. The glucose consumption of HepG2 cells in the miR-320b inhibitor group was significantly lower compared to inhibitor-NC and blank control group. We predicted and confirmed that phosphatase and tensin homolog (PTEN) was the direct target gene of miR-320b using Bioinformation tools and luciferase reporter assay. Moreover, the concentration of PTEN was significantly higher in the HepG2 cell culture supernatant and plasma of T2DM patients. Conclusions: Our research demonstrated a negative correlation between miR-320b and FPG, HbA1C, and HOMA-IR, while exhibiting a positive correlation with HOMA-β. Suppressing miR-320b expression would impair glucose consumption of HepG2 cells through PI3K pathway by targeting PTEN. These results suggest that miR-320b may be a potential biomarker for diagnosing T2DM and a promising target for therapeutic intervention.
Collapse
Affiliation(s)
- Jinxingyi Wang
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Kaili 556000, China
| | - Ruyu Tao
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Kaili 556000, China
| | - Hanshuai Hu
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Kaili 556000, China
| | - Jiejie Gao
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Kaili 556000, China
| | - Yang Liu
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Kaili 556000, China
| | - Jie Xia
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Kaili 556000, China
| | - Xue Lan
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Kaili 556000, China
| | - Yanan Di
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Kaili 556000, China
| |
Collapse
|
2
|
Szydełko J, Czop M, Petniak A, Lenart-Lipińska M, Kocki J, Zapolski T, Matyjaszek-Matuszek B. Identification of plasma miR-4505, miR-4743-5p and miR-4750-3p as novel diagnostic biomarkers for coronary artery disease in patients with type 2 diabetes mellitus: a case-control study. Cardiovasc Diabetol 2024; 23:278. [PMID: 39080630 PMCID: PMC11287982 DOI: 10.1186/s12933-024-02374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) and coronary artery disease (CAD) are commonly coexisting clinical entities with still growing incidence worldwide. Recently, circulating microRNAs (miRNAs) have emerged as novel molecular players in cardiometabolic diseases. This study aimed to identify a specific miRNA signature as a candidate biomarker for CAD in T2DM and to delineate potential miRNA-dependent mechanisms contributing to diabetic atherosclerosis. METHODS A total of 38 plasma samples from T2DM patients with and without CAD, CAD patients and healthy controls were collected for expression profiling of 2,578 miRNAs using microarrays. To investigate the regulatory role of differentially expressed (DE)-miRNA target genes, functional annotation and pathway enrichment analyses were performed utilizing multiple bioinformatics tools. Then, protein-protein interaction networks were established leveraging the STRING database in Cytoscape software, followed by cluster analysis and hub gene identification. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was carried out for microarray data validation in the larger replication cohort of 94 participants. Receiver operating characteristic analysis was applied to evaluate the diagnostic values of miRNAs. Multivariate logistic regression analysis was used to develop miRNA-based diagnostic models. RESULTS In the discovery stage, overexpression of hsa-miR-4505, hsa-miR-4743-5p, hsa-miR-6846-5p, and down-regulation of hsa-miR-3613-3p, hsa-miR-4668-5p, hsa-miR-4706, hsa-miR-6511b-5p, hsa-miR-6750-5p, hsa-miR-4750-3p, hsa-miR-320e, hsa-miR-4717-3p, hsa-miR-7850-5p were detected in T2DM-CAD patients. The DE-miRNA target genes were significantly enriched in calcium ion binding, regulation of actin cytoskeleton, and gene expression. hsa-miR-4505, hsa-miR-4743-5p, and hsa-miR-4750-3p were found to be involved in fatty acid metabolism, leukocyte transendothelial migration, and neurotrophin signaling pathway. Dysregulation of hsa-miR-4505, hsa-miR-4743-5p, and hsa-miR-4750-3p in T2DM-CAD patients compared with T2DM subjects and controls (all p < 0.001) was further confirmed by RT-qPCR. All validated miRNAs demonstrated good discriminatory values for T2DM-CAD (AUC = 0.833-0.876). The best performance in detecting CAD in T2DM was achieved for a combination of three miRNAs (AUC = 0.959, 100% sensitivity, 86.67% specificity). CONCLUSIONS Our study revealed a unique profile of plasma-derived miRNAs in T2DM patients with CAD. Potential miRNA-regulated pathways were also identified, exploring the underlying pathogenesis of CAD in T2DM. We developed a specific three-miRNA panel of hsa-miR-4505, hsa-miR-4743-5p and hsa-miR-4750-3p, that could serve as a novel non-invasive biomarker for CAD in patients with T2DM.
Collapse
Affiliation(s)
- Joanna Szydełko
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland.
| | - Marcin Czop
- Department of Clinical Genetics, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland
| | - Alicja Petniak
- Department of Clinical Genetics, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland
| | - Monika Lenart-Lipińska
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland
| | - Tomasz Zapolski
- Department of Cardiology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Beata Matyjaszek-Matuszek
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| |
Collapse
|
3
|
Improta-Caria AC, Ferrari F, Gomes JLP, Villalta PB, Soci ÚPR, Stein R, Oliveira EM. Dysregulated microRNAs in type 2 diabetes and breast cancer: Potential associated molecular mechanisms. World J Diabetes 2024; 15:1187-1198. [PMID: 38983808 PMCID: PMC11229979 DOI: 10.4239/wjd.v15.i6.1187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/03/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Type 2 diabetes (T2D) is a multifaceted and heterogeneous syndrome associated with complications such as hypertension, coronary artery disease, and notably, breast cancer (BC). The connection between T2D and BC is established through processes that involve insulin resistance, inflammation and other factors. Despite this comprehension the specific cellular and molecular mechanisms linking T2D to BC, especially through microRNAs (miRNAs), remain elusive. miRNAs are regulators of gene expression at the post-transcriptional level and have the function of regulating target genes by modulating various signaling pathways and biological processes. However, the signaling pathways and biological processes regulated by miRNAs that are associated with T2D and BC have not yet been elucidated. This review aims to identify dysregulated miRNAs in both T2D and BC, exploring potential signaling pathways and biological processes that collectively contribute to the development of BC.
Collapse
Affiliation(s)
- Alex Cleber Improta-Caria
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
| | - Filipe Ferrari
- Graduate Program in Cardiology and Cardiovascular Sciences, Federal University of Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035003, Brazil
| | - João Lucas Penteado Gomes
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
| | - Paloma Brasilio Villalta
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas-UNICAMP, Campinas 13484-350, Brazil
| | - Úrsula Paula Renó Soci
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
| | - Ricardo Stein
- Graduate Program in Cardiology and Cardiovascular Sciences, Federal University of Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035003, Brazil
| | - Edilamar M Oliveira
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo 05508-030, Brazil
- Departments of Internal Medicine, Molecular Pharmacology and Physiology, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, United States
| |
Collapse
|
4
|
Ramaswamy P, S V A, Misra P, Chauhan VS, Adhvaryu A, Gupta A, G A, M K S. Circulating microRNA profiling identifies microRNAs linked to prediabetes associated with alcohol dependence syndrome. Alcohol 2024; 122:101-109. [PMID: 38266790 DOI: 10.1016/j.alcohol.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 01/20/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND MicroRNAs are abundant in serum and have emerged as important regulators of gene expression, implicating them in a wide range of diseases. The purpose of this study was to discover and validate serum miRNAs in prediabetes associated with alcohol dependence syndrome (ADS). METHOD Serum samples from ADS patients with or without prediabetes and normoglycemic controls were subjected to microarray. Validation of identified candidate miRNAs was performed by RT-qPCR. Additionally, GO and KEGG pathway analyses were carried out to uncover target genes anticipated to be controlled by the candidate miRNAs. RESULTS Notably, 198, and 172 miRNAs were differentially expressed in ADS-patients with or without prediabetes compared to healthy controls, and 7 miRNAs in ADS-patients with prediabetes compared to ADS-normoglycemic patients, respectively. Furthermore, hsa-miR-320b and hsa-miR-3135b were differentially expressed exclusively in ADS-patients with prediabetes, and this was further validated. Interestingly, GO and KEGG pathway analysis revealed that genes predicted to be modulated by the candidates were considerably enriched in numerous diabetes-related biological processes and pathways. CONCLUSION Our findings revealed that ADS-patients with or without prediabetes have different sets of miRNAs compared to normoglycemic healthy subjects. We propose serum hsa-miR-320b and hsa-miR-3135b as potential biomarkers for the diagnosis of prediabetes in ADS-patients.
Collapse
Affiliation(s)
| | - Athira S V
- Department of Biochemistry, Armed Forces Medical College, Pune, India, 411040
| | - Pratibha Misra
- Department of Biochemistry, Armed Forces Medical College, Pune, India, 411040
| | - V S Chauhan
- Department of Psychiatry, Armed Forces Medical College, Pune, India, 411040
| | - Arka Adhvaryu
- Department of Psychiatry, Armed Forces Medical College, Pune, India, 411040
| | - Anurodh Gupta
- Department of Biochemistry, Armed Forces Medical College, Pune, India, 411040
| | - Ankita G
- Multi Disciplinary Research Unit, Armed Forces Medical College, Pune, India, 411040
| | - Sibin M K
- Department of Biochemistry, Armed Forces Medical College, Pune, India, 411040.
| |
Collapse
|
5
|
Wang Y, Yuan Y, Shen S, Ge Z, Zhu D, Bi Y. Placenta-derived exosomes exacerbate beta cell dysfunction in gestational diabetes mellitus through delivery of miR-320b. Front Endocrinol (Lausanne) 2024; 14:1282075. [PMID: 38260139 PMCID: PMC10800463 DOI: 10.3389/fendo.2023.1282075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024] Open
Abstract
Recent studies have shown placenta-derived exosome (pdE) acts as an important mediator of organ-to-organ interplay regulating maternal metabolic alterations, however, the function and mechanisms of placental exosomes on pancreatic β-cell maladaptation in gestational diabetes mellitus (GDM) remain unclear. The purpose of this investigation was to ascertain how placental exosomes affected the β-cell dysfunction associated with the onset of GDM. Exosomes were isolated from chorionic villi explants of pregnant mice and humans with normal glucose tolerance (NGT) and GDM. The effects of pdE from GDM on glucose tolerance in vivo and islets function in vitro were determined. Isolated islets from mice fed on the chow diet displayed an increase in apoptosis and observed their glucose-stimulated insulin secretion (GSIS) greatly diminished by PdE from GDM mice. Mice that accepted PdE from mice with GDM possessed glucose intolerance.Based on miRNA microarray assay and bioinformatics analysis from human placental exosomes, we identified miR-320b selectively enriched in PdE secreted in GDM compared with NGT. Importantly, the level of placental miR-320b was positively correlated with the 1h-glucose and 2-h glucose of a 75 g oral glucose tolerance test (OGTT) during human pregnancies. Furthermore, miR-320 overexpression attributed to impaired insulin secretion and increased apoptosis in MIN6 cells and islets obtained from mice with normal insulin sensitivity. This study firstly proposed that altered miRNAs in pdE contribute to defective adaptation of β cells during pregnancy, which expands the knowledge of GDM pathogenesis. Exosomes from the placenta may be an emerging therapeutic target for GDM.
Collapse
Affiliation(s)
- Yanmei Wang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yue Yuan
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Shanmei Shen
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Zhijuan Ge
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Dalong Zhu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yan Bi
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| |
Collapse
|
6
|
Mazziotta C, Iaquinta MR, Tramarin ML, Badiale G, Cervellera CF, Tonnini G, Patergnani S, Pinton P, Lanza G, Gafà R, Tognon M, Martini F, De Mattei M, Rotondo JC. Hsa-microRNA-1249-3p/Homeobox A13 axis modulates the expression of β-catenin gene in human epithelial cells. Sci Rep 2023; 13:22872. [PMID: 38129477 PMCID: PMC10739948 DOI: 10.1038/s41598-023-49837-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Intercellular adhesion is a key function for epithelial cells. The fundamental mechanisms relying on epithelial cell adhesion have been partially uncovered. Hsa-microRNA-1249-3p (hsa-miR-1249-3p) plays a role in the epithelial mesenchymal transition in carcinoma cells, but its physiological function in epithelial cells is unknown. We aimed to investigate the role and molecular mechanisms of hsa-miR-1249-3p on epithelial cell functions. Hsa-miR-1249-3p was overexpressed in human epithelial cells and uterine cervical tissues, compared to cervical carcinoma cells and precancerous tissues, respectively. Hsa-miR-1249-3p was analyzed to verify its regulatory function on Homeobox A13 (HOXA13) target gene and its downstream cell adhesion gene β-catenin. Functional experiments indicated that hsa-miR-1249-3p inhibition prompted the mRNA and protein overexpression of HOXA13 which, in turn, led to the β-catenin protein expression. Moreover, hsa-miR-1249-3p inhibition induced a strong colony forming ability in epithelial cells, suggesting the miR involvement in cell adhesion machinery. These data indicate that hsa-miR-1249-3p regulates the expression of HOXA13 and its downstream cell adhesion gene β-catenin, possible resulting in cell adhesion modification in epithelial cells. This study will allow the set-up of further investigations aimed at exploring the relationship between the hsa-miR-1249-3p/HOXA13 axis and downstream cell adhesion genes.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Maria Letizia Tramarin
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Giada Badiale
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Christian Felice Cervellera
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Giulia Tonnini
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy
| | - Giovanni Lanza
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Roberta Gafà
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy
| | - Monica De Mattei
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
7
|
Chao Y, Gu T, Zhang Z, Wu T, Wang J, Bi Y. The role of miRNAs carried by extracellular vesicles in type 2 diabetes and its complications. J Diabetes 2023; 15:838-852. [PMID: 37583355 PMCID: PMC10590682 DOI: 10.1111/1753-0407.13456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/30/2023] [Indexed: 08/17/2023] Open
Abstract
Diabetes poses severe global public health problems and places heavy burdens on the medical and economic systems of society. Type 2 diabetes (T2D) accounts for 90% of these cases. Diabetes also often accompanies serious complications that threaten multiple organs such as the brain, eyes, kidneys, and the cardiovascular system. MicroRNAs (miRNAs) carried by extracellular vesicles (EV-miRNAs) are considered to mediate cross-organ and cross-cellular communication and have a vital role in the pathophysiology of T2D. They also offer promising sources of diabetes-related biomarkers and serve as effective therapeutic targets. Here, we briefly reviewed studies of EV-miRNAs in T2D and related complications. Specially, we innovatively explore the targeting nature of miRNA action due to the target specificity of vesicle binding, aiding mechanism understanding as well as the detection and treatment of diseases.
Collapse
Affiliation(s)
- Yining Chao
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Branch of National Clinical Research Centre for Metabolic DiseasesNanjingChina
| | - Tianwei Gu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Branch of National Clinical Research Centre for Metabolic DiseasesNanjingChina
| | - Zhou Zhang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Branch of National Clinical Research Centre for Metabolic DiseasesNanjingChina
| | - Tianyu Wu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Branch of National Clinical Research Centre for Metabolic DiseasesNanjingChina
| | - Jin Wang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Branch of National Clinical Research Centre for Metabolic DiseasesNanjingChina
| | - Yan Bi
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Branch of National Clinical Research Centre for Metabolic DiseasesNanjingChina
| |
Collapse
|
8
|
Liu C, Liu X, Li H, Kang Z. Advances in the regulation of adipogenesis and lipid metabolism by exosomal ncRNAs and their role in related metabolic diseases. Front Cell Dev Biol 2023; 11:1173904. [PMID: 37791070 PMCID: PMC10543472 DOI: 10.3389/fcell.2023.1173904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/15/2023] [Indexed: 10/05/2023] Open
Abstract
Exosomes are membrane-bound extracellular vesicles released following the fusion of multivesicular bodies (MVBs) with the cell membrane. Exosomes transport diverse molecules, including proteins, lipids, DNA and RNA, and regulate distant intercellular communication. Noncoding RNA (ncRNAs) carried by exosomes regulate cell-cell communication in tissues, including adipose tissue. This review summarizes the action mechanisms of ncRNAs carried by exosomes on adipocyte differentiation and modulation of adipogenesis by exosomal ncRNAs. This study aims to provide valuable insights for developing novel therapeutics.
Collapse
Affiliation(s)
- Cong Liu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xilin Liu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hong Li
- Department of Nursing, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhichen Kang
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Al-Mahayni S, Ali M, Khan M, Jamsheer F, Moin ASM, Butler AE. Glycemia-Induced miRNA Changes: A Review. Int J Mol Sci 2023; 24:ijms24087488. [PMID: 37108651 PMCID: PMC10144997 DOI: 10.3390/ijms24087488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetes is a rapidly increasing global health concern that significantly strains the health system due to its downstream complications. Dysregulation in glycemia represents one of the fundamental obstacles to achieving glycemic control in diabetic patients. Frequent hyperglycemia and/or hypoglycemia events contribute to pathologies that disrupt cellular and metabolic processes, which may contribute to the development of macrovascular and microvascular complications, worsening the disease burden and mortality. miRNAs are small single-stranded non-coding RNAs that regulate cellular protein expression and have been linked to various diseases, including diabetes mellitus. miRNAs have proven useful in the diagnosis, treatment, and prognosis of diabetes and its complications. There is a vast body of literature examining the role of miRNA biomarkers in diabetes, aiming for earlier diagnoses and improved treatment for diabetic patients. This article reviews the most recent literature discussing the role of specific miRNAs in glycemic control, platelet activity, and macrovascular and microvascular complications. Our review examines the different miRNAs involved in the pathological processes leading to the development of type 2 diabetes mellitus, such as endothelial dysfunction, pancreatic beta-cell dysfunction, and insulin resistance. Furthermore, we discuss the potential applications of miRNAs as next-generation biomarkers in diabetes with the aim of preventing, treating, and reversing diabetes.
Collapse
Affiliation(s)
- Sara Al-Mahayni
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Mohamed Ali
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Muhammad Khan
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Fatema Jamsheer
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| |
Collapse
|
10
|
Aas V, Øvstebø R, Brusletto BS, Aspelin T, Trøseid AMS, Qureshi S, Eid DSO, Olstad OK, Nyman TA, Haug KBF. Distinct microRNA and protein profiles of extracellular vesicles secreted from myotubes from morbidly obese donors with type 2 diabetes in response to electrical pulse stimulation. Front Physiol 2023; 14:1143966. [PMID: 37064893 PMCID: PMC10098097 DOI: 10.3389/fphys.2023.1143966] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/09/2023] [Indexed: 04/18/2023] Open
Abstract
Lifestyle disorders like obesity, type 2 diabetes (T2D), and cardiovascular diseases can be prevented and treated by regular physical activity. During exercise, skeletal muscles release signaling factors that communicate with other organs and mediate beneficial effects of exercise. These factors include myokines, metabolites, and extracellular vesicles (EVs). In the present study, we have examined how electrical pulse stimulation (EPS) of myotubes, a model of exercise, affects the cargo of released EVs. Chronic low frequency EPS was applied for 24 h to human myotubes isolated and differentiated from biopsy samples from six morbidly obese females with T2D, and EVs, both exosomes and microvesicles (MV), were isolated from cell media 24 h thereafter. Size and concentration of EV subtypes were characterized by nanoparticle tracking analysis, surface markers were examined by flow cytometry and Western blotting, and morphology was confirmed by transmission electron microscopy. Protein content was assessed by high-resolution proteomic analysis (LC-MS/MS), non-coding RNA was quantified by Affymetrix microarray, and selected microRNAs (miRs) validated by real time RT-qPCR. The size and concentration of exosomes and MV were unaffected by EPS. Of the 400 miRs identified in the EVs, EPS significantly changed the level of 15 exosome miRs, of which miR-1233-5p showed the highest fold change. The miR pattern of MV was unaffected by EPS. Totally, about 1000 proteins were identified in exosomes and 2000 in MV. EPS changed the content of 73 proteins in exosomes, 97 in MVs, and of these four were changed in both exosomes and MV (GANAB, HSPA9, CNDP2, and ATP5B). By matching the EPS-changed miRs and proteins in exosomes, 31 targets were identified, and among these several promising signaling factors. Of particular interest were CNDP2, an enzyme that generates the appetite regulatory metabolite Lac-Phe, and miR-4433b-3p, which targets CNDP2. Several of the regulated miRs, such as miR-92b-5p, miR-320b, and miR-1233-5p might also mediate interesting signaling functions. In conclusion, we have used a combined transcriptome-proteome approach to describe how EPS affected the cargo of EVs derived from myotubes from morbidly obese patients with T2D, and revealed several new factors, both miRs and proteins, that might act as exercise factors.
Collapse
Affiliation(s)
- Vigdis Aas
- Department of Life Sciences and Health, Oslo Metropolitan University (OsloMet), Oslo, Norway
- *Correspondence: Vigdis Aas, ; Kari Bente Foss Haug,
| | - Reidun Øvstebø
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | | | - Trude Aspelin
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | | | - Saba Qureshi
- Department of Life Sciences and Health, Oslo Metropolitan University (OsloMet), Oslo, Norway
| | | | | | - Tuula A. Nyman
- Department of Immunology, University of Oslo, and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Kari Bente Foss Haug
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
- *Correspondence: Vigdis Aas, ; Kari Bente Foss Haug,
| |
Collapse
|
11
|
Szydełko J, Matyjaszek-Matuszek B. MicroRNAs as Biomarkers for Coronary Artery Disease Related to Type 2 Diabetes Mellitus-From Pathogenesis to Potential Clinical Application. Int J Mol Sci 2022; 24:ijms24010616. [PMID: 36614057 PMCID: PMC9820734 DOI: 10.3390/ijms24010616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with still growing incidence among adults and young people worldwide. Patients with T2DM are more susceptible to developing coronary artery disease (CAD) than non-diabetic individuals. The currently used diagnostic methods do not ensure the detection of CAD at an early stage. Thus, extensive research on non-invasive, blood-based biomarkers is necessary to avoid life-threatening events. MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs that are stable in human body fluids and easily detectable. A number of reports have highlighted that the aberrant expression of miRNAs may impair the diversity of signaling pathways underlying the pathophysiology of atherosclerosis, which is a key player linking T2DM with CAD. The preclinical evidence suggests the atheroprotective and atherogenic influence of miRNAs on every step of T2DM-induced atherogenesis, including endothelial dysfunction, endothelial to mesenchymal transition, macrophage activation, vascular smooth muscle cells proliferation/migration, platelet hyperactivity, and calcification. Among the 122 analyzed miRNAs, 14 top miRNAs appear to be the most consistently dysregulated in T2DM and CAD, whereas 10 miRNAs are altered in T2DM, CAD, and T2DM-CAD patients. This up-to-date overview aims to discuss the role of miRNAs in the development of diabetic CAD, emphasizing their potential clinical usefulness as novel, non-invasive biomarkers and therapeutic targets for T2DM individuals with a predisposition to undergo CAD.
Collapse
|
12
|
Ormazabal V, Nair S, Carrión F, Mcintyre HD, Salomon C. The link between gestational diabetes and cardiovascular diseases: potential role of extracellular vesicles. Cardiovasc Diabetol 2022; 21:174. [PMID: 36057662 PMCID: PMC9441052 DOI: 10.1186/s12933-022-01597-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Extracellular vesicles are critical mediators of cell communication. They encapsulate a variety of molecular cargo such as proteins, lipids, and nucleic acids including miRNAs, lncRNAs, circular RNAs, and mRNAs, and through transfer of these molecular signals can alter the metabolic phenotype in recipient cells. Emerging studies show the important role of extracellular vesicle signaling in the development and progression of cardiovascular diseases and associated risk factors such as type 2 diabetes and obesity. Gestational diabetes mellitus (GDM) is hyperglycemia that develops during pregnancy and increases the future risk of developing obesity, impaired glucose metabolism, and cardiovascular disease in both the mother and infant. Available evidence shows that changes in maternal metabolism and exposure to the hyperglycemic intrauterine environment can reprogram the fetal genome, leaving metabolic imprints that define life-long health and disease susceptibility. Understanding the factors that contribute to the increased susceptibility to metabolic disorders of children born to GDM mothers is critical for implementation of preventive strategies in GDM. In this review, we discuss the current literature on the fetal programming of cardiovascular diseases in GDM and the impact of extracellular vesicle (EV) signaling in epigenetic programming in cardiovascular disease, to determine the potential link between EV signaling in GDM and the development of cardiovascular disease in infants.
Collapse
Affiliation(s)
- Valeska Ormazabal
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine + Biomedical Sciences, The University of Queensland, Building 71/918, Herston, QLD, 4029, Australia.,Faculty of Biological Sciences, Pharmacology Department, University of Concepcion, Concepción, Chile
| | - Soumyalekshmi Nair
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine + Biomedical Sciences, The University of Queensland, Building 71/918, Herston, QLD, 4029, Australia
| | - Flavio Carrión
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - H David Mcintyre
- Mater Research, Faculty of Medicine, University of Queensland, Mater Health, South Brisbane, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine + Biomedical Sciences, The University of Queensland, Building 71/918, Herston, QLD, 4029, Australia. .,Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| |
Collapse
|
13
|
De Sousa RAL, Improta-Caria AC. Regulation of microRNAs in Alzheimer´s disease, type 2 diabetes, and aerobic exercise training. Metab Brain Dis 2022; 37:559-580. [PMID: 35075500 DOI: 10.1007/s11011-022-00903-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia. The evolution and aggregation of amyloid beta (β) oligomers is linked to insulin resistance in AD, which is also the major characteristic of type 2 diabetes (T2D). Being physically inactive can contribute to the development of AD and/or T2D. Aerobic exercise training (AET), a type of physical exercise, can be useful in preventing or treating the negative outcomes of AD and T2D. AD, T2D and AET can regulate the expression of microRNAs (miRNAs). Here, we review some of the changes in miRNAs expression regulated by AET, AD and T2D. MiRNAs play an important role in the gene regulation of key signaling pathways in both pathologies, AD and T2D. MiRNA dysregulation is evident in AD and has been associated with several neuropathological alterations, such as the development of a reactive gliosis. Expression of miRNAs are associated with many pathophysiological mechanisms involved in T2D like insulin synthesis, insulin resistance, glucose intolerance, hyperglycemia, intracellular signaling, and lipid profile. AET regulates miRNAs levels. We identified 5 miRNAs (miR-21, miR-29a/b, miR-103, miR-107, and miR-195) that regulate gene expression and are modulated by AET on AD and T2D. The identified miRNAs are potential targets to treat the symptoms of AD and T2D. Thus, AET is a non-pharmacological tool that can be used to prevent and fight the negative outcomes in AD and T2D.
Collapse
Affiliation(s)
- Ricardo Augusto Leoni De Sousa
- Programa Multicêntrico de Pós-Graduação Em Ciências Fisiológicas- Sociedade Brasileira de Fisiologia (SBFis), Universidade Federal Dos Vales Do Jequitinhonha E Mucuri (UFVJM), Campus JK, Rodovia MGT 367, Km 583, Alto da Jacuba, nº 5000, Diamantina, Minas Gerais, CEP 39100-000, Brazil.
| | - Alex Cleber Improta-Caria
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Bahia, Brazil
| |
Collapse
|
14
|
Kraczkowska W, Stachowiak L, Pławski A, Jagodziński PP. Circulating miRNA as potential biomarkers for diabetes mellitus type 2: should we focus on searching for sex differences? J Appl Genet 2022; 63:293-303. [PMID: 34984663 PMCID: PMC8979931 DOI: 10.1007/s13353-021-00678-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022]
Abstract
microRNAs are non-coding molecules, approximately 22 nucleotides in length, that regulate various cellular processes. A growing body of evidence has suggested that their dysregulated expression is involved in the pathogenesis of diverse diseases, including diabetes mellitus type 2 (DM2). Early onset of this chronic and complex metabolic disorder is frequently undiagnosed, leading to the development of severe diabetic complications. Notably, DM2 prevalence is rising globally and an increasing number of articles demonstrate that DM2 susceptibility, development, and progression differ between males and females. Therefore, this paper discusses the role of microRNAs as a source of novel diagnostic biomarkers for DM2 and aims to underline the importance of sex disparity in biomarkers research. Taking into account an urgent need for the development of sex-specific diagnostic strategies in DM2, recent results have shown that circulating miRNAs are promising candidates for sex-biased biomarkers.
Collapse
Affiliation(s)
- Weronika Kraczkowska
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Science, 6 Święcickiego Street, 60-781, Poznan, Poland
| | - Lucyna Stachowiak
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Science, 6 Święcickiego Street, 60-781, Poznan, Poland
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Science, 6 Święcickiego Street, 60-781, Poznan, Poland.
| |
Collapse
|
15
|
Li X, Yang Y, Song Y, Nie F, Fu C, Qin Y. Effect of Shuangdan Mingmu Capsule on Diabetic Retinopathy in Rats via Regulation of miRNAs. Diabetes Metab Syndr Obes 2022; 15:3181-3194. [PMID: 36268199 PMCID: PMC9578787 DOI: 10.2147/dmso.s379611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To evaluate the effects of Shuangdan Mingmu (SDMM) capsule on diabetic retinopathy in rats by regulating miRNAs. MATERIALS AND METHODS Streptozotocin (STZ) (50 mg/kg) was successfully used to induce diabetes in male Sprague-Dawley rats, which were randomly assigned to a group taking SDMM capsules ("diabetic+SDMM") or a control group ("diabetic"), and the normal group (n=10/group). The diabetic+SDMM capsule group received 1.89g/kg/d of SDMM capsule by gavage, whereas the other groups received the same amount of distilled water. After 12-weeks of gavage, the retina was removed from all rats for histopathological analysis, and miRNA sequencing experiments were carried out to identify the differential expression of miRNAs. These results were then confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS SDMM capsules improved retinal morphology, restored the number of cells in the ganglion cell layer (p<0.0001) and reduced apoptosis in all retinal layers (p values in the outer nuclear layers, inner nuclear layers and ganglion cell layers 0.0001, 0.0147, 0.0034, respectively). In addition, miRNA expression was changed in rats taking SDMM capsules. Compared with the diabetic group, six miRNAs were up-regulated and four miRNAs were down-regulated in the diabetic+SDMM capsule group. The qRT-PCR validation results showed that the expression levels of miR-450b-5p, miR-1249 and miR-155-5p were consistent with the trend of miRNA sequencing results, and were all up-regulated after SDMM capsule treatment. Target gene prediction and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed miRNAs showed that these pathways were mainly concentrated in the focal adhesions and PI3K/Akt, MAPK, and neural factor signaling pathways. CONCLUSION SDMM capsules may prevent and treat diabetic retinopathy by regulating the expression of miR-450b-5p, miR-1249 and miR-155-5p.
Collapse
Affiliation(s)
- Xiang Li
- Ophthalmology Department, the First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410007, People’s Republic of China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Engineering Technological Research Center for the Prevention and Treatment of Otolaryngologic Disease and Protection of Visual Function with Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Yijing Yang
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Engineering Technological Research Center for the Prevention and Treatment of Otolaryngologic Disease and Protection of Visual Function with Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Yan Song
- Ophthalmology Department, the First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410007, People’s Republic of China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Engineering Technological Research Center for the Prevention and Treatment of Otolaryngologic Disease and Protection of Visual Function with Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Fujiao Nie
- Ophthalmology Department, the First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410007, People’s Republic of China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Engineering Technological Research Center for the Prevention and Treatment of Otolaryngologic Disease and Protection of Visual Function with Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Chaojun Fu
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Engineering Technological Research Center for the Prevention and Treatment of Otolaryngologic Disease and Protection of Visual Function with Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Yuhui Qin
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Engineering Technological Research Center for the Prevention and Treatment of Otolaryngologic Disease and Protection of Visual Function with Chinese Medicine, Changsha, 410208, People’s Republic of China
- Institute of Chinese Medicine of Hunan Province, Changsha, 410006, People’s Republic of China
- Correspondence: Yuhui Qin, Institute of Chinese Medicine of Hunan Province, Lushan Road, Yuelu District, Changsha, 410006, People’s Republic of China, Tel +86 13873120865, Email
| |
Collapse
|
16
|
Padilla-Martinez F, Wojciechowska G, Szczerbinski L, Kretowski A. Circulating Nucleic Acid-Based Biomarkers of Type 2 Diabetes. Int J Mol Sci 2021; 23:ijms23010295. [PMID: 35008723 PMCID: PMC8745431 DOI: 10.3390/ijms23010295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 11/23/2022] Open
Abstract
Type 2 diabetes (T2D) is a deficiency in how the body regulates glucose. Uncontrolled T2D will result in chronic high blood sugar levels, eventually resulting in T2D complications. These complications, such as kidney, eye, and nerve damage, are even harder to treat. Identifying individuals at high risk of developing T2D and its complications is essential for early prevention and treatment. Numerous studies have been done to identify biomarkers for T2D diagnosis and prognosis. This review focuses on recent T2D biomarker studies based on circulating nucleic acids using different omics technologies: genomics, transcriptomics, and epigenomics. Omics studies have profiled biomarker candidates from blood, urine, and other non-invasive samples. Despite methodological differences, several candidate biomarkers were reported for the risk and diagnosis of T2D, the prognosis of T2D complications, and pharmacodynamics of T2D treatments. Future studies should be done to validate the findings in larger samples and blood-based biomarkers in non-invasive samples to support the realization of precision medicine for T2D.
Collapse
Affiliation(s)
- Felipe Padilla-Martinez
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
| | - Gladys Wojciechowska
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
- Correspondence:
| | - Lukasz Szczerbinski
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15276 Białystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15276 Białystok, Poland
| |
Collapse
|
17
|
Ghosh S, Mahalanobish S, Sil PC. Diabetes: discovery of insulin, genetic, epigenetic and viral infection mediated regulation. THE NUCLEUS : AN INTERNATIONAL JOURNAL OF CYTOLOGY AND ALLIED TOPICS 2021; 65:283-297. [PMID: 34629548 PMCID: PMC8491600 DOI: 10.1007/s13237-021-00376-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/23/2021] [Indexed: 01/11/2023]
Abstract
Diabetes mellitus, commonly referred to as diabetes, is a combination of many metabolic diseases. Insulin deficiency in our body is the main cause of diabetes. Insulin is one of the most well studied proteins, yet the genesis of its discovery was not getting much attention so far. Nevertheless, the history of the discovery of insulin is an exemplary of solving observational and scientific riddles, drudgery, patience and even professional turmoil. It is an inspiration for all medical personnel and scientists who are practising in the field of molecular medicine. Additionally, the genetic and epigenetic regulation of different types of diabetes needs to be addressed because of the widespread nature of the disease. Diabetes not only involves genetic predisposition but environmental factors, lifestyle etc. can be the major contributor for its inception. Nonetheless, viral infections at an early age are also found to trigger the onset of type I diabetes. In this review article, the history of the discovery of insulin is detailed along with the justification for the genetic and epigenetic regulatory mechanisms of diabetes and explained how viral infections can also trigger the onset of diabetes.
Collapse
Affiliation(s)
- Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal 700054 India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal 700054 India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal 700054 India
| |
Collapse
|
18
|
González-Sánchez LE, Ortega-Camarillo C, Contreras-Ramos A, Barajas-Nava LA. miRNAs as biomarkers for diagnosis of type 2 diabetes: A systematic review. J Diabetes 2021; 13:792-816. [PMID: 33576054 DOI: 10.1111/1753-0407.13166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/02/2021] [Accepted: 02/07/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND This systematic review summarizes results of studies that evaluated the expression of microRNAs (miRs) in prediabetes or type 2 diabetes (T2D). METHODS The information was obtained from PubMed, EMBL-EBI, Wanfang, Trip Database, Lilacs, CINAHL, Human microRNA Disease Database (HMDD) v3.0, and Google. A qualitative synthesis of the results was performed and miRs frequency was graphically represented. From 1893 identified studies, only 55 fulfilled the inclusion criteria. These 55 studies analyzed miRs in T2D, and of them, 13 also described data of prediabetes. RESULTS In diabetics, 122 miRs were reported and 35 miRs for prediabetics. However, we identified that five miRs (-122-5p, 144-3p, 210, 375, and -126b) were reported more often in diabetics and four (144-3p, -192, 29a, and -30d) in prediabetics. CONCLUSIONS Circulating miRs could be used as biomarkers of T2D. However, it is necessary to validate these microRNAs in prospective and multicenter studies with different population subgroups, considering age, gender, and risk factors.
Collapse
Affiliation(s)
- Luis Edgar González-Sánchez
- Laboratory of Developmental Biology Research and Experimental Teratogenicity, Hospital Infantil de México Federico Gómez (HIMFG), Mexico City, Mexico
| | - Clara Ortega-Camarillo
- Medical Research Unit in Biochemistry, Specialties Hospital, National Medical Center SXXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Alejandra Contreras-Ramos
- Laboratory of Developmental Biology Research and Experimental Teratogenicity, Hospital Infantil de México Federico Gómez (HIMFG), Mexico City, Mexico
| | - Leticia Andrea Barajas-Nava
- Evidence-Based Medicine Research Unit, Hospital Infantil de México Federico Gómez (HIMFG), Mexico City, Mexico
| |
Collapse
|
19
|
Tonyan ZN, Nasykhova YA, Mikhailova AA, Glotov AS. MicroRNAs as Potential Biomarkers of Type 2 Diabetes Mellitus. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421060107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
MicroRNA Sequences Modulated by Beta Cell Lipid Metabolism: Implications for Type 2 Diabetes Mellitus. BIOLOGY 2021; 10:biology10060534. [PMID: 34203703 PMCID: PMC8232095 DOI: 10.3390/biology10060534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
Alterations in lipid metabolism within beta cells and islets contributes to dysfunction and apoptosis of beta cells, leading to loss of insulin secretion and the onset of type 2 diabetes. Over the last decade, there has been an explosion of interest in understanding the landscape of gene expression which influences beta cell function, including the importance of small non-coding microRNA sequences in this context. This review sought to identify the microRNA sequences regulated by metabolic challenges in beta cells and islets, their targets, highlight their function and assess their possible relevance as biomarkers of disease progression in diabetic individuals. Predictive analysis was used to explore networks of genes targeted by these microRNA sequences, which may offer new therapeutic strategies to protect beta cell function and delay the onset of type 2 diabetes.
Collapse
|
21
|
Recent Highlights of Research on miRNAs as Early Potential Biomarkers for Cardiovascular Complications of Type 2 Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22063153. [PMID: 33808800 PMCID: PMC8003798 DOI: 10.3390/ijms22063153] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and its complications pose a serious threat to the life and health of patients around the world. The most dangerous complications of this disease are vascular complications. Microvascular complications of T2DM include retinopathy, nephropathy, and neuropathy. In turn, macrovascular complications include coronary artery disease, peripheral artery disease, and cerebrovascular disease. The currently used diagnostic methods do not ensure detection of the disease at an early stage, and they also do not predict the risk of developing specific complications. MicroRNAs (miRNAs) are small, endogenous, noncoding molecules that are involved in key processes, such as cell proliferation, differentiation, and apoptosis. Recent research has assigned them an important role as potential biomarkers for detecting complications related to diabetes. We suggest that utilizing miRNAs can be a routine approach for early diagnosis and prognosis of diseases and may enable the development of better therapeutic approaches. In this paper, we conduct a review of the latest reports demonstrating the usefulness of miRNAs as biomarkers in the vascular complications of T2DM.
Collapse
|
22
|
Visceral Adipose Tissue of Prediabetic and Diabetic Females Shares a Set of Similarly Upregulated microRNAs Functionally Annotated to Inflammation, Oxidative Stress and Insulin Signaling. Antioxidants (Basel) 2021; 10:antiox10010101. [PMID: 33445738 PMCID: PMC7828194 DOI: 10.3390/antiox10010101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/09/2021] [Accepted: 01/09/2021] [Indexed: 12/18/2022] Open
Abstract
Hypertrophic and hypoxic visceral adipose tissue (VAT) secretes proinflammatory cytokines promoting insulin resistance (IR), prediabetes and type 2 diabetes (T2DM) microRNAs (miRNAs) are markers of metabolic disorders regulating genes critical for e.g., inflammation, glucose metabolism, and antioxidant defense, with raising diagnostic value. The aim of the current study was to evaluate whether hyperglycemia is able to affect the expression of selected miRNAs in VAT of prediabetic (IFG) and diabetic (T2DM) patients vs. normoglycemic (NG) subjects using qPCR. Statistical analyses suggested that miRNAs expression could be sex-dependent. Thus, we determined 15 miRNAs as differentially expressed (DE) among NG, T2DM, IFG females (miR-10a-5p, let-7d-5p, miR-532-5p, miR-127-3p, miR-125b-5p, let-7a-5p, let-7e-5p, miR-199a-3p, miR-365a-3p, miR-99a-5p, miR-100-5p, miR-342-3p, miR-146b-5p, miR-204-5p, miR-409-3p). Majority of significantly changed miRNAs was similarly upregulated in VAT of female T2DM and IFG patients in comparison to NG subjects, positively correlated with FPG and HbA1c, yet, uncorrelated with WHR/BMI. Enrichment analyses indicated involvement of 11 top DE miRNAs in oxidative stress, inflammation and insulin signaling. Those miRNAs expression changes could be possibly associated with low-grade chronic inflammation and oxidative stress in VAT of hyperglycemic subjects.
Collapse
|
23
|
S.V. A, Pratibha M, Kapil B, M.K. S. Identification of circulatory miRNAs as candidate biomarkers in prediabetes - A systematic review and bioinformatics analysis. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Shi R, Chen Y, Liao Y, Li R, Lin C, Xiu L, Yu H, Ding Y. Research Status of Differentially Expressed Noncoding RNAs in Type 2 Diabetes Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3816056. [PMID: 33274206 PMCID: PMC7683115 DOI: 10.1155/2020/3816056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/26/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022]
Abstract
AIMS Noncoding RNAs (ncRNAs) play an important role in the occurrence and development of type 2 diabetes mellitus (T2DM). This paper summarized the current evidences of the involvement microRNAs, long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) in the differential expressions and their interaction with each other in T2DM. METHODS The differentially expressed miRNAs, lncRNAs, and circRNAs in the blood circulation (plasma, serum, whole blood, and peripheral blood mononuclear cells) of patients with T2DM were found in PubMed, GCBI, and other databases. The interactions between ncRNAs were predicted based on the MiRWalk and the DIANA Tools databases. The indirect and direct target genes of lncRNAs and circRNAs were predicted based on the starBase V2.0, DIANA Tools, and LncRNA-Target databases. Then, GO and KEGG analysis on all miRNA, lncRNA, and circRNA target genes was performed using the mirPath and Cluster Profile software package in R language. The lncRNA-miRNA and circRNA-miRNA interaction diagram was constructed with Cytoscape. The aim of this investigation was to construct a mechanism diagram of lncRNA involved in the regulation of target genes on insulin signaling pathways and AGE-RAGE signaling pathways of diabetic complications. RESULTS A total of 317 RNAs, 283 miRNAs, and 20 lncRNAs and circRNAs were found in the circulation of T2DM. Dysregulated microRNAs and lncRNAs were found to be involved in signals related to metabolic disturbances, insulin signaling, and AGE-RAGE signaling in T2DM. In addition, lncRNAs participate in the regulation of key genes in the insulin signaling and AGE-RAGE signaling pathways through microRNAs, which leads to insulin resistance and diabetic vascular complications. CONCLUSION Noncoding RNAs participate in the occurrence and development of type 2 diabetes and lead to its vascular complications by regulating different signaling pathways.
Collapse
Affiliation(s)
- Rou Shi
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan, Guangdong 523808, China
- Huizhou Central People's Hospital, Department of Endocrinology, Huizhou, Guangdong 516008, China
| | - Yingjian Chen
- Institute of Medical Systems Biology, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Yuanjun Liao
- Institute of Medical Systems Biology, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Rang Li
- Institute of Medical Systems Biology, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Chunwen Lin
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Liangchang Xiu
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Haibing Yu
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Yuanlin Ding
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan, Guangdong 523808, China
| |
Collapse
|
25
|
Sun Q, Zeng J, Liu Y, Chen J, Zeng QC, Chen YQ, Tu LL, Chen P, Yang F, Zhang M. microRNA-9 and -29a regulate the progression of diabetic peripheral neuropathy via ISL1-mediated sonic hedgehog signaling pathway. Aging (Albany NY) 2020; 12:11446-11465. [PMID: 32544883 PMCID: PMC7343507 DOI: 10.18632/aging.103230] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022]
Abstract
In this study, we tested the hypothesis that overexpression of miR-9 and miR-29a may contribute to DPN development and progression. We performed a meta-analysis of miR expression profile studies in human diabetes mellitus (DM) and the data suggested that miR-9 and miR-29a were highly expressed in patients with DM, which was further verified in serum samples collected from 30 patients diagnosed as DM. Besides, ISL1 was confirmed to be a target gene of miR-9 and miR-29a. Lentivirus-mediated forced expression of insulin gene enhancer binding protein-1 (ISL1) activated the sonic hedgehog (SHH) signaling pathway, increased motor nerve conduction velocity and threshold of nociception, and modulated expression of neurotrophic factors in sciatic nerves in rats with DM developed by intraperitoneal injection of 0.45% streptozotocin, suggesting that ISL1 could delay DM progression and promote neural regeneration and repair after sciatic nerve damage. However, lentivirus-mediated forced expression of miR-9 or miR-29a exacerbated DM and antagonized the beneficial effect of ISL1 on DPN. Collectively, this study revealed potential roles of miR-9 and miR-29a as contributors to DPN development through the SHH signaling pathway by binding to ISL1. Additionally, the results provided an experimental basis for the targeted intervention treatment of miR-9 and miR-29a.
Collapse
Affiliation(s)
- Qin Sun
- Department of Geriatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P. R. China
| | - Jun Zeng
- Chengdu Medical College, Chengdu 610500, P. R. China
| | - Yang Liu
- Department of Geriatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P. R. China
| | - JingYan Chen
- Department of Geriatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P. R. China
| | - Qing-Cui Zeng
- Department of Geriatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P. R. China
| | - Yan-Qiu Chen
- Department of Neurology, People's Hospital of Chongqing Yubei, Chongqing 401120, P. R. China
| | - Li-Li Tu
- Department of Geriatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P. R. China
| | - Ping Chen
- Department of Geriatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P. R. China
| | - Fan Yang
- Department of General Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P. R. China
| | - Min Zhang
- Department of Geriatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P. R. China
| |
Collapse
|
26
|
Aghaei Zarch SM, Dehghan Tezerjani M, Talebi M, Vahidi Mehrjardi MY. Molecular biomarkers in diabetes mellitus (DM). Med J Islam Repub Iran 2020; 34:28. [PMID: 32617267 PMCID: PMC7320976 DOI: 10.34171/mjiri.34.28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Diabetes mellitus (DM) is a growing epidemic metabolic syndrome, which affects near 5.6% of the world's population. Almost 12% of health expenditure is dedicated to this disorder. Discovering and developing biomarkers as a practical guideline with high specificity and sensitivity for the diagnosis, prognosis, and clinical management of DM is one of the subjects of great interest among DM researchers due to the long-lasting asymptomatic clinical manifestation of DM. In this study, we described a recently identified molecular biomarker involved in DM. Methods: This review study was done at the Diabetes Research Center affiliated to Shahid Sadoughi University of Medical Sciences. PubMed, Scopus, Google Scholar, and Web of Science were searched using the following keywords: "diabetes mellitus", "biomarker", "microRNA", "diagnostic tool" and "clinical manifestation." Results: A total of 107 studies were finally included in this review. After evaluating numerous articles, including original, metaanalysis, and review studies, we focused on molecular biomarkers involved in DM diagnosis and management. Conclusion: Increasing interest in biomarkers associated with DM goes back to its role in decreasing diabetes-related morbidity and mortality. This review focused on major molecular biomarkers such as proteomic and microRNA (miRNAs) as novel and interesting DM biomarkers that can help achieve timely diagnosis of DM.
Collapse
Affiliation(s)
| | - Masoud Dehghan Tezerjani
- Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehrdad Talebi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
27
|
Luo M, Xu C, Luo Y, Wang G, Wu J, Wan Q. Circulating miR-103 family as potential biomarkers for type 2 diabetes through targeting CAV-1 and SFRP4. Acta Diabetol 2020; 57:309-322. [PMID: 31583475 DOI: 10.1007/s00592-019-01430-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
AIMS MicroRNA-103 (miR-103) family plays important roles in regulating glucose homeostasis in type 2 diabetes mellitus (DM2). However, the underlying mechanisms remain poorly characterized. The objective of this study was to test the hypothesis that circulating miR-103a and miR-103b, which regulate CAV-1 and SFRP4, respectively, are novel biomarkers for diagnosis of DM2. METHODS We determined the predictive potential of circulating miR-103a and miR-103b in pre-DM subjects (pre-DM), noncomplicated diabetic subjects, and normal glucose-tolerance individuals (control) using bioinformatic analysis, qRT-PCR, luciferase assays, and ELISA assays. RESULTS We found that both miR-103a and miR-103b had high complementarity and conservation, modulated reporter gene expression through seed sequences in the 3'UTRs of CAV-1 and SFRP4 mRNA, and negatively regulated their mRNA and protein levels, respectively. We also found that increased miR-103a and decreased miR-103a in plasma were significantly and negatively correlated with reduced CAV-1 levels and elevated SFRP4 levels in pre-DM and DM2, respectively, and were significantly associated with glucose metabolism, HbA1c levels, and other DM2 risk factors for progression from a normal individual to one with pre-DM. Furthermore, we demonstrated that the reciprocal changes in circulating miR-103a and miR-103b not only provided high sensitivity and specificity to differentiate the pre-DM population but also acted as biomarkers for predicting DM2 with high diagnostic value. CONCLUSIONS These findings suggest that circulating miR-103a and miR-103b may serve as novel biomarkers for diagnosis of DM2, providing novel insight into the mechanisms underlying pre-DM.
Collapse
Affiliation(s)
- Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunrong Xu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yulin Luo
- GCP Center, Affiliated Hospital (T.C.M) of Southwest Medical University, Luzhou, Sichuan, China
| | - Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Qin Wan
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
28
|
MicroRNA Signatures as Future Biomarkers for Diagnosis of Diabetes States. Cells 2019; 8:cells8121533. [PMID: 31795194 PMCID: PMC6953078 DOI: 10.3390/cells8121533] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 12/24/2022] Open
Abstract
Diabetes results from the inability of pancreatic islets to maintain blood glucose concentrations within a normal physiological range. Clinical features are usually not observed until islets begin to fail and irreversible damage has occurred. Diabetes is generally diagnosed based on elevated glucose, which does not distinguish between type 1 and 2 diabetes. Thus, new diagnostic approaches are needed to detect different modes of diabetes before manifestation of disease. During prediabetes (pre-DM), islets undergo stress and release micro (mi) RNAs. Here, we review studies that have measured and tracked miRNAs in the blood for those with recent-onset or longstanding type 1 diabetes, obesity, pre-diabetes, type 2 diabetes, and gestational diabetes. We summarize the findings on miRNA signatures with the potential to stage progression of different modes of diabetes. Advances in identifying selective biomarker signatures may aid in early detection and classification of diabetic conditions and treatments to prevent and reverse diabetes.
Collapse
|
29
|
Gan WZ, Ramachandran V, Lim CSY, Koh RY. Omics-based biomarkers in the diagnosis of diabetes. J Basic Clin Physiol Pharmacol 2019; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0120/jbcpp-2019-0120.xml. [PMID: 31730525 DOI: 10.1515/jbcpp-2019-0120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM) is a group of metabolic diseases related to the dysfunction of insulin, causing hyperglycaemia and life-threatening complications. Current early screening and diagnostic tests for DM are based on changes in glucose levels and autoantibody detection. This review evaluates recent studies on biomarker candidates in diagnosing type 1, type 2 and gestational DM based on omics classification, whilst highlighting the relationship of these biomarkers with the development of diabetes, diagnostic accuracy, challenges and future prospects. In addition, it also focuses on possible non-invasive biomarker candidates besides common blood biomarkers.
Collapse
Affiliation(s)
- Wei Zien Gan
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Valsala Ramachandran
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Crystale Siew Ying Lim
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University Kuala Lumpur, 56000 Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, 57000 Kuala Lumpur, Malaysia, Phone: +60327317207
| |
Collapse
|
30
|
Sørensen AE, Udesen PB, Maciag G, Geiger J, Saliani N, Januszewski AS, Jiang G, Ma RC, Hardikar AA, Wissing MLM, Englund ALM, Dalgaard LT. Hyperandrogenism and Metabolic Syndrome Are Associated With Changes in Serum-Derived microRNAs in Women With Polycystic Ovary Syndrome. Front Med (Lausanne) 2019; 6:242. [PMID: 31737638 PMCID: PMC6839444 DOI: 10.3389/fmed.2019.00242] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) remains one of the most common endocrine disorder in premenopausal women with an unfavorable metabolic risk profile. Here, we investigate whether biochemical hyperandrogenism, represented by elevated serum free testosterone, resulted in an aberrant circulating microRNA (miRNAs) expression profile and whether miRNAs can identify those PCOS women with metabolic syndrome (MetS). Accordingly, we measured serum levels of miRNAs as well as biochemical markers related to MetS in a case-control study of 42 PCOS patients and 20 Controls. Patients were diagnosed based on the Rotterdam consensus criteria and stratified based on serum free testosterone levels (≥0.034 nmol/l) into either a normoandrogenic (n = 23) or hyperandrogenic (n = 19) PCOS group. Overall, hyperandrogenic PCOS women were more insulin resistant compared to normoandrogenic PCOS women and had a higher prevalence of MetS. A total of 750 different miRNAs were analyzed using TaqMan Low-Density Arrays. Altered levels of seven miRNAs (miR-485-3p, -1290, -21-3p, -139-3p, -361-5p, -572, and -143-3p) were observed in PCOS patients when compared with healthy Controls. Stratification of PCOS women revealed that 20 miRNAs were differentially expressed between the three groups. Elevated serum free testosterone levels, adjusted for age and BMI, were significantly associated with five miRNAs (miR-1290, -20a-5p, -139-3p, -433-3p, and -361-5p). Using binary logistic regression and receiver operating characteristic curves (ROC), a combination panel of three miRNAs (miR-361-5p, -1225-3p, and -34-3p) could correctly identify all of the MetS cases within the PCOS group. This study is the first to report comprehensive miRNA profiling in different subgroups of PCOS women with respect to MetS and suggests that circulating miRNAs might be useful as diagnostic biomarkers of MetS for a different subset of PCOS.
Collapse
Affiliation(s)
- Anja E Sørensen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.,Odense University Hospital, The Danish Diabetes Academy, Odense, Denmark
| | - Pernille B Udesen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.,Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Køge, Denmark
| | - Grzegorz Maciag
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Julian Geiger
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Negar Saliani
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Andrzej S Januszewski
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Guozhi Jiang
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ronald C Ma
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Marie Louise M Wissing
- Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Køge, Denmark
| | - Anne Lis M Englund
- Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Køge, Denmark
| | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
31
|
Mononen N, Lyytikäinen LP, Seppälä I, Mishra PP, Juonala M, Waldenberger M, Klopp N, Illig T, Leiviskä J, Loo BM, Laaksonen R, Oksala N, Kähönen M, Hutri-Kähönen N, Raitakari O, Lehtimäki T, Raitoharju E. Whole blood microRNA levels associate with glycemic status and correlate with target mRNAs in pathways important to type 2 diabetes. Sci Rep 2019; 9:8887. [PMID: 31222113 PMCID: PMC6586838 DOI: 10.1038/s41598-019-43793-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 04/29/2019] [Indexed: 12/25/2022] Open
Abstract
We analyzed the associations between whole blood microRNA profiles and the indices of glucose metabolism and impaired fasting glucose and examined whether the discovered microRNAs correlate with the expression of their mRNA targets. MicroRNA and gene expression profiling were performed for the Young Finns Study participants (n = 871). Glucose, insulin, and glycated hemoglobin (HbA1c) levels were measured, the insulin resistance index (HOMA2-IR) was calculated, and the glycemic status (normoglycemic [n = 534]/impaired fasting glucose [IFG] [n = 252]/type 2 diabetes [T2D] [n = 24]) determined. Levels of hsa-miR-144-5p, -122-5p, -148a-3p, -589-5p, and hsa-let-7a-5p associated with glycemic status. hsa-miR-144-5p and -148a-3p associated with glucose levels, while hsa-miR-144-5p, -122-5p, -184, and -339-3p associated with insulin levels and HOMA2-IR, and hsa-miR-148a-3p, -15b-3p, -93-3p, -146b-5p, -221-3p, -18a-3p, -642a-5p, and -181-2-3p associated with HbA1c levels. The targets of hsa-miR-146b-5p that correlated with its levels were enriched in inflammatory pathways, and the targets of hsa-miR-221-3p were enriched in insulin signaling and T2D pathways. These pathways showed indications of co-regulation by HbA1c-associated miRNAs. There were significant differences in the microRNA profiles associated with glucose, insulin, or HOMA-IR compared to those associated with HbA1c. The HbA1c-associated miRNAs also correlated with the expression of target mRNAs in pathways important to the development of T2D.
Collapse
Affiliation(s)
- Nina Mononen
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and the Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and the Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and the Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and the Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Markus Juonala
- Division of Medicine, Turku University Hospital, and Department of Medicine, University of Turku, Turku, Finland
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum, German Research Center for Environmental Health, Munich, Germany
| | - Norman Klopp
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany.,Institute for Human Genetics, Hannover Medical School, Hanover, Germany
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum, German Research Center for Environmental Health, Munich, Germany.,Hannover Unified Biobank, Hannover Medical School, Hannover, Germany.,Institute for Human Genetics, Hannover Medical School, Hanover, Germany
| | - Jaana Leiviskä
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital HUSLAB, Helsinki, Finland
| | - Britt-Marie Loo
- Joint Clinical Biochemistry Laboratory of the University of Turku and Turku University Central Hospital and Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland
| | - Reijo Laaksonen
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and the Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Niku Oksala
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and the Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Centre for Vascular Surgery and Interventional Radiology, Tampere University Hospital, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Olli Raitakari
- Research Centre for Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine and Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and the Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and the Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
32
|
Massaro JD, Polli CD, Costa E Silva M, Alves CC, Passos GA, Sakamoto-Hojo ET, Rodrigues de Holanda Miranda W, Bispo Cezar NJ, Rassi DM, Crispim F, Dib SA, Foss-Freitas MC, Pinheiro DG, Donadi EA. Post-transcriptional markers associated with clinical complications in Type 1 and Type 2 diabetes mellitus. Mol Cell Endocrinol 2019; 490:1-14. [PMID: 30926524 DOI: 10.1016/j.mce.2019.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/08/2019] [Accepted: 03/20/2019] [Indexed: 01/10/2023]
Abstract
The delayed diagnosis and the inadequate treatment of diabetes increase the risk of chronic complications. The study of regulatory molecules such as miRNAs can provide expression profiles of diabetes and diabetes complications. We evaluated the mononuclear cell miRNA profiles of 63 Type 1 and Type 2 diabetes patients presenting or not microvascular complications, and 40 healthy controls, using massive parallel sequencing. Gene targets, enriched pathways, dendograms and miRNA-mRNA networks were performed for the differentially expressed miRNAs. Six more relevant miRNAs were validated by RT-qPCR and data mining analysis. MiRNAs associated with specific complications included: i) neuropathy (miR-873-5p, miR-125a-5p, miR-145-3p and miR-99b-5p); ii) nephropathy (miR-1249-3p, miR-193a-5p, miR-409-5p, miR-1271-5p, miR-501-3p, miR-148b-3p and miR-9-5p); and iii) retinopathy (miR-143-3p, miR-1271-5p, miR-409-5p and miR-199a-5p). These miRNAs mainly targeted gene families and specific genes associated with advanced glycation end products and their receptors. Sets of miRNAs were also defined as potential targets for diabetes/diabetes complication pathogenesis.
Collapse
Affiliation(s)
- Juliana Doblas Massaro
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil.
| | - Claudia Danella Polli
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil
| | - Matheus Costa E Silva
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil
| | - Cinthia Caroline Alves
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil
| | - Geraldo Aleixo Passos
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil; Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, 14040-900, Ribeirão Preto, SP, Brazil
| | - Elza Tiemi Sakamoto-Hojo
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, 14040-900, Ribeirão Preto, SP, Brazil
| | - Wallace Rodrigues de Holanda Miranda
- Division of Endocrinology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil
| | - Nathalia Joanne Bispo Cezar
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil
| | - Diane Meyre Rassi
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil
| | - Felipe Crispim
- Endocrinology and Diabetes Division, Department of Medicine, Federal University of São Paulo, 04039-032, São Paulo, SP, Brazil
| | - Sergio Atala Dib
- Endocrinology and Diabetes Division, Department of Medicine, Federal University of São Paulo, 04039-032, São Paulo, SP, Brazil
| | - Maria Cristina Foss-Freitas
- Division of Endocrinology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil
| | - Daniel Guariz Pinheiro
- Department of Technology, Faculty of Agriculture and Veterinary Sciences, University of the State of São Paulo, 14884-900, Jaboticabal, SP, Brazil
| | - Eduardo Antônio Donadi
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
33
|
Ghai V, Baxter D, Wu X, Kim T, Kuusisto J, Laakso M, Connolly T, Li Y, Andrade‐Gordon P, Wang K. Circulating RNAs as predictive markers for the progression of type 2 diabetes. J Cell Mol Med 2019; 23:2753-2768. [PMID: 30734465 PMCID: PMC6433655 DOI: 10.1111/jcmm.14182] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/23/2022] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is the most prevalent form of diabetes in the USA, thus, the identification of biomarkers that could be used to predict the progression from prediabetes to T2DM would be greatly beneficial. Recently, circulating RNA including microRNAs (miRNAs) present in various body fluids have emerged as potential biomarkers for various health conditions, including T2DM. Whereas studies that examine the changes of miRNA spectra between healthy controls and T2DM individuals have been reported, the goal of this study is to conduct a baseline comparison of prediabetic individuals who either progress to T2DM, or remain prediabetic. Using an advanced small RNA sequencing library construction method that improves the detection of miRNA species, we identified 57 miRNAs that showed significant concentration differences between progressors (progress from prediabetes to T2DM) and non-progressors. Among them, 26 have been previously reported to be associated with T2DM in either body fluids or tissue samples. Some of the miRNAs identified were also affected by obesity. Furthermore, we identified miRNA panels that are able to discriminate progressors from non-progressors. These results suggest that upon further validation these miRNAs may be useful to predict the risk of conversion to T2DM from prediabetes.
Collapse
Affiliation(s)
- Vikas Ghai
- Institute for Systems BiologySeattleWashington
| | | | - Xiaogang Wu
- Institute for Systems BiologySeattleWashington
| | | | - Johanna Kuusisto
- Institute of Clinical MedicineKuopio University Hospital, University of Eastern FinlandKuopioFinland
| | - Markku Laakso
- Institute of Clinical MedicineKuopio University Hospital, University of Eastern FinlandKuopioFinland
| | - Tom Connolly
- Cardiovascular and Metabolism Therapeutic AreaJanssen Research & DevelopmentPennsylvania
| | - Yong Li
- Cardiovascular and Metabolism Therapeutic AreaJanssen Research & DevelopmentPennsylvania
| | | | - Kai Wang
- Institute for Systems BiologySeattleWashington
| |
Collapse
|
34
|
La Sala L, Mrakic-Sposta S, Tagliabue E, Prattichizzo F, Micheloni S, Sangalli E, Specchia C, Uccellatore AC, Lupini S, Spinetti G, de Candia P, Ceriello A. Circulating microRNA-21 is an early predictor of ROS-mediated damage in subjects with high risk of developing diabetes and in drug-naïve T2D. Cardiovasc Diabetol 2019; 18:18. [PMID: 30803440 PMCID: PMC6388471 DOI: 10.1186/s12933-019-0824-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/08/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Impaired glucose tolerance (IGT) is a risk factor for the development of diabetes and related complications that ensue. Early identification of at-risk individuals might be beneficial to reduce or delay the progression of diabetes and its related complications. Recently, microRNAs emerged as potential biomarkers of diseases. The aim of the present study was to evaluate microRNA-21 as a potential biomarker for the risk of developing diabetes in adults with IGT and to investigate its downstream effects as the generation of reactive oxygen species (ROS), the induction of manganese-superoxide dismutase-2 (SOD2), and the circulating levels of 4-HNE (4-hydroxynonenal). METHODS To evaluate the prognostic and predictive values of plasmatic microRNA-21 in identifying metabolic derangements, we tested a selected cohort (n = 115) of subjects enrolled in the DIAPASON Study, whom were selected on ADA criteria for 2hPG. Statistical analysis was performed using ANOVA or the Kruskal-Wallis test as appropriate. ROC curves were drawn for diagnostic accuracy of the tests; positive and negative predictive values were performed, and Youden's index was used to seek the cut-off optimum truncation point. ROS, SOD2 and 4-HNE were also evaluated. RESULTS We observed significant upregulation of microRNA-21 in IGT and in T2D subjects, and microRNA-21 was positively correlated with glycaemic parameters. Diagnostic performance of microRNA-21 was high and accurate. We detected significant overproduction of ROS by electron paramagnetic resonance (EPR), significant accumulation of the lipid peroxidation marker 4-HNE, and defective SOD2 antioxidant response in IGT and newly diagnosed, drug-naïve T2D subjects. In addition, ROC curves demonstrated the diagnostic accuracy of markers used. CONCLUSIONS our data demonstrate that microRNA-21 is associated with prediabetic status and exhibits predictive value for early detection of glucose imbalances. These data could provide novel clues for miR-based biomarkers to evaluate diabetes.
Collapse
Affiliation(s)
- Lucia La Sala
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy
| | - Simona Mrakic-Sposta
- Institute of Molecular Bioimaging and Physiology, National Research Council, Segrate, Italy
| | | | - Francesco Prattichizzo
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy
| | - Stefano Micheloni
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy
| | - Elena Sangalli
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy
| | - Claudia Specchia
- Department of Translational Biomedicine, University of Brescia, Brescia, Italy
| | | | | | - Gaia Spinetti
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy
| | - Paola de Candia
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy
| | - Antonio Ceriello
- Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| |
Collapse
|
35
|
Exercise Training-Induced Changes in MicroRNAs: Beneficial Regulatory Effects in Hypertension, Type 2 Diabetes, and Obesity. Int J Mol Sci 2018; 19:ijms19113608. [PMID: 30445764 PMCID: PMC6275070 DOI: 10.3390/ijms19113608] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that regulate gene expression post-transcriptionally. They are involved in the regulation of physiological processes, such as adaptation to physical exercise, and also in disease settings, such as systemic arterial hypertension (SAH), type 2 diabetes mellitus (T2D), and obesity. In SAH, microRNAs play a significant role in the regulation of key signaling pathways that lead to the hyperactivation of the renin-angiotensin-aldosterone system, endothelial dysfunction, inflammation, proliferation, and phenotypic change in smooth muscle cells, and the hyperactivation of the sympathetic nervous system. MicroRNAs are also involved in the regulation of insulin signaling and blood glucose levels in T2D, and participate in lipid metabolism, adipogenesis, and adipocyte differentiation in obesity, with specific microRNA signatures involved in the pathogenesis of each disease. Many studies report the benefits promoted by exercise training in cardiovascular diseases by reducing blood pressure, glucose levels, and improving insulin signaling and lipid metabolism. The molecular mechanisms involved, however, remain poorly understood, especially regarding the participation of microRNAs in these processes. This review aimed to highlight microRNAs already known to be associated with SAH, T2D, and obesity, as well as their possible regulation by exercise training.
Collapse
|
36
|
Rodriguez H, El-Osta A. Epigenetic Contribution to the Development and Progression of Vascular Diabetic Complications. Antioxid Redox Signal 2018; 29:1074-1091. [PMID: 29304555 DOI: 10.1089/ars.2017.7347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SIGNIFICANCE The number of people suffering from diabetes worldwide is steadily rising. Complications from diabetes, including cardiovascular and renal disease, contribute to the high morbidity and mortality associated with this disease. Recent Advances: Hyperglycemia promotes tissue damage through diverse mechanisms involving increased production of reactive oxygen species. Increased oxidative stress drives changes in chromatin structure that mediate gene expression changes leading to the upregulation of proinflammatory and profibrotic mediators. The epigenetic contribution to diabetes-induced changes in gene expression is increasingly recognized as a key factor in the development and progression of vascular diabetic complications. CRITICAL ISSUES The mechanisms through which stimuli from the diabetic milieu promote epigenetic changes remain poorly understood. In addition, glycemic control constitutes an important factor influencing epigenetic states in diabetes, and the phenomenon of hyperglycemic memory warrants further research. FUTURE DIRECTIONS Knowledge of the molecular mechanisms underlying epigenetic changes in diabetes may allow the design of novel therapeutic strategies to reduce the burden of diabetic complications. Furthermore, certain epigenetic markers are detected early during the onset of diabetes and its complications and may prove useful as biomarkers for disease risk prediction.
Collapse
Affiliation(s)
- Hanah Rodriguez
- 1 Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University , Melbourne, Australia
| | - Assam El-Osta
- 1 Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University , Melbourne, Australia .,2 Department of Pathology, University of Melbourne , Melbourne, Australia .,3 Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong , Hong Kong SAR, China
| |
Collapse
|
37
|
Huntley RP, Kramarz B, Sawford T, Umrao Z, Kalea A, Acquaah V, Martin MJ, Mayr M, Lovering RC. Expanding the horizons of microRNA bioinformatics. RNA (NEW YORK, N.Y.) 2018; 24:1005-1017. [PMID: 29871895 PMCID: PMC6049505 DOI: 10.1261/rna.065565.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
MicroRNA regulation of key biological and developmental pathways is a rapidly expanding area of research, accompanied by vast amounts of experimental data. This data, however, is not widely available in bioinformatic resources, making it difficult for researchers to find and analyze microRNA-related experimental data and define further research projects. We are addressing this problem by providing two new bioinformatics data sets that contain experimentally verified functional information for mammalian microRNAs involved in cardiovascular-relevant, and other, processes. To date, our resource provides over 4400 Gene Ontology annotations associated with over 500 microRNAs from human, mouse, and rat and over 2400 experimentally validated microRNA:target interactions. We illustrate how this resource can be used to create microRNA-focused interaction networks with a biological context using the known biological role of microRNAs and the mRNAs they regulate, enabling discovery of associations between gene products, biological pathways and, ultimately, diseases. This data will be crucial in advancing the field of microRNA bioinformatics and will establish consistent data sets for reproducible functional analysis of microRNAs across all biological research areas.
Collapse
Affiliation(s)
- Rachael P Huntley
- Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| | - Barbara Kramarz
- Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| | - Tony Sawford
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge CB10 1SD, United Kingdom
| | - Zara Umrao
- Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| | - Anastasia Kalea
- Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| | - Vanessa Acquaah
- Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| | - Maria J Martin
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge CB10 1SD, United Kingdom
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London SE5 9NU, United Kingdom
| | - Ruth C Lovering
- Institute of Cardiovascular Science, University College London, London WC1E 6JF, United Kingdom
| |
Collapse
|
38
|
Quantification of microRNA levels in plasma - Impact of preanalytical and analytical conditions. PLoS One 2018; 13:e0201069. [PMID: 30024941 PMCID: PMC6053236 DOI: 10.1371/journal.pone.0201069] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023] Open
Abstract
Numerous studies have reported a potential role for circulating microRNAs as biomarkers in a wide variety of diseases. However, there is a critical reproducibility challenge some of which might be due to differences in preanalytical and/or analytical factors. Thus, in the current study we systematically investigated the impact of selected preanalytical and analytical variables on the measured microRNA levels in plasma. Similar levels of microRNA were found in platelet-poor plasma obtained by dual compared to prolonged single centrifugation. In contrast, poor correlation was observed between measurements in standard plasma compared to platelet-poor plasma. The correlation between quantitative real-time PCR and droplet digital PCR was found to be good, contrary to TaqMan Low Density Array and single TaqMan assays where no correlation could be demonstrated. Dependent on the specific microRNA measured and the normalization strategy used, the intra- and inter-assay variation of quantitative real-time PCR were found to be 4.2–6.8% and 10.5–31.4%, respectively. Using droplet digital PCR the intra-assay variation was 4.4–20.1%, and the inter-assay variation 5.7–26.7%. Plasma preparation and microRNA purification were found to account for 39–73% of the total intra-assay variation, dependent on the microRNA measured and the normalization strategy used. In conclusion, our study highlighted the importance of reporting comprehensive methodological information when publishing, allowing others to perform validation studies where preanalytical and analytical variables as causes for divergent results can be minimized. Furthermore, if microRNAs are to become routinely used diagnostic or prognostic biomarkers, the differences in plasma microRNA levels between health and diseased subjects must exceed the high preanalytical and analytical variability.
Collapse
|
39
|
Gil-Sánchez I, Esteban-Fernández A, González de Llano D, Sanz-Buenhombre M, Guadarrana A, Salazar N, Gueimonde M, de los Reyes-Gavilánc CG, Martín Gómez L, García Bermejo ML, Bartolomé B, Moreno-Arribas MV. Supplementation with grape pomace in healthy women: Changes in biochemical parameters, gut microbiota and related metabolic biomarkers. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.03.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
40
|
Matamala JM, Arias-Carrasco R, Sanchez C, Uhrig M, Bargsted L, Matus S, Maracaja-Coutinho V, Abarzua S, van Zundert B, Verdugo R, Manque P, Hetz C. Genome-wide circulating microRNA expression profiling reveals potential biomarkers for amyotrophic lateral sclerosis. Neurobiol Aging 2018; 64:123-138. [DOI: 10.1016/j.neurobiolaging.2017.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022]
|
41
|
Capuani B, Pacifici F, Della-Morte D, Lauro D. Glucagon Like Peptide 1 and MicroRNA in Metabolic Diseases: Focusing on GLP1 Action on miRNAs. Front Endocrinol (Lausanne) 2018; 9:719. [PMID: 30581418 PMCID: PMC6293193 DOI: 10.3389/fendo.2018.00719] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/13/2018] [Indexed: 12/25/2022] Open
Abstract
Glucagon like peptide 1 (GLP1) is an incretin hormone released from the enteroendocrine L-type cells of the lower gastrointestinal tract. The active isoforms of GLP1 are rapidly degraded (<2 min) by protease dipeptidyl peptidase-4 (DPP-4) after their release. Among its functions, GLP1 exerts a pivotal role in regulating glucose and lipid metabolism. In particular, GLP1 increases glucose stimulated insulin secretion, functional pancreatic β-cell mass and decreases glucagon secretion from pancreatic α-cells. GLP1 can also be a regulator of lipid and lipoprotein metabolism ameliorating diabetic dyslipidemia, liver steatosis, and promoting satiety. Interestingly, it has been found that GLP1 and GLP1 agonists can modulate the expression of different microRNAs (miRNAs), a ~22 nucleotides small non-coding RNAs, key modulators of protein expression. In particular, in pancreas, GLP1 increases the expression levels of miRNA-212 and miRNA-132, stimulating insulin secretion. Similarly, GLP1 decreases miRNA-338 levels, leading to an increase of pancreatic β-cell function, followed by an improvement of diabetic conditions. Moreover, GLP1 modulation of miRNAs expression in the liver regulates hepatic lipid storage. Indeed, GLP1 down-regulates miRNA-34a and miRNA-21 and up-regulates miRNA-200b and miRNA-200c expression in liver, reducing intra hepatic lipid accumulation and liver steatosis. Clinical and pre-clinical studies, discussed in this review, suggest that modulation of GLP1/miRNAs pathway may be a useful and innovative therapeutic strategy for prevention and treatment of metabolic disorders, such as diabetes mellitus and liver steatosis.
Collapse
Affiliation(s)
- Barbara Capuani
- Department of Systems Medicine, University of Rome “Tor Vergata,”, Rome, Italy
| | - Francesca Pacifici
- Department of Systems Medicine, University of Rome “Tor Vergata,”, Rome, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome “Tor Vergata,”, Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, University of Rome “Tor Vergata,”, Rome, Italy
- Department of Medical Science, University Hospital—Fondazione Policlinico di Tor Vergata, Rome, Italy
- *Correspondence: Davide Lauro
| |
Collapse
|
42
|
Feng G, Gao JL, Zhang P, Huang JJ, Huang LZ, Cheng L, Pu C. Decreased serum extracellular superoxide dismutase activity is associated with albuminuria in Chinese patients with type 2 diabetes mellitus. Acta Diabetol 2017; 54:1047-1055. [PMID: 28894973 DOI: 10.1007/s00592-017-1048-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/31/2017] [Indexed: 02/06/2023]
Abstract
AIMS The aim of this study was to determine the activity of serum extracellular superoxide dismutase (ecSOD) in patients with type 2 diabetes mellitus (T2DM) and healthy subjects, and to determine the prospective association between baseline serum ecSOD activity and the subsequent risk of albuminuria progression in a cohort of Chinese T2DM patients. METHODS A total of 458 T2DM patients and 100 healthy subjects were assessed. After a median follow-up of 7.7 months, 319 patients with baseline normoalbuminuria (urinary albumin-to-creatinine ratio [UACR] <30 mg/g) and 77 patients with baseline microalbuminuria (UACR = 30-299 mg/g) were divided into progression and non-progression groups according to UACR changes. Serum ecSOD activity was determined by the autoxidation of pyrogallol method. Multivariate Cox regression analysis was used for investigating the predictors for albuminuria progression. RESULTS Compared with healthy controls (174.5 ± 25.1 U/mL), serum ecSOD activity significantly decreased in T2DM patients with normoalbuminuria (114.9 ± 13.2 U/mL), with microalbuminuria (106.6 ± 16.3 U/mL), and with macroalbuminuria (97.1 ± 18.2 U/mL) (all P < 0.001). Serum ecSOD activity was associated with albuminuria (odds ratio [OR] = 1.028, P = 0.004) in T2DM patients. Baseline serum ecSOD activity (hazard ratio [HR] = 0.902, 95% CI 0.877-0.928, P < 0.001) was an independent predictor for albuminuria progression. CONCLUSION Serum ecSOD activity may be useful for predicting the future risk of albuminuria progression in Chinese T2DM patients.
Collapse
Affiliation(s)
- Gang Feng
- Clinical Laboratory, The First Affiliated Hospital of Wanan Medical College, Wuhu, 241001, Anhui, China
| | - Jia-Lin Gao
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wanan Medical College, Wuhu, 241001, Anhui, China
| | - Peng Zhang
- Clinical Laboratory, The First Affiliated Hospital of Wanan Medical College, Wuhu, 241001, Anhui, China
| | - Jian-Jun Huang
- Clinical Laboratory, The First Affiliated Hospital of Wanan Medical College, Wuhu, 241001, Anhui, China
| | - Li-Zhu Huang
- Clinical Laboratory, The First Affiliated Hospital of Wanan Medical College, Wuhu, 241001, Anhui, China
| | - Long Cheng
- Clinical Laboratory, The First Affiliated Hospital of Wanan Medical College, Wuhu, 241001, Anhui, China
| | - Chun Pu
- Clinical Laboratory, The First Affiliated Hospital of Wanan Medical College, Wuhu, 241001, Anhui, China.
| |
Collapse
|
43
|
Heßelbach K, Kim GJ, Flemming S, Häupl T, Bonin M, Dornhof R, Günther S, Merfort I, Humar M. Disease relevant modifications of the methylome and transcriptome by particulate matter (PM 2.5) from biomass combustion. Epigenetics 2017; 12:779-792. [PMID: 28742980 PMCID: PMC5739103 DOI: 10.1080/15592294.2017.1356555] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Exposure to particulate matter (PM) is recognized as a major health hazard, but molecular responses are still insufficiently described. We analyzed the epigenetic impact of ambient PM2.5 from biomass combustion on the methylome of primary human bronchial epithelial BEAS-2B cells using the Illumina HumanMethylation450 BeadChip. The transcriptome was determined by the Affymetrix HG-U133 Plus 2.0 Array. PM2.5 induced genome wide alterations of the DNA methylation pattern, including differentially methylated CpGs in the promoter region associated with CpG islands. Gene ontology analysis revealed that differentially methylated genes were significantly clustered in pathways associated with the extracellular matrix, cellular adhesion, function of GTPases, and responses to extracellular stimuli, or were involved in ion binding and shuttling. Differential methylations also affected tandem repeats. Additionally, 45 different miRNA CpG loci showed differential DNA methylation, most of them proximal to their promoter. These miRNAs are functionally relevant for lung cancer, inflammation, asthma, and other PM-associated diseases. Correlation of the methylome and transcriptome demonstrated a clear bias toward transcriptional activation by hypomethylation. Genes that exhibited both differential methylation and expression were functionally linked to cytokine and immune responses, cellular motility, angiogenesis, inflammation, wound healing, cell growth, differentiation and development, or responses to exogenous matter. Disease ontology of differentially methylated and expressed genes indicated their prominent role in lung cancer and their participation in dominant cancer related signaling pathways. Thus, in lung epithelial cells, PM2.5 alters the methylome of genes and noncoding transcripts or elements that might be relevant for PM- and lung-associated diseases.
Collapse
Affiliation(s)
- Katharina Heßelbach
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Gwang-Jin Kim
- b Pharmaceutical Bioinformatics, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Stephan Flemming
- b Pharmaceutical Bioinformatics, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Thomas Häupl
- c Department of Rheumatology and Clinical Immunology , Charité University Hospital Berlin , Germany
| | - Marc Bonin
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Regina Dornhof
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Stefan Günther
- d Pharmaceutical Bioinformatics and Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs University Freiburg , Freiburg , Germany
| | - Irmgard Merfort
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Matjaz Humar
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| |
Collapse
|
44
|
Lv QL, Du H, Liu YL, Huang YT, Wang GH, Zhang X, Chen SH, Zhou HH. Low expression of microRNA-320b correlates with tumorigenesis and unfavorable prognosis in glioma. Oncol Rep 2017; 38:959-966. [PMID: 28656255 DOI: 10.3892/or.2017.5762] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 03/13/2017] [Indexed: 11/05/2022] Open
Abstract
Accumulating evidence demonstrates that dysregulated microRNAs (miRNAs) play a critical role in tumorigenesis and progression of various cancers. miR-320b, a member of miR‑320 family, was revealed downregulated in numerous human cancers, including nasopharyngeal carcinoma and colorectal cancer. However, the function of miR‑320b in human glioma remained poorly defined. In this study, we report that miR‑320b was lowly expressed in glioma tissues and cell lines in contrast with controls, being closely correlated with histological malignancy of glioma. Furthermore, patients with low expression of miR‑320b were associated with poor prognostic outcomes. In vitro functional assays indicated that overexpression of miR‑320b could markedly enhance cell apoptosis rate and suppress cell proliferation, migration and invasion. miR-320b mimic impaired cell cycle and metastasis through inhibiting the expression of G1/S transition key regulator Cyclin D1 as well as decreasing the expression level of MMP2 and MMP9. Additionally, upregulation of miR‑320b could markedly promote apoptosis by increasing the level of Bax and reducing Bcl-2 expression in glioma. Taken together, our data suggested that miR‑320b might serve as a novel prognostic marker and potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Qiao-Li Lv
- Department of Science and Education, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Hong Du
- Department of Pharmacy, Qingdao Mental Health Center, Qingdao, Shandong 266034, P.R. China
| | - Yan-Ling Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuang-Tao Huang
- Department of Neurology, The Brain Hospital of Hunan Province, Changsha, Hunan 410008, P.R. China
| | - Gui-Hua Wang
- Department of Oncology, Changsha Central Hospital, Changsha, Hunan 410008, P.R. China
| | - Xue Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shu-Hui Chen
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
45
|
de Lucia C, Komici K, Borghetti G, Femminella GD, Bencivenga L, Cannavo A, Corbi G, Ferrara N, Houser SR, Koch WJ, Rengo G. microRNA in Cardiovascular Aging and Age-Related Cardiovascular Diseases. Front Med (Lausanne) 2017; 4:74. [PMID: 28660188 PMCID: PMC5466994 DOI: 10.3389/fmed.2017.00074] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/26/2017] [Indexed: 12/17/2022] Open
Abstract
Over the last decades, life expectancy has significantly increased although several chronic diseases persist in the population, with aging as the leading risk factor. Despite improvements in diagnosis and treatment, many elderlies suffer from cardiovascular problems that are much more frequent in an older, more fragile organism. In the long term, age-related cardiovascular diseases (CVDs) contribute to the decline of quality of life and ability to perform normal activities of daily living. microRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression at the posttranscriptional level in both physiological and pathological conditions. In this review, we will focus on the role of miRNAs in aging and age-related CVDs as heart failure, hypertension, atherosclerosis, atrial fibrillation, and diabetes mellitus. miRNAs are key regulators of complex biological mechanisms, representing an exciting potential therapeutic target in CVDs. Moreover, one major challenge in geriatric medicine is to find reliable biomarkers for diagnosis, prognosis, and prediction of the response to specific drugs. miRNAs represent a very promising tool due to their stability in the circulation and unique signature in CVDs. However, further studies are needed to investigate their translational potential in the real clinical practice.
Collapse
Affiliation(s)
- Claudio de Lucia
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.,Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Klara Komici
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Giulia Borghetti
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Grazia Daniela Femminella
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Leonardo Bencivenga
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Alessandro Cannavo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.,Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Nicola Ferrara
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.,Scientific Institute of Telese Terme, Salvatore Maugeri Foundation, IRCCS, Benevento, Italy
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Giuseppe Rengo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.,Scientific Institute of Telese Terme, Salvatore Maugeri Foundation, IRCCS, Benevento, Italy
| |
Collapse
|
46
|
Thamotharan S, Chu A, Kempf K, Janzen C, Grogan T, Elashoff DA, Devaskar SU. Differential microRNA expression in human placentas of term intra-uterine growth restriction that regulates target genes mediating angiogenesis and amino acid transport. PLoS One 2017; 12:e0176493. [PMID: 28463968 PMCID: PMC5413012 DOI: 10.1371/journal.pone.0176493] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/11/2017] [Indexed: 12/17/2022] Open
Abstract
Placental insufficiency leading to intrauterine growth restriction (IUGR) demonstrates perturbed gene expression affecting placental angiogenesis and nutrient transfer from mother to fetus. To understand the post-transcriptional mechanisms underlying such placental gene expression changes, our objective was to identify key non-coding microRNAs that express biological function. To this end, we initially undertook microarrays targeting microRNAs in a small sub-set of placentas of appropriate (AGA) versus small for gestational age (SGA) weight infants, and observed up-regulation of 97 miRs and down-regulation of 44 miRs in SGA versus AGA. In a larger cohort of samples (AGA, n = 21; SGA, n = 11; IUGR subset, n = 5), we validated by qRT-PCR differential expression of three specific microRNAs (miR-10b, -363 and -149) that target genes mediating angiogenesis and nutrient transfer. Validation yielded an increase in miR-10b and -363 expression of ~2.5-fold (p<0.02 each) in SGA versus AGA, and of ~3-fold (p<0.005) in IUGR versus AGA, with no significant change despite a trending increase in miR-149. To further establish a cause-and-effect paradigm, employing human HTR8 trophoblast cells, we assessed the effect of nutrient deprivation on miR expression and inhibition of endogenous miRs on target gene expression. In-vitro nutrient deprivation (~50%) increased the expression of miR-10b and miR-149 by 1.5-fold (p<0.02) while decreasing miR-363 (p<0.0001). Inhibition of endogenous miRs employing antisense sequences against miR-10b, -363 and -149 revealed an increase respectively in the expression of the target genes KLF-4 (transcription factor which regulates angiogenesis), SNAT1 and 2 (sodium coupled neutral amino acid transporters) and LAT2 (leucine amino acid transporter), which translated into a similar change in the corresponding proteins. Finally to establish functional significance we performed dual-luciferase reporter assays with 3'-insertion of miR-10b alone and observed a ~10% reduction in the 5'-luciferase activity versus the control. Lastly, we further validated by microarray and employing MirWalk software that the pathways and target genes identified by differentially expressed miRs in SGA/IUGR compared to AGA are consistent in a larger cohort. We have established the biological significance of various miRs that target common transcripts mediating pathways of importance, which are perturbed in the human IUGR placenta.
Collapse
Affiliation(s)
- Shanthie Thamotharan
- Department of Pediatrics, Division of Neonatology & Developmental Biology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Alison Chu
- Department of Pediatrics, Division of Neonatology & Developmental Biology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Katie Kempf
- Department of Pediatrics, Division of Neonatology & Developmental Biology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Carla Janzen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Tristan Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - David A. Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Sherin U. Devaskar
- Department of Pediatrics, Division of Neonatology & Developmental Biology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| |
Collapse
|
47
|
Abstract
microRNAs (miRNAs) are a broad group of endogenous small non-coding molecules that reduce the transcription of mRNA and play a key role in post-transcriptional gene processes. miRNAs are involved in onset and progression of several human disorders such as infectious and immune non-infectious diseases, cancers, metabolic and cardiovascular disorders. They regulate the expression of gene targets (e.g. oncogenes and tumor suppressor genes) and act as gene repressors with mRNA binding and cleavage. The increasing evidence that miRNAs play a key role in the pathogenesis of cardiovascular conditions could radically change the future management approach to these disorders. This review focuses on current knowledge about the influence of miRNAs on cardiovascular disease, with particular regard to common conditions such as atherosclerosis, diabetes and migraine. Key messages miRNAs are a group of endogenous small non-coding RNA segments measuring 19-25 nucleotides that are involved in physiologic processes and onset and progression of disorders such as infectious and immune non-infectious diseases, cancers, metabolic and cardiovascular disorders. miRNAs expression guarantees vascular integrity, by regulating apoptosis, VEGF pathway and VCAM 1 expression (-126), and is involved in atherosclerotic plaque formation process and progression. Hyperglycemia, overt diabetes, and their complications are associated with overexpression of several miRNAs. An altered expression of miRNAs has also been postulated in migraine patients, although only a few preliminary studies have so far been performed with this respect.
Collapse
Affiliation(s)
- Claudio Tana
- a Internal Medicine Unit, Medical Department, Guastalla Hospital, AUSL Reggio Emilia , Italy
| | - Maria Adele Giamberardino
- b Geriatrics Clinic, Department of Medicine and Science of Aging , "G. D'Annunzio" University of Chieti , Italy
| | - Francesco Cipollone
- b Geriatrics Clinic, Department of Medicine and Science of Aging , "G. D'Annunzio" University of Chieti , Italy.,c Geriatrics Clinic and European Center of Excellence on Atherosclerosis, Hypertension and Dyslipidemia, Department of Medicine and Science of Aging, "G. D'Annunzio" University of Chieti , Italy
| |
Collapse
|
48
|
A Systematic Study of Dysregulated MicroRNA in Type 2 Diabetes Mellitus. Int J Mol Sci 2017; 18:ijms18030456. [PMID: 28264477 DOI: 10.3390/ijms18030456] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that modulate the cellular transcriptome at the post-transcriptional level. miRNA plays important roles in different disease manifestation, including type 2 diabetes mellitus (T2DM). Many studies have characterized the changes of miRNAs in T2DM, a complex systematic disease; however, few studies have integrated these findings and explored the functional effects of the dysregulated miRNAs identified. To investigate the involvement of miRNAs in T2DM, we obtained and analyzed all relevant studies published prior to 18 October 2016 from various literature databases. From 59 independent studies that met the inclusion criteria, we identified 158 dysregulated miRNAs in seven different major sample types. To understand the functional impact of these deregulated miRNAs, we performed targets prediction and pathway enrichment analysis. Results from our analysis suggested that the altered miRNAs are involved in the core processes associated with T2DM, such as carbohydrate and lipid metabolisms, insulin signaling pathway and the adipocytokine signaling pathway. This systematic survey of dysregulated miRNAs provides molecular insights on the effect of deregulated miRNAs in different tissues during the development of diabetes. Some of these miRNAs and their mRNA targets may have diagnostic and/or therapeutic utilities in T2DM.
Collapse
|
49
|
Feng J, Xing W, Xie L. Regulatory Roles of MicroRNAs in Diabetes. Int J Mol Sci 2016; 17:E1729. [PMID: 27763497 PMCID: PMC5085760 DOI: 10.3390/ijms17101729] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/02/2016] [Accepted: 10/09/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs), a class of endogenous small noncoding RNAs in eukaryotes, have been recognized as significant regulators of gene expression through post-transcriptional mechanisms. To date, >2000 miRNAs have been identified in the human genome, and they orchestrate a variety of biological and pathological processes. Disruption of miRNA levels correlates with many diseases, including diabetes mellitus, a complex multifactorial metabolic disorder affecting >400 million people worldwide. miRNAs are involved in the pathogenesis of diabetes mellitus by affecting pancreatic β-cell functions, insulin resistance, or both. In this review, we summarize the investigations of the regulatory roles of important miRNAs in diabetes, as well as the potential of circulating miRNAs as diagnostic markers for diabetes mellitus.
Collapse
Affiliation(s)
- Juan Feng
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Wanli Xing
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China.
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.
| | - Lan Xie
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China.
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.
| |
Collapse
|