1
|
Merzon E, Farag R, Ashkenazi S, Magen E, Manor I, Weizman A, Green I, Golan-Cohen A, Genshin A, Vinker S, Israel A. Increased Prevalence of Attention Deficit Hyperactivity Disorder in Individuals with Selective Immunoglobulin A Deficiency: A Nationwide Case-Control Study. J Clin Med 2024; 13:6075. [PMID: 39458025 PMCID: PMC11508521 DOI: 10.3390/jcm13206075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Selective Immunoglobulin A Deficiency (SIgAD) is one of the most prevalent immunodeficiencies, characterized by an increased risk of mucosal infections. Attention deficit hyperactivity disorder (ADHD) is among the most common neurodevelopmental disorders and is associated with significantly higher rates of various infectious diseases, white blood cell abnormalities, and considerable morbidity. This study aimed to evaluate the prevalence of ADHD among patients with SIgAD. Methods: We conducted a retrospective, observational, population-based case-control study, within Leumit Health Services, by comparing individuals diagnosed with SIgAD to a matched control group. Data were extracted from electronic health records. Results: Of the >700,000 registered individuals, 772 aged ≥4 years with SIgAD were identified (mean age 22.0 ± 17.5 years; male/female ratio 1:1). The 5:1 matched control group consisted of 3860 subjects without SIgAD, with no significant differences between the groups regarding age, gender, ethnicity, and socioeconomic status. ADHD prevalence was significantly higher in the SIgAD group (16.2%) than in the control group (12.9%), with an odds ratio of 1.30 (95% confidence interval 1.05-1.61, p = 0.017), as was the use of methylphenidate (6.6% vs. 4%). Additionally, respiratory and intestinal infections were significantly more common in the SIgAD group (p < 0.001). Conclusion: A significantly higher prevalence of ADHD was observed in patients with SIgAD compared to strictly matched controls without SIgAD. These findings enhance our understanding of the pathophysiology of ADHD and its associated health complications.
Collapse
Affiliation(s)
- Eugene Merzon
- Adelson School of Medicine, Ariel University, Ariel 4070000, Israel; (R.F.); (S.A.)
- Leumit Health Services, Tel Aviv-Yafo 6473817, Israel; (I.G.); (A.G.-C.); (A.G.); (S.V.); (A.I.)
| | - Reem Farag
- Adelson School of Medicine, Ariel University, Ariel 4070000, Israel; (R.F.); (S.A.)
| | - Shai Ashkenazi
- Adelson School of Medicine, Ariel University, Ariel 4070000, Israel; (R.F.); (S.A.)
| | - Eli Magen
- Department of Medicine A, Assuta Ashdod University Hospital and Faculty of Health Sciences, Ben-Gurion University, Beer-Sheba 8410501, Israel;
| | - Iris Manor
- Department of Psychiatry, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (I.M.); (A.W.)
- ADHD Unit, Geha Mental Health Center, Petah Tikva 4910002, Israel
| | - Abraham Weizman
- Department of Psychiatry, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (I.M.); (A.W.)
- ADHD Unit, Geha Mental Health Center, Petah Tikva 4910002, Israel
| | - Ilan Green
- Leumit Health Services, Tel Aviv-Yafo 6473817, Israel; (I.G.); (A.G.-C.); (A.G.); (S.V.); (A.I.)
- Department of Family Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Avivit Golan-Cohen
- Leumit Health Services, Tel Aviv-Yafo 6473817, Israel; (I.G.); (A.G.-C.); (A.G.); (S.V.); (A.I.)
- Department of Family Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Akim Genshin
- Leumit Health Services, Tel Aviv-Yafo 6473817, Israel; (I.G.); (A.G.-C.); (A.G.); (S.V.); (A.I.)
| | - Shlomo Vinker
- Leumit Health Services, Tel Aviv-Yafo 6473817, Israel; (I.G.); (A.G.-C.); (A.G.); (S.V.); (A.I.)
- Department of Family Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ariel Israel
- Leumit Health Services, Tel Aviv-Yafo 6473817, Israel; (I.G.); (A.G.-C.); (A.G.); (S.V.); (A.I.)
- Department of Epidemiology and Disease Prevention, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Wang Y, Yang Y, Ruan Y. Why do children with oesophageal atresia have attention problems: complications should be considered. Eur J Pediatr 2024; 183:3629-3630. [PMID: 38713427 DOI: 10.1007/s00431-024-05598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/16/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Affiliation(s)
- Yahong Wang
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Yali Yang
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Yupeng Ruan
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Nahidi M, Soleimanpour S, Emadzadeh M. Probiotics as a Promising Therapy in Improvement of Symptoms in Children With ADHD: A Systematic Review. J Atten Disord 2024; 28:1163-1172. [PMID: 38369739 DOI: 10.1177/10870547241228828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
BACKGROUND ADHD is widely recognized as the most prevalent neurodevelopmental disorder in children. Recently, the potential role of gut microbiota as an etiological factor in ADHD has gained attention. This systematic review aims to investigate the potential impact of probiotic supplements on alleviating ADHD symptoms and influencing behavior. METHODS PubMed, Web of Science, Cochrane Library, and SCOPUS were searched from inception to May 2023. Only randomized controlled trials that have suitable data of the effects of probiotics/synbiotics on children with ADHD were enrolled. The risk of bias of the included studies was assessed by Cochrane Collaboration risk of bias tool. RESULTS Five related randomized controlled trial were evaluated in the current review. Types of interventions ranged from single/multi strain probiotics to synbiotic. The duration of intervention in all of the studies were 2 to 3 months. The assessed outcomes were very diverse and different tools were used to report the symptoms in children. Among those which used Conners' Parent Rating Scale, a decrease in the total score occurred in the probiotic group, compared to the placebo group. An improvement in both intervention and control groups was seen in one study which used ADHD-Rating Scale. CONCLUSION In summary, the combined findings from the reviewed studies suggest that probiotic supplements might potentially serve as a complementary intervention for ADHD. However, given the small number of studies, limited sample sizes, and the diversity of probiotic strains, further research is needed to clarify the effects of probiotics in children with ADHD. The observed tolerability of probiotics is noteworthy as none of the studies report adverse effects.
Collapse
Affiliation(s)
- Mahsa Nahidi
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Emadzadeh
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Chen J, Zhu Q, Li L, Xue Z. Celiac disease and attention-deficit/hyperactivity disorder: a bidirectional Mendelian randomization analysis. Front Psychiatry 2024; 15:1291096. [PMID: 38868492 PMCID: PMC11167073 DOI: 10.3389/fpsyt.2024.1291096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Background Recent observational research suggests a potential link between celiac disease (CeD) and an increased incidence of attention-deficit/hyperactivity disorder (ADHD). However, the genetic relationship between CeD and ADHD remains unclear. In order to assess the potential genetic causality between these two conditions, we conducted a Mendelian randomization (MR) analysis. Methods We performed a bidirectional MR analysis to investigate the relationship between CeD and ADHD. We carefully selected single nucleotide polymorphisms (SNPs) from publicly available large-scale genome-wide association studies (GWAS) databases, employing rigorous quality screening criteria. MR estimates were obtained using four different methods: fixed-effect inverse variance weighted (fe-IVW), random-effect inverse variance weighting (re-IVW), weighted median (WM), and MR-Egger. The robustness and reliability of our findings were confirmed through sensitivity analyses, assessment of instrumental variable (IV) strength (F-statistic), and statistical power calculations. Results Our MR analyses did not reveal any significant genetic associations between CeD and ADHD (fe-IVW: OR = 1.003, 95% CI = 0.932-1.079, P = 0.934). Similarly, in the reverse direction analysis, we found no evidence supporting a genetic relationship between ADHD and CeD (fe-IVW: OR = 0.850, 95% CI = 0.591-1.221, P = 0.378). Various MR approaches consistently yielded similar results. Sensitivity analysis indicated the absence of significant horizontal pleiotropy or heterogeneity. However, it's important to note that the limited statistical power of our study may have constrained the causal analysis of the exposure's influence on the outcome. Conclusions Our findings do not provide compelling evidence for a genetic association between CeD and ADHD within the European population. While the statistical power of our study was limited, future MR research could benefit from larger-scale datasets or datasets involving similar traits. To validate our results in real-world scenarios, further mechanistic studies, large-sample investigations, multicenter collaborations, and longitudinal studies are warranted.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiaozhen Zhu
- Infection and Immunity Institute and Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Lan Li
- Department of Pediatrics, The first affiliated hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng Xue
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
So M, Dziuban EJ, Pedati CS, Holbrook JR, Claussen AH, O'Masta B, Maher B, Cerles AA, Mahmooth Z, MacMillan L, Kaminski JW, Rush M. Childhood Physical Health and Attention Deficit/Hyperactivity Disorder: A Systematic Review and Meta-Analysis of Modifiable Factors. PREVENTION SCIENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR PREVENTION RESEARCH 2024; 25:316-336. [PMID: 35947281 PMCID: PMC10032176 DOI: 10.1007/s11121-022-01398-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 10/15/2022]
Abstract
Although neurobiologic and genetic factors figure prominently in the development of attention deficit/hyperactivity disorder (ADHD), adverse physical health experiences and conditions encountered during childhood may also play a role. Poor health is known to impact the developing brain with potential lifelong implications for behavioral issues. In attempt to better understand the relationship between childhood physical health and the onset and presence of ADHD symptoms, we summarized international peer-reviewed articles documenting relationships between a select group of childhood diseases or health events (e.g., illnesses, injuries, syndromes) and subsequent ADHD outcomes among children ages 0-17 years. Drawing on a larger two-phase systematic review, 57 longitudinal or retrospective observational studies (1978-2021) of childhood allergies, asthma, eczema, head injury, infection, or sleep problems and later ADHD diagnosis or symptomatology were identified and subjected to meta-analysis. Significant associations were documented between childhood head injuries, infections, and sleep problems with both dichotomous and continuous measures of ADHD, and between allergies with dichotomous measures of ADHD. We did not observe significant associations between asthma or eczema with ADHD outcomes. Heterogeneity detected for multiple associations, primarily among continuously measured outcomes, underscores the potential value of future subgroup analyses and individual studies. Collectively, these findings shed light on the importance of physical health in understanding childhood ADHD. Possible etiologic links between physical health factors and ADHD are discussed, as are implications for prevention efforts by providers, systems, and communities.
Collapse
Affiliation(s)
- Marvin So
- Division of Human Development and Disability, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS-E88, Atlanta, GA, 30341, USA.
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.
| | - Eric J Dziuban
- Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Caitlin S Pedati
- Virginia Beach Department of Public Health, Virginia Beach, VA, USA
| | - Joseph R Holbrook
- Division of Human Development and Disability, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS-E88, Atlanta, GA, 30341, USA
| | - Angelika H Claussen
- Division of Human Development and Disability, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS-E88, Atlanta, GA, 30341, USA
| | | | - Brion Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | | | - Jennifer W Kaminski
- Division of Human Development and Disability, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS-E88, Atlanta, GA, 30341, USA
| | | |
Collapse
|
6
|
Naralan YS, Doğan Ö, Elgün S, Öztop DB, Kılıç BG. The Activity of Adenosine Deaminase and Dipeptidyl Peptidase IV in Children With Attention Deficit Hyperactivity Disorder. J Atten Disord 2024; 28:25-30. [PMID: 37695015 DOI: 10.1177/10870547231197212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
OBJECTIVE In this study, to investigate the place of T cell-mediated immunity in the etiology of ADHD, for which we do not have enough information; we aimed to investigate the activity of DPP IV and ADA, which are T cell-related enzymes, and the relationship of these enzymes with ADHD symptoms in children with ADHD. METHODS Twenty-seven children aged 6 to 12 years with a diagnosis of attention deficit hyperactivity disorder and 27 children aged 6 to 12 years without any psychiatric disease were included in the study. RESULTS While serum ADA and DPP-IV activity were found to be statistically significantly higher in the group with ADHD. There was no statistically significant correlation between serum ADA and DPP-IV activities and CTRS-R-L and CPRS-R-L in both groups. CONCLUSION We think that T cell mediated inflammation may play a role in the etiology of ADHD due to changes in ADA and DPP-IV levels in children.
Collapse
Affiliation(s)
| | - Özlem Doğan
- Ankara University School of Medicine, Turkey
| | | | | | | |
Collapse
|
7
|
Cickovski T, Mathee K, Aguirre G, Tatke G, Hermida A, Narasimhan G, Stollstorff M. Attention Deficit Hyperactivity Disorder (ADHD) and the gut microbiome: An ecological perspective. PLoS One 2023; 18:e0273890. [PMID: 37594987 PMCID: PMC10437823 DOI: 10.1371/journal.pone.0273890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is an increasingly prevalent neuropsychiatric disorder characterized by hyperactivity, inattention, and impulsivity. Symptoms emerge from underlying deficiencies in neurocircuitry, and recent research has suggested a role played by the gut microbiome. The gut microbiome is an ecosystem of interdependent taxa involved in an exponentially complex web of interactions, plus host gene and reaction pathways, some of which involve neurotransmitters with roles in ADHD neurocircuitry. Studies have analyzed the ADHD gut microbiome using macroscale metrics such as diversity and differential abundance, and have proposed several taxa as elevated or reduced in ADHD compared to Control. Few studies have delved into the complex underlying dynamics ultimately responsible for the emergence of such metrics, leaving a largely incomplete, sometimes contradictory, and ultimately inconclusive picture. We aim to help complete this picture by venturing beyond taxa abundances and into taxa relationships (i.e. cooperation and competition), using a publicly available gut microbiome dataset (targeted 16S, v3-4 region, qPCR) from an observational, case-control study of 30 Control (15 female, 15 male) and 28 ADHD (15 female, 13 male) undergraduate students. We first perform the same macroscale analyses prevalent in ADHD gut microbiome literature (diversity, differential abundance, and composition) to observe the degree of correspondence, or any new trends. We then estimate two-way ecological relationships by producing Control and ADHD Microbial Co-occurrence Networks (MCNs), using SparCC correlations (p ≤ 0.01). We perform community detection to find clusters of taxa estimated to mutually cooperate along with their centroids, and centrality calculations to estimate taxa most vital to overall gut ecology. We finally summarize our results, providing conjectures on how they can guide future experiments, some methods for improving our experiments, and general implications for the field.
Collapse
Affiliation(s)
- Trevor Cickovski
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, United States of America
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL United States of America
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States of America
| | - Gloria Aguirre
- Department of Biological Sciences, College of Arts, Sciences and Education, Florida International University, Miami, FL, United States of America
| | - Gorakh Tatke
- Department of Biological Sciences, College of Arts, Sciences and Education, Florida International University, Miami, FL, United States of America
| | - Alejandro Hermida
- Cognitive Neuroscience Laboratory, Department of Psychology, Florida International University, Miami, FL, United States of America
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, United States of America
| | - Melanie Stollstorff
- Cognitive Neuroscience Laboratory, Department of Psychology, Florida International University, Miami, FL, United States of America
| |
Collapse
|
8
|
Gutiérrez-Casares JR, Quintero J, Segú-Vergés C, Rodríguez Monterde P, Pozo-Rubio T, Coma M, Montoto C. In silico clinical trial evaluating lisdexamfetamine's and methylphenidate's mechanism of action computational models in an attention-deficit/hyperactivity disorder virtual patients' population. Front Psychiatry 2023; 14:939650. [PMID: 37333910 PMCID: PMC10273406 DOI: 10.3389/fpsyt.2023.939650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 04/21/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Attention-deficit/hyperactivity disorder (ADHD) is an impairing psychiatric condition with the stimulants, lisdexamfetamine (LDX), and methylphenidate (MPH), as the first lines pharmacological treatment. Methods Herein, we applied a novel in silico method to evaluate virtual LDX (vLDX) and vMPH as treatments for ADHD applying quantitative systems pharmacology (QSP) models. The objectives were to evaluate the model's output, considering the model characteristics and the information used to build them, to compare both virtual drugs' efficacy mechanisms, and to assess how demographic (age, body mass index, and sex) and clinical characteristics may affect vLDX's and vMPH's relative efficacies. Results and Discussion We molecularly characterized the drugs and pathologies based on a bibliographic search, and generated virtual populations of adults and children-adolescents totaling 2,600 individuals. For each virtual patient and virtual drug, we created physiologically based pharmacokinetic and QSP models applying the systems biology-based Therapeutic Performance Mapping System technology. The resulting models' predicted protein activity indicated that both virtual drugs modulated ADHD through similar mechanisms, albeit with some differences. vMPH induced several general synaptic, neurotransmitter, and nerve impulse-related processes, whereas vLDX seemed to modulate neural processes more specific to ADHD, such as GABAergic inhibitory synapses and regulation of the reward system. While both drugs' models were linked to an effect over neuroinflammation and altered neural viability, vLDX had a significant impact on neurotransmitter imbalance and vMPH on circadian system deregulation. Among demographic characteristics, age and body mass index affected the efficacy of both virtual treatments, although the effect was more marked for vLDX. Regarding comorbidities, only depression negatively impacted both virtual drugs' efficacy mechanisms and, while that of vLDX were more affected by the co-treatment of tic disorders, the efficacy mechanisms of vMPH were disturbed by wide-spectrum psychiatric drugs. Our in silico results suggested that both drugs could have similar efficacy mechanisms as ADHD treatment in adult and pediatric populations and allowed raising hypotheses for their differential impact in specific patient groups, although these results require prospective validation for clinical translatability.
Collapse
Affiliation(s)
- José Ramón Gutiérrez-Casares
- Unidad Ambulatoria de Psiquiatría y Salud Mental de la Infancia, Niñez y Adolescencia, Hospital Perpetuo Socorro, Badajoz, Spain
| | - Javier Quintero
- Servicio de Psiquiatría, Hospital Universitario Infanta Leonor, Universidad Complutense, Madrid, Spain
| | - Cristina Segú-Vergés
- Anaxomics Biotech, Barcelona, Spain
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | | - Carmen Montoto
- Medical Department, Takeda Farmacéutica España, Madrid, Spain
| |
Collapse
|
9
|
Sibley MH, Bruton AM, Zhao X, Johnstone JM, Mitchell J, Hatsu I, Arnold LE, Basu HH, Levy L, Vyas P, Macphee F, Gonzalez ES, Kelley M, Jusko ML, Bolden CR, Zulauf-McCurdy C, Manzano M, Torres G. Non-pharmacological interventions for attention-deficit hyperactivity disorder in children and adolescents. THE LANCET. CHILD & ADOLESCENT HEALTH 2023; 7:415-428. [PMID: 36907194 PMCID: PMC10370370 DOI: 10.1016/s2352-4642(22)00381-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/26/2022] [Accepted: 12/19/2022] [Indexed: 03/11/2023]
Abstract
Attention-deficit hyperactivity disorder (ADHD) affects approximately 5% of children and adolescents globally and is associated with negative life outcomes and socioeconomic costs. First-generation ADHD treatments were predominantly pharmacological; however, increased understanding of biological, psychological, and environmental factors contributing to ADHD has expanded non-pharmacological treatment possibilities. This Review provides an updated evaluation of the efficacy and safety of non-pharmacological treatments for paediatric ADHD, discussing the quality and level of evidence for nine intervention categories. Unlike medication, no non-pharmacological treatments showed a consistent strong effect on ADHD symptoms. When considering broad outcomes (eg, impairment, caregiver stress, and behavioural improvement), multicomponent (cognitive) behaviour therapy joined medication as a primary ADHD treatment. With respect to secondary treatments, polyunsaturated fatty acids showed a consistent modest effect on ADHD symptoms when taken for at least 3 months. Additionally, mindfulness and multinutrient supplementation with four or more ingredients showed modest efficacy on non-symptom outcomes. All other non-pharmacological treatments were safe; clinicians might tolerate their use but should educate families of childrenand adolescents with ADHD on the disadvantages, including costs, burden to the service user, absence of proven efficacy relative to other treatments, and delay of proven treatment.
Collapse
Affiliation(s)
- Margaret H Sibley
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle Children's Research Institute, Seattle, WA, USA.
| | - Alisha M Bruton
- Department of Psychiatry, Oregon Health Sciences University, Portland, OR, USA
| | - Xin Zhao
- Department of Medicine, University of California-Irvine, Irvine, CA, USA
| | | | - John Mitchell
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Irene Hatsu
- Department of Human Sciences, Ohio State University, Columbus, OH, USA
| | - L Eugene Arnold
- Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA
| | - Hana H Basu
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Laura Levy
- Department of Medicine, Oregon Health Sciences University, Portland, OR, USA
| | - Pooja Vyas
- Department of Medicine, Oregon Health Sciences University, Portland, OR, USA
| | - Fiona Macphee
- Division of Psychiatry and Behavioral Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Erin Schoenfelder Gonzalez
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Megan Kelley
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Morgan L Jusko
- Department of Psychology, Florida International University, Miami, FL, USA
| | - China R Bolden
- Division of Psychiatry and Behavioral Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Courtney Zulauf-McCurdy
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Maychelle Manzano
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Gabriela Torres
- Department of Psychology, Florida International University, Miami, FL, USA
| |
Collapse
|
10
|
Taş E, Ülgen KO. Understanding the ADHD-Gut Axis by Metabolic Network Analysis. Metabolites 2023; 13:592. [PMID: 37233633 PMCID: PMC10223614 DOI: 10.3390/metabo13050592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder diagnosed with hyperactivity, impulsivity, and a lack of attention inconsistent with the patient's development level. The fact that people with ADHD frequently experience gastrointestinal (GI) dysfunction highlights the possibility that the gut microbiome may play a role in this condition. The proposed research aims to determine a biomarker for ADHD by reconstructing a model of the gut-microbial community. Genome-scale metabolic models (GEM) considering the relationship between gene-protein-reaction associations are used to simulate metabolic activities in organisms of gut. The production rates of dopamine and serotonin precursors and the key short chain fatty acids which affect the health status are determined under three diets (Western, Atkins', Vegan) and compared with those of healthy people. Elasticities are calculated to understand the sensitivity of exchange fluxes to changes in diet and bacterial abundance at the species level. The presence of Bacillota (genus Coprococcus and Subdoligranulum), Actinobacteria (genus Collinsella), Bacteroidetes (genus Bacteroides), and Bacteroidota (genus Alistipes) may be possible gut microbiota indicators of ADHD. This type of modeling approach taking microbial genome-environment interactions into account helps us understand the gastrointestinal mechanisms behind ADHD, and establish a path to improve the quality of life of ADHD patients.
Collapse
Affiliation(s)
| | - Kutlu O. Ülgen
- Department of Chemical Engineering, Bogazici University, Istanbul 34342, Turkey;
| |
Collapse
|
11
|
Ghasemi F, Abbasi K, Ghiasvand R, Clark CCT, Rouhani MH. The association between dietary acid load and risk of attention-deficit hyperactivity disorder: a case-control study. Child Neuropsychol 2023; 29:474-485. [PMID: 35818308 DOI: 10.1080/09297049.2022.2099536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Although previous studies have suggested that dietary acid load may be associated with mental health, the relationship between food-induced acid production and odds of attention-deficit hyperactivity disorder remains (ADHD) unclear. The aim of the present study was to evaluate the relationship between dietary renal acid load and odds of ADHD among children. A case-control study was designed to assess the data of 500 children aged 4 to 12 years (200 children with diagnosed ADHD and 300 control group). Patients were clinically diagnosed according to the Diagnostic and Statistical Manual-5th Edition criteria. Subjects in the control group did not have any history of chronic diseases and they were screened for the absence of ADHD. Dietary intake was assessed by a semi-quantitative food frequency questionnaire. The odds of incident ADHD for each unit increase of potential acid load (PRAL) in the raw model showed ~9.8% (OR = 1.098, 95% CI: 1.072, 1.125, p < .001) higher odds of ADHD. In model 1, where age, gender, Body mass index (BMI), and socio-economic status were adjusted, the odds of ADHD was ~10.7% (OR = 1.107, 95% CI: 1.076, 1.140, p < .001). Also, in model 2 (model 1 in addition to energy) the odds was ~10.8% (OR = 1.108, 95% CI: 1.065, 1.152, p < .001). Findings of the present study suggest a possible relationship between oxidative stresses and odds of development of ADHD. Furthermore, the size of the odds ratio is small. It appears that dietary considerations are warranted in order to ameliorate the impact and/or incidence of ADHD.
Collapse
Affiliation(s)
- Fatemeh Ghasemi
- Food Security Research Center and Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Iran
| | - Khadijeh Abbasi
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Ghiasvand
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, UK
| | - Mohammad Hossein Rouhani
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Weyns AS, Verlaet AA, Breynaert A, Naessens T, Fransen E, Verhelst H, Van West D, Van Ingelghem I, Jonckheere AI, Beysen D, Kenis S, Moens E, van Roest AP, Savelkoul HF, De Bruyne T, Pieters L, Ceulemans B, Hermans N. Clinical Investigation of French Maritime Pine Bark Extract on Attention-Deficit Hyperactivity Disorder as compared to Methylphenidate and Placebo: Part 1: Efficacy in a Randomised Trial. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
13
|
Clinical Investigation of French Maritime Pine Bark Extract on Attention-Deficit Hyperactivity Disorder as compared to Methylphenidate and Placebo: Part 2: Oxidative Stress and Immunological Modulation. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Kessi M, Duan H, Xiong J, Chen B, He F, Yang L, Ma Y, Bamgbade OA, Peng J, Yin F. Attention-deficit/hyperactive disorder updates. Front Mol Neurosci 2022; 15:925049. [PMID: 36211978 PMCID: PMC9532551 DOI: 10.3389/fnmol.2022.925049] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
Background Attention-deficit/hyperactive disorder (ADHD) is a neurodevelopmental disorder that commonly occurs in children with a prevalence ranging from 3.4 to 7.2%. It profoundly affects academic achievement, well-being, and social interactions. As a result, this disorder is of high cost to both individuals and society. Despite the availability of knowledge regarding the mechanisms of ADHD, the pathogenesis is not clear, hence, the existence of many challenges especially in making correct early diagnosis and provision of accurate management. Objectives We aimed to review the pathogenic pathways of ADHD in children. The major focus was to provide an update on the reported etiologies in humans, animal models, modulators, therapies, mechanisms, epigenetic changes, and the interaction between genetic and environmental factors. Methods References for this review were identified through a systematic search in PubMed by using special keywords for all years until January 2022. Results Several genes have been reported to associate with ADHD: DRD1, DRD2, DRD4, DAT1, TPH2, HTR1A, HTR1B, SLC6A4, HTR2A, DBH, NET1, ADRA2A, ADRA2C, CHRNA4, CHRNA7, GAD1, GRM1, GRM5, GRM7, GRM8, TARBP1, ADGRL3, FGF1, MAOA, BDNF, SNAP25, STX1A, ATXN7, and SORCS2. Some of these genes have evidence both from human beings and animal models, while others have evidence in either humans or animal models only. Notably, most of these animal models are knockout and do not generate the genetic alteration of the patients. Besides, some of the gene polymorphisms reported differ according to the ethnic groups. The majority of the available animal models are related to the dopaminergic pathway. Epigenetic changes including SUMOylation, methylation, and acetylation have been reported in genes related to the dopaminergic pathway. Conclusion The dopaminergic pathway remains to be crucial in the pathogenesis of ADHD. It can be affected by environmental factors and other pathways. Nevertheless, it is still unclear how environmental factors relate to all neurotransmitter pathways; thus, more studies are needed. Although several genes have been related to ADHD, there are few animal model studies on the majority of the genes, and they do not generate the genetic alteration of the patients. More animal models and epigenetic studies are required.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Haolin Duan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Yanli Ma
- Department of Neurology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Olumuyiwa A. Bamgbade
- Department of Anesthesiology and Pharmacology, University of British Columbia, Vancouver, BC, Canada
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- *Correspondence: Fei Yin,
| |
Collapse
|
15
|
Quintero J, Gutiérrez-Casares JR, Álamo C. Molecular Characterisation of the Mechanism of Action of Stimulant Drugs Lisdexamfetamine and Methylphenidate on ADHD Neurobiology: A Review. Neurol Ther 2022; 11:1489-1517. [PMID: 35951288 DOI: 10.1007/s40120-022-00392-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/28/2022] [Indexed: 10/15/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common childhood-onset neurodevelopmental disorder characterised by persistent inattention, hyperactivity and impulsivity. Moreover, ADHD is commonly associated with other comorbid diseases (depression, anxiety, bipolar disorder, etc.). The ADHD symptomatology interferes with subject function and development. The treatment of ADHD requires a multidisciplinary approach based on a combination of non-pharmacological and pharmacological treatments with the aim of ameliorating the symptomatology; among first-line pharmacological treatments are stimulants [such as methylphenidate (MPH) and lisdexamfetamine dimesylate (LDX)]. In this review we explored recent ADHD- and stimulants-related literature, with the aim of compiling available descriptions of molecular pathways altered in ADHD, and molecular mechanisms of current first-line stimulants MPH and LDX. While conducting the narrative review, we applied structured search strategies covering PubMed/MEDLINE database and performed handsearching of reference lists on the results of those searches. The aetiology and pathophysiology of ADHD are incompletely understood; both genetic and environmental factors have been associated with the disorder and its grade of burden, and also the relationship between the molecular mechanisms of pharmacological treatments and their clinical implications. The lack of comprehensive understanding of the underlying molecular pathology makes both the diagnosis and treatment difficult. Few published studies evaluating molecular data on the mechanism of action (MoA) of MPH and LDX on ADHD are available and most of them are based on animal models. Further studies are necessary to improve the knowledge of ADHD pathophysiology and how the MoAs of MPH and LDX differentially modulate ADHD pathophysiology and control ADHD symptomatology.
Collapse
Affiliation(s)
- Javier Quintero
- Servicio de Psiquiatría y Salud Mental, Hospital Universitario Infanta Leonor, Universidad Complutense, Madrid, Spain
| | - José R Gutiérrez-Casares
- Unidad Ambulatoria de Psiquiatría y Salud Mental de la Infancia, Niñez y Adolescencia, Hospital Perpetuo Socorro, Badajoz, Spain.
| | - Cecilio Álamo
- Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
16
|
AKIN S, GÜLTEKİN F, GÜLER EM. Dikkat Eksikliği ve Hiperaktivite Bozukluğunda Yağ Asitlerinin Rolü. ACTA MEDICA ALANYA 2022. [DOI: 10.30565/medalanya.1059552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a childhood-onset disorder that affects 5% to 12% of children worldwide. Etiological factors, including nutrition, are involved in this disease, which is characterized by inattention, impulsivity, and hyperactivity symptoms. Fats, which form an important part of the daily diet, can have effects on ADHD and its symptoms. In the literature, it is stated that omega-3 fatty acids are low in children with ADHD, and supplementation studies may be effective in improving symptoms. In addition, high omega-6/omega-3 fatty acids ratio in the diet and diets rich in saturated and trans fatty acids are associated with ADHD. In this review, the relationship between ADHD and dietary fatty acids will be evaluated.
Collapse
Affiliation(s)
- Sümeyye AKIN
- SAĞLIK BİLİMLERİ ÜNİVERSİTESİ, HAMİDİYE SAĞLIK BİLİMLERİ ENSTİTÜSÜ, TIBBİ BİYOKİMYA (DR)
| | - Fatih GÜLTEKİN
- SAĞLIK BİLİMLERİ ÜNİVERSİTESİ, HAMİDİYE TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, TIBBİ BİYOKİMYA ANABİLİM DALI
| | - Eray Metin GÜLER
- SAĞLIK BİLİMLERİ ÜNİVERSİTESİ, HAMİDİYE TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, TIBBİ BİYOKİMYA ANABİLİM DALI
| |
Collapse
|
17
|
The Association between ADHD and Celiac Disease in Children. CHILDREN 2022; 9:children9060781. [PMID: 35740718 PMCID: PMC9221618 DOI: 10.3390/children9060781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
Abstract
Controversy around the association between celiac disease (CeD) and attention deficit hyperactive disorder (ADHD) was addressed by a systematic review in 2015, ultimately showing no association. Since 2015, there have been several studies showing an association between celiac disease and attention deficit hyperactive disorder. This is an updated systematic review. Background: Most experts agree on the recommendation to not screen as part of the standard of care for ADHD in persons with CeD or vice versa. Simultaneously, they propose that untreated patients with CeD and neurological symptoms such as chronic fatigue, inattention, pain, and headache could be predisposed to ADHD-like behavior, namely inattention (which may be alleviated by following a gluten-free diet). The inattentive subtype of ADHD that encompasses the symptoms of inattention is phenotypically heterogeneous, as it includes the clinical construct of sluggish cognitive tempo (SCT). SCT symptoms overlap with the neurological manifestations of CeD. Methods: A systematic search (PRISMA) of PubMed, Google Scholar, EMBASE, Web of Science, Stanford Lane, SCOPUS, and Ovid was conducted for articles up to 21 February 2022. Of these, 23 studies met the criteria. Results: Out of the 23 studies, 13 showed a positive association between ADHD and CeD. Most studies that showed a positive association had been published in the last five years. Inconsistencies in the results remain due to the heterogeneous methodology used, specifically for ADHD and the outcome questionnaires, as well as a lack of reporting on ADHD subtypes. Conclusion: There is an association between ADHD and celiac disease. The current methodological limitations will be lessened if we examine the subtypes of ADHD.
Collapse
|
18
|
Gut microbiota and plasma cytokine levels in patients with attention-deficit/hyperactivity disorder. Transl Psychiatry 2022; 12:76. [PMID: 35197458 PMCID: PMC8866486 DOI: 10.1038/s41398-022-01844-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common childhood mental disorder with undetermined pathophysiological mechanisms. The gut microbiota and immunological dysfunction may influence brain functions and social behaviours. In the current study, we aimed to explore the correlation of gut microbiome imbalance and inflammation in the pathophysiology of ADHD. Forty-one children with ADHD and thirty-nine healthy-control (HC) individuals were recruited. Faecal samples from all participants were collected and submitted for 16 S rRNA V3-V4 amplicon microbiome sequencing analysis. The plasma levels of 10 cytokines, including TNF-α, IL-6, IL-1β, IL-2, IL-10, IL-13, IL-17A, IFN-α2, IFN-γ, and MCP-1, were determined using a custom-made sandwich enzyme-linked immunosorbent assay (ELISA) developed by Luminex Flowmetrix. There was no significant difference between the ADHD and HC groups in species diversity in the faeces, as determined with α-diversity and β-diversity analysis. In the ADHD group, three differentially abundant taxonomic clades at the genus level were observed, namely Agathobacter, Anaerostipes, and Lachnospiraceae. Top differentially abundant bacteria and representative biological pathways were identified in children with ADHD using linear discriminant analysis (LDA) effect size (LEfSe), and the phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis, respectively. The plasma levels of TNF-α were significantly lower in children with ADHD than in HCs. Within the ADHD group, the levels of TNF-α were negatively correlated with ADHD symptoms and diversity of the gut microbiome. Our study provides new insights into the association between gut microbiome dysbiosis and immune dysregulation, which may contribute to the pathophysiology of ADHD.
Collapse
|
19
|
Qu X, Lee LC, Ladd-Acosta C, Hong X, Ji Y, Kalb LG, Volk HE, Wang X. Association between atopic diseases and neurodevelopmental disabilities in a longitudinal birth cohort. Autism Res 2022; 15:740-750. [PMID: 35112480 PMCID: PMC8995375 DOI: 10.1002/aur.2680] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/27/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022]
Abstract
Reports on the association between the prevalence of atopic diseases and neurodevelopmental disabilities (NDs) have been inconsistent in the literature. We investigated whether autism spectrum disorder (ASD), attention deficit-hyperactivity disorders (ADHD), and other NDs are more prevalent in children with asthma, atopic dermatitis (AD) and allergic rhinitis (AR) compared to those without specific atopic conditions. A total of 2580 children enrolled at birth were followed prospectively, of which 119 have ASD, 423 have ADHD, 765 have other NDs, and 1273 have no NDs. Atopic diseases and NDs were defined based on physician diagnoses in electronic medical records. Logistic regressions adjusting for maternal and child characteristics estimated the associations between NDs (i.e., ASD, ADHD, and other NDs) and asthma, AD and AR, respectively. Children with asthma, AD or AR had a greater likelihood of having ADHD or other NDs compared with children without specific atopic conditions. The association between ASD and asthma diminished after adjusting for maternal and child factors. Either mothers or children having atopic conditions and both mothers and children with atopic conditions were associated with a higher prevalence of ADHD in children, compared with neither mothers nor children having atopic conditions. Children diagnosed with multiple atopic diseases were more likely to have NDs compared with those without or with only one type of atopic disease. In conclusion, in this U.S. urban birth cohort, children with atopic diseases had a higher co-morbidity of NDs. The findings have implications for etiologic research that searches for common early life antecedents of NDs and atopic conditions. Findings from this study also should raise awareness among health care providers and parents about the possible co-occurrence of both NDs and atopic conditions, which calls for coordinated efforts to screen, prevent and manage NDs and atopic conditions.
Collapse
Affiliation(s)
- Xueqi Qu
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Li-Ching Lee
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yuelong Ji
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Luther G Kalb
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA.,Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Heather E Volk
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Ahmed S, Travis SD, Díaz-Bahamonde FV, Porter DDL, Henry SN, Mykins J, Ravipati A, Booker A, Ju J, Ding H, Ramesh AK, Pickrell AM, Wang M, LaConte S, Howell BR, Yuan L, Morton PD. Early Influences of Microbiota on White Matter Development in Germ-Free Piglets. Front Cell Neurosci 2022; 15:807170. [PMID: 35027884 PMCID: PMC8751630 DOI: 10.3389/fncel.2021.807170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Abnormalities in the prefrontal cortex (PFC), as well as the underlying white matter (WM) tracts, lie at the intersection of many neurodevelopmental disorders. The influence of microorganisms on brain development has recently been brought into the clinical and research spotlight as alterations in commensal microbiota are implicated in such disorders, including autism spectrum disorders, schizophrenia, depression, and anxiety via the gut-brain axis. In addition, gut dysbiosis is common in preterm birth patients who often display diffuse WM injury and delayed WM maturation in critical tracts including those within the PFC and corpus callosum. Microbial colonization of the gut aligns with ongoing postnatal processes of oligodendrogenesis and the peak of brain myelination in humans; however, the influence of microbiota on gyral WM development remains elusive. Here, we develop and validate a neonatal germ-free swine model to address these issues, as piglets share key similarities in WM volume, developmental trajectories, and distribution to humans. We find significant region-specific reductions, and sexually dimorphic trends, in WM volume, oligodendrogenesis, and mature oligodendrocyte numbers in germ-free piglets during a key postnatal epoch of myelination. Our findings indicate that microbiota plays a critical role in promoting WM development during early life when the brain is vulnerable to environmental insults that can result in an array of disabilities manifesting later in life.
Collapse
Affiliation(s)
- Sadia Ahmed
- Graduate Studies in Biomedical and Veterinary Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Sierrah D Travis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Francisca V Díaz-Bahamonde
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Demisha D L Porter
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Virginia Tech Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
| | - Sara N Henry
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Julia Mykins
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Aditya Ravipati
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Aryn Booker
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Jing Ju
- Graduate Studies in Biomedical and Veterinary Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Hanzhang Ding
- Virginia Tech Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
| | - Ashwin K Ramesh
- Graduate Studies in Biomedical and Veterinary Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Alicia M Pickrell
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Maosen Wang
- Fralin Biomedical Research Institute at Virginia Tech Carilion (VTC), Virginia Tech, Roanoke, VA, United States
| | - Stephen LaConte
- Fralin Biomedical Research Institute at Virginia Tech Carilion (VTC), Virginia Tech, Roanoke, VA, United States.,Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Brittany R Howell
- Fralin Biomedical Research Institute at Virginia Tech Carilion (VTC), Virginia Tech, Roanoke, VA, United States.,Department of Human Development and Family Science, Virginia Tech, Roanoke, VA, United States
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Paul D Morton
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
21
|
Anand B, Sireesha C. Lower serum ferritin levels and higher inattentiveness in attention deficit hyperactivity disorder in a case–control study. ARCHIVES OF MENTAL HEALTH 2022. [DOI: 10.4103/amh.amh_19_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
Gutiérrez-Casares JR, Quintero J, Jorba G, Junet V, Martínez V, Pozo-Rubio T, Oliva B, Daura X, Mas JM, Montoto C. Methods to Develop an in silico Clinical Trial: Computational Head-to-Head Comparison of Lisdexamfetamine and Methylphenidate. Front Psychiatry 2021; 12:741170. [PMID: 34803764 PMCID: PMC8595241 DOI: 10.3389/fpsyt.2021.741170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Regulatory agencies encourage computer modeling and simulation to reduce the time and cost of clinical trials. Although still not classified in formal guidelines, system biology-based models represent a powerful tool for generating hypotheses with great molecular detail. Herein, we have applied a mechanistic head-to-head in silico clinical trial (ISCT) between two treatments for attention-deficit/hyperactivity disorder, to wit lisdexamfetamine (LDX) and methylphenidate (MPH). The ISCT was generated through three phases comprising (i) the molecular characterization of drugs and pathologies, (ii) the generation of adult and children virtual populations (vPOPs) totaling 2,600 individuals and the creation of physiologically based pharmacokinetic (PBPK) and quantitative systems pharmacology (QSP) models, and (iii) data analysis with artificial intelligence methods. The characteristics of our vPOPs were in close agreement with real reference populations extracted from clinical trials, as did our PBPK models with in vivo parameters. The mechanisms of action of LDX and MPH were obtained from QSP models combining PBPK modeling of dosing schemes and systems biology-based modeling technology, i.e., therapeutic performance mapping system. The step-by-step process described here to undertake a head-to-head ISCT would allow obtaining mechanistic conclusions that could be extrapolated or used for predictions to a certain extent at the clinical level. Altogether, these computational techniques are proven an excellent tool for hypothesis-generation and would help reach a personalized medicine.
Collapse
Affiliation(s)
- José Ramón Gutiérrez-Casares
- Unidad Ambulatoria de Psiquiatría y Salud Mental de la Infancia, Niñez y Adolescencia, Hospital Perpetuo Socorro, Badajoz, Spain
| | - Javier Quintero
- Servicio de Psiquiatría, Hospital Universitario Infanta Leonor, Universidad Complutense, Madrid, Spain
| | - Guillem Jorba
- Anaxomics Biotech, Barcelona, Spain
- Research Programme on Biomedical Informatics (GRIB), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Valentin Junet
- Anaxomics Biotech, Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | | | - Baldomero Oliva
- Research Programme on Biomedical Informatics (GRIB), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | - Carmen Montoto
- Medical Department, Takeda Farmacéutica España, Madrid, Spain
| |
Collapse
|
23
|
Looman KIM, Cecil CAM, Grosserichter‐Wagener C, Kiefte‐de Jong JC, van Zelm MC, Moll HA. Associations between T cells and attention problems in the general pediatric population: The Generation R study. JCPP ADVANCES 2021; 1:e12038. [PMID: 37431441 PMCID: PMC10242894 DOI: 10.1002/jcv2.12038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 08/23/2021] [Indexed: 11/08/2022] Open
Abstract
Objective The pathogenesis of attention-deficit/hyperactivity disorder (ADHD) is currently unclear. We hypothesized that chronic immune activation, as indexed by T and B cells, plays a role in the pathophysiology of attention problems. Therefore, we examined T and B cell subsets in a general pediatric population with information on attention problems. Methods We included 756 10-year-old children from the Generation R population-based cohort. Eleven-color flow cytometry was performed on peripheral blood samples to determine T and B cell subsets. The Child Behavior Checklist rated by parents was used to measure attention problems. Data were analyzed using linear regression analyses, adjusting for maternal and child covariates and co-occurring childhood psychopathology. Results For T helper 1 (Th1) cells, one standard deviation (SD) increase was associated with 5.3% (95%CI 0.3; 10.5) higher attention problem scores. Furthermore, 1SD increase in CD8+ T cells was associated with 7.5% (95%CI 2.4; 12.7) higher attention problem scores. Within total CD8+ T cells, 1SD increase in naive or central memory cells was associated with 6.9% (95%CI 2.0; 12.1) and 6.4% (95%CI 1.5; 11.6) higher attention problem scores, respectively. No associations between Th2, Treg or B memory cells and attention problem scores were observed. Conclusion Higher Th1 and cytotoxic T cell numbers are associated with higher attention problem scores independent of co-occurring psychopathology. This might indicate a possible role of a pro-inflammatory immune profile in childhood attention problems.
Collapse
Affiliation(s)
- Kirsten I. M. Looman
- Generation R Study GroupErasmus MCUniversity Medical CenterRotterdamThe Netherlands
- Department of PediatricsSophia Children's HospitalErasmus MCUniversity Medical CenterRotterdamThe Netherlands
| | - Charlotte A. M. Cecil
- Department of Child and Adolescent Psychiatry/PsychologyErasmus MCUniversity Medical CenterRotterdamThe Netherlands
- Department of EpidemiologyErasmus MCUniversity Medical CenterRotterdamThe Netherlands
- Molecular EpidemiologyDepartment of Biomedical Data SciencesLeiden University Medical CenterLeidenThe Netherlands
| | | | - Jessica C. Kiefte‐de Jong
- Department of EpidemiologyErasmus MCUniversity Medical CenterRotterdamThe Netherlands
- Department of Public Health and Primary Care/LUMC Campus The HagueLeiden University Medical CenterLeidenThe Netherlands
| | - Menno C. van Zelm
- Department of Immunology and PathologyCentral Clinical SchoolMonash University and Alfred HospitalMelbourneVictoriaAustralia
| | - Henriëtte A. Moll
- Department of PediatricsSophia Children's HospitalErasmus MCUniversity Medical CenterRotterdamThe Netherlands
| |
Collapse
|
24
|
Cortisol and inflammatory biomarker levels in youths with attention deficit hyperactivity disorder (ADHD): evidence from a systematic review with meta-analysis. Transl Psychiatry 2021; 11:430. [PMID: 34413283 PMCID: PMC8377148 DOI: 10.1038/s41398-021-01550-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Several studies reported abnormal cortisol and inflammatory biomarker levels in youths with attention deficit hyperactivity disorder (ADHD), but the results have not been conclusive. We conducted a systematic review followed by a meta-analysis of case-control studies assessing blood or saliva cortisol levels and blood levels of inflammatory biomarkers in youth with ADHD. The effect sizes (ES) were synthesized by using a random-effects model. In the 19 studies on cortisol levels (totaling n = 916 youth with ADHD and n = 947 typically developing (TD), healthy youth), youth with ADHD have lower basal cortisol levels at any time-points during the day (effect size: .68; p = 0.004) and lower cumulative levels of cortisol (ES: .39, p = .008) throughout the day than TD youth. Moreover, morning cortisol levels were lower in ADHD youth when compared with TD youth (14 studies, n = 1679, ES: .84, p = 0.003), while there is no difference for the afternoon cortisol levels (p = 0.48). The meta-analysis on inflammation biomarker was conducted on 4 studies (totaling n = 404 youth) showed that Tumour Necrosis Factor-alpha (TNF-α) was lower in ADHD when compared with TD (3 studies, n = 257 youth, p = 0.004), while no differences for Interleukin-1β(IL-1β) (p = 0.21), IL-6 (p = 0.09) and IL-10 (p = 0.77). The lower cortisol in the context of low TNF-α levels may indicate a specific pattern of biomarkers in ADHD, and further investigation is warranted.
Collapse
|
25
|
Schweren LJS, van Rooij D, Shi H, Larsson H, Arias-Vasquez A, Li L, Grimstvedt Kvalvik L, Haavik J, Buitelaar J, Hartman C. Diet, Physical Activity, and Disinhibition in Middle-Aged and Older Adults: A UK Biobank Study. Nutrients 2021; 13:1607. [PMID: 34064914 PMCID: PMC8151887 DOI: 10.3390/nu13051607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 01/15/2023] Open
Abstract
Disinhibition is a prominent feature of multiple psychiatric disorders, and has been associated with poor long-term somatic outcomes. Modifiable lifestyle factors including diet and moderate-to-vigorous physical activity (MVPA) may be associated with disinhibition, but their contributions have not previously been quantified among middle-aged/older adults. Here, among N = 157,354 UK Biobank participants aged 40-69, we extracted a single disinhibition principal component and four dietary components (prudent diet, elimination of wheat/dairy/eggs, meat consumption, full-cream dairy consumption). In addition, latent profile analysis assigned participants to one of five empirical dietary groups: prudent-moderate, unhealthy, restricted, meat-avoiding, low-fat dairy. Disinhibition was regressed on the four dietary components, the dietary grouping variable, and self-reported MVPA. In men and women, disinhibition was negatively associated with prudent diet, and positively associated with wheat/dairy/eggs elimination. In men, disinhibition was also associated with consumption of meat and full-cream dairy products. Comparing groups, disinhibition was lower in the prudent-moderate diet (reference) group compared to all other groups. Absolute βs ranged from 0.02-0.13, indicating very weak effects. Disinhibition was not associated with MVPA. In conclusion, disinhibition is associated with multiple features of diet among middle-aged/older adults. Our findings foster specific hypotheses (e.g., early malnutrition, elevated immune-response) to be tested in alternative study designs.
Collapse
Affiliation(s)
- Lizanne J. S. Schweren
- Interdisciplinary Center Psychopathology and Emotion Regulation, University Medical Center Groningen, 9700 RB Groningen, The Netherlands;
| | - Daan van Rooij
- Donders Center for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, RadboudUMC, 6525 GA Nijmegen, The Netherlands; (D.v.R.); (H.S.); (A.A.-V.); (J.B.)
| | - Huiqing Shi
- Donders Center for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, RadboudUMC, 6525 GA Nijmegen, The Netherlands; (D.v.R.); (H.S.); (A.A.-V.); (J.B.)
| | - Henrik Larsson
- School of Medical Sciences, Örebro University, S-701 82 Örebro, Sweden; (H.L.); (L.L.)
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Alejandro Arias-Vasquez
- Donders Center for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, RadboudUMC, 6525 GA Nijmegen, The Netherlands; (D.v.R.); (H.S.); (A.A.-V.); (J.B.)
| | - Lin Li
- School of Medical Sciences, Örebro University, S-701 82 Örebro, Sweden; (H.L.); (L.L.)
| | - Liv Grimstvedt Kvalvik
- Department of Biomedicine, Public Health and Primary Care, University of Bergen, NO-5020 Bergen, Norway; (L.G.K.); (J.H.)
| | - Jan Haavik
- Department of Biomedicine, Public Health and Primary Care, University of Bergen, NO-5020 Bergen, Norway; (L.G.K.); (J.H.)
- Bergen Centre of Brain Plasticity, Haukeland University Hospital, NO-5012 Bergen, Norway
| | - Jan Buitelaar
- Donders Center for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, RadboudUMC, 6525 GA Nijmegen, The Netherlands; (D.v.R.); (H.S.); (A.A.-V.); (J.B.)
- Karakter Child and Adolescent Psychiatry University Centre, RadboudUMC, 6525 GA Nijmegen, The Netherlands
| | - Catharina Hartman
- Interdisciplinary Center Psychopathology and Emotion Regulation, University Medical Center Groningen, 9700 RB Groningen, The Netherlands;
| |
Collapse
|
26
|
Miyake K, Miyashita C, Ikeda-Araki A, Miura R, Itoh S, Yamazaki K, Kobayashi S, Masuda H, Ooka T, Yamagata Z, Kishi R. DNA methylation of GFI1 as a mediator of the association between prenatal smoking exposure and ADHD symptoms at 6 years: the Hokkaido Study on Environment and Children's Health. Clin Epigenetics 2021; 13:74. [PMID: 33827680 PMCID: PMC8028116 DOI: 10.1186/s13148-021-01063-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Prenatal smoking exposure has been associated with childhood attention-deficit/hyperactivity disorder (ADHD). However, the mechanism underlying this relationship remains unclear. We assessed whether DNA methylation differences may mediate the association between prenatal smoking exposure and ADHD symptoms at the age of 6 years. RESULTS We selected 1150 mother-infant pairs from the Hokkaido Study on the Environment and Children's Health. Mothers were categorized into three groups according to plasma cotinine levels at the third trimester: non-smokers (≤ 0.21 ng/mL), passive smokers (0.21-11.48 ng/mL), and active smokers (≥ 11.49 ng/mL). The children's ADHD symptoms were determined by the ADHD-Rating Scale at the age of 6 years. Maternal active smoking during pregnancy was significantly associated with an increased risk of ADHD symptoms (odds ratio, 1.89; 95% confidence interval, 1.14-3.15) compared to non-smoking after adjusting for covariates. DNA methylation of the growth factor-independent 1 transcriptional repressor (GFI1) region, as determined by bisulfite next-generation sequencing of cord blood samples, mediated 48.4% of the total effect of the association between maternal active smoking during pregnancy and ADHD symptoms. DNA methylation patterns of other genes (aryl-hydrocarbon receptor repressor [AHRR], cytochrome P450 family 1 subfamily A member 1 [CYP1A1], estrogen receptor 1 [ESR1], and myosin IG [MYO1G]) regions did not exert a statistically significant mediation effect. CONCLUSIONS Our findings demonstrated that DNA methylation of GFI1 mediated the association between maternal active smoking during pregnancy and ADHD symptoms at the age of 6 years.
Collapse
Affiliation(s)
- Kunio Miyake
- Departments of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Atsuko Ikeda-Araki
- Center for Environmental and Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Ryu Miura
- Center for Environmental and Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Sachiko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Keiko Yamazaki
- Center for Environmental and Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Hideyuki Masuda
- Center for Environmental and Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Tadao Ooka
- Departments of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Zentaro Yamagata
- Departments of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
27
|
Önder A, Gizli Çoban Ö, Sürer Adanır A. Elevated neutrophil-to-lymphocyte ratio in children and adolescents with attention-deficit/hyperactivity disorder. Int J Psychiatry Clin Pract 2021; 25:43-48. [PMID: 32787596 DOI: 10.1080/13651501.2020.1804940] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Inflammation is reported to play a substantial role in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). Neutrophil/lymphocyte ratio (NLR) and platelet/lymphocyte ratio (PLR) are inexpensive and potentially interesting biomarkers of inflammation. In this cross-sectional and retrospective study, we investigated the relationship between NLR, PLR and ADHD. METHODS This study consisted of 100 children and adolescents with ADHD (85 of those receiving psychopharmacological treatment), and 99 physically and mentally healthy children. RESULTS The mean NLR and PLR were significantly higher in patients than in controls. There was no significant difference between patients who received psychopharmacological treatment for ADHD and patient that did not with regard to NLR and PLR. No associations were found between NLR and PLR and ADHD symptom severity. The significance of NLR is not influenced by medication use, age and sex. CONCLUSIONS Our findings suggest that NLR and PLR may be inflammation biomarkers in children and adolescents with ADHD. Moreover, the significance of NLR is not influenced by medication use, age and sex. Prospective studies that address alterations in NLR and PLR and other pro-inflammatory cytokines following ADHD treatment may provide additional information about the inflammatory mechanisms in ADHD.Key pointsThe mean NLR and PLR were significantly higher in patients than in controls.The significance of NLR is not influenced by medication use, age and sex.No associations were found between NLR and PLR and ADHD symptom severity.Prospective studies that address alterations in NLR and PLR and other pro-inflammatory cytokines following psychopharmacological treatment of ADHD may provide additional information about the inflammatory mechanisms in ADHD.
Collapse
Affiliation(s)
- Arif Önder
- Department of Child and Adolescent Psychiatry, Akdeniz University School of Medicine, Antalya, Turkey
| | - Özge Gizli Çoban
- Department of Child and Adolescent Psychiatry, Akdeniz University School of Medicine, Antalya, Turkey
| | - Aslı Sürer Adanır
- Department of Child and Adolescent Psychiatry, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
28
|
Sukmajaya AC, Lusida MI, Soetjipto, Setiawati Y. Systematic review of gut microbiota and attention-deficit hyperactivity disorder (ADHD). Ann Gen Psychiatry 2021; 20:12. [PMID: 33593384 PMCID: PMC7888126 DOI: 10.1186/s12991-021-00330-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gut-brain axis (GBA) is a system widely studied nowadays, especially in the neuropsychiatry field. It is postulated to correlate with many psychiatric conditions, one of them being attention-deficit hyperactivity disorder (ADHD). ADHD is a disorder that affects many aspects of life, including but not limited to financial, psychosocial, and cultural aspects. Multiple studies have made a comparison of the gut microbiota between ADHD and healthy controls. Our aims were to review the existing studies analyzing the gut microbiota between human samples in ADHD and healthy individuals. METHODS The literature was obtained using Google Scholar, Pubmed, and Science Direct search engine. The keywords used were "ADHD", "gut microbiota", "stool", "gut", and "microbiota". The selected studies were all case-control studies, which identify the gut microbiota between ADHD and healthy individuals. RESULT We found six studies which were eligible for review. The model and methods of each study is different. Forty-nine bacterial taxa were found, yet none of them can explain the precise relationship between ADHD and the gut microbiota. Bifidobacterium was found in higher amount in ADHD patients, but other study stated that the abundance of this genus was lower in ADHD with post-micronutrient treatment. This may suggest that micronutrient can modulate the population of Bifidobacterium and improve the behavior of ADHD patients. Other notable findings include a significantly lower population of Dialister in unmedicated ADHD, which rose after patients were medicated. A smaller amount of Faecalibacterium were also found in ADHD patients. This may explain the pathogenesis of ADHD, as Faecalibacterium is known for its anti-inflammatory products. It is possible the scarcity of this genera could induce overproduction of pro-inflammatory cytokines, which is in accordance with the high level of pro-inflammatory cytokines found in children with ADHD. CONCLUSION There were no studies that examined which bacterial taxa correlated most to ADHD. This might occur due to the different model and methods in each study. Further study is needed to identify the correlation between gut microbiota and ADHD.
Collapse
Affiliation(s)
| | - Maria Inge Lusida
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia. .,Department of Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
| | - Soetjipto
- Department of Psychiatric, Faculty of Medicine Universitas Airlangga, Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Yunias Setiawati
- Department of Psychiatric, Faculty of Medicine Universitas Airlangga, Dr. Soetomo General Hospital, Surabaya, Indonesia
| |
Collapse
|
29
|
DNA Methylation in LIME1 and SPTBN2 Genes Is Associated with Attention Deficit in Children. CHILDREN-BASEL 2021; 8:children8020092. [PMID: 33572947 PMCID: PMC7912017 DOI: 10.3390/children8020092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
DNA methylation levels are associated with neurodevelopment. Attention-deficit/hyperactivity disorder (ADHD), characterized by attention deficits, is a common neurodevelopmental disorder. We used methylation microarray and pyrosequencing to detect peripheral blood DNA methylation markers of ADHD. DNA methylation profiling data from the microarray assays identified potential differentially methylated CpG sites between 12 ADHD patients and 9 controls. Five candidate CpG sites (cg00446123, cg20513976, cg07922513, cg17096979, and cg02506324) in four genes (LIME1, KCNAB2, CAPN9, and SPTBN2) were further examined with pyrosequencing. The attention of patients were tested using the Conners’ Continuous Performance Test (CPT). In total, 126 ADHD patients with a mean age of 9.2 years (78.6% males) and 72 healthy control subjects with a mean age of 9.3 years (62.5% males) were recruited. When all participants were categorized by their CPT performance, the DNA methylation levels in LIME1 (cg00446123 and cg20513976) were found to be significantly higher and those in SPTBN2 (cg02506324) were significantly lower in children with worse CPT performance. Therefore, DNA methylation of two CpG sites in LIME1 and one CpG site in SPTBN2 is associated with attention deficits in children. DNA methylation biomarkers may assist in identifying attention deficits of children in clinical settings.
Collapse
|
30
|
Song Y, Yuan H, Chen T, Lu M, Lei S, Han X. An Shen Ding Zhi Ling Alleviates Symptoms of Attention Deficit Hyperactivity Disorder via Anti-Inflammatory Effects in Spontaneous Hypertensive Rats. Front Pharmacol 2021; 11:617581. [PMID: 33536923 PMCID: PMC7847841 DOI: 10.3389/fphar.2020.617581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/09/2020] [Indexed: 01/21/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a childhood-onset chronic neurobehavioral disorder, with multiple genetic and environmental risk factors. Chronic inflammation may be critical for the progression of ADHD. An Shen Ding Zhi Ling (ASDZL) decoction, a traditional Chinese medicine prescription, is clinically used in ADHD treatment. In this study, we investigated the effects and underlying anti-inflammatory mechanisms of ASDZL in young spontaneously hypertensive rats (SHRs), a widely used model of ADHD. SHRs were divided into the SHR model group (vehicle), atomoxetine group (4.56 mg/kg/day) and ASDZL group (21.25 g/kg/day), and orally administered for four weeks. Wistar Kyoto rats were used as controls (vehicle). We found that ASDZL significantly controlled hyperactivity and impulsivity, and improved spatial memory of SHRs in the open field test and Morris water maze test. ASDZL reduced the pro-inflammatory factors interleukin (IL)-1β, IL-4, IL-6, tumor necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1 and increased anti-inflammatory factor IL-10 in SHRs, and decreased the activation of microglia, astrocytes and mast cells in the prefrontal cortex (PFC) and hippocampus. Furthermore, the results indicated that ASDZL inhibited the neuroinflammatory response by protecting the integrity of the blood-brain barrier and suppressing the mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB signaling pathways of SHRs. In conclusion, these findings revealed that ASDZL attenuated ADHD symptoms in SHRs by reducing neuroinflammation.
Collapse
Affiliation(s)
- Yuchen Song
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, China
| | - Haixia Yuan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianyi Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Manqi Lu
- College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Gansu, China
| | - Shuang Lei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinmin Han
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
31
|
Jhun M, Panwar A, Cordner R, Irvin DK, Veiga L, Yeager N, Pechnick RN, Schubloom H, Black KL, Wheeler CJ. CD103 Deficiency Promotes Autism (ASD) and Attention-Deficit Hyperactivity Disorder (ADHD) Behavioral Spectra and Reduces Age-Related Cognitive Decline. Front Neurol 2021; 11:557269. [PMID: 33424735 PMCID: PMC7786306 DOI: 10.3389/fneur.2020.557269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022] Open
Abstract
The incidence of autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD), which frequently co-occur, are both rising. The causes of ASD and ADHD remain elusive, even as both appear to involve perturbation of the gut-brain-immune axis. CD103 is an integrin and E-cadherin receptor most prominently expressed on CD8 T cells that reside in gut, brain, and other tissues. CD103 deficiency is well-known to impair gut immunity and resident T cell function, but it's impact on neurodevelopmental disorders has not been examined. We show here that CD8 T cells influence neural progenitor cell function, and that CD103 modulates this impact both directly and potentially by controlling CD8 levels in brain. CD103 knockout (CD103KO) mice exhibited a variety of behavioral abnormalities, including superior cognitive performance coupled with repetitive behavior, aversion to novelty and social impairment in females, with hyperactivity with delayed learning in males. Brain protein markers in female and male CD103KOs coincided with known aspects of ASD and ADHD in humans, respectively. Surprisingly, CD103 deficiency also decreased age-related cognitive decline in both sexes, albeit by distinct means. Together, our findings reveal a novel role for CD103 in brain developmental function, and identify it as a unique factor linking ASD and ADHD etiology. Our data also introduce a new animal model of combined ASD and ADHD with associated cognitive benefits, and reveal potential therapeutic targets for these disorders and age-related cognitive decline.
Collapse
Affiliation(s)
- Michelle Jhun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Akanksha Panwar
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Ryan Cordner
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA, United States.,Department Biomedical & Translational Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dwain K Irvin
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA, United States.,StemVax Therapeutics, Chesterland, OH, United States
| | - Lucia Veiga
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Nicole Yeager
- Department Biomedical & Translational Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Robert N Pechnick
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Hanna Schubloom
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Christopher J Wheeler
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, Los Angeles, CA, United States.,Society for Brain Mapping & Therapeutics, Brain Mapping Foundation, Santa Monica, CA, United States.,T-Neuro Pharma, Inc., Albuquerque, NM, United States
| |
Collapse
|
32
|
Yang LL, Stiernborg M, Skott E, Söderström Å, Giacobini M, Lavebratt C. Proinflammatory mediators and their associations with medication and comorbid traits in children and adults with ADHD. Eur Neuropsychopharmacol 2020; 41:118-131. [PMID: 33160793 DOI: 10.1016/j.euroneuro.2020.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/24/2020] [Accepted: 10/16/2020] [Indexed: 12/25/2022]
Abstract
Peripheral immune activation can influence neurodevelopment and is increased in autism, but is less explored in attention deficit hyperactivity disorder (ADHD). Patients with ADHD often display comorbid autism traits and gastrointestinal (GI) symptoms. Plasma protein levels of two acute phase reactants, C-reactive protein (CRP) and serum amyloid A (SAA), and two endothelial adhesion molecules, soluble intercellular adhesion molecule 1 (sICAM-1) and soluble vascular cell adhesion molecule 1 (sVCAM-1), which share important roles in inflammation, were analyzed in 154 patients with ADHD and 61 healthy controls. Their associations with ADHD diagnosis, severity, medication and comorbid autistic symptoms, emotion dysregulation and GI symptoms were explored. The ADHD patients had increased levels of sICAM-1 and sVCAM-1 compared to healthy controls (p = 8.6e-05, p = 6.9e-07, respectively). In children with ADHD, the sICAM-1 and sVCAM-1 levels were higher among those with ADHD medication than among children (p = 0.0037, p = 0.0053, respectively) and adults (p = 3.5e-09, p = 1.9e-09, respectively) without ADHD medication. Among the adult ADHD patients, higher sICAM-1 levels were associated with increased comorbid autistic symptoms in the domains attention to detail and imagination (p = 0.0081, p = 0.00028, respectively), and higher CRP levels were associated with more GI symptoms (p = 0.014). sICAM-1 and sVCAM-1 levels were highly correlated with each other, and so were CRP and SAA levels. To conclude, vascular inflammatory activity may be overrepresented in ADHD, with elevated sICAM-1 and sVCAM-1 levels and this may in children be a consequence of current ADHD medication, and in adults relate to increased comorbid autistic symptoms. Replication is warranted.
Collapse
Affiliation(s)
- Liu L Yang
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Miranda Stiernborg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Elin Skott
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden; PRIMA Child and Adult Psychiatry, Stockholm, Sweden
| | | | - MaiBritt Giacobini
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; PRIMA Child and Adult Psychiatry, Stockholm, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden.
| |
Collapse
|
33
|
Environmental risk factors, protective factors, and peripheral biomarkers for ADHD: an umbrella review. Lancet Psychiatry 2020; 7:955-970. [PMID: 33069318 DOI: 10.1016/s2215-0366(20)30312-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/07/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Many potential environmental risk factors, environmental protective factors, and peripheral biomarkers for ADHD have been investigated, but the consistency and magnitude of their effects are unclear. We aimed to systematically appraise the published evidence of association between potential risk factors, protective factors, or peripheral biomarkers, and ADHD. METHODS In this umbrella review of meta-analyses, we searched PubMed including MEDLINE, Embase, and the Cochrane Database of Systematic Reviews, from database inception to Oct 31, 2019, and screened the references of relevant articles. We included systematic reviews that provided meta-analyses of observational studies that examined associations of potential environmental risk factors, environmental protective factors, or peripheral biomarkers with diagnosis of ADHD. We included meta-analyses that used categorical ADHD diagnosis criteria according to DSM, hyperkinetic disorder according to ICD, or criteria that were less rigorous than DSM or ICD, such as self-report. We excluded articles that did not examine environmental risk factors, environmental protective factors, or peripheral biomarkers of ADHD; articles that did not include a meta-analysis; and articles that did not present enough data for re-analysis. We excluded non-human studies, primary studies, genetic studies, and conference abstracts. We calculated summary effect estimates (odds ratio [OR], relative risk [RR], weighted mean difference [WMD], Cohen's d, and Hedges' g), 95% CI, heterogeneity I2 statistic, 95% prediction interval, small study effects, and excess significance biases. We did analyses under credibility ceilings, and assessed the quality of the meta-analyses with AMSTAR 2 (A Measurement Tool to Assess Systematic Reviews 2). This study is registered with PROSPERO, number CRD42019145032. FINDINGS We identified 1839 articles, of which 35 were eligible for inclusion. These 35 articles yielded 63 meta-analyses encompassing 40 environmental risk factors and environmental protective factors (median cases 16 850, median population 91 954) and 23 peripheral biomarkers (median cases 175, median controls 187). Evidence of association was convincing (class I) for maternal pre-pregnancy obesity (OR 1·63, 95% CI 1·49 to 1·77), childhood eczema (1·31, 1·20 to 1·44), hypertensive disorders during pregnancy (1·29, 1·22 to 1·36), pre-eclampsia (1·28, 1·21 to 1·35), and maternal acetaminophen exposure during pregnancy (RR 1·25, 95% CI 1·17 to 1·34). Evidence of association was highly suggestive (class II) for maternal smoking during pregnancy (OR 1·6, 95% CI 1·45 to 1·76), childhood asthma (1·51, 1·4 to 1·63), maternal pre-pregnancy overweight (1·28, 1·21 to 1·35), and serum vitamin D (WMD -6·93, 95% CI -9·34 to -4·51). INTERPRETATION Maternal pre-pregnancy obesity and overweight; pre-eclampsia, hypertension, acetaminophen exposure, and smoking during pregnancy; and childhood atopic diseases were strongly associated with ADHD. Previous familial studies suggest that maternal pre-pregnancy obesity, overweight, and smoking during pregnancy are confounded by familial or genetic factors, and further high-quality studies are therefore required to establish causality. FUNDING None.
Collapse
|
34
|
Robberecht H, Verlaet AAJ, Breynaert A, De Bruyne T, Hermans N. Magnesium, Iron, Zinc, Copper and Selenium Status in Attention-Deficit/Hyperactivity Disorder (ADHD). Molecules 2020; 25:molecules25194440. [PMID: 32992575 PMCID: PMC7583976 DOI: 10.3390/molecules25194440] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
In this study, we critically review the literature concerning the relation of Mg, Fe, Zn, Cu and Se and attention-deficit/hyperactivity disorder (ADHD). Elemental status is estimated using peripheral blood parameters, hair, urine, daily intake and response to supplementation. The observed associations between concentration levels of the elements Mg, Fe, Zn, Cu and Se and ADHD symptoms are contradictory. This is partly due to the heterogeneity and complexity of the disorder. As a trend, lower ferritin and zinc levels can be observed. However, this correlation is not causative, as illustrated by placebo-controlled trials reporting conflicting evidence on the efficacy of supplementation. Well-defined studies on changes in concentration levels of the elements in relation to ADHD symptoms before and after treatment with therapeutics it will be possible to shed more light on the significance of these elements in this behavioral disorder. The discussion on whether a change in concentration of an element is cause or consequence of ADHD is not within the scope of this article.
Collapse
|
35
|
Possible links between gut-microbiota and attention-deficit/hyperactivity disorders in children and adolescents. Eur J Nutr 2020; 59:3391-3403. [PMID: 32918136 DOI: 10.1007/s00394-020-02383-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
An association between gut-microbiota and several neuropsychiatric conditions including autism, depression, anxiety, schizophrenia, and attention-deficit/hyperactivity disorder (ADHD) has been observed. Despite being the most prevalent neurodevelopmental disorders in children and adolescents worldwide, the etiology and curative approaches to treatment of ADHD remain unclear. There is a probability that gut-microbiota may contribute to ADHD via bidirectional communication between the gut and brain, a system known as the "gut-brain axis". Although a mechanistic link in the gut-brain axis in ADHD has been proposed, there is still a lack of information about the correlation of the microbiome profile with the mechanisms involved. The objective of this review was to summarize the diversity of the gut-microbiota and taxonomic profiles in children and adolescents with ADHD. In this review, we have provided an overview of the association between ADHD and gut-microbiota. The evidence pertinent to potentially distinctive gut-microbiota in children and adolescents with ADHD is also discussed and compared to that of their non-ADHD peers. Finally, the implications and future directions for investigation into the gut microbiome in ADHD patients are proposed.
Collapse
|
36
|
Ertürk E, Wouters S, Imeraj L, Lampo A. Association of ADHD and Celiac Disease: What Is the Evidence? A Systematic Review of the Literature. J Atten Disord 2020; 24:1371-1376. [PMID: 26825336 DOI: 10.1177/1087054715611493] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective: This article tries to answer the question whether or not there is evidence for a relationship between celiac disease (CD) and ADHD. A review of the current literature on this topic is provided. Method: PUBMED/MEDLINE, Web of Science, and Google scholar were searched to include all published trials on ADHD and CD (no date limitation, both noncontrolled and controlled trials). In addition, the reference list of included studies was screened to find other relevant articles. Results: Eight studies report a possible association between CD and ADHD; however, the results are inconsistent. Only three out of eight studies report a positive correlation between ADHD and CD. Conclusion: Up till now, there is no conclusive evidence for a relationship between ADHD and CD. Therefore, it is not advised to perform routine screening of CD when assessing ADHD (and vice versa) or to implement gluten-free diet as a standard treatment in ADHD.
Collapse
|
37
|
Tinkov AA, Mazaletskaya AL, Ajsuvakova OP, Bjørklund G, Huang PT, Chernova LN, Skalny AA, Skalny AV. ICP-MS Assessment of Hair Essential Trace Elements and Minerals in Russian Preschool and Primary School Children with Attention-Deficit/Hyperactivity Disorder (ADHD). Biol Trace Elem Res 2020; 196:400-409. [PMID: 31691190 DOI: 10.1007/s12011-019-01947-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022]
Abstract
The objective of the present study was to investigate the relationship between hair essential trace element and mineral content and ADHD in preschool (4-6 years old) and primary school children (6-10 years old) in relation to age and gender. Hair essential trace element and mineral content in 90 Russian children with ADHD and 90 age- and gender-matched neurotypical controls were assessed using inductively coupled plasma mass-spectrometry after microwave digestion. The obtained data demonstrate that hair Co, Cu, Mn, Si, and Zn contents in ADHD children was significantly reduced by 18%, 10%, 27%, 16%, and 19% as compared to the control values, respectively. The most significant decrease in children with ADHD was observed for hair Mg levels, being 29% lower than those in neurotypical children. After adjustment for age and gender, the observed difference in hair element content was more characteristic for preschool children and girls, respectively. Multiple linear regression analysis demonstrated that in a crude model (hair element levels as predictors), only hair Zn content was significantly inversely associated with ADHD (β = - 0.169; p = 0.025). Adjustment for anthropometric parameters (model 2) did not increase the predictive ability of the model, although it improved the association between hair Zn and ADHD in children (β = - 0.194; p = 0.014). Hypothetically, the observed alterations may at least partially contribute to neurobehavioral disturbances in children with ADHD. Moreover, the results of the present study raise the question about the potential benefits of Zn and Mg supplementation in children with ADHD. However, further detailed studies are required to investigate micronutrient deficiencies in ADHD.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia, 150003.
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia, 119146.
- RUDN University, Moscow, Russia.
| | | | - Olga P Ajsuvakova
- Yaroslavl State University, Yaroslavl, Russia, 150003
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia, 119146
- RUDN University, Moscow, Russia
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | | | | | - Andrey A Skalny
- Yaroslavl State University, Yaroslavl, Russia, 150003
- RUDN University, Moscow, Russia
| | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia, 119146
- RUDN University, Moscow, Russia
- Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia, 460000
| |
Collapse
|
38
|
Botturi A, Ciappolino V, Delvecchio G, Boscutti A, Viscardi B, Brambilla P. The Role and the Effect of Magnesium in Mental Disorders: A Systematic Review. Nutrients 2020; 12:nu12061661. [PMID: 32503201 PMCID: PMC7352515 DOI: 10.3390/nu12061661] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 12/25/2022] Open
Abstract
Introduction: Magnesium is an essential cation involved in many functions within the central nervous system, including transmission and intracellular signal transduction. Several studies have shown its usefulness in neurological and psychiatric diseases. Furthermore, it seems that magnesium levels are lowered in the course of several mental disorders, especially depression. Objectives: In this study, we wish to evaluate the presence of a relationship between the levels of magnesium and the presence of psychiatric pathology as well as the effectiveness of magnesium as a therapeutic supplementation. Methods: A systematic search of scientific records concerning magnesium in psychiatric disorders published from 2010 up to March 2020 was performed. We collected a total of 32 articles: 18 on Depressive Disorders (DD), four on Anxiety Disorders (AD), four on Attention Deficit Hyperactivity Disorder (ADHD), three on Autism Spectrum Disorder (ASD), one on Obsessive–Compulsive Disorder (OCD), one on Schizophrenia (SCZ) and one on Eating Disorders (ED). Results: Twelve studies highlighted mainly positive results in depressive symptoms. Seven showed a significant correlation between reduced plasma magnesium values and depression measured with psychometric scales. Two papers reported improved depressive symptoms after magnesium intake, two in association with antidepressants, compared to controls. No significant association between magnesium serum levels and panic or Generalized Anxiety Disorder (GAD) patients, in two distinct papers, was found. In two other papers, a reduced Hamilton Anxiety Rating Scale (HAM-A) score in depressed patients correlated with higher levels of magnesium and beneficial levels of magnesium in stressed patients was found. Two papers reported low levels of magnesium in association with ADHD. Only one of three papers showed lower levels of magnesium in ASD. ED and SCZ reported a variation in magnesium levels in some aspects of the disease. Conclusion: The results are not univocal, both in terms of the plasma levels and of therapeutic effects. However, from the available evidence, it emerged that supplementation with magnesium could be beneficial. Therefore, it is necessary to design ad hoc clinical trials to evaluate the efficacy of magnesium alone or together with other drugs (antidepressants) in order to establish the correct use of this cation with potential therapeutic effects.
Collapse
Affiliation(s)
- Andrea Botturi
- Neurologic Clinic, Fondazione IRCCS Istituto neurologico Carlo Besta, 20133 Milan, Italy
- Correspondence:
| | - Valentina Ciappolino
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy; (V.C.); (A.B.); (B.V.); (P.B.)
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
| | - Andrea Boscutti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy; (V.C.); (A.B.); (B.V.); (P.B.)
| | - Bianca Viscardi
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy; (V.C.); (A.B.); (B.V.); (P.B.)
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy; (V.C.); (A.B.); (B.V.); (P.B.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
| |
Collapse
|
39
|
Song Y, Lu M, Yuan H, Chen T, Han X. Mast cell-mediated neuroinflammation may have a role in attention deficit hyperactivity disorder (Review). Exp Ther Med 2020; 20:714-726. [PMID: 32742317 PMCID: PMC7388140 DOI: 10.3892/etm.2020.8789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental and behavioral disorder with a serious negative impact on the quality of life from childhood until adulthood, which may cause academic failure, family disharmony and even social unrest. The pathogenesis of ADHD has remained to be fully elucidated, leading to difficulties in the treatment of this disease. Genetic and environmental factors contribute to the risk of ADHD development. Certain studies indicated that ADHD has high comorbidity with allergic and autoimmune diseases, with various patients with ADHD having a high inflammatory status. Increasing evidence indicated that mast cells (MCs) are involved in the pathogenesis of brain inflammation and neuropsychiatric disorders. MCs may cause or aggravate neuroinflammation via the selective release of inflammatory factors, interaction with glial cells and neurons, activation of the hypothalamic-pituitary adrenal axis or disruption of the blood-brain barrier integrity. In the present review, the notion that MC activation may be involved in the occurrence and development of ADHD through a number of ways is discussed based on previously published studies. The association between MCs and ADHD appears to lack sufficient evidence at present and this hypothesis is considered to be worthy of further study, providing a novel perspective for the treatment of ADHD.
Collapse
Affiliation(s)
- Yuchen Song
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Manqi Lu
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Haixia Yuan
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Tianyi Chen
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xinmin Han
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
40
|
Buck JM, O'Neill HC, Stitzel JA. Developmental nicotine exposure engenders intergenerational downregulation and aberrant posttranslational modification of cardinal epigenetic factors in the frontal cortices, striata, and hippocampi of adolescent mice. Epigenetics Chromatin 2020; 13:13. [PMID: 32138755 PMCID: PMC7059320 DOI: 10.1186/s13072-020-00332-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Maternal smoking of traditional or electronic cigarettes during pregnancy, which constitutes developmental nicotine exposure (DNE), heightens the risk of neurodevelopmental disorders including ADHD, autism, and schizophrenia in children. Modeling the intergenerationally transmissible impacts of smoking during pregnancy, we previously demonstrated that both the first- and second-generation adolescent offspring of nicotine-exposed female mice exhibit enhanced nicotine preference, hyperactivity and risk-taking behaviors, aberrant rhythmicity of home cage activity, nicotinic acetylcholine receptor and dopamine transporter dysfunction, impaired furin-mediated proBDNF proteolysis, hypocorticosteronemia-related glucocorticoid receptor hypoactivity, and global DNA hypomethylation in the frontal cortices and striata. This ensemble of multigenerational DNE-induced behavioral, neuropharmacological, neurotrophic, neuroendocrine, and DNA methylomic anomalies recapitulates the pathosymptomatology of neurodevelopmental disorders such as ADHD, autism, and schizophrenia. Further probing the epigenetic bases of DNE-induced multigenerational phenotypic aberrations, the present study examined the expression and phosphorylation of key epigenetic factors via an array of immunoblot experiments. RESULTS Data indicate that DNE confers intergenerational deficits in corticostriatal DNA methyltransferase 3A (DNMT3A) expression accompanied by downregulation of methyl-CpG-binding protein 2 (MeCP2) and histone deacetylase 2 (HDAC2) in the frontal cortices and hippocampi, while the expression of ten-eleven translocase methylcytosine dioxygenase 2 (TET2) is unaltered. Moreover, DNE evokes multigenerational abnormalities in HDAC2 (Ser394) but not MeCP2 (Ser421) phosphorylation in the frontal cortices, striata, and hippocampi. CONCLUSIONS In light of the extensive gene regulatory roles of DNMT3A, MeCP2, and HDAC2, the findings of this study that DNE elicits downregulation and aberrant posttranslational modification of these factors in both first- and second-generation DNE mice suggest that epigenetic perturbations may constitute a mechanistic hub for the intergenerational transmission of DNE-induced neurodevelopmental disorder-like phenotypes.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado, 1480 30th Street, Boulder, CO, 80309-0447, USA.
- Department of Integrative Physiology, University of Colorado, Boulder, USA.
| | - Heidi C O'Neill
- Institute for Behavioral Genetics, University of Colorado, 1480 30th Street, Boulder, CO, 80309-0447, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, USA
| |
Collapse
|
41
|
Kirkland AE, Langan MT, Holton KF. Artificial food coloring affects EEG power and ADHD symptoms in college students with ADHD: a pilot study. Nutr Neurosci 2020; 25:159-168. [PMID: 32116139 DOI: 10.1080/1028415x.2020.1730614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objectives: Removing artificial food coloring (AFC) is a common dietary intervention for children with Attention-Deficit/Hyperactivity Disorder (ADHD), but has not been tested in young adults. This pilot study examined the effects of AFC on ADHD symptoms and electroencephalography (EEG) in college students with and without ADHD.Methods: At baseline, control and ADHD participants completed the Adult ADHD Self-Report Scale (ASRS), simple and complex attention measures, and resting-state EEG recordings. ADHD participants (n = 18) and a subset of controls (extended control group or EC, n = 11) avoided AFC in their diet for 2 weeks and then were randomized to a double-blind, placebo-controlled crossover challenge. Subjects received either 225 mg AFC disguised in chocolate cookies or placebo chocolate cookies for 3 days each week, with testing on the third day each week. Baseline comparisons were made using Student's t-test or Wilcoxon rank sum tests and challenge period analyses were run using General Linear Modeling.Results: The ADHD group had significantly greater scores on the ASRS (p < 0.001), confirming a symptom differential between groups; however, there were no differences in attentional measures or EEG at baseline. The AFC challenge resulted in an increase in posterior mean gamma power (p = 0.05), a decrease in posterior relative alpha power (p = 0.04), and a marginal increase in inattentive symptoms (p = 0.08) in the ADHD group. There were no effects of AFC in the EC group.Discussion: This study indicates that AFC exposure may affect brainwave activity and ADHD symptoms in college students with ADHD. Larger studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Anna E Kirkland
- Department of Psychology, American University, Washington, DC, USA
| | | | - Kathleen F Holton
- Department of Health Studies, American University, Washington, DC, USA.,Center for Behavioral Neuroscience, American University, Washington, DC, USA
| |
Collapse
|
42
|
Kumperscak HG, Gricar A, Ülen I, Micetic-Turk D. A Pilot Randomized Control Trial With the Probiotic Strain Lactobacillus rhamnosus GG (LGG) in ADHD: Children and Adolescents Report Better Health-Related Quality of Life. Front Psychiatry 2020; 11:181. [PMID: 32256407 PMCID: PMC7092625 DOI: 10.3389/fpsyt.2020.00181] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/25/2020] [Indexed: 12/28/2022] Open
Abstract
Objectives: This double-blind pilot randomized placebo-controlled trial examined the possible effect of the probiotic strain Lactobacillus rhamnosus GG ATCC53103 (LGG) on symptoms of attention-deficit/hyperactivity disorder (ADHD), health-related quality of life (QoL), and serum levels of cytokines in children and adolescents with ADHD. Methods: This trial evaluated 32 drug-naive children and adolescents aged between four and 17 years with a diagnosis of ADHD. The study subjects were randomly assigned to either the group that received LGG or the group that received the placebo. Assessments, comprising the ADHD Parent-Report Rating Scale-IV: Home Version; the Child Self-Report and Parent Proxy-Report of the Pediatric Quality of Life Inventory TM (PedsQL TM ) 4.0 Generic Core Scale; the Parent Form (CBCL/6-18) and the Teacher Report Form (TRF) of the Child Behavior Checklist (CBCL) for ages 6-18 of the Achenbach System of Empirically Based Assessment (ASEBA); and the serum cytokines; were compared between the groups at the baseline and after 3 months. Results: Thirty-five participants were randomized, with 32 completing the study (91.4% retention). There was a significant improvement in the PedsQL Child Self-Report Total Score after 3 months of treatment in the probiotic (p = 0.021, d = 0.53), whereas there was no significant improvement in the placebo group (p = 0.563, d = 0.04). The results of psychometric parameters assessed by parents and teachers were not so straightforward. There were statistically significant differences in the levels of serum cytokines between the groups after the 3-month treatment period: IL-6 in both the probiotic (p = 0.004, d = 0.73) and the placebo groups (p = 0.035, d = 0.94); IL-10 (p = 0.035, d = 0.6); IL-12 p70 (p = 0.025, d = 0.89); and TNF-α (p = 0.046, d = 0.64) in the probiotic group only. Conclusions: Children and adolescents with ADHD who received LGG supplementation reported better health-related QoL compared to their peers who received the placebo. This suggests that LGG supplementation could be beneficial. But results with psychometric tests conducted by parents and teachers as well as differences in the levels of inflammatory cytokines were ambiguous. Based on these results, we propose some study modifications: a longer observation period (6-12 months); inclusion of more children's self-report assessments; recruitment of non-drug naive patients and the possible omission of serum cytokines measurements. Clinical Trial Registration: Medical Ethics Committee (UKC-MB-KME-19-06/16).
Collapse
Affiliation(s)
- Hojka Gregoric Kumperscak
- Pediatric Clinic, University Medical Center Maribor, Maribor, Slovenia.,Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Alja Gricar
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Ina Ülen
- Community Health Center Dr. Adolf Drolc, Maribor, Slovenia
| | | |
Collapse
|
43
|
Endogenous Retroviruses Activity as a Molecular Signature of Neurodevelopmental Disorders. Int J Mol Sci 2019; 20:ijms20236050. [PMID: 31801288 PMCID: PMC6928979 DOI: 10.3390/ijms20236050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are genetic elements resulting from relics of ancestral infection of germline cells, now recognized as cofactors in the etiology of several complex diseases. Here we present a review of findings supporting the role of the abnormal HERVs activity in neurodevelopmental disorders. The derailment of brain development underlies numerous neuropsychiatric conditions, likely starting during prenatal life and carrying on during subsequent maturation of the brain. Autism spectrum disorders, attention deficit hyperactivity disorders, and schizophrenia are neurodevelopmental disorders that arise clinically during early childhood or adolescence, currently attributed to the interplay among genetic vulnerability, environmental risk factors, and maternal immune activation. The role of HERVs in human embryogenesis, their intrinsic responsiveness to external stimuli, and the interaction with the immune system support the involvement of HERVs in the derailed neurodevelopmental process. Although definitive proofs that HERVs are involved in neurobehavioral alterations are still lacking, both preclinical models and human studies indicate that the abnormal expression of ERVs could represent a neurodevelopmental disorders-associated biological trait in affected individuals and their parents.
Collapse
|
44
|
The Potential Influence of the Bacterial Microbiome on the Development and Progression of ADHD. Nutrients 2019; 11:nu11112805. [PMID: 31744191 PMCID: PMC6893446 DOI: 10.3390/nu11112805] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
The latest research cumulates staggering information about the correlation between the microbiota-gut-brain axis and neurodevelopmental disorders. This review aims to shed light on the potential influence of the microbiome on the development of the most prevalent neurodevelopmental disease, attention-deficit-hyperactive disorder (ADHD). As the etiology and pathophysiology of ADHD are still unclear, finding viable biomarkers and effective treatment still represent a challenge. Therefore, we focused on factors that have been associated with a higher risk of developing ADHD, while simultaneously influencing the microbial composition. We reviewed the effect of a differing microbial makeup on neurotransmitter concentrations important in the pathophysiology of ADHD. Additionally, we deduced factors that correlate with a high prevalence of ADHD, while simultaneously affecting the gut microbiome, such as emergency c-sections, and premature birth as the former leads to a decrease of the gut microbial diversity and the latter causes neuroprotective Lactobacillus levels to be reduced. Also, we assessed nutritional influences, such as breastfeeding, ingestion of short-chain fatty acids (SCFAs) and polyunsaturated fatty acids (PUFAs) on the host′s microbiome and development of ADHD. Finally, we discussed the potential significance of Bifidobacterium as a biomarker for ADHD, the importance of preventing premature birth as prophylaxis and nutrition as a prospective therapeutic measurement against ADHD.
Collapse
|
45
|
Integrated Analysis of microRNA and mRNA Expression Profiles: An Attempt to Disentangle the Complex Interaction Network in Attention Deficit Hyperactivity Disorder. Brain Sci 2019; 9:brainsci9100288. [PMID: 31652596 PMCID: PMC6826944 DOI: 10.3390/brainsci9100288] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 12/11/2022] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a childhood-onset neurodevelopmental disorder, whose etiology and pathogenesis are still largely unknown. In order to uncover novel regulatory networks and molecular pathways possibly related to ADHD, we performed an integrated miRNA and mRNA expression profiling analysis in peripheral blood samples of children with ADHD and age-matched typically developing (TD) children. The expression levels of 13 miRNAs were evaluated with microfluidic qPCR, and differentially expressed (DE) mRNAs were detected on an Illumina HiSeq 2500 genome analyzer. The miRNA targetome was identified using an integrated approach of validated and predicted interaction data extracted from seven different bioinformatic tools. Gene Ontology (GO) and pathway enrichment analyses were carried out. Results showed that six miRNAs (miR-652-3p, miR-942-5p, let-7b-5p, miR-181a-5p, miR-320a, and miR-148b-3p) and 560 genes were significantly DE in children with ADHD compared to TD subjects. After correction for multiple testing, only three miRNAs (miR-652-3p, miR-148b-3p, and miR-942-5p) remained significant. Genes known to be associated with ADHD (e.g., B4GALT2, SLC6A9 TLE1, ANK3, TRIO, TAF1, and SYNE1) were confirmed to be significantly DE in our study. Integrated miRNA and mRNA expression data identified critical key hubs involved in ADHD. Finally, the GO and pathway enrichment analyses of all DE genes showed their deep involvement in immune functions, reinforcing the hypothesis that an immune imbalance might contribute to the ADHD etiology. Despite the relatively small sample size, in this study we were able to build a complex miRNA-target interaction network in children with ADHD that might help in deciphering the disease pathogenesis. Validation in larger samples should be performed in order to possibly suggest novel therapeutic strategies for treating this complex disease.
Collapse
|
46
|
Dam SA, Mostert JC, Szopinska-Tokov JW, Bloemendaal M, Amato M, Arias-Vasquez A. The Role of the Gut-Brain Axis in Attention-Deficit/Hyperactivity Disorder. Gastroenterol Clin North Am 2019; 48:407-431. [PMID: 31383279 DOI: 10.1016/j.gtc.2019.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Genetic and environmental factors play a role in the cause and development of attention-deficit/hyperactivity disorder (ADHD). Recent studies have suggested an important role of the gut-brain axis (GBA) and intestinal microbiota in modulating the risk of ADHD. Here, the authors provide a brief overview of the clinical and biological picture of ADHD and how the GBA could be involved in its cause. They discuss key biological mechanisms involved in the GBA and how these may increase the risk of developing ADHD. Understanding these mechanisms may help to characterize novel treatment options via identification of disease biomarkers.
Collapse
Affiliation(s)
- Sarita A Dam
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands.
| | - Jeanette C Mostert
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Joanna W Szopinska-Tokov
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Mirjam Bloemendaal
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Maria Amato
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Alejandro Arias-Vasquez
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
47
|
Chen VCH, Chiu CC, Weng JC, Chen LJ, Siow JY, Hsu TC, Tzang BS. Taurine reduces hyperactive behavior in SHR rats through upregulating the proportion of CD4+CD25+Foxp3+ regulatory T cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
48
|
Miłosz M, Demkow U, Wolańczyk T. Relation Between Attention-Deficit Hyperactivity Disorder and IgE-Dependent Allergy in Pediatric Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1096:105-109. [PMID: 29623610 DOI: 10.1007/5584_2018_196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Food allergy is a common condition in children and adolescent, remitting with time. Few clinical studies have emphasized the link between food allergies and psychosocial conditions, suggesting a profound impact of atopic diseases on the development of attention-deficit hyperactivity disorder (ADHD) in children. The objective of this study was to compile and assess available studies on the comorbidity or causality between ADHD and atopic food allergy in children. We discuss epidemiology, interrelated mechanisms, and potential dietary interventions in the management of children with ADHD.
Collapse
Affiliation(s)
- Mateusz Miłosz
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Warsaw Medical University, Warsaw, Poland.
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Warsaw Medical University, Warsaw, Poland
| | - Tomasz Wolańczyk
- Deaprtment of Children and Adolescent Psychiatry, Warsaw Medical University, Warsaw, Poland
| |
Collapse
|
49
|
Tonacci A, Bagnato G, Pandolfo G, Billeci L, Sansone F, Conte R, Gangemi S. MicroRNA Cross-Involvement in Autism Spectrum Disorders and Atopic Dermatitis: A Literature Review. J Clin Med 2019; 8:jcm8010088. [PMID: 30646527 PMCID: PMC6352260 DOI: 10.3390/jcm8010088] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 12/27/2018] [Accepted: 01/11/2019] [Indexed: 12/16/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a category of neurodevelopmental disturbances seriously affecting social skills, to which the scientific community has paid great attention in last decades. To date, their pathogenesis is still unknown, but several studies highlighted the relevance of gene-environment interactions in the onset of ASD. In addition, an immune involvement was seen in a wide number of ASD subjects, leading several researchers to hypothesize a possible common pathogenesis between ASD and immune disturbances, including Atopic Dermatitis (AD). In general, among potential contributing factors, microRNAs (miRNAs), small molecules capable of controlling gene expression and targeting mRNA transcripts, might represent one of the major circulating link, possibly unraveling the connections between neurodevelopmental and immune conditions. Under such premises, we conducted a systematic literature review, under the PRISMA guidelines, trying to define the panel of common miRNAs involved in both ASD and AD. The review retrieved articles published between January 1, 2005, and December 13, 2018, in PubMed, ScienceDirect, PsycARTICLES, and Google Scholar. We found a handful of works dealing with miRNAs in ASD and AD, with the most overlapping dysregulated miRNAs being miR-146 and miR-155. Two possible compounds are abnormally regulated in both ASD and AD subjects, possibly cross-contributing to the interactions between the two disorders, setting the basis to investigate more precisely the possible link between ASD and AD from another, not just clinical, perspective.
Collapse
Affiliation(s)
- Alessandro Tonacci
- Clinical Physiology Institute-National Research Council of Italy (IFC-CNR), Via Moruzzi 1, 56124 Pisa, Italy.
| | - Gianluca Bagnato
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University Hospital "G. Martino", Via Consolare Valeria SNC, 98125 Messina, Italy.
| | - Gianluca Pandolfo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| | - Lucia Billeci
- Clinical Physiology Institute-National Research Council of Italy (IFC-CNR), Via Moruzzi 1, 56124 Pisa, Italy.
| | - Francesco Sansone
- Clinical Physiology Institute-National Research Council of Italy (IFC-CNR), Via Moruzzi 1, 56124 Pisa, Italy.
| | - Raffaele Conte
- Clinical Physiology Institute-National Research Council of Italy (IFC-CNR), Via Moruzzi 1, 56124 Pisa, Italy.
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University Hospital "G. Martino", Via Consolare Valeria SNC, 98125 Messina, Italy.
| |
Collapse
|
50
|
Hsu JW, Tsai SJ, Chen MH, Huang KL. Treatment-resistant attention-deficit hyperactivity disorder: Clinical significance, concept, and management. TAIWANESE JOURNAL OF PSYCHIATRY 2019. [DOI: 10.4103/tpsy.tpsy_14_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|