1
|
Rojek A, Fieggen J, Apiyo P, Caluwaerts S, Fowler RA, Kaleebu P, Kojan R, Lado M, Lambe T, Dunning J, Horby P. Ebola disease: bridging scientific discoveries and clinical application. THE LANCET. INFECTIOUS DISEASES 2025; 25:e165-e176. [PMID: 39675368 DOI: 10.1016/s1473-3099(24)00673-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 12/17/2024]
Abstract
The west Africa Ebola disease epidemic (2014-16) marked a historic change of course for patient care during emerging infectious disease outbreaks. The epidemic response was a failure in many ways-a slow, cumbersome, and disjointed effort by a global architecture that was not fit for purpose for a rapidly spreading outbreak. In the most affected countries, health-care workers and other responders felt helpless-dealing with an overwhelming number of patients but with few, if any, tools at their disposal to provide high-quality care. These inadequacies, however, led to attention and innovation. The decade since then has seen remarkable achievements in clinical care for Ebola disease, including the approval of the first vaccines and treatments. In this paper, the first in a two-part Series, we reflect on this progress and provide expert summary of the modern landscape of Ebola disease, highlighting the priorities and ongoing activities aimed at further improving patient survival and wellbeing in the years ahead.
Collapse
Affiliation(s)
| | | | - Paska Apiyo
- Gulu Regional Referral Hospital Ministry of Health, Pece Laroo Division, Gulu City, Uganda
| | - Séverine Caluwaerts
- Medical Department, Médecins Sans Frontières, Brussels, Belgium; Institute of Tropical Medicine, Antwerp, Belgium
| | - Robert A Fowler
- Sunnybrook Health Sciences Centre, Sunnybrook Hospital, Toronto, ON, Canada
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda; Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Marta Lado
- Partners In Health, Freetown, Sierra Leone
| | - Teresa Lambe
- Pandemic Sciences Institute, Oxford, UK; Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | | | | |
Collapse
|
2
|
Devaraj AR, Marianthiran VJ. Advancements in Viral Genomics: Gated Recurrent Unit Modeling of SARS-CoV-2, SARS, MERS, and Ebola viruses. Rev Soc Bras Med Trop 2025; 58:e004012024. [PMID: 39936709 PMCID: PMC11805527 DOI: 10.1590/0037-8682-0178-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/08/2024] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Emerging infections have posed persistent threats to humanity throughout history. Rapid and unprecedented anthropogenic, behavioral, and social transformations witnessed in the past century have expedited the emergence of novel pathogens, intensifying their impact on the global human population. METHODS This study aimed to comprehensively analyze and compare the genomic sequences of four distinct viruses: SARS-CoV-2, SARS, MERS, and Ebola. Advanced genomic sequencing techniques and a Gated Recurrent Unit-based deep learning model were used to examine the intricate genetic makeup of these viruses. The proposed study sheds light on their evolutionary dynamics, transmission patterns, and pathogenicity and contributes to the development of effective diagnostic and therapeutic interventions. RESULTS This model exhibited exceptional performance as evidenced by accuracy values of 99.01%, 98.91%, 98.35%, and 98.04% for SARS-CoV-2, SARS, MERS, and Ebola respectively. Precision values ranged from 98.1% to 98.72%, recall values consistently surpassed 92%, and F1 scores ranged from 95.47% to 96.37%. CONCLUSIONS These results underscore the robustness of this model and its potential utility in genomic analysis, paving the way for enhanced understanding, preparedness, and response to emerging viral threats. In the future, this research will focus on creating better diagnostic instruments for the early identification of viral illnesses, developing vaccinations, and tailoring treatments based on the genetic composition and evolutionary patterns of different viruses. This model can be modified to examine a more extensive variety of diseases and recently discovered viruses to predict future outbreaks and their effects on global health.
Collapse
Affiliation(s)
- Abhishak Raj Devaraj
- Noorul Islam Centre for Higher Education, Department of Computer Applications, Tamilnadu, India
| | - Victor Jose Marianthiran
- Vel Tech Multi Tech Dr. Rangarajan. Sakunthala Engineering College, Department of Artificial Intelligence and Data Science, Tamilnadu, India
| |
Collapse
|
3
|
Niu Y, McKee CD. Bat Viral Shedding: A Review of Seasonal Patterns and Risk Factors. Vector Borne Zoonotic Dis 2025. [PMID: 39836021 DOI: 10.1089/vbz.2024.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Background: Bats act as reservoirs for a variety of zoonotic viruses, sometimes leading to spillover into humans and potential risks of global transmission. Viral shedding from bats is an essential prerequisite to bat-to-human viral transmission and understanding the timing and intensity of viral shedding from bats is critical to mitigate spillover risks. However, there are limited investigations on bats' seasonal viral shedding patterns and their related risk factors. We conducted a comprehensive review of longitudinal studies on bat viruses with spillover potential to synthesize patterns of seasonal viral shedding and explore associated risk factors. Methods: We extracted data from 60 reviewed articles and obtained 1085 longitudinal sampling events. We analyzed viral shedding events using entropy values to quantitatively assess whether they occur in a consistent, pulsed pattern in a given season. Results: We found that clear seasonal shedding patterns were common in bats. Eight out of seventeen species-level analyses presented clear seasonal patterns. Viral shedding pulses often coincide with bats' life cycles, especially in weaning and parturition seasons. Juvenile bats with waning maternal antibodies, pregnant bats undergoing immunity changes, and hibernation periods with decreased immune responses could be potential risk factors influencing seasonal shedding patterns. Conclusion: Based on our findings, we recommend future longitudinal studies on bat viruses that combine direct viral testing and serological testing, prioritize longitudinal research following young bats throughout their developmental stages, and broaden the geographical range of longitudinal studies on bat viruses based on current surveillance reports. Our review identified critical periods with heightened viral shedding for some viruses in bat species, which would help promote efforts to minimize spillovers and prevent outbreaks.
Collapse
Affiliation(s)
- Yannan Niu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Clifton D McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Clancey E, Nuismer S, Seifert S. Using serosurveys to optimize surveillance for zoonotic pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581274. [PMID: 38562792 PMCID: PMC10983876 DOI: 10.1101/2024.02.22.581274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Zoonotic pathogens pose a significant risk to human health, with spillover into human populations contributing to chronic disease, sporadic epidemics, and occasional pandemics. Despite the widely recognized burden of zoonotic spillover, our ability to identify which animal populations serve as primary reservoirs for these pathogens remains incomplete. This challenge is compounded when prevalence reaches detectable levels only at specific times of year. In these cases, statistical models designed to predict the timing of peak prevalence could guide field sampling for active infections. Thus, we develop a general model that leverages routinely collected serosurveillance data to optimize sampling for elusive pathogens by predicting time windows of peak prevalence. Using simulated data sets, we show that our methodology reliably identifies times when pathogen prevalence is expected to peak. Then, we demonstrate an implementation of our method using publicly available data from two putative Ebolavirus reservoirs, straw-colored fruit bats (Eidolon helvum) and hammer-headed bats (Hypsignathus monstrosus). We envision our method being used to guide the planning of field sampling to maximize the probability of detecting active infections, and in cases when longitudinal data is available, our method can also yield predictions for the times of year that are most likely to produce future spillover events. The generality and simplicity of our methodology make it broadly applicable to a wide range of putative reservoir species where seasonal patterns of birth lead to predictable, but potentially short-lived, pulses of pathogen prevalence.
Collapse
Affiliation(s)
- E. Clancey
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164 USA
| | - S.L. Nuismer
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844 USA
| | - S.N. Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
5
|
Hood G, Carroll M. Host-pathogen interactions of emerging zoonotic viruses: bats, humans and filoviruses. Curr Opin Virol 2024; 68-69:101436. [PMID: 39537444 DOI: 10.1016/j.coviro.2024.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
This paper provides an overview of the phenomena of cross-species transmission of viruses (known as spillover), focusing on the highly pathogenic filovirus family and their natural reservoir: bats. It also describes the host-pathogen relationship of viruses and their reservoirs, in addition to humans, and discusses current theories of persistent infection.
Collapse
Affiliation(s)
- Grace Hood
- Pandemic Sciences Institute & Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| | - Miles Carroll
- Pandemic Sciences Institute & Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
6
|
Pawęska JT, Storm N, Jansen van Vuren P, Markotter W, Kemp A. Attempted Transmission of Marburg Virus by Bat-Associated Fleas Thaumapsylla breviceps breviceps (Ischnopsyllidae: Thaumapsyllinae) to the Egyptian Rousette Bat ( Rousettus aegyptiacus). Viruses 2024; 16:1197. [PMID: 39205171 PMCID: PMC11360628 DOI: 10.3390/v16081197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Egyptian rousette bats (ERBs) are implicated as reservoir hosts for Marburg virus (MARV), but natural mechanisms involved in maintenance of MARV in ERB populations remain undefined. A number of hematophagous ectoparasites, including fleas, parasitize bats. Subcutaneous (SC) inoculation of ERBs with MARV consistently results in viremia, suggesting that infectious MARV could be ingested by blood-sucking ectoparasites during feeding. In our study, MARV RNA was detected in fleas that took a blood meal during feeding on viremic bats on days 3, 7, and 11 after SC inoculation. Virus concentration in individual ectoparasites was consistent with detectable levels of viremia in the blood of infected host bats. There was neither seroconversion nor viremia in control bats kept in close contact with MARV-infected bats infested with fleas for up to 40 days post-exposure. In fleas inoculated intracoelomically, MARV was detected up to 14 days after intracoelomic (IC) inoculation, but the virus concentration was lower than that delivered in the inoculum. All bats that had been infested with inoculated, viremic fleas remained virologically and serologically negative up to 38 days after infestation. Of 493 fleas collected from a wild ERB colony in Matlapitsi Cave, South Africa, where the enzootic transmission of MARV occurs, all tested negative for MARV RNA. While our findings seem to demonstrate that bat fleas lack vectorial capacity to transmit MARV biologically, their role in mechanical transmission should not be discounted. Regular blood-feeds, intra- and interhost mobility, direct feeding on blood vessels resulting in venous damage, and roosting behaviour of ERBs provide a potential physical bridge for MARV dissemination in densely populated cave-dwelling bats by fleas. The virus transfer might take place through inoculation of skin, mucosal membranes, and wounds when contaminated fleas are squashed during auto- and allogrooming, eating, biting, or fighting.
Collapse
Affiliation(s)
- Janusz T. Pawęska
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (N.S.); (P.J.v.V.); (A.K.)
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2050, South Africa
| | - Nadia Storm
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (N.S.); (P.J.v.V.); (A.K.)
- Department of Microbiology, School of Medicine, Boston University, Boston, MA 02118, USA
| | - Petrus Jansen van Vuren
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (N.S.); (P.J.v.V.); (A.K.)
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC 3220, Australia
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Alan Kemp
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (N.S.); (P.J.v.V.); (A.K.)
| |
Collapse
|
7
|
Apoorva, Singh SK. A tale of endurance: bats, viruses and immune dynamics. Future Microbiol 2024; 19:841-856. [PMID: 38648093 PMCID: PMC11382704 DOI: 10.2217/fmb-2023-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/09/2024] [Indexed: 04/25/2024] Open
Abstract
The emergence of highly zoonotic viral infections has propelled bat research forward. The viral outbreaks including Hendra virus, Nipah virus, Marburg virus, Ebola virus, Rabies virus, Middle East respiratory syndrome coronavirus, SARS-CoV and the latest SARS-CoV-2 have been epidemiologically linked to various bat species. Bats possess unique immunological characteristics that allow them to serve as a potential viral reservoir. Bats are also known to protect themselves against viruses and maintain their immunity. Therefore, there is a need for in-depth understanding into bat-virus biology to unravel the major factors contributing to the coexistence and spread of viruses.
Collapse
Affiliation(s)
- Apoorva
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sunit Kumar Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
- Dr. B R Ambedkar Center for Biomedical Research, University of Delhi (North Campus), New Delhi, 110007, India
| |
Collapse
|
8
|
Deng F, Morales-Sosa P, Bernal-Rivera A, Wang Y, Tsuchiya D, Javier JE, Rohner N, Zhao C, Camacho J. Establishing Primary and Stable Cell Lines from Frozen Wing Biopsies for Cellular, Physiological, and Genetic Studies in Bats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586286. [PMID: 38585913 PMCID: PMC10996558 DOI: 10.1101/2024.03.22.586286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Bats stand out among mammalian species for their exceptional traits, including the capacity to navigate through flight and echolocation, conserve energy through torpor/hibernation, harbor a multitude of viruses, exhibit resistance to disease, survive harsh environmental conditions, and demonstrate exceptional longevity compared to other mammals of similar size. In vivo studies of bats can be challenging for several reasons such as ability to locate and capture them in their natural environments, limited accessibility, low sample size, environmental variation, long lifespans, slow reproductive rates, zoonotic disease risks, species protection, and ethical concerns. Thus, establishing alternative laboratory models is crucial for investigating the diverse physiological adaptations observed in bats. Obtaining quality cells from tissues is a critical first step for successful primary cell derivation. However, it is often impractical to collect fresh tissue and process the samples immediately for cell culture due to the resources required for isolating and expanding cells. As a result, frozen tissue is typically the starting resource for bat primary cell derivation. Yet, cells in frozen tissue are usually damaged and represent low integrity and viability. As a result, isolating primary cells from frozen tissues poses a significant challenge. Herein, we present a successfully developed protocol for isolating primary dermal fibroblasts from frozen bat wing biopsies. This protocol marks a significant milestone, as this the first protocol specially focused on fibroblasts isolation from bat frozen tissue. We also describe methods for primary cell characterization, genetic manipulation of primary cells through lentivirus transduction, and the development of stable cell lines. Basic Protocol 1: Bat wing biopsy collection and preservation Support Protocol 1: Blood collection from bat- venipuncture Basic Protocol 2: Isolation of primary fibroblasts from adult bat frozen wing biopsy Support Protocol 2: Maintenance of primary fibroblasts Support Protocol 3: Cell banking and thawing of primary fibroblasts Support Protocol 4: Growth curve and doubling time Support Protocol 5: Lentiviral transduction of bat primary fibroblasts Basic Protocol 3: Bat stable fibroblasts cell lines development Support Protocol 6: Bat fibroblasts validation by immunofluorescence staining Support Protocol 7: Chromosome counting.
Collapse
Affiliation(s)
- Fengyan Deng
- Stowers Institute for Medical Research, Kansas City, MO, USA, 64110
| | | | | | - Yan Wang
- Stowers Institute for Medical Research, Kansas City, MO, USA, 64110
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO, USA, 64110
| | | | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO, USA, 64110
- Department of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, KS, USA, 66103
| | - Chongbei Zhao
- Stowers Institute for Medical Research, Kansas City, MO, USA, 64110
| | - Jasmin Camacho
- Stowers Institute for Medical Research, Kansas City, MO, USA, 64110
| |
Collapse
|
9
|
Lunn TJ, Jackson RT, Webala PW, Ogola J, Forbes KM. Kenyan Free-Tailed Bats Demonstrate Seasonal Birth Pulse Asynchrony with Implications for Virus Maintenance. ECOHEALTH 2024; 21:94-111. [PMID: 38372845 PMCID: PMC11127837 DOI: 10.1007/s10393-024-01674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024]
Abstract
Ecological information on wildlife reservoirs is fundamental for research targeting prevention of zoonotic infectious disease, yet basic information is lacking for many species in global hotspots of disease emergence. We provide the first estimates of synchronicity, magnitude, and timing of seasonal birthing in Mops condylurus, a putative ebolavirus host, and a co-roosting species, Mops pumilus (formerly Chaerephon pumilus). We show that population-level synchronicity of M. condylurus birthing is wide (~ 8.5 weeks) and even wider in M. pumilus (> 11 weeks). This is predicted to promote the likelihood of filovirus persistence under conditions of bi-annual birthing (two births per year). Ecological features underlying the magnitude of the birth pulse-relative female abundance (higher than expected for M. condylurus and lower for M. pumilus, based on literature) and reproductive rate (lower than expected)-will have countering effects on birthing magnitude. Species-specific models are needed to interpret how identified birth pulse attributes may interact with other features of molossid ebolavirus ecology to influence infection dynamics. As a common feature of wildlife species, and a key driver of infection dynamics, detailed information on seasonal birthing will be fundamental for future research on these species and will be informative for bat-borne zoonoses generally.
Collapse
Affiliation(s)
- Tamika J Lunn
- Department of Biological Sciences, University of Arkansas, Science and Engineering Building, 850 W Dickson St, Fayetteville, AR, 72701, USA.
- Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA.
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA.
| | - Reilly T Jackson
- Department of Biological Sciences, University of Arkansas, Science and Engineering Building, 850 W Dickson St, Fayetteville, AR, 72701, USA
- Wildlife Research Branch, Arizona Game and Fish Department, Phoenix, AZ, 85086, USA
| | - Paul W Webala
- Department of Forestry and Wildlife Management, Maasai Mara University, Narok, 20500, Kenya
| | - Joseph Ogola
- Department of Medical Microbiology, University of Nairobi, Nairobi, 19676, Kenya
| | - Kristian M Forbes
- Department of Biological Sciences, University of Arkansas, Science and Engineering Building, 850 W Dickson St, Fayetteville, AR, 72701, USA
| |
Collapse
|
10
|
Riesle-Sbarbaro SA, Wibbelt G, Düx A, Kouakou V, Bokelmann M, Hansen-Kant K, Kirchoff N, Laue M, Kromarek N, Lander A, Vogel U, Wahlbrink A, Wozniak DM, Scott DP, Prescott JB, Schaade L, Couacy-Hymann E, Kurth A. Selective replication and vertical transmission of Ebola virus in experimentally infected Angolan free-tailed bats. Nat Commun 2024; 15:925. [PMID: 38297087 PMCID: PMC10830451 DOI: 10.1038/s41467-024-45231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
The natural reservoir of Ebola virus (EBOV), agent of a zoonosis burdening several African countries, remains unidentified, albeit evidence points towards bats. In contrast, the ecology of the related Marburg virus is much better understood; with experimental infections of bats being instrumental for understanding reservoir-pathogen interactions. Experiments have focused on elucidating reservoir competence, infection kinetics and specifically horizontal transmission, although, vertical transmission plays a key role in many viral enzootic cycles. Herein, we investigate the permissiveness of Angolan free-tailed bats (AFBs), known to harbour Bombali virus, to other filoviruses: Ebola, Marburg, Taï Forest and Reston viruses. We demonstrate that only the bats inoculated with EBOV show high and disseminated viral replication and infectious virus shedding, without clinical disease, while the other filoviruses fail to establish productive infections. Notably, we evidence placental-specific tissue tropism and a unique ability of EBOV to traverse the placenta, infect and persist in foetal tissues of AFBs, which results in distinct genetic signatures of adaptive evolution. These findings not only demonstrate plausible routes of horizontal and vertical transmission in these bats, which are expectant of reservoir hosts, but may also reveal an ancillary transmission mechanism, potentially required for the maintenance of EBOV in small reservoir populations.
Collapse
Affiliation(s)
- S A Riesle-Sbarbaro
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - G Wibbelt
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - A Düx
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
- Helmholtz Institute for One Health, Greifswald, Germany
| | - V Kouakou
- LANADA, Laboratoire National d'Appui au Développement Agricole, Bingerville, Côte d'Ivoire
| | - M Bokelmann
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - K Hansen-Kant
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - N Kirchoff
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - M Laue
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - N Kromarek
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - A Lander
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - U Vogel
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - A Wahlbrink
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - D M Wozniak
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - D P Scott
- Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - J B Prescott
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - L Schaade
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - E Couacy-Hymann
- LANADA, Laboratoire National d'Appui au Développement Agricole, Bingerville, Côte d'Ivoire
- Centre National de Recherches Agronomiques, LIRED, Abidjan, Côte d'Ivoire
| | - A Kurth
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany.
| |
Collapse
|
11
|
Chitre SD, Crews CM, Tessema MT, Plėštytė-Būtienė I, Coffee M, Richardson ET. The impact of anthropogenic climate change on pediatric viral diseases. Pediatr Res 2024; 95:496-507. [PMID: 38057578 PMCID: PMC10872406 DOI: 10.1038/s41390-023-02929-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/12/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
The adverse effects of climate change on human health are unfolding in real time. Environmental fragmentation is amplifying spillover of viruses from wildlife to humans. Increasing temperatures are expanding mosquito and tick habitats, introducing vector-borne viruses into immunologically susceptible populations. More frequent flooding is spreading water-borne viral pathogens, while prolonged droughts reduce regional capacity to prevent and respond to disease outbreaks with adequate water, sanitation, and hygiene resources. Worsening air quality and altered transmission seasons due to an increasingly volatile climate may exacerbate the impacts of respiratory viruses. Furthermore, both extreme weather events and long-term climate variation are causing the destruction of health systems and large-scale migrations, reshaping health care delivery in the face of an evolving global burden of viral disease. Because of their immunological immaturity, differences in physiology (e.g., size), dependence on caregivers, and behavioral traits, children are particularly vulnerable to climate change. This investigation into the unique pediatric viral threats posed by an increasingly inhospitable world elucidates potential avenues of targeted programming and uncovers future research questions to effect equitable, actionable change. IMPACT: A review of the effects of climate change on viral threats to pediatric health, including zoonotic, vector-borne, water-borne, and respiratory viruses, as well as distal threats related to climate-induced migration and health systems. A unique focus on viruses offers a more in-depth look at the effect of climate change on vector competence, viral particle survival, co-morbidities, and host behavior. An examination of children as a particularly vulnerable population provokes programming tailored to their unique set of vulnerabilities and encourages reflection on equitable climate adaptation frameworks.
Collapse
Affiliation(s)
- Smit D Chitre
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Cecilia M Crews
- Heilbrunn Department of Population & Family Health, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Mesfin Teklu Tessema
- Heilbrunn Department of Population & Family Health, Columbia University Mailman School of Public Health, New York, NY, USA.
- International Rescue Committee, New York, NY, USA.
| | | | - Megan Coffee
- Heilbrunn Department of Population & Family Health, Columbia University Mailman School of Public Health, New York, NY, USA
- International Rescue Committee, New York, NY, USA
- New York University Grossman School of Medicine, New York, NY, USA
| | - Eugene T Richardson
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
12
|
Prasad AN, Agans KN, Geisbert JB, Borisevich V, Deer DJ, Dobias NS, Comer JE, Woolsey C, Fenton KA, Geisbert TW, Cross RW. Natural History of Nonhuman Primates After Oral Exposure to Ebola Virus Variant Makona. J Infect Dis 2023; 228:S571-S581. [PMID: 37348509 PMCID: PMC10651204 DOI: 10.1093/infdis/jiad225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/03/2023] [Accepted: 06/21/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND The primary route of infection by Ebola virus (EBOV) is through contact of mucosal surfaces. Few studies have explored infection of nonhuman primates (NHPs) via the oral mucosa, which is a probable portal of natural infection in humans. METHODS To further characterize the pathogenesis of EBOV infection via the oral exposure route, we challenged cohorts of cynomolgus monkeys with low doses of EBOV variant Makona. RESULTS Infection with 100 or 50 PFU of EBOV Makona via the oral route resulted in 50% and 83% lethality, respectively. Animals that progressed to fatal disease exhibited lymphopenia, marked coagulopathy, high viral loads, and increased levels of serum markers of inflammation and hepatic/renal injury. Survival in these cohorts was associated with milder fluctuations in leukocyte populations, lack of coagulopathy, and reduced or absent serum markers of inflammation and/or hepatic/renal function. Surprisingly, 2 surviving animals from the 100- and 50-PFU cohorts developed transient low-level viremia in the absence of other clinical signs of disease. Conversely, all animals in the 10 PFU cohort remained disease free and survived to the study end point. CONCLUSIONS Our observations highlight the susceptibility of NHPs, and by extension, likely humans, to relatively low doses of EBOV via the oral route.
Collapse
Affiliation(s)
- Abhishek N Prasad
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Krystle N Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Joan B Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Daniel J Deer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Natalie S Dobias
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jason E Comer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Courtney Woolsey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Karla A Fenton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
13
|
Prasad AN, Fenton KA, Agans KN, Borisevich V, Woolsey C, Comer JE, Dobias NS, Peel JE, Deer DJ, Geisbert JB, Lawrence WS, Cross RW, Geisbert TW. Pathogenesis of Aerosolized Ebola Virus Variant Makona in Nonhuman Primates. J Infect Dis 2023; 228:S604-S616. [PMID: 37145930 PMCID: PMC10651212 DOI: 10.1093/infdis/jiad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Highly pathogenic filoviruses such as Ebola virus (EBOV) hold capacity for delivery by artificial aerosols, and thus potential for intentional misuse. Previous studies have shown that high doses of EBOV delivered by small-particle aerosol cause uniform lethality in nonhuman primates (NHPs), whereas only a few small studies have assessed lower doses in NHPs. METHODS To further characterize the pathogenesis of EBOV infection via small-particle aerosol, we challenged cohorts of cynomolgus monkeys with low doses of EBOV variant Makona, which may help define risks associated with small particle aerosol exposures. RESULTS Despite using challenge doses orders of magnitude lower than previous studies, infection via this route was uniformly lethal across all cohorts. Time to death was delayed in a dose-dependent manner between aerosol-challenged cohorts, as well as in comparison to animals challenged via the intramuscular route. Here, we describe the observed clinical and pathological details including serum biomarkers, viral burden, and histopathological changes leading to death. CONCLUSIONS Our observations in this model highlight the striking susceptibility of NHPs, and likely humans, via small-particle aerosol exposure to EBOV and emphasize the need for further development of diagnostics and postexposure prophylactics in the event of intentional release via deployment of an aerosol-producing device.
Collapse
Affiliation(s)
- Abhishek N Prasad
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Karla A Fenton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Krystle N Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Courtney Woolsey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jason E Comer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Natalie S Dobias
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jennifer E Peel
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Daniel J Deer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Joan B Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - William S Lawrence
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
14
|
Roth E. Researching the Ebola Reservoir with the Heuristic of the Fetish in Guinea. Med Anthropol 2023; 42:369-382. [PMID: 37522962 DOI: 10.1080/01459740.2023.2214671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The unprecedented character of the 2013-2016 epidemic of Ebola in West Africa paved the way for a wave of investigations into the reservoir of the disease. A novel economy of health projects arose, which employed Guinean professionals to sample animals and fortify a hypothesis: that the disease spilled over from a bat. Through exploring virology research and its dangers in post-Ebola Guinea, I argue that the hypothesis of a bat reservoir has taken on a heuristic role that can be compared to the way that a fetish polarizes relations between the people who manipulate and fear this idea.
Collapse
Affiliation(s)
- Emmanuelle Roth
- Rachel Carson Center for the Environment and Society, University of Munich, Munich, Germany
| |
Collapse
|
15
|
Lee J, Hadfield J, Black A, Sibley TR, Neher RA, Bedford T, Huddleston J. Joint visualization of seasonal influenza serology and phylogeny to inform vaccine composition. FRONTIERS IN BIOINFORMATICS 2023; 3:1069487. [PMID: 37035035 PMCID: PMC10073671 DOI: 10.3389/fbinf.2023.1069487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Seasonal influenza vaccines must be updated regularly to account for mutations that allow influenza viruses to escape our existing immunity. A successful vaccine should represent the genetic diversity of recently circulating viruses and induce antibodies that effectively prevent infection by those recent viruses. Thus, linking the genetic composition of circulating viruses and the serological experimental results measuring antibody efficacy is crucial to the vaccine design decision. Historically, genetic and serological data have been presented separately in the form of static visualizations of phylogenetic trees and tabular serological results to identify vaccine candidates. To simplify this decision-making process, we have created an interactive tool for visualizing serological data that has been integrated into Nextstrain's real-time phylogenetic visualization framework, Auspice. We show how the combined interactive visualizations may be used by decision makers to explore the relationships between complex data sets for both prospective vaccine virus selection and retrospectively exploring the performance of vaccine viruses.
Collapse
Affiliation(s)
- Jover Lee
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - James Hadfield
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Allison Black
- Chan Zuckerberg Initiative, San Francisco, CA, United States
| | - Thomas R. Sibley
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Richard A. Neher
- Biozentrum, Universität Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Howard Hughes Medical Institute, Seattle, WA, United States
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|
16
|
Jain S, Khaiboullina S, Martynova E, Morzunov S, Baranwal M. Epidemiology of Ebolaviruses from an Etiological Perspective. Pathogens 2023; 12:248. [PMID: 36839520 PMCID: PMC9963726 DOI: 10.3390/pathogens12020248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Since the inception of the ebolavirus in 1976, 32 outbreaks have resulted in nearly 15,350 deaths in more than ten countries of the African continent. In the last decade, the largest (2013-2016) and second largest (2018-2020) ebolavirus outbreaks have occurred in West Africa (mainly Guinea, Liberia, and Sierra Leone) and the Democratic Republic of the Congo, respectively. The 2013-2016 outbreak indicated an alarming geographical spread of the virus and was the first to qualify as an epidemic. Hence, it is imperative to halt ebolavirus progression and develop effective countermeasures. Despite several research efforts, ebolaviruses' natural hosts and secondary reservoirs still elude the scientific world. The primary source responsible for infecting the index case is also unknown for most outbreaks. In this review, we summarize the history of ebolavirus outbreaks with a focus on etiology, natural hosts, zoonotic reservoirs, and transmission mechanisms. We also discuss the reasons why the African continent is the most affected region and identify steps to contain this virus.
Collapse
Affiliation(s)
- Sahil Jain
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Svetlana Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tatarstan, Russia
| | - Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tatarstan, Russia
| | - Sergey Morzunov
- Department of Pathology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| |
Collapse
|
17
|
Alhaji NB, Odetokun IA, Lawan MK, Adeiza AM, Nafarnda WD, Salihu MJ. Risk assessment and preventive health behaviours toward COVID-19 amongst bushmeat handlers in Nigerian wildlife markets: Drivers and One Health challenge. Acta Trop 2022; 235:106621. [PMID: 35908578 PMCID: PMC9329136 DOI: 10.1016/j.actatropica.2022.106621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022]
Abstract
Over 70% of emerging infectious diseases are zoonotic and 72% of them have wildlife reservoirs with consequent global health impacts. Both SARS-CoV-1 and SARS-CoV-2 emerged certainly through wildlife market routes. We assessed wildlife handlers' zoonotic risk perceptions and preventive health behaviour measures toward COVID-19 during pandemic waves, and its drivers at wildlife markets using Health Belief Model (HBM) constructs. A cross-sectional study was conducted at purposively selected wildlife markets in Nigeria between November 2020 and October 2021. Descriptive, univariate, and multivariable logistic regressions analyses were performed at 95% confidence interval. Of the 600 targeted handlers in 97 wildlife markets, 97.2% (n = 583) participated. Consumers were the majority (65.3%), followed by hunters (18.4) and vendors (16.3%). Only 10.3% hunters, 24.3% vendors and 21.0% consumers associated COVID-19 with high zoonotic risk. Also, only few handlers practiced social/physical distancing at markets. Avoidance of handshaking or hugging and vaccination was significantly (p = 0.001) practiced by few handlers as preventive health behaviours at the markets. All the socio-demographic variables were significantly (p<0.05) associated with their knowledge, risk perceptions, and practice of preventive health behaviours toward COVID-19 at univariate analysis. Poor markets sanitation, hygiene, and biosecurity (OR=3.35, 95% CI: 2.33, 4.82); and poor butchering practices and exchange of wildlife species between shops [(OR=1.87; 95% CI: 1.34, 2.60) and (OR=2.03; 95% CI: 1.43, 2.88), respectively] were more likely to significantly influence COVID-19 emergence and spread at the markets. To tackle the highlighted gaps, collaborations between the public health, anthropologists, and veterinary and wildlife authorities through the One Health approach are advocated to intensify awareness and health education programmes that will improve perceptions and behaviours toward the disease and other emerging diseases control and prevention.
Collapse
Affiliation(s)
- Nma Bida Alhaji
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, Minna, Nigeria; Department of Veterinary Public Health and Preventive Medicine, University of Abuja, Federal Capital Territory, Nigeria.
| | - Ismail Ayoade Odetokun
- Department of Veterinary Public Health and Preventive Medicine, University of Ilorin, Ilorin, Nigeria
| | - Mohammed Kabiru Lawan
- Department of Veterinary Public Health and Preventive Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Abdulrahman Musa Adeiza
- Department of Veterinary Public Health and Preventive Medicine, University of Abuja, Federal Capital Territory, Nigeria
| | - Wesley Daniel Nafarnda
- Department of Veterinary Public Health and Preventive Medicine, University of Abuja, Federal Capital Territory, Nigeria
| | - Mohammed Jibrin Salihu
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|
18
|
Weinberg M, Yovel Y. Revising the paradigm: Are bats really pathogen reservoirs or do they possess an efficient immune system? iScience 2022; 25:104782. [PMID: 35982789 PMCID: PMC9379578 DOI: 10.1016/j.isci.2022.104782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While bats are often referred to as reservoirs of viral pathogens, a meta-analysis of the literature reveals many cases in which there is not enough evidence to claim so. In many cases, bats are able to confront viruses, recover, and remain immune by developing a potent titer of antibodies, often without becoming a reservoir. In other cases, bats might have carried an ancestral virus that at some time point might have mutated into a human pathogen. Moreover, bats exhibit a balanced immune response against viruses that have evolved over millions of years. Using genomic tools, it is now possible to obtain a deeper understanding of that unique immune system and its variability across the order Chiroptera. We conclude, that with the exception of a few viruses, bats pose little zoonotic danger to humans and that they operate a highly efficient anti-inflammatory response that we should strive to understand.
Collapse
Affiliation(s)
- Maya Weinberg
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Corresponding author
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
19
|
Seifert SN, Fischer RJ, Kuisma E, Badzi Nkoua C, Bounga G, Akongo MJ, Schulz JE, Escudero-Pérez B, Akoundzie BJ, Ampiri VRB, Dieudonne A, Indolo GD, Kaba SD, Louzolo I, Macosso LN, Mavoungou Y, Miegakanda VBB, Nina RA, Samabide KT, Ondzie AI, Ntoumi F, Muñoz-Fontela C, Mombouli JV, Olson SH, Walzer C, Niama FR, Munster VJ. Zaire ebolavirus surveillance near the Bikoro region of the Democratic Republic of the Congo during the 2018 outbreak reveals presence of seropositive bats. PLoS Negl Trop Dis 2022; 16:e0010504. [PMID: 35731800 PMCID: PMC9255767 DOI: 10.1371/journal.pntd.0010504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/05/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
On the 8th of May, 2018, an outbreak of Ebola virus disease (EVD) was declared, originating in the Bikoro region of the Democratic Republic of the Congo (DRC) near the border with neighboring Republic of the Congo (ROC). Frequent trade and migration occur between DRC and ROC-based communities residing along the Congo River. In June 2018, a field team was deployed to determine whether Zaire ebolavirus (Ebola virus (EBOV)) was contemporaneously circulating in local bats at the human-animal interface in ROC near the Bikoro EVD outbreak. Samples were collected from bats in the Cuvette and Likouala departments, ROC, bordering the Équateur Province in DRC where the Bikoro EVD outbreak was first detected. EBOV genomic material was not detected in bat-derived samples by targeted quantitative reverse transcription-polymerase chain reaction or by family-level consensus polymerase chain reaction; however, serological data suggests recent exposure to EBOV in bats in the region. We collected serum from 144 bats in the Cuvette department with 6.9% seropositivity against the EBOV glycoprotein and 14.3% seropositivity for serum collected from 27 fruit bats and one Molossinae in the Likouala department. We conclude that proactive investment in longitudinal sampling for filoviruses at the human-animal interface, coupled with ecological investigations are needed to identify EBOV wildlife reservoirs.
Collapse
Affiliation(s)
- Stephanie N. Seifert
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States
- Virus Ecology Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States
- * E-mail:
| | - Robert J. Fischer
- Virus Ecology Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States
| | - Eeva Kuisma
- Wildlife Health Program, Wildlife Conservation Society, Brazzaville, Republic of the Congo
| | - Cynthia Badzi Nkoua
- Département de la Recherche et de la Production, Laboratoire National de Santé Publique, Brazzaville, Republic of the Congo
| | - Gerard Bounga
- Wildlife Health Program, Wildlife Conservation Society, Brazzaville, Republic of the Congo
| | - Marc-Joël Akongo
- Wildlife Health Program, Wildlife Conservation Society, Brazzaville, Republic of the Congo
| | - Jonathan E. Schulz
- Virus Ecology Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States
| | - Beatriz Escudero-Pérez
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, Germany
| | - Beal-Junior Akoundzie
- Département de la Recherche et de la Production, Laboratoire National de Santé Publique, Brazzaville, Republic of the Congo
| | - Vishnou Reize Bani Ampiri
- Département de la Recherche et de la Production, Laboratoire National de Santé Publique, Brazzaville, Republic of the Congo
| | - Ankara Dieudonne
- Direction de la Santé Animale, Ministére de L’Agriculture et de L’Élevage, Brazzaville, Republic of the Congo
| | - Ghislain Dzeret Indolo
- Département de la Recherche et de la Production, Laboratoire National de Santé Publique, Brazzaville, Republic of the Congo
| | - Serge D. Kaba
- Wildlife Health Program, Wildlife Conservation Society, Brazzaville, Republic of the Congo
| | - Igor Louzolo
- Département de la Recherche et de la Production, Laboratoire National de Santé Publique, Brazzaville, Republic of the Congo
| | - Lucette Nathalie Macosso
- Département de la Recherche et de la Production, Laboratoire National de Santé Publique, Brazzaville, Republic of the Congo
| | - Yanne Mavoungou
- Département de la Recherche et de la Production, Laboratoire National de Santé Publique, Brazzaville, Republic of the Congo
| | - Valchy Bel-bebi Miegakanda
- Département de la Recherche et de la Production, Laboratoire National de Santé Publique, Brazzaville, Republic of the Congo
| | - Rock Aimé Nina
- Direction de la Santé Animale, Ministére de L’Agriculture et de L’Élevage, Brazzaville, Republic of the Congo
| | - Kevin Tolovou Samabide
- Département de la Recherche et de la Production, Laboratoire National de Santé Publique, Brazzaville, Republic of the Congo
- Faculty of Sciences and Techniques, Université Marien N’Gouabi, Brazzaville, Republic of the Congo
| | - Alain I. Ondzie
- Wildlife Health Program, Wildlife Conservation Society, Brazzaville, Republic of the Congo
| | - Francine Ntoumi
- Faculty of Sciences and Techniques, Université Marien N’Gouabi, Brazzaville, Republic of the Congo
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of the Congo
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | | | - Jean-Vivien Mombouli
- Département de la Recherche et de la Production, Laboratoire National de Santé Publique, Brazzaville, Republic of the Congo
| | - Sarah H. Olson
- Health Program, Wildlife Conservation Society, New York, New York, United States
| | - Chris Walzer
- Health Program, Wildlife Conservation Society, New York, New York, United States
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Fabien Roch Niama
- Département de la Recherche et de la Production, Laboratoire National de Santé Publique, Brazzaville, Republic of the Congo
| | - Vincent J. Munster
- Virus Ecology Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States
| |
Collapse
|
20
|
Moreno-Santillán DD, Machain-Williams C, Hernández-Montes G, Ortega J. Transcriptomic analysis elucidates evolution of the major histocompatibility complex class I in neotropical bats. J Mammal 2022. [DOI: 10.1093/jmammal/gyac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
The Order Chiroptera comprises more than 1,400 species, each with its evolutionary history and under unique selective pressures, among which are the host–pathogen interactions. Bats have coped with complex interactions with a broad spectrum of microbes throughout their evolutionary history, prompting the development of unique adaptations that allow them to co-exist with microbes with pathogenic potential more efficiently than other nonadapted species. In this sense, an extraordinary immune system with unique adaptations has been hypothesized in bats. To explore this, we focused on the major histocompatibility complex (MHC), which plays a crucial role in pathogen recognition and presentation to T cells to trigger the adaptive immune response. We analyzed MHC class I transcripts in five species, each from different families of New World bats. From RNA-seq data, we assembled a partial region of the MHC-I comprising the α1 and α2 domains, which are responsible for peptide binding and recognition. We described five putative functional variants, two of which have two independent insertions at the α2 domain. Our results suggest that this insertion appeared after the divergence of the order Chiroptera and may have an adaptive function in the defense against intracellular pathogens, providing evidence of positive selection and trans-specific polymorphism on the peptide-binding sites.
Collapse
Affiliation(s)
- Diana D Moreno-Santillán
- Department of Integrative Biology, University of California , Berkeley, California 94720-3200 , USA
| | - Carlos Machain-Williams
- Universidad Autónoma de Yucatán, Laboratorio de Arbovirología , Mérida, Yucatán 97000 , México
| | - Georgina Hernández-Montes
- Universidad Nacional Autónoma de México, Red de apoyo a la Investigación, Coordinación de la Investigación Científica entre Universidad y Red de Apoyo , Ciudad de México 14080 , México
| | - Jorge Ortega
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Departamento de Zoología, Posgrado en Ciencias Quimicobiológicas , Ciudad de México 11350 , México
| |
Collapse
|
21
|
Wegner GI, Murray KA, Springmann M, Muller A, Sokolow SH, Saylors K, Morens DM. Averting wildlife-borne infectious disease epidemics requires a focus on socio-ecological drivers and a redesign of the global food system. EClinicalMedicine 2022; 47:101386. [PMID: 35465645 PMCID: PMC9014132 DOI: 10.1016/j.eclinm.2022.101386] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 12/20/2022] Open
Abstract
A debate has emerged over the potential socio-ecological drivers of wildlife-origin zoonotic disease outbreaks and emerging infectious disease (EID) events. This Review explores the extent to which the incidence of wildlife-origin infectious disease outbreaks, which are likely to include devastating pandemics like HIV/AIDS and COVID-19, may be linked to excessive and increasing rates of tropical deforestation for agricultural food production and wild meat hunting and trade, which are further related to contemporary ecological crises such as global warming and mass species extinction. Here we explore a set of precautionary responses to wildlife-origin zoonosis threat, including: (a) limiting human encroachment into tropical wildlands by promoting a global transition to diets low in livestock source foods; (b) containing tropical wild meat hunting and trade by curbing urban wild meat demand, while securing access for indigenous people and local communities in remote subsistence areas; and (c) improving biosecurity and other strategies to break zoonosis transmission pathways at the wildlife-human interface and along animal source food supply chains.
Collapse
Affiliation(s)
- Giulia I. Wegner
- Wildlife Conservation Research Unit (WildCRU), Department of Zoology, University of Oxford, Tubney House, Abingdon Road, Tubney, Abingdon OX13 5QL, UK
| | - Kris A. Murray
- MRC Unit the Gambia at London School of Hygiene and Tropical Medicine, Fajara, Gambia
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK
| | - Marco Springmann
- Oxford Martin Programme on the Future of Food and Nuffield Department of Population Health, University of Oxford, 34 Broad Street, Oxford OX1 3BD, UK
| | - Adrian Muller
- Department of Environmental Systems Science, ETH, Sonneggstrasse 33, Zürich 8092, Switzerland
- Research Institute of Organic Agriculture FiBL, Ackerstrasse 113, Frick 5070, Switzerland
| | - Susanne H. Sokolow
- Stanford Woods Institute for the Environment, Jerry Yang & Akiko Yamazaki Environment & Energy Building, MC 4205, 473 Via Ortega, Stanford, CA 94305, USA
- Marine Science Institute, University of California, Santa Barbara, CA 93106-6150, USA
| | - Karen Saylors
- Labyrinth Global Health, 15th Ave NE, St Petersburg, FL 33704, USA
| | - David M. Morens
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Estimating Risk of Introduction of Ebola Virus Disease from the Democratic Republic of Congo to Tanzania: A Qualitative Assessment. EPIDEMIOLGIA (BASEL, SWITZERLAND) 2022; 3:68-80. [PMID: 36417268 PMCID: PMC9620938 DOI: 10.3390/epidemiologia3010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022]
Abstract
Between April 2018 and November 2020, the Democratic Republic of Congo (DRC) experienced its 11th Ebola virus disease (EVD) outbreak. Tanzania's cross-border interactions with DRC through regular visitors, traders, and refugees are of concern, given the potential for further spread to neighboring countries. This study aimed to estimate the risk of introducing EVD to Tanzania from DRC. National data for flights, boats, and car transport schedules from DRC to Tanzania covering the period of May 2018 to June 2019 were analyzed to describe population movement via land, port, and air travel and coupled with available surveillance data to model the risk of EVD entry. The land border crossing was considered the most frequently used means of travel and the most likely pathway of introducing EVD from DRC to Tanzania. High probabilities of introducing EVD from DRC to Tanzania through the assessed pathways were associated with the viability of the pathogen and low detection capacity at the ports of entry. This study provides important information regarding the elements contributing to the risk associated with the introduction of EBV in Tanzania. It also indicates that infected humans arriving via land are the most likely pathway of EBV entry, and therefore, mitigation strategies including land border surveillance should be strengthened.
Collapse
|
23
|
Bokelmann M, Vogel U, Debeljak F, Düx A, Riesle-Sbarbaro S, Lander A, Wahlbrink A, Kromarek N, Neil S, Couacy-Hymann E, Prescott J, Kurth A. Tolerance and Persistence of Ebola Virus in Primary Cells from Mops condylurus, a Potential Ebola Virus Reservoir. Viruses 2021; 13:v13112186. [PMID: 34834992 PMCID: PMC8622823 DOI: 10.3390/v13112186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Although there have been documented Ebola virus disease outbreaks for more than 40 years, the natural reservoir host has not been identified. Recent studies provide evidence that the Angolan free-tailed bat (Mops condylurus), an insectivorous microbat, is a possible ebolavirus reservoir. To investigate the potential role of this bat species in the ecology of ebolaviruses, replication, tolerance, and persistence of Ebola virus (EBOV) were investigated in 10 different primary bat cell isolates from M. condylurus. Varying EBOV replication kinetics corresponded to the expression levels of the integral membrane protein NPC1. All primary cells were highly tolerant to EBOV infection without cytopathic effects. The observed persistent EBOV infection for 150 days in lung primary cells, without resultant selective pressure leading to virus mutation, indicate the intrinsic ability of EBOV to persist in this bat species. These results provide further evidence for this bat species to be a likely reservoir of ebolaviruses.
Collapse
Affiliation(s)
- Marcel Bokelmann
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Uwe Vogel
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Franka Debeljak
- Department of Infectious Diseases, King’s College London, London WC2R 2LS, UK; (F.D.); (S.N.)
| | - Ariane Düx
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, 13353 Berlin, Germany;
| | - Silke Riesle-Sbarbaro
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Angelika Lander
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Annette Wahlbrink
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Nicole Kromarek
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Stuart Neil
- Department of Infectious Diseases, King’s College London, London WC2R 2LS, UK; (F.D.); (S.N.)
| | - Emmanuel Couacy-Hymann
- Laboratoire National d’Appui au Développement Agricole, Bingerville BP 206, Côte d’Ivoire;
| | - Joseph Prescott
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Andreas Kurth
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
- Correspondence:
| |
Collapse
|
24
|
Ohimain EI. Ecology of Ebolaviruses. Curr Opin Pharmacol 2021; 60:66-71. [PMID: 34358792 DOI: 10.1016/j.coph.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
Africa is becoming known for the emergence and re-emergence of Ebola virus. The virus, which was initially restricted to East and Central Africa, is now emerging in West Africa. Ecological aspects of Ebola virus diseases are poorly understood. It is suspected that the virus is circulating in the forests of Africa, mostly hosted by migratory bats, which spread the virus to other wildlife particularly great apes and duikers. Spillovers occur when humans have contacts with wildlife. Transmission of the virus within human systems occurs through contacts with body fluids of an infected person. Several factors seem to be responsible for the emergence and re-emergence of the virus in Africa including circulation of the virus in forest ecosystems, persistence of the virus in body fluids (during sickness, upon death, and in survivors), transmission through diverse routes (direct contacts, fomites, oral), presence of infected migratory bats and other wildlife species, forest encroachment, and climatic and seasonal changes. Recent studies show that fresh outbreaks can emerge not only from wildlife but also from survivors of previous outbreaks. It is therefore important to understand the ecology of the virus in order to mitigate future emergence.
Collapse
Affiliation(s)
- Elijah Ige Ohimain
- Microbiology Department, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria.
| |
Collapse
|
25
|
Common Themes in Zoonotic Spillover and Disease Emergence: Lessons Learned from Bat- and Rodent-Borne RNA Viruses. Viruses 2021; 13:v13081509. [PMID: 34452374 PMCID: PMC8402684 DOI: 10.3390/v13081509] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
Rodents (order Rodentia), followed by bats (order Chiroptera), comprise the largest percentage of living mammals on earth. Thus, it is not surprising that these two orders account for many of the reservoirs of the zoonotic RNA viruses discovered to date. The spillover of these viruses from wildlife to human do not typically result in pandemics but rather geographically confined outbreaks of human infection and disease. While limited geographically, these viruses cause thousands of cases of human disease each year. In this review, we focus on three questions regarding zoonotic viruses that originate in bats and rodents. First, what biological strategies have evolved that allow RNA viruses to reside in bats and rodents? Second, what are the environmental and ecological causes that drive viral spillover? Third, how does virus spillover occur from bats and rodents to humans?
Collapse
|
26
|
Shapiro JT, Víquez-R L, Leopardi S, Vicente-Santos A, Mendenhall IH, Frick WF, Kading RC, Medellín RA, Racey P, Kingston T. Setting the Terms for Zoonotic Diseases: Effective Communication for Research, Conservation, and Public Policy. Viruses 2021; 13:1356. [PMID: 34372562 PMCID: PMC8310020 DOI: 10.3390/v13071356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022] Open
Abstract
Many of the world's most pressing issues, such as the emergence of zoonotic diseases, can only be addressed through interdisciplinary research. However, the findings of interdisciplinary research are susceptible to miscommunication among both professional and non-professional audiences due to differences in training, language, experience, and understanding. Such miscommunication contributes to the misunderstanding of key concepts or processes and hinders the development of effective research agendas and public policy. These misunderstandings can also provoke unnecessary fear in the public and have devastating effects for wildlife conservation. For example, inaccurate communication and subsequent misunderstanding of the potential associations between certain bats and zoonoses has led to persecution of diverse bats worldwide and even government calls to cull them. Here, we identify four types of miscommunication driven by the use of terminology regarding bats and the emergence of zoonotic diseases that we have categorized based on their root causes: (1) incorrect or overly broad use of terms; (2) terms that have unstable usage within a discipline, or different usages among disciplines; (3) terms that are used correctly but spark incorrect inferences about biological processes or significance in the audience; (4) incorrect inference drawn from the evidence presented. We illustrate each type of miscommunication with commonly misused or misinterpreted terms, providing a definition, caveats and common misconceptions, and suggest alternatives as appropriate. While we focus on terms specific to bats and disease ecology, we present a more general framework for addressing miscommunication that can be applied to other topics and disciplines to facilitate more effective research, problem-solving, and public policy.
Collapse
Affiliation(s)
- Julie Teresa Shapiro
- Department of Life Sciences, Ben-Gurion University of the Negev, Be’er Sheva 8410501, Israel
| | - Luis Víquez-R
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, 89069 Ulm, Germany;
| | - Stefania Leopardi
- Laboratory of Emerging Viral Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy;
| | - Amanda Vicente-Santos
- Graduate Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, GA 30322, USA;
| | - Ian H. Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Winifred F. Frick
- Bat Conservation International, Austin, TX 78746, USA;
- Department of Ecology and Evolution, University of California, Santa Cruz, CA 95060, USA
| | - Rebekah C. Kading
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Rodrigo A. Medellín
- Institute of Ecology, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico;
| | - Paul Racey
- The Centre for Ecology and Conservation, University of Exeter, Exeter TR10 9FE, UK;
| | - Tigga Kingston
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
27
|
Gryseels S, Mbala-Kingebeni P, Akonda I, Angoyo R, Ayouba A, Baelo P, Mukadi DB, Bugentho E, Bushmaker T, Butel C, Calvignac-Spencer S, Delaporte E, De Smet B, Düx A, Edidi-Atani F, Fischer R, Kahandi C, Kapetshi J, Sumba SK, Kouadio L, Bendeke AM, Mande C, Sepolo GM, Moudindo J, Ngole EM, Musaba P, Mutombo P, Bass IN, Nebesse C, Ngoy S, Kumogo SPN, Seifert SN, Tanzito J, Akaibe D, Amundala N, Ariën KK, Gembu GC, Leendertz FH, Leirs H, Mukinzi JC, Munster V, Muyembe-Tamfum JJ, Peeters M, Verheyen E, Ahuka-Mundeke S. Role of Wildlife in Emergence of Ebola Virus in Kaigbono (Likati), Democratic Republic of the Congo, 2017. Emerg Infect Dis 2021; 26:2205-2209. [PMID: 32818404 PMCID: PMC7454093 DOI: 10.3201/eid2609.191552] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
After the 2017 Ebola virus (EBOV) outbreak in Likati, a district in northern Democratic Republic of the Congo, we sampled small mammals from the location where the primary case-patient presumably acquired the infection. None tested positive for EBOV RNA or antibodies against EBOV, highlighting the ongoing challenge in detecting animal reservoirs for EBOV.
Collapse
|
28
|
Park S. Deadly secret: situating the unknowing and knowing of the source of the Ebola epidemic in Northern Uganda. JOURNAL OF THE ROYAL ANTHROPOLOGICAL INSTITUTE 2021. [DOI: 10.1111/1467-9655.13488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sung‐Joon Park
- Department of Anthropology Martin‐Luther‐University Halle‐Wittenberg Reichardtstraße 11, 06114 Halle (Saale) Germany
| |
Collapse
|
29
|
Lacroix A, Mbala Kingebeni P, Ndimbo Kumugo SP, Lempu G, Butel C, Serrano L, Vidal N, Thaurignac G, Esteban A, Mukadi Bamuleka D, Likofata J, Delaporte E, Muyembe Tamfum JJ, Ayouba A, Peeters M, Ahuka Mundeke S. Investigating the Circulation of Ebola Viruses in Bats during the Ebola Virus Disease Outbreaks in the Equateur and North Kivu Provinces of the Democratic Republic of Congo from 2018. Pathogens 2021; 10:pathogens10050557. [PMID: 34064424 PMCID: PMC8147758 DOI: 10.3390/pathogens10050557] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
With 12 of the 31 outbreaks, the Democratic Republic of Congo (DRC) is highly affected by Ebolavirus disease (EVD). To better understand the role of bats in the ecology of Ebola viruses, we conducted surveys in bats during two recent EVD outbreaks and in two areas with previous outbreaks. Dried blood spots were tested for antibodies to ebolaviruses and oral and rectal swabs were screened for the presence of filovirus using a broadly reactive semi-nested RT-PCR. Between 2018 and 2020, 892 (88.6%) frugivorous and 115 (11.4%) insectivorous bats were collected. Overall, 11/925 (1.2%) to 100/925 (10.8%) bats showed antibodies to at least one Ebolavirus antigen depending on the positivity criteria. Antibodies were detected in fruit bats from the four sites and from species previously documented to harbor Ebola antibodies or RNA. We tested for the first time a large number of bats during ongoing EVD outbreaks in DRC, but no viral RNA was detected in the 676 sampled bats. Our study illustrates the difficulty to document the role of bats as a source of Ebolaviruses as they might clear quickly the virus. Given the increasing frequency of EVD outbreaks, more studies on the animal reservoir are urgently needed.
Collapse
Affiliation(s)
- Audrey Lacroix
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Placide Mbala Kingebeni
- Institut National de Recherche Biomédicale (INRB), 1197 Kinshasa, Democratic Republic of the Congo; (P.M.K.); (S.P.N.K.); (G.L.); (J.-J.M.T.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, 1197 Kinshasa, Democratic Republic of the Congo;
| | - Simon Pierre Ndimbo Kumugo
- Institut National de Recherche Biomédicale (INRB), 1197 Kinshasa, Democratic Republic of the Congo; (P.M.K.); (S.P.N.K.); (G.L.); (J.-J.M.T.)
| | - Guy Lempu
- Institut National de Recherche Biomédicale (INRB), 1197 Kinshasa, Democratic Republic of the Congo; (P.M.K.); (S.P.N.K.); (G.L.); (J.-J.M.T.)
| | - Christelle Butel
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Laetitia Serrano
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Nicole Vidal
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Guillaume Thaurignac
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Amandine Esteban
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Daniel Mukadi Bamuleka
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, 1197 Kinshasa, Democratic Republic of the Congo;
- Institut National de Recherche Biomédicale (INRB), Goma, Democratic Republic of the Congo
| | - Jacques Likofata
- Laboratoire Provincial de Mbandaka, Equateur, Democratic Republic of the Congo;
| | - Eric Delaporte
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Jean-Jacques Muyembe Tamfum
- Institut National de Recherche Biomédicale (INRB), 1197 Kinshasa, Democratic Republic of the Congo; (P.M.K.); (S.P.N.K.); (G.L.); (J.-J.M.T.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, 1197 Kinshasa, Democratic Republic of the Congo;
| | - Ahidjo Ayouba
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
| | - Martine Peeters
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, 34394 Montpellier, France; (A.L.); (C.B.); (L.S.); (N.V.); (G.T.); (A.E.); (E.D.); (A.A.)
- Correspondence: (M.P.); (S.A.M.)
| | - Steve Ahuka Mundeke
- Institut National de Recherche Biomédicale (INRB), 1197 Kinshasa, Democratic Republic of the Congo; (P.M.K.); (S.P.N.K.); (G.L.); (J.-J.M.T.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, 1197 Kinshasa, Democratic Republic of the Congo;
- Correspondence: (M.P.); (S.A.M.)
| |
Collapse
|
30
|
Bartoszewicz JM, Seidel A, Renard BY. Interpretable detection of novel human viruses from genome sequencing data. NAR Genom Bioinform 2021; 3:lqab004. [PMID: 33554119 PMCID: PMC7849996 DOI: 10.1093/nargab/lqab004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 01/21/2023] Open
Abstract
Viruses evolve extremely quickly, so reliable methods for viral host prediction are necessary to safeguard biosecurity and biosafety alike. Novel human-infecting viruses are difficult to detect with standard bioinformatics workflows. Here, we predict whether a virus can infect humans directly from next-generation sequencing reads. We show that deep neural architectures significantly outperform both shallow machine learning and standard, homology-based algorithms, cutting the error rates in half and generalizing to taxonomic units distant from those presented during training. Further, we develop a suite of interpretability tools and show that it can be applied also to other models beyond the host prediction task. We propose a new approach for convolutional filter visualization to disentangle the information content of each nucleotide from its contribution to the final classification decision. Nucleotide-resolution maps of the learned associations between pathogen genomes and the infectious phenotype can be used to detect regions of interest in novel agents, for example, the SARS-CoV-2 coronavirus, unknown before it caused a COVID-19 pandemic in 2020. All methods presented here are implemented as easy-to-install packages not only enabling analysis of NGS datasets without requiring any deep learning skills, but also allowing advanced users to easily train and explain new models for genomics.
Collapse
Affiliation(s)
- Jakub M Bartoszewicz
- Bioinformatics (MF1), Department of Methodology and Research Infrastructure, Robert Koch Institute, 13353 Berlin, Germany
- Department of Mathematics and Computer Science, Free University of Berlin, 14195 Berlin, Germany
- Data Analytics and Computational Statistics, Hasso Plattner Institute for Digital Engineering, 14482 Potsdam, Brandenburg, Germany
- Digital Engineering Faculty, University of Postdam, 14482 Potsdam, Brandenburg, Germany
| | - Anja Seidel
- Bioinformatics (MF1), Department of Methodology and Research Infrastructure, Robert Koch Institute, 13353 Berlin, Germany
- Department of Mathematics and Computer Science, Free University of Berlin, 14195 Berlin, Germany
| | - Bernhard Y Renard
- Bioinformatics (MF1), Department of Methodology and Research Infrastructure, Robert Koch Institute, 13353 Berlin, Germany
- Data Analytics and Computational Statistics, Hasso Plattner Institute for Digital Engineering, 14482 Potsdam, Brandenburg, Germany
- Digital Engineering Faculty, University of Postdam, 14482 Potsdam, Brandenburg, Germany
| |
Collapse
|
31
|
Schulz JE, Seifert SN, Thompson JT, Avanzato V, Sterling SL, Yan L, Letko MC, Matson MJ, Fischer RJ, Tremeau-Bravard A, Seetahal JFR, Ramkissoon V, Foster J, Goldstein T, Anthony SJ, Epstein JH, Laing ED, Broder CC, Carrington CVF, Schountz T, Munster VJ. Serological Evidence for Henipa-like and Filo-like Viruses in Trinidad Bats. J Infect Dis 2021; 221:S375-S382. [PMID: 32034942 DOI: 10.1093/infdis/jiz648] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bat-borne zoonotic pathogens belonging to the family Paramxyoviridae, including Nipah and Hendra viruses, and the family Filoviridae, including Ebola and Marburg viruses, can cause severe disease and high mortality rates on spillover into human populations. Surveillance efforts for henipaviruses and filoviruses have been largely restricted to the Old World; however, recent studies suggest a potentially broader distribution for henipaviruses and filoviruses than previously recognized. In the current study, we screened for henipaviruses and filoviruses in New World bats collected across 4 locations in Trinidad near the coast of Venezuela. Bat tissue samples were screened using previously established reverse-transcription polymerase chain reaction assays. Serum were screened using a multiplex immunoassay to detect antibodies reactive with the envelope glycoprotein of viruses in the genus Henipavirus and the family Filoviridae. Serum samples were also screened by means of enzyme-linked immunosorbent assay for antibodies reactive with Nipah G and F glycoproteins. Of 84 serum samples, 28 were reactive with ≥1 henipavirus glycoprotein by ≥1 serological method, and 6 serum samples were reactive against ≥1 filovirus glycoproteins. These data provide evidence of potential circulation of viruses related to the henipaviruses and filoviruses in New World bats.
Collapse
Affiliation(s)
- Jonathan E Schulz
- Virus Ecology Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Stephanie N Seifert
- Virus Ecology Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - John T Thompson
- Virus Ecology Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Victoria Avanzato
- Virus Ecology Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | | | - Lianying Yan
- Uniformed Services University, Bethesda, Maryland, USA
| | - Michael C Letko
- Virus Ecology Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - M Jeremiah Matson
- Virus Ecology Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.,Marshall University Joan C Edwards School of Medicine, Huntington West Virginia, USA
| | - Robert J Fischer
- Virus Ecology Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Alexandre Tremeau-Bravard
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Janine F R Seetahal
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St Augustine, Trinidad and Tobago
| | - Vernie Ramkissoon
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St Augustine, Trinidad and Tobago
| | - Jerome Foster
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St Augustine, Trinidad and Tobago
| | - Tracey Goldstein
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Simon J Anthony
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | - Eric D Laing
- Uniformed Services University, Bethesda, Maryland, USA
| | | | - Christine V F Carrington
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St Augustine, Trinidad and Tobago
| | - Tony Schountz
- Arthropod-borne and Infectious Disease Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Vincent J Munster
- Virus Ecology Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
32
|
Dutheil F, Clinchamps M, Bouillon-Minois JB. Bats, Pathogens, and Species Richness. Pathogens 2021; 10:pathogens10020098. [PMID: 33494226 PMCID: PMC7909788 DOI: 10.3390/pathogens10020098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 11/25/2022] Open
Abstract
Bats carry many viruses, but this is not sufficient to threaten humans. Viruses must mutate to generate the ability to transfer to humans. A key factor is the diversity of species. With 1400 species of bats (20% of all species of mammals), the diversity of bats species is highly favorable to the emergence of new viruses. Moreover, several species of bats live within the same location, and share advanced social behavior, favoring the transmission of viruses. Because they fly, bats are also hosts for a wide range of viruses from many environments. They also eat everything (including what humans eat), they share humans’ environment and become closer to domestic species, which can serve as relays between bats and humans. Bats also have a long-life expectancy (up to 40 years for some bats), which is particularly effective for transmission to humans. However, a recent publication came out challenging what we think about bats. Proportionally, bats may not carry a higher number of zoonotic pathogens, normalized by species richness, compared to other mammalian and avian species. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts, without evidence that bats carry more viruses that infect humans.
Collapse
Affiliation(s)
- Frédéric Dutheil
- CNRS, LaPSCo, Physiological and Psychosocial Stress, Université Clermont Auvergne, 63000 Clermont-Ferrand, France;
- Preventive and Occupational Medicine, University Hospital of Clermont-Ferrand, 63000 Clermont-Ferrand, France;
- CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Maëlys Clinchamps
- Preventive and Occupational Medicine, University Hospital of Clermont-Ferrand, 63000 Clermont-Ferrand, France;
| | - Jean-Baptiste Bouillon-Minois
- CNRS, LaPSCo, Physiological and Psychosocial Stress, Emergency Medicine, University Hospital of Clermont-Ferrand, 63000 Clermont-Ferrand, France
- Correspondence:
| |
Collapse
|
33
|
Thompson CW, Phelps KL, Allard MW, Cook JA, Dunnum JL, Ferguson AW, Gelang M, Khan FAA, Paul DL, Reeder DM, Simmons NB, Vanhove MPM, Webala PW, Weksler M, Kilpatrick CW. Preserve a Voucher Specimen! The Critical Need for Integrating Natural History Collections in Infectious Disease Studies. mBio 2021; 12:e02698-20. [PMID: 33436435 PMCID: PMC7844540 DOI: 10.1128/mbio.02698-20] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite being nearly 10 months into the COVID-19 (coronavirus disease 2019) pandemic, the definitive animal host for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the causal agent of COVID-19, remains unknown. Unfortunately, similar problems exist for other betacoronaviruses, and no vouchered specimens exist to corroborate host species identification for most of these pathogens. This most basic information is critical to the full understanding and mitigation of emerging zoonotic diseases. To overcome this hurdle, we recommend that host-pathogen researchers adopt vouchering practices and collaborate with natural history collections to permanently archive microbiological samples and host specimens. Vouchered specimens and associated samples provide both repeatability and extension to host-pathogen studies, and using them mobilizes a large workforce (i.e., biodiversity scientists) to assist in pandemic preparedness. We review several well-known examples that successfully integrate host-pathogen research with natural history collections (e.g., yellow fever, hantaviruses, helminths). However, vouchering remains an underutilized practice in such studies. Using an online survey, we assessed vouchering practices used by microbiologists (e.g., bacteriologists, parasitologists, virologists) in host-pathogen research. A much greater number of respondents permanently archive microbiological samples than archive host specimens, and less than half of respondents voucher host specimens from which microbiological samples were lethally collected. To foster collaborations between microbiologists and natural history collections, we provide recommendations for integrating vouchering techniques and archiving of microbiological samples into host-pathogen studies. This integrative approach exemplifies the premise underlying One Health initiatives, providing critical infrastructure for addressing related issues ranging from public health to global climate change and the biodiversity crisis.
Collapse
Affiliation(s)
- Cody W Thompson
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Marc W Allard
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, College Park, Maryland, USA
| | - Joseph A Cook
- Museum of Southwestern Biology, Biology Department, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jonathan L Dunnum
- Museum of Southwestern Biology, Biology Department, University of New Mexico, Albuquerque, New Mexico, USA
| | - Adam W Ferguson
- Gantz Family Collections Center, Field Museum of Natural History, Chicago, Illinois, USA
| | - Magnus Gelang
- Gothenburg Natural History Museum, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | | | - Deborah L Paul
- Florida State University, Tallahassee, Florida, USA
- Species File Group, University of Illinois, Urbana-Champaign, Illinois, USA
| | | | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, USA
| | - Maarten P M Vanhove
- Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium
| | - Paul W Webala
- Department of Forestry and Wildlife Management, Maasai Mara University, Narok, Kenya
| | - Marcelo Weksler
- Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
34
|
Adekanmbi O, Ilesanmi O, Lakoh S. Ebola: A review and focus on neurologic manifestations. J Neurol Sci 2021; 421:117311. [PMID: 33493959 DOI: 10.1016/j.jns.2021.117311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 11/15/2022]
Abstract
Ebolavirus disease (EVD) is a severe, highly contagious, and often fatal systemic disease in human and non-human primates. Zoonotic and human-to-human transmission have been well documented. Ebolaviruses are endemic to Equatorial and West Africa and there have been over 20 outbreaks in sub-Saharan Africa since 1976. The largest known outbreak of EVD occurred between 2013 and 2016 across several West African countries. It resulted in 28,646 suspected and confirmed cases and 11,323 deaths. There are 5 species within the genus Ebolavirus with 4 of them being clinically significant. In patients with EVD, neurologic manifestations range from mild symptoms such as confusion to severe neurologic diseases such as meningitis and encephalitis. Altered mental status, from mild confusion to delirium with hallucinations, may also occur. Rare neuropsychiatric manifestations of EVD include psychological or cognitive symptoms, including short-term memory loss, insomnia, and depression or anxiety. Although Ebolavirus RNA has been detected in cerebrospinal fluid, the body of knowledge around the pathogenic mechanisms of neurological disease is not yet fully understood. Studies are needed to understand the acute and chronic neuronal pathologic as well as biochemical cerebrospinal fluid changes in Ebolavirus infection.
Collapse
Affiliation(s)
- Olukemi Adekanmbi
- Department of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Medicine, University College Hospital, Ibadan, Nigeria
| | - Olayinka Ilesanmi
- Department of Community Medicine, University of Ibadan, Ibadan, Nigeria; Department of Community Medicine, University College Hospital, Ibadan, Nigeria.
| | - Sulaiman Lakoh
- Department of Medicine, College of Medicine and Allied Health Sciences, University of Sierra Leone, Sierra Leone; Department of Medicine, University of Sierra Leone Teaching Hospitals Complex, Sierra Leone
| |
Collapse
|
35
|
Colella JP, Agwanda BR, Anwarali Khan FA, Bates J, Carrión Bonilla CA, de la Sancha NU, Dunnum JL, Ferguson AW, Greiman SE, Kiswele PK, Lessa EP, Soltis P, Thompson CW, Vanhove MPM, Webala PW, Weksler M, Cook JA. Build international biorepository capacity. Science 2020; 370:773-774. [PMID: 33184198 DOI: 10.1126/science.abe4813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Jocelyn P Colella
- Biodiversity Institute, University of Kansas, Lawrence, KS 66045 USA
| | | | | | - John Bates
- Field Museum, Chicago, IL 60605, USA.,Natural Science Collections Alliance, Washington, DC 20005, USA
| | - Carlos A Carrión Bonilla
- Museo de Zoologiá, Escuela de Biología, Pontificia Universidad Catolica del Ecuador, Quito, Ecuador.,Museum of Southwestern Biology and Biology Department, University of New Mexico, Albuquerque, NM 87131, USA
| | - Noé U de la Sancha
- Field Museum, Chicago, IL 60605, USA.,Department of Biological Sciences, Chicago State University, Chicago, IL 60628, USA
| | - Jonathan L Dunnum
- Museum of Southwestern Biology and Biology Department, University of New Mexico, Albuquerque, NM 87131, USA
| | | | - Stephen E Greiman
- Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA
| | | | - Enrique P Lessa
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Pamela Soltis
- Florida Museum of Natural History and the University of Florida Biodiversity Institute, University of Florida, Gainesville, FL 32611, USA
| | - Cody W Thompson
- Department of Ecology and Evolutionary Biology and the Museum of Zoology, University of Michigan, Ann Arbor, MI 48108, USA
| | - Maarten P M Vanhove
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Leuven, Belgium
| | - Paul W Webala
- Department of Forestry and Wildlife Management, Maasai Mara University, Narok, Kenya
| | - Marcelo Weksler
- Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joseph A Cook
- Museum of Southwestern Biology and Biology Department, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
36
|
Magouras I, Brookes VJ, Jori F, Martin A, Pfeiffer DU, Dürr S. Emerging Zoonotic Diseases: Should We Rethink the Animal-Human Interface? Front Vet Sci 2020; 7:582743. [PMID: 33195602 PMCID: PMC7642492 DOI: 10.3389/fvets.2020.582743] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Ioannis Magouras
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong
| | - Victoria J. Brookes
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia
- Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, NSW, Australia
| | - Ferran Jori
- UMR ASTRE (Animal, Santé, Territoires, Risques et Ecosystémes), CIRAD-INRAE, Université de Montpellier, Montpellier, France
| | - Angela Martin
- Department of Philosophy, University of Basel, Basel, Switzerland
| | - Dirk Udo Pfeiffer
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong
| | - Salome Dürr
- Vetsuisse Faculty, Veterinary Public Health Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
37
|
Atherstone C, Diederich S, Pickering B, Smith G, Casey G, Fischer K, Ward MP, Ndoboli D, Weingartl H, Alonso S, Dhand N, Roesel K, Grace D, Mor SM. Investigation of Ebolavirus exposure in pigs presented for slaughter in Uganda. Transbound Emerg Dis 2020; 68:1521-1530. [PMID: 32915496 PMCID: PMC8247040 DOI: 10.1111/tbed.13822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
In 2008, an outbreak of Reston ebolavirus (RESTV) in pigs in the Philippines expanded our understanding of the host range of ebolaviruses. Subsequent experimental infections with the human‐pathogenic species Zaire ebolavirus (EBOV) confirmed that pigs are susceptible to African species of ebolaviruses. Pig keeping has become an increasingly important livelihood strategy throughout parts of sub‐Saharan Africa, driven by increasing demand for pork. The growth in pig keeping is particularly rapid in Uganda, which has the highest per capita pork consumption in East Africa and a history of sporadic human outbreaks of Ebola virus disease (EVD). Using a systematic sampling protocol, we collected sera from 658 pigs presented for slaughter in Uganda between December 2015 and October 2016. Forty‐six pigs (7%) were seropositive based on ELISA tests at two different institutions. Seropositive pigs had antibodies that bound to Sudan NP (n = 27), Zaire NP (Kikwit; n = 8) or both NPs (n = 11). Sera from 4 of the ELISA‐positive pigs reacted in Western blot (EBOV NP = 1; RESTV NP = 2; both NPs = 2), and one sample had full neutralizing antibody against Sudan ebolavirus (SUDV) in virus neutralization tests. Pigs sampled in June 2016 were significantly more likely to be seropositive than pigs sampled in October 2016 (p = .03). Seropositive pigs were sourced from all regions except Western region. These observed temporal and spatial variations are suggestive of multiple introductions of ebolaviruses into the pig population in Uganda. This is the first report of exposure of pigs in Uganda to ebolaviruses and the first to employ systematic abattoir sampling for ebolavirus surveillance during a non‐outbreak period. Future studies will be necessary to further define the role pigs play (if any) in ebolavirus maintenance and transmission so that potential risks can be mitigated.
Collapse
Affiliation(s)
- Christine Atherstone
- Sydney School of Veterinary Science, University of Sydney, Sydney, NSW, Australia.,International Livestock Research Institute, Kampala, Uganda
| | - Sandra Diederich
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald -Insel Riems, Germany
| | - Bradley Pickering
- National Center for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Greg Smith
- National Center for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Graham Casey
- National Center for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Kerstin Fischer
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald -Insel Riems, Germany
| | - Michael P Ward
- Sydney School of Veterinary Science, University of Sydney, Sydney, NSW, Australia
| | - Dickson Ndoboli
- Central Diagnostic Laboratory, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Hana Weingartl
- National Center for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Silvia Alonso
- International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Navneet Dhand
- Sydney School of Veterinary Science, University of Sydney, Sydney, NSW, Australia
| | - Kristina Roesel
- International Livestock Research Institute, Kampala, Uganda.,Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Delia Grace
- International Livestock Research Institute, Nairobi, Kenya
| | - Siobhan M Mor
- Sydney School of Veterinary Science, University of Sydney, Sydney, NSW, Australia.,International Livestock Research Institute, Addis Ababa, Ethiopia.,Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
38
|
Koch LK, Cunze S, Kochmann J, Klimpel S. Bats as putative Zaire ebolavirus reservoir hosts and their habitat suitability in Africa. Sci Rep 2020; 10:14268. [PMID: 32868789 PMCID: PMC7459104 DOI: 10.1038/s41598-020-71226-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 08/05/2020] [Indexed: 12/23/2022] Open
Abstract
The genus Ebolavirus comprises some of the deadliest viruses for primates and humans and associated disease outbreaks are increasing in Africa. Different evidence suggests that bats are putative reservoir hosts and play a major role in the transmission cycle of these filoviruses. Thus, detailed knowledge about their distribution might improve risk estimations of where future disease outbreaks might occur. A MaxEnt niche modelling approach based on climatic variables and land cover was used to investigate the potential distribution of 9 bat species associated to the Zaire ebolavirus. This viral species has led to major Ebola outbreaks in Africa and is known for causing high mortalities. Modelling results suggest suitable areas mainly in the areas near the coasts of West Africa with extensions into Central Africa, where almost all of the 9 species studied find suitable habitat conditions. Previous spillover events and outbreak sites of the virus are covered by the modelled distribution of 3 bat species that have been tested positive for the virus not only using serology tests but also PCR methods. Modelling the habitat suitability of the bats is an important step that can benefit public information campaigns and may ultimately help control future outbreaks of the disease.
Collapse
Affiliation(s)
- Lisa K Koch
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany.
| | - Sarah Cunze
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany
| | - Judith Kochmann
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, 60438, Frankfurt/Main, Germany
| | - Sven Klimpel
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, 60438, Frankfurt/Main, Germany
| |
Collapse
|
39
|
Identifying Suspect Bat Reservoirs of Emerging Infections. Vaccines (Basel) 2020; 8:vaccines8020228. [PMID: 32429501 PMCID: PMC7349958 DOI: 10.3390/vaccines8020228] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 11/30/2022] Open
Abstract
Bats host a number of pathogens that cause severe disease and onward transmission in humans and domestic animals. Some of these pathogens, including henipaviruses and filoviruses, are considered a concern for future pandemics. There has been substantial effort to identify these viruses in bats. However, the reservoir hosts for Ebola virus are still unknown and henipaviruses are largely uncharacterized across their distribution. Identifying reservoir species is critical in understanding the viral ecology within these hosts and the conditions that lead to spillover. We collated surveillance data to identify taxonomic patterns in prevalence and seroprevalence and to assess sampling efforts across species. We systematically collected data on filovirus and henipavirus detections and used a machine-learning algorithm, phylofactorization, in order to search the bat phylogeny for cladistic patterns in filovirus and henipavirus infection, accounting for sampling efforts. Across sampled bat species, evidence for filovirus infection was widely dispersed across the sampled phylogeny. We found major gaps in filovirus sampling in bats, especially in Western Hemisphere species. Evidence for henipavirus infection was clustered within the Pteropodidae; however, no other clades have been as intensely sampled. The major predictor of filovirus and henipavirus exposure or infection was sampling effort. Based on these results, we recommend expanding surveillance for these pathogens across the bat phylogenetic tree.
Collapse
|
40
|
Volpato G, Fontefrancesco MF, Gruppuso P, Zocchi DM, Pieroni A. Baby pangolins on my plate: possible lessons to learn from the COVID-19 pandemic. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2020; 16:19. [PMID: 32316979 PMCID: PMC7171915 DOI: 10.1186/s13002-020-00366-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The Journal of Ethnobiology and Ethnomedicine (JEET), throughout its 15 years of existence, has tried to provide a respected outlet for scientific knowledge concerning the inextricable links between human societies and nature, food, and health. Ethnobiology and ethnomedicine-centred research has moved at the (partially artificial and fictitious) interface between nature and culture and has investigated human consumption of wild foods and wild animals, as well as the use of wild animals or their parts for medicinal and other purposes, along with the associated knowledge, skills, practices, and beliefs. Little attention has been paid, however, to the complex interplay of social and cultural reasons behind the increasing pressure on wildlife. The available literature suggest that there are two main drivers that enhance the necessary conditions for infectious diseases to cross the species barrier from wild animals to humans: (1) the encroachment of human activities (e.g., logging, mining, agricultural expansion) into wild areas and forests and consequent ecological disruptions; and, connected to the former, (2) the commodification of wild animals (and natural resources in general) and an expanding demand and market for wild meat and live wild animals, particularly in tropical and sub-tropical areas. In particular, a crucial role may have been played by the bushmeat-euphoria and attached elitist gastronomies and conspicuous consumption phenomena. The COVID-19 pandemic will likely require ethnobiologists to reschedule research agendas and to envision new epistemological trajectories aimed at more effectively mitigating the mismanagement of natural resources that ultimately threats our and other beings' existence.
Collapse
Affiliation(s)
- Gabriele Volpato
- University of Gastronomic Sciences of Pollenzo, Piazza V. Emanuele II, I-12042, Bra/Pollenzo, Italy
| | - Michele F Fontefrancesco
- University of Gastronomic Sciences of Pollenzo, Piazza V. Emanuele II, I-12042, Bra/Pollenzo, Italy
| | - Paolo Gruppuso
- University of Gastronomic Sciences of Pollenzo, Piazza V. Emanuele II, I-12042, Bra/Pollenzo, Italy
| | - Dauro M Zocchi
- University of Gastronomic Sciences of Pollenzo, Piazza V. Emanuele II, I-12042, Bra/Pollenzo, Italy
| | - Andrea Pieroni
- University of Gastronomic Sciences of Pollenzo, Piazza V. Emanuele II, I-12042, Bra/Pollenzo, Italy.
| |
Collapse
|
41
|
Ebola Virus Produces Discrete Small Noncoding RNAs Independently of the Host MicroRNA Pathway Which Lack RNA Interference Activity in Bat and Human Cells. J Virol 2020; 94:JVI.01441-19. [PMID: 31852785 DOI: 10.1128/jvi.01441-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
The question as to whether RNA viruses produce bona fide microRNAs (miRNAs) during infection has been the focus of intense research and debate. Recently, several groups using computational prediction methods have independently reported possible miRNA candidates produced by Ebola virus (EBOV). Additionally, efforts to detect these predicted RNA products in samples from infected animals and humans have produced positive results. However, these studies and their conclusions are predicated on the assumption that these RNA products are actually processed through, and function within, the miRNA pathway. In the present study, we performed the first rigorous assessment of the ability of filoviruses to produce miRNA products during infection of both human and bat cells. Using next-generation sequencing, we detected several candidate miRNAs from both EBOV and the closely related Marburg virus (MARV). Focusing our validation efforts on EBOV, we found evidence contrary to the idea that these small RNA products function as miRNAs. The results of our study are important because they highlight the potential pitfalls of relying on computational methods alone for virus miRNA discovery.IMPORTANCE Here, we report the discovery, via deep sequencing, of numerous noncoding RNAs (ncRNAs) derived from both EBOV and MARV during infection of both bat and human cell lines. In addition to identifying several novel ncRNAs from both viruses, we identified two EBOV ncRNAs in our sequencing data that were near-matches to computationally predicted viral miRNAs reported in the literature. Using molecular and immunological techniques, we assessed the potential of EBOV ncRNAs to function as viral miRNAs. Importantly, we found little evidence supporting this hypothesis. Our work is significant because it represents the first rigorous assessment of the potential for EBOV to encode viral miRNAs and provides evidence contrary to the existing paradigm regarding the biological role of computationally predicted EBOV ncRNAs. Moreover, our work highlights further avenues of research regarding the nature and function of EBOV ncRNAs.
Collapse
|
42
|
Bokelmann M, Edenborough K, Hetzelt N, Kreher P, Lander A, Nitsche A, Vogel U, Feldmann H, Couacy-Hymann E, Kurth A. Utility of primary cells to examine NPC1 receptor expression in Mops condylurus, a potential Ebola virus reservoir. PLoS Negl Trop Dis 2020; 14:e0007952. [PMID: 31961874 PMCID: PMC6994141 DOI: 10.1371/journal.pntd.0007952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 01/31/2020] [Accepted: 11/20/2019] [Indexed: 12/17/2022] Open
Abstract
The significance of the integral membrane protein Niemann-Pick C1 (NPC1) in the ebolavirus entry process has been determined using various cell lines derived from humans, non-human primates and fruit bats. Fruit bats have long been purported as the potential reservoir host for ebolaviruses, however several studies provide evidence that Mops condylurus, an insectivorous microbat, is also an ebolavirus reservoir. NPC1 receptor expression in the context of ebolavirus replication in microbat cells remains unstudied. In order to study Ebola virus (EBOV) cellular entry and replication in M. condylurus, we derived primary and immortalized cell cultures from 12 different organs. The NPC1 receptor expression was characterized by confocal microscopy and flow cytometry comparing the expression levels of M. condylurus primary and immortalized cells, HeLa cells, human embryonic kidney cells and cells from a European microbat species. EBOV replication kinetics was studied for four representative cell cultures using qRT-PCR. The aim was to elucidate the suitability of primary and immortalized cells from different tissues for studying NPC1 receptor expression levels and their potential influence on EBOV replication. The NPC1 receptor expression level in M. condylurus primary cells differed depending on the organ they were derived from and was for most cell types significantly lower than in human cell lines. Immortalized cells showed for most cell types higher expression levels than their corresponding primary cells. Concluding from our infection experiments with EBOV we suggest a potential correlation between NPC1 receptor expression level and virus replication rate in vitro. Although there have been Ebola virus (EBOV) outbreaks for more than 40 years, the animal natural reservoir that maintains this virus in nature has not been identified. Viruses and their respective reservoirs coevolve over millions of years, often without causing diseases in the reservoir itself. Upon entering a new host, infection can have devastating consequences, as in the case of EBOV. To gain entry into cells prior to replication, all ebolaviruses utilize the cellular receptor Niemann-Pick C1 (NPC1). In this study the authors focus their work on the Angolan free-tailed bat (Mops condylurus) as a potential reservoir for EBOV. Cells from various organs of this bat were isolated in culture and tested for the presence of NPC1. Most bat cell types had a lower amount of NPC1 compared to the tested human cells. These bat cells were also less efficiently infected by EBOV, indicating adaptation to EBOV. These results suggest low levels of virus replication in the respective tissues of M. condylurus and might be indicative of a virus-natural reservoir relationship.
Collapse
Affiliation(s)
- Marcel Bokelmann
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Kathryn Edenborough
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Nicole Hetzelt
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Petra Kreher
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Angelika Lander
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Uwe Vogel
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Heinz Feldmann
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | | | - Andreas Kurth
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
- * E-mail:
| |
Collapse
|
43
|
Shapiro JT, Sovie AR, Faller CR, Monadjem A, Fletcher RJ, McCleery RA. Ebola spillover correlates with bat diversity. EUR J WILDLIFE RES 2020. [DOI: 10.1007/s10344-019-1346-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Predicting Ebola virus disease risk and the role of African bat birthing. Epidemics 2019; 29:100366. [PMID: 31744768 DOI: 10.1016/j.epidem.2019.100366] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 02/03/2023] Open
Abstract
Ebola virus disease (EVD) presents a threat to public health throughout equatorial Africa. Despite numerous 'spillover' events into humans and apes, the maintenance reservoirs and mechanism of spillover are poorly understood. Evidence suggests fruit bats play a role in both instances, yet data remain sparse and bats exhibit a wide range of life history traits. Here we pool sparse data and use a mechanistic approach to examine how birthing cycles of African fruit bats, molossid bats, and non-molossid microbats inform the spatio-temporal occurrence of EVD spillover. We create ensemble niche models to predict spatio-temporally varying bat birthing and model outbreaks as spatio-temporal Poisson point processes. We predict three distinct annual birthing patterns among African bats along a latitudinal gradient. Of the EVD spillover models tested, the best by quasi-Akaike information criterion (qAIC) and by out of sample prediction included significant African bat birth-related terms. Temporal bat birthing terms fit in the best models for both human and animal outbreaks were consistent with hypothesized viral dynamics in bat populations, but purely spatial models also performed well. Our best model predicted risk of EVD spillover at locations of the two 2018 EVD outbreaks in the Democratic Republic of the Congo was within the top 12-35% and 0.1% of all 25 × 25 km spatial cells analyzed in sub-Saharan Africa. Results suggest that sparse data can be leveraged to help understand complex systems.
Collapse
|
45
|
Olivero J, Fa JE, Farfán MÁ, Márquez AL, Real R, Juste FJ, Leendertz SA, Nasi R. Human activities link fruit bat presence to Ebola virus disease outbreaks. Mamm Rev 2019. [DOI: 10.1111/mam.12173] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jesús Olivero
- Grupo de Biogeografía Diversidad y Conservación Departamento de Biología Animal, Facultad de Ciencias Universidad de Málaga Campus de Teatinos s/n29071Málaga Spain
| | - Julia E. Fa
- Division of Biology and Conservation Ecology Manchester Metropolitan University Manchester M1 6BHUK
- Center for International Forestry Research (CIFOR) Jalan Cifor Rawajaha, Situ Gede, Bogor Barat Kota Bogor Jawa Barat 16115Indonesia
| | - Miguel Á. Farfán
- Grupo de Biogeografía Diversidad y Conservación Departamento de Biología Animal, Facultad de Ciencias Universidad de Málaga Campus de Teatinos s/n29071Málaga Spain
| | - Ana L. Márquez
- Grupo de Biogeografía Diversidad y Conservación Departamento de Biología Animal, Facultad de Ciencias Universidad de Málaga Campus de Teatinos s/n29071Málaga Spain
| | - Raimundo Real
- Grupo de Biogeografía Diversidad y Conservación Departamento de Biología Animal, Facultad de Ciencias Universidad de Málaga Campus de Teatinos s/n29071Málaga Spain
| | - F. Javier Juste
- Estación Biológica de Doñana CSIC C/ Américo Vespucio, 26, Isla de la Cartuja41092Sevilla Spain
- CIBER de Epidemiología y Salud Pública CIBERESP Spain
| | - Siv A. Leendertz
- Epidemiology of Highly Infectious Microorganisms Robert Koch Institute Seestrasse 1013353Berlin Germany
- Department of Infectious Disease Epidemiology Robert Koch Institute Seestrasse 1013353Berlin Germany
| | - Robert Nasi
- Center for International Forestry Research (CIFOR) Jalan Cifor Rawajaha, Situ Gede, Bogor Barat Kota Bogor Jawa Barat 16115Indonesia
| |
Collapse
|
46
|
Redding DW, Atkinson PM, Cunningham AA, Lo Iacono G, Moses LM, Wood JLN, Jones KE. Impacts of environmental and socio-economic factors on emergence and epidemic potential of Ebola in Africa. Nat Commun 2019; 10:4531. [PMID: 31615986 PMCID: PMC6794280 DOI: 10.1038/s41467-019-12499-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/13/2019] [Indexed: 12/15/2022] Open
Abstract
Recent outbreaks of animal-borne emerging infectious diseases have likely been precipitated by a complex interplay of changing ecological, epidemiological and socio-economic factors. Here, we develop modelling methods that capture elements of each of these factors, to predict the risk of Ebola virus disease (EVD) across time and space. Our modelling results match previously-observed outbreak patterns with high accuracy, and suggest further outbreaks could occur across most of West and Central Africa. Trends in the underlying drivers of EVD risk suggest a 1.75 to 3.2-fold increase in the endemic rate of animal-human viral spill-overs in Africa by 2070, given current modes of healthcare intervention. Future global change scenarios with higher human population growth and lower rates of socio-economic development yield a fourfold higher likelihood of epidemics occurring as a result of spill-over events. Our modelling framework can be used to target interventions designed to reduce epidemic risk for many zoonotic diseases.
Collapse
Affiliation(s)
- David W Redding
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Peter M Atkinson
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA4 1YW, UK
| | - Andrew A Cunningham
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Gianni Lo Iacono
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Lina M Moses
- Department of Global Community Health and Behavioral Sciences, Tulane University, New Orleans, LA, USA
| | - James L N Wood
- Department of Veterinary Medicine, Disease Dynamics Unit, University of Cambridge, Cambridge, UK
| | - Kate E Jones
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK.
| |
Collapse
|
47
|
Edenborough KM, Bokelmann M, Lander A, Couacy-Hymann E, Lechner J, Drechsel O, Renard BY, Radonić A, Feldmann H, Kurth A, Prescott J. Dendritic Cells Generated From Mops condylurus, a Likely Filovirus Reservoir Host, Are Susceptible to and Activated by Zaire Ebolavirus Infection. Front Immunol 2019; 10:2414. [PMID: 31681302 PMCID: PMC6797855 DOI: 10.3389/fimmu.2019.02414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022] Open
Abstract
Ebola virus infection of human dendritic cells (DCs) induces atypical adaptive immune responses and thereby exacerbates Ebola virus disease (EVD). Human DCs, infected with Ebola virus aberrantly express low levels of the DC activation markers CD80, CD86, and MHC class II. The T cell responses ensuing are commonly anergic rather than protective against EVD. We hypothesize that DCs derived from potential reservoir hosts such as bats, which do not develop disease signs in response to Ebola virus infection, would exhibit features associated with activation. In this study, we have examined Zaire ebolavirus (EBOV) infection of DCs derived from the Angolan free-tailed bat species, Mops condylurus. This species was previously identified as permissive to EBOV infection in vivo, in the absence of disease signs. M. condylurus has also been recently implicated as the reservoir host for Bombali ebolavirus, a virus species that is closely related to EBOV. Due to the absence of pre-existing M. condylurus species-specific reagents, we characterized its de novo assembled transcriptome and defined its phylogenetic similarity to other mammals, which enabled the identification of cross-reactive reagents for M. condylurus bone marrow-derived DC (bat-BMDC) differentiation and immune cell phenotyping. Our results reveal that bat-BMDCs are susceptible to EBOV infection as determined by detection of EBOV specific viral RNA (vRNA). vRNA increased significantly 72 h after EBOV-infection and was detected in both cells and in culture supernatants. Bat-BMDC infection was further confirmed by the observation of GFP expression in DC cultures infected with a recombinant GFP-EBOV. Bat-BMDCs upregulated CD80 and chemokine ligand 3 (CCL3) transcripts in response to EBOV infection, which positively correlated with the expression levels of EBOV vRNA. In contrast to the aberrant responses to EBOV infection that are typical for human-DC, our findings from bat-BMDCs provide evidence for an immunological basis of asymptomatic EBOV infection outcomes.
Collapse
Affiliation(s)
- Kathryn M. Edenborough
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Marcel Bokelmann
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Angelika Lander
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Emmanuel Couacy-Hymann
- LANADA, Laboratoire National d'Appui au Développement Agricole, Bingerville, Côte d'Ivoire
| | - Johanna Lechner
- Methodology and Research Infrastructure, Robert Koch Institute, Berlin, Germany
| | - Oliver Drechsel
- Methodology and Research Infrastructure, Robert Koch Institute, Berlin, Germany
| | - Bernhard Y. Renard
- Methodology and Research Infrastructure, Robert Koch Institute, Berlin, Germany
| | - Aleksandar Radonić
- Methodology and Research Infrastructure, Robert Koch Institute, Berlin, Germany
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, ON, United States
| | - Andreas Kurth
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Joseph Prescott
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
48
|
Schmidt JP, Maher S, Drake JM, Huang T, Farrell MJ, Han BA. Ecological indicators of mammal exposure to Ebolavirus. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180337. [PMID: 31401967 PMCID: PMC6711296 DOI: 10.1098/rstb.2018.0337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Much of the basic ecology of Ebolavirus remains unresolved despite accumulating disease outbreaks, viral strains and evidence of animal hosts. Because human Ebolavirus epidemics have been linked to contact with wild mammals other than bats, traits shared by species that have been infected by Ebolavirus and their phylogenetic distribution could suggest ecological mechanisms contributing to human Ebolavirus spillovers. We compiled data on Ebolavirus exposure in mammals and corresponding data on life-history traits, movement, and diet, and used boosted regression trees (BRT) to identify predictors of exposure and infection for 119 species (hereafter hosts). Mapping the phylogenetic distribution of presumptive Ebolavirus hosts reveals that they are scattered across several distinct mammal clades, but concentrated among Old World fruit bats, primates and artiodactyls. While sampling effort was the most important predictor, explaining nearly as much of the variation among hosts as traits, BRT models distinguished hosts from all other species with greater than 97% accuracy, and revealed probable Ebolavirus hosts as large-bodied, frugivorous, and with slow life histories. Provisionally, results suggest that some insectivorous bat genera, Old World monkeys and forest antelopes should receive priority in Ebolavirus survey efforts. This article is part of the theme issue ‘Dynamic and integrative approaches to understanding pathogen spillover’.
Collapse
Affiliation(s)
- John Paul Schmidt
- Odum School of Ecology and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Sean Maher
- Department of Biology, Missouri State University, 901 S. National Ave, Springfield, MO 65897, USA
| | - John M Drake
- Odum School of Ecology and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Tao Huang
- Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY 12545, USA
| | - Maxwell J Farrell
- Odum School of Ecology and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Barbara A Han
- Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY 12545, USA
| |
Collapse
|
49
|
Fa JE, Nasi R, van Vliet N. [Bushmeat, human impacts and human health in tropical rainforests: The Ebola virus case]. SANTE PUBLIQUE (VANDOEUVRE-LES-NANCY, FRANCE) 2019; S1:107-114. [PMID: 31210471 DOI: 10.3917/spub.190.0107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
At a time when more than 5 million tonnes of bushmeat are harvested annually from tropical forests, and which account for a significant, but unrecorded, share of the gross domestic product of many forest countries, decision makers are encouraged, within conservation and food security policies, to understand the role that wildlife can play in the conservation of ecosystem services. In this article, we present an analysis of the problem, describing the role played by bushmeat in human diets, and the health risks linked to the consumption of bushmeat, in particular with regard to Ebola disease, to provide insights on the direction of possible strategies to manage the use of wildlife for meeting the needs of local populations and reducing risks to human health.
Collapse
|
50
|
Baudel H, De Nys H, Mpoudi Ngole E, Peeters M, Desclaux A. Understanding Ebola virus and other zoonotic transmission risks through human-bat contacts: Exploratory study on knowledge, attitudes and practices in Southern Cameroon. Zoonoses Public Health 2019; 66:288-295. [PMID: 30677236 PMCID: PMC7165775 DOI: 10.1111/zph.12563] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022]
Abstract
The ecology of Ebola virus (EBV) remains largely unknown, but the previous detection of viral RNA and anti-EBV antibodies in African bats suggests that they might play a role in the EBV reservoir. Moreover, African bats also carry other potentially zoonotic agents such as Henipah-like viruses, coronaviruses and lyssaviruses. Today only little information is available on interactions between humans and bats. The objective of our exploratory study was to describe the extent and modes of contacts between humans and bats in southern Cameroon, considered as an area at risk for future EBV outbreaks. The survey was conducted in 11 villages of four distinct rural areas in southern Cameroon. A total of 135 respondents were interviewed using semi-structured questionnaires, between February and May 2017. The study showed that direct contacts between bats and humans are relatively common. Bat bushmeat appeared to be an occasional meat resource; 40% of respondents consume bats with a median annual consumption of three, and 28% of respondents hunt them. About 22% of the respondents reported children catching bats. Indirect contact also appeared to be common; 55% of hunters use caves as shelters and 67% of interviewees eat fruits previously chewed by bats. Bat consumption varied significantly between regions (from 0% to 87%) and between pygmies and bantus in the extreme south-east of Cameroon. The study revealed considerable diversity in practices among interviewees, most of them being subsistence cultivators and relying on self-hunted bushmeat. Geographical diversity of contacts and perceptions regarding bats in Cameroon emphasizes the need to adjust zoonotic pathogen surveillance and education campaigns to the specificities of the communities and their context of interaction with wildlife.
Collapse
Affiliation(s)
- Helene Baudel
- TransVIHMI, Institut de Recherche pour le Développement (IRD), University of Montpellier, INSERM, Montpellier, France
| | - Helene De Nys
- TransVIHMI, Institut de Recherche pour le Développement (IRD), University of Montpellier, INSERM, Montpellier, France
| | - Eitel Mpoudi Ngole
- Laboratoire de Virologie, CREMER, Institut de Recherches Médicales et d'Etudes des Plantes Médicinales (IMPM), Yaoundé, Cameroon
| | - Martine Peeters
- TransVIHMI, Institut de Recherche pour le Développement (IRD), University of Montpellier, INSERM, Montpellier, France
| | - Alice Desclaux
- TransVIHMI, Institut de Recherche pour le Développement (IRD), University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|