1
|
Li X, Zhu D, Zhao B, Li Q, Jin P. Alternative splicing: Therapeutic target for vasculopathy in diabetic complications. Life Sci 2025; 362:123331. [PMID: 39734014 DOI: 10.1016/j.lfs.2024.123331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024]
Abstract
It is becoming increasingly evident that diabetic vascular complications seriously threaten human health. The most prevalent microvascular complications include kidney disease, retinal disease, cardiovascular diseases and amputation. Conventional treatments can only relieve the progression of the diseases, and is no longer appropriate for the long-term management of diabetic patients. Exploring a novel therapeutic regimens and improvements in management of Diabetic Complications is required. Alternative splicing has been found to play a crucial role in the occurrence and treatment of diseases, including the destruction and generation of blood vessels in diabetes. Alternative splicing is an important factor in the high complexity of multicellular eukaryotic transcriptome, and angiogenesis, which is an important process controlled by alternative splicing mechanism. This review mainly introduces the current understanding of alternative splicing and the role that alternative splicing plays in the diabetic complications, with a special focus on vascular system. In this study, we summarized alternative splicing in relation to diabetes complications and the pathogenesis of diabetic vasculopathy. It discussed potential treatment strategies for correcting aberrant splicing and suggested novel approaches for addressing diabetes complications.
Collapse
Affiliation(s)
- Xiaoyue Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Xuzhou Medical University, Xuzhou, China
| | - Dong Zhu
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Xuzhou Medical University, Xuzhou, China
| | - Bingkun Zhao
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Qiang Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Peisheng Jin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
2
|
Patel S, Yang E, Milne TJ, Hussaini H, Cooper PR, Friedlander LT. Angiogenic effects of Type 2 diabetes on the dental pulp. Int Endod J 2024. [DOI: 10.1111/iej.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/24/2024] [Indexed: 01/03/2025]
Abstract
AbstractAimTo investigate the influence of type 2 diabetes (T2D) and hyperglycaemia on blood vessels and angiogenic markers in the dental pulp.MethodologyExtracted non‐carious permanent molar teeth were collected from patients with well‐controlled T2D (n = 10) and non‐T2D (controls) (n = 10). The pulp was examined qualitatively using haematoxylin and eosin and Van Gieson stains. Immunohistochemistry (IHC) identified the primary receptor for VEGF, VEGFR2, and the endothelial cell marker CD34. Primary human dental pulp cell (hDPC) lines (n = 3) were established from tissue explants and cells were grown in media containing 5.5 mM D‐glucose (control), 12.5 mM (prediabetes) and 25 mM (T2D) D‐glucose under normoxic conditions for 24, 48 and 72 h. Assays for metabolic activity (PrestoBlue) and cell viability (Crystal Violet staining) assessed the hDPC response to hyperglycaemia. The expression of angiogenic genes VEGFA, KDR, FLT‐1, ANGPT1, ANGPT2, TIE1 and TEK were analysed using quantitative real‐time polymerase chain reaction. ELISAs were used to quantify the level of expressed protein for VEGFA, ANG1, ANG2, TIE1, and TIE2 in the media. Data analyses were performed using GraphPad Prism and anova tests at p < .05.ResultsBlood vessels in T2D samples had thicker walls and stained strongly for elastin and collagen compared with non‐T2D samples. VEGFR2 protein was not seen in any T2D samples but consistently detected in healthy specimens. Culturing healthy cells in high glucose (25 mM) significantly reduced cell viability at 24 h compared to the control (p = .005) and 12.5 mM glucose (p = .001) but the metabolic activity was not greatly affected by glucose and time. VEGFA mRNA and VEGFA protein expression were detected in the hDPCs in the presence of hyperglycaemia over time; however, the primary receptor, VEGFR2/KDR, was not detected. Genes for the ANG1 and ANG2 and their receptors were expressed at all glucose concentrations but hyperglycaemia upregulated ANG2 mRNA. Proteins for all growth factors were detected in the media however proteins for TIE1 and TIE2 receptors were not.ConclusionT2D and hyperglycaemia may impair the angiogenic response in the pulp similar to other body site. The scarcity of VEGFR2 and increased expression of ANG2 in response to hyperglycaemia suggests that VEGF and ANG‐Tie1/Tie2 signalling may be compromised.
Collapse
Affiliation(s)
- S. Patel
- Sir John Walsh Research Institute, Faculty of Dentistry University of Otago Dunedin New Zealand
| | - E. Yang
- Sir John Walsh Research Institute, Faculty of Dentistry University of Otago Dunedin New Zealand
| | - T. J. Milne
- Sir John Walsh Research Institute, Faculty of Dentistry University of Otago Dunedin New Zealand
| | - H. Hussaini
- Sir John Walsh Research Institute, Faculty of Dentistry University of Otago Dunedin New Zealand
| | - P. R. Cooper
- Sir John Walsh Research Institute, Faculty of Dentistry University of Otago Dunedin New Zealand
| | - L. T. Friedlander
- Sir John Walsh Research Institute, Faculty of Dentistry University of Otago Dunedin New Zealand
| |
Collapse
|
3
|
Harris HJ, Łaniewski P, Cui H, Roe DJ, Chase DM, Herbst-Kralovetz MM. Cervicovaginal lavages uncover growth factors as key biomarkers for early diagnosis and prognosis of endometrial cancer. MOLECULAR BIOMEDICINE 2024; 5:55. [PMID: 39511039 PMCID: PMC11543965 DOI: 10.1186/s43556-024-00219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Endometrial cancer (EC) rates are continuing to rise and it remains the most common gynecologic cancer in the US. Existing diagnostic methods are invasive and can cause pain and anxiety. Hence, there is a need for less invasive diagnostics for early EC detection. The study objective was to evaluate the utility of growth factors collected through minimally invasive cervicovaginal lavage (CVL) sampling as diagnostic and prognostic biomarkers for EC. CVL samples from 192 individuals undergoing hysterectomy for benign or malignant conditions were collected and used to quantify the concentrations of 19 growth and angiogenic factors using multiplex immunoassays. Patients were categorized based on disease groups: benign conditions (n = 108), endometrial hyperplasia (n = 18), and EC (n = 66). EC group was stratified into grade 1/2 endometrial endometrioid cancer (n = 53) and other EC subtypes (n = 13). Statistical associations were assessed using receiver operating characteristics, Spearman correlations and hierarchical clustering. Growth and angiogenic factors: angiopoietin-2, endoglin, fibroblast activation protein (FAP), melanoma inhibitory activity, and vascular endothelial growth factor-A (VEGF-A) were significantly (p < 0.0001) elevated in EC patients. A multivariate model combining 11 proteins with patient age and body mass index exhibited excellent discriminatory potential (area under curve = 0.918) for EC, with a specificity of 90.7% and a sensitivity of 87.8%. Moreover, angiopoietin-2, FAP and VEGF-A significantly (p < 0.05-0.001) associated with tumor grade, size, myometrial invasion, and mismatch repair status. Our results highlight the innovative use of growth and angiogenic factors collected through CVL sampling for the detecting endometrial cancer, showcasing not only their diagnostic potential but also their prognostic value.
Collapse
Affiliation(s)
- Hannah J Harris
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
- Department of Life Sciences, University of Bath, Bath, UK
| | - Paweł Łaniewski
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Haiyan Cui
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Denise J Roe
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Dana M Chase
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Melissa M Herbst-Kralovetz
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA.
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA.
- University of Arizona Cancer Center, Tucson, AZ, USA.
| |
Collapse
|
4
|
Rey-Keim S, Schito L. Origins and molecular effects of hypoxia in cancer. Semin Cancer Biol 2024; 106-107:166-178. [PMID: 39427969 DOI: 10.1016/j.semcancer.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Hypoxia (insufficient O2) is a pivotal factor in cancer progression, triggering genetic, transcriptional, translational and epigenetic adaptations associated to therapy resistance, metastasis and patient mortality. In this review, we outline the microenvironmental origins and molecular mechanisms responsible for hypoxic cancer cell adaptations in situ and in vitro, whilst outlining current approaches to stratify, quantify and therapeutically target hypoxia in the context of precision oncology.
Collapse
Affiliation(s)
- Sergio Rey-Keim
- UCD School of Medicine, University College Dublin, Belfield, Dublin D04 C7X2, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 C7X2, Ireland.
| | - Luana Schito
- UCD School of Medicine, University College Dublin, Belfield, Dublin D04 C7X2, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 C7X2, Ireland.
| |
Collapse
|
5
|
Lorenc P, Sikorska A, Molenda S, Guzniczak N, Dams-Kozlowska H, Florczak A. Physiological and tumor-associated angiogenesis: Key factors and therapy targeting VEGF/VEGFR pathway. Biomed Pharmacother 2024; 180:117585. [PMID: 39442237 DOI: 10.1016/j.biopha.2024.117585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Cancer remains one of the leading causes of death worldwide and poses a significant challenge to effective treatment due to its complexity. Angiogenesis, the formation of new blood vessels, is one of the cancer hallmarks and is a critical process in tumor growth and metastasis. The pivotal role of angiogenesis in cancer development has made antiangiogenic treatment a promising strategy for cancer therapy. To develop an effective therapy, it is essential to understand the basics of the physiological and tumor angiogenesis process. This review presents the primary factors related to physiological and tumor angiogenesis and the mechanisms of angiogenesis in tumors. We summarize potential molecular targets for cancer treatment by focusing on the vasculature, with the VEGF/VEGFR pathway being one of the most important and well-studied. Additionally, we present the advantages and limitations of currently used clinical protocols for cancer treatment targeting the VEGF/VEGFR pathway.
Collapse
Affiliation(s)
- Patryk Lorenc
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland; Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St, Poznan 60-812, Poland
| | - Agata Sikorska
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland
| | - Sara Molenda
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland; Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St, Poznan 60-812, Poland
| | - Natalia Guzniczak
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland
| | - Hanna Dams-Kozlowska
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland
| | - Anna Florczak
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland.
| |
Collapse
|
6
|
Zhou W, Zhang Q, Chen J, Gan J, Li Y, Zou J. Angiopoietin-4 expression and potential mechanisms in carcinogenesis: Current achievements and perspectives. Clin Exp Med 2024; 24:224. [PMID: 39294405 PMCID: PMC11410924 DOI: 10.1007/s10238-024-01449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/23/2024] [Indexed: 09/20/2024]
Abstract
As one of the factors regulating tumour angiogenesis, angiopoietin-4 (ANGPT4), which plays an important role in promoting tumour proliferation, survival, expansion and angiogenesis, is highly expressed in some tumours, such as lung adenocarcinoma, glioblastoma and ovarian cancer. This may be related to the fact that ANGPT4 affects the blood vessels and lymphatic system of the tumour. Specifically, ANGPT4 could play an effective role in promoting cancer by affecting the tyrosine kinase receptor TIE2, ERK1/2 and PI3K/AKT signalling pathways. Therefore, ANGPT4 may be an important biomarker for the occurrence and development of cancer and poor prognosis. In addition, the inhibition of ANGPT4 may be a useful cancer treatment. This paper reviews the latest preclinical research on ANGPT4, emphasizes its role in tumourigenesis and broadens our understanding of the carcinogenic function of ANGPT4 and the development of ANGPT4 inhibitors. This is the latest version of the revised version of the previous article.
Collapse
Affiliation(s)
- Wenchao Zhou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qunfeng Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Junling Chen
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinpeng Gan
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Juan Zou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
7
|
Yang F, Lee G, Fan Y. Navigating tumor angiogenesis: therapeutic perspectives and myeloid cell regulation mechanism. Angiogenesis 2024; 27:333-349. [PMID: 38580870 PMCID: PMC11303583 DOI: 10.1007/s10456-024-09913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Sustained angiogenesis stands as a hallmark of cancer. The intricate vascular tumor microenvironment fuels cancer progression and metastasis, fosters therapy resistance, and facilitates immune evasion. Therapeutic strategies targeting tumor vasculature have emerged as transformative for cancer treatment, encompassing anti-angiogenesis, vessel normalization, and endothelial reprogramming. Growing evidence suggests the dynamic regulation of tumor angiogenesis by infiltrating myeloid cells, such as macrophages, myeloid-derived suppressor cells (MDSCs), and neutrophils. Understanding these regulatory mechanisms is pivotal in paving the way for successful vasculature-targeted cancer treatments. Therapeutic interventions aimed to disrupt myeloid cell-mediated tumor angiogenesis may reshape tumor microenvironment and overcome tumor resistance to radio/chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Gloria Lee
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
8
|
Rademakers T, Manca M, Jin H, Orban T, Perisic LM, Frissen HJM, Rühle F, Hautvast P, van Rijssel J, van Kuijk K, Mees BME, Peutz-Kootstra CJ, Heeneman S, Daemen MJAP, Pasterkamp G, Stoll M, van Zandvoort MAMJ, Hedin U, Dequiedt F, van Buul JD, Sluimer JC, Biessen EAL. Human atherosclerotic plaque transcriptomics reveals endothelial beta-2 spectrin as a potential regulator a leaky plaque microvasculature phenotype. Angiogenesis 2024; 27:461-474. [PMID: 38780883 PMCID: PMC11303431 DOI: 10.1007/s10456-024-09921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
The presence of atherosclerotic plaque vessels is a critical factor in plaque destabilization. This may be attributable to the leaky phenotype of these microvessels, although direct proof for this notion is lacking. In this study, we investigated molecular and cellular patterns of stable and hemorrhaged human plaque to identify novel drivers of intraplaque vessel dysfunction. From transcriptome data of a human atherosclerotic lesion cohort, we reconstructed a co-expression network, identifying a gene module strongly and selectively correlated with both plaque microvascular density and inflammation. Spectrin Beta Non-Erythrocytic 1 (sptbn1) was identified as one of the central hubs of this module (along with zeb1 and dock1) and was selected for further study based on its predominant endothelial expression. Silencing of sptbn1 enhanced leukocyte transmigration and vascular permeability in vitro, characterized by an increased number of focal adhesions and reduced junctional VE-cadherin. In vivo, sptbn1 knockdown in zebrafish impaired the development of the caudal vein plexus. Mechanistically, increased substrate stiffness was associated with sptbn1 downregulation in endothelial cells in vitro and in human vessels. Plaque SPTBN1 mRNA and protein expression were found to correlate with an enhanced presence of intraplaque hemorrhage and future cardiovascular disease (CVD) events during follow-up. In conclusion, we identify SPTBN1 as a central hub gene in a gene program correlating with plaque vascularisation. SPTBN1 was regulated by substrate stiffness in vitro while silencing blocked vascular development in vivo, and compromised barrier function in vitro. Together, SPTBN1 is identified as a new potential regulator of the leaky phenotype of atherosclerotic plaque microvessels.
Collapse
Affiliation(s)
- Timo Rademakers
- Department of Pathology, Experimental Vascular Pathology Group, Maastricht University, PO box 5800, 6202 AZ, Maastricht, The Netherlands
- Department of Plasma Proteins, Laboratory for Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Marco Manca
- Department of Pathology, Experimental Vascular Pathology Group, Maastricht University, PO box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Han Jin
- Department of Pathology, Experimental Vascular Pathology Group, Maastricht University, PO box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Tanguy Orban
- Laboratory of Protein Signaling and Interactions, GIGA, Liège Université, Liège, Belgium
| | - Ljubica Matic Perisic
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska Hospital, Stockholm, Sweden
| | - Hubertus J M Frissen
- Department of Pathology, Experimental Vascular Pathology Group, Maastricht University, PO box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Frank Rühle
- Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Petra Hautvast
- Department of Pathology, Experimental Vascular Pathology Group, Maastricht University, PO box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Jos van Rijssel
- Department of Plasma Proteins, Laboratory for Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Kim van Kuijk
- Department of Pathology, Experimental Vascular Pathology Group, Maastricht University, PO box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Barend M E Mees
- Department of Vascular Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Carine J Peutz-Kootstra
- Department of Pathology, Experimental Vascular Pathology Group, Maastricht University, PO box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Sylvia Heeneman
- Department of Pathology, Experimental Vascular Pathology Group, Maastricht University, PO box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Mat J A P Daemen
- Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Gerard Pasterkamp
- Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Monika Stoll
- Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
- Maastricht Center for Systems Biology (MaCSBio, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Marc A M J van Zandvoort
- Department of Molecular Cell Biology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Ulf Hedin
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska Hospital, Stockholm, Sweden
| | - Franck Dequiedt
- Laboratory of Protein Signaling and Interactions, GIGA, Liège Université, Liège, Belgium
| | - Jaap D van Buul
- Department of Plasma Proteins, Laboratory for Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Judith C Sluimer
- Department of Pathology, Experimental Vascular Pathology Group, Maastricht University, PO box 5800, 6202 AZ, Maastricht, The Netherlands
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Department for Renal and Hypertensive, Rheumatological and Immunological Diseases (Medical Clinic II), RWTH Aachen, Aachen, Germany
| | - Erik A L Biessen
- Department of Pathology, Experimental Vascular Pathology Group, Maastricht University, PO box 5800, 6202 AZ, Maastricht, The Netherlands.
- Institute for Molecular Cardiovascular Research, RWTH Aachen, Aachen, Germany.
| |
Collapse
|
9
|
Pan Y, Yang X, Chen M, Shi K, Lyu Y, Meeson AP, Lash GE. Role of Cancer Side Population Stem Cells in Ovarian Cancer Angiogenesis. Med Princ Pract 2024; 33:403-413. [PMID: 39068919 PMCID: PMC11460956 DOI: 10.1159/000539642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024] Open
Abstract
Ovarian cancer is one of the most common gynecologic malignancies. Recurrence and metastasis often occur after treatment, and it has the highest mortality rate of all gynecological tumors. Cancer stem cells (CSCs) are a small population of cells with the ability of self-renewal, multidirectional differentiation, and infinite proliferation. They have been shown to play an important role in tumor growth, metastasis, drug resistance, and angiogenesis. Ovarian cancer side population (SP) cells, a type of CSC, have been shown to play roles in tumor formation, colony formation, xenograft tumor formation, ascites formation, and tumor metastasis. The rapid progression of tumor angiogenesis is necessary for tumor growth; however, many of the mechanisms driving this process are unclear as is the contribution of CSCs. The aim of this review was to document the current state of knowledge of the molecular mechanism of ovarian cancer stem cells (OCSCs) in regulating tumor angiogenesis.
Collapse
Affiliation(s)
- Yue Pan
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - XueFen Yang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Miaojuan Chen
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kun Shi
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yuan Lyu
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | | | - Gendie E. Lash
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Third Affiliate Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Jiang J, Wu H, Ji Y, Han K, Tang JM, Hu S, Lei W. Development and disease-specific regulation of RNA splicing in cardiovascular system. Front Cell Dev Biol 2024; 12:1423553. [PMID: 39045460 PMCID: PMC11263117 DOI: 10.3389/fcell.2024.1423553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Alternative splicing is a complex gene regulatory process that distinguishes itself from canonical splicing by rearranging the introns and exons of an immature pre-mRNA transcript. This process plays a vital role in enhancing transcriptomic and proteomic diversity from the genome. Alternative splicing has emerged as a pivotal mechanism governing complex biological processes during both heart development and the development of cardiovascular diseases. Multiple alternative splicing factors are involved in a synergistic or antagonistic manner in the regulation of important genes in relevant physiological processes. Notably, circular RNAs have only recently garnered attention for their tissue-specific expression patterns and regulatory functions. This resurgence of interest has prompted a reevaluation of the topic. Here, we provide an overview of our current understanding of alternative splicing mechanisms and the regulatory roles of alternative splicing factors in cardiovascular development and pathological process of different cardiovascular diseases, including cardiomyopathy, myocardial infarction, heart failure and atherosclerosis.
Collapse
Affiliation(s)
- Jinxiu Jiang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Hongchun Wu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yabo Ji
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Kunjun Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
11
|
Kaur G, Roy B. Decoding Tumor Angiogenesis for Therapeutic Advancements: Mechanistic Insights. Biomedicines 2024; 12:827. [PMID: 38672182 PMCID: PMC11048662 DOI: 10.3390/biomedicines12040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Tumor angiogenesis, the formation of new blood vessels within the tumor microenvironment, is considered a hallmark of cancer progression and represents a crucial target for therapeutic intervention. The tumor microenvironment is characterized by a complex interplay between proangiogenic and antiangiogenic factors, regulating the vascularization necessary for tumor growth and metastasis. The study of angiogenesis involves a spectrum of techniques, spanning from biomarker assessment to advanced imaging modalities. This comprehensive review aims to provide insights into the molecular intricacies, regulatory dynamics, and clinical implications of tumor angiogenesis. By delving into these aspects, we gain a deeper understanding of the processes driving vascularization in tumors, paving the way for the development of novel and effective antiangiogenic therapies in the fight against cancer.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA;
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Bipradas Roy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
12
|
Mohebi R, Liu Y, Hansen MK, Yavin Y, Sattar N, Pollock CA, Butler J, Jardine M, Masson S, Heerspink HJ, Januzzi JL. Associations of Angiopoietin 2 and Vascular Endothelial Growth Factor-A Concentrations with Clinical End Points. Clin J Am Soc Nephrol 2024; 19:429-437. [PMID: 38099944 PMCID: PMC11020427 DOI: 10.2215/cjn.0000000000000389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Angiopoietin 2 regulates endothelial function partially mediated by vascular endothelial growth factor-A (VEGF-A) and may play a role in diabetic kidney disease (DKD). We assessed the association of angiopoietin 2 and VEGF-A with cardiorenal outcomes and investigated the effect of canagliflozin on angiopoietin 2 and VEGF-A concentrations. METHODS Two thousand five hundred sixty-five study participants with DKD and available plasma samples treated with canagliflozin or placebo in the Canagliflozin and Kidney Events in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) trial were included. Angiopoietin 2 and VEGF-A concentrations were measured at baseline, year 1, and year 3. The primary composite end point of the trial was a composite of kidney failure, doubling of the serum creatinine level, and kidney or cardiovascular death. RESULTS Patients with the highest baseline quartile of angiopoietin 2, but not VEGF-A, concentration had the highest risk clinical profile. Treatment with canagliflozin significantly lowered concentrations of angiopoietin 2 (adjusted geometric mean ratio: 0.94; 95% confidence interval, 0.92 to 0.95; P < 0.001), but not VEGF-A. In multivariable-adjusted modeling, each 50% increment in log baseline angiopoietin 2 concentrations was associated with a higher risk of primary composite outcome (hazard ratio, 1.27; 95% confidence interval, 1.13 to 1.43). Angiopoietin 2 change at year 1 compared with baseline explained 10% of the effect of canagliflozin on the primary composite outcome. VEGF-A concentrations were not associated with outcomes, alone or in combination with angiopoietin 2. CONCLUSIONS Higher angiopoietin 2 levels were associated with cardiorenal risk among individuals with DKD independent of VEGF-A. Canagliflozin lowered angiopoietin 2 concentrations. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER Evaluation of the Effects of Canagliflozin on Renal and Cardiovascular Outcomes in Participants With Diabetic Nephropathy, NCT02065791 .
Collapse
Affiliation(s)
- Reza Mohebi
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yuxi Liu
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Yshai Yavin
- Janssen Research & Development, LLC, Spring House, Pennsylvania
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Carol A. Pollock
- Kolling Institute, Royal North Shore Hospital University of Sydney, Sydney, New South Wales, Australia
| | - Javed Butler
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
- Baylor Scott & White Institute, Dallas, Texas
| | - Meg Jardine
- The George Institute for Global Health, UNSW Sydney, Sydney, New South Wales, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
- Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Serge Masson
- Roche Diagnostics International, Rotkreuz, Switzerland
| | - Hiddo J.L. Heerspink
- Department Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, The Netherlands
| | - James L. Januzzi
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Heart Failure and Biomarker Trials, Baim Institute for Clinical Research, Boston, Massachusetts
| |
Collapse
|
13
|
Zhang R, Yao Y, Gao H, Hu X. Mechanisms of angiogenesis in tumour. Front Oncol 2024; 14:1359069. [PMID: 38590656 PMCID: PMC10999665 DOI: 10.3389/fonc.2024.1359069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Angiogenesis is essential for tumour growth and metastasis. Antiangiogenic factor-targeting drugs have been approved as first line agents in a variety of oncology treatments. Clinical drugs frequently target the VEGF signalling pathway during sprouting angiogenesis. Accumulating evidence suggests that tumours can evade antiangiogenic therapy through other angiogenesis mechanisms in addition to the vascular sprouting mechanism involving endothelial cells. These mechanisms include (1) sprouting angiogenesis, (2) vasculogenic mimicry, (3) vessel intussusception, (4) vascular co-option, (5) cancer stem cell-derived angiogenesis, and (6) bone marrow-derived angiogenesis. Other non-sprouting angiogenic mechanisms are not entirely dependent on the VEGF signalling pathway. In clinical practice, the conversion of vascular mechanisms is closely related to the enhancement of tumour drug resistance, which often leads to clinical treatment failure. This article summarizes recent studies on six processes of tumour angiogenesis and provides suggestions for developing more effective techniques to improve the efficacy of antiangiogenic treatment.
Collapse
Affiliation(s)
| | | | | | - Xin Hu
- China–Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
14
|
Jiang L, Hu X, Feng Y, Wang Z, Tang H, Lin Q, Shen Y, Zhu Y, Xu Q, Li X. Reduction of renal interstitial fibrosis by targeting Tie2 in vascular endothelial cells. Pediatr Res 2024; 95:959-965. [PMID: 38012310 PMCID: PMC10920200 DOI: 10.1038/s41390-023-02893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/08/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Tie2, a functional angiopoietin receptor, is expressed in vascular endothelial cells and plays an important role in angiogenesis and vascular stability. This study aimed to evaluate the effects of an agonistic Tie2 signal on renal interstitial fibrosis (RIF) and elucidate the underlying mechanisms. METHODS We established an in vivo mouse model of folic acid-induced nephropathy (FAN) and an in vitro model of lipopolysaccharide-stimulated endothelial cell injury, then an agonistic Tie2 monoclonal antibody (Tie2 mAb) was used to intervent these processes. The degree of tubulointerstitial lesions and related molecular mechanisms were determined by histological assessment, immunohistochemistry, western blotting, and qPCR. RESULTS Tie2 mAb attenuated RIF and reduced the level of fibroblast-specific protein 1 (FSP1). Further, it suppressed vascular cell adhesion molecule-1 (VCAM-1) and increased CD31 density in FAN. In the in vitro model, Tie2 mAb was found to decrease the expression of VCAM-1, Bax, and α-smooth muscle actin (α-SMA). CONCLUSIONS The present findings indicate that the agonistic Tie2 mAb exerted vascular protective effects and ameliorated RIF via inhibition of vascular inflammation, apoptosis, and fibrosis. Therefore, Tie2 may be a potential target for the treatment of this disease. IMPACT This is the first report to confirm that an agonistic Tie2 monoclonal antibody can reduce renal interstitial fibrosis in folic acid-induced nephropathy in mice. This mechanism possibly involves vascular protective effects brought about by inhibition of vascular inflammation, apoptosis and fibrosis. Our data show that Tie2 signal may be a novel, endothelium-specific target for the treatment of tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Xiaohan Hu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yajun Feng
- Department of Pediatrics, Jiangyin People's Hospital, Jiangyin, 214400, China
| | - Zhen Wang
- Department of Pediatrics, Zibo Maternal and Child Health Care Hospital, Zibo, 255000, China
| | - Hanyun Tang
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Qiang Lin
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yunyan Shen
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yun Zhu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Qinying Xu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Xiaozhong Li
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China.
| |
Collapse
|
15
|
Yang S, Xu J, Dai Y, Jin S, Sun Y, Li J, Liu C, Ma X, Chen Z, Chen L, Hou J, Mi JQ, Chen SJ. Neutrophil activation and clonal CAR-T re-expansion underpinning cytokine release syndrome during ciltacabtagene autoleucel therapy in multiple myeloma. Nat Commun 2024; 15:360. [PMID: 38191582 PMCID: PMC10774397 DOI: 10.1038/s41467-023-44648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
Cytokine release syndrome (CRS) is the most common complication of chimeric antigen receptor redirected T cells (CAR-T) therapy. CAR-T toxicity management has been greatly improved, but CRS remains a prime safety concern. Here we follow serum cytokine levels and circulating immune cell transcriptomes longitudinally in 26 relapsed/refractory multiple myeloma patients receiving the CAR-T product, ciltacabtagene autoleucel, to understand the immunological kinetics of CRS. We find that although T lymphocytes and monocytes/macrophages are the major overall cytokine source in manifest CRS, neutrophil activation peaks earlier, before the onset of severe symptoms. Intracellularly, signaling activation dominated by JAK/STAT pathway occurred prior to cytokine cascade and displayed regular kinetic changes. CRS severity is accurately described and potentially predicted by temporal cytokine secretion signatures. Notably, CAR-T re-expansion is found in three patients, including a fatal case characterized by somatic TET2-mutation, clonal expanded cytotoxic CAR-T, broadened cytokine profiles and irreversible hepatic toxicity. Together, our findings show that a latent phase with distinct immunological changes precedes manifest CRS, providing an optimal window and potential targets for CRS therapeutic intervention and that CAR-T re-expansion warrants close clinical attention and laboratory investigation to mitigate the lethal risk.
Collapse
Affiliation(s)
- Shuangshuang Yang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shiwei Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianfeng Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chenglin Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaolin Ma
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lijuan Chen
- Department of Hematology, First affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Jian Hou
- Department of Hematology, Ren Ji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jian-Qing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
16
|
Zhang Y, Lin S, Liu J, Chen Q, Kang J, Zhong J, Hu M, Basabrain MS, Liang Y, Yuan C, Zhang C. Ang1/Tie2/VE-Cadherin Signaling Regulates DPSCs in Vascular Maturation. J Dent Res 2024; 103:101-110. [PMID: 38058134 DOI: 10.1177/00220345231210227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Adding dental pulp stem cells (DPSCs) to vascular endothelial cell-formed vessel-like structures can increase the longevity of these vessel networks. DPSCs display pericyte-like cell functions and closely assemble endothelial cells (ECs). However, the mechanisms of DPSC-derived pericyte-like cells in stabilizing the vessel networks are not fully understood. In this study, we investigated the functions of E-DPSCs, which were DPSCs isolated from the direct coculture of human umbilical vein endothelial cells (HUVECs) and DPSCs, and T-DPSCs, which were DPSCs treated by transforming growth factor beta 1 (TGF-β1), in stabilizing blood vessels in vitro and in vivo. A 3-dimensional coculture spheroid sprouting assay was conducted to compare the functions of E-DPSCs and T-DPSCs in vitro. Dental pulp angiogenesis in the severe combined immunodeficiency (SCID) mouse model was used to explore the roles of E-DPSCs and T-DPSCs in vascularization in vivo. The results demonstrated that both E-DPSCs and T-DPSCs possess smooth muscle cell-like cell properties, exhibiting higher expression of the mural cell-specific markers and the suppression of HUVEC sprouting. E-DPSCs and T-DPSCs inhibited HUVEC sprouting by activating TEK tyrosine kinase (Tie2) signaling, upregulating vascular endothelial (VE)-cadherin, and downregulating vascular endothelial growth factor receptor 2 (VEGFR2). In vivo study revealed more perfused and total blood vessels in the HUVEC + E-DPSC group, HUVEC + T-DPSC group, angiopoietin 1 (Ang1) pretreated group, and vascular endothelial protein tyrosine phosphatase (VE-PTP) inhibitor pretreated group, compared to HUVEC + DPSC group. In conclusion, these data indicated that E-DPSCs and T-DPSCs could stabilize the newly formed blood vessels and accelerate their perfusion. The critical regulating pathways are Ang1/Tie2/VE-cadherin and VEGF/VEGFR2 signaling.
Collapse
Affiliation(s)
- Y Zhang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - S Lin
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - J Liu
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Q Chen
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - J Kang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - J Zhong
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - M Hu
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - M S Basabrain
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Y Liang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - C Yuan
- School of Stomatology, Xuzhou Medical University, Department of Dental Implant, The Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - C Zhang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
17
|
Huang R, Ding J, Xie WF. Liver cancer. SINUSOIDAL CELLS IN LIVER DISEASES 2024:349-366. [DOI: 10.1016/b978-0-323-95262-0.00017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Thapa K, Khan H, Kaur G, Kumar P, Singh TG. Therapeutic targeting of angiopoietins in tumor angiogenesis and cancer development. Biochem Biophys Res Commun 2023; 687:149130. [PMID: 37944468 DOI: 10.1016/j.bbrc.2023.149130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
The formation and progression of tumors in humans are linked to the abnormal development of new blood vessels known as neo-angiogenesis. Angiogenesis is a broad word that encompasses endothelial cell migration, proliferation, tube formation, and intussusception, as well as peri-EC recruitment and extracellular matrix formation. Tumor angiogenesis is regulated by angiogenic factors, out of which some of the most potent angiogenic factors such as vascular endothelial growth factor and Angiopoietins (ANGs) in the body are produced by macrophages and other immune cells within the tumor microenvironment. ANGs have a distinct function in tumor angiogenesis and behavior. ANG1, ANG 2, ANG 3, and ANG 4 are the family members of ANG out of which ANG2 has been extensively investigated owing to its unique role in modifying angiogenesis and its tight association with tumor progression, growth, and invasion/metastasis, which makes it an excellent candidate for therapeutic intervention in human malignancies. ANG modulators have demonstrated encouraging outcomes in the treatment of tumor development, either alone or in conjunction with VEGF inhibitors. Future development of more ANG modulators targeting other ANGs is needed. The implication of ANG1, ANG3, and ANG4 as probable therapeutic targets for anti-angiogenesis treatment in tumor development should be also evaluated. The article has described the role of ANG in tumor angiogenesis as well as tumor growth and the treatment strategies modulating ANGs in tumor angiogenesis as demonstrated in clinical studies. The pharmacological modulation of ANGs and ANG-regulated pathways that are responsible for tumor angiogenesis and cancer development should be evaluated for the development of future molecular therapies.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara School of Pharmacy, Chitkara University, 174103, Himachal Pradesh, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Gagandeep Kaur
- Chitkara School of Pharmacy, Chitkara University, 174103, Himachal Pradesh, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, 151401, Bathinda, India
| | | |
Collapse
|
19
|
Mendoza RP, Momeni A, Saha N, Arshi J, Gabutan EC, Alejandro N, Zuretti A, Premsrirut PK, Nikolov DB. The Angiopoietin Signaling Pathway Is Involved in Inflammatory Processes in Hospitalized COVID-19 Patients. Microorganisms 2023; 11:2940. [PMID: 38138084 PMCID: PMC10745910 DOI: 10.3390/microorganisms11122940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The viral agent SARS-CoV-2 clearly affects several organ systems, including the cardiovascular system. Angiopoietins are involved in vascular integrity and angiogenesis. Angiopoietin-1 (Ang1) promotes vessel stabilization, while angiopoietin-2 (Ang2), which is usually expressed at low levels, is significantly elevated in inflammatory and angiogenic conditions. Interleukin-6 (IL-6) is known to induce defective angiogenesis via the activation of the Ang2 pathway. Vasculitis and vasculopathy are some of the defining features of moderate to severe COVID-19-associated systemic disease. We investigated the serum levels of angiopoietins, as well as interleukin-6 levels and anti-SARS-CoV2 IgG titers, in hospitalized COVID-19 patients across disease severity and healthy controls. Ang2 levels were elevated in COVID-19 patients across all severity compared to healthy controls, while Ang1 levels were decreased. The patients with adverse outcomes (death and/or prolonged hospitalization) had relatively lower and stable Ang1 levels but continuously elevated Ang2 levels, while those who had no adverse outcomes had increasing levels of both Ang1 and Ang2, followed by a decrease in both. These results suggest that the dynamic levels of Ang1 and Ang2 during the clinical course may predict adverse outcomes in COVID-19 patients. Ang1 seems to play an important role in controlling Ang2-related inflammatory mechanisms in COVID-19 patients. IL-6 and anti-SARS-CoV2 spike protein IgG levels were significantly elevated in patients with severe disease. Our findings represent an informative pilot assessment into the role of the angiopoietin signaling pathway in the inflammatory response in COVID-19.
Collapse
Affiliation(s)
- Rachelle P. Mendoza
- Department of Pathology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;
| | - Amir Momeni
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA;
| | - Nayanendu Saha
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA;
| | - Juwairiya Arshi
- Department of Pathology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;
| | - Elmer C. Gabutan
- Department of Pathology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (E.C.G.); (A.Z.)
| | - Nichole Alejandro
- Bouvé College of Health Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA;
| | - Alejandro Zuretti
- Department of Pathology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (E.C.G.); (A.Z.)
| | - Prem K. Premsrirut
- Department of Cell Biology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA;
- Mirimus Inc., 760 Parkside Ave, Brooklyn, NY 11226, USA
| | - Dimitar B. Nikolov
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA;
| |
Collapse
|
20
|
Zhou WC, Zhang QF, Chen JL, Gan JP, Li YK, Zou J. Angiopoietin4 (ANGPT4) expression and potential mechanisms in carcinogenesis: current achievements and perspectives. Clin Exp Med 2023; 23:4449-4456. [PMID: 37659993 DOI: 10.1007/s10238-023-01178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Angiopoietin4(ANGPT4) which plays a significant role in endothelial cell proliferation, survival, angiogenesis and expansion in tumors and other pathological states is a significant regulator of tumor angiogenesis. ANGPT4 expression is enhanced in many cancer cells. For example, the overexpression of ANGPT4 promotes the formation, development and progress of lung adenocarcinoma, glioblastoma and ovarian cancer. Related studies show that ANGPT4 encourages the proliferation, survival and invasion of tumor cells, while promoting the expansion of the tumor vascular system and affecting the tumor immune microenvironment. ANGPT4 can also promote carcinogenesis by affecting the ERK1/2, PI3K/AKT and other signal pathways downstream of tyrosine kinase with immunoglobulin-like and EGF-like domains 2(TIE2) and TIE2. Therefore, ANGPT4 may be a potential and significant biomarker for predicting malignant tumor progression and adverse outcomes. In addition, inhibition of ANGPT4 may be a meaningful cancer treatment. This paper reviews the latest research results of ANGPT4 in preclinical research, and emphasizes its role in carcinogenesis. Additional research on the carcinogenic function of ANGPT4 could provide new insights into cancer biology and novel methods for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Wen-Chao Zhou
- Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Qun-Feng Zhang
- Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Jun-Ling Chen
- Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Jin-Peng Gan
- Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yu-Kun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Juan Zou
- Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang Medical School, Cancer Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China.
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| |
Collapse
|
21
|
Chen T, Zhou H, Yuan S, Deng X, Li Y, Chen N, You J, Li R, Li T, Zheng Y, Luo M, Lv H, Wu J, Wang L. Glycation of fibronectin impairs angiopoietin-1/Tie-2 signaling through uncoupling Tie-2-α5β1 integrin crosstalk. Cell Signal 2023; 112:110916. [PMID: 37806542 DOI: 10.1016/j.cellsig.2023.110916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
The dysfunction of angiopoietin-1 (Ang-1)/Tie-2 signaling pathways has been implicated in diabetic complications. However, the underlying molecular mechanisms remain unclear. Fibronectin (FN) is thought to have an important role in regulating Ang-1/Tie-2 signaling activation. But no previous study has investigated the effects of FN glycation on Ang-1/Tie-2 signaling. In the present study, FN was glycated by methylglyoxal (MGO) to investigate whether the glycation of FN contributes to diabetes-induced Ang-1/Tie-2 signaling impairment and to understand the molecular mechanisms involved. The results demonstrated that MGO-glycated FN significantly impaired Ang-1-evoked phosphorylation of Tie-2 and Akt, Ang-1-induced endothelial cell migration and tube formation and Ang-1-mediated cell survival. The glycation of FN also inhibited the binding of α5β1 integrin to Tie-2. Moreover, FN was remarkably modified by AGEs in aortae derived from db/db mice, indicating the glycation of FN in vivo. Ang-1-induced aortic ring vessel outgrowth and Ang-1-mediated cell survival were also both significantly inhibited in aortae from db/db mice compared to that from the wild type littermates. Moreover, FN, rather than glycated FN partly restored aortic ring angiogenesis in db/db mice, indicating that the angiogenesis defect in the db/db mice are due to FN glycation. Collectively, the results in the present study suggest that the glycation of FN impairs Ang-1/Tie-2 signaling pathway by uncoupling Tie-2-α5β1 integrin crosstalk. This may provide a mechanism for Ang-1/Tie-2 signaling dysfunction and angiogenesis failure in diabetic ischaemic diseases.
Collapse
Affiliation(s)
- Tangting Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Haiyan Zhou
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Shuangshuang Yuan
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Xin Deng
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Yongjie Li
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Ni Chen
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Jingcan You
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Rong Li
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Tian Li
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Youkun Zheng
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Mao Luo
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Hongbin Lv
- Department of Ophthalmology, the Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jianbo Wu
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China.
| | - Liqun Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China; Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China.
| |
Collapse
|
22
|
Ge Z, Zhang Q, Lin W, Jiang X, Zhang Y. The role of angiogenic growth factors in the immune microenvironment of glioma. Front Oncol 2023; 13:1254694. [PMID: 37790751 PMCID: PMC10542410 DOI: 10.3389/fonc.2023.1254694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Angiogenic growth factors (AGFs) are a class of secreted cytokines related to angiogenesis that mainly include vascular endothelial growth factors (VEGFs), stromal-derived factor-1 (SDF-1), platelet-derived growth factors (PDGFs), fibroblast growth factors (FGFs), transforming growth factor-beta (TGF-β) and angiopoietins (ANGs). Accumulating evidence indicates that the role of AGFs is not only limited to tumor angiogenesis but also participating in tumor progression by other mechanisms that go beyond their angiogenic role. AGFs were shown to be upregulated in the glioma microenvironment characterized by extensive angiogenesis and high immunosuppression. AGFs produced by tumor and stromal cells can exert an immunomodulatory role in the glioma microenvironment by interacting with immune cells. This review aims to sum up the interactions among AGFs, immune cells and cancer cells with a particular emphasis on glioma and tries to provide new perspectives for understanding the glioma immune microenvironment and in-depth explorations for anti-glioma therapy.
Collapse
Affiliation(s)
| | | | | | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanyu Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
23
|
Wang B, Yang Y, Wang Y, Yang Y, Li Y, Hu C, Xue C. Matrix stiffness regulates neovascular homeostasis through autophagy in nude mice. J Cell Physiol 2023; 238:2135-2146. [PMID: 37565586 DOI: 10.1002/jcp.31074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 08/12/2023]
Abstract
One of the major obstacles to the effective application of vascularized fruit is an insufficient understanding of the relationship between the microenvironment and neovascular homeostasis. The role of extracellular matrix stiffness in regulating the structural and functional stability of neovascularization has not yet been elucidated. This study explored the effects of matrix stiffness on neovascular homeostasis in nude mice. Dextran hydrogels with three different stiffnesses were separately combined with mouse bone marrow-derived endothelial progenitor cells (EPCs) and subcutaneously implanted into the backs of nude mice. After 14 days, neovascular homeostasis indicators in the different groups were measured. Cell autophagy levels were evaluated, and inhibitor assays were performed to explore the underlying mechanism. New blood vessels were generated in the three stiffnesses of the EPC-loaded dextran hydrogels 14 days after implantation. The newly formed vessels tended to have better structural stability in softer hydrogels. Endothelial function markers, such as endothelial nitric oxide synthase and E-selectin, were downregulated as the matrix stiffness increased. Furthermore, we found that cell autophagy levels decreased in stiffer matrices, and autophagy inhibition attenuated neovascular homeostasis. A soft matrix is conducive to maintaining neovascular homeostasis through autophagy in nude mice.
Collapse
Affiliation(s)
- Bingqing Wang
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yuqing Yang
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yichen Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yanxin Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yi Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Chenxi Hu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Changyue Xue
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Panchal KG, Gupta E, Kumar A, Samir PV, Devika GS, Awasthi V, Singh R. Comparing the Effectiveness of Low-Level Laser Therapy and Topical Steroid Therapy Combination Regimen With Routine Topical Steroid Therapy in the Management of Oral Lichen Planus Symptomatic Patients. Cureus 2023; 15:e44100. [PMID: 37750131 PMCID: PMC10518139 DOI: 10.7759/cureus.44100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND For symptomatic oral lichen planus (OLP), a wide range of therapeutic approaches have been suggested. To minimize discomfort and symptoms among individuals with symptomatic OLP, extensive therapy is frequently needed. Therefore, finding a new therapeutic approach that may effectively manage OLP's symptoms and signs while having few adverse effects continues to be a difficult task. Recently, low-level laser therapy (LLLT) has become a popular alternative therapy option for OLP with no serious side effects. AIM The present research was designed to compare the effectiveness of a combination regimen of LLLT in addition to topical steroids with routine topical steroid therapy separately in order to manage patients with bothersome OLP with an extended period of follow-up. MATERIALS AND METHODS In our trial, 60 patients were chosen and given sequential numbers as they signed up to take part. The participants were divided randomly into two categories: category A (LLLT plus topical steroids) and category B (only topical steroids). The data were entered into the aforementioned prepared case template after receiving informed consent. The aforementioned prepared case template included the following criteria for evaluating the result of the treatment: pain, recurrence, burning sensation, clinical remission, and size of the lesion. Applying the visual analog scale (VAS), pain, as well as burning sensations, were assessed in both categories. With the aid of the Electronic Digital Vernier Caliper (Mitutoyo, China), these individuals were assessed for the dimension of the lesion. RESULTS The pain score on day 21 of intervention in category A was 2.5, while it was 4.63 in category B. The difference in findings was significant statistically at day 21 (p = 0.0032). The pain score on day 28 of intervention in category A was 1.3, while it was 3.0 in category B. The difference in findings was significant statistically at day 28 (p = 0.003). The pain score was greater in the control category as compared to the intervention category. The burning sensation score on day 21 of intervention in category A was 2.5, while it was 4.5 in category B. The difference in findings was significant statistically (p = 0.0024). The burning sensation score at the follow-up phase on day 45 of intervention in category A was 1.1, while it was 3.4 in category B. The difference in findings was significant statistically (p = 0.002). CONCLUSION Newer therapeutic techniques are becoming accessible to oral specialists for controlling oral mucosal disorders as a result of evolving dental trends. The gold standard for treating people with symptomatic OLP continues to be topical corticosteroids. The therapeutic advantages of topical corticosteroids, however, are considerably outweighed by their complementary effect when paired with newer treatment methods like LLLT.
Collapse
Affiliation(s)
- Kalagi G Panchal
- Department of Dentistry, Government Dental College and Hospital, Ahmedabad, IND
| | - Ekta Gupta
- Department of Orthodontics and Dentofacial Orthopedics, Siddhpur Dental College and Hospital, Patan, IND
| | - Amit Kumar
- Department of Dentistry, All India Institute of Medical Sciences, Patna, IND
| | - P V Samir
- Department of Pedodontics and Preventive Dentistry, Kalinga Institute of Dental Sciences, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, IND
| | - G S Devika
- Department of Pharmaceutical Analysis, Cherraans College of Pharmacy, Coimbatore, IND
| | - Vijaya Awasthi
- Department of Oral Medicine and Radiology, Gentle Dental Care, Jabalpur, IND
| | - Ramanpal Singh
- Department of Oral Medicine and Radiology, New Horizon Dental College and Research Institute, Bilaspur, IND
| |
Collapse
|
25
|
Zhou X, Pucel JC, Nomura-Kitabayashi A, Chandakkar P, Guidroz AP, Jhangiani NL, Bao D, Fan J, Arthur HM, Ullmer C, Klein C, Marambaud P, Meadows SM. ANG2 Blockade Diminishes Proangiogenic Cerebrovascular Defects Associated With Models of Hereditary Hemorrhagic Telangiectasia. Arterioscler Thromb Vasc Biol 2023; 43:1384-1403. [PMID: 37288572 PMCID: PMC10524982 DOI: 10.1161/atvbaha.123.319385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/16/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Hereditary hemorrhagic telangiectasia (HHT) is a vascular disorder characterized by arteriovenous malformations and blood vessel enlargements. However, there are no effective drug therapies to combat arteriovenous malformation formation in patients with HHT. Here, we aimed to address whether elevated levels of ANG2 (angiopoietin-2) in the endothelium is a conserved feature in mouse models of the 3 major forms of HHT that could be neutralized to treat brain arteriovenous malformations and associated vascular defects. In addition, we sought to identify the angiogenic molecular signature linked to HHT. METHODS Cerebrovascular defects, including arteriovenous malformations and increased vessel calibers, were characterized in mouse models of the 3 common forms of HHT using transcriptomic and dye injection labeling methods. RESULTS Comparative RNA sequencing analyses of isolated brain endothelial cells revealed a common, but unique proangiogenic transcriptional program associated with HHT. This included a consistent upregulation in cerebrovascular expression of ANG2 and downregulation of its receptor Tyr kinase with Ig and EGF homology domains (TIE2/TEK) in HHT mice compared with controls. Furthermore, in vitro experiments revealed TEK signaling activity was hampered in an HHT setting. Pharmacological blockade of ANG2 improved brain vascular pathologies in all HHT models, albeit to varying degrees. Transcriptomic profiling further indicated that ANG2 inhibition normalized the brain vasculature by impacting a subset of genes involved in angiogenesis and cell migration processes. CONCLUSIONS Elevation of ANG2 in the brain vasculature is a shared trait among the mouse models of the common forms of HHT. Inhibition of ANG2 activity can significantly limit or prevent brain arteriovenous malformation formation and blood vessel enlargement in HHT mice. Thus, ANG2-targeted therapies may represent a compelling approach to treat arteriovenous malformations and vascular pathologies related to all forms of HHT.
Collapse
Affiliation(s)
- Xingyan Zhou
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, USA
| | - Jenna C. Pucel
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, USA
| | - Aya Nomura-Kitabayashi
- Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Pallavi Chandakkar
- Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Adella P. Guidroz
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, USA
| | - Nikita L. Jhangiani
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, USA
| | - Duran Bao
- Biochemistry and Molecular Biology Department, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jia Fan
- Biochemistry and Molecular Biology Department, Tulane University School of Medicine, New Orleans, LA, USA
| | - Helen M. Arthur
- Biosciences Institute, Center for Life, Newcastle University, Newcastle NE1 3BZ, UK
| | | | | | - Philippe Marambaud
- Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Stryder M. Meadows
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| |
Collapse
|
26
|
Koudriavtseva T, Lorenzano S, Cellerino M, Truglio M, Fiorelli M, Lapucci C, D’Agosto G, Conti L, Stefanile A, Zannino S, Filippi MM, Cortese A, Piantadosi C, Maschio M, Maialetti A, Galiè E, Salvetti M, Inglese M. Tissue factor as a potential coagulative/vascular marker in relapsing-remitting multiple sclerosis. Front Immunol 2023; 14:1226616. [PMID: 37583699 PMCID: PMC10424925 DOI: 10.3389/fimmu.2023.1226616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Objectives Recent studies supported coagulation involvement in multiple sclerosis, an inflammatory-demyelinating and degenerative disease of the central nervous system. The main objectives of this observational study were to identify the most specific pro-coagulative/vascular factors for multiple sclerosis pathogenesis and to correlate them with brain hemodynamic abnormalities. Methods We compared i) serum/plasma levels of complement(C)/coagulation/vascular factors, viral/microbiological assays, fat-soluble vitamins and lymphocyte count among people with multiple sclerosis sampled in a clinical remission (n=30; 23F/7M, 40 ± 8.14 years) or a relapse (n=30; 24F/6M, age 41 ± 10.74 years) and age/sex-matched controls (n=30; 23F/7M, 40 ± 8.38 years); ii) brain hemodynamic metrics at dynamic susceptibility contrast-enhanced 3T-MRI during relapse and remission, and iii) laboratory data with MRI perfusion metrics and clinical features of people with multiple sclerosis. Two models by Partial Least Squares Discriminant Analysis were performed using two groups as input: (1) multiple sclerosis vs. controls, and (2) relapsing vs. remitting multiple sclerosis. Results Compared to controls, multiple sclerosis patients had a higher Body-Mass-Index, Protein-C and activated-C9; and a lower activated-C4. Levels of Tissue-Factor, Tie-2 and P-Selectin/CD62P were lower in relapse compared to remission and HC, whereas Angiopoietin-I was higher in relapsing vs. remitting multiple sclerosis. A lower number of total lymphocytes was found in relapsing multiple sclerosis vs. remitting multiple sclerosis and controls. Cerebral-Blood-Volume was lower in normal-appearing white matter and left caudatum while Cerebral-Blood-Flow was inferior in bilateral putamen in relapsing versus remitting multiple sclerosis. The mean-transit-time of gadolinium-enhancing lesions negatively correlated with Tissue-Factor. The top-5 discriminating variables for model (1) were: EBV-EBNA-1 IgG, Body-Mass-Index, Protein-C, activated-C4 and Tissue-Factor whereas for model (2) were: Tissue-Factor, Angiopoietin-I, MCHC, Vitamin A and T-CD3. Conclusion Tissue-factor was one of the top-5 variables in the models discriminating either multiple sclerosis from controls or multiple sclerosis relapse from remission and correlated with mean-transit-time of gadolinium-enhancing lesions. Tissue-factor appears a promising pro-coagulative/vascular biomarker and a possible therapeutic target in relapsing-remitting multiple sclerosis. Clinical trial registration ClinicalTrials.gov, identifier NCT04380220.
Collapse
Affiliation(s)
- Tatiana Koudriavtseva
- Medical Direction, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Svetlana Lorenzano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Maria Cellerino
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Mauro Truglio
- Clinical Pathology and Cancer Biobank, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Marco Fiorelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Caterina Lapucci
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Giovanna D’Agosto
- Clinical Pathology and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gallicano Dermatological Institute, Rome, Italy
| | - Laura Conti
- Clinical Pathology and Cancer Biobank, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Annunziata Stefanile
- Clinical Pathology and Cancer Biobank, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Silvana Zannino
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | | | - Antonio Cortese
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Carlo Piantadosi
- Unità Operativa Complessa (UOC) Neurology, San Giovanni-Addolorata Hospital, Rome, Italy
| | - Marta Maschio
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Andrea Maialetti
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Edvina Galiè
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Marco Salvetti
- Department of Neuroscience Mental Health and Sensory Organs (NEMOS), Sapienza University, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Department of Neurology, Mount Sinai Hospital, New York, NY, United States
| |
Collapse
|
27
|
Liu X, Li X, Wei H, Liu Y, Li N. Mast cells in colorectal cancer tumour progression, angiogenesis, and lymphangiogenesis. Front Immunol 2023; 14:1209056. [PMID: 37497234 PMCID: PMC10366593 DOI: 10.3389/fimmu.2023.1209056] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
The characteristics of the tumour cells, as well as how tumour cells interact with their surroundings, affect the prognosis of cancer patients. The resident cells in the tumour microenvironment are mast cells (MCs), which are known for their functions in allergic responses, but their functions in the cancer milieu have been hotly contested. Several studies have revealed a link between MCs and the development of tumours. Mast cell proliferation in colorectal cancer (CRC) is correlated with angiogenesis, the number of lymph nodes to which the malignancy has spread, and patient prognosis. By releasing angiogenic factors (VEGF-A, CXCL 8, MMP-9, etc.) and lymphangiogenic factors (VEGF-C, VEGF-D, etc.) stored in granules, mast cells play a significant role in the development of CRC. On the other hand, MCs can actively encourage tumour development via pathways including the c-kit/SCF-dependent signaling cascade and histamine production. The impact of MC-derived mediators on tumour growth, the prognostic importance of MCs in patients with various stages of colorectal cancer, and crosstalk between MCs and CRC cells in the tumour microenvironment are discussed in this article. We acknowledge the need for a deeper comprehension of the function of MCs in CRC and the possibility that targeting MCs might be a useful therapeutic approach in the future.
Collapse
Affiliation(s)
- Xiaoxin Liu
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinyu Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haotian Wei
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanyan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ningxu Li
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
28
|
Ocran E, Chornenki NLJ, Bowman M, Sholzberg M, James P. Gastrointestinal bleeding in von Willebrand patients: special diagnostic and management considerations. Expert Rev Hematol 2023; 16:575-584. [PMID: 37278227 DOI: 10.1080/17474086.2023.2221846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Severe and recurrent gastrointestinal (GI) bleeding caused by angiodysplasia is a significant problem in patients with von Willebrand disease (VWD) and in those with acquired von Willebrand syndrome (AVWS). At present, angiodysplasia-related GI bleeding is often refractory to standard treatment including replacement therapy with von Willebrand factor (VWF) concentrates and continues to remain a major challenge and cause of significant morbidity in patients despite advances in diagnostics and therapeutics. AREAS COVERED This paper reviews the available literature on GI bleeding in VWD patients, examines the molecular mechanisms implicated in angiodysplasia-related GI bleeding, and summarizes existing strategies in the management of bleeding GI angiodysplasia in patients with VWF abnormalities. Suggestions are made for further research directions. EXPERT OPINION Bleeding from angiodysplasia poses a significant challenge for individuals with abnormal VWF. Diagnosis remains a challenge and may require multiple radiologic and endoscopic investigations. Additionally, there is a need for enhanced understanding at a molecular level to identify effective therapies. Future studies of VWF replacement therapies using newer formulations as well as other adjunctive treatments to prevent and treat bleeding will hopefully improve care.
Collapse
Affiliation(s)
- Edwin Ocran
- Department of Medicine, Queen's University, Kingston, Canada
| | | | | | - Michelle Sholzberg
- Division of Hematology-Oncology, St. Michael's Hospital, Li Ka Shing Knowledge Institute, University of Toronto, Toronto, Canada
| | - Paula James
- Department of Medicine, Queen's University, Kingston, Canada
| |
Collapse
|
29
|
Wang L, Bao Y, Yu F, Zhu W, Wang JL, Yang J, Xie H, Huang D. Development of gene model combined with machine learning technology to predict for advanced atherosclerotic plaques. Clin Neurol Neurosurg 2023; 231:107819. [PMID: 37315377 DOI: 10.1016/j.clineuro.2023.107819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/03/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Atherosclerosis, as a major cause of stroke, is responsible for a quarter of deaths worldwide. In particular, rupture of late-stage plaques in large vessels such as the carotid artery can lead to serious cardiovascular disease. The aim of our study was to establish a genetic model combined with machining leaning techniques to screen out gene signatures and predict for advanced atherosclerosis plaques. METHODS The microarray dataset GSE28829 and GSE43292 which were publicly obtained from the Gene Expression Omnibus database were utilized to screen for potential predictive genes. Differentially expressed genes (DEGs) were identified by using the "limma" R package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes Genomes (KEGG) analyses of these DEGs were performed by Metascape. Later, Random Forest (RF) algorithm was applied to further screen out top-30 genes which contribute the most. The expression data of top 30-DEGs were converted into a "Gene Score". Finally, we developed a model based on artificial neural network (ANN) to predict advanced atherosclerotic plaques. The model later was validated in an independent test dataset GSE104140. RESULTS A total of 176 DEGs were identified in the training datasets. GO and KEGG enrichment analysis revealed that these genes were enriched in leukocyte-mediated immune response, cytokine- cytokine interactions, and immunoinflammatory signaling. Further, top-30 genes (including 25 upregulated and 5 downregulated DEGs) were screened as predictors by RF algorithm. The predictive model was developed with a significantly predictive value (AUC = 0.913) in the training datasets, and was validated with an independent dataset GSE104140 (AUC = 0.827). CONCLUSION In present study, our prediction model was established and showed satisfactory predictive power in both training and test datasets. In addition, this is the first study adopted bioinformatics methods combined with machine learning techniques (RF and ANN) to explore and predict for the advanced atherosclerotic plaques. However, further investigations were needed to verify the screened DEGs and predictive effectiveness of this model.
Collapse
Affiliation(s)
- Lufeng Wang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiwen Bao
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Yu
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenxia Zhu
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Lang Wang
- Department of Imaging, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Yang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongrong Xie
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Dongya Huang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
30
|
Hayashi KG, Sakumoto R. Differential expression of pro- and anti-angiogenic factors in the endometrium between repeat breeder and normally fertile cows. Anim Reprod Sci 2023; 254:107265. [PMID: 37270879 DOI: 10.1016/j.anireprosci.2023.107265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
In cattle, the establishment of appropriate endometrial vasculature during the estrous cycle is required for preparing a receptive endometrium. This study aimed to investigate 1) mRNA expression of potent pro- and anti-angiogenic factors, 2) protein localization of the anti-angiogenic factor thrombospondin (TSP), and 3) vascularity in the endometrium of repeat breeder (RB) and normally fertile (non-RB) cows. Caruncular and intercaruncular endometrium was collected from RB and non-RB cows during the luteal phase of the estrous cycle. RB cows had greater mRNA expression levels of TSP ligands (TSP1 and TSP2) and receptors (CD36 and CD47) than non-RB cows. Although the mRNA expression levels of most angiogenic factors did not change by repeat breeding, RB cows had greater mRNA expression of fibroblast growth factor receptor 1 (FGFR1), angiopoietin 1 (ANGPT1), and ANGPT2 and a less mRNA expression of vascular endothelial growth factor B (VEGFB) than non-RB cows. By immunohistochemistry, TSP1, TSP2, CD36, and CD47 were detected in the luminal epithelium, glandular epithelium, stromal cells, and blood vessels of the endometrium. Two indexes of vascularity, the number of blood vessels and the percentage of area stained positive for the von Willebrand factor, were lower in the endometrium of RB than in that of non-RB cows. These results demonstrate that RB cows have a greater expression of both ligands and receptors for the anti-angiogenic factor TSP and a reduced vascular distribution in the endometrium compared with non-RB cows, suggesting suppressed endometrial angiogenesis.
Collapse
Affiliation(s)
- Ken-Go Hayashi
- Division of Advanced Feeding Technology Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba 305-0901, Japan.
| | - Ryosuke Sakumoto
- Division of Advanced Feeding Technology Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba 305-0901, Japan.
| |
Collapse
|
31
|
Huang X, Zhang L, Fu Y, Zhang M, Yang Q, Peng J. Rethinking the potential and necessity of drug delivery systems in neovascular age-related macular degeneration therapy. Front Bioeng Biotechnol 2023; 11:1199922. [PMID: 37288355 PMCID: PMC10242387 DOI: 10.3389/fbioe.2023.1199922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Age-related macular degeneration (AMD) is the predominant threat to human vision and ultimately results in blindness. With the increase in the aging population, it has become a more crucial issue to human health. AMD is a multifactorial disease with the unique feature of uncontrollable angiogenesis during initiation and progression. Although increasing evidence indicates that AMD is largely hereditary, the predominant efficient treatment is antiangiogenesis, which mainly involves VEGF and HIF-α as therapeutic targets. The repeated administration of this treatment over the long term, generally through intravitreal injection, has called for the introduction of long-term drug delivery systems, which are expected to be achieved by biomaterials. However, the clinical results of the port delivery system indicate that the optimization of medical devices toward prolonging the activities of therapeutic biologics in AMD therapy seems more promising. These results indicate that we should rethink the possibility and potential of biomaterials as drug delivery systems in achieving long-term, sustained inhibition of angiogenesis in AMD therapy. In this review, the etiology, categorization, risk factors, pathogenesis, and current clinical treatments of AMD are briefly introduced. Next, the development status of long-term drug delivery systems is discussed, and the drawbacks and shortages of these systems are emphasized. By comprehensively considering the pathological aspect and the recent application of drug delivery systems in AMD therapy, we hope to find a better solution for the further development of long-term therapeutic strategies for AMD.
Collapse
Affiliation(s)
- Xi Huang
- Department of Ophthalmology, Research Laboratory of Macular Disease, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Zhang
- Department of Ophthalmology, Research Laboratory of Macular Disease, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanyan Fu
- Department of Ophthalmology, Research Laboratory of Macular Disease, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meixia Zhang
- Department of Ophthalmology, Research Laboratory of Macular Disease, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Yang
- Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Jinrong Peng
- Department of Ophthalmology, Research Laboratory of Macular Disease, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
32
|
Werlein C, Ackermann M, Stark H, Shah HR, Tzankov A, Haslbauer JD, von Stillfried S, Bülow RD, El-Armouche A, Kuenzel S, Robertus JL, Reichardt M, Haverich A, Höfer A, Neubert L, Plucinski E, Braubach P, Verleden S, Salditt T, Marx N, Welte T, Bauersachs J, Kreipe HH, Mentzer SJ, Boor P, Black SM, Länger F, Kuehnel M, Jonigk D. Inflammation and vascular remodeling in COVID-19 hearts. Angiogenesis 2023; 26:233-248. [PMID: 36371548 PMCID: PMC9660162 DOI: 10.1007/s10456-022-09860-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022]
Abstract
A wide range of cardiac symptoms have been observed in COVID-19 patients, often significantly influencing the clinical outcome. While the pathophysiology of pulmonary COVID-19 manifestation has been substantially unraveled, the underlying pathomechanisms of cardiac involvement in COVID-19 are largely unknown. In this multicentre study, we performed a comprehensive analysis of heart samples from 24 autopsies with confirmed SARS-CoV-2 infection and compared them to samples of age-matched Influenza H1N1 A (n = 16), lymphocytic non-influenza myocarditis cases (n = 8), and non-inflamed heart tissue (n = 9). We employed conventional histopathology, multiplexed immunohistochemistry (MPX), microvascular corrosion casting, scanning electron microscopy, X-ray phase-contrast tomography using synchrotron radiation, and direct multiplexed measurements of gene expression, to assess morphological and molecular changes holistically. Based on histopathology, none of the COVID-19 samples fulfilled the established diagnostic criteria of viral myocarditis. However, quantification via MPX showed a significant increase in perivascular CD11b/TIE2 + -macrophages in COVID-19 over time, which was not observed in influenza or non-SARS-CoV-2 viral myocarditis patients. Ultrastructurally, a significant increase in intussusceptive angiogenesis as well as multifocal thrombi, inapparent in conventional morphological analysis, could be demonstrated. In line with this, on a molecular level, COVID-19 hearts displayed a distinct expression pattern of genes primarily coding for factors involved in angiogenesis and epithelial-mesenchymal transition (EMT), changes not seen in any of the other patient groups. We conclude that cardiac involvement in COVID-19 is an angiocentric macrophage-driven inflammatory process, distinct from classical anti-viral inflammatory responses, and substantially underappreciated by conventional histopathologic analysis. For the first time, we have observed intussusceptive angiogenesis in cardiac tissue, which we previously identified as the linchpin of vascular remodeling in COVID-19 pneumonia, as a pathognomic sign in affected hearts. Moreover, we identified CD11b + /TIE2 + macrophages as the drivers of intussusceptive angiogenesis and set forward a putative model for the molecular regulation of vascular alterations.
Collapse
Affiliation(s)
- Christopher Werlein
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Maximilian Ackermann
- Institute of Pathology and Department of Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Helge Stark
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Harshit R Shah
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | | | | | | | - Ali El-Armouche
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stephan Kuenzel
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Dermatology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jan Lukas Robertus
- Department of Histopathology, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Marius Reichardt
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Anne Höfer
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Lavinia Neubert
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Edith Plucinski
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Peter Braubach
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Stijn Verleden
- Department of Thoracic Medicine, Antwerp University Hospital, Antwerp, Belgium
| | - Tim Salditt
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Tobias Welte
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Clinic of Pneumology, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Hans-Heinrich Kreipe
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
- Division of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Peter Boor
- Institute of Pathology, RWTH University of Aachen, Aachen, Germany
- Institute of Pathology and Department of Nephrology, RWTH University of Aachen, Aachen, Germany
| | - Stephen M Black
- Department of Cellular Biology and Pharmacology Translational Medicine, Florida International University, Florida, USA
| | - Florian Länger
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Mark Kuehnel
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany.
| |
Collapse
|
33
|
Zhang J, Li W, Wang W, Chen Q, Xu Z, Deng M, Zhou L, He G. Dual roles of FAK in tumor angiogenesis: A review focused on pericyte FAK. Eur J Pharmacol 2023; 947:175694. [PMID: 36967077 DOI: 10.1016/j.ejphar.2023.175694] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Focal adhesion kinase (FAK), also known as protein tyrosine kinase 2 (PTK2), is a ubiquitously expressed non-receptor tyrosine kinase, that plays a pivotal role in integrin-mediated signal transduction. Endothelial FAK is upregulated in many types of cancer and promotes tumorigenesis and tumor progression. However, recent studies have shown that pericyte FAK has the opposite effect. This review article dissects the mechanisms, by which endothelial cells (ECs) and pericyte FAK regulate angiogenesis, with an emphasis on the Gas6/Axl pathway. In particular, this article discusses the role of pericyte FAK loss on angiogenesis during tumorigenesis and metastasis. In addition, the existing challenges and future application of drug-based anti-FAK targeted therapies will be discussed to provide a theoretical basis for further development and use of FAK inhibitors.
Collapse
|
34
|
Ghalehbandi S, Yuzugulen J, Pranjol MZI, Pourgholami MH. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur J Pharmacol 2023; 949:175586. [PMID: 36906141 DOI: 10.1016/j.ejphar.2023.175586] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 03/11/2023]
Abstract
Angiogenesis is a double-edged sword; it is a mechanism that defines the boundary between health and disease. In spite of its central role in physiological homeostasis, it provides the oxygen and nutrition needed by tumor cells to proceed from dormancy if pro-angiogenic factors tip the balance in favor of tumor angiogenesis. Among pro-angiogenic factors, vascular endothelial growth factor (VEGF) is a prominent target in therapeutic methods due to its strategic involvement in the formation of anomalous tumor vasculature. In addition, VEGF exhibits immune-regulatory properties which suppress immune cell antitumor activity. VEGF signaling through its receptors is an integral part of tumoral angiogenic approaches. A wide variety of medicines have been designed to target the ligands and receptors of this pro-angiogenic superfamily. Herein, we summarize the direct and indirect molecular mechanisms of VEGF to demonstrate its versatile role in the context of cancer angiogenesis and current transformative VEGF-targeted strategies interfering with tumor growth.
Collapse
Affiliation(s)
| | - Jale Yuzugulen
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
| | | | | |
Collapse
|
35
|
Nilsen DWT, Røysland M, Ueland T, Aukrust P, Michelsen AE, Staines H, Barvik S, Kontny F, Nordrehaug JE, Bonarjee VVS. The Effect of Protease-Activated Receptor-1 (PAR-1) Inhibition on Endothelial-Related Biomarkers in Patients with Coronary Artery Disease. Thromb Haemost 2022; 123:510-521. [PMID: 36588289 PMCID: PMC10113036 DOI: 10.1055/s-0042-1760256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Vorapaxar has been shown to reduce cardiovascular mortality in post-myocardial infarction (MI) patients. Pharmacodynamic biomarker research related to protease-activated receptor-1 (PAR-1) inhibition with vorapaxar in humans has short follow-up (FU) duration and is mainly focused on platelets rather than endothelial cells. AIM This article assesses systemic changes in endothelial-related biomarkers during vorapaxar treatment compared with placebo at 30 days' FU and beyond, in patients with coronary heart disease. METHODS Local substudy patients in Norway were included consecutively from two randomized controlled trials; post-MI subjects from TRA2P-TIMI 50 and non-ST-segment elevation MI (NSTEMI) patients from TRACER. Aliquots of citrated blood were stored at -80°C. Angiopoietin-2, angiopoietin-like 4, vascular endothelial growth factor, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, von Willebrand factor, thrombomodulin, and plasminogen activator inhibitor-1 and -2 were measured at 1-month FU and at study completion (median 2.3 years for pooled patients). RESULTS A total of 265 consecutive patients (age median 62.0, males 83%) were included. Biomarkers were available at both FUs in 221 subjects. In the total population, angiopoietin-2 increased in patients on vorapaxar as compared with placebo at 1-month FU (p = 0.034). Angiopoietin-like 4 increased (p = 0.028) and plasminogen activator inhibitor-2 decreased (p = 0.025) in favor of vorapaxar at final FU. In post-MI subjects, a short-term increase in E-selectin favoring vorapaxar was observed, p = 0.029. Also, a short-term increase in von Willebrand factor (p = 0.032) favoring vorapaxar was noted in NSTEMI patients. CONCLUSION Significant endothelial biomarker changes during PAR-1 inhibition were observed in post-MI and NSTEMI patients.
Collapse
Affiliation(s)
- Dennis W T Nilsen
- Department of Cardiology, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Michelle Røysland
- Department of Cardiology, Stavanger University Hospital, Stavanger, Norway
| | - Thor Ueland
- Department of Clinical Medicine, Thrombosis Research Center, UiT - The Arctic University of Norway, Tromsø, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Annika E Michelsen
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Harry Staines
- Sigma Statistical Services, Balmullo, United Kingdom of Great Britain and Northern Ireland
| | - Ståle Barvik
- Department of Cardiology, Stavanger University Hospital, Stavanger, Norway
| | - Frederic Kontny
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Drammen Heart Center, Drammen, Norway
| | - Jan Erik Nordrehaug
- Department of Cardiology, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | | |
Collapse
|
36
|
Poto R, Gambardella AR, Marone G, Schroeder JT, Mattei F, Schiavoni G, Varricchi G. Basophils from allergy to cancer. Front Immunol 2022; 13:1056838. [PMID: 36578500 PMCID: PMC9791102 DOI: 10.3389/fimmu.2022.1056838] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Human basophils, first identified over 140 years ago, account for just 0.5-1% of circulating leukocytes. While this scarcity long hampered basophil studies, innovations during the past 30 years, beginning with their isolation and more recently in the development of mouse models, have markedly advanced our understanding of these cells. Although dissimilarities between human and mouse basophils persist, the overall findings highlight the growing importance of these cells in health and disease. Indeed, studies continue to support basophils as key participants in IgE-mediated reactions, where they infiltrate inflammatory lesions, release pro-inflammatory mediators (histamine, leukotriene C4: LTC4) and regulatory cytokines (IL-4, IL-13) central to the pathogenesis of allergic diseases. Studies now report basophils infiltrating various human cancers where they play diverse roles, either promoting or hampering tumorigenesis. Likewise, this activity bears remarkable similarity to the mounting evidence that basophils facilitate wound healing. In fact, both activities appear linked to the capacity of basophils to secrete IL-4/IL-13, with these cytokines polarizing macrophages toward the M2 phenotype. Basophils also secrete several angiogenic factors (vascular endothelial growth factor: VEGF-A, amphiregulin) consistent with these activities. In this review, we feature these newfound properties with the goal of unraveling the increasing importance of basophils in these diverse pathobiological processes.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Adriana Rosa Gambardella
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy,Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - John T. Schroeder
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy,*Correspondence: Gilda Varricchi, ; Giovanna Schiavoni,
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy,Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy,*Correspondence: Gilda Varricchi, ; Giovanna Schiavoni,
| |
Collapse
|
37
|
Tan S, Chen Y, Du S, Li W, Liu P, Zhao J, Yang P, Cai J, Gao R, Wang Z. TIE2-high cervical cancer cells promote tumor angiogenesis by upregulating TIE2 and VEGFR2 in endothelial cells. Transl Oncol 2022; 26:101539. [PMID: 36116242 PMCID: PMC9483782 DOI: 10.1016/j.tranon.2022.101539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/21/2022] [Accepted: 09/08/2022] [Indexed: 10/25/2022] Open
Abstract
Tyrosine kinase with immunoglobulin and epidermal growth factor homology domains 2 (TIE2), the receptor for angiopoietins, has been found highly expressed in cervical cancer and associated with poor prognosis. However, the potential role of tumoral TIE2 in cervical cancer angiogenesis and the underlying mechanisms remain unexplored. Here, based on multicolor immunofluorescence of 64 cervical cancer tissues, we found that TIE2 level in cervical cancer cells was positively related to shorter survival and higher microvessel density in tumor. In vitro and in vivo experiments verified that TIE2-high cervical cancer cells could promote tumor angiogenesis. TIE2-high tumor cells induced an amplified expression of TIE2 and vascular endothelial growth factor receptor 2(VEGFR2) in HUVECs to promote angiogenesis via TIE2 -AKT/MAPK signals, which could be reversed or partially reversed by TIE2, AKT or MAPK inhibitors and activated by angiopoietin-1 and angiopoietin-2. In conclusion, TIE2-high cervical cancer cells promote tumor angiogenesis by upregulating TIE2 and VEGFR2 in endothelial cells via TIE2-AKT/MAPK axis inside tumor cells.
Collapse
Affiliation(s)
- Shuran Tan
- Department of Obstetrics and Gynecology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Yuanyuan Chen
- Department of Obstetrics and Gynecology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Shi Du
- Department of Obstetrics and Gynecology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Wenhan Li
- Department of Obstetrics and Gynecology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Pan Liu
- Department of Obstetrics and Gynecology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Jing Zhao
- Department of Obstetrics and Gynecology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Ping Yang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Rui Gao
- Department of Obstetrics and Gynecology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China.
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China.
| |
Collapse
|
38
|
Poto R, Criscuolo G, Marone G, Brightling CE, Varricchi G. Human Lung Mast Cells: Therapeutic Implications in Asthma. Int J Mol Sci 2022; 23:14466. [PMID: 36430941 PMCID: PMC9693207 DOI: 10.3390/ijms232214466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Mast cells are strategically located in different compartments of the lung in asthmatic patients. These cells are widely recognized as central effectors and immunomodulators in different asthma phenotypes. Mast cell mediators activate a wide spectrum of cells of the innate and adaptive immune system during airway inflammation. Moreover, these cells modulate the activities of several structural cells (i.e., fibroblasts, airway smooth muscle cells, bronchial epithelial and goblet cells, and endothelial cells) in the human lung. These findings indicate that lung mast cells and their mediators significantly contribute to the immune induction of airway remodeling in severe asthma. Therapies targeting mast cell mediators and/or their receptors, including monoclonal antibodies targeting IgE, IL-4/IL-13, IL-5/IL-5Rα, IL-4Rα, TSLP, and IL-33, have been found safe and effective in the treatment of different phenotypes of asthma. Moreover, agonists of inhibitory receptors expressed by human mast cells (Siglec-8, Siglec-6) are under investigation for asthma treatment. Increasing evidence suggests that different approaches to depleting mast cells show promising results in severe asthma treatment. Novel treatments targeting mast cells can presumably change the course of the disease and induce drug-free remission in bronchial asthma. Here, we provide an overview of current and promising treatments for asthma that directly or indirectly target lung mast cells.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy
| | - Chris E. Brightling
- Department of Respiratory Sciences, Leicester NIHR BRC, Institute for Lung Health, University of Leicester, Leicester LE1 7RH, UK
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy
| |
Collapse
|
39
|
Xiang Q, Tao JS, Li JJ, Tian RB, Li XH. What is the role of Von Willebrand factor in chronic hepatitis B virus infection to hepatocellular carcinoma: a review article. Ther Adv Chronic Dis 2022; 13:20406223221125683. [PMID: 36407018 PMCID: PMC9669690 DOI: 10.1177/20406223221125683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/25/2022] [Indexed: 11/12/2023] Open
Abstract
Von Willebrand factor (VWF) is a glycoprotein synthesized and secreted by vascular endothelial cells and megakaryocytes, found on plasma surface, endothelial cells, and α-granule of platelets. VWF can be interacted with collagen and platelet membrane glycoproteins GPIb and GPIb-IIa and play an important role in platelet adhesion and aggregation. Growing research evidence suggests that VWF also mediates the prevention or protesting of hepatocellular carcinoma (HCC) in chronic hepatitis B (CHB) patients from several clinical studies. While the mechanism of VWF in HCC protection or protest is still unclear, further study is required. This article aims to rationalize the role of VWF in the development of HCC, and the functional domain of VWF in cancer as well as cross-talking with platelets and miRNAs. This article also looks forward to the future development and challenges of VWF research.
Collapse
Affiliation(s)
- Qiong Xiang
- Medical Research Center, Institute of Medicine,
Jishou University, Jishou, China
| | - Jia-Sheng Tao
- Medical Research Center, Institute of Medicine,
Jishou University, Jishou, China
| | - Jing-Jing Li
- Medical Research Center, Institute of Medicine,
Jishou University, Jishou, China
| | - Rong-Bo Tian
- Medical Research Center, Institute of Medicine,
Jishou University, Jishou, China
| | - Xian-Hui Li
- Institute of Pharmaceutical Sciences, Jishou
University, 120 Ren min south road, Jishou 416000, China
| |
Collapse
|
40
|
Ma C, Wu Z, Wang X, Huang M, Wei X, Wang W, Qu H, Qiaolongbatu X, Lou Y, Jing L, Fan G. A systematic comparison of anti-angiogenesis efficacy and cardiotoxicity of receptor tyrosine kinase inhibitors in zebrafish model. Toxicol Appl Pharmacol 2022; 450:116162. [PMID: 35830948 DOI: 10.1016/j.taap.2022.116162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
Pathological angiogenesis is fundamental to progression of cancerous tumors and blinding eye diseases. Anti-angiogenic receptor tyrosine kinase inhibitors (TKIs) are in broad use for the treatment of these diseases. With more and more TKIs available, it is a challenge to make an optimal choice. It remains unclear whether TKIs demonstrate similar anti-angiogenesis activities in different tissues. Many TKIs have shown varying degrees of toxic effects that should also be considered in clinical use. This study investigates the anti-angiogenic effects of 13 FDA-approved TKIs on the intersegmental vessels (ISVs), subintestinal vessels (SIVs) and retinal vasculature in zebrafish embryos. The results show that vascular endothelial growth factor receptor TKIs (VEGFR-TKIs) exhibit anti-angiogenic abilities similarly on ISVs and SIVs, and their efficacy is consistent with their IC50 values against VEGFR2. In addition, VEGFR-TKIs selectively induces the apoptosis of endothelial cells in immature vessels. Among all TKIs tested, axitinib demonstrates a strong inhibition on retinal neovascularization at a low dose that do not strongly affect ISVs and SIVs, supporting its potential application for retinal diseases. Zebrafish embryos demonstrate cardiotoxicity after VEGFR-TKIs treatment, and ponatinib and sorafenib show a narrow therapeutic window, suggesting that these two drugs may need to be dosed more carefully in patients. We propose that zebrafish is an ideal model for studying in vivo antiangiogenic efficacy and cardiotoxicity of TKIs.
Collapse
Affiliation(s)
- Cui Ma
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Zhenghua Wu
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Xue Wang
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China
| | - Mengling Huang
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China
| | - Xiaona Wei
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China
| | - Wei Wang
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China
| | - Han Qu
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Xijier Qiaolongbatu
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Yuefen Lou
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, PR China.
| | - Lili Jing
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China.
| | - Guorong Fan
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China.
| |
Collapse
|
41
|
Venkatakrishnan G, Parvathi VD. Decoding the mechanism of vascular morphogenesis to explore future prospects in targeted tumor therapy. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:178. [PMID: 36036322 DOI: 10.1007/s12032-022-01810-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
Abstract
The growth and formation of blood vessels is an undeniably fundamental biological process crucial to controlling overall development of an organism. This phenomenon consists of two separate processes, commencing with vasculogenesis, which refers to the process of blood vessel formation strictly in embryonic stages, via de novo endothelial cell synthesis. Angiogenesis continues the formation of the vascular network via sprouting and splitting. Tumor growth is dependent on the growth and supply of blood vessels around the tumor mass. Extracellular matrix (ECM) molecules can promote angiogenesis by establishing a vascular network and sequestering pro-angiogenic growth factors. Although the methods by which tumor-associated fibroblasts (which differ in phenotype from normal fibroblasts) influence angiogenesis are unknown, they are thought to be a major source of growth factors and cytokines that attract endothelial cells. Chemokines and growth factors (sourced from macrophages and neutrophils) are also regulators of angiogenesis. When considered as a whole, the tumor microenvironment is a heterogenous and dynamic mass of tissue, composed of a plethora of cell types and an ECM that can fundamentally control the pathological angiogenic switch. Angiogenesis is involved in numerous diseases, and understanding the various mechanisms surrounding this phenomenon is key to finding cures.
Collapse
Affiliation(s)
- Gayathri Venkatakrishnan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, 600116, India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, 600116, India.
| |
Collapse
|
42
|
Identification of hub genes, modules and biological pathways associated with lung adenocarcinoma: A system biology approach. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Zhou J, Hu Y, Zhu W, Nie C, Zhao W, Faje AT, Labelle KE, Swearingen B, Lee H, Hedley-Whyte ET, Zhang X, Jones PS, Miller KK, Klibanski A, Zhou Y, Soberman RJ. Sprouting Angiogenesis in Human Pituitary Adenomas. Front Oncol 2022; 12:875219. [PMID: 35600354 PMCID: PMC9117625 DOI: 10.3389/fonc.2022.875219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Angiogenesis in pituitary tumors is not fully understood, and a better understanding could help inform new pharmacologic therapies, particularly for aggressive pituitary tumors. Materials and Methods 219 human pituitary tumors and 12 normal pituitary glands were studied. Angiogenic genes were quantified by an angiogenesis qPCR array and a TaqMan probe-based absolute qPCR. Angiogenesis inhibition in pituitary tumors was evaluated in vitro with the endothelial tube formation assay and in vivo in RbΔ19 mice. Results 71 angiogenic genes, 40 of which are known to be involved in sprouting angiogenesis, were differentially expressed in pituitary tumors. Expression of endothelial markers CD31, CD34, and ENG was significantly higher in pituitary tumors, by 5.6, 22.3, and 8.2-fold, respectively, compared to in normal pituitary tissue. There was no significant difference in levels of the lymphatic endothelial marker LYVE1 in pituitary tumors compared with normal pituitary gland tissue. Pituitary tumors also expressed significantly higher levels of angiogenesis growth factors, including VEGFA (4.2-fold), VEGFB (2.2), VEGFC (19.3), PGF (13.4), ANGPT2 (9.2), PDGFA (2.7), PDGFB (10.5) and TGFB1 (3.8) compared to normal pituitary tissue. Expression of VEGFC and PGF was highly correlated with the expression of endothelial markers in tumor samples, including CD31, CD34, and ENG (endoglin, a co-receptor for TGFβ). Furthermore, VEGFR inhibitors inhibited angiogenesis induced by human pituitary tumors and prolonged survival of RbΔ19 mice. Conclusion Human pituitary tumors are characterized by more active angiogenesis than normal pituitary gland tissue in a manner consistent with sprouting angiogenesis. Angiogenesis in pituitary tumors is regulated mainly by PGF and VEGFC, not VEGFA and VEGFB. Angiogenesis inhibitors, such as the VEGFR2 inhibitor cabozantinib, may merit further investigation as therapies for aggressive human pituitary tumors.
Collapse
Affiliation(s)
- Jie Zhou
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yaomin Hu
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Wende Zhu
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Chuansheng Nie
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Wenxiu Zhao
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Alexander T. Faje
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Kay E. Labelle
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Brooke Swearingen
- Neurosurgery Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - E. Tessa Hedley-Whyte
- Department of Pathology (Neuropathology), Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xun Zhang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Pamela S. Jones
- Neurosurgery Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Karen K. Miller
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yunli Zhou
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Yunli Zhou,
| | - Roy J. Soberman
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
44
|
Puliani G, Sesti F, Anastasi E, Verrico M, Tarsitano MG, Feola T, Campolo F, Di Gioia CRT, Venneri MA, Angeloni A, Appetecchia M, Lenzi A, Isidori AM, Faggiano A, Giannetta E. Angiogenic factors as prognostic markers in neuroendocrine neoplasms. Endocrine 2022; 76:208-217. [PMID: 35088292 DOI: 10.1007/s12020-021-02942-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/07/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Angiogenic markers in neuroendocrine neoplasms (NENs) have recently received increasing attention, but their clinical role remains unclear. The aim of this study was to evaluate the role of angiogenic markers in NEN aggressiveness and prognosis. METHODS We performed a prospective observational study including 46 consecutive patients with proven NENs of pulmonary (45.65%) and gastro-entero-pancreatic (GEP) (54.35%) origin and 29 healthy controls. Circulating pro-angiogenic factors were measured by ELISA assay. ANG2 tissue expression was evaluated in a subgroup of ten patients by immunohistochemistry. RESULTS The study demonstrated a significantly higher level of ANG2, ANG1, sTIE2, and PROK2 in patients affected by NENs compared to controls. In the NENs' group we measured that: (i) ANG2 levels were higher in poorly vs well-differentiated NENs: 4.85 (2.75-7.42) vs 3.16 (1.66-6.36) ng/ml, p = 0.046 and in tumor stage 3-4 compared to stage 1-2: 4.24 (2.66-8.72) vs 2.73 (1.53-5.70), p = 0.044; (ii) ANG2 and PROK2 were significantly higher in patents with progressive disease compared to stable disease: ANG2 = 6.26 (3.98-10.99) vs 2.73 (1.65-4.36) pg/ml, p = 0.001; PROK2 = 29.19 (28.42-32.25) vs 28.37 (28.14-28.91) pg/ml, p = 0.035. Immunohistochemistry confirmed ANG2 expression in tumor specimens. CONCLUSIONS We documented higher levels of angiogenic markers in NENs, with an association between ANG2 serum levels and NENs morphology and staging. In both GEP and lung NENs, ANG2 and PROK2 are higher in case of tumor progression, suggesting a potential role as prognostic markers in NENs patients.
Collapse
Affiliation(s)
- Giulia Puliani
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Franz Sesti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Emanuela Anastasi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Monica Verrico
- Medical Oncology Unit A, Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Tiziana Feola
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Neuroendocrinology, Neuromed Institute, IRCCS, Pozzilli, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marialuisa Appetecchia
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Elisa Giannetta
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
45
|
Taghizadeh E, Tazik K, Taheri F, Shayankia G, Gheibihayat SM, Saberi A. Abnormal angiogenesis associated with HIF-1α/VEGF signaling pathway in recurrent miscarriage along with therapeutic goals. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Poto R, Cristinziano L, Modestino L, de Paulis A, Marone G, Loffredo S, Galdiero MR, Varricchi G. Neutrophil Extracellular Traps, Angiogenesis and Cancer. Biomedicines 2022; 10:biomedicines10020431. [PMID: 35203640 PMCID: PMC8962440 DOI: 10.3390/biomedicines10020431] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/07/2022] Open
Abstract
Human neutrophils, the most abundant circulating leukocytes, are fundamental components of the host response against different pathogens. Until a few years ago, neutrophils received limited attention in cancer immunology. Recently, it was discovered that both circulating, and tumor-associated, neutrophils possess functional plasticity when exposed to various inflammatory stimuli and in the tumor microenvironment. Neutrophils and their mediators can exert several pro-tumor activities in cancer and promote metastasis through different mechanisms. Angiogenesis plays a pivotal role in inflammation and tumor growth. Activated human neutrophils release several angiogenic factors [vascular endothelial growth factor-A (VEGF-A), angiopoietin-1 (ANGPT1), CXCL8, hepatocyte growth factor (HGF), and metalloproteinase 9 (MMP-9)] and form neutrophil extracellular traps (NETs). NETs promote tumor growth and metastasis formation through several mechanisms: they can awake dormant cancer cells, capture circulating tumor cells, coat and shield cancer cells, thus preventing CD8+- and natural killer (NK) cell-mediated cytotoxicity. ANGPTs released by endothelial and periendothelial mural cells induce platelet-activating factor (PAF) synthesis and neutrophil adhesion to endothelial cells. NETs can directly exert several proangiogenic activities in human endothelial cells and NETs induced by ANGPTs and PAF increase several aspects of angiogenesis in vitro and in vivo. A better understanding of the pathophysiological functions of NETs in cancer and angiogenesis could be of importance in the early diagnosis, prevention and treatment of tumors.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (L.C.); (L.M.); (A.d.P.); (G.M.); (S.L.); (M.R.G.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (L.C.); (L.M.); (A.d.P.); (G.M.); (S.L.); (M.R.G.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (L.C.); (L.M.); (A.d.P.); (G.M.); (S.L.); (M.R.G.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (L.C.); (L.M.); (A.d.P.); (G.M.); (S.L.); (M.R.G.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (L.C.); (L.M.); (A.d.P.); (G.M.); (S.L.); (M.R.G.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (L.C.); (L.M.); (A.d.P.); (G.M.); (S.L.); (M.R.G.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (L.C.); (L.M.); (A.d.P.); (G.M.); (S.L.); (M.R.G.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (L.C.); (L.M.); (A.d.P.); (G.M.); (S.L.); (M.R.G.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
47
|
Plasma ratio of angiopoietin-2 to angiopoietin-1 is a biomarker of vascular impairment in chronic obstructive pulmonary disease patients. Angiogenesis 2022; 25:275-277. [PMID: 35013842 DOI: 10.1007/s10456-021-09826-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 11/28/2021] [Indexed: 11/01/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) patients have an increased risk of cardiovascular disease. Muscle biopsies have revealed that the muscle vasculature in COPD patients was characterized by a capillary rarefaction with reduced pericyte coverage. Thus, an imbalance of the plasma Angiopoietin-1 / Angiopoietin-2 (Ang2/Ang1) ratio could constitute a non-invasive marker of the muscle vascular impairment. In 14 COPD patients (65.5±5.1-year-old) and 7 HC (63.3±5.8-year-old), plasma samples were obtained at 3 time-points: before, after 5 weeks (W5), and after 10 weeks (W10) of exercise training. COPD patients showed a muscle capillary rarefaction at baseline with a reduced capillary coverage at W5 and W10. The plasma Ang2/Ang1 ratio was significantly higher in COPD patients vs. HC during the training (Group: p=0.01). The plasma Ang2/Ang1 ratio was inversely correlated with the pericyte coverage index regardless of the time period W0 (r=-0.51; p=0.02), W5 (r=-0.48; p=0.04), and W10 (r=-0.61; p<0.01). Last, in ECFC/MSC co-cultures exposed to the W10 serum from COPD patients and HC, the plasma Ang2/Ang1 at W10 were inversely correlated with calponin staining (r=-0.64. p=0.01 and r= 0.71. p<0.01, Fig. 1B), in line with a role of this plasma Ang2/Ang1 in the MSC differentiation into pericytes. Altogether, plasma Ang2/Ang1 ratio could constitute a potential marker of the vascular impairment in COPD patients.
Collapse
|
48
|
Du S, Qian J, Tan S, Li W, Liu P, Zhao J, Zeng Y, Xu L, Wang Z, Cai J. Tumor cell-derived exosomes deliver TIE2 protein to macrophages to promote angiogenesis in cervical cancer. Cancer Lett 2022; 529:168-179. [PMID: 35007697 DOI: 10.1016/j.canlet.2022.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022]
Abstract
Tyrosine kinase with immunoglobulin and epidermal growth factor homology domains 2 (TIE2)-expressing macrophages (TEMs) are an angiogenesis-promoting subset of tumor-associated macrophages that have been demonstrated to be increased in solid tumors and associated with the progression of cervical cancer. However, the induction mechanism of TEMs remains unclear. Here, based on multicolor immunofluorescence of 58 cervical cancer tissues and the GEPIA database, we found that TEMs were increased in TIE2-high cervical cancer and related to shorter survival. In vitro and in vivo experiments verified that exosomes derived from TIE2-high cervical cancer cells transferred TIE2 protein directly to macrophages, thereby inducing TEMs. Similar to primary TEMs, TEMs induced by tumor-derived exosomes promoted angiogenesis, could be induced by angiopoietin-2, and possessed an M2-like phenotype. In conclusion, exosomes derived from TIE2-high cervical cancer cells induce TEMs by directly transporting TIE2 to promote tumor angiogenesis.
Collapse
Affiliation(s)
- Shi Du
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China.
| | - Jiaxian Qian
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China.
| | - Shuran Tan
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China.
| | - Wenhan Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China.
| | - Pan Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China.
| | - Jing Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China.
| | - Ya Zeng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China.
| | - Linjuan Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China.
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China.
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, 430022, PR China.
| |
Collapse
|
49
|
Impact of Bariatric Surgery on Adipose Tissue Biology. J Clin Med 2021; 10:jcm10235516. [PMID: 34884217 PMCID: PMC8658722 DOI: 10.3390/jcm10235516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Bariatric surgery (BS) procedures are actually the most effective intervention to help subjects with severe obesity achieve significant and sustained weight loss. White adipose tissue (WAT) is increasingly recognized as the largest endocrine organ. Unhealthy WAT expansion through adipocyte hypertrophy has pleiotropic effects on adipocyte function and promotes obesity-associated metabolic complications. WAT dysfunction in obesity encompasses an altered adipokine secretome, unresolved inflammation, dysregulated autophagy, inappropriate extracellular matrix remodeling and insufficient angiogenic potential. In the last 10 years, accumulating evidence suggests that BS can improve the WAT function beyond reducing the fat depot sizes. The causal relationships between improved WAT function and the health benefits of BS merits further investigation. This review summarizes the current knowledge on the short-, medium- and long-term outcomes of BS on the WAT composition and function.
Collapse
|
50
|
Duran CL, Borriello L, Karagiannis GS, Entenberg D, Oktay MH, Condeelis JS. Targeting Tie2 in the Tumor Microenvironment: From Angiogenesis to Dissemination. Cancers (Basel) 2021; 13:cancers13225730. [PMID: 34830883 PMCID: PMC8616247 DOI: 10.3390/cancers13225730] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary The dissemination of cancer cells from their original location to distant organs where they grow, a process called metastasis, causes more than 90% of cancer deaths. The identification of the molecular mechanisms of metastasis and the development of anti-metastatic therapies are essential to increase patient survival. In recent years, targeting the tumor microenvironment has become a promising avenue to prevent both tumor growth and metastasis. As the tumor microenvironment contains not only cancer cells but also blood vessels, immune cells, and other non-cancerous cells, it is naïve to think that therapy only affects a single cell type in this complex environment. Here we review the importance, and ways to inhibit the function, of one therapeutic target: the receptor Tie2. Tie2 is a receptor present on the cell surface of several cell types within the tumor microenvironment and regulates tumor angiogenesis, growth, and metastasis to distant organs. Abstract The Tie2 receptor tyrosine kinase is expressed in vascular endothelial cells, tumor-associated macrophages, and tumor cells and has been a major focus of research in therapies targeting the tumor microenvironment. The most extensively studied Tie2 ligands are Angiopoietin 1 and 2 (Ang1, Ang2). Ang1 plays a critical role in vessel maturation, endothelial cell migration, and survival. Ang2, depending on the context, may function to disrupt connections between the endothelial cells and perivascular cells, promoting vascular regression. However, in the presence of VEGF-A, Ang2 instead promotes angiogenesis. Tie2-expressing macrophages play a critical role in both tumor angiogenesis and the dissemination of tumor cells from the primary tumor to secondary sites. Therefore, Ang-Tie2 signaling functions as an angiogenic switch during tumor progression and metastasis. Here we review the recent advances and complexities of targeting Tie2 signaling in the tumor microenvironment as a possible anti-angiogenic, and anti-metastatic, therapy and describe its use in combination with chemotherapy.
Collapse
Affiliation(s)
- Camille L. Duran
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA; (C.L.D.); (L.B.); (D.E.); (M.H.O.)
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
| | - Lucia Borriello
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA; (C.L.D.); (L.B.); (D.E.); (M.H.O.)
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
| | - George S. Karagiannis
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
- Department of Microbiology and Immunology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| | - David Entenberg
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA; (C.L.D.); (L.B.); (D.E.); (M.H.O.)
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| | - Maja H. Oktay
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA; (C.L.D.); (L.B.); (D.E.); (M.H.O.)
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| | - John S. Condeelis
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA; (C.L.D.); (L.B.); (D.E.); (M.H.O.)
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Correspondence:
| |
Collapse
|