1
|
Dinga E, Marume U, Chelopo GM. Effect of Melia azedarach seed mediated nano-ZnO on growth performance, protein utilisation efficiency, haematology and nutritional status in pigs. Trop Anim Health Prod 2024; 56:371. [PMID: 39477912 PMCID: PMC11525381 DOI: 10.1007/s11250-024-04217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
The current study was conducted to investigate the effect of Melia azedarach seed-mediated ZnO nanoparticles on growth performance, protein utilisation efficiency, haematology and nutritional status in pigs. A total of 48 pigs were allocated to the following six treatments replicated 8 times: Negative Control (NC, No antibiotic), Treatment 2: Positive control (PC) given a conventional antibiotic (Oxytetracycline, 40 mg/kg feed); Treatment 3: Nano-ZnO 300 mg/L (N300ZnO), Treatment 4: Group given 150 mg/L Melia azedarach seed mediated nano-ZnO (N150MA), Treatment 5: Group given 300 mg/L Melia azedarach seed mediated nano-ZnO (N300MA), Treatment 6: Group given 450 mg/L Melia azedarach seed mediated nano-ZnO (N450MA). The experiment was conducted over 7 weeks. Melia azedarach seed-mediated ZnO nanoparticles had no significant effect on growth performance apart from average daily feed intake (ADFI) with treatment 3 having the highest value. It significantly affected protein consumption and growth efficiency but not protein efficiency ratio and specific growth rate. Melia azedarach seed-mediated ZnO nanoparticles had no significant impact on nutritional parameters, serum minerals apart from phosphorus which can negatively affect renal functioning.
Collapse
Affiliation(s)
- E Dinga
- Department of Animal Science, School of Agricultural Sciences, Faculty of Agriculture, Science and Technology, North West University, P Bag X 2046, Mmabatho, South Africa.
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North West University, P Bag X 2046, Mmabatho, 2735, South Africa.
| | - U Marume
- Department of Animal Science, School of Agricultural Sciences, Faculty of Agriculture, Science and Technology, North West University, P Bag X 2046, Mmabatho, South Africa
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North West University, P Bag X 2046, Mmabatho, 2735, South Africa
| | - G M Chelopo
- Department of Animal Science, School of Agricultural Sciences, Faculty of Agriculture, Science and Technology, North West University, P Bag X 2046, Mmabatho, South Africa
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North West University, P Bag X 2046, Mmabatho, 2735, South Africa
| |
Collapse
|
2
|
Zhang C, Liu B, Sheng J, Wang J, Zhu W, Xie C, Zhou X, Zhang Y, Meng Q, Li Y. Potential targets for the treatment of MI: GRP75-mediated Ca 2+ transfer in MAM. Eur J Pharmacol 2024; 971:176530. [PMID: 38527700 DOI: 10.1016/j.ejphar.2024.176530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
After myocardial infarction (MI), there is a notable disruption in cellular calcium ion homeostasis and mitochondrial function, which is believed to be intricately linked to endoplasmic reticulum (ER) stress. This research endeavors to elucidate the involvement of glucose regulated protein 75 (GRP75) in post-MI calcium ion homeostasis and mitochondrial function. In MI rats, symptoms of myocardial injury were accompanied by an increase in the activation of ER stress. Moreover, in oxygen-glucose deprivation (OGD)-induced cardiomyocytes, it was confirmed that inhibiting ER stress exacerbated intracellular Ca2+ disruption and cell apoptosis. Concurrently, the co-localization of GRP75 with IP3R and VDAC1 increased under ER stress in cardiomyocytes. In OGD-induced cardiomyocytes, knockdown of GRP75 not only reduced the Ca2+ levels in both the ER and mitochondria and improved the ultrastructure of cardiomyocytes, but it also increased the number of contact points between the ER and mitochondria, reducing mitochondria associated endoplasmic reticulum membrane (MAM) formation, and decreased cell apoptosis. Significantly, knockdown of GRP75 did not affect the protein expression of PERK and hypoxia-inducible factor 1α (HIF-1α). Transcriptome analysis of cardiomyocytes revealed that knockdown of GRP75 mainly influenced the molecular functions of sialyltransferase and IP3R, as well as the biosynthesis of glycosphingolipids and lactate metabolism. The complex interaction between the ER and mitochondria, driven by the GRP75 and its associated IP3R1-GRP75-VDAC1 complex, is crucial for calcium homeostasis and cardiomyocyte's adaptive response to ER stress. Modulating GRP75 could offer a strategy to regulate calcium dynamics, diminish glycolysis, and thereby mitigate cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Chenyan Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bowen Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiaxing Sheng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weijie Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chen Xie
- School of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xuan Zhou
- School of Elderly Care Services and Management, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuxin Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qinghai Meng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yu Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Ivkovic T, Culafic T, Tepavcevic S, Romic S, Stojiljkovic M, Kostic M, Stanisic J, Koricanac G. Cholecalciferol ameliorates insulin signalling and insulin regulation of enzymes involved in glucose metabolism in the rat heart. Arch Physiol Biochem 2024; 130:196-204. [PMID: 34758675 DOI: 10.1080/13813455.2021.2001020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/12/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
CONTEXT The evidence on potential cross-talk of vitamin D and insulin in the regulation of cardiac metabolism is very scanty. OBJECTIVE Cholecalciferol was administered to male Wistar rats for six weeks to study its effects on cardiac glucose metabolism regulation. MATERIALS AND METHODS An expression, phosphorylation and/or subcellular localisation of insulin signalling molecules, glucose transport and metabolism key proteins were studied. RESULTS Circulating non-esterified fatty acids (NEFA) level was lower after cholecalciferol administration. Cholecalciferol decreased cardiac insulin receptor substrate 1 Ser307 phosphorylation, while insulin-stimulated Akt Thr308 phosphorylation was increased. Cardiac 6-phosphofructo-2-kinase protein, hexokinase 2 mRNA level and insulin-stimulated glycogen synthase kinase 3β Ser9 phosphorylation were also increased. Finally, FOXO1 transcription factor cytosolic level was reduced. CONCLUSION Vitamin D-related improvement of insulin signalling and insulin regulation of glucose metabolism in the rat heart is accompanied by the decrease of blood NEFA level and dysregulation of cardiac FOXO1 signalling.
Collapse
Affiliation(s)
- Tamara Ivkovic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tijana Culafic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Snezana Tepavcevic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Snjezana Romic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mojca Stojiljkovic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milan Kostic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Stanisic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Goran Koricanac
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Packer M. SGLT2 inhibitors: role in protective reprogramming of cardiac nutrient transport and metabolism. Nat Rev Cardiol 2023; 20:443-462. [PMID: 36609604 DOI: 10.1038/s41569-022-00824-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/09/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce heart failure events by direct action on the failing heart that is independent of changes in renal tubular function. In the failing heart, nutrient transport into cardiomyocytes is increased, but nutrient utilization is impaired, leading to deficient ATP production and the cytosolic accumulation of deleterious glucose and lipid by-products. These by-products trigger downregulation of cytoprotective nutrient-deprivation pathways, thereby promoting cellular stress and undermining cellular survival. SGLT2 inhibitors restore cellular homeostasis through three complementary mechanisms: they might bind directly to nutrient-deprivation and nutrient-surplus sensors to promote their cytoprotective actions; they can increase the synthesis of ATP by promoting mitochondrial health (mediated by increasing autophagic flux) and potentially by alleviating the cytosolic deficiency in ferrous iron; and they might directly inhibit glucose transporter type 1, thereby diminishing the cytosolic accumulation of toxic metabolic by-products and promoting the oxidation of long-chain fatty acids. The increase in autophagic flux mediated by SGLT2 inhibitors also promotes the clearance of harmful glucose and lipid by-products and the disposal of dysfunctional mitochondria, allowing for mitochondrial renewal through mitochondrial biogenesis. This Review describes the orchestrated interplay between nutrient transport and metabolism and nutrient-deprivation and nutrient-surplus signalling, to explain how SGLT2 inhibitors reverse the profound nutrient, metabolic and cellular abnormalities observed in heart failure, thereby restoring the myocardium to a healthy molecular and cellular phenotype.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX, USA.
- Imperial College London, London, UK.
| |
Collapse
|
5
|
Ma L, Shao M, Cheng W, Jiang J, Chen X, Tan N, Ling G, Yang Y, Wang Q, Yang R, Li C, Wang Y. Neocryptotanshinone ameliorates insufficient energy production in heart failure by targeting retinoid X receptor alpha. Biomed Pharmacother 2023; 163:114868. [PMID: 37201263 DOI: 10.1016/j.biopha.2023.114868] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023] Open
Abstract
Retinoid X receptor alpha (RXRα) is a nuclear transcription factor that extensively regulates energy metabolism in cardiovascular diseases. Identification of targeted RXRα drugs for heart failure (HF) therapy is urgently needed. Neocryptotanshinone (NCTS) is a component derived from Salvia miltiorrhiza Bunge, the effect and mechanism of which for treating HF have not been reported. The goal of this study was to explore the pharmacological effects of NCTS on energy metabolism to protect against HF post-acute myocardial infarction (AMI) via RXRα. We established a left anterior descending artery ligation-induced HF post-AMI model in mice and an oxygen-glucose deprivation-reperfusion-induced H9c2 cell model to investigate the cardioprotective effect of NCTS. Component-target binding techniques, surface plasmon resonance (SPR), microscale thermophoresis (MST) and small interfering RNA (siRNA) transfection were applied to explore the potential mechanism by which NCTS targets RXRα. The results showed that NCTS protects the heart against ischaemic damage, evidenced by improvement of cardiac dysfunction and attenuation of cellular hypoxic injury. Importantly, the SPR and MST results showed that NCTS has a high binding affinity for RXRα. Meanwhile, the critical downstream target genes of RXRα/PPARα, which are involved in fatty acid metabolism, including Cd36 and Cpt1a, were upregulated under NCTS treatment. Moreover, NCTS enhanced TFAM levels, promoted mitochondrial biogenesis and increased myocardial adenosine triphosphate levels by activating RXRα. In conclusion, we confirmed that NCTS improves myocardial energy metabolism, including fatty acid oxidation and mitochondrial biogenesis, by regulating the RXRα/PPARα pathway in mice with HF post-AMI.
Collapse
Affiliation(s)
- Lin Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingyan Shao
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenkun Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinchi Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nannan Tan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guanjing Ling
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ye Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ran Yang
- Guang'anmen Hospital China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Chun Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing 100029, China; Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing 100029, China.
| |
Collapse
|
6
|
Xu Q, Zhao YM, He NQ, Gao R, Xu WX, Zhuo XJ, Ren Z, Wu CY, Liu LS. PCSK9: A emerging participant in heart failure. Biomed Pharmacother 2023; 158:114106. [PMID: 36535197 DOI: 10.1016/j.biopha.2022.114106] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Heart failure (HF) is a complex clinical syndrome caused by various cardiovascular diseases. Its main pathogenesis includes cardiomyocyte loss, myocardial energy metabolism disorder, and activation of cardiac inflammation. Due to the clinically unsatisfactory treatment of heart failure, different mechanisms need to be explored to provide new targets for the treatment of this disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9), a gene mainly related to familial hypercholesterolemia, was discovered in 2003. Aside from regulating lipid metabolism, PCSK9 may be involved in other biological processes such as apoptosis, autophagy, pyroptosis, inflammation, and tumor immunity and related to diabetes and neurodegenerative diseases. Recently, clinical data have shown that the circulating PCSK9 level is significantly increased in patients with heart failure, and it is related to the prognosis for heart failure. Furthermore, in animal models and patients with myocardial infarction, PCSK9 in the infarct margin area was also found to be significantly increased, which further suggested that PCSK9 might be closely related to heart failure. However, the specific mechanism of how PCSK9 participates in heart failure remains to be further explored. The purpose of this review is to summarize the potential mechanism of PCSK9's involvement in heart failure, thereby providing a new treatment strategy for heart failure.
Collapse
Affiliation(s)
- Qian Xu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Yi-Meng Zhao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Nai-Qi He
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Rong Gao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Wen-Xin Xu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Xiu-Juan Zhuo
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Chun-Yan Wu
- The Third Affiliated Hospital, Department of Cardiovascular Medicine, University of South China, Hengyang, Hunan Province 421001, PR China.
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan Province 421001, PR China.
| |
Collapse
|
7
|
Huang X, Zeng Z, Li S, Xie Y, Tong X. The Therapeutic Strategies Targeting Mitochondrial Metabolism in Cardiovascular Disease. Pharmaceutics 2022; 14:pharmaceutics14122760. [PMID: 36559254 PMCID: PMC9788260 DOI: 10.3390/pharmaceutics14122760] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is a group of systemic disorders threatening human health with complex pathogenesis, among which mitochondrial energy metabolism reprogramming has a critical role. Mitochondria are cell organelles that fuel the energy essential for biochemical reactions and maintain normal physiological functions of the body. Mitochondrial metabolic disorders are extensively involved in the progression of CVD, especially for energy-demanding organs such as the heart. Therefore, elucidating the role of mitochondrial metabolism in the progression of CVD is of great significance to further understand the pathogenesis of CVD and explore preventive and therapeutic methods. In this review, we discuss the major factors of mitochondrial metabolism and their potential roles in the prevention and treatment of CVD. The current application of mitochondria-targeted therapeutic agents in the treatment of CVD and advances in mitochondria-targeted gene therapy technologies are also overviewed.
Collapse
Affiliation(s)
- Xiaoyang Huang
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhenhua Zeng
- Biomedical Research Center, Hunan University of Medicine, Huaihua 418000, China
| | - Siqi Li
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Yufei Xie
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoyong Tong
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Jinfeng Laboratory, Chongqing 401329, China
- Correspondence:
| |
Collapse
|
8
|
The Valorization of Banana By-Products: Nutritional Composition, Bioactivities, Applications, and Future Development. Foods 2022. [PMCID: PMC9602299 DOI: 10.3390/foods11203170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bananas are among the world’s main economic crops and one of the world’s most-selling fresh fruits. However, a great deal of waste and by-products is produced during banana harvesting and consumption, including stems, leaves, inflorescences, and peels. Some of them have the potential to be used to develop new foods. Furthermore, studies have found that banana by-products contain many bioactive substances that have antibacterial, anti-inflammatory, and antioxidant properties and other functions. At present, research on banana by-products has mainly focused on various utilizations of banana stems and leaves, as well as the extraction of active ingredients from banana peels and inflorescences to develop high-value functional products. Based on the current research on the utilization of banana by-products, this paper summarized the composition information, functions, and comprehensive utilization of banana by-products. Moreover, the problems and future development in the utilization of by-products are reviewed. This review is of great value in expanding the potential applications of banana stems, leaves, inflorescences, and peels, which will not only help to reduce waste of agricultural by-product resources and ecological pollution but will also be useful for the development of essential products as alternative sources of healthy food in the future.
Collapse
|
9
|
Wang M, Zhao M, Yu J, Xu Y, Zhang J, Liu J, Zheng Z, Ye J, Wang Z, Ye D, Feng Y, Xu S, Pan W, Wei C, Wan J. MCC950, a Selective NLRP3 Inhibitor, Attenuates Adverse Cardiac Remodeling Following Heart Failure Through Improving the Cardiometabolic Dysfunction in Obese Mice. Front Cardiovasc Med 2022; 9:727474. [PMID: 35647084 PMCID: PMC9133382 DOI: 10.3389/fcvm.2022.727474] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is often accompanied by hypertension. Although a large number of studies have confirmed that NLRP3 inhibitors can improve cardiac remodeling in mice with a normal diet, it is still unclear whether NLRP3 inhibitors can improve heart failure (HF) induced by pressure overload in obese mice. The purpose of this study was to explore the role of MCC950, a selective NLRP3 inhibitor, on HF in obese mice and its metabolic mechanism. Obese mice induced with a 10-week high-fat diet (HFD) were used in this study. After 4 weeks of HFD, transverse aortic constriction (TAC) surgery was performed to induce a HF model. MCC950 (10 mg/kg, once/day) was injected intraperitoneally from 2 weeks after TAC and continued for 4 weeks. After echocardiography examination, we harvested left ventricle tissues and performed molecular experiments. The results suggest that in obese mice, MCC950 can significantly improve cardiac hypertrophy and fibrosis caused by pressure overload. MCC950 ameliorated cardiac inflammation after TAC surgery and promoted M2 macrophage infiltration in the cardiac tissue. MCC950 not only restored fatty acid uptake and utilization by regulating the expression of CD36 and CPT1β but also reduced glucose uptake and oxidation via regulating the expression of GLUT4 and p-PDH. In addition, MCC950 affected the phosphorylation of AKT and AMPK in obese mice with HF. In summary, MCC950 can alleviate HF induced by pressure overload in obese mice via improving cardiac metabolism, providing a basis for the clinical application of NLRP3 inhibitors in obese patients with HF.
Collapse
Affiliation(s)
- Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Junping Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- *Correspondence: Jun Wan,
| |
Collapse
|
10
|
Mohd Zaini H, Roslan J, Saallah S, Munsu E, Sulaiman NS, Pindi W. Banana peels as a bioactive ingredient and its potential application in the food industry. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
11
|
Lazaropoulos MP, Elrod JW. Mitochondria in Pathological Cardiac Remodeling. CURRENT OPINION IN PHYSIOLOGY 2022; 25:100489. [PMID: 35274068 PMCID: PMC8903307 DOI: 10.1016/j.cophys.2022.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Adverse cardiac remodeling is often precipitated by chronic stress or injury inflicted upon the heart during the progression of cardiovascular diseases. Mitochondria play an important role in the cardiomyocyte response to stress by serving as a signaling hub for changes in cellular energetics, redox balance, contractile function, and cell death. Cardiac remodeling involves alterations to mitochondrial form and function that are either compensatory to maintain contractility or maladaptive, which promotes heart failure progression. In this mini-review, we focus on three mitochondrial processes that contribution to cardiac remodeling: Ca2+ signaling, mitochondrial dynamics, and mitochondrial metabolism.
Collapse
|
12
|
Liu J, Lian H, Yu J, Wu J, Chen X, wang P, tian L, Yang Y, Yang J, Li D, Guo S. Study on diverse pathological characteristics of heart failure in different stages based on proteomics. J Cell Mol Med 2022; 26:1169-1182. [PMID: 35048506 PMCID: PMC8831959 DOI: 10.1111/jcmm.17170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
Heart failure is a process characterized by significant disturbance of protein turnover. To elucidate the alterations in cardiac protein expression during the various phases of heart failure and to understand the nature of the processes involved, we analysed the proteome in an established heart failure model at different time points to monitor thousands of different proteins simultaneously. Here, heart failure was induced by transverse aortic constriction (TAC) in KM mice. At 2, 4 and 12 weeks after operation, protein expression profiles were determined in sham‐operated (controls) and TAC mice, using label‐free quantitative proteomics, leading to identification and quantification of almost 4000 proteins. The results of the KEGG pathway enrichment analysis and GO function annotation revealed critical pathways associated with the transition from cardiac hypertrophy to heart failure, such as energy pathways and matrix reorganization. Our study suggests that in the pathophysiology of heart failure, alterations of protein groups related to cardiac energy substrate metabolism and cytoskeleton remodelling could play the more dominant roles for the signalling that eventually results in contractile dysfunction and heart failure.
Collapse
Affiliation(s)
- Jinying Liu
- College of Traditional Chinese Medicine Chengde Medical University Chengde Hebei Province China
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Hongjian Lian
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
- Alexa League Central Hospital Inner Mongolia China
| | - Jiang Yu
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Jie Wu
- College of Traditional Chinese Medicine Chengde Medical University Chengde Hebei Province China
| | - Xiangyang Chen
- Youcare Pharmaceutical Group Drug Research Institute Beijing China
| | - Peng wang
- College of Traditional Chinese Medicine Chengde Medical University Chengde Hebei Province China
| | - Lei tian
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Yunfei Yang
- Beijing Qinglian Biotech Co., Ltd Beijing China
| | - Jiaqi Yang
- College of Traditional Chinese Medicine Chengde Medical University Chengde Hebei Province China
| | - Dong Li
- School of Basic Medical Sciences Anhui Medical University Hefei China
- State Key Laboratory of Proteomics Beijing Proteome Research Center National Center for Protein Sciences (PHOENIX Center) Beijing Institute of Lifeomics Beijing China
| | - Shuzhen Guo
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| |
Collapse
|
13
|
Shao-Mei W, Li-Fang Y, Li-Hong W. Traditional Chinese medicine enhances myocardial metabolism during heart failure. Biomed Pharmacother 2021; 146:112538. [PMID: 34922111 DOI: 10.1016/j.biopha.2021.112538] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022] Open
Abstract
The prognosis of various cardiovascular diseases eventually leads to heart failure (HF). An energy metabolism disorder of cardiomyocytes is important in explaining the molecular basis of HF; this will aid global research regarding treatment options for HF from the perspective of myocardial metabolism. There are many drugs to improve myocardial metabolism for the treatment of HF, including angiotensin receptor blocker-neprilysin inhibitor (ARNi) and sodium glucose cotransporter 2 (SGLT-2) inhibitors. Although Western medicine has made considerable progress in HF therapy, the morbidity and mortality of the disease remain high. Therefore, HF has attracted attention from researchers worldwide. In recent years, the application of traditional Chinese medicine (TCM) in HF treatment has been gradually accepted, and many studies have investigated the mechanism whereby TCM improves myocardial metabolism; the TCMs studied include Danshen yin, Fufang Danshen dripping pill, and Shenmai injection. This enables the clinical application of TCM in the treatment of HF by improving myocardial metabolism. We systematically reviewed the efficacy of TCM for improving myocardial metabolism during HF as well as the pharmacological effects of active TCM ingredients on the cardiovascular system and the potential mechanisms underlying their ability to improve myocardial metabolism. The results indicate that TCM may serve as a complementary and alternative approach for the prevention of HF. However, further rigorously designed randomized controlled trials are warranted to assess the effect of TCM on long-term hard endpoints in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Wang Shao-Mei
- Cardiovascular Medicine Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang, China
| | - Ye Li-Fang
- Cardiovascular Medicine Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang, China
| | - Wang Li-Hong
- Cardiovascular Medicine Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
14
|
Ishihama S, Yoshida S, Yoshida T, Mori Y, Ouchi N, Eguchi S, Sakaguchi T, Tsuda T, Kato K, Shimizu Y, Ohashi K, Okumura T, Bando YK, Yagyu H, Wettschureck N, Kubota N, Offermanns S, Kadowaki T, Murohara T, Takefuji M. LPL/AQP7/GPD2 promotes glycerol metabolism under hypoxia and prevents cardiac dysfunction during ischemia. FASEB J 2021; 35:e22048. [PMID: 34807469 DOI: 10.1096/fj.202100882r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 11/11/2022]
Abstract
In the heart, fatty acid is a major energy substrate to fuel contraction under aerobic conditions. Ischemia downregulates fatty acid metabolism to adapt to the limited oxygen supply, making glucose the preferred substrate. However, the mechanism underlying the myocardial metabolic shift during ischemia remains unknown. Here, we show that lipoprotein lipase (LPL) expression in cardiomyocytes, a principal enzyme that converts triglycerides to free fatty acids and glycerol, increases during myocardial infarction (MI). Cardiomyocyte-specific LPL deficiency enhanced cardiac dysfunction and apoptosis following MI. Deficiency of aquaporin 7 (AQP7), a glycerol channel in cardiomyocytes, increased the myocardial infarct size and apoptosis in response to ischemia. Ischemic conditions activated glycerol-3-phosphate dehydrogenase 2 (GPD2), which converts glycerol-3-phosphate into dihydroxyacetone phosphate to facilitate adenosine triphosphate (ATP) synthesis from glycerol. Conversely, GPD2 deficiency exacerbated cardiac dysfunction after acute MI. Moreover, cardiomyocyte-specific LPL deficiency suppressed the effectiveness of peroxisome proliferator-activated receptor alpha (PPARα) agonist treatment for MI-induced cardiac dysfunction. These results suggest that LPL/AQP7/GPD2-mediated glycerol metabolism plays an important role in preventing myocardial ischemia-related damage.
Collapse
Affiliation(s)
- Sohta Ishihama
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Satoya Yoshida
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Tatsuya Yoshida
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Yu Mori
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Noriyuki Ouchi
- Department of Molecular Medicine and Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Shunsuke Eguchi
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Teruhiro Sakaguchi
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Takuma Tsuda
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Katsuhiro Kato
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Yuuki Shimizu
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Koji Ohashi
- Department of Molecular Medicine and Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Takahiro Okumura
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Yasuko K Bando
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Hiroaki Yagyu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Mikito Takefuji
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| |
Collapse
|
15
|
Role of metabolomics in identifying cardiac hypertrophy: an overview of the past 20 years of development and future perspective. Expert Rev Mol Med 2021; 23:e8. [PMID: 34376261 DOI: 10.1017/erm.2021.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiac hypertrophy (CH) is an augmentation of either the right ventricular or the left ventricular mass in order to compensate for the increase of work load on the heart. Metabolic abnormalities lead to histological changes of cardiac myocytes and turn into CH. The molecular mechanisms that lead to initiate CH have been of widespread concern, hence the development of the new field of research, metabolomics: one 'omics' approach that can reveal comprehensive information of the paradigm shift of metabolic pathways network in contrast to individual enzymatic reaction-based metabolites, have attempted and until now only 19 studies have been conducted using experimental animal and human specimens. Nuclear magnetic resonance spectroscopy and mass spectrometry-based metabolomics studies have found that CH is a metabolic disease and is mainly linked to the harmonic imbalance of glycolysis, citric acid cycle, amino acids and lipid metabolism. The current review will summarise the main outcomes of the above mentioned 19 studies that have expanded our understanding of the molecular mechanisms that may lead to CH and eventually to heart failure.
Collapse
|
16
|
Li X, Li L, Lei W, Chua HZ, Li Z, Huang X, Wang Q, Li N, Zhang H. Traditional Chinese medicine as a therapeutic option for cardiac fibrosis: Pharmacology and mechanisms. Biomed Pharmacother 2021; 142:111979. [PMID: 34358754 DOI: 10.1016/j.biopha.2021.111979] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are one of the leading causes of death worldwide and cardiac fibrosis is a common pathological process for cardiac remodeling in cardiovascular diseases. Cardiac fibrosis not only accelerates the deterioration progress of diseases but also becomes a pivotal contributor for futile treatment in clinical cardiovascular trials. Although cardiac fibrosis is common and prevalent, effective medicines to provide sufficient clinical intervention for cardiac fibrosis are still unavailable. Traditional Chinese medicine (TCM) is the natural essence experienced boiling, fry, and other processing methods, including active ingredients, extracts, and herbal formulas, which have been applied to treat human diseases for a long history. Recently, research has increasingly focused on the great potential of TCM for the prevention and treatment of cardiac fibrosis. Here, we aim to clarify the identified pro-fibrotic mechanisms and intensively summarize the application of TCM in improving cardiac fibrosis by working on these mechanisms. Through comprehensively analyzing, TCM mainly regulates the following pathways during ameliorating cardiac fibrosis: attenuation of inflammation and oxidative stress, inhibition of cardiac fibroblasts activation, reduction of extracellular matrix accumulation, modulation of the renin-angiotensin-aldosterone system, modulation of autophagy, regulation of metabolic-dependent mechanisms, and targeting microRNAs. We also discussed the deficiencies and the development direction of anti-fibrotic therapies on cardiac fibrosis. The data reviewed here demonstrates that TCM shows a robust effect on alleviating cardiac fibrosis, which provides us a rich source of new drugs or drug candidates. Besides, we also hope this review may give some enlightenment for treating cardiac fibrosis in clinical practice.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hui Zi Chua
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zining Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xianglong Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| | - Qilong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Nan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
17
|
He Y, Huang W, Zhang C, Chen L, Xu R, Li N, Wang F, Han L, Yang M, Zhang D. Energy metabolism disorders and potential therapeutic drugs in heart failure. Acta Pharm Sin B 2021; 11:1098-1116. [PMID: 34094822 PMCID: PMC8144890 DOI: 10.1016/j.apsb.2020.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) is a global public health problem with high morbidity and mortality. A large number of studies have shown that HF is caused by severe energy metabolism disorders, which result in an insufficient heart energy supply. This deficiency causes cardiac pump dysfunction and systemic energy metabolism failure, which determine the development of HF and recovery of heart. Current HF therapy acts by reducing heart rate and cardiac preload and afterload, treating the HF symptomatically or delaying development of the disease. Drugs aimed at cardiac energy metabolism have not yet been developed. In this review, we outline the main characteristics of cardiac energy metabolism in healthy hearts, changes in metabolism during HF, and related pathways and targets of energy metabolism. Finally, we discuss drugs that improve cardiac function via energy metabolism to provide new research ideas for the development and application of drugs for treating HF.
Collapse
|
18
|
Rymut HE, Rund LA, Bolt CR, Villamil MB, Bender DE, Southey BR, Johnson RW, Rodriguez-Zas SL. Biochemistry and Immune Biomarkers Indicate Interacting Effects of Pre- and Postnatal Stressors in Pigs across Sexes. Animals (Basel) 2021; 11:987. [PMID: 33915976 PMCID: PMC8067328 DOI: 10.3390/ani11040987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022] Open
Abstract
The effects of maternal immune activation (MIA) elicited by a prenatal stressor and postnatal metabolic or immune stressors on chemical and inflammatory biomarkers were studied in male and female pigs. Pigs exposed to MIA elicited by porcine reproductive and respiratory syndrome virus and matching controls were assigned at two months of age to fasting stress, immune stress, or a saline group. The serum levels of over 30 chemistry and immune analytes were studied. Significantly low levels of blood urea nitrogen were detected in females exposed to MIA, while the highest creatinine levels were identified in fasting females exposed to MIA. The levels of interferon gamma and interleukin 8 were highest in pigs exposed to postnatal immune challenge. The profiles suggest that MIA may sensitize pigs to postnatal stressors for some indicators while making them more tolerant of other stressors. Effectiveness of practices to ameliorate the impact of postnatal stressors on the physiology of the pig could be enhanced by considering the prenatal stress circumstances.
Collapse
Affiliation(s)
- Haley E. Rymut
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (H.E.R.); (L.A.R.); (C.R.B.); (B.R.S.); (R.W.J.)
| | - Laurie A. Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (H.E.R.); (L.A.R.); (C.R.B.); (B.R.S.); (R.W.J.)
| | - Courtni R. Bolt
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (H.E.R.); (L.A.R.); (C.R.B.); (B.R.S.); (R.W.J.)
| | - María B. Villamil
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Diane E. Bender
- Bursky Center for Human Immunology & Immunotherapy, Washington University, St. Louis, MO 63110, USA;
| | - Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (H.E.R.); (L.A.R.); (C.R.B.); (B.R.S.); (R.W.J.)
| | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (H.E.R.); (L.A.R.); (C.R.B.); (B.R.S.); (R.W.J.)
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (H.E.R.); (L.A.R.); (C.R.B.); (B.R.S.); (R.W.J.)
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 618012, USA
| |
Collapse
|
19
|
Ruberti OM, Rodrigues B. Estrogen Deprivation and Myocardial Infarction: Role of Aerobic Exercise Training, Inflammation and Metabolomics. Curr Cardiol Rev 2021; 16:292-305. [PMID: 31362678 PMCID: PMC7903506 DOI: 10.2174/1573403x15666190729153026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022] Open
Abstract
In general, postmenopausal women present higher mortality, and worse prognosis after myocardial infarction (MI) compared to men, due to estrogen deficiency. After MI, cardiovascular alterations occur such as the autonomic imbalance and the pro-inflammatory cytokines increase. In this sense, therapies that aim to minimize deleterious effects caused by myocardial ischemia are important. Aerobic training has been proposed as a promising intervention in the prevention of cardiovascular diseases. On the other hand, some studies have attempted to identify potential biomarkers for cardiovascular diseases or specifically for MI. For this purpose, metabolomics has been used as a tool in the discovery of cardiovascular biomarkers. Therefore, the objective of this work is to discuss the changes involved in ovariectomy, myocardial infarction, and aerobic training, with emphasis on inflammation and metabolism.
Collapse
Affiliation(s)
- Olívia M Ruberti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Bruno Rodrigues
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
20
|
Cardiac 1H MR spectroscopy: development of the past five decades and future perspectives. Heart Fail Rev 2021; 26:839-859. [PMID: 33409666 DOI: 10.1007/s10741-020-10059-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 01/01/2023]
Abstract
Continued advances in laboratory medicine are required to realize the potential of individualized medicine to impact common cardiovascular diseases. Magnetic resonance imaging (MRI) and spectroscopy (MRS) techniques have advanced over recent years and offer unique, powerful insights into cardiac anatomic and metabolic changes, respectively, occurring in both nascent and advanced heart disease. Although numerous MRI-based in vivo diagnostics are already used in routine clinical practice and more are anticipated, MRS has been less incorporated into routine clinical practice. Given the ability of 1H MRS to identify and quantify specific molecules with high sensitivity and specificity, its potential utility should be successfully transition from "bench-to-bedside" is tantalizing. The present review will highlight the development of 1H MRS techniques for cardiac applications, observations in seminal studies with 1H MRS, and the prospects and challenges for widespread application in patients with cardiovascular disease.
Collapse
|
21
|
Yang S, Hu Y, Zhao J, Jing R, Wang J, Gu M, Niu H, Chen L, Hua W. Comprehensive plasma metabolites profiling reveals phosphatidylcholine species as potential predictors for cardiac resynchronization therapy response. ESC Heart Fail 2020; 8:280-290. [PMID: 33211407 PMCID: PMC7835628 DOI: 10.1002/ehf2.13037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/06/2020] [Accepted: 09/15/2020] [Indexed: 11/22/2022] Open
Abstract
Aims This study aimed to identify the plasma metabolite fingerprint in patients with heart failure and to develop a prediction tool based on differential metabolites for predicting the response to cardiac resynchronization therapy (CRT). Methods and results We prospectively recruited 32 healthy individuals and 42 consecutive patients with HF who underwent CRT between January 2018 and January 2019. Peripheral venous blood samples, clinical data, and echocardiographic signatures were collected before CRT implantation. Liquid chromatography‐mass spectrometry was used to perform untargeted metabolites profiling for peripheral plasma under ESI+ and ESI− modes. After 6 month follow‐up, patients were categorized as CRT responders or non‐responders based on the alterations of echocardiographic characteristics. Compared with healthy individuals, patients with HF had distinct metabolomic profiles under both ESI+ and ESI− modes, featuring increased free fatty acids, carnitine, β‐hydroxybutyrate, and dysregulated lipids with heterogeneous alterations such as phosphatidylcholines (PCs) and sphingomyelins. Disparities of baseline metabolomics profile were observed between CRT responders and non‐responders under ESI+ mode but not under ESI− mode. Further metabolites analysis revealed that a group of 20 PCs metabolites under ESI+ mode were major contributors to the distinct profiles between the two groups. We utilized LASSO regression model and identified a panel of four PCs metabolites [including PC (20:0/18:4), PC (20:4/20:0), PC 40:4, and PC (20:4/18:0)] as major predictors for CRT response prediction. Among our whole population (n = 42), receive operating characteristics analysis revealed that the four PCs‐based model could nicely discriminate the CRT responders from non‐responders (area under the curve = 0.906) with a sensitivity of 83.3% and a specificity of 90.0%. Cross‐validation analysis also showed a satisfactory and robust performance of the model with the area under the curve of 0.910 in the training dataset and 0.880 in the testing dataset. Conclusions Patients with HF held significantly altered plasma metabolomics profile compared with the healthy individuals. Within the HF group, the non‐responders had a distinct plasma metabolomics profile in contrast to the responders to CRT, which was characterized by increased PCs species. A novel predictive model incorporating four PCs metabolites performed well in identifying CRT non‐responders. These four PCs might severe as potential biomarkers for predicting CRT response. Further validations are needed in multi‐centre studies with larger external cohorts.
Collapse
Affiliation(s)
- Shengwen Yang
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China.,Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yiran Hu
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Junhan Zhao
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Ran Jing
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Jing Wang
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Min Gu
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Hongxia Niu
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Liang Chen
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China.,Department of cardiac surgery,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Wei Hua
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| |
Collapse
|
22
|
Heinzel FR, Hegemann N, Hohendanner F, Primessnig U, Grune J, Blaschke F, de Boer RA, Pieske B, Schiattarella GG, Kuebler WM. Left ventricular dysfunction in heart failure with preserved ejection fraction-molecular mechanisms and impact on right ventricular function. Cardiovasc Diagn Ther 2020; 10:1541-1560. [PMID: 33224773 PMCID: PMC7666919 DOI: 10.21037/cdt-20-477] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
The current classification of heart failure (HF) based on left ventricular (LV) ejection fraction (EF) identifies a large group of patients with preserved ejection fraction (HFpEF) with significant morbidity and mortality but without prognostic benefit from current HF therapy. Co-morbidities and conditions such as arterial hypertension, diabetes mellitus, chronic kidney disease, adiposity and aging shape the clinical phenotype and contribute to mortality. LV diastolic dysfunction and LV structural remodeling are hallmarks of HFpEF, and are linked to remodeling of the cardiomyocyte and extracellular matrix. Pulmonary hypertension (PH) and right ventricular dysfunction (RVD) are particularly common in HFpEF, and mortality is up to 10-fold higher in HFpEF patients with vs. without RV dysfunction. Here, we review alterations in cardiomyocyte function (i.e., ion homeostasis, sarcomere function and cellular metabolism) associated with diastolic dysfunction and summarize the main underlying cellular pathways. The contribution and interaction of systemic and regional upstream signaling such as chronic inflammation, neurohumoral activation, and NO-cGMP-related pathways are outlined in detail, and their diagnostic and therapeutic potential is discussed in the context of preclinical and clinical studies. In addition, we summarize prevalence and pathomechanisms of RV dysfunction in the context of HFpEF and discuss mechanisms connecting LV and RV dysfunction in HFpEF. Dissecting the molecular mechanisms of LV and RV dysfunction in HFpEF may provide a basis for an improved classification of HFpEF and for therapeutic approaches tailored to the molecular phenotype.
Collapse
Affiliation(s)
- Frank R. Heinzel
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Niklas Hegemann
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Hohendanner
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Uwe Primessnig
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Jana Grune
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Blaschke
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Rudolf A. de Boer
- Department of Cardiology, Groningen, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Department of Internal Medicine and Cardiology, German Heart Center, Berlin, Germany
| | | | - Wolfgang M. Kuebler
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
23
|
Cheng W, Wang L, Yang T, Wu A, Wang B, Li T, Lu Z, Yang J, Li Y, Jiang Y, Wu X, Meng H, Zhao M. Qiliqiangxin Capsules Optimize Cardiac Metabolism Flexibility in Rats With Heart Failure After Myocardial Infarction. Front Physiol 2020; 11:805. [PMID: 32848816 PMCID: PMC7396640 DOI: 10.3389/fphys.2020.00805] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic modulation is a promising therapy for ischemic heart disease and heart failure. This study aimed to clarify the regional modulatory effect of Qiliqiangxin capsules (QLQX), a traditional Chinese medicine, on cardiac metabolic phenotypes. Sprague-Dawley rats underwent left anterior descending coronary artery ligation and were treated with QLQX and enalapril. Striking global left ventricular dysfunction and left ventricular remodeling were significantly improved by QLQX. In addition to the posterior wall, QLQX also had a unique beneficial effect on the anterior wall subject to a severe oxygen deficit. Cardiac tissues in the border and remote areas were separated for detection. QLQX enhanced the cardiac 18F-fluorodeoxyglucose uptake and the levels and translocation of glucose transport 4 (GLUT4) in the border area. Meanwhile, it also suppressed glucose transport 1 (GLUT1) in both areas, indicating that QLQX encouraged border myocytes to use more glucose in a GLUT4-dependent manner. It was inferred that QLQX promoted a shift from glucose oxidation to anaerobic glycolysis in the border area by the augmentation of phosphorylated pyruvate dehydrogenase, pyruvate dehydrogenase kinases 4, and lactic dehydrogenase A. QLQX also upregulated the protein expression of fatty acid translocase and carnitine palmitoyl transferase-1 in the remote area to possibly normalize fatty acid (FA) uptake and oxidation similar to that in healthy hearts. QLQX protected global viable cardiomyocytes and promoted metabolic flexibility by modulating metabolic proteins regionally, indicating its potential for driving the border myocardium into an anaerobic glycolytic pathway against hypoxia injuries and urging the remote myocardium to oxidize FA to maximize energy production.
Collapse
Affiliation(s)
- Wenkun Cheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tao Yang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Aiming Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Baofu Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ziwen Lu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Yang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yangyang Jiang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxiao Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Meng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mingjing Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
24
|
Shao M, Guo D, Lu W, Chen X, Ma L, Wu Y, Zhang X, Wang Q, Wang X, Li W, Wang Q, Wang W, Li C, Wang Y. Identification of the active compounds and drug targets of Chinese medicine in heart failure based on the PPARs-RXRα pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112859. [PMID: 32294506 DOI: 10.1016/j.jep.2020.112859] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danqi Pill (DQP), commonly known as a routinely prescribed traditional Chinese medicine (TCM), is composed of Salviae Miltiorrhizae Radix et Rhizoma and Notoginseng Radix et Rhizoma and effective in treating heart failure (HF) clinically due to their multicompound and multitarget properties. However, the exact active compounds and corresponding targets of DQP are still unknown. AIM OF THE STUDY This study aimed to investigate active compounds and drug targets of DQP in heart failure based on the PPARs-RXRα pathway. MATERIALS AND METHODS Network pharmacology was used to predict the compound-target interactions of DQP. Left anterior descending (LAD)-induced HF mouse model and oxygen-glucose deprivation/recovery (OGD/R)-induced H9C2 model were constructed to screen the active compounds of DQP. RESULTS According to BATMAN-TCM (a bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine we previously developed), 24 compounds in DQP were significantly enriched in the peroxisome proliferator activated receptors-retinoid X receptor α (PPARs-RXRα) pathway. Among them, Ginsenoside Rb3 (G-Rb3) had the best pharmacodynamics against OGD/R-induced loss of cell viability, and it was selected to verify the compound-target interaction. In HF mice, G-Rb3 protected cardiac functions and activated the PPARs-RXRα pathway. In vitro, G-Rb3 protected against OGD/R-induced reactive oxygen species (ROS) production, promoted the expressions of RXRα and sirtuin 3 (SIRT3), thereafter improved the intracellular adenosine triphosphate (ATP) level. Immunofluorescent staining demonstrated that G-Rb3 could activate RXRα, and facilitate RXRα shifting to the nucleus. HX531, the specific inhibitor of RXRα, could abolish the protective effects of G-Rb3 on RXRα translocation. Consistently, the effect was also confirmed on RXRα siRNA cardiomyocytes model. Moreover, surface plasmon resonance (SPR) assays identified that G-Rb3 bound directly to RXRα with the affinity of KD = 10 × 10-5 M. CONCLUSION By integrating network pharmacology and experimental validation, we identified that as the major active compound of DQP, G-Rb3 could ameliorate ROS-induced energetic metabolism dysfunction, maintain mitochondrial function and facilitate energy metabolism via directly targeting on RXRα. This study provides a promising strategy to dissect the effective patterns for TCM and finally promote the modernization of TCM.
Collapse
Affiliation(s)
- Mingyan Shao
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongqing Guo
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wenji Lu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xu Chen
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lin Ma
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan Wu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuefeng Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qiyan Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoping Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Weili Li
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Wei Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Chun Li
- Modern Research Center of Traditional Chinese Medicine, School of Traditional Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yong Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China; College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
25
|
Keepers B, Liu J, Qian L. What's in a cardiomyocyte - And how do we make one through reprogramming? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118464. [PMID: 30922868 DOI: 10.1016/j.bbamcr.2019.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/10/2019] [Accepted: 03/21/2019] [Indexed: 12/19/2022]
Abstract
Substantial progress is being made in the field cardiac reprogramming, and those in the field are hopeful that the technology will be formulated for therapeutic use. Beyond the excitement around generating a revolutionary new approach for treating ischemic heart diseases, cardiac reprogramming has delivered provocative findings that challenge common notions of cell fate and cell identity. Have we really made de novo cardiomyocytes? To answer this question, the essential characteristics of this unique and important cell type must first be defined. In this review, we walk through the history of scientific inquiry into cardiomyocytes, and then we examine the core features of cardiomyocytes as detailed in modern definitions. Informed by this, we turn to cardiac reprogramming to analyze the various screening approaches and ultimate factor combinations used in each study. We follow this with a dissection of the evidence used to support the authors' claims of successfully creating cardiomyocytes, and we end by discussing what is known about the molecular mechanisms of cardiac reprogramming. Through this analysis, we find interesting differences between the study designs and their results, but it becomes clear that the field at large is generating cells that closely match the textbook definition cardiomyocyte. However, the differences noted between the results of each study are largely unexplained, reflecting the need for further research in both cardiac reprogramming and in native cardiomyocyte biology. Knowledge gained from future research will help move the field towards better reprogramming techniques and technologies.
Collapse
Affiliation(s)
- Benjamin Keepers
- McAllister Heart Institute, Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- McAllister Heart Institute, Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- McAllister Heart Institute, Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
26
|
|
27
|
Mechanisms contributing to cardiac remodelling. Clin Sci (Lond) 2017; 131:2319-2345. [PMID: 28842527 DOI: 10.1042/cs20171167] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Cardiac remodelling is classified as physiological (in response to growth, exercise and pregnancy) or pathological (in response to inflammation, ischaemia, ischaemia/reperfusion (I/R) injury, biomechanical stress, excess neurohormonal activation and excess afterload). Physiological remodelling of the heart is characterized by a fine-tuned and orchestrated process of beneficial adaptations. Pathological cardiac remodelling is the process of structural and functional changes in the left ventricle (LV) in response to internal or external cardiovascular damage or influence by pathogenic risk factors, and is a precursor of clinical heart failure (HF). Pathological remodelling is associated with fibrosis, inflammation and cellular dysfunction (e.g. abnormal cardiomyocyte/non-cardiomyocyte interactions, oxidative stress, endoplasmic reticulum (ER) stress, autophagy alterations, impairment of metabolism and signalling pathways), leading to HF. This review describes the key molecular and cellular responses involved in pathological cardiac remodelling.
Collapse
|