1
|
Francis AP, Meenakshi DU, Ganapathy S, Devasena T. Evaluating the ameliorative effect of nano bis-demethoxy curcumin analog against extrapulmonary toxicity in rat induced by inhaled multi-walled carbon nanotube. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46641-46651. [PMID: 37710065 DOI: 10.1007/s11356-023-29749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/03/2023] [Indexed: 09/16/2023]
Abstract
Carbon nanotubes (CNTs) exposure in human beings through inhalation may affect pulmonary organs and extrapulmonary organs including liver, kidney, brain, spleen, etc. The toxic effects developed as the result of CNTs exposure made us to explore the beneficial effect of nano bis-demethoxy curcumin analog (NBDMCA) towards multi-walled carbon nanotubes (MWCNTs)-induced toxicity in extrapulmonary organs. The current study described the ameliorative effect of NBDMCA against the toxic effects developed by inhaled MWCNTs in the extrapulmonary organs. The rats are exposed to the fixed aerosol concentration of 5 mg/m3 maintained in inhalation exposure chambers MWCNTs for 15 days as per OECD guidelines. After the exposure with MWCNTs, the animals were treated with NBDMCA (5 mg/kg body weight) with different dose frequencies, i.e., 2 doses per week for 1, 2, and 4 weeks. After treatment duration, the blood was drawn from retro-orbital vein and subjected to biochemical and cytokine analysis. Further the animals were euthanized, and the sample tissues were collected and performed oxidative stress and histopathology. The study results revealed that the intravenous administration of NBDMCA suppresses the extrapulmonary toxicity induced by MWCNTs, i.e., annulling the clinical changes and oxidative stress in various extrapulmonary organs at low doses of NBDMCA, evidenced its antioxidant efficacy. Moreover, use of increased doses provides better reduction in toxic symptoms with negligible side effects confirming the dose-dependent efficacy of NBDMCA. Overall, we suggested that NBDMCA may materialize into an effective compound for the reduction of MWCNTs-induced toxicity.
Collapse
Affiliation(s)
- Arul Prakash Francis
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | | | - Selvam Ganapathy
- International Institute of Biotechnology and Toxicology (IBAT), Padappai, 601301, India
| | - Thiyagarajan Devasena
- Centre for Nanoscience and Technology, A.C. Tech Campus, Anna University, Chennai, 600025, India.
| |
Collapse
|
2
|
Das SK, Sen K, Ghosh B, Ghosh N, Sinha K, Sil PC. Molecular mechanism of nanomaterials induced liver injury: A review. World J Hepatol 2024; 16:566-600. [PMID: 38689743 PMCID: PMC11056894 DOI: 10.4254/wjh.v16.i4.566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 04/24/2024] Open
Abstract
The unique physicochemical properties inherent to nanoscale materials have unveiled numerous potential applications, spanning beyond the pharmaceutical and medical sectors into various consumer industries like food and cosmetics. Consequently, humans encounter nanomaterials through diverse exposure routes, giving rise to potential health considerations. Noteworthy among these materials are silica and specific metallic nanoparticles, extensively utilized in consumer products, which have garnered substantial attention due to their propensity to accumulate and induce adverse effects in the liver. This review paper aims to provide an exhaustive examination of the molecular mechanisms underpinning nanomaterial-induced hepatotoxicity, drawing insights from both in vitro and in vivo studies. Primarily, the most frequently observed manifestations of toxicity following the exposure of cells or animal models to various nanomaterials involve the initiation of oxidative stress and inflammation. Additionally, we delve into the existing in vitro models employed for evaluating the hepatotoxic effects of nanomaterials, emphasizing the persistent endeavors to advance and bolster the reliability of these models for nanotoxicology research.
Collapse
Affiliation(s)
- Sanjib Kumar Das
- Department of Zoology, Jhargram Raj College, Jhargram 721507, India
| | - Koushik Sen
- Department of Zoology, Jhargram Raj College, Jhargram 721507, India
| | - Biswatosh Ghosh
- Department of Zoology, Bidhannagar College, Kolkata 700064, India
| | - Nabanita Ghosh
- Department of Zoology, Maulana Azad College, Kolkata 700013, India
| | - Krishnendu Sinha
- Department of Zoology, Jhargram Raj College, Jhargram 721507, India.
| | - Parames C Sil
- Department of Molecular Medicine, Bose Institute, Calcutta 700054, India
| |
Collapse
|
3
|
Thai SF, Jones CP, Robinette BL, Ren H, Vallanat B, Fisher A, Kitchin KT. Effects of multi-walled carbon nanotubes on gene and microRNA expression in human hepatocarcinoma HepG2 cells. MATERIALS EXPRESS : AN INTERNATIONAL JOURNAL ON MULTIDISCIPLINARY MATERIALS RESEARCH 2024; 14:403-415. [PMID: 39022637 PMCID: PMC11251416 DOI: 10.1166/mex.2024.2641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The usage of multi-walled carbon nanotubes (MWCNT) has increased exponentially in the past years, but, potential toxicity mechanisms are not clear. We studied the transcriptomic alterations induced by one multi-walled carbon nanotube (MWCNT) and its -OH and -COOH functionalized derivatives in human HepG2 cells. We showed that all three MWCNT treatments induced alterations in stress-related signaling pathways, inflammation-related signaling pathways, cholesterol synthesis pathways, proliferation-related pathways, senescence-related pathways and cancer-related pathways. In stress-related pathways, the acute phase response was induced in all three MWCNTs and all doses treated and ranked high. Other stress-related pathways were also related to the oxidative-induced signaling pathways, such as NRF-2 mediated oxidative stress response, hepatic fibrosis/Stella cell activation, iNOS signaling, and Hif1α signaling. Many inflammation-related pathways were altered, such as IL-8, IL-6, TNFR1, TNFR2, and NF-κB signaling pathways. These results were consistent with our previous results with exposures to the same three multi-walled carbon nanotubes in human lung BEAS-2B and also with results in mice and rats. From the microRNA target filter analysis, TXNIP & miR-128-3p interaction was present in all three MWCNT treatments, and maybe important for the induction of oxidative stress. CXCL-8 & miR-146-5p and Wee1 & miR-128-3p were only present in the cells treated with the parent and the OH-functionalized MWCNTs. These mRNA-miRNA interactions were involved in oxidative stress, inflammation, cell cycle, cholesterol biosynthesis and cancer related pathways. Target filter analysis also showed altered liver hyperplasia/hyperproliferation and hepatic cancer pathways. In short, target filter analysis complemented the transcriptomic analysis and pointed to specific gene/microRNA interactions that can help inform mechanism of action. Moreover, our study showed that the signaling pathways altered in HepG2 cells correlated well with the toxicity and carcinogenicity observed in vivo, indicating that HepG2 may be a good in vitro predictive model for MWCNT toxicity studies.
Collapse
Affiliation(s)
- Sheau-Fung Thai
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709 USA
| | - Carlton P. Jones
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709 USA
| | - Brian L. Robinette
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709 USA
| | | | - Beena Vallanat
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709 USA
| | - Anna Fisher
- Center for Public Health and Environmental Assessment, US Environmental Production Agency, 109 TW Alexander Dr., Durham NC 27709
| | | |
Collapse
|
4
|
Nasim I, Ghani N, Nawaz R, Irfan A, Arshad M, Nasim M, Raish M, Irshad MA, Ghumman SA, Ahmad A, Bin Jardan YA. Investigating the Impact of Carbon Nanotube Nanoparticle Exposure on Testicular Oxidative Stress and Histopathological Changes in Swiss albino Mice. ACS OMEGA 2024; 9:6731-6740. [PMID: 38371818 PMCID: PMC10870293 DOI: 10.1021/acsomega.3c07919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/20/2024]
Abstract
Carbon nanotubes (CNTs) possess remarkable properties that make them valuable for various industrial applications. However, concerns have arisen regarding their potential adverse health effects, particularly in occupational settings. The main aim of this research was to examine the effects of short-term exposure to multiwalled carbon nanotube nanoparticles (MWCNT-NPs) on testicular oxidative stress in Swiss albino mice, taking into account various factors such as dosage, duration of exposure, and particle size of MWCNT-NP. In this study, 20 mice were used and placed into six different groups randomly. Four of these groups comprised four repetitions each, while the two groups served as the vehicle control with two repetitions each. The experimental groups received MWCNT-NP treatment, whereas the control group remained untreated. The mice in the experimental groups were exposed to MWCNT-NP for either 7 days or 14 days. Through oral administration, the MWCNT-NP solution was introduced at two distinct dosages: 0.45 and 0.90 μg, whereas the control group was subjected to distilled water rather than the MWCNT-NP solution. The investigation evaluated primary oxidative balance indicators-glutathione (GSH) and glutathione disulfide (GSSG)-in response to MWCNT-NP exposure. Significantly, a noticeable reduction in GSH levels and a concurrent increase in GSSG concentrations were observed in comparison to the control group. To better understand and explore the assessment of the redox status, the Nernst equation was used to calculate the redox potential. Intriguingly, the calculated redox potential exhibited a negative value, signifying an imbalance in the oxidative state in the testes. These findings suggest that short-term exposure to MWCNT-NP can lead to the initiation of testicular oxidative stress and may disrupt the male reproductive system. This is evident from the alterations observed in the levels of GSH and GSSG, as well as the negative redox potential. The research offers significant insights into the reproductive effects of exposure to MWCNTs and emphasizes the necessity of assessing oxidative stress in nanomaterial toxicity studies.
Collapse
Affiliation(s)
- Iqra Nasim
- Department
of Environmental Science, Lahore College
for Women University, Lahore 54000, Pakistan
- Department
of Environmental Sciences, The University
of Lahore, Lahore 54000, Pakistan
| | - Nadia Ghani
- Department
of Environmental Science, Lahore College
for Women University, Lahore 54000, Pakistan
| | - Rab Nawaz
- Department
of Environmental Sciences, The University
of Lahore, Lahore 54000, Pakistan
- Faculty
of Engineering and Quantity Surveying, INTI
International University, Nilai 71800, Negeri Sembilan, Malaysia
| | - Ali Irfan
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Arshad
- Department
of Agriculture and Food Technology, Karakoram
International University, Gilgit 15100, Pakistan
| | - Maryam Nasim
- Institute
of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore 54000, Pakistan
- Department
of Allied Health Sciences, Riphah International
University, Islamabad 46000, Pakistan
| | - Mohammad Raish
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Atif Irshad
- Department
of Environmental Sciences, The University
of Lahore, Lahore 54000, Pakistan
| | | | - Ajaz Ahmad
- Department
of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A. Bin Jardan
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Al-Ragi MJ, Karieb SS, Fathallah N, Zaïri A. Effect of Zinc Oxide Nanoparticles on Liver Functions in Albino Mice. Cureus 2024; 16:e54822. [PMID: 38529423 PMCID: PMC10962696 DOI: 10.7759/cureus.54822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/23/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND An alarming number of zinc oxide nanoparticles (ZnO-NPs) have leaked into the environment, endangering the tissues of many living creatures, due to the recent surge in their use in several items. Through intra-peritoneal injection, this research intends to examine the impact of ZnO-NPs on the hepatic and gastrointestinal structures of male albino mice. METHOD For seven and 14 days, animals were given 0.1 ml of 100 and 200 mg kg-1 of 50 nm-size ZnO-NPs, respectively. In contrast, those in the control group were given only water and food. RESULT The results demonstrated that the treated mice's livers underwent functional changes and histological damage. After seven and 14 days, there was a notable rise in the average levels of the glutamate-oxaloacetate transaminase and glutamate-pyruvate transaminase enzymes in comparison to the control group (p≤0.05). Concentration time determines the magnitude of this impact. When enzyme levels vary, it means the liver isn't working properly. Histological changes in the liver, such as necrosis, destruction of hepatocyte membranes, widening of sinusoidal spaces and vacuolation of their cytoplasm, vascular congestion, and an increased number of Kupffer cells, were induced in mice treated with ZnO-NPs at two studied concentrations (100 and 200 mg/kg) for seven and 14 days, respectively. These effects were time-dose-dependent, according to the results of hematoxylin-eosin staining of liver tissue images.
Collapse
Affiliation(s)
| | - Sahar S Karieb
- Department of Biology, College of Education for Pure Science (Ibn Al-Haitham) University of Baghdad, Baghdad, IRQ
| | - Neila Fathallah
- Department of Health Sciences, Faculty of Medicine (Ibn El Gazzar) University of Sousse, Sousse, TUN
| | - Amira Zaïri
- Department of Health Sciences, Faculty of Medicine (Ibn El Gazzar) University of Sousse, Sousse, TUN
| |
Collapse
|
6
|
Kamel FO, Karim S, Bafail DAO, Aldawsari HM, Kotta S, Ilyas UK. Hepatoprotective effects of bioactive compounds from traditional herb Tulsi ( Ocimum sanctum Linn) against galactosamine-induced hepatotoxicity in rats. Front Pharmacol 2023; 14:1213052. [PMID: 37860117 PMCID: PMC10582332 DOI: 10.3389/fphar.2023.1213052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/30/2023] [Indexed: 10/21/2023] Open
Abstract
Ocimum sanctum L. (Tulsi; Family: libiaceae), also known as "The Queen of herbs" or "Holy Basil," is an omnipresent, multipurpose plant that has been used in folk medicine of many countries as a remedy against several pathological conditions, including anticancer, antidiabetic, cardio-protective, antispasmodic, diaphoretic, and adaptogenic actions. This study aims to assess O. sanctum L.'s hepatoprotective potential against galactosamine-induced toxicity, as well as investigate bioactive compounds in each extract and identify serum metabolites. The extraction of O. sanctum L as per Ayurveda was simultaneously standardized and quantified for biochemical markers: rutin, ellagic acid, kaempferol, caffeic acid, quercetin, and epicatechin by HPTLC. Hepatotoxicity was induced albino adult rats by intra-peritoneal injection of galactosamine (400 mg/kg). The quantified hydroalcoholic and alcoholic extract of O. sanctum L (100 and 200 mg/kg body weight/day) were compared for evaluation of hepatoprotective potential, which were assessed in terms of reduction in histological damage, change in serum enzymes such as AST, ALT, ALP and increase TBARS. Twenty chemical constituents of serum metabolites of O. sanctum were identified and characterized based on matching recorded mass spectra by GC-MS with those obtained from the library-Wiley/NIST. We evaluated the hepatoprotective activity of various fractions of hydroalcoholic extracts based on the polarity and investigated the activity at each phase (hexane, chloroform, and ethyl acetate) in vitro to determine how they affected the toxicity of CCL4 (40 mM) toward Chang liver cells. The ethyl acetate fraction of the selected plants had a higher hepatoprotective activity than the other fractions, so it was used in vacuum liquid chromatography (VLC). The ethyl acetate fraction contains high amounts of rutin (0.34% w/w), ellagic acid (2.32% w/w), kaempferol (0.017% w/w), caffeic acid (0.005% w/w), quercetin (0.038% w/w), and epicatechin (0.057% w/w) which are responsible for hepatoprotection. In comparison to standard silymarin, isolated bioactive molecules displayed the most significant hepatoprotective activity in Chang liver cells treated to CCl4 toxicity. The significant high hepatoprotection provided by standard silymarin ranged from 77.6% at 100 μg/ml to 83.95% at 200 μg/ml, purified ellagic acid ranged from 70% at 100 μg/ml to 81.33% at 200 μg/ml, purified rutin ranged from 63.4% at 100 μg/ml to 76.34% at 200 μg/ml purified quercetin ranged from 54.33% at 100 μg/ml to 60.64% at 200 μg/ml, purified epicatechin ranged from 53.22% at 100 μg/ml to 65.6% at 200 μg/ml, and purified kaempferol ranged from 52.17% at 100 μg/ml to 60.34% at 200 μg/ml. These findings suggest that the bioactive compounds in O. sanctum L. have significant protective effects against galactosamine-induced hepatotoxicity.
Collapse
Affiliation(s)
- Fatemah O. Kamel
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shahid Karim
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Duaa Abdullah Omer Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hibah Mubarak Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - U. K. Ilyas
- Department of Pharmacognosy and Phytochemistry, Moulana College of Pharmacy, Perinthalmanna, Kerala, India
| |
Collapse
|
7
|
Tan YZ, Thomsen LR, Shrestha N, Camisasca A, Giordani S, Rosengren R. Short-Term Intravenous Administration of Carbon Nano-Onions is Non-Toxic in Female Mice. Int J Nanomedicine 2023; 18:3897-3912. [PMID: 37483316 PMCID: PMC10361275 DOI: 10.2147/ijn.s414438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023] Open
Abstract
Background A nanoscale drug carrier could have a variety of therapeutic and diagnostic uses provided that the carrier is biocompatible in vivo. Carbon nano-onions (CNOs) have shown promising results as a nanocarrier for drug delivery. However, the systemic effect of CNOs in rodents is unknown. Therefore, we investigated the toxicity of CNOs following intravenous administration in female BALB/c mice. Results Single or repeated administration of oxi-CNOs (125, 250 or 500 µg) did not affect mouse behavior or organ weight and there was also no evidence of hepatotoxicity or nephrotoxicity. Histological examination of organ slices revealed a significant dose-dependent accumulation of CNO aggregates in the spleen, liver and lungs (p<0.05, ANOVA), with a trace amount of aggregates appearing in the kidneys. However, CNO aggregates in the liver did not affect CYP450 enzymes, as total hepatic CYP450 as well as CYP3A catalytic activity, as meased by erythromycin N-demethylation, and protein levels showed no significant changes between the treatment groups compared to vehicle control. CNOs also failed to act as competitive inhibitors of CYP3A in vitro in both mouse and human liver microsomes. Furthermore, CNOs did not cause oxidative stress, as indicated by the unchanged malondialdehyde levels and superoxide dismutase activity in liver microsomes and organ homogenates. Conclusion This study provides the first evidence that short-term intravenous administration of oxi-CNOs is non-toxic to female mice and thus could be a promising novel and safe drug carrier.
Collapse
Affiliation(s)
- Yi Zhen Tan
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| | - Lucy R Thomsen
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| | - Nensi Shrestha
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| | - Adalberto Camisasca
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, D09 NA55, Ireland
| | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, D09 NA55, Ireland
| | - Rhonda Rosengren
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| |
Collapse
|
8
|
Rhazouani A, Gamrani H, Ed-Day S, Lafhal K, Boulbaroud S, Gebrati L, Fdil N, AZIZ F. Sub-acute toxicity of graphene oxide (GO) nanoparticles in male mice after intraperitoneal injection: Behavioral study and histopathological evaluation. Food Chem Toxicol 2023; 171:113553. [DOI: 10.1016/j.fct.2022.113553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
|
9
|
Alothaid H. Evaluation of cytotoxicity, oxidative stress and organ-specific effects of activated carbon from Al-Baha date palm kernels. Saudi J Biol Sci 2022; 29:103387. [PMID: 35923600 PMCID: PMC9340513 DOI: 10.1016/j.sjbs.2022.103387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/13/2022] [Accepted: 07/16/2022] [Indexed: 11/30/2022] Open
Abstract
Background Activated carbon (AC) is a carbonaceous material derived from carbonization and activation of carbon-containing compounds at high temperature and has a large surface area, providing it with excellent adsorption properties. Human exposure to ACs via ingestion is increasing and, unfortunately, there is little to no evidence related to its level of toxicity Materials and methods Activated carbon of powdered date kernels from Al-Baha city in Saudi Arabia were used to treat rats and cell lines (HepG2 and HCT-116). Toxicity, microbiological tests and biochemical analyses were carried out to investigate biological activity of both commercially available AC (CAC), pharmaceutical AC (PAC) and AC from date palm kernels (AAC) Results None of the ACs showed activity on Staphylococcus aureus, Bacillus subtilis, Protius mirabilis and Escherichia coli. AAC showed the most cytotoxic effect on both HCT-116 and HepG2 cell lines after 24 h, with IC50 of 48.7 ± 17.2 µg/ml and 51 ± 6.24 µg/ml respectively. Rats treated with AAC for 48 h showed no impairment of hepatic and renal functions, unlike those exposed to CAC and PAC. Similarly, AAC-exposed rats did not show oxidative stress in both the liver and kidneys while CAC and PAC exposure resulted in depletion of CAT, GPx, SOD and GSH in both organs. L-arginase and α-fucosidase expression were also induced by both PAC and CAC while α-fucosidase levels were unaffected in AAC-exposed rats Conclusion AAC appears to be biologically safe compared with PAC and CAC due to its antioxidant activities and non-effect on both hepatic and renal functions.
Collapse
|
10
|
Pagar RR, Musale SR, Pawar G, Kulkarni D, Giram PS. Comprehensive Review on the Degradation Chemistry and Toxicity Studies of Functional Materials. ACS Biomater Sci Eng 2022; 8:2161-2195. [PMID: 35522605 DOI: 10.1021/acsbiomaterials.1c01304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In recent decades there has been growing interest of material chemists in the successful development of functional materials for drug delivery, tissue engineering, imaging, diagnosis, theranostic, and other biomedical applications with advanced nanotechnology tools. The efficacy and safety of functional materials are determined by their pharmacological, toxicological, and immunogenic effects. It is essential to consider all degradation pathways of functional materials and to assess plausible intermediates and final products for quality control. This review provides a brief insight into chemical degradation mechanisms of functional materials like oxidation, photodegradation, and physical and enzymatic degradation. The intermediates and products of degradation were confirmed with analytical methods such as proton nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC), UV-vis spectroscopy (UV-vis), infrared spectroscopy (IR), differential scanning calorimetry (DSC), mass spectroscopy, and other sophisticated analytical methods. These analytical methods are also used for regulatory, quality control, and stability purposes in industry. The assessment of degradation is important to predetermine the behavior of functional materials in specific storage conditions and can be relevant to their behavior during in vivo applications. Another important aspect is the evaluation of the toxicity of functional materials. Toxicity can be accessed with various methods using in vitro, in vivo, ex vivo, and in silico models. In vitro cell culture methods are used to determine mitochondrial damage, reactive oxygen species, stress responses, and cellular toxicity. In vitro cellular toxicity can be measured by MTT assay, LDH leakage assay, and hemolysis. In vivo studies are performed using various animal models involving zebrafish, rodents (mice and rats), and nonhuman primates. Ex vivo studies are also used for efficacy and toxicity determinations of functional materials like ex vivo potency assay and precision-cut liver slice (PCLS) models. The in silico tools with computational simulations like quantitative structure-activity relationships (QSAR), pharmacokinetics (PK) and pharmacodynamics (PD), dose and time response, and quantitative cationic-activity relationships ((Q)CARs) are used for prediction of the toxicity of functional materials. In this review, we studied the principle methods used for degradation studies, different degradation pathways, and mechanisms of functional material degradation with prototype examples. We discuss toxicity assessments with different toxicity approaches used for estimation of the safety and efficacy of functional materials.
Collapse
Affiliation(s)
- Roshani R Pagar
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Shubham R Musale
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Ganesh Pawar
- Department of Pharmacology, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Deepak Kulkarni
- Srinath College of Pharmacy, Bajajnagar, Aurangabad, Maharashtra 431136, India
| | - Prabhanjan S Giram
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India.,Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
| |
Collapse
|
11
|
Nirmal NK, Awasthi KK, John PJ. Hepatotoxicity of graphene oxide in Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46367-46376. [PMID: 32632678 DOI: 10.1007/s11356-020-09953-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Graphene oxide (GO) has a multitude of applications in areas of nanomedicine, electronics, textile, water purification, and catalysis among others. GO is relatively easier to manufacture and customize as compared with other carbon-based nanomaterials. In the present work, GO was administered intraperitoneally to adult Wistar rats in four incremental doses, i.e., 0.0 mg/kg (control), 0.4 mg/kg (low dose), 2.0 mg/kg (mid-dose), and 10.0 mg/kg (high dose). After 15 repeated doses over a period of 30 days, biochemical assays for alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), catalase (CAT), and malondialdehyde (MDA) were carried out. Histopathological and morphometric analyses of liver and kidney were also performed. Results demonstrated dose-dependent toxicity of GO. General behavior and liver indices remained unaffected in the study. Serum levels of ALT, ALP, and AST were altered significantly in high-dose treated animals. Changes were found insignificant in the low- and mid-dose groups. Catalase activity in liver tissue homogenates was decreased in the high-dose group. MDA levels were found elevated in treated rats. Unlike control and low dose, mid- and high-dose treated rats exhibited varying degrees of histopathological changes like inflammation around the central vein and portal veins, vacuolations, hepatocytic injury, and near normal to abnormal hepatic sinusoids. These findings show that GO has considerable toxic potential to mammalian liver and thorough toxicity studies are needed before these nanosheets are used in biomedicine.
Collapse
Affiliation(s)
- Naresh K Nirmal
- Department of Zoology, University of Rajasthan, Jaipur, 302004, India
| | - Kumud K Awasthi
- Department of Life Sciences, Vivekananda Global University, Jaipur, 303012, India
| | - Placheril J John
- Department of Zoology, University of Rajasthan, Jaipur, 302004, India.
| |
Collapse
|
12
|
Nurazzi NM, Sabaruddin FA, Harussani MM, Kamarudin SH, Rayung M, Asyraf MRM, Aisyah HA, Norrrahim MNF, Ilyas RA, Abdullah N, Zainudin ES, Sapuan SM, Khalina A. Mechanical Performance and Applications of CNTs Reinforced Polymer Composites-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2186. [PMID: 34578502 PMCID: PMC8472375 DOI: 10.3390/nano11092186] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/05/2023]
Abstract
Developments in the synthesis and scalable manufacturing of carbon nanomaterials like carbon nanotubes (CNTs) have been widely used in the polymer material industry over the last few decades, resulting in a series of fascinating multifunctional composites used in fields ranging from portable electronic devices, entertainment and sports to the military, aerospace, and automotive sectors. CNTs offer good thermal and electrical properties, as well as a low density and a high Young's modulus, making them suitable nanofillers for polymer composites. As mechanical reinforcements for structural applications CNTs are unique due to their nano-dimensions and size, as well as their incredible strength. Although a large number of studies have been conducted on these novel materials, there have only been a few reviews published on their mechanical performance in polymer composites. As a result, in this review we have covered some of the key application factors as well as the mechanical properties of CNTs-reinforced polymer composites. Finally, the potential uses of CNTs hybridised with polymer composites reinforced with natural fibres such as kenaf fibre, oil palm empty fruit bunch (OPEFB) fibre, bamboo fibre, and sugar palm fibre have been highlighted.
Collapse
Affiliation(s)
- N. M. Nurazzi
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (N.M.N.); (F.A.S.); (E.S.Z.); (S.M.S.)
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - F. A. Sabaruddin
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (N.M.N.); (F.A.S.); (E.S.Z.); (S.M.S.)
| | - M. M. Harussani
- Advanced Engineering Materials and Composites (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| | - S. H. Kamarudin
- Faculty of Applied Sciences, School of Industrial Technology, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Malaysia;
| | - M. Rayung
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| | - M. R. M. Asyraf
- Department of Aerospace Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| | - H. A. Aisyah
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (N.M.N.); (F.A.S.); (E.S.Z.); (S.M.S.)
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - M. N. F. Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - R. A. Ilyas
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia
| | - N. Abdullah
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - E. S. Zainudin
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (N.M.N.); (F.A.S.); (E.S.Z.); (S.M.S.)
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - S. M. Sapuan
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (N.M.N.); (F.A.S.); (E.S.Z.); (S.M.S.)
- Advanced Engineering Materials and Composites (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| | - A. Khalina
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (N.M.N.); (F.A.S.); (E.S.Z.); (S.M.S.)
| |
Collapse
|
13
|
Olofinnade AT, Onaolapo AY, Onaolapo OJ, Olowe OA. The potential toxicity of food-added sodium benzoate in mice is concentration-dependent. Toxicol Res (Camb) 2021; 10:561-569. [PMID: 34141170 DOI: 10.1093/toxres/tfab024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 01/03/2023] Open
Abstract
Sodium benzoate (NaB) is a versatile food preservative that has also found some applications in the treatment of medical disorders. However, till date, its possible widespread effects on the body are not well studied. We examined the likely effect of diet-added NaB on weight/food intake, haematological parameters, neurobehaviour, antioxidant status, lipid profile and anti-inflammatory/apoptotic markers in mice. Animals were assigned randomly into 4 groups of 10 mice each. Groups included normal control (fed rodent chow) and three groups fed NaB at 125 (0.0125%), 250 (0.025% and 500 (0.05%) mg/kg of feed added to diet, respectively, for eight weeks. Body weight and food intake were assessed. At the end of the experimental period animals were euthanized, blood was then taken for the assessment of haematological, biochemical and inflammatory/apoptotic markers. At the lowest concentration, NaB diet increased body weight and food intake. Decrease in haematological cell counts and total antioxidant capacity were observed, whereas serum malondialdehyde levels and superoxide dismutase activity were increased across the three concentrations. Serum tumour necrosis factor-alpha and interleukin-10 decreased, whereas caspase-3 levels showed no significant difference. Lipid profile and biochemical indices of kidney and liver function were also affected by NaB diet. In conclusion, our findings suggest that NaB may be harmful if regulations regarding its limit of consumption are mistakenly or deliberately ignored. Therefore, it is advisable that regulations on quantities to be added to food be enforced.
Collapse
Affiliation(s)
- Anthony Tope Olofinnade
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Clinical Sciences, College of Medicine, Lagos State University, P.M.B. 21266. 1-5 Oba Akinjobi Way,G.R.A Ikeja, Lagos State, Nigeria
| | - Adejoke Yetunde Onaolapo
- Department of Anatomy, Ladoke Akintola University of Technology, University Road. P.M.B, 4000, Ogbomoso, Oyo State, Nigeria
| | - Olakunle James Onaolapo
- Department of Pharmacology, Ladoke Akintola University of Technology, University Road. P.M.B, 4000, Ogbomoso, Oyo State, Nigeria
| | - Olugbenga Adekunle Olowe
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, University Road. P.M.B, 4000, Ogbomoso, Oyo State, Nigeria Nigeria
| |
Collapse
|
14
|
Adedara IA, Awogbindin IO, Maduako IC, Ajeleti AO, Owumi SE, Owoeye O, Patlolla AK, Farombi EO. Kolaviron suppresses dysfunctional reproductive axis associated with multi-walled carbon nanotubes exposure in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:354-364. [PMID: 32812151 DOI: 10.1007/s11356-020-10324-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Reproductive toxicity associated with excessive exposure to multi-walled carbon nanotubes (MWCNTs), which are commonly used in medicine as valuable drug delivery systems, is well documented. Kolaviron, a bioflavonoid isolated from Garcinia kola seeds, elicits numerous health beneficial effects related to its anti-inflammatory, anti-genotoxic activities, anti-apoptotic, and antioxidant properties. However, information on the role of kolaviron in MWCNTs-induced reproductive toxicity is not available in the literature. Herein, we assessed the protective effects of kolaviron on MWCNTs-induced dysfunctional reproductive axis in rats following exposure to MWCNTs (1 mg/kg) and concurrent treatment with kolaviron (50 or 100 mg/kg body weight) for 15 successive days. Results showed that MWCNTs-induced dysfunctional reproductive axis as evidenced by deficits in pituitary and testicular hormones, marker enzymes of testicular function, and sperm functional characteristics were abrogated in rats co-administered with kolaviron. Moreover, co-administration of kolaviron-abated MWCNTs-induced inhibition of antioxidant enzyme activities increases in oxidative stress and inflammatory indices. This is evidenced by diminished levels of tumor necrosis factor-alpha, nitric oxide, lipid peroxidation, reactive oxygen, and nitrogen species as well as reduced activity of myeloperoxidase in testes, epididymis, and hypothalamus of the rats. Biochemical data on the chemoprotection of MWCNTs-induced reproductive toxicity were corroborated by histological findings. Taken together, kolaviron suppressed dysfunctional reproductive axis associated with MWCNTs exposure via abrogation of oxidative stress and inflammation in male rats.
Collapse
Affiliation(s)
- Isaac Adegboyega Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ifeoluwa Oluleke Awogbindin
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ikenna Chukwuemeka Maduako
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Solomon Eduviere Owumi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Anita Kumari Patlolla
- College of Science Engineering and Technology, NIH-RCMI Center for Environmental Health, Jackson State University, Jackson, MS, USA
| | - Ebenezer Olatunde Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
15
|
Awogbindin IO, Maduako IC, Adedara IA, Owumi SE, Ajeleti AO, Owoeye O, Patlolla AK, Tchounwou PB, Farombi EO. Kolaviron ameliorates hepatic and renal dysfunction associated with multiwalled carbon nanotubes in rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:67-76. [PMID: 32856799 DOI: 10.1002/tox.23011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 04/24/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
The increase in the exposure to carbon nanotubes (CNTs) and their incorporation into industrial, electronic, and biomedical products have required several scientific investigations into the toxicity associated with CNTs. Studies have shown that the metabolism and clearance of multiwalled CNTs (MWCNTs) from the body involve biotransformation in the liver and its excretion via the kidney. Since oxidative stress and inflammation underlines the toxicity of MWCNT, we investigated the ameliorative effect of kolaviron (KV), a natural antioxidant and anti-inflammatory agent, on hepatorenal damage in rats. Exposure to MWCNTs for 15 days significantly increased serum activities of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase thereby suggesting hepatic dysfunction. Kidney function, which was monitored by urea and creatinine levels, was also impaired by MWCNTs. Additionally, MWCNTs markedly increased myeloperoxidase activity, nitric oxide level, reactive oxygen and nitrogen species, and tumor necrosis factor level in both tissues. However, KV in a dose-dependent manner markedly attenuated MWCNT-induced markers of hepatorenal function in the serum and MWCNT-associated inflammation in the liver and kidney. Also, MWCNTs elicited significant inhibition of superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase activities. There was a significant diminution in glutathione level (GSH) and enhanced production of malondialdehyde (MDA) in MWCNTs-exposed rats. KV treatment was able to significantly increase the antioxidant enzymes and enhance the GSH level with a subsequent reduction in the MDA level. Taken together, KV elicited ameliorative effects against hepatorenal damage via its anti-inflammatory and antioxidant properties. Thus, KV could be an important intervention strategy for the hepatorenal damage associated with MWCNTs exposure.
Collapse
Affiliation(s)
- Ifeoluwa O Awogbindin
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ikenna C Maduako
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Solomon E Owumi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Akinola O Ajeleti
- Department of Anatomy, College of Medicine, Bowen University, Iwo, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Anita K Patlolla
- College of Science Engineering and Technology, NIH-RCMI Center for Environmental Health, Jackson State University, Jackson, Mississippi, USA
| | - Paul B Tchounwou
- College of Science Engineering and Technology, NIH-RCMI Center for Environmental Health, Jackson State University, Jackson, Mississippi, USA
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
16
|
Affiliation(s)
- Masanori Horie
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Japan
| | - Yosuke Tabei
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Japan
| |
Collapse
|
17
|
Vilas-Boas V, Vinken M. Hepatotoxicity induced by nanomaterials: mechanisms and in vitro models. Arch Toxicol 2020; 95:27-52. [PMID: 33155068 DOI: 10.1007/s00204-020-02940-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
The unique physicochemical properties of materials at nanoscale have opened a plethora of opportunities for applications in the pharmaceutical and medical field, but also in consumer products from food and cosmetics industries. As a consequence, daily human exposure to nanomaterials through distinct routes is considerable and, therefore, may raise health concerns. Many nanomaterials have been described to accumulate and induce adversity in the liver. Among these, silica and some types of metallic nanoparticles are the most broadly used in consumer products and, therefore, the most studied and reported. The reviewed literature was collected from PubMed.gov during the month of March 2020 using the search words "nanomaterials induced hepatotoxicity", which yielded 181 papers. This present paper reviews the hepatotoxic effects of nanomaterials described in in vitro and in vivo studies, with emphasis on the underlying mechanisms. The induction of oxidative stress and inflammation are the manifestations of toxicity most frequently reported following exposure of cells or animal models to different nanomaterials. Furthermore, the available in vitro models for the evaluation of the hepatotoxic effects of nanomaterials are discussed, highlighting the continuous interest in the development of more advanced and reliable in vitro models for nanotoxicology.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Department of In Vitro Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
18
|
Liu E, Wang X, Li X, Tian P, Xu H, Li Z, Wang L. Co-exposure to multi-walled carbon nanotube and lead ions aggravates hepatotoxicity of nonalcoholic fatty liver via inhibiting AMPK/PPARγ pathway. Aging (Albany NY) 2020; 12:14189-14204. [PMID: 32680977 PMCID: PMC7425511 DOI: 10.18632/aging.103430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022]
Abstract
Multi-walled carbon nanotubes (MWCNTs) have been widely used in sewage disposal, water purification, and disinfection. Co-exposure to MWCNTs and heavy metal ions is common during water disposal. However, the hepatotoxicity of co-exposure to MWCNTs and lead ions for nonalcoholic fatty liver disease (NAFLD) subjects has not been investigated. NAFLD mice were fed intragastrically with MWCNTs and lead acetate (PbAc). Combined administration of MWCNTs and PbAc significantly damaged the liver function, and aggravated the nonalcoholic steatohepatitis phenotype as well as the hepatic fibrosis and steatosis in NAFLD mice. Furthermore, MWCNTs and PbAc significantly induced apoptosis in primary hepatocytes isolated from NAFLD mice. Combined administration of MWCNTs and PbAc also resulted in hepatic lipid peroxidation by inducing antioxidant defense system dysfunction, and significantly enhanced the expression levels of inflammatory cytokines in NAFLD mice livers. Meanwhile, combined administration of MWCNTs and PbAc may exert its hepatotoxicity in the NAFLD via inhibiting the adenosine 5'-monophosphate activated protein kinase (AMPK)/peroxisome proliferator-activated receptors γ (PPARγ) pathway. Taken together, we conclude that co-exposure to MWCNTs and PbAc can remarkably aggravate the hepatotoxicity in NAFLD mice via inhibiting the AMPK/PPARγ pathway. This study may provide a biosafety evaluation for the application of nanomaterials in wastewater treatment.
Collapse
Affiliation(s)
- Enqin Liu
- Department of Infectious Diseases, Linyi People's Hospital, Linyi, China
| | - Xinghui Wang
- Department of Respiratory Medicine, Affiliated Hospital of Shandong Medical College, Linyi, China
| | - Xidong Li
- Department of Infectious Diseases, Linyi People's Hospital, Linyi, China
| | - Ping Tian
- Department of Infectious Diseases, Linyi People's Hospital, Linyi, China
| | - Hao Xu
- Department of Infectious Diseases, Linyi People's Hospital, Linyi, China
| | - Zenglian Li
- Department of Infectious Diseases, Linyi People's Hospital, Linyi, China
| | - Likun Wang
- Department of Infectious Diseases, Linyi People's Hospital, Linyi, China
| |
Collapse
|
19
|
Wang C, Rong H, Zhang X, Shi W, Hong X, Liu W, Cao T, Yu X, Yu Q. Effects and mechanisms of foliar application of silicon and selenium composite sols on diminishing cadmium and lead translocation and affiliated physiological and biochemical responses in hybrid rice (Oryza sativa L.) exposed to cadmium and lead. CHEMOSPHERE 2020; 251:126347. [PMID: 32169700 DOI: 10.1016/j.chemosphere.2020.126347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 05/10/2023]
Abstract
Currently, exploring effective measures to reduce multiple toxic metals accumulation in rice grains is an urgent issue to be tackled. Pot experiments were thus conducted to explore the effects and mechanisms of foliar spraying with composite sols of silicon (Si) and selenium (Se) during tillering to booting stage on diminishing cadmium (Cd) and lead (Pb) translocation to rice grains and affiliated physiological and biochemical responses in rice seedlings grown in Cd + Pb-polluted soils (positive control). Results showed that Cd and Pb contents in leaves or grains were distinctly below the positive control by the sols. Compared to the positive control, transcriptions of Cd transporter-related genes including OsLCT1, OsCCX2, OsHMA2 and OsPCR1 genes in leaves, and OsLCT1, OsCCX2, TaCNR2 and OSPCR1 in peduncles were downregulated by the increasing sols. Meanwhile, Se-binding protein 1 was evidently upregulated, together to retard Cd and Pb translocation to rice grains. The sols not only upregulated transcriptions of Lhcb1, RbcL, and OsBTF3 genes and production of psbA, Lhcb1 and RbcL proteins, but also increased the chlorophylls contents and RuBP carboxylase activities in the leaves, improving photosynthesis. The sols restrained ROS production from NADPH oxidases, but activated glutathione peroxidase, alleviating oxidative stress and damage. Additionally, Se was significantly enriched and was existed as selenomethionine in the rice grains. However, Pb transporter-related genes remain to be specified. Thus, the composite sols have potential to reduce Cd and Pb accumulation, mitigate oxidative damage, and promote photosynthesis and organic Se enrichment in rice plants under Cd and Pb combined pollution.
Collapse
Affiliation(s)
- Chengrun Wang
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China.
| | - Hong Rong
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| | - Xuebiao Zhang
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| | - Wenjun Shi
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| | - Xiu Hong
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| | - Weichen Liu
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| | - Tong Cao
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| | - Xianxian Yu
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| | - Qifen Yu
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| |
Collapse
|
20
|
Adedara IA, Awogbindin IO, Owoeye O, Maduako IC, Ajeleti AO, Owumi SE, Patlolla AK, Farombi EO. Kolaviron via anti-inflammatory and redox regulatory mechanisms abates multi-walled carbon nanotubes-induced neurobehavioral deficits in rats. Psychopharmacology (Berl) 2020; 237:1027-1040. [PMID: 31897575 DOI: 10.1007/s00213-019-05432-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
Exposure to multi-walled carbon nanotubes (MWCNTs) reportedly elicits neurotoxic effects. Kolaviron is a phytochemical with several pharmacological effects namely anti-oxidant, anti-inflammatory, and anti-genotoxic activities. The present study evaluated the neuroprotective mechanism of kolaviron in rats intraperitoneally injected with MWCNTs alone at 1 mg/kg body weight or orally co-administered with kolaviron at 50 and 100 mg/kg body weight for 15 consecutive days. Following exposure, neurobehavioral analysis using video-tracking software during trial in a novel environment indicated that co-administration of both doses of kolaviron significantly (p < 0.05) enhanced the locomotor, motor, and exploratory activities namely total distance traveled, maximum speed, total time mobile, mobile episode, path efficiency, body rotation, absolute turn angle, and negative geotaxis when compared with rats exposed to MWCNTs alone. Further, kolaviron markedly abated the decrease in the acetylcholinesterase activity and antioxidant defense system as well as the increase in oxidative stress and inflammatory biomarkers induced by MWCNT exposure in the cerebrum, cerebellum, and mid-brain of rats. The amelioration of MWCNT-induced neuronal degeneration in the brain structures by kolaviron was verified by histological and morphometrical analyses. Taken together, kolaviron abated MWCNT-induced neurotoxicity via anti-inflammatory and redox regulatory mechanisms.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ifeoluwa O Awogbindin
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ikenna C Maduako
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Akinola O Ajeleti
- Department of Anatomy, College of Medicine, Bowen University, Iwo, Nigeria
| | - Solomon E Owumi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Anita K Patlolla
- College of Science Engineering and Technology, NIH-RCMI Center for Environmental Health, Jackson State University, Jackson, MS, USA
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
21
|
Yan H, Xue Z, Xie J, Dong Y, Ma Z, Sun X, Kebebe Borga D, Liu Z, Li J. Toxicity of Carbon Nanotubes as Anti-Tumor Drug Carriers. Int J Nanomedicine 2019; 14:10179-10194. [PMID: 32021160 PMCID: PMC6946632 DOI: 10.2147/ijn.s220087] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/25/2019] [Indexed: 12/25/2022] Open
Abstract
Nanoparticle drug formulations have enormous application prospects owing to achievement of targeted and sustained release drug delivery, improvement in drug solubility and reduction of adverse drug reactions. Recently, a variety of efficient drug nanometer carriers have been developed, among which carbon nanotubes (CNT) have been increasingly utilized in the field of cancer therapy. However, these nanotubes exert various toxic effects on the body due to their unique physical and chemical properties. CNT-induced toxicity is related to surface modification, degree of aggregation in vivo, and nanoparticle concentration. This review has focused on the potential toxic effects of CNTs utilized as anti-tumor drug carriers. The main modes by which CNTs enter target sites, the toxicity expressive types and the factors affecting toxicity are discussed.
Collapse
Affiliation(s)
- Hongli Yan
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Zhifeng Xue
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Jiarong Xie
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Yixiao Dong
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Zhe Ma
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Xinru Sun
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Dereje Kebebe Borga
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Zhidong Liu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Jiawei Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,Institute of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| |
Collapse
|
22
|
Al-Badri AM, Bargooth AF, Al-Jebori JG, Zegyer EAK. Identification of carbon nanotube particles in liver tissue and its effects on apoptosis of birds exposed to air pollution. Vet World 2019; 12:1372-1377. [PMID: 31749569 PMCID: PMC6813606 DOI: 10.14202/vetworld.2019.1372-1377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim This study aimed to distinguish carbon nanotube (CNT) particles and their pathological effects on the liver of birds in areas with carbon emissions. Materials and Methods Twenty-one domestic ducks were collected from pure farmers and exposed to different sources of air pollution. Histological stains were used to detect the accumulation of carbon particles. In addition, acridine orange/ethidium bromide staining was used to detect apoptosis, and scanning electron microscope (SEM) technique was used to determine the morphological design of carbon particles. Results Light microscope results showed that the liver sections contain multiwalled CNTs (MWCNTs) which appear as black spots in the hepatic parenchyma. The histopathological changes of parenchyma include sinusoidal dilatation, infiltration, and congestion with frequently high number of macrophages. In general, early destruction of hepatic parenchyma was observed. Moreover, SEM results showed two morphological types of CNTs: The ball-shaped nanoparticles scattered as ultrafine carbon black and fiber form of carbon particles were recognized as MWCNTs in the hepatic tissue. Fluorescence microscopy results showed the early and progressive stages of apoptosis in the hepatic cells of birds in polluted areas, which can be related to the degree and exposure period to pollutants. Conclusion The study indicates that liver morbidity of birds living in the farms affected by the pollution of brick factories is higher than the birds living in farms affected by the pollution of oil fields.
Collapse
Affiliation(s)
| | - Ali Fayadh Bargooth
- Department of Biology, College of Education for Pure Sciences, Wasit University, Wasit, Iraq
| | - Jafar Ghazi Al-Jebori
- Department of Anatomy and Histology, College of Veterinary Medicine, Al-Qasim Green University, Babylon, Iraq
| | | |
Collapse
|
23
|
Icoglu Aksakal F, Ciltas A, Simsek Ozek N. A holistic study on potential toxic effects of carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) on zebrafish (Danio rerio) embryos/larvae. CHEMOSPHERE 2019; 225:820-828. [PMID: 30904762 DOI: 10.1016/j.chemosphere.2019.03.083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) have widespread use in industrial and consumer products and great potential in biomedical applications. This leads to inevitably their release into the environment and the formation of their toxic effects on organisms. These effects can change depending on their physicochemical characteristics. Therefore, the toxicological findings of MWCNTs are inconsistent. Their toxicities related to surface modification have not been elucidated in a holistic manner. Hence, this study was conducted to clarify their potential toxic effects on zebrafish embryos/larvae in a comprehensive approach using morphologic, biochemical and molecular parameters. Zebrafish embryos were exposed to 5, 10, 20 mg/L doses of MWCNTs-COOH at 4 h after fertilization and grown until 96 hpf. Physiological findings demonstrated that they induced a concentration-dependent increase in the mortality rate, delayed hatching and decrease in the heartbeat rate. Moreover, it caused abnormalities including yolk sac edema, pericardial edema, head, tail malformations, and vertebral deformities. These effects may be due to the alterations in antioxidant and immune system related gene expressions after their entry into zebrafish embryo/larvae. The entry was confirmed from the evaluation of Raman spectra collected from the head, yolk sac, and tail of control and the nanotube treated groups. The gene expression analysis indicated the changes in the expression of oxidative stress (mtf-1, hsp70, and nfkb) and innate immune system (il-1β, tlr-4, tlr-22, trf, and cebp) related genes, especially an increased in the expression of the hsp70 and il-1β. These findings proved the developmental toxicities of MWCNTs-COOH on the zebrafish embryos/larvae.
Collapse
Affiliation(s)
- Feyza Icoglu Aksakal
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkey.
| | - Abdulkadir Ciltas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkey
| | - Nihal Simsek Ozek
- Department of Biology, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey; East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
24
|
Dekani L, Johari SA, Joo HS. Comparative toxicity of organic, inorganic and nanoparticulate zinc following dietary exposure to common carp (Cyprinus carpio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:1191-1198. [PMID: 30625650 DOI: 10.1016/j.scitotenv.2018.11.474] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
This study was carried out to compare the dietary toxicity of organic zinc (Zn-proteinate, Bioplex Zn®), mineral zinc (ZnSO4), and nanoparticulate zinc (ZnO-NPs) on the basis of some biological responses including growth performance and whole-body proximate composition, and antioxidant enzymes, as well as their accumulative affinity to target organs. These Zn sources with the nominal concentrations of 0, 30, 100, and 500 mg kg-1 diet were added to a basal diet. Juvenile common carp (n = 400; weight of 25.3 ± 2.7 g) were fed with the diets for 56 days. ZnSO4 significantly reduced condition factor (CF) at 500 mg kg-1 diet. The highest activity of superoxide dismutase (SOD) and alkaline phosphatase (ALP) was observed in the plasma of the animals received 500 mg kg-1 diet of all experimental Zn sources. However, this concentration of ZnO-NPs significantly increased the activity of SOD when compared to the respective amount of ZnSO4 and Zn-proteinate. Catalase (CAT) showed a zinc-concentration decreasing activity; the minimum activity was observed in the fish group treated with the diet containing 500 mg kg-1 ZnSO4. Digestive, muscular, and integumentary systems demonstrated the following tissue zinc burden: liver > muscle > bone > posterior intestine ≈ skin > anterior intestine, for ZnO-NPs; liver > muscle ≈ bone ≈ posterior intestine ≈ skin > anterior intestine, for Zn-proteinate; and liver > muscle ≈ bone ≈ skin > posterior intestine ≈ anterior intestine, for ZnSO4. Based on accumulative affinity, taken together, ZnO-NPs displayed the highest affinity to all of the analyzed target organs, and also intestinal Zn accumulation suggested that the gut tissue has the lowest rendering ability against ZnO-NPs in compare to ZnSO4 and Zn-proteinate.
Collapse
Affiliation(s)
- Leila Dekani
- Fisheries Department, Natural Resources Faculty, University of Kurdistan, Iran
| | - Seyed Ali Johari
- Fisheries Department, Natural Resources Faculty, University of Kurdistan, Iran.
| | - Hamid Salari Joo
- Department of Marine Sciences, Tarbiat Modares University, Mazandaran, Iran
| |
Collapse
|
25
|
Rong H, Wang C, Yu X, Fan J, Jiang P, Wang Y, Gan X, Wang Y. Carboxylated multi-walled carbon nanotubes exacerbated oxidative damage in roots of Vicia faba L. seedlings under combined stress of lead and cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:616-623. [PMID: 29933131 DOI: 10.1016/j.ecoenv.2018.06.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/22/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) and heavy metals could be absorbed and bioaccumulated by agricultural crops, implicating ecological risks. Herein, the present study investigated the ecotoxicological effects and mechanisms of individual carboxylated MWCNTs (MWCNTs-COOH) (2.5, 5.0 and 10 mg/L) and their combination with 20 µM Pb and 5 µM Cd (shortened as Pb + Cd) on roots of Vicia faba L. seedlings after 20 days of exposure. The results showed that the tested MWCNTs-COOH induced imbalance of nutrient elements, enhanced isozymes and activities of superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), resulting in accumulation of carbonylated proteins, elevation of endoproteases (EPs) isozymes, and reduction of HSP70 synthesis in the roots. However, the tested MWCNTs-COOH facilitated the enrichment of Cd, Pb and Na elements, contributing to the decrease of SOD, CAT and APX activities, and the reduction of HSP70 synthesis, whereas the elevation of carbonylated proteins, EP activities and cell necrosis in the roots when Pb + Cd was combined in comparison to the treatments of MWCNTs-COOH, or Pb + Cd alone. Thus, the tested MWCNTs-COOH not only caused oxidative stress, but also aggravated the oxidative damage in the roots exposed to Pb + Cd in the culture solution.
Collapse
Affiliation(s)
- Hong Rong
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| | - Chengrun Wang
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China.
| | - Xiaorui Yu
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| | - Jinbao Fan
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| | - Pei Jiang
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| | - Yuchuan Wang
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| | - Xianqing Gan
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| | - Yun Wang
- School of Biological Engineering, Huainan Normal University, Huainan 232001, China
| |
Collapse
|
26
|
Adedara IA, Anao OO, Forcados GE, Awogbindin IO, Agbowo A, Ola-Davies OE, Patlolla AK, Tchounwou PB, Farombi EO. Low doses of multi-walled carbon nanotubes elicit hepatotoxicity in rats with markers of oxidative stress and induction of pro-inflammatory cytokines. Biochem Biophys Res Commun 2018; 503:3167-3173. [PMID: 30149914 DOI: 10.1016/j.bbrc.2018.08.112] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 01/23/2023]
Abstract
The investigation into the potential health risks associated with the use of engineered nanoparticles is a major scientific interest in recent years. The present study elucidated the involvement of pro-inflammatory cytokines, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in carboxylated multi-walled carbon nanotubes (MWCNTs)-induced hepatotoxicity. Pubertal rats were exposed to purified MWCNTs at 0, 0.25, 0.50, 0.75 and 1.0 mg/kg for 5 consecutive days. Results indicated that exposure to MWCNTs caused liver damage evidenced by significant elevation in serum activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and gamma glutamyl transferase (GGT) when compared with control. Moreover, MWCNTs significantly decreased superoxide dismutase (SOD) and glutathione S-transferase (GST) activities as well as glutathione level whereas it significantly increased catalase (CAT) and glutathione peroxidase (GPx) activities in liver of the treated rats. Moreover, the dose-dependent increase in hepatic hydrogen peroxide (H2O2) and lipid peroxidation levels were accompanied by marked increase in micronucleated polychromatic erythrocytes (MNPCE) in the MWCNTs-treated rats. Administration of MWCNTs significantly increased serum concentrations of pro-inflammatory cytokines namely interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in the treated rats. Immunohistochemical analysis showed significantly increased COX-2 and iNOS protein expressions in the liver of MWCNTs-treated rats. In conclusion, carboxylated MWCNTs induces hepatic damage via disruption of antioxidant defense systems, promotion of pro-inflammatory cytokines generation and expression of COX-2 and i-NOS in rats.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Osemudiamen O Anao
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Gilead E Forcados
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ifeoluwa O Awogbindin
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Agatha Agbowo
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke E Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Anita K Patlolla
- College of Science Engineering and Technology, NIH-RCMI Center for Environmental Health, Jackson State University, Jackson, MS, USA
| | - Paul B Tchounwou
- College of Science Engineering and Technology, NIH-RCMI Center for Environmental Health, Jackson State University, Jackson, MS, USA
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
27
|
Umemura K, Sato S. Scanning Techniques for Nanobioconjugates of Carbon Nanotubes. SCANNING 2018; 2018:6254692. [PMID: 30008981 PMCID: PMC6020491 DOI: 10.1155/2018/6254692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/29/2018] [Indexed: 05/17/2023]
Abstract
Nanobioconjugates using carbon nanotubes (CNTs) are attractive and promising hybrid materials. Various biological applications using the CNT nanobioconjugates, for example, drug delivery systems and nanobiosensors, have been proposed by many authors. Scanning techniques such as scanning electron microscopy (SEM) and scanning probe microscopy (SPM) have advantages to characterize the CNT nanobioconjugates under various conditions, for example, isolated conjugates, conjugates in thin films, and conjugates in living cells. In this review article, almost 300 papers are categorized based on types of CNT applications, and various scanning data are introduced to illuminate merits of scanning techniques.
Collapse
Affiliation(s)
- Kazuo Umemura
- Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 1628601, Japan
| | - Shizuma Sato
- Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 1628601, Japan
| |
Collapse
|
28
|
Patlolla AK, Rondalph J, Tchounwou PB. Biochemical and Histopathological Evaluation of Graphene Oxide in Sprague-Dawley Rats. AUSTIN JOURNAL OF ENVIRONMENTAL TOXICOLOGY 2017; 3:1021. [PMID: 29503980 PMCID: PMC5831506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphene and its derivatives are promising material for important biomedical applications due to their versatility. A detailed comprehensive study of the toxicity of these materials is required in context with the prospective use in biological setting. We investigated toxicity of Graphene Oxide (GO) in rats following exposure with respect to hepatotoxicity and oxidative stress biomarkers. Four groups of five male rats were orally administered GOs, once a day for five days, with doses of 10, 20 and 40mg/Kg GO. A control group consisted of five rats. Blood and liver were collected 24h after the last treatment following standard protocols. GO's exposure increased induction of Reactive Oxygen Species (ROS), activities of liver enzymes (Alanine ALT, Aspartate AST, Alkaline Phosphates ALP), concentration of Lipid Hydro Peroxide (LHP) and morphological alterations of liver tissue in exposed groups compared to control. The highest two doses, 20 and 40mg/kg, showed statistically significant (p<0.05) increases in the induction of ROS, activities of ALT, ALP, LHP concentration, and morphological alterations of liver tissue compared to control. However, AST activity showed no effect. The results of this study demonstrate that GO may be hepatotoxic, and its toxicity might be mediated through oxidative stress.
Collapse
Affiliation(s)
- A K Patlolla
- NIH-RCMI Center for Environmental Health, College of Science Engineering and Technology, Jackson State University, USA
- Department of Biology CSET, Jackson State University, USA
| | | | - P B Tchounwou
- NIH-RCMI Center for Environmental Health, College of Science Engineering and Technology, Jackson State University, USA
- Department of Biology CSET, Jackson State University, USA
| |
Collapse
|
29
|
Rahman L, Jacobsen NR, Aziz SA, Wu D, Williams A, Yauk CL, White P, Wallin H, Vogel U, Halappanavar S. Multi-walled carbon nanotube-induced genotoxic, inflammatory and pro-fibrotic responses in mice: Investigating the mechanisms of pulmonary carcinogenesis. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 823:28-44. [PMID: 28985945 DOI: 10.1016/j.mrgentox.2017.08.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/15/2017] [Accepted: 08/29/2017] [Indexed: 10/18/2022]
Abstract
The International Agency for Research on Cancer has classified one type of multi-walled carbon nanotubes (MWCNTs) as possibly carcinogenic to humans. However, the underlying mechanisms of MWCNT- induced carcinogenicity are not known. In this study, the genotoxic, mutagenic, inflammatory, and fibrotic potential of MWCNTs were investigated. Muta™Mouse adult females were exposed to 36±6 or 109±18μg/mouse of Mitsui-7, or 26±2 or 78±5μg/mouse of NM-401, once a week for four consecutive weeks via intratracheal instillations, alongside vehicle-treated controls. Samples were collected 90days following the first exposure for measurement of DNA strand breaks, lacZ mutant frequency, p53 expression, cell proliferation, lung inflammation, histopathology, and changes in global gene expression. Both MWCNT types persisted in lung tissues 90days post-exposure, and induced lung inflammation and fibrosis to similar extents. However, there was no evidence of DNA damage as measured by the comet assay following Mitsui-7 exposure, or increases in lacZ mutant frequency, for either MWCNTs. Increased p53 expression was observed in the fibrotic foci induced by both MWCNTs. Gene expression analysis revealed perturbations of a number of biological processes associated with cancer including cell death, cell proliferation, free radical scavenging, and others in both groups, with the largest response in NM-401-treated mice. The results suggest that if the two MWCNT types were capable of inducing DNA damage, strong adaptive responses mounted against the damage, resulting in efficient and timely elimination of damaged cells through cell death, may have prevented accumulation of DNA damage and mutations at the post-exposure time point investigated in the study. Thus, MWCNT-induced carcinogenesis may involve ongoing low levels of DNA damage in an environment of persisting fibres, chronic inflammation and tissue irritation, and parallel increases or decreases in the expression of genes involved in several pro-carcinogenic pathways.
Collapse
Affiliation(s)
- Luna Rahman
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Syed Abdul Aziz
- Food Directorate, Health Products and Food Branch, Health Canada Ottawa, ON, Canada
| | - Dongmei Wu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Paul White
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Hakan Wallin
- The National Research Centre for the Working Environment, Copenhagen, Denmark; STAMI, National Institute of Occupational Health, Gydas vei 8, Oslo, Norway
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Copenhagen, Denmark; Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada.
| |
Collapse
|
30
|
Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A. Carbon Nanotubes in Biomedical Applications: Factors, Mechanisms, and Remedies of Toxicity. J Med Chem 2016; 59:8149-67. [DOI: 10.1021/acs.jmedchem.5b01770] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Reem Alshehri
- Center of Nanotechnology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Asad Muhammad Ilyas
- Center of Excellence in Genomic Medical Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Engineering and Department of Mechanical Engineering,
Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
- Biomaterials
Innovation Research Center, Division of Biomedical Engineering, Department
of Medicine, Brigham and Women’s Hospital, Harvard Medical
School, Boston Massachusetts 02115, United States
| | - Adnan Arnaout
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Farid Ahmed
- Center of Excellence in Genomic Medical Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
31
|
Farombi EO, Adedara IA, Forcados GE, Anao OO, Agbowo A, Patlolla AK. Responses of testis, epididymis, and sperm of pubertal rats exposed to functionalized multiwalled carbon nanotubes. ENVIRONMENTAL TOXICOLOGY 2016; 31:543-551. [PMID: 25410135 DOI: 10.1002/tox.22067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
The present study investigated the response of testes, epididymides and sperm in pubertal Wistar rats following exposure to 0, 0.25, 0.5, 0.75, and 1.0 mg kg(-1) functionalized multi-walled carbon nanotubes (f-MWCNTs) for 5 days. The results showed that administration of (f-MWCNTs) significantly increased the activities of superoxide dismutase, catalase, and glutathione peroxidase in a dose-dependent manner in both testes and sperm compared with control group. Moreover, the significant decrease in the activity of glutathione-S-transferase and glutathione level was accompanied with significant elevation in the levels of hydrogen peroxide and malondialdehyde in both testes and sperm of (f-MWCNTs)-treated rats. The spermiogram of (f-MWCNTs)-treated rats indicated significant decrease in epididymal sperm number, sperm progressive motility, testicular sperm number and daily sperm production with elevated sperm abnormalities when compared with the control. Exposure to (f-MWCNTs) decreased plasma testosterone level and produced marked morphological changes including decreased geminal epithelium, edema, congestion, reduced spermatogenic cells and focal areas of tubular degeneration in the testes. The lumen of the epididymides contained reduced sperm cells and there was mild to severe hyperplasia epithelial cells lining the duct of the epididymis. Collectively, pubertal exposure of male rats to (f-MWCNTs) elicited oxidative stress response resulting in marked testicular and epididymides dysfunction.
Collapse
Affiliation(s)
- Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Gilead E Forcados
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Osemudiamen O Anao
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Agatha Agbowo
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Anita K Patlolla
- College of Science Engineering and Technology, NIH-RCMI Center for Environmental Health, Jackson State University, Jackson, Mississippi, USA
| |
Collapse
|
32
|
Rubio L, El Yamani N, Kazimirova A, Dusinska M, Marcos R. Multi-walled carbon nanotubes (NM401) induce ROS-mediated HPRT mutations in Chinese hamster lung fibroblasts. ENVIRONMENTAL RESEARCH 2016; 146:185-190. [PMID: 26774957 DOI: 10.1016/j.envres.2016.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/17/2015] [Accepted: 01/03/2016] [Indexed: 06/05/2023]
Abstract
Although there is an important set of data showing potential genotoxic effects of nanomaterials (NMs) at the DNA (comet assay) and chromosome (micronucleus test) levels, few studies have been conducted to analyze their potential mutagenic effects at gene level. We have determined the ability of multi-walled carbon nanotubes (MWCNT, NM401), to induce mutations in the HPRT gene in Chinese hamster lung (V79) fibroblasts. NM401, characterized in the EU NanoGenotox project, were further studied within the EU Framework Programme Seven (FP7) project NANoREG. From the proliferation assay data we selected a dose-range of 0.12 to 12µg/cm(2) At these range we have been able to observe significant cellular uptake of MWCNT by using transmission electron microscopy (TEM), as well as a concentration-dependent induction of intracellular reactive oxygen species. In addition, a clear concentration-dependent increase in the induction of HPRT mutations was also observed. Data support a potential genotoxic/ carcinogenic risk associated with MWCNT exposure.
Collapse
Affiliation(s)
- Laura Rubio
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Naouale El Yamani
- Health Effects Laboratory-MILK, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Alena Kazimirova
- Department of Biology, Slovak Medical University, Bratislava, Slovakia
| | - Maria Dusinska
- Health Effects Laboratory-MILK, NILU-Norwegian Institute for Air Research, Kjeller, Norway.
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain; CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
33
|
Kumari SA, Madhusudhanachary P, Patlolla AK, Tchounwou PB. Hepatotoxicity and Ultra Structural Changes in Wistar Rats treated with Al 2O 3 Nanomaterials. TRENDS IN CELL & MOLECULAR BIOLOGY 2016; 11:77-88. [PMID: 28706375 PMCID: PMC5505674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The present study was designed to evaluate the hepatotoxicity of aluminium oxide (Al2O3). To achieve this objective, Al2O3 of three different sizes (30nm, 40nm and bulk) was orally administered for 28 days to 9 groups of 10 Wistar rats each, at the dose of 500, 1000 and 2000 mg/Kg/rat. A tenth group of 10 rats received distilled water and served as control. After 28 days of exposure, the animals were sacrificed and the serum was collected and tested for the activity levels of aminotransferases (AST or GOT and ALT or GPT), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) enzymes following standard testing methods. Reduced glutathione (GSH) content was also measured in the liver tissue to study the oxidative stress. A histopathological evaluation was also performed to determine the extent of liver injury. Study results indicated that the activity of both the aminotransferases (AST and ALT), ALP and LDH increased significantly in Al2O3 treated rats compared to control animals. The increase was found to be more pronounced with Al2O3 - 30nm followed by Al2O3 - 40nm and Al2O3 - bulk treated rats in a dose dependent manner. However reduced glutathione content showed a decline in the activity. Ultra structural assessment showed significant morphological changes in the liver tissue in accordance with biochemical parameters. Taken together, the results of this study demonstrated that Al2O3 is hepatotoxic and the smaller size of this nanomaterial appeared to be the most toxic while the compound in the bulk form seemed to be the least toxic.
Collapse
Affiliation(s)
- S. Anitha Kumari
- Department of Zoology, University College for Women, Koti, Hyderabad, India
| | | | - Anita K. Patlolla
- NIH – RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, USA
- Department of Biology, Jackson State University, Jackson, MS, USA
| | - Paul B. Tchounwou
- NIH – RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, USA
- Department of Biology, Jackson State University, Jackson, MS, USA
| |
Collapse
|
34
|
Strojny B, Kurantowicz N, Sawosz E, Grodzik M, Jaworski S, Kutwin M, Wierzbicki M, Hotowy A, Lipińska L, Chwalibog A. Long Term Influence of Carbon Nanoparticles on Health and Liver Status in Rats. PLoS One 2015; 10:e0144821. [PMID: 26657282 PMCID: PMC4681315 DOI: 10.1371/journal.pone.0144821] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/24/2015] [Indexed: 12/12/2022] Open
Abstract
Due to their excellent biocompatibility, carbon nanoparticles have been widely investigated for prospective biomedical applications. However, their impact on an organism with prolonged exposure is still not well understood. Here, we performed an experiment investigating diamond, graphene oxide and graphite nanoparticles, which were repeatedly administrated intraperitoneally into Wistar rats for four weeks. Some of the animals was sacrificed after the last injection, whereas the rest were sacrificed twelve weeks after the last exposure. We evaluated blood morphology and biochemistry, as well as the redox and inflammatory state of the liver. The results show the retention of nanoparticles within the peritoneal cavity in the form of prominent aggregates in proximity to the injection site, as well as the presence of some nanoparticles in the mesentery. Small aggregates were also visible in the liver serosa, suggesting possible transportation to the liver. However, none of the tested nanoparticles affected the health of animals. This lack of toxic effect may suggest the potential applicability of nanoparticles as drug carriers for local therapies, ensuring accumulation and slow release of drugs into a targeted tissue without harmful systemic side effects.
Collapse
Affiliation(s)
- Barbara Strojny
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Natalia Kurantowicz
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewa Sawosz
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Grodzik
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Sławomir Jaworski
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Kutwin
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Wierzbicki
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Anna Hotowy
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ludwika Lipińska
- Department of Chemical Technologies, Institute of Electronic Materials Technology, Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
35
|
Kurantowicz N, Strojny B, Sawosz E, Jaworski S, Kutwin M, Grodzik M, Wierzbicki M, Lipińska L, Mitura K, Chwalibog A. Biodistribution of a High Dose of Diamond, Graphite, and Graphene Oxide Nanoparticles After Multiple Intraperitoneal Injections in Rats. NANOSCALE RESEARCH LETTERS 2015; 10:398. [PMID: 26459428 PMCID: PMC4602018 DOI: 10.1186/s11671-015-1107-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/07/2015] [Indexed: 05/22/2023]
Abstract
Carbon nanoparticles have recently drawn intense attention in biomedical applications. Hence, there is a need for further in vivo investigations of their biocompatibility and biodistribution via various exposure routes. We hypothesized that intraperitoneally injected diamond, graphite, and graphene oxide nanoparticles may have different biodistribution and exert different effects on the intact organism. Forty Wistar rats were divided into four groups: the control and treated with nanoparticles by intraperitoneal injection (4 mg of nanoparticles/kg body weight) eight times during the 4-week period. Blood was collected for evaluation of blood morphology and biochemistry parameters. Photographs of the general appearance of each rat's interior were taken immediately after sacrifice. The organs were excised and their macroscopic structure was visualized using a stereomicroscope. The nanoparticles were retained in the body, mostly as agglomerates. The largest agglomerates (up to 10 mm in diameter) were seen in the proximity of the injection place in the stomach serous membrane, between the connective tissues of the abdominal skin, muscles, and peritoneum. Numerous smaller, spherical-shaped aggregates (diameter around 2 mm) were lodged among the mesentery. Moreover, in the connective and lipid tissue in the proximity of the liver and spleen serosa, small aggregates of graphite and graphene oxide nanoparticles were observed. However, all tested nanoparticles did not affect health and growth of rats. The nanoparticles had no toxic effects on blood parameters and growth of rats, suggesting their potential applicability as remedies or in drug delivery systems.
Collapse
Affiliation(s)
- Natalia Kurantowicz
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Barbara Strojny
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Ewa Sawosz
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Sławomir Jaworski
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Marta Kutwin
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Marta Grodzik
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Mateusz Wierzbicki
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Ludwika Lipińska
- Department of Chemical Technologies, Institute of Electronic Materials Technology, Wolczynska 133, 01-919, Warsaw, Poland.
| | - Katarzyna Mitura
- Department of Biomedical Engineering, Koszalin University of Technology, Koszalin, Poland.
| | - André Chwalibog
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, 1870, Frederiksberg, Denmark.
| |
Collapse
|
36
|
Albini A, Pagani A, Pulze L, Bruno A, Principi E, Congiu T, Gini E, Grimaldi A, Bassani B, De Flora S, de Eguileor M, Noonan DM. Environmental impact of multi-wall carbon nanotubes in a novel model of exposure: systemic distribution, macrophage accumulation, and amyloid deposition. Int J Nanomedicine 2015; 10:6133-45. [PMID: 26457053 PMCID: PMC4598201 DOI: 10.2147/ijn.s85275] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Carbon nanotubes (CNTs) have been extensively investigated and employed for industrial use because of their peculiar physical properties, which make them ideal for many industrial applications. However, rapid growth of CNT employment raises concerns about the potential risks and toxicities for public health, environment, and workers associated with the manufacture and use of these new materials. Here we investigate the main routes of entry following environmental exposure to multi-wall CNTs (MWCNTs; currently the most widely used in industry). We developed a novel murine model that could represent a surrogate of a workplace exposure to MWCNTs. We traced the localization of MWCNTs and their possible role in inducing an innate immune response, inflammation, macrophage recruitment, and inflammatory conditions. Following environmental exposure of CD1 mice, we observed that MWCNTs rapidly enter and disseminate in the organism, initially accumulating in lungs and brain and later reaching the liver and kidney via the bloodstream. Since recent experimental studies show that CNTs are associated with the aggregation process of proteins associated with neurodegenerative diseases, we investigated whether MWCNTs are able to induce amyloid fibril production and accumulation. Amyloid deposits in spatial association with macrophages and MWCNT aggregates were found in the brain, liver, lungs, and kidneys of exposed animals. Our data suggest that accumulation of MWCNTs in different organs is associated with inflammation and amyloid accumulation. In the brain, where we observed rapid accumulation and amyloid fibril deposition, exposure to MWCNTs might enhance progression of neurodegenerative and other amyloid-related diseases. Our data highlight the conclusion that, in a novel rodent model of exposure, MWCNTs may induce macrophage recruitment, activation, and amyloid deposition, causing potential damage to several organs.
Collapse
Affiliation(s)
- Adriana Albini
- Laboratory of Translational Research, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Arianna Pagani
- Department of Biotechnologies and Life Sciences, University of Insubria, Varese, Italy
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| | - Laura Pulze
- Department of Biotechnologies and Life Sciences, University of Insubria, Varese, Italy
| | - Antonino Bruno
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| | - Elisa Principi
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| | - Terenzio Congiu
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Elisabetta Gini
- Department of Biotechnologies and Life Sciences, University of Insubria, Varese, Italy
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Annalisa Grimaldi
- Department of Biotechnologies and Life Sciences, University of Insubria, Varese, Italy
| | - Barbara Bassani
- Department of Biotechnologies and Life Sciences, University of Insubria, Varese, Italy
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Magda de Eguileor
- Department of Biotechnologies and Life Sciences, University of Insubria, Varese, Italy
| | - Douglas M Noonan
- Department of Biotechnologies and Life Sciences, University of Insubria, Varese, Italy
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| |
Collapse
|
37
|
FANIZZA C, CASCIARDI S, INCORONATO F, CAVALLO D, URSINI C, CIERVO A, MAIELLO R, FRESEGNA A, MARCELLONI A, LEGA D, ALVINO A, BAIGUERA S. Human epithelial cells exposed to functionalized multiwalled carbon nanotubes: interactions and cell surface modifications. J Microsc 2015; 259:173-84. [DOI: 10.1111/jmi.12251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/01/2015] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | - D. CAVALLO
- INAIL; DMEILA; Monteporzio Catone Rome Italy
| | - C.L. URSINI
- INAIL; DMEILA; Monteporzio Catone Rome Italy
| | - A. CIERVO
- INAIL; DMEILA; Monteporzio Catone Rome Italy
| | - R. MAIELLO
- INAIL; DMEILA; Monteporzio Catone Rome Italy
| | | | | | | | | | | |
Collapse
|
38
|
Lamberti M, Pedata P, Sannolo N, Porto S, De Rosa A, Caraglia M. Carbon nanotubes: Properties, biomedical applications, advantages and risks in patients and occupationally-exposed workers. Int J Immunopathol Pharmacol 2015; 28:4-13. [DOI: 10.1177/0394632015572559] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Since the beginning of the 21st century, carbon-based nanomaterials (CNTs) have been introduced in pharmacy and medicine for drug delivery system in therapeutics. CNTs have proved able to transport a wide range of molecules across membranes and into living cells; therefore, they have attracted great interest in biomedical applications such as advanced imaging, tissue regeneration, and drug or gene delivery. Although there are many data on the advantages in terms of higher efficacy and less adverse effects, several recent findings have reported unexpected toxicities induced by CNTs. The dose, shape, surface chemistry, exposure route, and purity play important roles in these differential toxicities. Mapping these risks as well as understanding their molecular mechanisms is a crucial step in the development of any CNT-containing nanopharmaceuticals. This paper seeks to provide a comprehensive review of all articles published on cellular response to CNTs, underlining their therapeutic applications and possible toxicity in patients and occupationally exposed workers.
Collapse
Affiliation(s)
- M Lamberti
- Department of Experimental Medicine, Section of Hygiene, Occupational Medicine and Forensic Medicine, Second University of Naples, Naples, Italy
| | - P Pedata
- Department of Experimental Medicine, Section of Hygiene, Occupational Medicine and Forensic Medicine, Second University of Naples, Naples, Italy
| | - N Sannolo
- Department of Experimental Medicine, Section of Hygiene, Occupational Medicine and Forensic Medicine, Second University of Naples, Naples, Italy
| | - S Porto
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Italy
| | - A De Rosa
- Department of Odontology and Surgery, Second University of Naples, Italy
| | - M Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Italy
| |
Collapse
|
39
|
Liu Z, Liu Y, Peng D. Carboxylation of multiwalled carbon nanotube attenuated the cytotoxicity by limiting the oxidative stress initiated cell membrane integrity damage, cell cycle arrestment, and death receptor mediated apoptotic pathway. J Biomed Mater Res A 2015; 103:2770-7. [PMID: 25684371 DOI: 10.1002/jbm.a.35416] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/09/2015] [Indexed: 12/19/2022]
Abstract
In this study, the effects of carboxylated multiwalled carbon nanotubes (MWCNTs-COOH) on human normal liver cell line L02 was compared with that of pristine multiwalled carbon nanotubes (p-MWCNTs). It was shown that compared with MWCNTs-COOH, p-MWCNTs induced apoptosis, reduced the level of intracellular antioxidant glutathione more significantly, and caused severer cell membrane damage as demonstrated by lactate dehydrogenase leakage. Cell cycles were arrested by both MWCNTs, while p-MWCNTs induced higher ratio of G0/G1 phase arrestment as compared with MWCNTs-COOH. Caspase-8 was also activated after both MWCNTs exposure, indicating extrinsic apoptotic pathway was involved in the apoptosis induced by MWCNTs exposure, more importantly, MWCNTs-COOH significantly reduced the activation of caspase-8 as compared with p-MWCNTs. All these results suggested that MWCNTs-COOH might be safer for in vivo application as compared with p-MWCNTs.
Collapse
Affiliation(s)
- Zhenbao Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan Province, 410013, People's Republic of China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, People's Republic of China
| | - Dongming Peng
- Department of Medicinal Chemistry, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan Province, 410208, People's Republic of China
| |
Collapse
|
40
|
Kim JE, Lee S, Lee AY, Seo HW, Chae C, Cho MH. Intratracheal exposure to multi-walled carbon nanotubes induces a nonalcoholic steatohepatitis-like phenotype in C57BL/6J mice. Nanotoxicology 2014; 9:613-23. [DOI: 10.3109/17435390.2014.963186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Møller P, Christophersen DV, Jensen DM, Kermanizadeh A, Roursgaard M, Jacobsen NR, Hemmingsen JG, Danielsen PH, Cao Y, Jantzen K, Klingberg H, Hersoug LG, Loft S. Role of oxidative stress in carbon nanotube-generated health effects. Arch Toxicol 2014; 88:1939-64. [DOI: 10.1007/s00204-014-1356-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 08/28/2014] [Indexed: 01/19/2023]
|
42
|
Saito N, Haniu H, Usui Y, Aoki K, Hara K, Takanashi S, Shimizu M, Narita N, Okamoto M, Kobayashi S, Nomura H, Kato H, Nishimura N, Taruta S, Endo M. Safe clinical use of carbon nanotubes as innovative biomaterials. Chem Rev 2014; 114:6040-79. [PMID: 24720563 PMCID: PMC4059771 DOI: 10.1021/cr400341h] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Naoto Saito
- Institute
for Biomedical Sciences, Shinshu University, Asahi 3-1-1, Matsumoto 390-8621, Japan
| | - Hisao Haniu
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Yuki Usui
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
- Research Center for Exotic Nanocarbons, and Faculty of Engineering, Shinshu University, Wakasato 4-17-1, Nagano 380-8553, Japan
| | - Kaoru Aoki
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Kazuo Hara
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Seiji Takanashi
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Masayuki Shimizu
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Nobuyo Narita
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Masanori Okamoto
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Shinsuke Kobayashi
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Hiroki Nomura
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Hiroyuki Kato
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Naoyuki Nishimura
- R&D
Center, Nakashima Medical Co. Ltd., Haga 5322, Kita-ku, Okayama 701-1221, Japan
| | - Seiichi Taruta
- Research Center for Exotic Nanocarbons, and Faculty of Engineering, Shinshu University, Wakasato 4-17-1, Nagano 380-8553, Japan
| | - Morinobu Endo
- Research Center for Exotic Nanocarbons, and Faculty of Engineering, Shinshu University, Wakasato 4-17-1, Nagano 380-8553, Japan
| |
Collapse
|
43
|
Orecchioni M, Bedognetti D, Sgarrella F, Marincola FM, Bianco A, Delogu LG. Impact of carbon nanotubes and graphene on immune cells. J Transl Med 2014; 12:138. [PMID: 24885781 PMCID: PMC4067374 DOI: 10.1186/1479-5876-12-138] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/03/2014] [Indexed: 12/20/2022] Open
Abstract
It has been recently proposed that nanomaterials, alone or in concert with their specific biomolecular conjugates, can be used to directly modulate the immune system, therefore offering a new tool for the enhancement of immune-based therapies against infectious disease and cancer. Here, we revised the publications on the impact of functionalized carbon nanotubes (f-CNTs), graphene and carbon nanohorns on immune cells. Whereas f-CNTs are the nanomaterial most widely investigated, we noticed a progressive increase of studies focusing on graphene in the last couple of years. The majority of the works (56%) have been carried out on macrophages, following by lymphocytes (30% of the studies). In the case of lymphocytes, T cells were the most investigated (22%) followed by monocytes and dendritic cells (7%), mixed cell populations (peripheral blood mononuclear cells, 6%), and B and natural killer (NK) cells (1%). Most of the studies focused on toxicity and biocompatibility, while mechanistic insights on the effect of carbon nanotubes on immune cells are generally lacking. Only very recently high-throughput gene-expression analyses have shed new lights on unrecognized effects of carbon nanomaterials on the immune system. These investigations have demonstrated that some f-CNTs can directly elicitate specific inflammatory pathways. The interaction of graphene with the immune system is still at a very early stage of investigation. This comprehensive state of the art on biocompatible f-CNTs and graphene on immune cells provides a useful compass to guide future researches on immunological applications of carbon nanomaterials in medicine.
Collapse
Affiliation(s)
| | | | | | | | - Alberto Bianco
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, 07100 Sassari, Italy.
| | | |
Collapse
|
44
|
Muthu MS, Abdulla A, Pandey BL. Major toxicities of carbon nanotubes induced by reactive oxygen species: should we worry about the effects on the lungs, liver and normal cells? Nanomedicine (Lond) 2013; 8:863-6. [PMID: 23730693 DOI: 10.2217/nnm.13.60] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
45
|
Helle M, Rampazzo E, Monchanin M, Marchal F, Guillemin F, Bonacchi S, Salis F, Prodi L, Bezdetnaya L. Surface chemistry architecture of silica nanoparticles determine the efficiency of in vivo fluorescence lymph node mapping. ACS NANO 2013; 7:8645-57. [PMID: 24070236 DOI: 10.1021/nn402792a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Near-infrared (NIR) imaging of the lymphatic system offers a sensitive, versatile, and accurate lymph node mapping to locate the first, potentially metastatic, draining nodes in the operating room. Many luminescent nanoprobes have received great attention in this field, and the design of nontoxic and bright nanosystems is of crucial importance. Fluorescent NIR-emitting dye doped silica nanoparticles represent valuable platforms to fulfill these scopes, providing sufficient brightness, resistance to photobleaching, and hydrophilic nontoxic materials. Here, we synthesized these highly stable core-shell nanoparticles with a programmable surface charge positioning and determined the effect of these physicochemical properties on their in vivo behavior. In addition, we characterized their fluorescence kinetic profile in the right axillary lymph node (RALN) mapping. We found that nanoparticles with negative charges hidden by a PEG shell are more appropriate than those with external negative charges in the mapping of lymph nodes. We also demonstrated the efficient excretion of these nanostructures by the hepatobiliary route and their nontoxicity in mice up to 3 months postinjection. These results indicate the potential future development of these fluorescent nanosystems for LN mapping.
Collapse
Affiliation(s)
- Marion Helle
- Centre de Recherche en Automatique de Nancy (CRAN), Université de Lorraine , UMR 7039, Campus Sciences, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Morsy GM, Abou El-Ala KS, Ali AA. Studies on fate and toxicity of nanoalumina in male albino rats. Toxicol Ind Health 2013; 32:200-14. [DOI: 10.1177/0748233713498462] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present work aimed to evaluate the oxidative stress of nanoalumina (aluminium oxide nanoparticles, Al2O3-NPs) with a diameter <13 nm (9.83 ± 1.61 nm) as assessed by the perturbations in the enzymatic and non-enzymatic antioxidants as well as lipid peroxidation (LPO) in the brain, liver and kidney of male albino rats, after 2 days of single acute dose (3.9 or 6.4 or 8.5 g/kg) injection and a sublethal dose of 1.3 g/kg once in 2 days for a period of 28 days. According to two-way analysis of variance, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities as well as the levels of glutathione (GSH) and LPO were significantly affected by the injected doses, organs and their interactions. On the other hand, in sublethal experiments, these parameters were affected by the experimental periods, organs and their interactions. Regression analysis confirmed that the activities of SOD, CAT, GPx and GSH levels in the brain, liver and kidney were inversely proportional with the acute doses, the experimental periods, and aluminium accumulated in these tissues, whereas the levels of LPO exhibited a positive relationship. Correlation coefficient indicated that oxidative stress mainly depends on aluminium accumulated in the studied organs, followed by injected doses and the experimental periods. In comparison with the corresponding controls, the acute and sublethal doses of Al2O3-NPs caused significant inhibition of the brain, hepatic and renal SOD, CAT, GPx activities and a severe marked reduction in the concentrations of GSH that were associated with a significant elevation in the levels of malondialdehyde (an indicator of LPO). In conclusion, our data indicated that rats injected with nanoalumina suffered from the oxidative stresses that were dose and time dependent. In addition, Al2O3-NPs released into the biospheres could be potentiating a risk to the environment and causing hazard effects on living organisms, including mammals.
Collapse
Affiliation(s)
- Gamal M Morsy
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - Atef A Ali
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
47
|
Abstract
Carbon nanotubes (CNTs) consist of a family of carbon built nanoparticles, whose biological effects depend on their physical characteristics and other constitutive chemicals (impurities and functions attached). CNTs are considered the twenty first century material due to their unique physicochemical characteristics and applicability to industrial product. The use of these materials steadily increases worldwide and toxic outcomes need to be studied for each nanomaterial in depth to prevent adverse effects to humans and the environment. Entrance into the body is physical, and usually few nanoparticles enter the body; however, once there, they are persistent due to their limited metabolisms, so their removal is slow, and chronic cumulative health effects are studied. Oxidative stress is the main mechanism of toxicity but size, agglomeration, chirality as well as impurities and functionalization are some of the structural and chemical characteristic contributing to the CNTs toxicity outcomes. Among the many toxicity pathways, interference with cytoskeleton and fibrous mechanisms, cell signaling, membrane perturbations and the production of cytokines, chemokines and inflammation are some of the effects resulting from exposure to CNTs. The aim of this review is to offer an up-to-date scope of the effects of CNTs on biological systems with attention to mechanisms of toxicity.
Collapse
Affiliation(s)
- Yury Rodriguez-Yañez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | | | | |
Collapse
|
48
|
Ema M, Masumori S, Kobayashi N, Naya M, Endoh S, Maru J, Hosoi M, Uno F, Nakajima M, Hayashi M, Nakanishi J. In vivo comet assay of multi-walled carbon nanotubes using lung cells of rats intratracheally instilled. J Appl Toxicol 2012; 33:1053-60. [PMID: 22936419 DOI: 10.1002/jat.2810] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/11/2012] [Accepted: 07/11/2012] [Indexed: 12/13/2022]
Abstract
The genotoxicity of multi-walled carbon nanotubes (MWCNTs) was evaluated in vivo with comet assays using the lung cells of rats given MWCNTs. The MWCNTs were intratracheally instilled as a single dose at 0.2 or 1.0 mg kg(-1) or a repeated dose at 0.04 or 0.2 mg kg(-1) , once a week for 5 weeks, to male rats. The rats were sacrificed 3 or 24 h after the single instillation and were sacrificed 3 h after the last instillation in the repeated instillation groups. Histopathological examinations of the lungs revealed that MWCNTs caused inflammatory changes including the infiltration of macrophages and neutrophils after a single instillation and repeated instillation at both doses. In comet assays using rat lung cells, no changes in % Tail DNA were found in any group given MWCNTs. These findings indicate that MWCNTs do not have the potential to cause DNA damage in comet assays using the lung cells of rats given MWCNTs at doses causing inflammatory responses.
Collapse
Affiliation(s)
- Makoto Ema
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Carcinogenicity evaluation for the application of carbon nanotubes as biomaterials in rasH2 mice. Sci Rep 2012; 2:498. [PMID: 22787556 PMCID: PMC3391660 DOI: 10.1038/srep00498] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/22/2012] [Indexed: 11/12/2022] Open
Abstract
The application of carbon nanotubes (CNTs) as biomaterials is of wide interest, and studies examining their application in medicine have had considerable significance. Biological safety is the most important factor when considering the clinical application of CNTs as biomaterials, and various toxicity evaluations are required. Among these evaluations, carcinogenicity should be examined with the highest priority; however, no report using transgenic mice to evaluate the carcinogenicity of CNTs has been published to date. Here, we performed a carcinogenicity test by implanting multi-walled CNTs (MWCNTs) into the subcutaneous tissue of rasH2 mice, using the carbon black present in black tattoo ink as a reference material for safety. The rasH2 mice did not develop neoplasms after being injected with MWCNTs; instead, MWCNTs showed lower carcinogenicity than carbon black. Such evaluations should facilitate the clinical application and development of CNTs for use in important medical fields.
Collapse
|
50
|
Ema M, Imamura T, Suzuki H, Kobayashi N, Naya M, Nakanishi J. Evaluation of genotoxicity of multi-walled carbon nanotubes in a battery of in vitro and in vivo assays. Regul Toxicol Pharmacol 2012; 63:188-95. [DOI: 10.1016/j.yrtph.2012.03.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
|