1
|
Ding L, Guo H, Zhang C, Jiang B, Zhang S, Zhang J, Sui X. Serum uric acid to high-density lipoprotein cholesterol ratio is a predictor for all-cause and cardiovascular disease mortality in patients with diabetes: Evidence from NHANES 2005-2018. Nutr Metab Cardiovasc Dis 2024; 34:2480-2488. [PMID: 39174432 DOI: 10.1016/j.numecd.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND AND AIMS The relationship between uric acid to high-density lipoprotein cholesterol ratio (UHR) and mortality in individuals with diabetes remains uncertain. This study aimed to explore the relationship between serum UHR and all-cause and cardiovascular disease (CVD) mortality in adults with diabetes. METHODS AND RESULTS A total of 5,665 patients with diabetes were enrolled from the 2005-2018 National Health and Nutrition Examination Survey (NHANES). Mortality data were determined through the National Death Index (NDI) until December 31, 2019. The multivariate hazard ratio (HR) and 95% confidence interval (CI) were examined by Cox proportional risk modeling and threshold effects analysis. Stratified analyses were conducted to identify the populations with high-risk mortality. Among the participants with diabetes, 1,088 all-cause mortality, containing 310 CVD mortality occurred. Following adjustment for multivariate, higher UHR was significantly and nonlinearly associated with increased all-cause mortality (HR 1.02, 95% CI 1.02-1.02) and CVD mortality (HR 1.03, 95% CI 1.03-1.03). Furthermore, a U-shaped relationship between UHR and all-cause and CVD mortality, with a plateau at 12.57% for all-cause mortality and 9.86% for CVD mortality. Below the inflection points, a higher UHR was associated with a 4% reduced risk for all-cause mortality. Conversely, exceeding the inflection points, a 4% higher risk for all-cause and a 3% higher risk for CVD mortality associated with elevated UHR. CONCLUSIONS Nonlinearity of UHR with all-cause and CVD mortality was observed in adults with diabetes in the United States, with thresholds identified at 12.57% for all-cause and 9.86% for CVD mortality respectively.
Collapse
Affiliation(s)
- Ling Ding
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161005, PR China.
| | - Haipeng Guo
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161005, PR China
| | - Chao Zhang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161005, PR China
| | - Bo Jiang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161005, PR China
| | - Shuo Zhang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161005, PR China
| | - Jian Zhang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161005, PR China
| | - Xin Sui
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161005, PR China
| |
Collapse
|
2
|
Gong S, Jin J, Mao J, Li H, Mo Y, Zhou Q, Gan S. Plasma atherogenicity index is a powerful indicator for identifying metabolic syndrome in adults with type 2 diabetes mellitus: A cross-sectional study. Medicine (Baltimore) 2024; 103:e39792. [PMID: 39331941 PMCID: PMC11441968 DOI: 10.1097/md.0000000000039792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/30/2024] [Indexed: 09/29/2024] Open
Abstract
Metabolic syndrome (MetS) is an important risk factor for atherosclerotic cardiovascular disease (ASCVD). Elevated triglyceride (TG) levels and decreased high-density lipoprotein levels (HDL-C) are predisposing factors for the development of ASCVD. Evidence on the association between atherosclerotic index of plasma [AIP = log (TG/HDL-C)] and MetS is limited. Our study aimed to investigate the association between AIP and MetS. This is a cross-sectional study that determines the presence of MetS by assessing anthropometric and biochemical parameters. Multivariate log-binomial regression models were used to analyze the relationship between AIP and MetS risk. To further test the stability of the results, we performed sensitivity analyses in young, non-obese, and normal lipid population. Smoothing plots explored the potential nonlinear relationship between the AIP index for MetS and the estimated potential risk threshold. Predictive power of AIP for MetS using respondent operating characteristic (ROC) curves. The prevalence of MetS was 67.35%. Multivariate logistic regression analysis showed an independent and positive association between AIP and MetS (Per 1 SD increase, PR = 1.31, 95% CI: 1.15-1.47). Sensitivity analysis demonstrated the stability of the results. Smoothing plot showed a nonlinear relationship between AIP and MetS, with an inflection point of 0.66. ROC curve analysis, AIP was an accurate indicator for assessing MetS in type 2 diabetics (AUC = 0.840, 95% CI: 0.819-0.862). AIP is a stable and independently powerful predictor of MetS in T2DM patients. AIP can be used as a simple assessment tool for the early detection of MetS and disease management for the prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Shijun Gong
- Department of Ultrasound, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Jing Jin
- Department of Endocrinology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Jing Mao
- Department of Science and Education, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Heng Li
- Department of Ultrasound, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - YePing Mo
- Department of Ultrasound, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Quan Zhou
- Department of Science and Education, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Shenglian Gan
- Department of Endocrinology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| |
Collapse
|
3
|
Bobek JM, Stuttgen GM, Sahoo D. A comprehensive analysis of the role of native and modified HDL in ER stress in primary macrophages. Front Cardiovasc Med 2024; 11:1448607. [PMID: 39328237 PMCID: PMC11424405 DOI: 10.3389/fcvm.2024.1448607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Recent findings demonstrate that high density lipoprotein (HDL) function rather than HDL-cholesterol levels themselves may be a better indicator of cardiovascular disease risk. One mechanism by which HDL can become dysfunctional is through oxidative modification by reactive aldehydes. Previous studies from our group demonstrated that HDL modified by reactive aldehydes alters select cardioprotective functions of HDL in macrophages. To identify mechanisms by which dysfunctional HDL contributes to atherosclerosis progression, we designed experiments to test the hypothesis that HDL modified by reactive aldehydes triggers endoplasmic reticulum (ER) stress in primary murine macrophages. Methods and results Peritoneal macrophages were harvested from wild-type C57BL/6J mice and treated with thapsigargin, oxLDL, and/or HDL for up to 48 hours. Immunoblot analysis and semi-quantitative PCR were used to measure expression of BiP, p-eIF2α, ATF6, and XBP1 to assess activation of the unfolded protein response (UPR). Through an extensive set of comprehensive experiments, and contrary to some published studies, our findings led us to three novel discoveries in primary murine macrophages: (i) oxLDL alone was unable to induce ER stress; (ii) co-incubation with oxLDL or HDL in the presence of thapsigargin had an additive effect in which expression of ER stress markers were significantly increased and prolonged as compared to cells treated with thapsigargin alone; and (iii) HDL, in the presence or absence of reactive aldehydes, was unable blunt the ER stress induced by thapsigargin in the presence or absence of oxLDL. Conclusions Our systematic approach to assess the role of native and modified HDL in mediating primary macrophage ER stress led to the discovery that lipoproteins on their own require the presence of thapsigargin to synergistically increase expression of ER stress markers. We further demonstrated that HDL, in the presence or absence of reactive aldehydes, was unable to blunt the ER stress induced by thapsigargin in the presence or absence of oxLDL. Together, our findings suggest the need for more detailed investigations to better understand the role of native and modified lipoproteins in mediating ER stress pathways.
Collapse
Affiliation(s)
- Jordan M. Bobek
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gage M. Stuttgen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Daisy Sahoo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Endocrinology & Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
4
|
Seto Y, Nagao M, Iino T, Harada A, Murakami K, Miwa K, Shinohara M, Nishimori M, Yoshikawa S, Asakura J, Fujioka T, Ishida T, Hirata KI, Toh R. Impaired Cholesterol Uptake Capacity in Patients with Hypertriglyceridemia and Diabetes Mellitus. J Appl Lab Med 2024; 9:728-740. [PMID: 38574000 DOI: 10.1093/jalm/jfae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/06/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Although low high-density lipoprotein cholesterol (HDL-C) levels are a common metabolic abnormality associated with insulin resistance, their role in cardiovascular risk stratification remains controversial. Recently, we developed a simple, high-throughput, cell-free assay system to evaluate the "cholesterol uptake capacity (CUC)" as a novel concept for HDL functionality. In this study, we assessed the CUC in patients with hypertriglyceridemia and diabetes mellitus. METHODS The CUC was measured using cryopreserved serum samples from 285 patients who underwent coronary angiography or percutaneous coronary intervention between December 2014 and May 2019 at Kobe University Hospital. RESULTS The CUC was significantly lower in diabetic patients (n = 125) than in nondiabetic patients (93.0 vs 100.7 arbitrary units (A.U.), P = 0.002). Patients with serum triglyceride (TG) levels >150 mg/dL (n = 94) also had a significantly lower CUC (91.8 vs 100.0 A.U., P = 0.004). Furthermore, the CUC showed a significant inverse correlation with TG, hemoglobin A1c (Hb A1c), homeostasis model assessment of insulin resistance (HOMA-IR), and body mass index (BMI). Finally, the HDL-C/Apolipoprotein A1 (ApoA1) ratio, calculated as a surrogate index of HDL particle size, was significantly positively correlated with the CUC (r2 = 0.49, P < 0.001), but inversely correlated with TG levels (r2 = -0.30, P < 0.001). CONCLUSIONS The CUC decreased in patients with hypertriglyceridemia and diabetes mellitus, and HDL particle size was a factor defining the CUC and inversely correlated with TG levels, suggesting that impaired CUC in insulin-resistant states was partially due to the shift in HDL towards smaller particles. These findings provide a better understanding of the mechanisms underlying impaired HDL functionality.
Collapse
Affiliation(s)
- Yutaro Seto
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Manabu Nagao
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Takuya Iino
- Central Research Laboratories, Sysmex Corporation, Nishi-ku, Kobe, Japan
| | - Amane Harada
- Central Research Laboratories, Sysmex Corporation, Nishi-ku, Kobe, Japan
| | - Katsuhiro Murakami
- Central Research Laboratories, Sysmex Corporation, Nishi-ku, Kobe, Japan
| | - Keiko Miwa
- Central Research Laboratories, Sysmex Corporation, Nishi-ku, Kobe, Japan
| | - Masakazu Shinohara
- Division of Molecular Epidemiology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Makoto Nishimori
- Division of Molecular Epidemiology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Sachiko Yoshikawa
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Junko Asakura
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Tomoo Fujioka
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
- Division of Nursing Practice, Kobe University Graduate School of Health Sciences, Suma-ku, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Ryuji Toh
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| |
Collapse
|
5
|
Zhang X, van der Vorst EPC. High-Density Lipoprotein Modifications: Causes and Functional Consequences in Type 2 Diabetes Mellitus. Cells 2024; 13:1113. [PMID: 38994965 PMCID: PMC11240616 DOI: 10.3390/cells13131113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
High-density lipoprotein (HDL) is a group of small, dense, and protein-rich lipoproteins that play a role in cholesterol metabolism and various cellular processes. Decreased levels of HDL and HDL dysfunction are commonly observed in individuals with type 2 diabetes mellitus (T2DM), which is also associated with an increased risk for cardiovascular disease (CVD). Due to hyperglycemia, oxidative stress, and inflammation that develop in T2DM, HDL undergoes several post-translational modifications such as glycation, oxidation, and carbamylation, as well as other alterations in its lipid and protein composition. It is increasingly recognized that the generation of HDL modifications in T2DM seems to be the main cause of HDL dysfunction and may in turn influence the development and progression of T2DM and its related cardiovascular complications. This review provides a general introduction to HDL structure and function and summarizes the main modifications of HDL that occur in T2DM. Furthermore, the potential impact of HDL modifications on the pathogenesis of T2DM and CVD, based on the altered interactions between modified HDL and various cell types that are involved in glucose homeostasis and atherosclerotic plaque generation, will be discussed. In addition, some perspectives for future research regarding the T2DM-related HDL modifications are addressed.
Collapse
Affiliation(s)
- Xiaodi Zhang
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), 80336 Munich, Germany
| |
Collapse
|
6
|
Di Bonito P, Morandi A, Licenziati MR, Di Sessa A, Miraglia Del Giudice E, Faienza MF, Corica D, Wasniewska M, Mozzillo E, Maltoni G, Franco F, Calcaterra V, Moio N, Maffeis C, Valerio G. Association of HDL-Cholesterol, hypertension and left ventricular hypertrophy in youths with overweight or obesity. Nutr Metab Cardiovasc Dis 2024; 34:299-306. [PMID: 37788959 DOI: 10.1016/j.numecd.2023.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND AND AIM To evaluate the relationship between HDL-Cholesterol (HDL-C), hypertension, and left ventricular hypertrophy (LVH) in a large sample of Caucasian youths with overweight/obesity (OW/OB). METHODS AND RESULTS A cross-sectional multicenter study was performed in 1469 youths (age 6-16 years) with OW/OB observed in the period 2016-2020. An additional independent sample of 244 youths with an echocardiographic evaluation, observed in a single center was analyzed. The sample was divided in six quantiles (Q) of HDL-C: Q1: >56, Q2: ≤56 > 51, Q3: ≤51 > 45, Q4: ≤45 > 41, Q5: ≤41 > 39, Q6: <39 mg/dL. The nadir of the relationship was identified in youths in the first quantile. Among HDL-Cholesterol quantiles the distribution of hypertension was non-linear with a percentage of 25.0%, 40.1%, 33.6%, 31.3%, 35.2% and 39.7% in the six quantiles, respectively. The percentage of LVH was 21.8%, 43.6%, 48.8%, 35.5%, 38.5% and 52.0% in the six quantiles, respectively. The highest odds [95%Cl] of hypertension were 2.05 (1.33-3.16) (P < 0.01) in Q2, 1.67 (1.10-2.55) (P < 0.05) in Q3 and 1.59 (1.05-2.41) (P < 0.05) in Q6 vs Q1. The odds of LVH were 3.86 (1.15-10.24) (P < 0.05) in Q2, 4.16 (1.58-10.91) (P < 0.05) in Q3 and 3.60 (1.44-9.02) (P < 0.05) in Q6 vs Q1, independently by centers, age, sex, prepubertal stage, and body mass index. CONCLUSION Contrary to the common belief, the present study shows that high levels of HDL-C may be not considered a negative predictor of hypertension and LVH, two risk factors for future CV disease.
Collapse
Affiliation(s)
| | - Anita Morandi
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Section of Pediatric Diabetes and Metabolism, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Maria Rosaria Licenziati
- Neuro-Endocrine Diseases and Obesity Unit, Department of Neurosciences, Santobono-Pausilipon Children's Hospital, Napoli, Italy
| | - Anna Di Sessa
- Department of Woman, Child and of General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Woman, Child and of General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Bari, Italy
| | - Domenico Corica
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Messina, Italy
| | - Malgorzata Wasniewska
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Messina, Italy
| | - Enza Mozzillo
- Section of Pediatrics, Department of Translational Medical Science, Regional Center of Pediatric Diabetes, University of Naples "Federico II", Napoli, Italy
| | - Giulio Maltoni
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Franco
- Pediatric Department, Azienda Sanitaria Universitaria Friuli Centrale, Hospital of Udine, Italy
| | - Valeria Calcaterra
- Pediatric Department, "V. Buzzi" Children's Hospital, Milano, Italy; Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Nicola Moio
- Department of Cardiology, Pozzuoli Hospital, (Naples), Italy
| | - Claudio Maffeis
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Section of Pediatric Diabetes and Metabolism, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Giuliana Valerio
- Department of Movement Sciences and Wellbeing, University of Napoli "Parthenope", Napoli, Italy.
| |
Collapse
|
7
|
Schiopu A, Björkbacka H, Narasimhan G, Loong BJ, Engström G, Melander O, Orho-Melander M, Nilsson J. Elevated soluble LOX-1 predicts risk of first-time myocardial infarction. Ann Med 2023; 55:2296552. [PMID: 38134912 PMCID: PMC10763917 DOI: 10.1080/07853890.2023.2296552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND There is an unmet clinical need for novel therapies addressing the residual risk in patients receiving guideline preventive therapy for coronary heart disease. Experimental studies have identified a pro-atherogenic role of the oxidized LDL receptor LOX-1. We investigated the association between circulating soluble LOX-1 (sLOX-1) and the risk for development of myocardial infarction. METHODS The study subjects (n = 4658) were part of the Malmö Diet and Cancer study. The baseline investigation was carried out 1991-1994 and the incidence of cardiovascular events monitored through national registers during a of 19.5 ± 4.9 years follow-up. sLOX-1 and other biomarkers were analyzed by proximity extension assay and ELISA in baseline plasma. RESULTS Subjects in the highest tertile of sLOX-1 had an increased risk of myocardial infarction (hazard ratio (95% CI) 1.76 (1.40-2.21) as compared with those in the lowest tertile. The presence of cardiovascular risk factors was related to elevated sLOX-1, but the association between sLOX-1 and risk of myocardial infarction remained significant when adjusting for risk factors. CONCLUSIONS In this prospective population study we found an association between elevated sLOX-1, the presence of carotid disease and the risk for first-time myocardial infarction. Taken together with previous experimental findings of a pro-atherogenic role of LOX-1, this observation supports LOX-1 inhibition as a possible target for prevention of myocardial infarction.
Collapse
Affiliation(s)
- Alexandru Schiopu
- Department of Clinical Sciences Malmö, Lund University, Sweden
- Department of Transitional Science, Lund University, Sweden
| | | | | | - Bi Juin Loong
- Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Sweden
| | | | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Sweden
| |
Collapse
|
8
|
Bodaghi AB, Ebadi E, Gholami MJ, Azizi R, Shariati A. A decreased level of high-density lipoprotein is a possible risk factor for type 2 diabetes mellitus: A review. Health Sci Rep 2023; 6:e1779. [PMID: 38125279 PMCID: PMC10731824 DOI: 10.1002/hsr2.1779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/19/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is characterized primarily by dyslipidemia and hyperglycemia due to insulin resistance. High-density lipoprotein (HDL) play a significant role in preventing the incidence of dyslipidemia and its complications. HDL has different protective functions, such as reducing oxidation, vascular inflammation, and thrombosis; additionally, its anti-diabetic role is one of the most significant recent discoveries about HDL and some of its constituent lipoproteins. Methods This research reviews ongoing studies and preliminary investigations into the assessment of relation between decreased level of HDL and T2DM. Results The levels of HDL and its functions contribute to glucose hemostasis and the development of T2DM through four possible mechanisms, including insulin secretion by beta cells, peripheral insulin sensitivity, non-insulin-dependent glucose uptake, and adipose tissue metabolic activity. Additionally, the anti-oxidant properties of HDL protect beta cells from apoptosis caused by oxidative stress and inflammation induced by low-density lipoprotein, which facilitate insulin secretion. Conclusion Therefore, HDL and its compositions, especially Apo A-I, play an important role in regulating glucose metabolism, and decreased levels of HDL can be considered a risk factor for DM. Different factors, such as hypoalphalipoproteinemia that manifests as a consequence of genetic factors, such as Apo A-I deficiency, as well as secondary causes arising from lifestyle choices and underlying medical conditions that decrease the level of HDL, could be associated with DM. Moreover, intricate connections between HDL and diabetic complications extend beyond glucose metabolism to encompass complications like cardiovascular disease and kidney disease. Therefore, the exact interactions between HDL level and DM should be evaluated in future studies.
Collapse
Affiliation(s)
- Ali Bayat Bodaghi
- Student Research CommitteeKhomein University of Medical SciencesKhomeinIran
- Molecular and Medicine Research CentreKhomein University of Medical SciencesKhomeinIran
| | - Erfan Ebadi
- Student Research CommitteeKhomein University of Medical SciencesKhomeinIran
- Molecular and Medicine Research CentreKhomein University of Medical SciencesKhomeinIran
| | - Mohammad Javad Gholami
- Student Research CommitteeKhomein University of Medical SciencesKhomeinIran
- Molecular and Medicine Research CentreKhomein University of Medical SciencesKhomeinIran
| | - Reza Azizi
- Molecular and Medicine Research CentreKhomein University of Medical SciencesKhomeinIran
| | - Aref Shariati
- Molecular and Medicine Research CentreKhomein University of Medical SciencesKhomeinIran
| |
Collapse
|
9
|
Graham A. Modulation of the Cellular microRNA Landscape: Contribution to the Protective Effects of High-Density Lipoproteins (HDL). BIOLOGY 2023; 12:1232. [PMID: 37759631 PMCID: PMC10526091 DOI: 10.3390/biology12091232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
High-density lipoproteins (HDL) play an established role in protecting against cellular dysfunction in a variety of different disease contexts; however, harnessing this therapeutic potential has proved challenging due to the heterogeneous and relative instability of this lipoprotein and its variable cargo molecules. The purpose of this study is to examine the contribution of microRNA (miRNA; miR) sequences, either delivered directly or modulated endogenously, to these protective functions. This narrative review introduces the complex cargo carried by HDL, the protective functions associated with this lipoprotein, and the factors governing biogenesis, export and the uptake of microRNA. The possible mechanisms by which HDL can modulate the cellular miRNA landscape are considered, and the impact of key sequences modified by HDL is explored in diseases such as inflammation and immunity, wound healing, angiogenesis, dyslipidaemia, atherosclerosis and coronary heart disease, potentially offering new routes for therapeutic intervention.
Collapse
Affiliation(s)
- Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, UK
| |
Collapse
|
10
|
Srivastava RAK. A Review of Progress on Targeting LDL Receptor-Dependent and -Independent Pathways for the Treatment of Hypercholesterolemia, a Major Risk Factor of ASCVD. Cells 2023; 12:1648. [PMID: 37371118 DOI: 10.3390/cells12121648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Since the discovery of the LDL receptor in 1973 by Brown and Goldstein as a causative protein in hypercholesterolemia, tremendous amounts of effort have gone into finding ways to manage high LDL cholesterol in familial hypercholesterolemic (HoFH and HeFH) individuals with loss-of-function mutations in the LDL receptor (LDLR) gene. Statins proved to be the first blockbuster drug, helping both HoFH and HeFH individuals by inhibiting the cholesterol synthesis pathway rate-limiting enzyme HMG-CoA reductase and inducing the LDL receptor. However, statins could not achieve the therapeutic goal of LDL. Other therapies targeting LDLR include PCSK9, which lowers LDLR by promoting LDLR degradation. Inducible degrader of LDLR (IDOL) also controls the LDLR protein, but an IDOL-based therapy is yet to be developed. Among the LDLR-independent pathways, such as angiopoietin-like 3 (ANGPTL3), apolipoprotein (apo) B, apoC-III and CETP, only ANGPTL3 offers the advantage of treating both HoFH and HeFH patients and showing relatively better preclinical and clinical efficacy in animal models and hypercholesterolemic individuals, respectively. While loss-of-LDLR-function mutations have been known for decades, gain-of-LDLR-function mutations have recently been identified in some individuals. The new information on gain of LDLR function, together with CRISPR-Cas9 genome/base editing technology to target LDLR and ANGPTL3, offers promise to HoFH and HeFH individuals who are at a higher risk of developing atherosclerotic cardiovascular disease (ASCVD).
Collapse
Affiliation(s)
- Rai Ajit K Srivastava
- Integrated Pharma Solutions LLC, Boston, MA 02101-02117, USA
- College of Professional Studies, Northeastern University, Boston, MA 02101-02117, USA
| |
Collapse
|
11
|
Parandoosh H, Khodaei-Motlagh M, Ghasemi HA, Farahani AHK. Effects of day-of-hatch intramuscular administration of a herbal extract mixture and its re-supplementation in drinking water on growth performance, stress indicators, and antioxidant status of broiler chickens reared under hot summer conditions. Trop Anim Health Prod 2023; 55:196. [PMID: 37147529 DOI: 10.1007/s11250-023-03597-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 04/18/2023] [Indexed: 05/07/2023]
Abstract
Broilers under oxidative stress from high ambient temperatures may benefit from the use of additives that have antioxidant properties. This experiment investigated the efficacy of a herbal extract mixture (HEM; aqueous extracts from Ferula gummosa, Thymus vulgaris, and Trachyspermum copticum) in day-old chicks, injected intramuscular (deep pectoral muscle; (0, 30, 60, and 90 μL/0.1 mL of sterilized and distilled water)), and supplemented in drinking water (0 and 0.25 mL/L) during the rearing period. Broilers were reared in battery cages under summer temperature conditions, with average maximum temperature of 35.5°C, average minimum temperature of 25.5°C, and average relative humidity of 50-60%. A total of 400 1-day-old Ross 308 male broiler chicks were randomly assigned to 8 treatment groups (5 replicates/treatment with 10 birds per replicate). From d1 to d10, the indoor air temperature was adjusted to match fluctuating outdoor summer temperatures, and was set at 30-34°C and 50-60% relative humidity; and from d10 onwards, no adjustments were made. Injection of HEM linearly decreased feed:gain (P = 0.005), heterophile-to-lymphocyte (H/L) ratio (P = 0.007), and serum concentrations of cholesterol (P = 0.008), low-density lipoprotein cholesterol (LDL) (P < 0.001), malondialdehyde (P = 0.005), and cortisol (P = 0.008). The 60 μL of HEM injection produced the best results in terms of final body weight (BW; P = 0.003), overall average daily gain (ADG; P = 0.002), European performance index (P < 0.001), carcass yield (P < 0.001), and serum glutathione peroxidase activity (P < 0.001). Supplementation of HEM in drinking water also increased final BW (P = 0.048), overall ADG (P = 0.047), high-density lipoprotein cholesterol (P = 0.042), and total antioxidant capacity (P = 0.030), while decreasing the H/L ratio (P = 0.004) and serum LDL concentration (P = 0.031). There were interactions between injection and water supplementation for BW (day 24; P = 0.045), carcass yield (day 42; P = 0.014), and serum superoxide dismutase activity (day 42; P = 0.004). In conclusion, administering an injection of HEM at a dose of 60 μL at the time of hatching, followed by supplementation at a dose of 0.25 mL/L via drinking water during the rearing period could be a useful strategy for improving the performance and health status of heat-stressed broiler chickens.
Collapse
Affiliation(s)
- Hadiseh Parandoosh
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, 38156-8-8349, Iran
| | - Mahdi Khodaei-Motlagh
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, 38156-8-8349, Iran.
| | - Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, 38156-8-8349, Iran.
| | | |
Collapse
|
12
|
Nessler K, Grzybczak R, Nessler M, Zalewski J, Gajos G, Windak A. Associations between myeloperoxidase and paraoxonase-1 and type 2 diabetes in patients with ischemic heart disease. BMC Cardiovasc Disord 2022; 22:521. [PMID: 36463116 PMCID: PMC9719221 DOI: 10.1186/s12872-022-02928-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 10/31/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The phrase "dysfunctional high-density lipoprotein" has been developed in the literature to describe the particle which loses its basic role- anti-oxidative and anti-inflammatory activity. In this porcess, the significance of enzymes- pro-oxidant myeloperoxidase (MPO) and antioxidant paraoxonase-1 (PON-1) from the perspective of HDL-C function has been noted. AIMS The objective of this study was to analyze the associations between two enzymes -MPO and PON-1 and type 2 diabetes (T2DM) in patients with ischemic heart disease (IHD). METHODS An observational cross-sectional study including 70 patients with IHD of whom 35 had also T2DM, and 35 had no T2DM. Laboratory tests (MPO, PON-1, fasting glucose, glycated hemoglobin, total cholesterol, triglycerides, high-density lipoprotein, low-density lipoprotein, and high-sensitivity C-reactive protein) were performed. RESULTS The study revealed a significant difference in the serum concentration of the enzymes between patients with IHD with and without T2DM. Our results showed increased MPO concentration levels in diabetic patients. The analysis also revealed that T2DM is independently associated with an increase in MPO levels. Simultaneously, a decrease in PON-1 levels was observed in patients with T2DM. The study also revealed that T2DM is independently associated with a decrease in PON-1 levels. CONCLUSIONS In patients with type 2 diabetes the profile of enzymes involved in high-density lipoprotein metabolism in patients with IHD is worse than in patients without T2DM. The increase in the levels of MPO, an enzyme with oxidative and atherogenic properties and on a decrease in PON-1 levels, an enzyme with antioxidant and atheroprotective properties is observed.
Collapse
Affiliation(s)
- Katarzyna Nessler
- grid.5522.00000 0001 2162 9631Department of Family Medicine, Chair of Internal Medicine and Gerontology, Jagiellonian University Medical College in Krakow, 4 Bochenska str, 31-061 Krakow, Poland
| | - Rafal Grzybczak
- grid.5522.00000 0001 2162 9631Department of Cardiac Rehabilitation, Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka str, 31-202 Krakow, Poland
| | - Michal Nessler
- Burns and Plastic Surgery Centre of Malopolska, Rydygier Memorial Hospital, Os. Zlotej Jesieni 1, 31-826 Krakow, Poland
| | - Jarosław Zalewski
- grid.5522.00000 0001 2162 9631Department of Coronary Disease and Heart Failure, Institute of Cardiology, Jagiellonian University Medical College, John Paul II Hospital, 80 Pradnicka str, 31-202 Krakow, Poland
| | - Grzegorz Gajos
- grid.5522.00000 0001 2162 9631Department of Coronary Disease and Heart Failure, Institute of Cardiology, Jagiellonian University Medical College, John Paul II Hospital, 80 Pradnicka str, 31-202 Krakow, Poland
| | - Adam Windak
- grid.5522.00000 0001 2162 9631Department of Family Medicine, Chair of Internal Medicine and Gerontology, Jagiellonian University Medical College in Krakow, 4 Bochenska str, 31-061 Krakow, Poland
| |
Collapse
|
13
|
Harun NH, Froemming GRA, Mohd Ismail A, Nawawi H, Mokhtar SS, Abd Muid S. Osteoblast Demineralization Induced by Oxidized High-Density Lipoprotein via the Inflammatory Pathway Is Suppressed by Adiponectin. Int J Mol Sci 2022; 23:ijms232314616. [PMID: 36498945 PMCID: PMC9740717 DOI: 10.3390/ijms232314616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Low mineralization activity by human osteoblast cells (HOBs) indicates abnormal bone remodeling that potentially leads to osteoporosis. Oxidation, the most prominent form of high-density lipoprotein (HDL) modification, is suggested to affect bone mineralization through the inflammatory pathway. Adiponectin, which possesses anti-inflammatory activity, is postulated to have the ability to suppress the detrimental effects of oxidized HDL (oxHDL). This study aimed to investigate the effects of HDL before and after oxidation on markers of mineralization and inflammation. The protective effects of adiponectin on demineralization and inflammation induced by oxHDL were also investigated. OxHDL at 100 µg/mL protein had the highest inhibitory effect on mineralization, followed by lower calcium incorporation. OxHDL also had significantly lower expression of a mineralization marker (COL1A2) and higher expression of inflammatory markers (IL-6, TNF-α, and RELA proto-oncogene, NF-κβ (p65)) compared to the unstimulated control group. These findings suggest that oxHDL reduces the mineralization activity of HOBs by increasing the expression of inflammatory markers. Interestingly, co-incubation of adiponectin and oxHDL in HOBs resulted in higher expression of mineralization markers (ALPL, COL1A2, BGLAP, and RUNX2) and significantly reduced all targeted inflammatory markers compared to the oxHDL groups. On the contrary, HDL increased the expression of mineralization markers (COL1A2 and STAT-3) and exhibited lower expression of inflammatory cytokines (IL-6 and TNF-α), proving the protective effect of HDL beyond the reverse cholesterol transport activity.
Collapse
Affiliation(s)
- Noor Hanisa Harun
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Gabriele Ruth Anisah Froemming
- Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| | - Aletza Mohd Ismail
- Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Hapizah Nawawi
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerforM), Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Siti Shuhada Mokhtar
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Suhaila Abd Muid
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerforM), Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
- Correspondence: ; Tel.: +60-361267338
| |
Collapse
|
14
|
Zhou C, Wang M, Liang J, He G, Chen N. Ketogenic Diet Benefits to Weight Loss, Glycemic Control, and Lipid Profiles in Overweight Patients with Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trails. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191610429. [PMID: 36012064 PMCID: PMC9408028 DOI: 10.3390/ijerph191610429] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 05/14/2023]
Abstract
A ketogenic diet, characterized by low calories with high levels of fat, adequate levels of protein, and low levels of carbohydrates, has beneficial effects on body weight control in overweight patients. In the present study, a meta-analysis was conducted to investigate the role of a ketogenic diet in body weight control and glycemic management in overweight patients with type 2 diabetes mellitus (T2DM). In summary, we systematically reviewed articles from the Embase, PubMed, Web of Science and Cochrane Library databases and obtained eight randomized controlled trials for meta-analysis. The results show that a ketogenic diet had significantly beneficial effects on the loss of body weight (SMD, -5.63, p = 0.008), the reduction of waist circumference (SMD, -2.32, p = 0.04), lowering glycated hemoglobin (SMD, -0.38, p = 0.0008) and triglycerides (SMD, -0.36, p = 0.0001), and increasing high-density lipoproteins (SMD, 0.28, p = 0.003). Overall, these results suggest that a ketogenic diet may be an effective dietary intervention for body weight and glycemic control, as well as improved lipid profiles in overweight patients with T2DM. Hence, a ketogenic diet can be recommended for the therapeutic intervention of overweight patients with T2DM.
Collapse
Affiliation(s)
- Chong Zhou
- School of Journalism and Communication, Wuhan Sports University, Wuhan 430079, China
| | - Meng Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiling Liang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China
| | - Guomin He
- School of Economics and Management, Wuhan Sports University, Wuhan 430079, China
- Correspondence: (G.H.); (N.C.); Tel.: +86-27-8719-1486 (G.H.); +86-27-6784-6140 (N.C.)
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China
- Correspondence: (G.H.); (N.C.); Tel.: +86-27-8719-1486 (G.H.); +86-27-6784-6140 (N.C.)
| |
Collapse
|
15
|
Schoch L, Sutelman P, Suades R, Casani L, Padro T, Badimon L, Vilahur G. Hypercholesterolemia-Induced HDL Dysfunction Can Be Reversed: The Impact of Diet and Statin Treatment in a Preclinical Animal Model. Int J Mol Sci 2022; 23:8596. [PMID: 35955730 PMCID: PMC9368958 DOI: 10.3390/ijms23158596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
High-density lipoproteins (HDL) undergo adverse remodeling and loss of function in the presence of comorbidities. We assessed the potential of lipid-lowering approaches (diet and rosuvastatin) to rescue hypercholesterolemia-induced HDL dysfunction. Hypercholesterolemia was induced in 32 pigs for 10 days. Then, they randomly received one of the 30-day interventions: (I) hypercholesterolemic (HC) diet; (II) HC diet + rosuvastatin; (III) normocholesterolemic (NC) diet; (IV) NC diet + rosuvastatin. We determined cholesterol efflux capacity (CEC), antioxidant potential, HDL particle number, HDL apolipoprotein content, LDL oxidation, and lipid levels. Hypercholesterolemia time-dependently impaired HDL function (−62% CEC, −11% antioxidant index (AOI); p < 0.01), increased HDL particles numbers 2.8-fold (p < 0.0001), reduced HDL-bound APOM (−23%; p < 0.0001), and increased LDL oxidation 1.7-fold (p < 0.0001). These parameters remained unchanged in animals on HC diet alone up to day 40, while AOI deteriorated up to day 25 (−30%). The switch to NC diet reversed HDL dysfunction, restored apolipoprotein M content and particle numbers, and normalized cholesterol levels at day 40. Rosuvastatin improved HDL, AOI, and apolipoprotein M content. Apolipoprotein A-I and apolipoprotein C-III remained unchanged. Lowering LDL-C levels with a low-fat diet rescues HDL CEC and antioxidant potential, while the addition of rosuvastatin enhances HDL antioxidant capacity in a pig model of hypercholesterolemia. Both strategies restore HDL-bound apolipoprotein M content.
Collapse
Affiliation(s)
- Leonie Schoch
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
- Faculty of Medicine, University of Barcelona (UB), 08036 Barcelona, Spain
| | - Pablo Sutelman
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
| | - Rosa Suades
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
| | - Laura Casani
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
| | - Teresa Padro
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
- CiberCV, 08025 Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
- CiberCV, 08025 Barcelona, Spain
- Cardiovascular Research Chair, Autonomous University of Barcelona (UAB), 08025 Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; (L.S.) (P.S.); (R.S.); (L.C.); (T.P.); (L.B.)
- CiberCV, 08025 Barcelona, Spain
| |
Collapse
|
16
|
Ichikawa K, Miyoshi T, Kotani K, Osawa K, Nakashima M, Nishihara T, Ito H. Association between high oxidized high-density lipoprotein levels and increased pericoronary inflammation determined by coronary computed tomography angiography. J Cardiol 2022; 80:410-415. [PMID: 35853799 DOI: 10.1016/j.jjcc.2022.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/28/2022] [Accepted: 06/12/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Impaired high-density lipoprotein (HDL) function is a risk factor for cardiac mortality. We aimed to investigate the association between oxidized HDL (oxHDL) and pericoronary adipose tissue (PCAT) attenuation, a novel imaging biomarker of pericoronary inflammation, by using coronary computed tomography angiography (CTA). METHODS A total of 287 outpatients with suspected coronary artery disease who had undergone both oxHDL measurement and coronary CTA were examined. PCAT attenuation values were assessed at the proximal 10-50 mm segments of the right coronary artery on coronary CTA. The presence of significant stenosis (luminal narrowing of >50 %) and high-risk plaque characteristics were also evaluated. Patients were then classified into tertiles according to their oxHDL level: low (n = 95), moderate (n = 96), and high (n = 96) groups. RESULTS PCAT attenuation in the high oxHDL group was significantly higher than that in other groups after adjusting for age and apolipoprotein-A-I. Multivariate linear regression analysis revealed that oxHDL was significantly associated with PCAT attenuation in the right coronary artery (β = 3.832, p < 0.001), whereas HDL cholesterol was not. Furthermore, subgroup analyses demonstrated that the association between oxHDL and PCAT attenuation remained significant in older patients (β = 6.367, p < 0.001) and in those with hypertension (β = 4.922, p < 0.011), dyslipidemia (β = 3.264, p = 0.010), diabetes mellitus (β = 4.284, p = 0.015), and significant stenosis (β = 3.075, p = 0.021). CONCLUSIONS High oxHDL levels were significantly associated with increased pericoronary inflammation, as assessed using coronary CTA. Our results may explain the association between impaired HDL function and the development of coronary atherosclerosis.
Collapse
Affiliation(s)
- Keishi Ichikawa
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toru Miyoshi
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | - Kazuhiko Kotani
- Division of Community and Family Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Kazuhiro Osawa
- Department of General Internal Medicine 3, Kawasaki Medical School General Medicine Centre, Okayama, Japan
| | - Mitsutaka Nakashima
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takahiro Nishihara
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
17
|
Phua K, Chew NWS, Kong WKF, Tan RS, Ye L, Poh KK. The mechanistic pathways of oxidative stress in aortic stenosis and clinical implications. Theranostics 2022; 12:5189-5203. [PMID: 35836811 PMCID: PMC9274751 DOI: 10.7150/thno.71813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the elucidation of the pathways behind the development of aortic stenosis (AS), there remains no effective medical treatment to slow or reverse its progress. Instead, the gold standard of care in severe or symptomatic AS is replacement of the aortic valve. Oxidative stress is implicated, both directly as well as indirectly, in lipid infiltration, inflammation and fibro-calcification, all of which are key processes underlying the pathophysiology of degenerative AS. This culminates in the breakdown of the extracellular matrix, differentiation of the valvular interstitial cells into an osteogenic phenotype, and finally, calcium deposition as well as thickening of the aortic valve. Oxidative stress is thus a promising and potential therapeutic target for the treatment of AS. Several studies focusing on the mitigation of oxidative stress in the context of AS have shown some success in animal and in vitro models, however similar benefits have yet to be seen in clinical trials. Statin therapy, once thought to be the key to the treatment of AS, has yielded disappointing results, however newer lipid lowering therapies may hold some promise. Other potential therapies, such as manipulation of microRNAs, blockade of the renin-angiotensin-aldosterone system and the use of dipeptidylpeptidase-4 inhibitors will also be reviewed.
Collapse
Affiliation(s)
- Kailun Phua
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, Singapore
| | - Nicholas WS Chew
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, Singapore,✉ Corresponding authors: A/Prof Kian-Keong Poh, . Dr Nicholas Chew, MBChB, MMED (Singapore), MRCP (UK) . Department of Cardiology, National University Heart Centre Singapore, National University Health System, Singapore. 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore 119228. Fax: (65) 68722998 Telephone: (65) 67722476
| | - William KF Kong
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, Singapore
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore, 169609, Singapore
| | - Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore
| | - Kian-Keong Poh
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, Singapore,Yong Loo Lin School of Medicine, National University of Singapore, Singapore,✉ Corresponding authors: A/Prof Kian-Keong Poh, . Dr Nicholas Chew, MBChB, MMED (Singapore), MRCP (UK) . Department of Cardiology, National University Heart Centre Singapore, National University Health System, Singapore. 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore 119228. Fax: (65) 68722998 Telephone: (65) 67722476
| |
Collapse
|
18
|
Zhen H, Yan Q, Liu Y, Li Y, Yang S, Jiang Z. Chitin oligosaccharides alleviate atherosclerosis progress in ApoE-/- mice by regulating lipid metabolism and inhibiting inflammation. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Cao C, Hu H, Zheng X, Zhang X, Wang Y, He Y. Non-linear relationship between high-density lipoprotein cholesterol and incident diabetes mellitus: a secondary retrospective analysis based on a Japanese cohort study. BMC Endocr Disord 2022; 22:163. [PMID: 35717187 PMCID: PMC9206738 DOI: 10.1186/s12902-022-01074-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/07/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND AND OBJECTIVE High-density lipoprotein cholesterol (HDL-C) may be directly involved in glucose metabolism by enhancing insulin sensitivity and insulin secretion. This current study aimed to explore the association between HDL-C and the risk of diabetes mellitus (DM) in Japanese population. METHODS This retrospective cohort study was based on a publicly available DRYAD dataset. We enrolled 15,388 Japanese participants who received medical examinations from 2004 to 2015 at Murakami Memorial Hospital. Our study selected HDL-C at baseline and incident DM during follow-up as the target independent variable and the dependent variable, respectively. Cox proportional-hazards regression was used to investigate the association between HDL-C and DM, generalized additive models to identify non-linear relationships. RESULTS After adjusting for the demographic and clinical covariates, the result showed low HDL-C levels were associated with increased risk for diabetes (HR = 0.54, 95%CI (0.35, 0.82)). The results remained robust in a series of sensitive analysis. A non-linear relationship was detected between HDL-C and incident DM with an inflection point of HDL-C at 1.72 mmol/L (Log-likelihood ratio test P = 0.005). Subgroup analysis showed that a stronger association could be found in ex-smokers and current-smokers. The same trend was also seen in the community with hypertension (P for interaction = 0.010, HR = 1.324). CONCLUSION This study demonstrates a negative and non-linear relationship between HDL-C and diabetes in the Japanese population. There is a threshold effect between HDL-C and diabetes. When HDL-C is lower than 1.72 mmol/L, the decreased HDL-C levels were associated with an increased risk for diabetes.
Collapse
Affiliation(s)
- Changchun Cao
- Department of Rehabilitation, Shenzhen Dapeng New District Nan’ao People’s Hospital, No. 6 Renmin Road, Dapeng New Distric, Shenzhen, 518000 Guangdong Province China
| | - Haofei Hu
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 Guangdong China
| | - Xiaodan Zheng
- Department of Rehabilitation, Shenzhen Dapeng New District Nan’ao People’s Hospital, No. 6 Renmin Road, Dapeng New Distric, Shenzhen, 518000 Guangdong Province China
| | - Xiaohua Zhang
- Department of Rehabilitation, Shenzhen Dapeng New District Nan’ao People’s Hospital, No. 6 Renmin Road, Dapeng New Distric, Shenzhen, 518000 Guangdong Province China
| | - Yulong Wang
- Department of Rehabilitation, Shenzhen Dapeng New District Nan’ao People’s Hospital, No. 6 Renmin Road, Dapeng New Distric, Shenzhen, 518000 Guangdong Province China
| | - Yongcheng He
- Department of Nephrology, Shenzhen Hengsheng Hospital, No. 20 Yintian Road, Xixiang Street, Baoan District, Shenzhen, 518000 Guangdong Province China
| |
Collapse
|
20
|
Потеряева ОН, Усынин ИФ. [Dysfunctional high-density lipoproteins in diabetes mellitus]. PROBLEMY ENDOKRINOLOGII 2022; 68:69-77. [PMID: 36104968 PMCID: PMC9762443 DOI: 10.14341/probl13118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 01/09/2023]
Abstract
The risk of cardiovascular disease (CVD) in persons with type 2 diabetes mellitus (DM2) increases two to four times. One of the main factors increasing cardiovascular risk is dyslipidemia, which includes abnormalities in all lipoproteins, including high-density lipoproteins (HDL). The development of DM2 is accompanied not only by a decrease in the level of HDL, but also by significant changes in their structure. This leads to the transformation of native HDL into so-called dysfunctional or diabetic HDL, which loses their antiatherogenic, cardioprotective, anti-inflammatory and anti-diabetic properties. In poorly controlled diabetes mellitus HDL can not only lose its beneficial functions, but also acquire proatherogenic, proinflammatory ones. Diabetic HDL can contribute to the accumulation of such unfavorable qualities as increased proliferation, migration, and invasion of cancer cells. Given that HDL, in addition to participation in cholesterol transport, performs important regulatory functions in the body, there is reason to assume that structural modifications of HDL (oxidation, glycation, triglyceride enrichment, loss of HDL-associated enzymes, etc.) are one of the causes of vascular complications of diabetes.
Collapse
Affiliation(s)
- О. Н. Потеряева
- Научно-исследовательский институт биохимии Федерального исследовательского центра фундаментальной и трансляционной медицины
| | - И. Ф. Усынин
- Научно-исследовательский институт биохимии Федерального исследовательского центра фундаментальной и трансляционной медицины
| |
Collapse
|
21
|
Association of LDL:HDL ratio with prediabetes risk: a longitudinal observational study based on Chinese adults. Lipids Health Dis 2022; 21:44. [PMID: 35570291 PMCID: PMC9107720 DOI: 10.1186/s12944-022-01655-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
Background Low-density lipoprotein:high-density lipoprotein cholesterol ratio (LDL:HDL ratio) has a good performance in identifying diabetes mellitus (DM) and insulin resistance. However, it is not yet clear whether the LDL:HDL ratio is associated with a high-risk state of prediabetes. Methods This cohort study retrospectively analyzed the data of 100,309 Chinese adults with normoglycemia at baseline. The outcome event of interest was new-onset prediabetes. Using multivariate Cox regression and smoothing splines to assess the association of LDL:HDL ratio with prediabetes. Results During an average observation period of 37.4 months, 12,352 (12.31%) subjects were newly diagnosed with prediabetes. After adequate adjustment for important risk factors, the LDL:HDL ratio was positively correlated with the prediabetes risk, and the sensitivity analysis further suggested the robustness of the results. Additionally, in stratified analysis, we discovered significant interactions between LDL:HDL ratio and family history of DM, sex, body mass index and age (all P-interaction < 0.05); among them, the LDL:HDL ratio-related prediabetes risk decreased with the growth of body mass index and age, and increased significantly in women and people with a family history of DM. Conclusions The increased LDL:HDL ratio in the Chinese population indicates an increased risk of developing prediabetes, especially in women, those with a family history of DM, younger adults, and non-obese individuals. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01655-5.
Collapse
|
22
|
Yan L, Vaghari-Tabari M, Malakoti F, Moein S, Qujeq D, Yousefi B, Asemi Z. Quercetin: an effective polyphenol in alleviating diabetes and diabetic complications. Crit Rev Food Sci Nutr 2022; 63:9163-9186. [PMID: 35468007 DOI: 10.1080/10408398.2022.2067825] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Various studies, especially in recent years, have shown that quercetin has beneficial therapeutic effects in various human diseases, including diabetes. Quercetin has significant anti-diabetic effects and may be helpful in lowering blood sugar and increasing insulin sensitivity. Quercetin appears to affect many factors and signaling pathways involved in insulin resistance and the pathogenesis of type 2 of diabetes. TNFα, NFKB, AMPK, AKT, and NRF2 are among the factors that are affected by quercetin. In addition, quercetin can be effective in preventing and ameliorating the diabetic complications, including diabetic nephropathy, cardiovascular complications, neuropathy, delayed wound healing, and retinopathy, and affects the key mechanisms involved in the pathogenesis of these complications. These positive effects of quercetin may be related to its anti-inflammatory and anti-oxidant properties. In this article, after a brief review of the pathogenesis of insulin resistance and type 2 diabetes, we will review the latest findings on the anti-diabetic effects of quercetin with a molecular perspective. Then we will review the effects of quercetin on the key mechanisms of pathogenesis of diabetes complications including nephropathy, cardiovascular complications, neuropathy, delayed wound healing, and retinopathy. Finally, clinical trials investigating the effect of quercetin on diabetes and diabetes complications will be reviewed.
Collapse
Affiliation(s)
- Lei Yan
- Clinical Experimental Centre, Xi'an International Medical Center Hospital, Xi'an, China
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Mostafa Vaghari-Tabari
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
23
|
Huang M, Laina-Nicaise LD, Zha L, Tang T, Cheng X. Causal Association of Type 2 Diabetes Mellitus and Glycemic Traits With Cardiovascular Diseases and Lipid Traits: A Mendelian Randomization Study. Front Endocrinol (Lausanne) 2022; 13:840579. [PMID: 35528012 PMCID: PMC9072667 DOI: 10.3389/fendo.2022.840579] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/16/2022] [Indexed: 11/23/2022] Open
Abstract
Objective We aimed to evaluate the causal effect of type 2 diabetes mellitus (T2DM) and glycemic traits on the risk of a wide range of cardiovascular diseases (CVDs) and lipid traits using Mendelian randomization (MR). Methods Genetic variants associated with T2DM, fasting glucose, fasting insulin, and hemoglobin A1c were selected as instrumental variables to perform both univariable and multivariable MR analyses. Results In univariable MR, genetically predicted T2DM was associated with higher odds of peripheral artery disease (pooled odds ratio (OR) =1.207, 95% CI: 1.162-1.254), myocardial infarction (OR =1.132, 95% CI: 1.104-1.160), ischemic heart disease (OR =1.129, 95% CI: 1.105-1.154), heart failure (OR =1.050, 95% CI: 1.029-1.072), stroke (OR =1.087, 95% CI: 1.068-1.107), ischemic stroke (OR =1.080, 95% CI: 1.059-1.102), essential hypertension (OR =1.013, 95% CI: 1.010-1.015), coronary atherosclerosis (OR =1.005, 95% CI: 1.004-1.007), and major coronary heart disease event (OR =1.003, 95% CI: 1.002-1.004). Additionally, T2DM was causally related to lower levels of high-density lipoprotein cholesterol (OR =0.965, 95% CI: 0.958-0.973) and apolipoprotein A (OR =0.982, 95% CI: 0.977-0.987) but a higher level of triglycerides (OR =1.060, 95% CI: 1.036-1.084). Moreover, causal effect of glycemic traits on CVDs and lipid traits were also observed. Finally, most results of univariable MR were supported by multivariable MR. Conclusion We provided evidence for the causal effects of T2DM and glycemic traits on the risk of CVDs and dyslipidemia. Further investigations to elucidate the underlying mechanisms are warranted.
Collapse
Affiliation(s)
- Mingkai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Loum-Davadi Laina-Nicaise
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Diab A, Valenzuela Ripoll C, Guo Z, Javaheri A. HDL Composition, Heart Failure, and Its Comorbidities. Front Cardiovasc Med 2022; 9:846990. [PMID: 35350538 PMCID: PMC8958020 DOI: 10.3389/fcvm.2022.846990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Although research on high-density lipoprotein (HDL) has historically focused on atherosclerotic coronary disease, there exists untapped potential of HDL biology for the treatment of heart failure. Anti-oxidant, anti-inflammatory, and endothelial protective properties of HDL could impact heart failure pathogenesis. HDL-associated proteins such as apolipoprotein A-I and M may have significant therapeutic effects on the myocardium, in part by modulating signal transduction pathways and sphingosine-1-phosphate biology. Furthermore, because heart failure is a complex syndrome characterized by multiple comorbidities, there are complex interactions between heart failure, its comorbidities, and lipoprotein homeostatic mechanisms. In this review, we will discuss the effects of heart failure and associated comorbidities on HDL, explore potential cardioprotective properties of HDL, and review novel HDL therapeutic targets in heart failure.
Collapse
|
25
|
Gündoğdu Y, Anaforoğlu İ. Effects of Smoking on Diabetic Nephropathy. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2022; 3:826383. [PMID: 36992741 PMCID: PMC10012135 DOI: 10.3389/fcdhc.2022.826383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022]
Abstract
Diabetes is a systemic metabolic disease with serious complications that cause significant stress on the healthcare system. Diabetic kidney disease is the primary cause of end stage renal disease globally and its progression is accelerated by various factors. Another major healthcare hazard is tobacco consumption and smoking has deleterious effects on renal physiology. Prominent factors are defined as sympathetic activity, atherosclerosis, oxidative stress and dyslipidemia. This review aims to enlighten the mechanism underlying the cumulative negative effect of simultaneous exposure to hyperglycemia and nicotine.
Collapse
Affiliation(s)
- Yasemin Gündoğdu
- School of Medicine, Department of Internal Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - İnan Anaforoğlu
- School of Medicine, Department of Endocrinology and Metabolism, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| |
Collapse
|
26
|
Flaherty SM, Wood EK, Ryff CD, Love GD, Kelesidis T, Berkowitz L, Echeverría G, Rivera K, Rigotti A, Coe CL. Race and sex differences in HDL peroxide content among American adults with and without type 2 diabetes. Lipids Health Dis 2022; 21:18. [PMID: 35125112 PMCID: PMC8818198 DOI: 10.1186/s12944-021-01608-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background High-density lipoprotein (HDL) plays a critical role in protection against atherosclerosic and cardiovascular disease (ASCVD). In addition to contributing to clearing excess vascular cholesterol, HDL particles exhibit antioxidative functions, helping to attenuate adverse effects of oxidized low-density lipoproteins. However, these beneficial properties can be undermined by oxidative stress, inflammation, and unhealthy lifestyles and diet, as well as influenced by race and sex. Thus, when assessing cardiovascular risk, it is important to consider multifactorial aspects of HDL, including antioxidant activity rather than just total amount and type of HDL-cholesterol (HDL-C) particles. Because prior research showed HDL peroxide content (HDLperox) can be inversely associated with normal anti-oxidant HDL activity, elevated HDLperox may serve as a bioindicator of HDL dysfunction. Methods In this study, data from a large national cohort of Americans was utilized to determine the impact of sex, race, and diabetes status on HDLperox in middle-aged and older adults. A previously developed cell-free fluorometric method was utilized to quantify HDLperox in serum depleted of apo-B containing lipoproteins. Results In keeping with predictions, white men and diabetics exhibited HDLperox in the atypical upper range, suggestive of less functional HDL. White men had higher HDLperox levels than African American males (13.46 ± 6.10 vs. 10.88 ± 5.81, p < .001). There was also a significant main effect of type 2 diabetes (F(1,1901) = 14.9, p < .0001). Overall, African Americans evinced lower HDLperox levels, despite more obesity (10.3 ± 4.7 vs.11.81 ± 5.66 for Whites) suggesting that other aspects of lipid metabolism and psychosocial factors account for the higher prevalence of ASCVD in African Americans. Conclusion This research helps to provide a more comprehensive understanding of HDL function in a racially and metabolically diverse adult population. HDLperox content was significantly different in adults with type 2 diabetes, and distinctive in nondiabetic White males, and suggests other processes account for the higher prevalence of ASCVD among African Americans. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01608-4.
Collapse
|
27
|
Shui X, Zhao L, Li W, Jia Y, Liu Z, Li C, Yang X, Huang H, Wu S, Chen S, Gao J, Li X, Wang A, Jin X, Guo L, Hou S. Association between exposure to earthquake in early life and diabetes mellitus incidence in adulthood with the modification of lifestyles: Results from the Kailuan study. Front Pediatr 2022; 10:1046086. [PMID: 36425399 PMCID: PMC9679373 DOI: 10.3389/fped.2022.1046086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Exposure to disasters in early life may induce lifetime health risk, but investigation on earthquake exposure and DM in later life is still limited. The aim of the current study is to evaluate the association between exposure to the Tangshan Earthquake in early life and diabetes mellitus (DM) incidence in adulthood, and explore the modification of lifestyles on DM development. METHODS Participants who were free of DM at baseline from the Kailuan Study were included in this study. All participants were divided into fetal-exposed, infant-exposed, early childhood-exposed and nonexposed group. The effect of earthquake exposure on DM and modification of lifestyles were examined by multivariable-adjusted Cox proportional hazard model. RESULTS The exposed group had a higher risk of DM than nonexposed group, especially in infant-exposed and early childhood-exposed group, with hazard ratio (HR) of 1.62 [95% confidence intervals (CI), 1.21-2.17] and 1.46 (95% CI, 1.06-1.99), respectively. After stratifying by lifestyles, a significant modification was observed in alcohol consumption. CONCLUSION Exposing to earthquake in early life could increase DM incidence in later life, and alcohol consumption might modify the effect of earthquake exposure on DM development. More attention should be paid on the preventions of DM among adults who exposed to earthquake in their early life.
Collapse
Affiliation(s)
- Xinying Shui
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, Tianjin, China.,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
| | - Lei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, Tianjin, China.,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
| | - Wenli Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, Tianjin, China.,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
| | - Yaning Jia
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, Tianjin, China.,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
| | - Ziquan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, Tianjin, China.,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
| | - Chen Li
- Department of Occupational & Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xueli Yang
- Department of Occupational & Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Haoran Huang
- Basic Medical Science College, Harbin Medical University, Harbin, China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| | - Shuohua Chen
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| | - Jingli Gao
- Department of Intensive Medicine, Kailuan General Hospital, Tangshan, China
| | - Xiaolan Li
- Department of Intensive Medicine, Kailuan General Hospital, Tangshan, China
| | - Aitian Wang
- Department of Intensive Medicine, Kailuan General Hospital, Tangshan, China
| | - Xiaobin Jin
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, Tianjin, China.,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, Tianjin, China.,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
| |
Collapse
|
28
|
Ye L, Wang X, Konno T, Gong X, Ding H, Yan H, Ji ZS, Liu E. Fat reducing effects of Nelumbo nucifera leaf extract in overweight patients. Nat Prod Res 2021; 36:4776-4781. [PMID: 34852695 DOI: 10.1080/14786419.2021.2010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The leaf of Nelumbo nucifera (Family Nelumbonaceae) has been widely included in the diet of Chinese people from the time of the Min Dynasty. In this study, a randomized double-blind trial (n = 60) was performed to determine the effects of extract from sun dried Nelumbo nucifera leaves (NnEx), which included quercetin-3-glucuronide (Q3GA) as the main components, in overweight patients (24 kg/m2<body mass index < 28 kg/m2) during 12 weeks. For both men and women, compared with those in the non-intervention control groups, the whole body fat was significantly decreased after NnEx ingestion, and men also significantly reduced visceral fat and waist circumference after NnEx ingestion compared with those in the control group.
Collapse
Affiliation(s)
- Luyi Ye
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Xiaolin Wang
- Division of Research and Development, Meiji Co., Ltd, Hachiouji, Japan
| | - Tomonobu Konno
- Division of Research and Development, Meiji Co., Ltd, Hachiouji, Japan
| | - Xiangyu Gong
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Hao Ding
- Division of Research and Development, Meiji Co., Ltd, Hachiouji, Japan
| | - Hua Yan
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zai-Si Ji
- Division of Research and Development, Meiji Co., Ltd, Hachiouji, Japan.,NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Enuo Liu
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China.,NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| |
Collapse
|
29
|
Abstract
Inflammation and lipid signaling are involved in the pathogenesis and progression of coronary artery disease (CAD). We proposed that high-sensitivity C-reactive proteins, as a marker of the pro-inflammatory state, and high-density lipoprotein cholesterol (HDL-C), as an anti-atherosclerosis component, should be integrated into a single novel biomarker. Our work was conducted to discuss and compare the predictive ability of the high-sensitivity C-reactive protein to high-density lipoprotein cholesterol ratio (CHR) with other existing indices, for example, neutrophil high-density lipoprotein ratio (NHR) and neutrophil lymphocyte ratio (NLR), in the severity of CAD patients.Based on the results of coronary angiography, patients were divided into the CAD+ group, CAD- group, and control group. The relationship between various serum markers and the severity of coronary artery disease was examined via Spearman's correlation analysis. Logistic regression analysis was conducted to identify the influencing factors of the coronary artery disease severity.This study included 420 patients. The Gensini score was positively correlated with CHR. Multiple regression analysis revealed that the CHR was significantly associated with CAD. CHR is an independent predictor of CAD. The receiver operating characteristic (ROC) analysis provided a cut-off value of 1.17 for CHR to predict CAD, with a specificity of 86.7%, Yoden index of 0.264, and area under the ROC curve of 0.662 (95% confidence intervals 0.606-0.719, P < 0.001). At the same time, the area under the ROC curve of the NHR was 0.652, and that of the NLR was 0.579. The results of the DeLong test indicated that the area under the ROC curve of the CHR was larger than that of the NLR (P = 0.0306). This suggests that the CHR as a predictor of CAD has better diagnostic performance than the NLR.CHR was not only closely related to the presence and severity of CAD but also an independent predictor of severe CAD.
Collapse
Affiliation(s)
- Haorou Luo
- School of Medicine, University of Electronic Science and Technology of China
| | - Tuli Kou
- School of Medicine, Southwest Medical University
| | - Lixue Yin
- Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital
| |
Collapse
|
30
|
Stadler JT, Marsche G. Dietary Strategies to Improve Cardiovascular Health: Focus on Increasing High-Density Lipoprotein Functionality. Front Nutr 2021; 8:761170. [PMID: 34881279 PMCID: PMC8646038 DOI: 10.3389/fnut.2021.761170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is one of the leading causes of morbidity and mortality worldwide, with increasing incidence. A cornerstone of cardiovascular disease prevention is lifestyle modification through dietary changes to influence various risk factors such as obesity, hypertension and diabetes. The effects of diet on cardiovascular health are complex. Some dietary components and metabolites directly affect the composition and structure of high-density lipoproteins (HDL) and increase anti-inflammatory and vasoprotective properties. HDLs are composed of distinct subpopulations of particles of varying size and composition that have several dynamic and context-dependent functions. The identification of potential dietary components that improve HDL functionality is currently an important research goal. One of the best-studied diets for cardiovascular health is the Mediterranean diet, consisting of fish, olive oil, fruits, vegetables, whole grains, legumes/nuts, and moderate consumption of alcohol, most commonly red wine. The Mediterranean diet, especially when supplemented with extra virgin olive oil rich in phenolic compounds, has been shown to markedly improve metrics of HDL functionality and reduce the burden, or even prevent the development of cardiovascular disease. Particularly, the phenolic compounds of extra virgin olive oil seem to exert the significant positive effects on HDL function. Moreover, supplementation of anthocyanins as well as antioxidants such as lycopene or the omega-3 fatty acid eicosapentaenoic acid improve parameters of HDL function. In this review, we aim to highlight recent discoveries on beneficial dietary patterns as well as nutritional components and their effects on cardiovascular health, focusing on HDL function.
Collapse
Affiliation(s)
- Julia T. Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
31
|
Couret D, Planesse C, Patche J, Diotel N, Nativel B, Bourane S, Meilhac O. Lack of Neuroprotective Effects of High-Density Lipoprotein Therapy in Stroke under Acute Hyperglycemic Conditions. Molecules 2021; 26:molecules26216365. [PMID: 34770774 PMCID: PMC8588473 DOI: 10.3390/molecules26216365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 01/01/2023] Open
Abstract
Introduction: The pleiotropic protective effects of high-density lipoproteins (HDLs) on cerebral ischemia have never been tested under acute hyperglycemic conditions. The aim of this study is to evaluate the potential neuroprotective effect of HDL intracarotid injection in a mouse model of middle cerebral artery occlusion (MCAO) under hyperglycemic conditions. Methods: Forty-two mice were randomized to receive either an intracarotid injection of HDLs or saline. Acute hyperglycemia was induced by an intraperitoneal injection of glucose (2.2 g/kg) 20 min before MCAO. Infarct size (2,3,5-triphenyltetrazolium chloride (TTC)-staining), blood–brain barrier leakage (IgG infiltration), and hemorrhagic changes (hemoglobin assay by ELISA and hemorrhagic transformation score) were analyzed 24 h post-stroke. Brain tissue inflammation (IL-6 by ELISA, neutrophil infiltration and myeloperoxidase by immunohisto-fluorescence) and apoptosis (caspase 3 activation) were also assessed. Results: Intraperitoneal D-glucose injection allowed HDL- and saline-treated groups to reach a blood glucose level of 300 mg/dl in the acute phase of cerebral ischemia. HDL injection did not significantly reduce mortality (19% versus 29% in the saline-injected group) or cerebral infarct size (p = 0.25). Hemorrhagic transformations and inflammation parameters were not different between the two groups. In addition, HDL did not inhibit apoptosis under acute hyperglycemic conditions. Conclusion: We observed a nonsignificant decrease in cerebral infarct size in the HDL group. The deleterious consequences of reperfusion such as hemorrhagic transformation or inflammation were not improved by HDL infusion. In acute hyperglycemia, HDLs are not potent enough to counteract the adverse effects of hyperglycemia. The addition of antioxidants to therapeutic HDLs could improve their neuroprotective capacity.
Collapse
Affiliation(s)
- David Couret
- UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de la Réunion, Inserm, Plateforme CYROI, F-97490 Sainte-Clotilde, France; (C.P.); (J.P.); (N.D.); (B.N.); (S.B.); (O.M.)
- Service de Neuroréanimation, Centre Hospitalo-Universitaire de La Réunion, 97410 Saint-Pierre de La Réunion, France
- Correspondence: ; Tel.: +33-262-(0)-35-90-00
| | - Cynthia Planesse
- UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de la Réunion, Inserm, Plateforme CYROI, F-97490 Sainte-Clotilde, France; (C.P.); (J.P.); (N.D.); (B.N.); (S.B.); (O.M.)
| | - Jessica Patche
- UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de la Réunion, Inserm, Plateforme CYROI, F-97490 Sainte-Clotilde, France; (C.P.); (J.P.); (N.D.); (B.N.); (S.B.); (O.M.)
| | - Nicolas Diotel
- UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de la Réunion, Inserm, Plateforme CYROI, F-97490 Sainte-Clotilde, France; (C.P.); (J.P.); (N.D.); (B.N.); (S.B.); (O.M.)
| | - Brice Nativel
- UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de la Réunion, Inserm, Plateforme CYROI, F-97490 Sainte-Clotilde, France; (C.P.); (J.P.); (N.D.); (B.N.); (S.B.); (O.M.)
| | - Steeve Bourane
- UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de la Réunion, Inserm, Plateforme CYROI, F-97490 Sainte-Clotilde, France; (C.P.); (J.P.); (N.D.); (B.N.); (S.B.); (O.M.)
| | - Olivier Meilhac
- UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de la Réunion, Inserm, Plateforme CYROI, F-97490 Sainte-Clotilde, France; (C.P.); (J.P.); (N.D.); (B.N.); (S.B.); (O.M.)
- CIC-EC 1410, Centre Hospitalo-Universitaire de La Réunion, 97410 Saint-Pierre de La Réunion, France
| |
Collapse
|
32
|
Kluck GEG, Yoo JA, Sakarya EH, Trigatti BL. Good Cholesterol Gone Bad? HDL and COVID-19. Int J Mol Sci 2021; 22:10182. [PMID: 34638523 PMCID: PMC8507803 DOI: 10.3390/ijms221910182] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
The transmissible respiratory disease COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected millions of people worldwide since its first reported outbreak in December of 2019 in Wuhan, China. Since then, multiple studies have shown an inverse correlation between the levels of high-density lipoprotein (HDL) particles and the severity of COVID-19, with low HDL levels being associated with an increased risk of severe outcomes. Some studies revealed that HDL binds to SARS-CoV-2 particles via the virus's spike protein and, under certain conditions, such as low HDL particle concentrations, it facilitates SARS-CoV-2 binding to angiotensin-converting enzyme 2 (ACE2) and infection of host cells. Other studies, however, reported that HDL suppressed SARS-CoV-2 infection. In both cases, the ability of HDL to enhance or suppress virus infection appears to be dependent on the expression of the HDL receptor, namely, the Scavenger Receptor Class B type 1 (SR-B1), in the target cells. SR-B1 and HDL represent crucial mediators of cholesterol metabolism. Herein, we review the complex role of HDL and SR-B1 in SARS-CoV-2-induced disease. We also review recent advances in our understanding of HDL structure, properties, and function during SARS-CoV-2 infection and the resulting COVID-19 disease.
Collapse
Affiliation(s)
| | | | | | - Bernardo L. Trigatti
- Thrombosis and Atherosclerosis Research Institute and Department of Biochemistry and Biomedical Sciences, McMaster University and Hamilton Health Sciences, Hamilton, ON L8L 2X2, Canada; (G.E.G.K.); (J.-A.Y.); (E.H.S.)
| |
Collapse
|
33
|
Xepapadaki E, Nikdima I, Sagiadinou EC, Zvintzou E, Kypreos KE. HDL and type 2 diabetes: the chicken or the egg? Diabetologia 2021; 64:1917-1926. [PMID: 34255113 DOI: 10.1007/s00125-021-05509-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
HDL is a complex macromolecular cluster of various components, such as apolipoproteins, enzymes and lipids. Quality evidence from clinical and epidemiological studies led to the principle that HDL-cholesterol (HDL-C) levels are inversely correlated with the risk of CHD. Nevertheless, the failure of many cholesteryl ester transfer protein inhibitors to protect against CVD casts doubts on this principle and highlights the fact that HDL functionality, as dictated by its proteome and lipidome, also plays an important role in protecting against metabolic disorders. Recent data indicate that HDL-C levels and HDL particle functionality are correlated with the pathogenesis and prognosis of type 2 diabetes mellitus, a major risk factor for CVD. Hyperglycaemia leads to reduced HDL-C levels and deteriorated HDL functionality, via various alterations in HDL particles' proteome and lipidome. In turn, reduced HDL-C levels and impaired HDL functionality impact the performance of key organs related to glucose homeostasis, such as pancreas and skeletal muscles. Interestingly, different structural alterations in HDL correlate with distinct metabolic abnormalities, as indicated by recent data evaluating the role of apolipoprotein A1 and lecithin-cholesterol acyltransferase deficiency in glucose homeostasis. While it is becoming evident that not all HDL disturbances are causatively associated with the development and progression of type 2 diabetes, a bidirectional correlation between these two conditions exists, leading to a perpetual self-feeding cycle.
Collapse
Affiliation(s)
- Eva Xepapadaki
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece
| | - Ioanna Nikdima
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece
| | - Eleftheria C Sagiadinou
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece
| | - Evangelia Zvintzou
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece
| | - Kyriakos E Kypreos
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece.
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| |
Collapse
|
34
|
Holzwirth E, Fischer-Schaepmann T, Obradovic D, von Lucadou M, Schwedhelm E, Daum G, Hindricks G, Marsche G, Trieb M, Thiele H, Kornej J, Büttner P. Anti-inflammatory HDL effects are impaired in atrial fibrillation. Heart Vessels 2021; 37:161-171. [PMID: 34459957 PMCID: PMC8732851 DOI: 10.1007/s00380-021-01908-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/09/2021] [Indexed: 02/02/2023]
Abstract
High-density lipoprotein (HDL), best known for cholesterol transport, also has anti-inflammatory effects. Previous studies suggest involvement of myeloperoxidase (MPO) in modification of HDL. HDL bound Sphingosine-1-phosphate (S1P) has been implied to be an essential protein regarding beneficial HDL effects. In this study, we analyzed anti-inflammatory HDL properties in patients with atrial fibrillation (AF), a disease involving atrial inflammation, compared to non-AF controls and whether anti-inflammatory properties improve upon catheter ablation. Additionally, association with serum concentrations of MPO and S1P were assessed. We isolated HDL from 25 AF patients, 13 non-AF individuals and 14 AF patients at follow-up (FU) after catheter ablation. S1P was measured in a cohort of 141 AF and 21 FU patients. Following preincubation with HDL from either group, bovine aortic endothelial cells were stimulated using tumor necrosis factor α and expression of pro-inflammatory genes intercellular adhesion molecule 1 (ICAM1), vascular cell adhesion molecule 1 (VCAM1), E-selectin (SELE) and P-selectin (SELP) was assessed using qPCR. Concentrations of circulating protein of these genes as well as MPO and S1P were measured in serum samples. Compared to non-AF individuals HDL from AF patients suppressed gene expression of the pro-inflammatory adhesion molecules ICAM1, VCAM1, SELE and SELP 27%, 18%, 21% and 57% less, respectively (p < 0.05 for all except SELE p = 0.06). In FU patients, the anti-inflammatory HDL activity was improved (suppression of ICAM1 + 22%, VCAM1 + 10%, SELE + 38% and SELP + 75%, p < 0.05 for all except VCAM1 p = 0.08). AF patients using angiotensin converting enzyme inhibitors or angiotensin receptor blockers had better anti-inflammatory HDL properties than non-users (gene expression suppression at least 28% more, p < 0.05 for all except ICAM1 p = 0.051). Circulating protein concentrations were not correlated with in vitro gene-expression, but circulating P-selectin was generally elevated in AF and FU patients compared to non-AF patients. MPO plasma concentration was positively associated with gene-expression of ICAM1, VCAM1 and SELP (r2 > 0.4, p < 0.05). Serum concentrations of S1P were increased in FU patients {1.201 µM [1.077–1.543]} compared to AF patients {0.953 µM [0.807–1.135], p < 0.01} but not correlated with ICAM1, VCAM1 and SELP gene expression. We conclude that the anti-inflammatory activity of HDL is impaired in AF patients, which might promote AF progression and AF-associated complications.
Collapse
Affiliation(s)
- Erik Holzwirth
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Tina Fischer-Schaepmann
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Danilo Obradovic
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Mirjam von Lucadou
- Institute of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Günter Daum
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Department of Vascular Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig at University Leipzig, Leipzig, Germany
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Markus Trieb
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Holger Thiele
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Jelena Kornej
- School of Medicine-Cardiovascular Medicine, Boston University, Boston, MA, USA
| | - Petra Büttner
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany.
| |
Collapse
|
35
|
Breakfast partly restores the anti-inflammatory function of high-density lipoproteins from patients with type 2 diabetes mellitus. ATHEROSCLEROSIS PLUS 2021; 44:43-50. [PMID: 36644668 PMCID: PMC9833245 DOI: 10.1016/j.athplu.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 01/18/2023]
Abstract
Background and aims High-density lipoproteins (HDL) of patients with type 2 diabetes mellitus (T2DM) have impaired anti-inflammatory activities. The anti-inflammatory activity of HDL has been determined ex vivo after isolation by different methods from blood mostly obtained after overnight fasting. We first determined the effect of the HDL isolation method, and subsequently the effect of food intake on the anti-inflammatory function of HDL from T2DM patients. Methods Blood was collected from healthy controls and T2DM patients after an overnight fast, and from T2DM patients 3 h after breakfast (n = 17 each). HDL was isolated by a two-step density gradient ultracentrifugation in iodixanol (HDLDGUC2), by sequential salt density flotation (HDLSEQ) or by PEG precipitation (HDLPEG). The anti-inflammatory function of HDL was determined by the reduction of the TNFα-induced expression of VCAM-1 in human coronary artery endothelial cells (HCAEC) and retinal endothelial cells (REC). Results HDL isolated by the three different methods from healthy controls inhibited TNFα-induced VCAM-1 expression in HCAEC. With apoA-I at 0.7 μM, HDLDGUC2 and HDLSEQ were similarly effective (16% versus 14% reduction; n = 3; p > 0.05) but less effective than HDLPEG (28%, p < 0.05). Since ultracentrifugation removes most of the unbound plasma proteins, we used HDLDGUC2 for further experiments. With apoA-I at 3.2 μM, HDL from fasting healthy controls and T2DM patients reduced TNFα-induced VCAM-1 expression in HCAEC by 58 ± 13% and 51 ± 20%, respectively (p = 0.35), and in REC by 42 ± 13% and 25 ± 18%, respectively (p < 0.05). Compared to preprandial HDL, postprandial HDL from T2DM patients reduced VCAM-1 expression by 56 ± 16% (paired test: p < 0.001) in HCAEC and by 34 ± 13% (paired test: p < 0.05) in REC. Conclusions The ex vivo anti-inflammatory activity of HDL is affected by the HDL isolation method. Two-step ultracentrifugation in an iodixanol gradient is a suitable method for HDL isolation when testing HDL anti-inflammatory function. The anti-inflammatory activity of HDL from overnight fasted T2DM patients is significantly impaired in REC but not in HCAEC. The anti-inflammatory function of HDL is partly restored by food intake.
Collapse
|
36
|
Lee CK, Liao CW, Meng SW, Wu WK, Chiang JY, Wu MS. Lipids and Lipoproteins in Health and Disease: Focus on Targeting Atherosclerosis. Biomedicines 2021; 9:biomedicines9080985. [PMID: 34440189 PMCID: PMC8393881 DOI: 10.3390/biomedicines9080985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Despite advances in pharmacotherapy, intervention devices and techniques, residual cardiovascular risks still cause a large burden on public health. Whilst most guidelines encourage achieving target levels of specific lipids and lipoproteins to reduce these risks, increasing evidence has shown that molecular modification of these lipoproteins also has a critical impact on their atherogenicity. Modification of low-density lipoprotein (LDL) by oxidation, glycation, peroxidation, apolipoprotein C-III adhesion, and the small dense subtype largely augment its atherogenicity. Post-translational modification by oxidation, carbamylation, glycation, and imbalance of molecular components can reduce the capacity of high-density lipoprotein (HDL) for reverse cholesterol transport. Elevated levels of triglycerides (TGs), apolipoprotein C-III and lipoprotein(a), and a decreased level of apolipoprotein A-I are closely associated with atherosclerotic cardiovascular disease. Pharmacotherapies aimed at reducing TGs, lipoprotein(a), and apolipoprotein C-III, and enhancing apolipoprotein A-1 are undergoing trials, and promising preliminary results have been reported. In this review, we aim to update the evidence on modifications of major lipid and lipoprotein components, including LDL, HDL, TG, apolipoprotein, and lipoprotein(a). We also discuss examples of translating findings from basic research to potential therapeutic targets for drug development.
Collapse
Affiliation(s)
- Chih-Kuo Lee
- College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-K.L.); (C.-W.L.); (S.-W.M.); (W.-K.W.)
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 300, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Che-Wei Liao
- College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-K.L.); (C.-W.L.); (S.-W.M.); (W.-K.W.)
- Department of Internal Medicine, National Taiwan University Cancer Center, Taipei 106, Taiwan
| | - Shih-Wei Meng
- College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-K.L.); (C.-W.L.); (S.-W.M.); (W.-K.W.)
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 300, Taiwan
| | - Wei-Kai Wu
- College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-K.L.); (C.-W.L.); (S.-W.M.); (W.-K.W.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Jiun-Yang Chiang
- College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-K.L.); (C.-W.L.); (S.-W.M.); (W.-K.W.)
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei 100, Taiwan
- Correspondence: (J.-Y.C.); (M.-S.W.)
| | - Ming-Shiang Wu
- College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-K.L.); (C.-W.L.); (S.-W.M.); (W.-K.W.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Correspondence: (J.-Y.C.); (M.-S.W.)
| |
Collapse
|
37
|
Bonizzi A, Piuri G, Corsi F, Cazzola R, Mazzucchelli S. HDL Dysfunctionality: Clinical Relevance of Quality Rather Than Quantity. Biomedicines 2021; 9:729. [PMID: 34202201 PMCID: PMC8301425 DOI: 10.3390/biomedicines9070729] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022] Open
Abstract
High-density lipoproteins (HDLs) represent a class of lipoproteins very heterogeneous in structure, composition, and biological functions, which carry out reverse cholesterol transport, antioxidant, anti-inflammatory, antithrombotic, and vasodilator actions. Despite the evidence suggesting a clear inverse relationship between HDL cholesterol (HDL-c) concentration and the risk for cardiovascular disease, plasma HDL cholesterol levels do not predict the functionality and composition of HDLs. The importance of defining both the amount of cholesterol transported and lipoprotein functionality has recently been highlighted. Indeed, different clinical conditions such as obesity, diabetes mellitus type 2 (T2DM), and cardiovascular disease (CVD) can alter the HDL functionality, converting normal HDLs into dysfunctional ones, undergoing structural changes, and exhibiting proinflammatory, pro-oxidant, prothrombotic, and proapoptotic properties. The aim of the current review is to summarize the actual knowledge concerning the physical-chemical alteration of HDLs related to their functions, which have been found to be relevant in several pathological conditions associated with systemic inflammation and oxidative stress.
Collapse
Affiliation(s)
- Arianna Bonizzi
- Department of Biomedical and Clinical Sciences "L. Sacco", Università di Milano, 20157 Milan, Italy
| | - Gabriele Piuri
- Department of Biomedical and Clinical Sciences "L. Sacco", Università di Milano, 20157 Milan, Italy
| | - Fabio Corsi
- Department of Biomedical and Clinical Sciences "L. Sacco", Università di Milano, 20157 Milan, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Roberta Cazzola
- Department of Biomedical and Clinical Sciences "L. Sacco", Università di Milano, 20157 Milan, Italy
| | - Serena Mazzucchelli
- Department of Biomedical and Clinical Sciences "L. Sacco", Università di Milano, 20157 Milan, Italy
| |
Collapse
|
38
|
Zhao TJ, Zhu N, Shi YN, Wang YX, Zhang CJ, Deng CF, Liao DF, Qin L. Targeting HDL in tumor microenvironment: New hope for cancer therapy. J Cell Physiol 2021; 236:7853-7873. [PMID: 34018609 DOI: 10.1002/jcp.30412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/16/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022]
Abstract
Epidemiological studies have shown that plasma HDL-C levels are closely related to the risk of prostate cancer, breast cancer, and other malignancies. As one of the key carriers of cholesterol regulation, high-density lipoprotein (HDL) plays an important role in tumorigenesis and cancer development through anti-inflammation, antioxidation, immune-modulation, and mediating cholesterol transportation in cancer cells and noncancer cells. In addition, the occurrence and progression of cancer are closely related to the alteration of the tumor microenvironment (TME). Cancer cells synthesize and secrete a variety of cytokines and other factors to promote the reprogramming of surrounding cells and shape the microenvironment suitable for cancer survival. By analyzing the effect of HDL on the infiltrating immune cells in the TME, as well as the relationship between HDL and tumor-associated angiogenesis, it is suggested that a moderate increase in the level of HDL in vivo with consequent improvement of the function of HDL in the TME and induction of intracellular cholesterol efflux may be a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Tan-Jun Zhao
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ya-Ning Shi
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yu-Xiang Wang
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Chan-Juan Zhang
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Chang-Feng Deng
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qin
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
39
|
Bonacina F, Pirillo A, Catapano AL, Norata GD. HDL in Immune-Inflammatory Responses: Implications beyond Cardiovascular Diseases. Cells 2021; 10:cells10051061. [PMID: 33947039 PMCID: PMC8146776 DOI: 10.3390/cells10051061] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
High density lipoproteins (HDL) are heterogeneous particles composed by a vast array of proteins and lipids, mostly recognized for their cardiovascular (CV) protective effects. However, evidences from basic to clinical research have contributed to depict a role of HDL in the modulation of immune-inflammatory response thus paving the road to investigate their involvement in other diseases beyond those related to the CV system. HDL-C levels and HDL composition are indeed altered in patients with autoimmune diseases and usually associated to disease severity. At molecular levels, HDL have been shown to modulate the anti-inflammatory potential of endothelial cells and, by controlling the amount of cellular cholesterol, to interfere with the signaling through plasma membrane lipid rafts in immune cells. These findings, coupled to observations acquired from subjects carrying mutations in genes related to HDL system, have helped to elucidate the contribution of HDL beyond cholesterol efflux thus posing HDL-based therapies as a compelling interventional approach to limit the inflammatory burden of immune-inflammatory diseases.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, 20092 Milan, Italy;
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
| | - Alberico L. Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
- Correspondence: (A.L.C.); (G.D.N.)
| | - Giuseppe D. Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, 20092 Milan, Italy;
- Correspondence: (A.L.C.); (G.D.N.)
| |
Collapse
|
40
|
Wolkowicz P, White CR, Anantharamaiah GM. Apolipoprotein Mimetic Peptides: An Emerging Therapy against Diabetic Inflammation and Dyslipidemia. Biomolecules 2021; 11:biom11050627. [PMID: 33922449 PMCID: PMC8146922 DOI: 10.3390/biom11050627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity has achieved epidemic status in the United States, resulting in an increase in type 2 diabetes mellitus, dyslipidemia, and cardiovascular disease. Numerous studies have shown that inflammation plays a key role in the development of insulin resistance and diabetic complications. HDL cholesterol levels are inversely associated with coronary heart disease in humans. The beneficial effect of HDL is due, in part, to apolipoproteins A-I and E, which possess anti-inflammatory properties. The functional quality of HDL, however, may be reduced in the context of diabetes. Thus, raising levels of functional HDL is an important target for reducing inflammation and diabetic complications. Apo A-I possesses eight alpha-helical sequences, most of which form class A amphipathic helical structures. Peptides belonging to this class inhibit atherogenesis in several mouse models. Additional peptides based on structural components of apoE have been shown to mediate a rapid clearance of atherogenic lipoproteins in dyslipidemic mice. In this review, we discuss the efficacy of apolipoprotein mimetic peptides in improving lipoprotein function, reducing inflammation, and reversing insulin resistance and cardiometabolic disease processes in diabetic animals.
Collapse
|
41
|
Antihyperglycemic and Antilipidemic Properties of a Tea Infusion of the Leaves from Annona cherimola Miller on Streptozocin-Induced Type 2 Diabetic Mice. Molecules 2021; 26:molecules26092408. [PMID: 33919145 PMCID: PMC8122452 DOI: 10.3390/molecules26092408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 01/02/2023] Open
Abstract
The antihyperglycemic and antilipidemic effects of the tea infusion extracts of leaves from Annona cherimola Miller (IELAc-0.5, IELAc-1.5, and IELAc-3.0) were evaluated on normoglycemic (NG) and streptozocin-induced diabetic (STID) mice. In the acute test, IELAc-1.5 at 300 mg/kg bodyweight (bw) exhibited antihyperglycemic activity on STID mice since the first hour of treatment. Then, its antidiabetic potential was analyzed in a subchronic evaluation. IELAc-1.5 was able to reduce the blood glucose level, glycated hemoglobin (HbA1c), cholesterol (CHO), and triglycerides (TG); high-density lipoprotein (HDL) showed an increase at the end of treatment. IELAc-1.5 did not modify the urine profile at the end of the evaluation, and neither toxicity nor macroscopic organ damage were observed in acute and subchronic assays. In addition, a major flavonol glycoside present in the tea infusion extracts was identified using high-performance liquid chromatography with diode array detection (HPLC-DAD). The analysis of the tea infusion extracts by HPLC revealed that rutin was the major component. This study supports the use of tea infusions from Annona cherimola for the treatment of diabetes and suggests that rutin could be responsible, at least in part, for their antidiabetic properties.
Collapse
|
42
|
Stadler JT, Wadsack C, Marsche G. Fetal High-Density Lipoproteins: Current Knowledge on Particle Metabolism, Composition and Function in Health and Disease. Biomedicines 2021; 9:biomedicines9040349. [PMID: 33808220 PMCID: PMC8067099 DOI: 10.3390/biomedicines9040349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
Cholesterol and other lipids carried by lipoproteins play an indispensable role in fetal development. Recent evidence suggests that maternally derived high-density lipoprotein (HDL) differs from fetal HDL with respect to its proteome, size, and function. Compared to the HDL of adults, fetal HDL is the major carrier of cholesterol and has a unique composition that implies other physiological functions. Fetal HDL is enriched in apolipoprotein E, which binds with high affinity to the low-density lipoprotein receptor. Thus, it appears that a primary function of fetal HDL is the transport of cholesterol to tissues as is accomplished by low-density lipoproteins in adults. The fetal HDL-associated bioactive sphingolipid sphingosine-1-phosphate shows strong vasoprotective effects at the fetoplacental vasculature. Moreover, lipoprotein-associated phospholipase A2 carried by fetal-HDL exerts anti-oxidative and athero-protective functions on the fetoplacental endothelium. Notably, the mass and activity of HDL-associated paraoxonase 1 are about 5-fold lower in the fetus, accompanied by an attenuation of anti-oxidative activity of fetal HDL. Cholesteryl ester transfer protein activity is reduced in fetal circulation despite similar amounts of the enzyme in maternal and fetal serum. This review summarizes the current knowledge on fetal HDL as a potential vasoprotective lipoprotein during fetal development. We also provide an overview of whether and how the protective functionalities of HDL are impaired in pregnancy-related syndromes such as pre-eclampsia or gestational diabetes mellitus.
Collapse
Affiliation(s)
- Julia T. Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
- Correspondence: (J.T.S.); (G.M.); Tel.: +43-316-385-74115 (J.T.S.); +43-316-385-74128 (G.M.)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria;
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
- Correspondence: (J.T.S.); (G.M.); Tel.: +43-316-385-74115 (J.T.S.); +43-316-385-74128 (G.M.)
| |
Collapse
|
43
|
High-density lipoprotein's vascular protective functions in metabolic and cardiovascular disease - could extracellular vesicles be at play? Clin Sci (Lond) 2021; 134:2977-2986. [PMID: 33210708 DOI: 10.1042/cs20200892] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
High-density lipoprotein (HDL) is a circulating complex of lipids and proteins known primarily for its role in reverse cholesterol transport and consequent protection from atheroma. In spite of this, therapies aimed at increasing HDL concentration do not reduce the risk of cardiovascular disease (CVD), and as such focus has shifted towards other HDL functions protective of vascular health - including vasodilatory, anti-inflammatory, antioxidant and anti-thrombotic actions. It has been demonstrated that in disease states such as CVD and conditions of insulin resistance such as Type 2 diabetes mellitus (T2DM), HDL function is impaired owing to changes in the abundance and function of HDL-associated lipids and proteins, resulting in reduced vascular protection. However, the gold standard density ultracentrifugation technique used in the isolation of HDL also co-isolates extracellular vesicles (EVs). EVs are ubiquitous cell-derived particles with lipid bilayers that carry a number of lipids, proteins and DNA/RNA/miRNAs involved in cell-to-cell communication. EVs transfer their bioactive load through interaction with cell surface receptors, membrane fusion and endocytic pathways, and have been implicated in both cardiovascular and metabolic diseases - both as protective and pathogenic mediators. Given that studies using density ultracentrifugation to isolate HDL also co-isolate EVs, biological effects attributed to HDL may be confounded by EVs. We hypothesise that some of HDL's vascular protective functions in cardiovascular and metabolic disease may be mediated by EVs. Elucidating the contribution of EVs to HDL functions will provide better understanding of vascular protection and function in conditions of insulin resistance and potentially provide novel therapeutic targets for such diseases.
Collapse
|
44
|
Goldberg RB. Clinical Approach to Assessment and Amelioration of Atherosclerotic Vascular Disease in Diabetes. Front Cardiovasc Med 2020; 7:582826. [PMID: 33134327 PMCID: PMC7573064 DOI: 10.3389/fcvm.2020.582826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Atherosclerotic cardiovascular disease is increased on average 2-3-fold in people with diabetes as compared to their non-diabetic counterparts and is the major cause of the increased morbidity and mortality in this disease. There is however heterogeneity in cardiovascular risk between individuals based on demographic, cardiometabolic and clinical risk factors in the setting of hyperglycemia, insulin resistance and obesity that needs to be taken into consideration in planning preventive interventions. Randomized clinical trials of agents or procedures used for amelioration of augmented CVD risk in diabetes have been pivotal in providing evidenced-based treatments. Improvement in hyperglycemia in both type 1 and type 2 diabetes is considered to be central in the prevention of microvascular and macrovascular complications although selected antihyperglycemic agents have demonstrated beneficial as well as possible deleterious off-target effects. Lowering low density lipoprotein cholesterol, treating hypertension and stopping smoking each play important roles in preventing cardiovascular disease in diabetes as they do in the general population and low dose aspirin is overall beneficial in high risk individuals. Hypertriglyceridemia may represent another important marker for augmented cardiovascular risk in diabetes and newer agents targeting dyslipidemia appear promising. The fall in cardiovascular events over the past two decades offers hope that modern intervention strategies as well as novel approaches such as those targeting inflammation may contribute to a continued reduction of cardiovascular disease in people with diabetes.
Collapse
Affiliation(s)
- Ronald B. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
45
|
Suruga K, Miyoshi T, Kotani K, Ichikawa K, Miki T, Osawa K, Ejiri K, Toda H, Nakamura K, Morita H, Ito H. Higher oxidized high-density lipoprotein to apolipoprotein A-I ratio is associated with high-risk coronary plaque characteristics determined by CT angiography. Int J Cardiol 2020; 324:193-198. [PMID: 32987049 DOI: 10.1016/j.ijcard.2020.09.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/10/2020] [Accepted: 09/20/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Oxidized high-density lipoprotein (oxHDL), unlike native HDL, is characterized by reduced cholesterol efflux capability and anti-inflammatory properties. The ratio of oxHDL to apolipoprotein A-I (oxHDL/apoAI) is a possible marker of dysfunctional HDL. The aim of this study was to evaluate the association between oxHDL/apoAI and coronary plaque characteristics that increase the likelihood of cardiovascular events as determined by coronary computed tomography (CT) angiography. METHODS A total of 297 patients (mean age; 67 years, men; 63%) who underwent coronary CT angiography for suspected stable coronary artery disease (CAD) were included. High-risk plaques (HRP) were defined by three characteristics: positive remodeling; low-density plaques; and spotty calcification. Significant stenosis was defined as a luminal narrowing of >70%. Serum concentrations of oxHDL were measured using an enzyme-linked immunosorbent assay. RESULTS Patients with higher oxHDL/ApoAI showed significantly greater prevalence of HRP (p = 0.03) and significant stenosis (p < 0.01) compared with patients with low oxHDL/ ApoAI. The multivariate logistic analysis demonstrated that oxHDL/ApoAI significantly associated with the presence of HRP and significant coronary stenosis (p = 0.01 and < 0.01). In the follow-up study including 243 patients for a median period of 1.8 years, univariate cox regression analysis showed that oxHDL/ApoAI, HRP and significant stenosis were significant predictors of cardiovascular events. CONCLUSIONS A high oxHDL/apoAI was associated with the presence of HRP and significant stenosis determined by coronary CT angiography, which can lead to cardiovascular events in patients with suspected stable CAD.
Collapse
Affiliation(s)
- Kazuki Suruga
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toru Miyoshi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Kazuhiko Kotani
- Division of Community and Family Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Keishi Ichikawa
- Division of Community and Family Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Takashi Miki
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiro Osawa
- Department of Cardiology, Okayama Red Cross Hospital, Okayama, Japan
| | - Kentaro Ejiri
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hironobu Toda
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
46
|
Zhang X, Lv X, Li X, Wang Y, Lin H, Zhang J, Peng C. Dysregulated circulating SOCS3 and haptoglobin expression associated with stable coronary artery disease and acute coronary syndrome: An integrated study based on bioinformatics analysis and case-control validation. Anatol J Cardiol 2020; 24:160-174. [PMID: 32870172 PMCID: PMC7585973 DOI: 10.14744/anatoljcardiol.2020.56346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To extensively use blood transcriptome analysis to identify potential diagnostic and therapeutic targets for cardiovascular diseases. METHODS Two gene expression datasets (GSE59867 and GSE62646) were downloaded from GEO DataSets to identify altered blood transcriptomes in patients with ST-segment elevation myocardial infarction (STEMI) compared to stable coronary artery disease (CAD). Thereafter, several computational approaches were taken to determine functional roles and regulatory networks of differentially expressed genes (DEGs). Finally, the expression of dysregulated two hub genes-suppressor of cytokine signaling 3 (SOCS3) and haptoglobin (HP)-were validated in a case-control study. RESULTS A total of 119 DEGs were identified in the discovery phase, consisting of 71 downregulated genes and 48 upregulated genes; two hub modules consisting of two hub genes-SOCS3 and HP-were identified. In the validation phase, both SOCS3 and HP were significantly downregulated in the stable CAD and acute coronary syndrome (ACS) patients when compared with healthy controls. Meanwhile, HP was significantly upregulated in STEMI patients when compared with stable CAD patients (p=0.041). Logistic regression analysis indicated that: downregulated expression of HP correlated with increased risk of CAD [odds ratio (OR)=0.52, 95% confidence interval (CI)=0.31~0.87, p=0.013]; and downregulated expression of SOCS3 correlated with increased risk of ACS (OR=0.66, 95% CI=0.46~0.94, p=0.023) when age, gender, history of hyperlipidemia, diabetes and hypertension were included as covariates. CONCLUSION Future clarification of how SOCS3 and HP influence the pathogenesis of disease may pave the way for the development of novel diagnostic and therapeutic methods.
Collapse
Affiliation(s)
- Xunnan Zhang
- Postgraduate Training Basement of Jinzhou Medicical University, Taihe Hospital, Hubei University of Medicine; Hubei-P.R. China
| | - Xi Lv
- Postgraduate Training Basement of Jinzhou Medicical University, Taihe Hospital, Hubei University of Medicine; Hubei-P.R. China
| | - Xiandong Li
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine; Hubei-P.R. China
| | - Yaping Wang
- Postgraduate Training Basement of Jinzhou Medicical University, Taihe Hospital, Hubei University of Medicine; Hubei-P.R. China
| | - Haoyu Lin
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Shantou University Medical College; Guangdong-P.R. China
| | - Jicai Zhang
- Postgraduate Training Basement of Jinzhou Medicical University, Taihe Hospital, Hubei University of Medicine; Hubei-P.R. China
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine; Hubei-P.R. China
| | - Chunyan Peng
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine; Hubei-P.R. China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine; Hubei-P.R. China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Hubei-P.R. China
- Address for correspondence: Chunyan Peng, MD, Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Renming road 32# Shiyan, 442000, Hubei-P.R. China Phone: +86 13636 254788 E-mail:
| |
Collapse
|
47
|
Srivastava RAK, Cefalu AB, Srivastava NS, Averna M. NPC1L1 and ABCG5/8 induction explain synergistic fecal cholesterol excretion in ob/ob mice co-treated with PPAR-α and LXR agonists. Mol Cell Biochem 2020; 473:247-262. [DOI: 10.1007/s11010-020-03826-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/04/2020] [Indexed: 12/15/2022]
|
48
|
Takaeko Y, Matsui S, Kajikawa M, Maruhashi T, Yamaji T, Harada T, Han Y, Hashimoto H, Kihara Y, Hida E, Chayama K, Goto C, Aibara Y, Yusoff FM, Kishimoto S, Nakashima A, Higashi Y. Relationship between high-density lipoprotein cholesterol levels and endothelial function in women: a cross-sectional study. BMJ Open 2020; 10:e038121. [PMID: 32641366 PMCID: PMC7342861 DOI: 10.1136/bmjopen-2020-038121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES The purpose of this study was to evaluate the relationship between high-density lipoprotein cholesterol (HDL-C) levels and endothelial function in women. DESIGN Cross-sectional study. SETTING 22 university hospitals and affiliated clinics in Japan. PARTICIPANTS 1719 Japanese women aged 17-90 years who were not receiving lipid-lowering therapy. MEASURES We evaluated flow-mediated vasodilation (FMD) and serum levels of HDL-C. All participants were divided into four groups by HDL-C level: low HDL-C (<40 mg/dL), moderate HDL-C (40-59 mg/dL), high HDL-C (60-79 md/dL) and extremely high HDL-C (≥80 mg/dL). RESULTS Univariate regression analysis revealed a significant relationship between FMD and HDL-C (r=0.12, p<0.001). FMD values were significantly smaller in the low HDL-C group (5.2%±3.8%) and moderate HDL-C group (5.2%±3.8%) than in the extremely high HDL-C group (6.7%±3.4%) (p=0.024 and p=0.003, respectively), while there was no significant difference in FMD between the high HDL-C group and the extremely high HDL-C group. Multiple logistic regression analysis did not show a significant association between HDL-C levels and FMD. CONCLUSIONS Endothelial function increased in relation to HDL-C levels. However, there was no association of HDL-C levels with endothelial function after adjustment of traditional cardiovascular risk factors in women. TRIAL REGISTRATION NUMBER UMIN000012950; Results.
Collapse
Affiliation(s)
- Yuji Takaeko
- Department of Cardiovascular Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shogo Matsui
- Department of Cardiovascular Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masato Kajikawa
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Tatsuya Maruhashi
- Department of Cardiovascular Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takayuki Yamaji
- Department of Cardiovascular Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takahiro Harada
- Department of Cardiovascular Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yiming Han
- Department of Cardiovascular Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Haruki Hashimoto
- Department of Cardiovascular Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Eisuke Hida
- Department of Biostatistics and Data Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Chikara Goto
- Department of Physical Therapy, Hiroshima International University, HigashiHiroshima, Hiroshima, Japan
| | - Yoshiki Aibara
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima, Japan
| | - Farina Mohamad Yusoff
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima, Japan
| | - Shinji Kishimoto
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima, Japan
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yukihito Higashi
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima, Japan
| |
Collapse
|
49
|
Srivastava N, Cefalu AB, Averna M, Srivastava RAK. Rapid degradation of ABCA1 protein following cAMP withdrawal and treatment with PKA inhibitor suggests ABCA1 is a short-lived protein primarily regulated at the transcriptional level. J Diabetes Metab Disord 2020; 19:363-371. [PMID: 32550187 DOI: 10.1007/s40200-020-00517-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 03/12/2020] [Indexed: 01/08/2023]
Abstract
Objectives ATP-binding cassette transporter A1 (ABCA1) is a key player in the reverse cholesterol transport (RCT) and HDL biogenesis. Since RCT is compromised as a result of ABCA1 dysfunction in diabetic state, the objective of this study was to investigate the regulation of ABCA1 in a stably transfected 293 cells expressing ABCA1 under the control of cAMP response element. Methods To delineate transcriptional and posttranscriptional regulation of ABCA1, 293 cells were stably transfected with the full length ABCA1 cDNA under the control of CMV promoter harboring cAMP response element. cAMP-mediated regulation of ABCA1 and cholesterol efflux were studied in the presence of 8-Br-cAMP and after withdrawal of 8-Br-cAMP. The mechanism of cAMP-mediated transcriptional induction of the ABCA1 gene was studied in protein kinase A (PKA) inhibitors-treated cells. Results The transfected 293 cells expressed high levels of ABCA1, while non-transfected wild-type 293 cells showed very low levels of ABCA1. Treatments of transfected cells with 8-Br-cAMP increased ABCA1 protein by 10-fold and mRNA by 20-fold. Cholesterol efflux also increased in parallel. Withdrawal of 8-Br-cAMP caused time-dependent rapid diminution of ABCA1 protein and mRNA, suggesting ABCA1 regulation at the transcriptional level. Treatment with PKA inhibitors abolished the cAMP-mediated induction of the ABCA1 mRNA and protein, resulting dampening of ABCA1-dependent cholesterol efflux. Conclusions These results demonstrate that transfected cell line mimics cAMP response similar to normal cells with natural ABCA1 promoter and suggest that ABCA1 is a short-lived protein primarily regulated at the transcriptional level to maintain cellular cholesterol homeostasis.
Collapse
|
50
|
Apolipoprotein A-I Supports MSCs Survival under Stress Conditions. Int J Mol Sci 2020; 21:ijms21114062. [PMID: 32517119 PMCID: PMC7312015 DOI: 10.3390/ijms21114062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Clinical trials have shown the safety of mesenchymal stem/stromal cells (MSCs) transplantation, but the effectiveness of these treatments is limited. Since, transplanted MSCs will undergo metabolic disturbances in the bloodstream, we investigated the influence of blood plasmas of type 2 diabetes (T2D) patients on MSCs viability and examined whether apolipoprotein A-I (apoA-I) could protect cells from stressful conditions of serum deprivation (SD), hypoxia, and elevated concentrations of reactive oxygen species (ROS). ApoA-I exhibits anti-inflammatory, immune activities, improves glycemic control, and is suitable for T2D patients but its influence on MSCs remains unknown. For the first time we have shown that apoA-I decreases intracellular ROS and supports proliferative rate of MSCs, thereby increasing cell count in oxidation conditions. ApoA-I did not influence cell cycle when MSCs were predominantly in the G0/G1 phases under conditions of SD/hypoxia, activated proliferation rapidly, and reduced apoptosis during MSCs transition to the oxygenation or oxidation conditions. Finally, it was found that the blood plasma of T2D individuals had a cytotoxic effect on MSCs in 39% of cases and had a wide variability of antioxidant properties. ApoA-I protects cells under all adverse conditions and can increase the efficiency of MSCs transplantation in T2D patients.
Collapse
|