1
|
Anissa M, Afriwardi, Yaunin Y, Rita RS. Correlation of Proline, Kynurenic Acid and Glutamate Levels with Cognitive Function: Insights from Digit Span, TMT and RAVLT in Schizophrenia. Pak J Biol Sci 2025; 28:308-317. [PMID: 40377040 DOI: 10.3923/pjbs.2025.308.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
<b>Background and Objective:</b> Schizophrenia is a severe and chronic mental disorder which are characterized by delusions, hallucinations, disorganized speech, catatonic behavior, negative symptoms and cognitive symptoms. Several gene polymorphisms and neurotransmitters have been linked to schizophrenia. This study assessed the correlation between proline level, Kynurenic Acid (KYNA) and glutamate level with cognitive function among schizophrenia patients, contributing to understanding biochemical factors associated with cognitive impairments. <b>Materials and Methods:</b> The research was a cross-sectional observational analytic study of 99 patients diagnosed with schizophrenia. Schizophrenia was diagnosed by SCID-1 questionnaire and the patient's blood was taken to be analyzed in the Biochemical Laboratory of Medical Faculty Andalas University using Enzyme-Linked Immunosorbent Assay (ELISA) to characterize kynurenic acid level, glutamate level and proline level. Data were analyzed using Spearman Correlation in SPSS 25.0, with significance at p<0.05. <b>Results:</b> There were 99 schizophrenia patients; most of them were male (62.6%), age median 37 years old and not married (50.5%). The Microproline Level median among participants was 2.64 μg/mL, the median KYNA level was 14.6 nmol/L and the glutamate level was 10.5 μg/mL. Cognitive function was assessed by Rey Auditory Verbal Learning Test (RAVLT), Digit Span Test and Trail Making Test (TMT) with a score median of 4/5/5/5 (Trial 1/2/3/Recall), 6/2 (forward/backward), 68/37 sec (TMT A/B), respectively. Spearman Correlation showed that microproline has a negative correlation with RAVLT Trial 1 (r = -0.221, p = 0.014), Digit Span Backward (r = -0.181, p = 0.036), TMT A (r = 0.204, p = 0.021) and TMT B (r = 0.185, p = 0.034). In contrast, other neurotransmitters do not correlate with any cognitive tests. <b>Conclusion:</b> Proline may play a role in the pathophysiology of cognitive deficits in schizophrenia, highlighting its potential as a target for therapeutic interventions.
Collapse
|
2
|
Carvalho GA, Cavalcante DP, Parreira RC, Chiareli RA, Ortiz Leoncini G, Gomez RS, Ulrich H, Ferreira Caixeta L, Oliveira-Lima OC, Pinto MCX. Neurobiology of L-proline: From molecules to behavior. Neuroscience 2025; 568:116-129. [PMID: 39826672 DOI: 10.1016/j.neuroscience.2025.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/28/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
L-proline is an amino acid with a unique cyclic structure, involvement in various physiological processes, such as protein synthesis, collagen production, and neurotransmission. This review explores the complex roles of proline in the central nervous system (CNS), where it contributes to both excitatory and inhibitory neurotransmission. Additionally, L-proline has distinct metabolic functions attributed to its structural properties. The concentration-dependent effects of L-proline indicate its importance in CNS function, with potential implications for health and disease. Studies in animal models suggest that L-proline influences cognitive function and behavior, with dysregulated levels linked to learning and memory deficits. Furthermore, this review addresses the neuropathological consequences of hyperprolinemia, a metabolic disorder marked by elevated L-proline levels in the CNS and examines the potential role of L-proline in neurological and psychiatric disorders. In sum, this work provides a comprehensive perspective on the neurobiological importance of L-proline, underscoring its involvement in neurotransmission, behavioral modulation, and disease pathology.
Collapse
Affiliation(s)
- Gustavo Almeida Carvalho
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Daniel Pereira Cavalcante
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Raphaela Almeida Chiareli
- Universidade Estadual de Goiás, Instituto de Ciências Agrárias e Sustentabilidade, Campus São Luis de Montes Belos, Goiás, Brazil
| | - Giovanni Ortiz Leoncini
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Renato Santiago Gomez
- Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Leonardo Ferreira Caixeta
- Faculdade de Medicina, Departamento de Neurologia e Neuropsiquiatria, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Mauro Cunha Xavier Pinto
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil.
| |
Collapse
|
3
|
Ma J, Wu C, Zhang Z, Liu H, Zong K, Wang Y, Lin R, Li R, Zou C, Zuo Q, Xu Y, Liu J, Zhao R. Metabolic pathway and genetically causal links of 1,400 circulating metabolites on the risk of intracranial aneurysms and aneurysmal subarachnoid hemorrhage. Neuroscience 2025; 568:27-37. [PMID: 39800046 DOI: 10.1016/j.neuroscience.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/29/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND The rupture of intracranial aneurysms (IAs) leads to aneurysmal subarachnoid hemorrhage (aSAH), which is associated with significant disability and mortality rates. This study aims to identify metabolic markers causally linked to the occurrence of IAs and aSAH through Mendelian randomization (MR), thereby offering novel predictive and therapeutic targets. METHODS We conducted a genome-wide association study (GWAS) on IAs and aSAH, analyzing 1,400 metabolomic indices from the Canadian Longitudinal Study on Aging (CLSA) cohort (n = 8,299). Subsequently, we employed two-sample Mendelian randomization to ascertain potential causal relationships between each metabolite and the conditions IAs and aSAH by various MR methodologies, including MR Egger, Weighted median, Inverse variance weighted (IVW), MR-PRESSO, Simple mode, and Weighted mode. The heterogeneity of instrumental variables was assessed using Cochran's Q statistics, and metabolic pathway analyses were performed via the Metaconflict 5.0 platform. RESULTS Our analysis found that 87 metabolites/metabolic ratios were associated with IAs, and 85 metabolites/metabolic ratios were associated with aSAH. After false discovery rate (FDR) correction and sensitivity analyses, nine metabolites/metabolic ratios were significantly causally associated with aSAH. Conversely, while 87 metabolites and their ratios initially showed potential causal links with IA, none demonstrated significant causal associations post-FDR correction. The study also pinpointed eight significant metabolic pathways implicated in both IAs and aSAH. CONCLUSION This study found that nine circulating metabolites and their ratios with significant causal associations to aSAH, while no metabolites and their ratios were causally linked to IAs. These results suggest possible mechanisms and predictive molecular targets for IAs and aSAH.
Collapse
Affiliation(s)
- Junren Ma
- Neurovascular Center, Changhai hospital, Naval Medical University, Shanghai, China
| | - Congyan Wu
- Neurovascular Center, Changhai hospital, Naval Medical University, Shanghai, China
| | - Zhentao Zhang
- Department of Emergency, Changhai hospital, Naval Medical University, Shanghai, China
| | - Hanchen Liu
- Neurovascular Center, Changhai hospital, Naval Medical University, Shanghai, China
| | - Kang Zong
- Neurovascular Center, Changhai hospital, Naval Medical University, Shanghai, China
| | - Yonghui Wang
- Neurovascular Center, Changhai hospital, Naval Medical University, Shanghai, China
| | - Ruyue Lin
- Neurovascular Center, Changhai hospital, Naval Medical University, Shanghai, China
| | - Rui Li
- Neurovascular Center, Changhai hospital, Naval Medical University, Shanghai, China
| | - Chao Zou
- Neurovascular Center, Changhai hospital, Naval Medical University, Shanghai, China
| | - Qiao Zuo
- Neurovascular Center, Changhai hospital, Naval Medical University, Shanghai, China
| | - Yi Xu
- Neurovascular Center, Changhai hospital, Naval Medical University, Shanghai, China
| | - Jianmin Liu
- Neurovascular Center, Changhai hospital, Naval Medical University, Shanghai, China.
| | - Rui Zhao
- Neurovascular Center, Changhai hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
4
|
Cheng J, Williams JP, Zhou L, Wang PC, Sun LN, Li RH, An JX. Ozone rectal insufflation mitigates chronic rapid eye movement sleep deprivation-induced cognitive impairment through inflammation alleviation and gut microbiota regulation in mice. Med Gas Res 2024; 14:213-224. [PMID: 39073330 PMCID: PMC11257187 DOI: 10.4103/mgr.medgasres-d-23-00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/22/2023] [Accepted: 10/20/2023] [Indexed: 07/30/2024] Open
Abstract
A range of sleep disorders has the potential to adversely affect cognitive function. This study was undertaken with the objective of investigating the effects of ozone rectal insufflation (O3-RI) on cognitive dysfunction induced by chronic REM sleep deprivation, as well as elucidating possible underlying mechanisms. O3-RI ameliorated cognitive dysfunction in chronic REM sleep deprived mice, improved the neuronal damage in the hippocampus region and decreased neuronal loss. Administration of O3-RI may protect against chronic REM sleep deprivation induced cognitive dysfunction by reversing the abnormal expression of Occludin and leucine-rich repeat and pyrin domain-containing protein 3 inflammasome as well as interleukin-1β in the hippocampus and colon tissues. Moreover, the microbiota diversity and composition of sleep deprivation mice were significantly affected by O3-RI intervention, as evidenced by the reversal of the Firmicutes/Bacteroidetes abundance ratio and the relative abundance of the Bacteroides genus. In particular, the relative abundance of the Bacteroides genus demonstrated a pronounced correlation with cognitive impairment and inflammation. Our findings suggested that O3-RI can improve cognitive dysfunction in sleep deprivation mice, and its mechanisms may be related to regulating gut microbiota and alleviating inflammation and damage in the hippocampus and colon.
Collapse
Affiliation(s)
- Jie Cheng
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - John P. Williams
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Li Zhou
- Institute for lnnoration Diagnosis & Treatment in Anesthesiology, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Peng-Cheng Wang
- Institute for lnnoration Diagnosis & Treatment in Anesthesiology, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Li-Na Sun
- Institute for lnnoration Diagnosis & Treatment in Anesthesiology, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Rui-Hua Li
- Institute for lnnoration Diagnosis & Treatment in Anesthesiology, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Jian-Xiong An
- Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute for lnnoration Diagnosis & Treatment in Anesthesiology, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China
- Center of Anesthesiology, Pain and Sleep Medicine, Rapid Anti-depression, The Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, China
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Das A, Gauthier-Coles G, Bröer S, Rae CD. L-Proline Alters Energy Metabolism in Brain Cortical Tissue Slices. Neurochem Res 2024; 50:16. [PMID: 39556274 DOI: 10.1007/s11064-024-04262-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 11/19/2024]
Abstract
L-Proline (L-Pro) is a non-essential amino acid which, in high concentrations, can cause neurological problems including seizures, although the causative mechanism for this is unclear. Here, we studied the impact of physiological levels of proline on brain energy metabolism and investigated the metabolism of L-Pro itself, using the cortical brain tissue slice and stable isotope labelling from [1-13 C]glucose and [1,2-13 C]acetate detected by NMR spectroscopy and LCMS. L-Pro was actively taken up by the slices and significantly reduced the total metabolic pools of all measured metabolites with glutamine the least affected, while reducing net flux of 13C into glycolytic byproducts (lactate and alanine). Conversely, net flux into Krebs cycle intermediates was increased, suggesting that L-Pro at lower concentrations was driving increased mitochondrial activity in both neurons and glia at the expense of glycolysis and metabolic pool sizes. As there was no evidence of metabolism of [1-13 C] L-Pro in slices under normo-glycemic conditions, the effect of proline on metabolism was not due to displacement of metabolites by added L-Pro. Comparison of the metabolic fingerprint generated by L-Pro in slices metabolizing [3-13 C]pyruvate with that generated by ligands active in the GABAergic system suggested that L-Pro may engender effects similar to that of the inhibitory neurotransmitter and metabolite γ-aminobutyric acid (GABA), in line with previous suggestions that L-Pro may be a GABA mimetic in addition to its role as a modulator of mitochondrial metabolism.
Collapse
Affiliation(s)
- Abhijit Das
- Neuroscience Research Australia, Barker St, Randwick, NSW, 2031, Australia
- School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Gregory Gauthier-Coles
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Caroline D Rae
- Neuroscience Research Australia, Barker St, Randwick, NSW, 2031, Australia.
- School of Psychology, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Wang X, Ren Z, Wang B, Shi J, Liu J, Wang Y, Zheng X. Blood expression of NADK2 as a diagnostic biomarker for sciatica. iScience 2024; 27:111196. [PMID: 39569374 PMCID: PMC11576402 DOI: 10.1016/j.isci.2024.111196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/08/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024] Open
Abstract
Sciatica is characterized by radiating pain along the sciatic nerve, with a lifetime prevalence of up to 43%. This study explored blood biomarkers for sciatica using transcriptomic microarray data (GSE124272 and GSE150408). Differential gene expression analysis identified NADK2 as a potential diagnostic biomarker. A diagnostic model based on NADK2 showed strong validation performance in 200 clinical cases. Gene set enrichment analysis (GSEA) suggested a connection between NADK2 and the aminoacyl-tRNA biosynthesis pathway. In conclusion, NADK2 emerges as promising diagnostic and therapeutic targets for sciatica, significantly advancing our comprehension of potential pathogenic mechanisms and offering perspectives for early diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenxiao Ren
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology/Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bingyu Wang
- Department of Spine Surgery, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiawei Shi
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingmin Liu
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Wang
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zheng
- Department of Spine Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hanzhou, China
| |
Collapse
|
7
|
Nergiz M, Zenger O, Peşint GB. L-proline determination by molecularly imprinted nanoparticles: A potential nanoscale tool for the diagnosis of metabolic disorders. J Chromatogr A 2024; 1730:465106. [PMID: 38917678 DOI: 10.1016/j.chroma.2024.465106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/29/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
Detecting and quantifying amino acids is vital in biochemical analyses, especially for diagnosing metabolic disorders. L-proline, among these amino acids, holds significant relevance for various metabolic disorders in living organisms, particularly in humans. hyperprolinemia arises when ineffective breakdown of L-proline occurs due to enzyme deficiencies, leading to its accumulation in the body and underscoring the need for precise monitoring. To address this challenge, molecular imprinting offers a reliable single-step technique for detecting target molecules like proteins, peptides, amino acids, or ions with high selectivity. Moreover, nanoparticles, with significant surface area-to-volume ratios, enable high-level mass transfer and binding kinetics, making them ideal for nano-scale sensitive applications. In this study, 2-hydroxyethyl methacrylate-based molecularly imprinted nanoparticles were synthesized via mini-emulsion polymerization, combining the advantages of molecular imprinting technique and nanoparticles for the specific recognition of L-proline, and were well-characterized by Scanning Electron Microscopy, zeta-sizer particle size analysis, and Fourier Transform Infrared Spectroscopy. Based on zeta-sizer analysis, the estimated diameters of L-proline-imprinted and non-imprinted nanoparticles (Pro-MIPs and NIPs) were determined to be approximately 27.51 nm and 20.66 nm, respectively. The adsorption of L-proline onto nanoparticles from aqueous solutions was investigated in a batch system, and the maximum L-proline adsorption capacity was determined to be 26.58 mg/g for Pro-MIPs and 4.65 mg/g for and NIPs. The selectivity of Pro-MIPs was assessed using Liquid Chromatography-Tandem Mass Spectrometry, even in human serum and in the presence of competing molecules (L-histidine and L-phenylalanine). Additionally, Pro-MIPs maintained their adsorption capacity through up to 10 adsorption-desorption cycles without significant decrease.
Collapse
Affiliation(s)
- Mustafa Nergiz
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, 01250 Sarıçam, Adana, Türkiye
| | - Okan Zenger
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, 01250 Sarıçam, Adana, Türkiye
| | - Gözde Baydemir Peşint
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, 01250 Sarıçam, Adana, Türkiye.
| |
Collapse
|
8
|
Kaczmarek DK, Klejdysz T, Pacholak A, Kaczorek E, Pernak J. Environmental impact assessment of dicationic ionic liquids with ammonium-phosphonium cations and amino acid anions. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134793. [PMID: 38850954 DOI: 10.1016/j.jhazmat.2024.134793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Progress in the development of biodegradable or biobased ionic liquids (ILs) has led to the design of green compounds for several applications. Herein, four biocompatible dicationic ionic liquids (DILs) with ammonium-phosphonium cations and amino acid anions were synthesized and investigated their environmental impact. The structures of the DILs were confirmed by spectral analyses (1H, 13C and 31P NMR). Furthermore, physicochemical properties such as density, viscosity and refractive index were determined. Water content, bromide content and solubility were thereafter determined as the parameters needed for further studies. Subsequently, their antifeedant activity towards economically important pests of grain in storage warehouses: the granary weevil, the confused flour beetle, and the khapra beetle was examined, showing the dependence on structure. Moreover, selected DILs were investigated for toxicity towards white mustard, Daphnia magna, and Artemia franciscana to specify the environmental impact. These studies were complemented by understand the biodegradation of DILs by bacterial communities derived from soil at the agricultural land. The result was DILs with limited environmental footprints that have great potential for further application studies.
Collapse
Affiliation(s)
- Damian Krystian Kaczmarek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland.
| | - Tomasz Klejdysz
- Institute of Plant Protection - National Research Institute, Węgorka 20, Poznan 60-318, Poland
| | - Amanda Pacholak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Juliusz Pernak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| |
Collapse
|
9
|
Harders AR, Spellerberg P, Dringen R. Exogenous Substrates Prevent the Decline in the Cellular ATP Content of Primary Rat Astrocytes During Glucose Deprivation. Neurochem Res 2024; 49:1188-1199. [PMID: 38341839 PMCID: PMC10991069 DOI: 10.1007/s11064-024-04104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/13/2024]
Abstract
Brain astrocytes are well known for their broad metabolic potential. After glucose deprivation, cultured primary astrocytes maintain a high cellular ATP content for many hours by mobilizing endogenous substrates, but within 24 h the specific cellular ATP content was lowered to around 30% of the initial ATP content. This experimental setting was used to test for the potential of various exogenous substrates to prevent a loss in cellular ATP in glucose deprived astrocytes. The presence of various extracellular monocarboxylates, purine nucleosides or fatty acids prevented the loss of ATP from glucose-deprived astrocytes. Of the 20 proteinogenic amino acids, only alanine, aspartate, glutamate, glutamine, lysine or proline maintained high ATP levels in starved astrocytes. Among these amino acids, proline was found to be the most potent one to prevent the ATP loss. The astrocytic consumption of proline as well as the ability of proline to maintain a high cellular ATP content was prevented in a concentration-dependent manner by the proline dehydrogenase inhibitor tetrahydro-2-furoic acid. Analysis of the concentration-dependencies obtained by considering the different carbon content of the applied substrates revealed that fatty acids and proline are more potent than glucose and monocarboxylates as exogenous substrates to prevent ATP depletion in glucose-deprived astrocytes. These data demonstrate that cultured astrocytes can utilise a wide range of extracellular substrates as fuels to support mitochondrial ATP regeneration and identify proline as potent exogenous substrate for the energy metabolism of starved astrocytes.
Collapse
Affiliation(s)
- Antonia Regina Harders
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Paul Spellerberg
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany.
| |
Collapse
|
10
|
Tong TYN, Clarke R, Schmidt JA, Huybrechts I, Noor U, Forouhi NG, Imamura F, Travis RC, Weiderpass E, Aleksandrova K, Dahm CC, van der Schouw YT, Overvad K, Kyrø C, Tjønneland A, Kaaks R, Katzke V, Schiborn C, Schulze MB, Mayen-Chacon AL, Masala G, Sieri S, de Magistris MS, Tumino R, Sacerdote C, Boer JMA, Verschuren WMM, Brustad M, Nøst TH, Crous-Bou M, Petrova D, Amiano P, Huerta JM, Moreno-Iribas C, Engström G, Melander O, Johansson K, Lindvall K, Aglago EK, Heath AK, Butterworth AS, Danesh J, Key TJ. Dietary amino acids and risk of stroke subtypes: a prospective analysis of 356,000 participants in seven European countries. Eur J Nutr 2024; 63:209-220. [PMID: 37804448 PMCID: PMC10799144 DOI: 10.1007/s00394-023-03251-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023]
Abstract
PURPOSE Previously reported associations of protein-rich foods with stroke subtypes have prompted interest in the assessment of individual amino acids. We examined the associations of dietary amino acids with risks of ischaemic and haemorrhagic stroke in the EPIC study. METHODS We analysed data from 356,142 participants from seven European countries. Dietary intakes of 19 individual amino acids were assessed using validated country-specific dietary questionnaires, calibrated using additional 24-h dietary recalls. Multivariable-adjusted Cox regression models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) of ischaemic and haemorrhagic stroke in relation to the intake of each amino acid. The role of blood pressure as a potential mechanism was assessed in 267,642 (75%) participants. RESULTS After a median follow-up of 12.9 years, 4295 participants had an ischaemic stroke and 1375 participants had a haemorrhagic stroke. After correction for multiple testing, a higher intake of proline (as a percent of total protein) was associated with a 12% lower risk of ischaemic stroke (HR per 1 SD higher intake 0.88; 95% CI 0.82, 0.94). The association persisted after mutual adjustment for all other amino acids, systolic and diastolic blood pressure. The inverse associations of isoleucine, leucine, valine, phenylalanine, threonine, tryptophan, glutamic acid, serine and tyrosine with ischaemic stroke were each attenuated with adjustment for proline intake. For haemorrhagic stroke, no statistically significant associations were observed in the continuous analyses after correcting for multiple testing. CONCLUSION Higher proline intake may be associated with a lower risk of ischaemic stroke, independent of other dietary amino acids and blood pressure.
Collapse
Affiliation(s)
- Tammy Y N Tong
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK.
| | - Robert Clarke
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK
- Departments of Clinical Epidemiology, Clinical Medicine, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - Inge Huybrechts
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC), World Health Organization (WHO), Lyon, France
| | - Urwah Noor
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK
| | - Nita G Forouhi
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Fumiaki Imamura
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK
| | - Elisabete Weiderpass
- International Agency for Research on Cancer (IARC), World Health Organization (WHO), Lyon, France
| | - Krasimira Aleksandrova
- Department Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology-BIPS, Bremen, Germany
- Faculty of Human and Health Sciences, University of Bremen, Grazer Straße 2, 28359, Bremen, Germany
| | | | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kim Overvad
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Cecilie Kyrø
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Catarina Schiborn
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute for Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Ana-Lucia Mayen-Chacon
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC), World Health Organization (WHO), Lyon, France
| | - Giovanna Masala
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Milan, Italy
| | | | - Rosario Tumino
- Hyblean Association for Epidemiological Research AIRE-ONLUS, Ragusa, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital, Turin, Italy
| | - Jolanda M A Boer
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - W M Monique Verschuren
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Magritt Brustad
- Department of Community Medicine, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- The Public Dental Service Competence Centre of Northern Norway (TkNN), Tromsø, Norway
| | - Therese Haugdahl Nøst
- Department of Community Medicine, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marta Crous-Bou
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO)-Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Dafina Petrova
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, C. de Melchor Fernández Almagro, Madrid, Spain
| | - Pilar Amiano
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, C. de Melchor Fernández Almagro, Madrid, Spain
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain
- Biodonostia Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, San Sebastián, Spain
| | - José María Huerta
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, C. de Melchor Fernández Almagro, Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
| | - Conchi Moreno-Iribas
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, C. de Melchor Fernández Almagro, Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, SpainInstituto de Salud Pu´Blica de Navarra, IdiSNA, Navarre Institute for Health Research, Pamplona, Spain
| | - Gunnar Engström
- Department of Clinical Science in Malmö, Lund University, Clinical Research Center, Malmö, Sweden
| | - Olle Melander
- Department of Clinical Science in Malmö, Lund University, Clinical Research Center, Malmö, Sweden
- Department of Emergency and Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Kristina Johansson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Kristina Lindvall
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | - Elom K Aglago
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Hills Road, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Hills Road, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK
| |
Collapse
|
11
|
Wang X, Guo L, Qin T, Lai P, Jing Y, Zhang Z, Zhou G, Gao P, Ding G. Effects of X-ray cranial irradiation on metabolomics and intestinal flora in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115898. [PMID: 38171101 DOI: 10.1016/j.ecoenv.2023.115898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Cranial radiotherapy is an important treatment for intracranial and head and neck tumors. To investigate the effects of cranial irradiation (C-irradiation) on gut microbiota and metabolomic profile, the feces, plasma and cerebral cortex were isolated after exposing mice to cranial X-ray irradiation at a dose rate of 2.33 Gy/min (5 Gy/d for 4 d consecutively). The gut microorganisms and metabolites were detected by 16 S rRNA gene sequencing method and LC-MS method, respectively. We found that compared with sham group, the gut microbiota composition changed at 2 W and 4 W after C-irradiation at the genus level. The fecal metabolomics showed that compared with Sham group, 44 and 66 differential metabolites were found to be annotated into metabolism pathways at 2 W and 4 W after C-irradiation, which were significantly enriched in the arginine and proline metabolism. Metabolome analysis of serum and cerebral cortex showed that, at 4 W after C-irradiation, the expression pattern of metabolites in serum samples of mice was similar to that of sham group, and the cerebral cortex metabolites of the two groups were completely separated. KEGG functional analysis showed that serum and brain tissue differential metabolites were respectively enriched in tryptophan metabolism, and arginine proline metabolism. The correlation analysis showed that the changes of gut microbiota genera were significantly correlated with the changes of metabolism, especially Helicobacter, which was significantly correlated with many different metabolites at 4 W after C-irradiation. These data suggested that C-irradiation could affect the gut microbiota and metabolism profile, even at relatively long times after C-irradiation.
Collapse
Affiliation(s)
- Xing Wang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| | - Ling Guo
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| | - Tongzhou Qin
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| | - Panpan Lai
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| | - Yuntao Jing
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| | - Zhaowen Zhang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| | - Guiqiang Zhou
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China; Department of Labor and Environmental Hygiene, School of public health, Weifang Medical University, Weifang, China.
| | - Peng Gao
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Guirong Ding
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| |
Collapse
|
12
|
Diao Y, Hao T, Liu X, Yang H. Advances in single ice crystal shaping materials: From nature to synthesis and applications in cryopreservation. Acta Biomater 2024; 174:49-68. [PMID: 38040076 DOI: 10.1016/j.actbio.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/23/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Antifreeze (glyco) proteins [AF(G)Ps], which are widely present in various extreme microorganisms, can control the formation and growth of ice crystals. Given the significance of cryogenic technology in biomedicine, climate science, electronic energy, and other fields of research, scientists are quite interested in the development and synthesis high-efficiency bionic antifreeze protein materials, particularly to reproduce their dynamic ice shaping (DIS) characteristics. Single ice crystal shaping materials, a promising class of ice-controlling materials, can alter the morphology and growth rate of ice crystals at low temperatures. This review aims to highlight the development of single ice crystal shaping materials and provide a brief comparison between a series of natural and bionic synthetic materials with DIS ability, which include AF(G)Ps, polymers, salts, and nanomaterials. Additionally, we summarize their applications in cryopreservation. Finally, this paper presents the current challenges and prospects encountered in developing high-efficiency and practical single ice crystal shaping materials. STATEMENT OF SIGNIFICANCE: The formation and growth of ice crystals hold a significant importance to an incredibly broad range of fields. Therefore, the design and fabrication of the single ice crystal shaping materials have gained the increasing popularity due to its key role in dynamic ice shaping (DIS) characteristics. Especially, single ice crystal shaping materials are considered one of the most promising candidates as ice inhibitors, presenting tremendous prospects for enhancing cryopreservation. In this work, we focus on the molecular characteristics, structure-function relationships, and DIS mechanisms of typical natural and biomimetic synthetic materials. This review may provide inspiration for the design and preparation of single ice crystal shaping materials and give guidance for the development of effective cryopreservation agent.
Collapse
Affiliation(s)
- Yunhe Diao
- School of Materials Science and Engineering, Zhengzhou University, 450001 Zhengzhou, Henan, China
| | - Tongtong Hao
- School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Xuying Liu
- School of Materials Science and Engineering, Zhengzhou University, 450001 Zhengzhou, Henan, China
| | - Huige Yang
- School of Materials Science and Engineering, Zhengzhou University, 450001 Zhengzhou, Henan, China..
| |
Collapse
|
13
|
Kukułowicz J, Pietrzak-Lichwa K, Klimończyk K, Idlin N, Bajda M. The SLC6A15-SLC6A20 Neutral Amino Acid Transporter Subfamily: Functions, Diseases, and Their Therapeutic Relevance. Pharmacol Rev 2023; 76:142-193. [PMID: 37940347 DOI: 10.1124/pharmrev.123.000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
The neutral amino acid transporter subfamily that consists of six members, consecutively SLC6A15-SLC620, also called orphan transporters, represents membrane, sodium-dependent symporter proteins that belong to the family of solute carrier 6 (SLC6). Primarily, they mediate the transport of neutral amino acids from the extracellular milieu toward cell or storage vesicles utilizing an electric membrane potential as the driving force. Orphan transporters are widely distributed throughout the body, covering many systems; for instance, the central nervous, renal, or intestinal system, supplying cells into molecules used in biochemical, signaling, and building pathways afterward. They are responsible for intestinal absorption and renal reabsorption of amino acids. In the central nervous system, orphan transporters constitute a significant medium for the provision of neurotransmitter precursors. Diseases related with aforementioned transporters highlight their significance; SLC6A19 mutations are associated with metabolic Hartnup disorder, whereas altered expression of SLC6A15 has been associated with a depression/stress-related disorders. Mutations of SLC6A18-SLCA20 cause iminoglycinuria and/or hyperglycinuria. SLC6A18-SLC6A20 to reach the cellular membrane require an ancillary unit ACE2 that is a molecular target for the spike protein of the SARS-CoV-2 virus. SLC6A19 has been proposed as a molecular target for the treatment of metabolic disorders resembling gastric surgery bypass. Inhibition of SLC6A15 appears to have a promising outcome in the treatment of psychiatric disorders. SLC6A19 and SLC6A20 have been suggested as potential targets in the treatment of COVID-19. In this review, we gathered recent advances on orphan transporters, their structure, functions, related disorders, and diseases, and in particular their relevance as therapeutic targets. SIGNIFICANCE STATEMENT: The following review systematizes current knowledge about the SLC6A15-SLCA20 neutral amino acid transporter subfamily and their therapeutic relevance in the treatment of different diseases.
Collapse
Affiliation(s)
- Jędrzej Kukułowicz
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Pietrzak-Lichwa
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Klimończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Nathalie Idlin
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
14
|
Chang H, Leem YH. The potential role of creatine supplementation in neurodegenerative diseases. Phys Act Nutr 2023; 27:48-54. [PMID: 38297476 PMCID: PMC10844727 DOI: 10.20463/pan.2023.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024] Open
Abstract
PURPOSE The maintenance of energy balance in the body, especially in energy-demanding tissues like the muscles and the central nervous system, depends on creatine (Cr). In addition to improving muscle function, Cr is necessary for the bioenergetics of the central nervous system because it replenishes adenosine triphosphate without needing oxygen. Furthermore, Cr possesses anti-oxidant, anti-apoptotic, and anti-excitotoxic properties. Clinical research on neurodegenerative illnesses has shown that Cr supplementation results in less effective outcomes. With a brief update on the possible role of Cr in human, animal, and in vitro experiments, this review seeks to offer insights into the ideal dosage regimen. METHODS Using specified search phrases, such as "creatine and neurological disorder," "creatine supplementation and neurodegenerative disorders," and "creatine and brain," we searched articles in the PubMed database and Google Scholar. We investigated the association between creatine supplementation and neurodegenerative illnesses by examining references. RESULTS The neuroprotective effects of Cr were observed in in vitro and animal models of certain neurodegenerative diseases, while clinical trials failed to reproduce favorable outcomes. CONCLUSION Determining the optimal creatinine regime for increasing brain creatinine levels is essential for maintaining brain health and treating neurodegeneration.
Collapse
Affiliation(s)
- Hyukki Chang
- Department of Sport and Exercise Science, Seoul Women’s University, Seoul, Republic of Korea
| | - Yea-Hyun Leem
- Department of Molecular Medicine and Tissue Injury Defense Research Center, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Kolar D, Krajcovic B, Kleteckova L, Kuncicka D, Vales K, Brozka H. Review: Genes Involved in Mitochondrial Physiology Within 22q11.2 Deleted Region and Their Relevance to Schizophrenia. Schizophr Bull 2023; 49:1637-1653. [PMID: 37379469 PMCID: PMC10686339 DOI: 10.1093/schbul/sbad066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is associated with altered energy metabolism, but the cause and potential impact of these metabolic changes remain unknown. 22q11.2 deletion syndrome (22q11.2DS) represents a genetic risk factor for schizophrenia, which is associated with the loss of several genes involved in mitochondrial physiology. Here we examine how the haploinsufficiency of these genes could contribute to the emergence of schizophrenia in 22q11.2DS. STUDY DESIGN We characterize changes in neuronal mitochondrial function caused by haploinsufficiency of mitochondria-associated genes within the 22q11.2 region (PRODH, MRPL40, TANGO2, ZDHHC8, SLC25A1, TXNRD2, UFD1, and DGCR8). For that purpose, we combine data from 22q11.2DS carriers and schizophrenia patients, in vivo (animal models) and in vitro (induced pluripotent stem cells, IPSCs) studies. We also review the current knowledge about seven non-coding microRNA molecules located in the 22q11.2 region that may be indirectly involved in energy metabolism by acting as regulatory factors. STUDY RESULTS We found that the haploinsufficiency of genes of interest is mainly associated with increased oxidative stress, altered energy metabolism, and calcium homeostasis in animal models. Studies on IPSCs from 22q11.2DS carriers corroborate findings of deficits in the brain energy metabolism, implying a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS. CONCLUSIONS The haploinsufficiency of genes within the 22q11.2 region leads to multifaceted mitochondrial dysfunction with consequences to neuronal function, viability, and wiring. Overlap between in vitro and in vivo studies implies a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS.
Collapse
Affiliation(s)
- David Kolar
- National Institute of Mental Health, Klecany, Czech Republic
| | - Branislav Krajcovic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Daniela Kuncicka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Karel Vales
- National Institute of Mental Health, Klecany, Czech Republic
| | - Hana Brozka
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
16
|
Yazla E, Cetin I, Kayadibi H. Assessing the relationship between antipsychotic drug use and prolidase enzyme activity and oxidative stress in schizophrenia patients: a case-control study. Int Clin Psychopharmacol 2023; 38:394-401. [PMID: 37490605 DOI: 10.1097/yic.0000000000000491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
BACKGROUND The relationship between proline, its association with oxidative stress, and its connection to schizophrenia is a subject that has not been sufficiently investigated. OBJECTIVE The aim of this study is to evaluate the possible effects of atypical and combined (typical and atypical) antipsychotic use on serum prolidase enzyme activity (SPEA) and serum oxidative stress parameters, and to assess the relationship between SPEA and oxidative stress in patients with schizophrenia. METHODS A total of 57 patients with schizophrenia, of which 34 were using atypical (AAPG) and 23 were using combined (typical and atypical) (CAPG) antipsychotic therapy, and 28 healthy volunteers (control group) were included in this case-control study. RESULTS SPEA levels of AAPG and CAPG were significantly lower than that of control group ( P = 0.003). The oxidative stress index (OSI) value of AAPG was significantly higher than the other two groups ( P = 0.001). SPEA (<1860 U/l) and OSI (≥0.54) could discriminate schizophrenia patients with antipsychotic therapy from control groups ( P = 0.001 and P = 0.007, respectively). Lower SPEA levels were associated with antipsychotic use ( P = 0.007). CONCLUSION The SPEA values of patients with schizophrenia on antipsychotics were significantly lower compared to controls. OSI values were significantly higher in atypical antipsychotic recipients compared to those on combined antipsychotics and healthy controls.
Collapse
Affiliation(s)
- Ece Yazla
- Department of Psychiatry, Hitit University Faculty of Medicine
| | - Ihsan Cetin
- Department of Medical Biochemistry, Hitit University Faculty of Medicine, Corum
| | - Huseyin Kayadibi
- Department of Biochemistry, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| |
Collapse
|
17
|
Venter L, Alfaro AC, Ragg NLC, Delorme NJ, Ericson JA. The effect of simulated marine heatwaves on green-lipped mussels, Perna canaliculus: A near-natural experimental approach. J Therm Biol 2023; 117:103702. [PMID: 37729747 DOI: 10.1016/j.jtherbio.2023.103702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Marine heatwaves (MHW) are projected for the foreseeable future, affecting aquaculture species, such as the New Zealand green-lipped mussel (Perna canaliculus). Thermal stress alters mussel physiology highlighting the adaptive capacity that allows survival in the face of heatwaves. Within this study, adult mussels were subjected to three different seawater temperature regimes: 1) low (sustained 18 °C), 2) medium MHW (18-24 °C, using a +1 °C per week ramp) and 3) high MHW (18-24 °C, using a +2 °C per week ramp). Sampling was performed over 11 weeks to establish the effects of temperature on P. canaliculus survival, condition, specific immune response parameters, and the haemolymph metabolome. A transient 25.5-26.5 °C exposure resulted in 61 % mortality, with surviving animals showing a metabolic adjustment within aerobic energy production, enabling the activation of molecular defence mechanisms. Utilisation of immune functions were seen within the cytology results where temperature stress affected the percentage of superoxide-positive haemocytes and haemocyte counts. From the metabolomics results an increase in antioxidant metabolites were seen in the high MHW survivors, possibly to counteract molecular damage. In the high MHW exposure group, mussels utilised anaerobic metabolism in conjunction with aerobic metabolism to produce energy, to uphold biological functions and survival. The effect of exposure time was mainly seen on very long-, and long chain fatty acids, with increases observed at weeks seven and eight. These changes were likely due to the membrane storage functions of fatty acids, with decreases at week eleven attributed to energy metabolism functions. This study supports the use of integrated analytical tools to investigate the response of marine organisms to heatwaves. Indeed, specific metabolic pathways and cellular markers are now highlighted for future investigations aimed at targeted measures. This research contributes to a larger program aimed to identify resilient mussel traits and support aquaculture management.
Collapse
Affiliation(s)
- Leonie Venter
- Aquaculture Biotechnology Research Group, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | - Norman L C Ragg
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | | | | |
Collapse
|
18
|
Piper JA, Al Hammouri N, Jansen MI, Rodgers KJ, Musumeci G, Dhungana A, Ghorbanpour SM, Bradfield LA, Castorina A. L-Proline Prevents Endoplasmic Reticulum Stress in Microglial Cells Exposed to L-azetidine-2-carboxylic Acid. Molecules 2023; 28:4808. [PMID: 37375363 DOI: 10.3390/molecules28124808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
L-Azetidine-2-carboxylic acid (AZE) is a non-protein amino acid that shares structural similarities with its proteogenic L-proline amino acid counterpart. For this reason, AZE can be misincorporated in place of L-proline, contributing to AZE toxicity. In previous work, we have shown that AZE induces both polarization and apoptosis in BV2 microglial cells. However, it is still unknown if these detrimental effects involve endoplasmic reticulum (ER) stress and whether L-proline co-administration prevents AZE-induced damage to microglia. Here, we investigated the gene expression of ER stress markers in BV2 microglial cells treated with AZE alone (1000 µM), or co-treated with L-proline (50 µM), for 6 or 24 h. AZE reduced cell viability, nitric oxide (NO) secretion and caused a robust activation of the unfolded protein response (UPR) genes (ATF4, ATF6, ERN1, PERK, XBP1, DDIT3, GADD34). These results were confirmed by immunofluorescence in BV2 and primary microglial cultures. AZE also altered the expression of microglial M1 phenotypic markers (increased IL-6, decreased CD206 and TREM2 expression). These effects were almost completely prevented upon L-proline co-administration. Finally, triple/quadrupole mass spectrometry demonstrated a robust increase in AZE-bound proteins after AZE treatment, which was reduced by 84% upon L-proline co-supplementation. This study identified ER stress as a pathogenic mechanism for AZE-induced microglial activation and death, which is reversed by co-administration of L-proline.
Collapse
Affiliation(s)
- Jordan Allan Piper
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Nour Al Hammouri
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Margo Iris Jansen
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Kenneth J Rodgers
- Neurotoxin Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia n°97, 95123 Catania, Italy
| | - Amolika Dhungana
- School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Sahar Masoumeh Ghorbanpour
- School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Laura A Bradfield
- School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|
19
|
Ramírez-Acosta S, Huertas-Abril PV, Selma-Royo M, Prieto-Álamo MJ, Collado MC, Abril N, García-Barrera T. The role of selenium in shaping mice brain metabolome and selenoproteome through the gut-brain axis by combining metabolomics, metallomics, gene expression and amplicon sequencing. J Nutr Biochem 2023; 117:109323. [PMID: 36958417 DOI: 10.1016/j.jnutbio.2023.109323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/17/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Selenium (Se) is a trace element crucial for human health. Recently, the impact of Se supplementation on gut microbiota has been pointed out as well as its influence on the expression of certain selenoproteins and gut metabolites. This study aims to elucidate the link between Se supplementation, brain selenoproteins and brain metabolome as well as the possible connection with the gut-brain axis. To this end, an in vivo study with 40 BALB/c mice was carried out. The study included conventional (n=20) and mice model with microbiota depleted by antibiotics (n=20) under a regular or Se supplemented diet. Brain selenoproteome was determined by a transcriptomic/gene expression profile, while brain metabolome and gut microbiota profiles were accomplished by untargeted metabolomics and amplicon sequencing, respectively. The total content of Se in brain was also determined. The selenoproteins genes Dio and Gpx isoenzymes, SelenoH, SelenoI, SelenoT, SelenoV and SelenoW and 31 metabolites were significantly altered in the brain after Se supplementation in conventional mice, while 11 selenoproteins and 26 metabolites were altered in microbiota depleted mice. The main altered brain metabolites were related to glyoxylate and dicarboxylate metabolism, amino acid metabolism, and gut microbiota that have been previously related with the gut-brain axis (e.g., members of Lachnospiraceae and Ruminococcaceae families). Moreover, specific associations were determined between brain selenoproteome and metabolome, which correlated with the same bacteria, suggesting an intertwined mechanism. Our results demonstrated the effect of Se on brain metabolome through specific selenoproteins gene expression and gut microbiota.
Collapse
Affiliation(s)
- Sara Ramírez-Acosta
- Research Center of Natural Resources, Health and the Environment (RENSMA). Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Ave., 21007, Huelva, Spain
| | - Paula V Huertas-Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Marta Selma-Royo
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Department of Biotechnology, Agustin Escardino 7. 46980 Paterna, Valencia, Spain
| | - Maria J Prieto-Álamo
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - M Carmen Collado
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Department of Biotechnology, Agustin Escardino 7. 46980 Paterna, Valencia, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Tamara García-Barrera
- Research Center of Natural Resources, Health and the Environment (RENSMA). Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Ave., 21007, Huelva, Spain.
| |
Collapse
|
20
|
Hill L, Gérard M, Hildebrandt F, Baird E. Bumblebee cognitive abilities are robust to changes in colony size. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-023-03299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Abstract
Eusocial insect colonies act as a superorganism, which can improve their ability to buffer the negative impact of some anthropogenic stressors. However, this buffering effect can be affected by anthropogenic factors that reduce their colony size. A reduction in colony size is known to negatively affect several parameters like brood maintenance or thermoregulation, but the effects on behaviour and cognition have been largely overlooked. It remains unclear how a sudden change in group size, such as that which might be caused by anthropogenic stressors, affects individual behaviour within a colony. In this study, the bumblebee Bombus terrestris was used to study the effect of social group size on behaviour by comparing the associative learning capabilities of individuals from colonies that were unmanipulated, reduced to a normal size (a colony of 100 workers) or reduced to a critically low but functional size (a colony of 20 workers). The results demonstrated that workers from the different treatments performed equally well in associative learning tasks, which also included no significant differences in the learning capacity of workers that had fully developed after the colony size manipulation. Furthermore, we found that the size of workers had no impact on associative learning ability. The learning abilities of bumblebee workers were thus resilient to the colony reduction they encountered. Our study is a first step towards understanding how eusocial insect cognition can be impacted by drastic reductions in colony size.
Significance statement
While anthropogenic stressors can reduce the colony size of eusocial insects, the impact of this reduction is poorly studied, particularly among bumblebees. We hypothesised that colony size reduction would affect the cognitive capacity of worker bumblebees as a result of fewer social interactions or potential undernourishment. Using differential conditioning, we showed that drastic reductions in colony size have no effect on the associative learning capabilities of the bumblebee Bombus terrestris and that this was the same for individuals that were tested just after the colony reduction and individuals that fully developed under the colony size reduction. We also showed that body size did not affect learning capabilities. This resilience could be an efficient buffer against the ongoing impacts of global change.
Collapse
|
21
|
L-proline transporter inhibitor (LQFM215) promotes neuroprotection in ischemic stroke. Pharmacol Rep 2023; 75:276-292. [PMID: 36719635 DOI: 10.1007/s43440-023-00451-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 02/01/2023]
Abstract
BACKGROUND L-proline transporter (PROT/SLC6A7) is closely associated with glutamatergic neurotransmission, where L-proline modulates the NMDA receptor (NMDAR) function. NMDAR-mediated excitotoxicity is a primary cause of neuronal death following stroke, which is triggered by the uncontrolled release of glutamate during the ischemic process. After ischemic stroke, L-proline levels show a reduction in the plasma, but high circulating levels of this molecule indicate good functional recovery. This work aimed to produce new PROT inhibitors and explore their effects on ischemic stroke. METHODS Initially, we built a three-dimensional model of the PROT protein and run a molecular docking with the newly designed compounds (LQFM215, LQFM216, and LQFM217). Then, we synthesized new PROT inhibitors by molecular hybridization, and proline uptake was measured in ex vivo and in vivo models. The behavioral characterization of the treated mice was performed by the open-field test, elevated plus-maze, Y-maze, and forced swimming test. We used the permanent middle cerebral artery occlusion (MCAO) model to study the ischemic stroke damage and analyzed the motor impairment with limb clasping or cylinder tests. RESULTS LQFM215 inhibited proline uptake in hippocampal synaptosomes, and the LQFM215 treatment reduced proline levels in the mouse hippocampus. LQFM215 reduced the locomotor and exploratory activity in mice and did not show any anxiety-related or working memory impairments. In the MCAO model, LQFM215 pre-treatment and treatment reduced the infarcted area and reduced motor impairments in the cylinder test and limb clasping. CONCLUSIONS This dataset suggests that the new compounds inhibit cerebral L-proline uptake and that LQFM215 promotes neuroprotection and neuro-repair in the acute ischemic stroke model.
Collapse
|
22
|
Zhao L, Yi R, Liu S, Chi Y, Tan S, Dong J, Wang H, Zhang J, Wang H, Xu X, Yao B, Wang B, Peng R. Biological responses to terahertz radiation with different power density in primary hippocampal neurons. PLoS One 2023; 18:e0267064. [PMID: 36662735 PMCID: PMC9858065 DOI: 10.1371/journal.pone.0267064] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
Terahertz (THz) radiation is a valuable imaging and sensing tool which is widely used in industry and medicine. However, it biological effects including genotoxicity and cytotoxicity are lacking of research, particularly on the nervous system. In this study, we investigated how terahertz radiation with 10mW (0.12 THz) and 50 mW (0.157 THz) would affect the morphology, cell growth and function of rat hippocampal neurons in vitro.
Collapse
Affiliation(s)
- Li Zhao
- Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Ruhan Yi
- Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Sun Liu
- Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Yunliang Chi
- Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Shengzhi Tan
- Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Ji Dong
- Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Hui Wang
- Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Jing Zhang
- Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Haoyu Wang
- Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Xinping Xu
- Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Binwei Yao
- Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Bo Wang
- Central Laboratory, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, PR China
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing, PR China
| |
Collapse
|
23
|
Wang X, Bao L, Jiang M, Li D, Xu L, Bai M. Toxic mechanism of the Mongolian medicine "Hunqile-7" based on metabonomics and the metabolism of intestinal flora. Toxicol Res (Camb) 2022; 12:49-61. [PMID: 36866222 PMCID: PMC9972816 DOI: 10.1093/toxres/tfac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 12/27/2022] Open
Abstract
The traditional Mongolian medicine Hunqile-7 (HQL-7), which is mainly used to relieve pain in clinic, has certain toxicity. Therefore, toxicological investigation of HQL-7 is of great significance to its safety assessment. In this study, the toxic mechanism of HQL-7 was explored based on a combination of metabolomics and intestinal flora metabolism. UHPLC-MS was used to analyze the serum, liver and kidney samples of rats after intragastric administration of HQL-7. The decision tree and K Nearest Neighbor (KNN) model were established based on the bootstrap aggregation (bagging) algorithm to classify the omics data. After samples were extracted from rat feces, the high-throughput sequencing platform was used to analyze the 16s rRNA V3-V4 region of bacteria. The experimental results confirm that the bagging algorithm improved the classification accuracy. The toxic dose, toxic intensity, and toxic target organ of HQL-7 were determined in toxicity tests. Seventeen biomarkers were identified and the metabolism dysregulation of these biomarkers may be responsible for the toxicity of HQL-7 in vivo. Several kinds of bacteria was demonstrated to be closely related to the physiological indices of renal and liver function, indicating liver and kidney damage induced by HQL-7 may be related to the disturbance of these intestinal bacteria. Overall, the toxic mechanism of HQL-7 was revealed in vivo, which not only provides a scientific basis for the safe and rational clinical use of HQL-7, but also opens up a new field of research on big data for Mongolian medicine.
Collapse
Affiliation(s)
- Xiye Wang
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China,Inner Mongolia Key Laboratory of Chemistry for Natural Products Chemistry and Synthesis for Functional Molecules, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Leer Bao
- Inner Mongolia Autonomous Region Drug Inspection Center, Hohhot 010000, China
| | - Mingyang Jiang
- College of Computer Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Dan Li
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China,Inner Mongolia Key Laboratory of Chemistry for Natural Products Chemistry and Synthesis for Functional Molecules, Inner Mongolia Minzu University, Tongliao 028000, China
| | | | | |
Collapse
|
24
|
Sîrbulescu RF, Ilieş I, Amelung L, Zupanc GKH. Proteomic characterization of spontaneously regrowing spinal cord following injury in the teleost fish Apteronotus leptorhynchus, a regeneration-competent vertebrate. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:671-706. [PMID: 36445471 DOI: 10.1007/s00359-022-01591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022]
Abstract
In adult mammals, spontaneous repair after spinal cord injury (SCI) is severely limited. By contrast, teleost fish successfully regenerate injured axons and produce new neurons from adult neural stem cells after SCI. The molecular mechanisms underlying this high regenerative capacity are largely unknown. The present study addresses this gap by examining the temporal dynamics of proteome changes in response to SCI in the brown ghost knifefish (Apteronotus leptorhynchus). Two-dimensional difference gel electrophoresis (2D DIGE) was combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and tandem mass spectrometry (MS/MS) to collect data during early (1 day), mid (10 days), and late (30 days) phases of regeneration following caudal amputation SCI. Forty-two unique proteins with significant differences in abundance between injured and intact control samples were identified. Correlation analysis uncovered six clusters of spots with similar expression patterns over time and strong conditional dependences, typically within functional families or between isoforms. Significantly regulated proteins were associated with axon development and regeneration; proliferation and morphogenesis; neuronal differentiation and re-establishment of neural connections; promotion of neuroprotection, redox homeostasis, and membrane repair; and metabolism or energy supply. Notably, at all three time points examined, significant regulation of proteins involved in inflammatory responses was absent.
Collapse
Affiliation(s)
- Ruxandra F Sîrbulescu
- School of Engineering and Science, Jacobs University Bremen, 28725, Bremen, Germany
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
- Vaccine and Immunotherapy Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Iulian Ilieş
- School of Humanities and Social Sciences, Jacobs University Bremen, 28725, Bremen, Germany
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Lisa Amelung
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Günther K H Zupanc
- School of Engineering and Science, Jacobs University Bremen, 28725, Bremen, Germany.
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
25
|
Mayneris-Perxachs J, Castells-Nobau A, Arnoriaga-Rodríguez M, Martin M, de la Vega-Correa L, Zapata C, Burokas A, Blasco G, Coll C, Escrichs A, Biarnés C, Moreno-Navarrete JM, Puig J, Garre-Olmo J, Ramos R, Pedraza S, Brugada R, Vilanova JC, Serena J, Gich J, Ramió-Torrentà L, Pérez-Brocal V, Moya A, Pamplona R, Sol J, Jové M, Ricart W, Portero-Otin M, Deco G, Maldonado R, Fernández-Real JM. Microbiota alterations in proline metabolism impact depression. Cell Metab 2022; 34:681-701.e10. [PMID: 35508109 DOI: 10.1016/j.cmet.2022.04.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/31/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023]
Abstract
The microbiota-gut-brain axis has emerged as a novel target in depression, a disorder with low treatment efficacy. However, the field is dominated by underpowered studies focusing on major depression not addressing microbiome functionality, compositional nature, or confounding factors. We applied a multi-omics approach combining pre-clinical models with three human cohorts including patients with mild depression. Microbial functions and metabolites converging onto glutamate/GABA metabolism, particularly proline, were linked to depression. High proline consumption was the dietary factor with the strongest impact on depression. Whole-brain dynamics revealed rich club network disruptions associated with depression and circulating proline. Proline supplementation in mice exacerbated depression along with microbial translocation. Human microbiota transplantation induced an emotionally impaired phenotype in mice and alterations in GABA-, proline-, and extracellular matrix-related prefrontal cortex genes. RNAi-mediated knockdown of proline and GABA transporters in Drosophila and mono-association with L. plantarum, a high GABA producer, conferred protection against depression-like states. Targeting the microbiome and dietary proline may open new windows for efficient depression treatment.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain.
| | - Anna Castells-Nobau
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain
| | - María Arnoriaga-Rodríguez
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain; Department of Medical Sciences, School of Medicine, Girona, Spain
| | - Miquel Martin
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lisset de la Vega-Correa
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain
| | - Cristina Zapata
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain
| | - Aurelijus Burokas
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Gerard Blasco
- Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain; Medical Imaging, IDIBGI, Girona, Spain
| | - Clàudia Coll
- Girona Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta Hospital, Girona, Spain
| | - Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Carles Biarnés
- Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain; Medical Imaging, IDIBGI, Girona, Spain; Department of Radiology (IDI), Dr. Josep Trueta Hospital, Girona, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain; Department of Medical Sciences, School of Medicine, Girona, Spain
| | - Josep Puig
- Department of Medical Sciences, School of Medicine, Girona, Spain; Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain; Medical Imaging, IDIBGI, Girona, Spain; Department of Radiology (IDI), Dr. Josep Trueta Hospital, Girona, Spain
| | - Josep Garre-Olmo
- Research Group on Aging, Disability, and Health, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Serra-Hunter Fellow, Department of Nursing, University of Girona, Girona, Spain; Institut d'Assistència Sanitària, Girona, Spain
| | - Rafel Ramos
- Department of Medical Sciences, School of Medicine, Girona, Spain; Vascular Health Research Group of Girona (ISV-Girona), Jordi Gol Institute for Primary Care Research (Institut Universitari Recerca Atenció Primària Jordi Gol i Gorina-IDIAPJGol), Girona, Spain; IDIBGI, Dr. Josep Trueta Hospital, Girona, Spain
| | - Salvador Pedraza
- Department of Medical Sciences, School of Medicine, Girona, Spain; Medical Imaging, IDIBGI, Girona, Spain; Department of Radiology (IDI), Dr. Josep Trueta Hospital, Girona, Spain
| | - Ramón Brugada
- IDIBGI, Dr. Josep Trueta Hospital, Girona, Spain; Biomedical Research Networking Center for Cardiovascular Diseases (CIBER), Madrid, Spain
| | - Joan Carles Vilanova
- Department of Radiology (IDI), Dr. Josep Trueta Hospital, Girona, Spain; IDIBGI, Dr. Josep Trueta Hospital, Girona, Spain
| | - Joaquín Serena
- IDIBGI, Dr. Josep Trueta Hospital, Girona, Spain; Girona Neurodegeneration and Neuroinflammation Group, IDIBGI, Girona, Spain
| | - Jordi Gich
- Department of Medical Sciences, School of Medicine, Girona, Spain; Girona Neurodegeneration and Neuroinflammation Group, IDIBGI, Girona, Spain
| | - Lluís Ramió-Torrentà
- Department of Medical Sciences, School of Medicine, Girona, Spain; Girona Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta Hospital, Girona, Spain; Girona Neurodegeneration and Neuroinflammation Group, IDIBGI, Girona, Spain
| | - Vicente Pérez-Brocal
- Area of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of València Region (FISABIO-Public Health), València, Spain; Biomedical Research Networking Center for Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Andrés Moya
- Area of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of València Region (FISABIO-Public Health), València, Spain; Biomedical Research Networking Center for Epidemiology and Public Health (CIBEResp), Madrid, Spain; Institute for Integrative Systems Biology (I2Sysbio), University of València and Spanish Research Council (CSIC), València, Spain
| | - Reinald Pamplona
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Joaquim Sol
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain; Institut Català de la Salut, Atenció Primària, Lleida, Spain; Research Support Unit, Fundació Institut Universitari recerca l'Atenció Primària Salut Jordi Gol i Gorina (IDIAPJGol), Lleida, Spain
| | - Mariona Jové
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain; Department of Medical Sciences, School of Medicine, Girona, Spain
| | - Manuel Portero-Otin
- Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institucio Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for human Cognitive and Brain Sciences, Leipzig, Germany; Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain; Department of Medical Sciences, School of Medicine, Girona, Spain.
| |
Collapse
|
26
|
Proline Metabolism in Malignant Gliomas: A Systematic Literature Review. Cancers (Basel) 2022; 14:cancers14082030. [PMID: 35454935 PMCID: PMC9027994 DOI: 10.3390/cancers14082030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Studies of various types of cancers have found proline metabolism to be a key player in tumor development, involved in basic metabolic pathways, regulating cell proliferation, survival, and signaling. Here, we systematically searched the literature to find data on proline metabolism in malignant glial tumors. Despite limited availability, existing studies have found several ways in which proline metabolism may affect the development of gliomas, involving the maintenance of redox balance, providing essential glutamate, and affecting major signaling pathways. Metabolomic profiling has revealed the importance of proline as a link to basic cell metabolic cycles and shown it to be correlated with overall survival. Emerging knowledge on the role of proline in general oncology encourages further studies on malignant gliomas. Abstract Background: Proline has attracted growing interest because of its diverse influence on tumor metabolism and the discovery of the regulatory mechanisms that appear to be involved. In contrast to general oncology, data on proline metabolism in central nervous system malignancies are limited. Materials and Methods: We performed a systematic literature review of the MEDLINE and EMBASE databases according to PRISMA guidelines, searching for articles concerning proline metabolism in malignant glial tumors. From 815 search results, we identified 14 studies pertaining to this topic. Results: The role of the proline cycle in maintaining redox balance in IDH-mutated gliomas has been convincingly demonstrated. Proline is involved in restoring levels of glutamate, the main glial excitatory neurotransmitter. Proline oxidase influences two major signaling pathways: p53 and NF- κB. In metabolomics studies, the metabolism of proline and its link to the urea cycle was found to be a prognostic factor for survival and a marker of malignancy. Data on the prolidase concentration in the serum of glioblastoma patients are contradictory. Conclusions: Despite a paucity of studies in the literature, the available data are interesting enough to encourage further research, especially in terms of extrapolating what we have learned of proline functions from other neoplasms to malignant gliomas.
Collapse
|
27
|
Gholamnia A, Mosleh Arani A, Sodaeizadeh H, Tarkesh Esfahani S, Ghasemi S. Expression profiling of rosmarinic acid biosynthetic genes and some physiological responses from Mentha piperita L. under salinity and heat stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:545-557. [PMID: 35465208 PMCID: PMC8986900 DOI: 10.1007/s12298-022-01159-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/13/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Peppermint is of great economic importance, mainly due to its valuable essential oils. The present study aimed to compare the expression level of genes coding for proteins involved in the rosmarinic acid biosynthesis pathway and some physiological responses in peppermint under three levels of salinity (0, 60 and 120 mM) and two levels of thermal stresses (at 25 °C, optimal plant heat, and 35 °C, for thermal stress). The results showed that salinity at 25 °C resulted in an increased relative level of phenolic compounds, proline and antioxidant activity by 1.88, 1.92 and 2.58 times after 72 h respectively at salinity of 120 mM. Rosmarinic acid as well as soluble sugar, chlorophyll and K+/N+ ratio showed a decreasing trend by 3.2, 1.8, 4.6 and 9 times after 72 h respectively at salinity of 120 mM at 35 °C. Gene expression analysis showed a significant increase in HPPR and C4H expression and a significant decrease in RAS expression in plants subjected to simultaneous stresses. The higher levels of C4H and HPPR expression indicate the roles of these genes in defense processes and the effects of phenolic compounds in inhibiting oxidative stress. Our results may help increase knowledge about the stress-dependent alterations in gene expression profiles and physiological patterns in plants. This information may be used for medicinal plant improvement programs aimed at increasing rosmarinic acid production.
Collapse
Affiliation(s)
- Azam Gholamnia
- Department of Arid Land and Desert Management. Faculty of Natural Resources and Desert Studies, Yazd University, Yazd, Iran
| | - Asghar Mosleh Arani
- Department of Environmental Sciences, Faculty of Natural Resources, Yazd University, Yazd, Iran
| | - Hamid Sodaeizadeh
- Department of Arid Land and Desert Management. Faculty of Natural Resources and Desert Studies, Yazd University, Yazd, Iran
| | - Saeed Tarkesh Esfahani
- Department of Arid Land and Desert Management. Faculty of Natural Resources and Desert Studies, Yazd University, Yazd, Iran
| | - Somaieh Ghasemi
- Department of Soil Sciences, Faculty of Natural Resources, Yazd University, Yazd, Iran
| |
Collapse
|
28
|
Fricke-Galindo I, Pérez-Aldana BE, Macías-Kauffer LR, González-Arredondo S, Dávila-Ortiz de Montellano D, Aviña-Cervantes CL, López-López M, Rodríguez-Agudelo Y, Monroy-Jaramillo N. Impact of COMT, PRODH and DISC1 Genetic Variants on Cognitive Performance of Patients with Schizophrenia. Arch Med Res 2022; 53:388-398. [DOI: 10.1016/j.arcmed.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 11/02/2022]
|
29
|
Zhang S, Qian Y, Li Q, Xu X, Li X, Wang C, Cai H, Zhu J, Yu Y. Metabolic and Neural Mechanisms Underlying the Associations Between Gut Bacteroides and Cognition: A Large-Scale Functional Network Connectivity Study. Front Neurosci 2021; 15:750704. [PMID: 34733135 PMCID: PMC8558260 DOI: 10.3389/fnins.2021.750704] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
There is a proof-of-concept that microbial metabolites provide a molecular connection between the gut and the brain. Extensive research has established a link between gut Bacteroides and human cognition, yet the metabolic and neural mechanisms underlying this association remain largely unknown. Here, we collected fecal samples, resting-state functional MRI, and cognitive data from a large and homogeneous sample of 157 healthy young adults. 16S rRNA gene sequencing was conducted with abundances of Bacteroides and metabolic pathways quantified by species annotation and functional prediction analyses, respectively. Large-scale intra- and internetwork functional connectivity was measured using independent component analysis. Results showed that gut Bacteroides were related to multiple metabolic pathways, which in turn were associated with widespread functional network connectivity. Furthermore, functional network connectivity mediated the associations between some Bacteroides-related metabolic pathways and cognition. Remarkably, arginine and proline metabolism, phenylalanine metabolism, and biosynthesis of unsaturated fatty acids act as the key metabolic pathways that are most contributive, and the executive control and sensorimotor systems contribute most strongly at the neural level. Our findings suggest complex poly-pathway and poly-network processes linking Bacteroides to cognition, more generally yielding a novel conceptualization of targeting gut Bacteroides as an intervention strategy for individuals with cognitive impairment.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Qian Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xiaotao Xu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xueying Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Chunli Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Research Center of Clinical Medical Imaging, Hefei, China.,Anhui Provincial Institute of Translational Medicine, Hefei, China
| |
Collapse
|
30
|
Savio LEB, Leite-Aguiar R, Alves VS, Coutinho-Silva R, Wyse ATS. Purinergic signaling in the modulation of redox biology. Redox Biol 2021; 47:102137. [PMID: 34563872 PMCID: PMC8479832 DOI: 10.1016/j.redox.2021.102137] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
Purinergic signaling is a cell communication pathway mediated by extracellular nucleotides and nucleosides. Tri- and diphosphonucleotides are released in physiological and pathological circumstances activating purinergic type 2 receptors (P2 receptors): P2X ion channels and P2Y G protein-coupled receptors. The activation of these receptors triggers the production of reactive oxygen and nitrogen species and alters antioxidant defenses, modulating the redox biology of cells. The activation of P2 receptors is controlled by ecto-enzymes named ectonucleotidases, E-NTPDase1/CD39 and ecto-5'-nucleotidase/CD73) being the most relevant. The first enzyme hydrolyzes adenosine triphosphate (ATP) and adenosine diphosphate (ADP) into adenosine monophosphate (AMP), and the second catalyzes the hydrolysis of AMP to adenosine. The activity of these enzymes is diminished by oxidative stress. Adenosine actives P1 G-coupled receptors that, in general, promote the maintenance of redox hemostasis by decreasing reactive oxygen species (ROS) production and increase antioxidant enzymes. Intracellular purine metabolism can also contribute to ROS generation via xanthine oxidase activity, which converts hypoxanthine into xanthine, and finally, uric acid. In this review, we describe the mechanisms of redox biology modulated by purinergic signaling and how this signaling may be affected by disturbances in the redox homeostasis of cells.
Collapse
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Raíssa Leite-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius Santos Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angela T S Wyse
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
31
|
Eni-Aganga I, Lanaghan ZM, Balasubramaniam M, Dash C, Pandhare J. PROLIDASE: A Review from Discovery to its Role in Health and Disease. Front Mol Biosci 2021; 8:723003. [PMID: 34532344 PMCID: PMC8438212 DOI: 10.3389/fmolb.2021.723003] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
Prolidase (peptidase D), encoded by the PEPD gene, is a ubiquitously expressed cytosolic metalloproteinase, the only enzyme capable of cleaving imidodipeptides containing C-terminal proline or hydroxyproline. Prolidase catalyzes the rate-limiting step during collagen recycling and is essential in protein metabolism, collagen turnover, and matrix remodeling. Prolidase, therefore plays a crucial role in several physiological processes such as wound healing, inflammation, angiogenesis, cell proliferation, and carcinogenesis. Accordingly, mutations leading to loss of prolidase catalytic activity result in prolidase deficiency a rare autosomal recessive metabolic disorder characterized by defective wound healing. In addition, alterations in prolidase enzyme activity have been documented in numerous pathological conditions, making prolidase a useful biochemical marker to measure disease severity. Furthermore, recent studies underscore the importance of a non-enzymatic role of prolidase in cell regulation and infectious disease. This review aims to provide comprehensive information on prolidase, from its discovery to its role in health and disease, while addressing the current knowledge gaps.
Collapse
Affiliation(s)
- Ireti Eni-Aganga
- Center for AIDS Health Disparities Research, Nashville, TN, United States
- School of Graduate Studies and Research, Nashville, TN, United States
- Department of Microbiology, Immunology and Physiology, Nashville, TN, United States
| | - Zeljka Miletic Lanaghan
- Center for AIDS Health Disparities Research, Nashville, TN, United States
- Pharmacology Graduate Program, Vanderbilt University, Nashville, TN, United States
| | - Muthukumar Balasubramaniam
- Center for AIDS Health Disparities Research, Nashville, TN, United States
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, United States
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Nashville, TN, United States
- School of Graduate Studies and Research, Nashville, TN, United States
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, United States
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Nashville, TN, United States
- School of Graduate Studies and Research, Nashville, TN, United States
- Department of Microbiology, Immunology and Physiology, Nashville, TN, United States
| |
Collapse
|
32
|
Patriarca EJ, Cermola F, D’Aniello C, Fico A, Guardiola O, De Cesare D, Minchiotti G. The Multifaceted Roles of Proline in Cell Behavior. Front Cell Dev Biol 2021; 9:728576. [PMID: 34458276 PMCID: PMC8397452 DOI: 10.3389/fcell.2021.728576] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Herein, we review the multifaceted roles of proline in cell biology. This peculiar cyclic imino acid is: (i) A main precursor of extracellular collagens (the most abundant human proteins), antimicrobial peptides (involved in innate immunity), salivary proteins (astringency, teeth health) and cornifins (skin permeability); (ii) an energy source for pathogenic bacteria, protozoan parasites, and metastatic cancer cells, which engage in extracellular-protein degradation to invade their host; (iii) an antistress molecule (an osmolyte and chemical chaperone) helpful against various potential harms (UV radiation, drought/salinity, heavy metals, reactive oxygen species); (iv) a neural metabotoxin associated with schizophrenia; (v) a modulator of cell signaling pathways such as the amino acid stress response and extracellular signal-related kinase pathway; (vi) an epigenetic modifier able to promote DNA and histone hypermethylation; (vii) an inducer of proliferation of stem and tumor cells; and (viii) a modulator of cell morphology and migration/invasiveness. We highlight how proline metabolism impacts beneficial tissue regeneration, but also contributes to the progression of devastating pathologies such as fibrosis and metastatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati Traverso”, Consiglio Nazionale delle Ricerche, Naples, Italy
| |
Collapse
|
33
|
Kishani Farahani H, Moghadassi Y, Pierre JS, Kraus S, Lihoreau M. Poor adult nutrition impairs learning and memory in a parasitoid wasp. Sci Rep 2021; 11:16220. [PMID: 34376777 PMCID: PMC8355316 DOI: 10.1038/s41598-021-95664-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/28/2021] [Indexed: 12/05/2022] Open
Abstract
Animals have evolved cognitive abilities whose impairment can incur dramatic fitness costs. While malnutrition is known to impact brain development and cognitive functions in vertebrates, little is known in insects whose small brain appears particularly vulnerable to environmental stressors. Here, we investigated the influence of diet quality on learning and memory in the parasitoid wasp Venturia canescens. Newly emerged adults were exposed for 24 h to either honey, 20% sucrose solution, 10% sucrose solution, or water, before being conditioned in an olfactory associative learning task in which an odor was associated to a host larvae (reward). Honey fed wasps showed 3.5 times higher learning performances and 1.5 times longer memory retention than wasps fed sucrose solutions or water. Poor diets also reduced longevity and fecundity. Our results demonstrate the importance of early adult nutrition for optimal cognitive function in these parasitoid wasps that must quickly develop long-term olfactory memories for searching suitable hosts for their progeny.
Collapse
Affiliation(s)
| | - Yasaman Moghadassi
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Tehran, Karajs, Iran
| | - Jean-Sebastien Pierre
- Rennes 1, UMR-CNRS 6553 EcoBio, University of, Avenue du Général Leclerc, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Stéphane Kraus
- Research Center On Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, UMR 5169 CNRS, University of Toulouse III, Toulouse, France
| | - Mathieu Lihoreau
- Research Center On Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, UMR 5169 CNRS, University of Toulouse III, Toulouse, France.
| |
Collapse
|
34
|
Effects of L-proline on cellular responses of hen erythrocytes subjected to thermal stress. J Therm Biol 2021; 96:102855. [PMID: 33627283 DOI: 10.1016/j.jtherbio.2021.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/02/2021] [Accepted: 01/12/2021] [Indexed: 11/24/2022]
Abstract
Little is known on the protective effects of L-proline on hen erythrocytes. The aim of the study was to determine the protective effects of this amino acid at concentrations of 50 μg/mL, 100 μg/mL, 200 μg/mL in hen erythrocytes subjected to temperatures 41 °C, 43 °C and 45 °C for 1 h and 4 h. The following cellular parameters were determined: viability, morphological alterations, caspase 3/7 activity, heat shock protein HSP70 1A activity and glutathione level. The results showed that exposure to 43 °C and 45 °C resulted in a decrease of viability and increased morphological alterations of the non-treated erythrocytes. Caspase 3/7 activity was increased only at 45 °C, however HSP70 1A activity and glutathione level were increased in the temperature-dependent manner. On the other hand, erythrocytes additionally exposed to L-proline showed alterations of the parameters when compared to the non-treated cells. L-proline at 50 μg/mL and 100 μg/mL increased caspase 3/7 activity at both 41 °C and 43 °C, however it was less augmented at all the concentrations at 45 °C. Glutathione level was decreased in heat-stressed (at 43 °C and 45 °C) hen erythrocytes treated with L-proline (at 50 μg/mL and 100 μg/mL) but it was increased at 200 μg/mL. HSP70 1A activity was augmented in a concentration- and temperature-dependent manner. The results indicate that proapoptotic or antiapoptotic effects of L-proline depend on its concentration and temperature of heat stress and thermoprotective effects induced by the amino acid on some parameters in hen erythrocytes may be a result of stimulation of antioxidative defense and stimulation of HSP70 1A activity.
Collapse
|
35
|
Activation of proline biosynthesis is critical to maintain glutamate homeostasis during acute methamphetamine exposure. Sci Rep 2021; 11:1422. [PMID: 33446840 PMCID: PMC7809342 DOI: 10.1038/s41598-020-80917-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/30/2020] [Indexed: 01/29/2023] Open
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant that causes long-lasting effects in the brain and increases the risk of developing neurodegenerative diseases. The cellular and molecular effects of METH in the brain are functionally linked to alterations in glutamate levels. Despite the well-documented effects of METH on glutamate neurotransmission, the underlying mechanism by which METH alters glutamate levels is not clearly understood. In this study, we report an essential role of proline biosynthesis in maintaining METH-induced glutamate homeostasis. We observed that acute METH exposure resulted in the induction of proline biosynthetic enzymes in both undifferentiated and differentiated neuronal cells. Proline level was also increased in these cells after METH exposure. Surprisingly, METH treatment did not increase glutamate levels nor caused neuronal excitotoxicity. However, METH exposure resulted in a significant upregulation of pyrroline-5-carboxylate synthase (P5CS), the key enzyme that catalyzes synthesis of proline from glutamate. Interestingly, depletion of P5CS by CRISPR/Cas9 resulted in a significant increase in glutamate levels upon METH exposure. METH exposure also increased glutamate levels in P5CS-deficient proline-auxotropic cells. Conversely, restoration of P5CS expression in P5CS-deficient cells abrogated the effect of METH on glutamate levels. Consistent with these findings, P5CS expression was significantly enhanced in the cortical brain region of mice administered with METH and in the slices of cortical brain tissues treated with METH. Collectively, these results uncover a key role of P5CS for the molecular effects of METH and highlight that excess glutamate can be sequestered for proline biosynthesis as a protective mechanism to maintain glutamate homeostasis during drug exposure.
Collapse
|
36
|
Abstract
An increasing number of studies have focussed on the neurobiology of schizophrenia (SCH), contributing to a better understanding of this disorder. Prolidase is a metalloprotease found in various tissues, which has been associated with the concentrations of proline, a neurotransmitter, in the brain. There is evidence to suggest that elevated proline levels play a role in SCH. The aim of the present study was to compare plasma proline levels in patients with drug-naive first-episode psychosis (FEP) and in those with SCH. Patients diagnosed with FEP (n = 26) and SCH (n = 26) were recruited for this study, in addition to healthy control volunteers (n = 26). Plasma prolidase levels were found to be elevated in the SCH group compared to drug-naive FEP and healthy control groups. This finding indicates that prolidase levels are higher in SCH patients, while levels in patients with drug-naive FEP are similar to those of healthy control. Follow-up studies are needed to provide a better understanding of prolidase in the etiopathogenesis of SCH.
Collapse
|
37
|
Bhat S, El-Kasaby A, Freissmuth M, Sucic S. Functional and Biochemical Consequences of Disease Variants in Neurotransmitter Transporters: A Special Emphasis on Folding and Trafficking Deficits. Pharmacol Ther 2020; 222:107785. [PMID: 33310157 PMCID: PMC7612411 DOI: 10.1016/j.pharmthera.2020.107785] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023]
Abstract
Neurotransmitters, such as γ-aminobutyric acid, glutamate, acetyl choline, glycine and the monoamines, facilitate the crosstalk within the central nervous system. The designated neurotransmitter transporters (NTTs) both release and take up neurotransmitters to and from the synaptic cleft. NTT dysfunction can lead to severe pathophysiological consequences, e.g. epilepsy, intellectual disability, or Parkinson’s disease. Genetic point mutations in NTTs have recently been associated with the onset of various neurological disorders. Some of these mutations trigger folding defects in the NTT proteins. Correct folding is a prerequisite for the export of NTTs from the endoplasmic reticulum (ER) and the subsequent trafficking to their pertinent site of action, typically at the plasma membrane. Recent studies have uncovered some of the key features in the molecular machinery responsible for transporter protein folding, e.g., the role of heat shock proteins in fine-tuning the ER quality control mechanisms in cells. The therapeutic significance of understanding these events is apparent from the rising number of reports, which directly link different pathological conditions to NTT misfolding. For instance, folding-deficient variants of the human transporters for dopamine or GABA lead to infantile parkinsonism/dystonia and epilepsy, respectively. From a therapeutic point of view, some folding-deficient NTTs are amenable to functional rescue by small molecules, known as chemical and pharmacological chaperones.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
38
|
Ferreira AGK, Biasibetti-Brendler H, Sidegum DSV, Loureiro SO, Figueiró F, Wyse ATS. Effect of Proline on Cell Death, Cell Cycle, and Oxidative Stress in C6 Glioma Cell Line. Neurotox Res 2020; 39:327-334. [PMID: 33196952 DOI: 10.1007/s12640-020-00311-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 01/24/2023]
Abstract
Since proline metabolism has been implicated to play an underlying role in apoptotic signaling and cancer, and hyperprolinemic patients present susceptibility to tumors development, this study investigated the effect of proline on cell death, cell cycle, antioxidant enzymes activities, and immunocontent/activity of proteins involved in cell death/survival signaling pathways in C6 glioma cells. C6 cells were incubated with proline (0-5 mM) for 1 h, 24 h, 48 h, 72 h, or 7 days. Proline in high concentrations slightly decreased LDH release, and no cytotoxic effect was seen by Annexin-PI staining. Superoxide dismutase and catalase activities were increased by proline (1 mM) after 72 h, suggesting an increase in reactive species levels. Acetylcholinesterase activity was inhibited by proline at 1, 3, and 5 mM. The cell cycle progression was not altered. Results from Western blot analyses showed that proline at 1 mM after 72 h increased p-NF-ĸB and decreased acetylcholinesterase immunocontent but did not altered AKT, p-AKT, GSK3β, and p-GSK3β. Taken together, the data suggest that high proline levels seems to favor the signaling pathways towards cell proliferation, since acetylcholinesterase, which may act as tumor suppressor, is inhibited by proline. Also, p-NF-κB is increased by proline treatment and its activation is related to tumor cell proliferation and cellular response to oxidants. Proline also induced oxidative stress, but it appears to be insufficient to induce a significant change in cell cycle progression. These data may be related, at least in part, to the increased susceptibility to tumor development in hyperprolinemic individuals.
Collapse
Affiliation(s)
- Andréa Gisiane Kurek Ferreira
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| | - Helena Biasibetti-Brendler
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Daniele Susana Volkart Sidegum
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Samanta Oliveira Loureiro
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Fabrício Figueiró
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Angela T S Wyse
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
39
|
Zhao Y, Chen H, Iqbal J, Liu X, Zhang H, Xiao S, Jin N, Yao F, Shen L. Targeted metabolomics study of early pathological features in hippocampus of triple transgenic Alzheimer's disease male mice. J Neurosci Res 2020; 99:927-946. [PMID: 33197957 DOI: 10.1002/jnr.24750] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a serious neurodegenerative disease in people of age 65 or above. The detailed etiology and pathogenesis of AD have not been elucidated yet. In this study, the hippocampi of 2- and 6-month-old triple transgenic Alzheimer's disease male mice and age-sex-matched wild-type (WT) mice were analyzed by using targeted metabolomics approach. Compared with WT mice, 24 and 60 metabolites were found with significant differences in 2- and 6-month-old AD mice. Among these, 14 metabolites were found common while 10 metabolites showed consistent variable trends in both groups. These differential metabolites are found associated with amino acid, lipid, vitamin, nucleotide-related base, neurotransmitter and energy metabolisms, and oxidative stress. The results suggest that these differential metabolites might play a critical role in AD pathophysiology, and may serve as potential biomarkers for AD. Moreover, the results highlight the involvement of abnormal purine, pyrimidine, arginine, and proline metabolism, along with glycerophospholipid metabolism in early pathology of AD. For the first time, several differential metabolites are found to be associated with AD in this study. Targeted metabolomics can be used for rapid and accurate quantitative analysis of specific target metabolites associated with AD.
Collapse
Affiliation(s)
- Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Haiquan Chen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Javed Iqbal
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China.,Shenzhen Bay Laboratory, Shenzhen, P.R. China
| | - Shifeng Xiao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Na Jin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Fang Yao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China.,Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen, P.R. China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
40
|
Liu B, Li J, Lin X, Hu J, Lou S. The metabolic changes in the hippocampus of an atherosclerotic rat model and the regulation of aerobic training. Metab Brain Dis 2020; 35:1017-1034. [PMID: 32240489 DOI: 10.1007/s11011-020-00566-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/17/2020] [Indexed: 01/17/2023]
Abstract
Atherosclerosis has been associated with the progression of cognitive impairment and the effect of metabolic changes in the brain on cognitive function may be pronounced. The aim is to reveal the metabolic changes during atherosclerosis and clarify the possible role of exercise in regulating hippocampal metabolism. Hence, A rat model of atherosclerosis was established by high-fat diet feeding in combination with vitamin D3 intraperitoneal injection, then 4 weeks of aerobic exercise was conducted. Metabolomics based on GC-MS was applied to detect small molecules metabolites and western blot was used to detect the concentration of enzymes involved in metabolic changes in rat hippocampus. Compared to the control group, metabolites including xylulose 5-phosphate, threonine, succinate, and nonanoic acid were markedly elevated, whereas methyl arachidonic acid and methyl stearate decreased in the AS group, accompanied by a raised concentration of aldose reductase and glucose 6-phosphate dehydrogenase as well as a declined concentration of acetyl-CoA carboxylase and fatty acid synthase. After 4 weeks' aerobic exercise, the levels of succinic acid, branched chain amino acids, nonanoic acid, desmosterol, and aldose reductase decreased, whereas methyl arachidonic acid, methyl stearate, and glyceraldehyde-3-phosphate elevated in the hippocampus of the TAS group in comparison with the AS group. These results suggest that atherosclerosis could cause a severe metabolic disturbance, and aerobic exercise plays an important role in regulating atherosclerosis-induced disorder of glucose metabolism in the hippocampus.
Collapse
Affiliation(s)
- Beibei Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- Department of Rehabilitation Medicine, Weifang Medical University, Weifang, 261053, China
| | - Jingjing Li
- Post-doctoral station of clinical medicine, Tongji Hospital, medical school of Tongji University, Shanghai, 200092, China
| | - Xiaojing Lin
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Jingyun Hu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Shujie Lou
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
41
|
Comparison of Metabolomic Profiles of Organs in Mice of Different Strains Based on SPME-LC-HRMS. Metabolites 2020; 10:metabo10060255. [PMID: 32560547 PMCID: PMC7345432 DOI: 10.3390/metabo10060255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 11/17/2022] Open
Abstract
Given that the extent to which genetics alters the metabolomic profile of tissues is still poorly understood, the current study aimed to characterize and investigate the metabolite profiles of brain, liver, kidney and skeletal muscle of two common mouse inbred strains (BALB/c, C57BL/6) and one outbred stock (CD1) for strain-specific differences. Male mice (n = 15) at the age of 12 weeks were used: BALB/c (n = 5), C57BL/6 (n = 5) and CD1 (n = 5). Solid phase microextraction (SPME) was applied for the extraction of analytes from the tissues. SPME fibers (approximately 0.2 mm in diameter) coated with a biocompatible sorbent (4 mm length of hydrophilic-lipophilic balanced particles) were inserted into each organ immediately after euthanasia. Samples were analyzed using liquid chromatography coupled to a Q-Exactive Focus Orbitrap mass spectrometer. Distinct interstrain differences in the metabolomic patterns of brain and liver tissue were revealed. The metabolome of kidney and muscle tissue in BALB/c mice differed greatly from C57BL/6 and CD1 strains. The main compounds differentiating all the targeted organs were alpha-amino acids, purine nucleotides and fatty acid esters. The results of the study indicate that the baseline metabolome of organs, as well as different metabolic pathways, vary widely among general-purpose models of laboratory mice commonly used in biomedical research.
Collapse
|
42
|
Rumping L, Vringer E, Houwen RHJ, van Hasselt PM, Jans JJM, Verhoeven‐Duif NM. Inborn errors of enzymes in glutamate metabolism. J Inherit Metab Dis 2020; 43:200-215. [PMID: 31603991 PMCID: PMC7078983 DOI: 10.1002/jimd.12180] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 12/29/2022]
Abstract
Glutamate is involved in a variety of metabolic pathways. We reviewed the literature on genetic defects of enzymes that directly metabolise glutamate, leading to inborn errors of glutamate metabolism. Seventeen genetic defects of glutamate metabolising enzymes have been reported, of which three were only recently identified. These 17 defects affect the inter-conversion of glutamine and glutamate, amino acid metabolism, ammonia detoxification, and glutathione metabolism. We provide an overview of the clinical and biochemical phenotypes of these rare defects in an effort to ease their recognition. By categorising these by biochemical pathway, we aim to create insight into the contributing role of deviant glutamate and glutamine levels to the pathophysiology. For those disorders involving the inter-conversion of glutamine and glutamate, these deviant levels are postulated to play a pivotal pathophysiologic role. For the other IEM however-with the exception of urea cycle defects-abnormal glutamate and glutamine concentrations were rarely reported. To create insight into the clinical consequences of disturbed glutamate metabolism-rather than individual glutamate and glutamine levels-the prevalence of phenotypic abnormalities within the 17 IEM was compared to their prevalence within all Mendelian disorders and subsequently all disorders with metabolic abnormalities notated in the Human Phenotype Ontology (HPO) database. For this, a hierarchical database of all phenotypic abnormalities of the 17 defects in glutamate metabolism based on HPO was created. A neurologic phenotypic spectrum of developmental delay, ataxia, seizures, and hypotonia are common in the inborn errors of enzymes in glutamate metabolism. Additionally, ophthalmologic and skin abnormalities are often present, suggesting that disturbed glutamate homeostasis affects tissues of ectodermal origin: brain, eye, and skin. Reporting glutamate and glutamine concentrations in patients with inborn errors of glutamate metabolism would provide additional insight into the pathophysiology.
Collapse
Affiliation(s)
- Lynne Rumping
- Department of GeneticsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
- Center for Molecular MedicineUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
- Department of PediatricsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| | - Esmee Vringer
- Department of GeneticsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| | - Roderick H. J. Houwen
- Department of PediatricsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| | - Peter M. van Hasselt
- Department of PediatricsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| | - Judith J. M. Jans
- Department of GeneticsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
- Center for Molecular MedicineUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| | - Nanda M. Verhoeven‐Duif
- Department of GeneticsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
- Center for Molecular MedicineUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| |
Collapse
|
43
|
Metabolomics reveals highly regional specificity of cerebral sexual dimorphism in mice. Prog Neurobiol 2020; 184:101698. [DOI: 10.1016/j.pneurobio.2019.101698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/25/2019] [Accepted: 09/18/2019] [Indexed: 12/30/2022]
|
44
|
Motte J, Fisse AL, Grüter T, Schneider R, Breuer T, Lücke T, Krueger S, Nguyen HP, Gold R, Ayzenberg I, Ellrichmann G. Novel variants in a patient with late-onset hyperprolinemia type II: diagnostic key for status epilepticus and lactic acidosis. BMC Neurol 2019; 19:345. [PMID: 31884946 PMCID: PMC6935479 DOI: 10.1186/s12883-019-1583-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/19/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hyperprolinemia type 2 (HPII) is a rare autosomal recessive disorder of the proline metabolism, that affects the ALDH4A1 gene. So far only four different pathogenic mutations are known. The manifestation is mostly in neonatal age, in early infancy or early childhood. CASE PRESENTATION The 64-years female patient had a long history of abdominal pain, and episode of an acute neuritis. Ten years later she was admitted into the neurological intensive-care-unit with acute abdominal pain, multiple generalized epileptic seizures, a vertical gaze palsy accompanied by extensive lactic acidosis in serum 26.0 mmol/l (reference: 0.55-2.2 mmol/l) and CSF 12.01 mmol/l (reference: 1.12-2.47 mmol/l). Due to repeated epileptic seizures and secondary complications a long-term sedation with a ventilation therapy over 20 days was administered. A diagnostic work-up revealed up to 400-times increased prolin-level in urine CSF and blood. Furthermore, a low vitamin-B6 serum value was found, consistent with a HPII causing secondary pyridoxine deficiency and seizures. The ALDH4A1 gene sequencing confirmed two previously unknown compound heterozygous variants (ALDH4A1 gene (NM_003748.3) Intron 1: c.62 + 1G > A - heterozygous and ALDH4A1 gene (NM_003748.3) Exon 5 c.349G > C, p.(Asp117His) - heterozygous). Under high-dose vitamin-B6 therapy no further seizures occurred. CONCLUSION We describe two novel ALDH4A1-variants in an adult patient with hyperprolinemia type II causing secondary pyridoxine deficiency and seizures. Severe and potentially life-threatening course of this treatable disease emphasizes the importance of diagnostic vigilance and thorough laboratory work-up including gene analysis even in cases with atypical late manifestation.
Collapse
Affiliation(s)
- Jeremias Motte
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany.
| | - Anna Lena Fisse
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Thomas Grüter
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Ruth Schneider
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Thomas Breuer
- Department of Internal Medicine, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Lücke
- University Children's Hospital, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany.,Center for Rare Diseases Ruhr (CeSER), Ruhr-University Bochum, Bochum, Germany
| | | | - Huu Phuc Nguyen
- Center for Rare Diseases Ruhr (CeSER), Ruhr-University Bochum, Bochum, Germany.,Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Ilya Ayzenberg
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany.,Department of Neurology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Gisa Ellrichmann
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| |
Collapse
|
45
|
Marques EP, Wyse ATS. Creatine as a Neuroprotector: an Actor that Can Play Many Parts. Neurotox Res 2019; 36:411-423. [PMID: 31069754 DOI: 10.1007/s12640-019-00053-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
Creatine is a nitrogenous organic acid that plays a central role as an energy buffer in high energy demanding systems, including the muscular and the central nervous system. It can be acquired from diet or synthesized endogenously, and its main destination is the system creatine/phosphocreatine that strengthens cellular energetics via a temporal and spatial energy buffer that can restore cellular ATP without a reliance on oxygen. This compound has been proposed to possess secondary roles, such as direct and indirect antioxidant, immunomodulatory agent, and possible neuromodulator. However, these effects may be associated with its bioenergetic role in the mitochondria. Given the fundamental roles that creatine plays in the CNS, several preclinical and clinical studies have tested the potential that creatine has to treat degenerative disorders. However, although in vitro and in vivo animal models are highly encouraging, most clinical trials fail to reproduce positive results suggesting that the prophylactic use for neuroprotection in at-risk populations or patients is the most promising field. Nonetheless, the only clearly positive data of the creatine supplementation in human beings are related to the (rare) creatine deficiency syndromes. It seems critical that future studies must establish the best dosage regime to increase brain creatine in a way that can relate to animal studies, provide new ways for creatine to reach the brain, and seek larger experimental groups with biomarkers for prediction of efficacy.
Collapse
Affiliation(s)
- Eduardo Peil Marques
- Laboratory of Neuroprotection and Metabolic Disease, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Post graduate program in Biological Science - Biochemistry, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Metabolic Disease, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
- Post graduate program in Biological Science - Biochemistry, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
46
|
Abstract
SIGNIFICANCE Proline catabolism refers to the 4-electron oxidation of proline to glutamate catalyzed by the enzymes proline dehydrogenase (PRODH) and l-glutamate γ-semialdehyde dehydrogenase (GSALDH, or ALDH4A1). These enzymes and the intermediate metabolites of the pathway have been implicated in tumor growth and suppression, metastasis, hyperprolinemia metabolic disorders, schizophrenia susceptibility, life span extension, and pathogen virulence and survival. In some bacteria, PRODH and GSALDH are combined into a bifunctional enzyme known as proline utilization A (PutA). PutAs are not only virulence factors in some pathogenic bacteria but also fascinating systems for studying the coordination of metabolic enzymes via substrate channeling. Recent Advances: The past decade has seen an explosion of structural data for proline catabolic enzymes. This review surveys these structures, emphasizing protein folds, substrate recognition, oligomerization, kinetic mechanisms, and substrate channeling in PutA. CRITICAL ISSUES Major unsolved structural targets include eukaryotic PRODH, the complex between monofunctional PRODH and monofunctional GSALDH, and the largest of all PutAs, trifunctional PutA. The structural basis of PutA-membrane association is poorly understood. Fundamental aspects of substrate channeling in PutA remain unknown, such as the identity of the channeled intermediate, how the tunnel system is activated, and the roles of ancillary tunnels. FUTURE DIRECTIONS New approaches are needed to study the molecular and in vivo mechanisms of substrate channeling. With the discovery of the proline cycle driving tumor growth and metastasis, the development of inhibitors of proline metabolic enzymes has emerged as an exciting new direction. Structural biology will be important in these endeavors.
Collapse
Affiliation(s)
- John J Tanner
- 1 Department of Biochemistry and University of Missouri-Columbia , Columbia, Missouri.,2 Department of Chemistry, University of Missouri-Columbia , Columbia, Missouri
| |
Collapse
|
47
|
Ceylan MF, Tural Hesapcioglu S, Kasak M, Senat A, Erel O. Increased prolidase activity and high blood monocyte counts in pediatric bipolar disorder. Psychiatry Res 2019; 271:360-364. [PMID: 30529319 DOI: 10.1016/j.psychres.2018.11.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/05/2023]
Abstract
Various psychological, genetic, and biochemical factors are thought to be involved in the aetiology of pediatric bipolar disorder (PBD). However, few studies have evaluated the biochemical basis of PBD. The level of peripheral blood mononuclear cells and serum prolidase activity were determined in PBD and matched healthy comparison subjects. Blood from 38 (age range: 14-17) PBD-type I and 37 age- and gender-matched healthy comparison subjects was analyzed for numbers of neutrophils, lymphocytes, monocytes, lymphocyte-to-monocyte ratio (LMR), neutrophil-to-lymphocyte ratio (NLR) and serum prolidase activity. The prolidase activity and monocyte count were significantly higher in PBD than the control group. There were no significant differences in numbers of neutrophils, lymphocytes, LMR and NLR between the patient and control groups. These results suggest that the immune system and prolidase activity may be activated in PBD. There is a clinical benefit from the early detection of PBD using serum prolidase activity levels and monocyte counts. Especially, prolidase activity may be a trait marker for diagnosing PBD. However, further studies are needed to verify these findings.
Collapse
Affiliation(s)
- Mehmet Fatih Ceylan
- Child and Adolescent Psychiatry Department, Ankara Yildirim Beyazit University Faculty of Medicine, Ankara, Turkey.
| | - Selma Tural Hesapcioglu
- Child and Adolescent Psychiatry Department, Ankara Yildirim Beyazit University Faculty of Medicine, Ankara, Turkey
| | - Meryem Kasak
- Child and Adolescent Psychiatry Department, Ankara Yildirim Beyazit University Faculty of Medicine, Ankara, Turkey
| | - Almila Senat
- Clinical Biochemistry Department, Ankara Yildirim Beyazit University Faculty of Medicine, Ankara, Turkey
| | - Ozcan Erel
- Clinical Biochemistry Department, Ankara Yildirim Beyazit University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
48
|
The Role of Oxidative Stress and Bioenergetic Dysfunction in Sulfite Oxidase Deficiency: Insights from Animal Models. Neurotox Res 2018; 35:484-494. [DOI: 10.1007/s12640-018-9986-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/13/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023]
|
49
|
Schulz D, Morschel J, Schuster S, Eulenburg V, Gomeza J. Inactivation of the Mouse L-Proline Transporter PROT Alters Glutamatergic Synapse Biochemistry and Perturbs Behaviors Required to Respond to Environmental Changes. Front Mol Neurosci 2018; 11:279. [PMID: 30177871 PMCID: PMC6110171 DOI: 10.3389/fnmol.2018.00279] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
The endogenous neutral amino acid L-proline exhibits a variety of physiological and behavioral actions in the nervous system, highlighting the importance of accurately regulating its extracellular abundance. The L-proline transporter PROT (Slc6A7) is believed to control the spatial and temporal distribution of L-proline at glutamatergic synapses by rapid uptake of this amino acid into presynaptic terminals. Despite the importance of members of the Slc6 transporter family regulating neurotransmitter signaling and homeostasis in brain, evidence that PROT dysfunction supports risk for mental illness is lacking. Here we report the disruption of the PROT gene by homologous recombination. Mice defective in PROT displayed altered expression of glutamate transmission-related synaptic proteins in cortex and thalamus. PROT deficiency perturbed mouse behavior, such as reduced locomotor activity, decreased approach motivation and impaired memory extinction. Thus, our study demonstrates that PROT regulates behaviors that are needed to respond to environmental changes in vivo and suggests that PROT dysfunctions might contribute to mental disorders showing altered response choice following task contingency changes.
Collapse
Affiliation(s)
- Daniel Schulz
- Institute for Pharmaceutical Biology, University of Bonn Bonn, Germany
| | - Julia Morschel
- Institute for Pharmaceutical Biology, University of Bonn Bonn, Germany
| | - Stefanie Schuster
- Institute of Biochemistry, University of Erlangen-Nuremberg Erlangen, Germany
| | - Volker Eulenburg
- Institute of Biochemistry, University of Erlangen-Nuremberg Erlangen, Germany.,Department of Anesthesiology and Intensive Care Medicine, University of Leipzig Leipzig, Germany
| | - Jesús Gomeza
- Institute for Pharmaceutical Biology, University of Bonn Bonn, Germany
| |
Collapse
|
50
|
Cappelletti P, Tallarita E, Rabattoni V, Campomenosi P, Sacchi S, Pollegioni L. Proline oxidase controls proline, glutamate, and glutamine cellular concentrations in a U87 glioblastoma cell line. PLoS One 2018; 13:e0196283. [PMID: 29694413 PMCID: PMC5918996 DOI: 10.1371/journal.pone.0196283] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/10/2018] [Indexed: 12/11/2022] Open
Abstract
L-Proline is a multifunctional amino acid that plays an essential role in primary metabolism and physiological functions. Proline is oxidized to glutamate in the mitochondria and the FAD-containing enzyme proline oxidase (PO) catalyzes the first step in L-proline degradation pathway. Alterations in proline metabolism have been described in various human diseases, such as hyperprolinemia type I, velo-cardio-facial syndrome/Di George syndrome, schizophrenia and cancer. In particular, the mutation giving rise to the substitution Leu441Pro was identified in patients suffering of schizophrenia and hyperprolinemia type I. Here, we report on the expression of wild-type and L441P variants of human PO in a U87 glioblastoma human cell line in an attempt to assess their effect on glutamate metabolism. The subcellular localization of the flavoenzyme is not altered in the L441P variant, for which specific activity is halved compared to the wild-type PO. While this decrease in activity is significantly less than that previously proposed, an effect of the substitution on the enzyme stability is also apparent in our studies. At 24 hours of growth from transient transfection, the intracellular level of proline, glutamate, and glutamine is decreased in cells expressing the PO variants as compared to control U87 cells, reaching a similar figure at 72 h. On the other hand, the extracellular levels of the three selected amino acids show a similar time course for all clones. Furthermore, PO overexpression does not modify to a significant extent the expression of GLAST and GLT-1 glutamate transporters. Altogether, these results demonstrate that the proline pathway links cellular proline levels with those of glutamate and glutamine. On this side, PO might play a regulatory role in glutamatergic neurotransmission by affecting the cellular concentration of glutamate.
Collapse
Affiliation(s)
- Pamela Cappelletti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- The Protein Factory Research Center, Politecnico of Milano and University of Insubria, Milano, Italy
- * E-mail:
| | - Elena Tallarita
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Valentina Rabattoni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Paola Campomenosi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- The Protein Factory Research Center, Politecnico of Milano and University of Insubria, Milano, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- The Protein Factory Research Center, Politecnico of Milano and University of Insubria, Milano, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- The Protein Factory Research Center, Politecnico of Milano and University of Insubria, Milano, Italy
| |
Collapse
|