1
|
Shen Y, Zhang G, Wei C, Zhao P, Wang Y, Li M, Sun L. Potential role and therapeutic implications of glutathione peroxidase 4 in the treatment of Alzheimer's disease. Neural Regen Res 2025; 20:613-631. [PMID: 38886929 PMCID: PMC11433915 DOI: 10.4103/nrr.nrr-d-23-01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 06/20/2024] Open
Abstract
Alzheimer's disease is an age-related neurodegenerative disorder with a complex and incompletely understood pathogenesis. Despite extensive research, a cure for Alzheimer's disease has not yet been found. Oxidative stress mediates excessive oxidative responses, and its involvement in Alzheimer's disease pathogenesis as a primary or secondary pathological event is widely accepted. As a member of the selenium-containing antioxidant enzyme family, glutathione peroxidase 4 reduces esterified phospholipid hydroperoxides to maintain cellular redox homeostasis. With the discovery of ferroptosis, the central role of glutathione peroxidase 4 in anti-lipid peroxidation in several diseases, including Alzheimer's disease, has received widespread attention. Increasing evidence suggests that glutathione peroxidase 4 expression is inhibited in the Alzheimer's disease brain, resulting in oxidative stress, inflammation, ferroptosis, and apoptosis, which are closely associated with pathological damage in Alzheimer's disease. Several therapeutic approaches, such as small molecule drugs, natural plant products, and non-pharmacological treatments, ameliorate pathological damage and cognitive function in Alzheimer's disease by promoting glutathione peroxidase 4 expression and enhancing glutathione peroxidase 4 activity. Therefore, glutathione peroxidase 4 upregulation may be a promising strategy for the treatment of Alzheimer's disease. This review provides an overview of the gene structure, biological functions, and regulatory mechanisms of glutathione peroxidase 4, a discussion on the important role of glutathione peroxidase 4 in pathological events closely related to Alzheimer's disease, and a summary of the advances in small-molecule drugs, natural plant products, and non-pharmacological therapies targeting glutathione peroxidase 4 for the treatment of Alzheimer's disease. Most prior studies on this subject used animal models, and relevant clinical studies are lacking. Future clinical trials are required to validate the therapeutic effects of strategies targeting glutathione peroxidase 4 in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Chunxiao Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Panpan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yongchun Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Mingxi Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
2
|
Ganguly SC, Sangram S, Paul S, Kundu M. Phyto-nanotechnology: A novel beneficial strategy for Alzheimer's disease therapy. Neurochem Int 2024; 180:105868. [PMID: 39326498 DOI: 10.1016/j.neuint.2024.105868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/08/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Alzheimer's disease, a neurodegenerative condition, is characterized by the slow and progressive deterioration of the cognitive functions of geriatric patients. It occurs due to exacerbation of neurons in the brain, indicated by loss of memory, mood instability, and even death. The aggregation of amyloid β protein and neurofibrillary tangles-atypical forms of tau protein is the major cause of this disease. Phytoconstituents have been frequently employed in treating Alzheimer's disease. These natural compounds act through different molecular mechanisms to treat the disease. However, their potential in Alzheimer's disease therapy may be limited due to poor blood-brain barrier permeability, off-target effects, low bioavailability, etc. In recent times, nanotechnology has gained attraction to overcome these challenges. This article focuses on the potential phytoconstituents for Alzheimer's disease treatment and the associated limitations. Moreover, it highlights various nanoformulation strategies employed to penetrate the blood-brain barrier effectively, avoid side effects, improve bioavailability, and target specificity in treating Alzheimer's disease. The integration of nanotechnology with plant-derived compounds has the potential to revolutionize the therapeutic landscape for Alzheimer's disease.
Collapse
Affiliation(s)
| | - Sk Sangram
- Department of Pharmaceutical Chemistry, Calcutta Institute of Pharmaceutical Technology & Allied Health Sciences, West Bengal, India
| | - Sayani Paul
- Department of Pharmaceutical Chemistry, Calcutta Institute of Pharmaceutical Technology & Allied Health Sciences, West Bengal, India; Bengal School of Technology, Hooghly, West Bengal, India
| | - Moumita Kundu
- Department of Pharmaceutical Technology, Brainware University, West Bengal, India; Center for Multidisciplinary Research & Innovations, Brainware University, West Bengal, India.
| |
Collapse
|
3
|
Li Y, Yang X, Han T, Zhou J, Liu Y, Guo J, Liu Z, Bai Y, Xing Y, Ding X, Wu J, Hu D. IGFBP1 promotes the proliferation and migration of lung adenocarcinoma cells through the PPARα pathway. Transl Oncol 2024; 49:102095. [PMID: 39167955 PMCID: PMC11382126 DOI: 10.1016/j.tranon.2024.102095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND The immune status is closely linked to cancer progression, metastasis, and prognosis. Lipid metabolism, crucial for reshaping immune status, plays a key role in regulating the advancement of lung adenocarcinoma (LUAD) and deserves further investigation. METHODS This study classifies LUAD patients into different immune subtypes based on lipid metabolism-related genes and compares the clinical characteristics among these subtypes. Single-multi COX analysis screens out key genes related to prognosis, and a risk feature and prognostic model are constructed. Cell cloning, scratch, transwell, western blotting and flow cytometry cell cycle analysis to detect the function of key genes. A subcutaneous tumor animal model is used to investigate the in vivo function and molecular mechanisms of key genes. RESULTS LUAD patients are classified into three immune subtypes, among which C3 subtype has lower immune status and higher frequency of gene mutations, and show lower immunoreactivity in immunotherapy. COX analysis identified a prognostic model for four lipid metabolism factors (IGFBP1, NR0B2, PPARA, and POMC). IGFBP1, a core gene in this model, is highly expressed in the C3 subtype. Functionally, knocking down IGFBP1 significantly inhibits tumor cell cloning, scratch, and migration abilities, and downregulates the expression of cell cycle and EMT-related proteins. Knocking down IGFBP1 significantly inhibits tumor burden (P < 0.05). Mechanistically, knocking down IGFBP1 inhibits the activation of PPARα to regulate tumor cell growth. CONCLUSIONS This study found that lipid metabolism genes are closely related to LUAD, and IGFBP1 may be a key gene in regulating tumor growth and development.
Collapse
Affiliation(s)
- Yunyun Li
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Xuelian Yang
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Tao Han
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Ziqin Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China
| | - Yingru Xing
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, China
| | - Xuansheng Ding
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; School of pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China; Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China.
| |
Collapse
|
4
|
Noh SG, Kim HW, Kim S, Chung KW, Jung YS, Yoon JH, Yu BP, Lee J, Chung HY. Senoinflammation as the underlying mechanism of aging and its modulation by calorie restriction. Ageing Res Rev 2024; 101:102503. [PMID: 39284417 DOI: 10.1016/j.arr.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Senoinflammation is characterized by an unresolved low-grade inflammatory process that affects multiple organs and systemic functions. This review begins with a brief overview of the fundamental concepts and frameworks of senoinflammation. It is widely involved in the aging of various organs and ultimately leads to progressive systemic degeneration. Senoinflammation underlying age-related inflammation, is causally related to metabolic dysregulation and the formation of senescence-associated secretory phenotype (SASP) during aging and age-related diseases. This review discusses the biochemical evidence and molecular biology data supporting the concept of senoinflammation and its regulatory processes, highlighting the anti-aging and anti-inflammatory effects of calorie restriction (CR). Experimental data from CR studies demonstrated effective suppression of various pro-inflammatory cytokines and chemokines, lipid accumulation, and SASP during aging. In conclusion, senoinflammation represents the basic mechanism that creates a microenvironment conducive to aging and age-related diseases. Furthermore, it serves as a potential therapeutic target for mitigating aging and age-related diseases.
Collapse
Affiliation(s)
- Sang Gyun Noh
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Hyun Woo Kim
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Seungwoo Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Ki Wung Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Young-Suk Jung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jeong-Hyun Yoon
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jaewon Lee
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Hae Young Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
5
|
Jin C, Zhao R, Hu W, Wu X, Zhou L, Shan L, Wu H. Topical hADSCs-HA Gel Promotes Skin Regeneration and Angiogenesis in Pressure Ulcers by Paracrine Activating PPARβ/δ Pathway. Drug Des Devel Ther 2024; 18:4799-4824. [PMID: 39478872 PMCID: PMC11523932 DOI: 10.2147/dddt.s474628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Background Pressure ulcer is common in the bedridden elderly with high mortality and lack of effective treatment. In this study, human-adipose-derived-stem-cells-hyaluronic acid gel (hADSCs-HA gel) was developed and applied topically to treat pressure ulcers, of which efficacy and paracrine mechanisms were investigated through in vivo and in vitro experiments. Methods Pressure ulcers were established on the backs of C57BL/6 mice and treated topically with hADSCs-HA gel, hADSCs, hyaluronic acid, and normal saline respectively. The rate of wound closure was observed continuously during the following 14 days and the wound samples were obtained for Western blot, histopathology, immunohistochemistry, and proteomic analysis. Human dermal fibroblasts (HDFs) and human venous endothelial cells (HUVECs) under normal or hypoxic conditions were treated with conditioned medium of human ADSCs (ADSC-CM), then CCK-8, scratch test, tube formation, and Western blot were conducted to evaluate the paracrine effects of hADSCs and to explore the underlying mechanism. Results The in vivo data demonstrated that hADSCs-HA gel significantly accelerated the healing of pressure ulcers by enhancing collagen expression, angiogenesis, and skin proliferation. The in vitro data revealed that hADSCs strengthened the proliferation and wound healing capabilities of HDFs and HUVECs, meanwhile promoted collagen secretion and tube formation through paracrine mode. ADSC-CM was also proved to exert protective effects on hypoxic HDFs and HUVECs. Besides, the results of proteomic analysis and Western blot elucidated that lipid metabolism and PPARβ/δ pathway mediated the healing effect of hADSCs-HA gel on pressure ulcers. Conclusion Our research showed that topical application of hADSCs-HA gel played an important role in dermal regeneration and angiogenesis. Therefore, hADSCs-HA gel exhibited the potential as a novel stem-cell-based therapeutic strategy of treating pressure ulcers in clinical practices.
Collapse
Affiliation(s)
- Chaoying Jin
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, People’s Republic of China
| | - Ruolin Zhao
- Yichen Biotechnology Co., Ltd, Hangzhou, Zhejiang, 311200, People’s Republic of China
- Fuyang Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, People’s Republic of China
| | - Weihang Hu
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, People’s Republic of China
| | - Xiaolong Wu
- Fuyang Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, People’s Republic of China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310060, People’s Republic of China
| | - Letian Shan
- Fuyang Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, People’s Republic of China
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310060, People’s Republic of China
| | - Huiling Wu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, People’s Republic of China
| |
Collapse
|
6
|
Zhao P, Zhang W, Zhou X, Zhao Y, Li A, Sun Y. Gypenoside XLIX alleviates sepsis-associated encephalopathy by targeting PPAR-α. Exp Neurol 2024; 383:115027. [PMID: 39490624 DOI: 10.1016/j.expneurol.2024.115027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Sepsis-related systemic inflammation is a deadly condition with high rates of morbidity and mortality. There is evidence that sepsis affects the brain, and the most frequent organ dysfunction linked to sepsis is sepsis-associated encephalopathy. Sepsis-related brain damage can drastically reduce a patient's chances of survival. However, a specific treatment for sepsis-associated encephalopathy is not currently available. Consequently, to treat the brain damage caused by sepsis, investigating novel therapeutic strategies is imperative. After establishing the CLP-induced mouse SAE model, we treated the mice with Gyp-XLIX and evaluated apoptosis, neuroinflammation, brain damage, and oxidative stress in the brain tissue of each group of mice. Furthermore, the protective effects of Gyp-XLIX on LPS-treated BV-2 cells were assessed. We discovered that Gyp-XLIX treatment increased the survival rate of CLP-treated mice, alleviated SAE-related cerebral nerve abnormalities, and decreased blood-brain barrier breakdown, all of which could better preserve brain tissue in vivo. Furthermore, we identified associated proteins and found that Gyp-XLIX may reduce oxidative stress, cell apoptosis, and inflammation in the brain tissues of SAE mice. This observation was further validated in vitro. We established that Gyp-XLIX alleviates SAE by targeting PPAR-α. These findings may be important for the clinical applicability of Gyp-XLIX in SAE treatment. We found that Gyp-XLIX can alleviate brain injury in SAE by targeting PPAR-α and is a potential protective agent for SAE.
Collapse
Affiliation(s)
- Panpan Zhao
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China
| | - Wei Zhang
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinyu Zhou
- Department of Neurology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222000, China
| | - Yikun Zhao
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China
| | - Aimin Li
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China.
| | - Yong Sun
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China.
| |
Collapse
|
7
|
Nielipińska D, Rubiak D, Pietrzyk-Brzezińska AJ, Małolepsza J, Błażewska KM, Gendaszewska-Darmach E. Stapled peptides as potential therapeutics for diabetes and other metabolic diseases. Biomed Pharmacother 2024; 180:117496. [PMID: 39362065 DOI: 10.1016/j.biopha.2024.117496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
The field of peptide drug research has experienced notable progress, with stapled peptides featuring stabilized α-helical conformation, emerging as a promising field. These peptides offer enhanced stability, cellular permeability, and binding affinity and exhibit potential in the treatment of diabetes and metabolic disorders. Stapled peptides, through the disruption of protein-protein interactions, present varied functionalities encompassing agonism, antagonism, and dual-agonism. This comprehensive review offers insight into the technology of peptide stapling and targeting of crucial molecular pathways associated with glucose metabolism, insulin secretion, and food intake. Additionally, we address the challenges in developing stapled peptides, including concerns pertaining to structural stability, peptide helicity, isomer mixture, and potential side effects.
Collapse
Affiliation(s)
- Dominika Nielipińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| | - Dominika Rubiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Agnieszka J Pietrzyk-Brzezińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland
| | - Joanna Małolepsza
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland.
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| |
Collapse
|
8
|
Chen CW, Yeh WL, Charoensaensuk V, Lin C, Yang LY, Chen MK, Yeh T, Tsai CF, Lu DY. Oral administration of osthole mitigates maladaptive behaviors through PPARα activation in mice subjected to repeated social defeat stress. Neurochem Int 2024; 179:105811. [PMID: 39053771 DOI: 10.1016/j.neuint.2024.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Psychological stress induces neuroinflammatory responses, which are associated with the pathogenesis of various psychiatric disorders, such as posttraumatic stress disorder and anxiety. Osthole-a natural coumarin isolated from the seeds of the Chinese herb Cnidium monnieri-exerts anti-inflammatory and antioxidative effects on the central nervous system. However, the therapeutic benefits of osthole against psychiatric disorders remain largely unknown. We previously demonstrated that mice subjected to repeated social defeat stress (RSDS) in the presence of aggressor mice exhibited symptoms of posttraumatic stress disorder, such as social avoidance and anxiety-like behaviors. In this study, we investigated the therapeutic effects of osthole and the underlying molecular mechanisms. Osthole exerted therapeutic effects on cognitive behaviors, mitigating anxiety-like behaviors and social avoidance in a mouse model of RSDS. The anti-inflammatory response induced by the oral administration of osthole was strengthened through the upregulation of heme oxygenase-1 expression. The expression of PPARα was inhibited in mice subjected to RSDS. Nonetheless, osthole treatment reversed the inhibition of PPARα expression. We identified a positive correlation between heme oxygenase-1 expression and PPARα expression in osthole-treated mice. In conclusion, osthole has potential as a Chinese herbal medicine for anxiety disorders. When designing novel drugs for psychiatric disorders, researchers should consider targeting the activation of PPARα.
Collapse
Affiliation(s)
- Chao-Wei Chen
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan
| | - Wei-Lan Yeh
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan; Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan
| | - Vichuda Charoensaensuk
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Mao-Kai Chen
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - Tong Yeh
- Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
9
|
Bisht A, Tewari D, Kumar S, Chandra S. Network pharmacology-based approach to investigate the molecular targets and molecular mechanisms of Rosmarinus officinalis L. for treating aging-related disorders. Biogerontology 2024; 25:793-808. [PMID: 39017748 DOI: 10.1007/s10522-024-10122-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Aging, a natural biological process, presents challenges in maintaining physiological well-being and is associated with increased vulnerability to diseases. Addressing aging mechanisms is crucial for developing effective preventive and therapeutic strategies against age-related ailments. Rosmarinus officinalis L. is a medicinal herb widely used in traditional medicine, containing diverse bioactive compounds that have been studied for their antioxidant and anti-inflammatory properties, which are associated with potential health benefits. Using network pharmacology, this study investigates the anti-aging function and underlying mechanisms of R. officinalis. Through network pharmacology analysis, the top 10 hub genes were identified, including TNF, CTNNB1, JUN, MTOR, SIRT1, and others associated with the anti-aging effects. This analysis revealed a comprehensive network of interactions, providing a holistic perspective on the multi-target mechanism underlying Rosemary's anti-aging properties. GO and KEGG pathway enrichment analysis revealed the relevant biological processes, molecular functions, and cellular components involved in treating aging-related conditions. KEGG pathway analysis shows that anti-aging targets of R. officinalis involved endocrine resistance, pathways in cancer, and relaxin signaling pathways, among others, indicating multifaceted mechanisms. Genes like MAPK1, MMP9, and JUN emerged as significant players. These findings enhance our understanding of R. officinalis's potential in mitigating aging-related disorders through multi-target effects on various biological processes and pathways. Such approaches may reduce the risk of failure in single-target and symptom-based drug discovery and therapy.
Collapse
Affiliation(s)
- Amisha Bisht
- Department of Botany, Pt. Badridutt Pandey Campus Bageshwar, Soban Singh Jeena University, Almora, Uttarakhand, 263601, India
| | - Disha Tewari
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, 263136, India
| | - Sanjay Kumar
- Department of Botany, Pt. Badridutt Pandey Campus Bageshwar, Soban Singh Jeena University, Almora, Uttarakhand, 263601, India.
| | - Subhash Chandra
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, 263601, India.
| |
Collapse
|
10
|
Oidor-Chan VH, Arellano-Mauricio AB, Del Valle-Mondragón L, Ibarra-Lara L, Ponce-Sánchez C, Rodríguez-Maldonado E, Mendoza-Espinoza JA, Cruz-Sosa F, Guarner-Lans V, Patlán M, Díaz de León-Sánchez F, Castrejón-Téllez V. Chemical analysis of freeze-dried seeds of Stenocereus stellatus (white tunillo) components and evaluation of their effect on prediabetes reversion in an experimental model in female Wistar rats. Food Funct 2024; 15:9235-9253. [PMID: 39162034 DOI: 10.1039/d4fo01908c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Prediabetes is defined as a state of moderate hyperglycemia. Here, we used freeze-dried seeds of Stenocereus stellatus (white tunillo) as a possible therapeutic strategy for the treatment of prediabetes. In the aqueous extract of freeze-dried seeds of white tunillo, polyphenols were identified using the Folin-Ciocalteu technique, separated by UPLC and analyzed by infrared spectrophotometry. Five well-defined peaks with good resolution were observed in the chromatogram of the aqueous extract obtained by UPLC. Two of these peaks corresponded to polyphenols with similarity to quercetin and rutin. The subchronic oral administration of freeze-dried seeds of white tunillo for 14 days in a prediabetes model in female Wistar rats reversed hyperglycemia and glucose intolerance. Treatment with the freeze-dried seeds reversed the decrease in the hepatic expression of Akt, eNOS, and p-eNOSSer1177 but did not reverse the decrease in MnSOD, catalase, and GPx1. No changes in the expression of GPx4 and p-AktSer473 were observed in the pathological state or with the treatment but there was an increase in the expression and activity of eNOS. The bioactive compounds present in the freeze-dried seeds of Stenocereus stellatus could provide guidelines for studying the mechanisms of action through which they reverse signs of prediabetes.
Collapse
Affiliation(s)
- Víctor Hugo Oidor-Chan
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico.
| | | | | | - Luz Ibarra-Lara
- Department of Pharmacology, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, Mexico.
| | - Claudia Ponce-Sánchez
- Experimental Biology Program, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico.
| | - Emma Rodríguez-Maldonado
- Laboratory of Cell Biology, Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, Mexico.
| | | | - Francisco Cruz-Sosa
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico.
| | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080, Ciudad de México, Mexico.
| | - M Patlán
- Subdirection of Basic and Technological Research, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, Mexico.
| | - Fernando Díaz de León-Sánchez
- Laboratory of Post-harvest of Plant Genetic Resources and Natural Products, Department of Health Sciences, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco, Núm. 186, Col. Leyes de Reforma 1 A Sección, Alcaldía Iztapalapa, C.P. 09310, Ciudad de México, Mexico.
| | - Vicente Castrejón-Téllez
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080, Ciudad de México, Mexico.
| |
Collapse
|
11
|
Shamsesfandabadi P, Patel A, Liang Y, Shepard MJ, Wegner RE. Radiation-Induced Cognitive Decline: Challenges and Solutions. Cancer Manag Res 2024; 16:1043-1052. [PMID: 39183756 PMCID: PMC11345022 DOI: 10.2147/cmar.s441360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Radiation therapy, a common treatment for central nervous system cancers, can negatively impact cognitive function, resulting in radiation-induced cognitive decline (RICD). RICD involves a decline in cognitive abilities such as memory and attention, likely due to damage to brain white matter, inflammation, and oxidative stress. The multifactorial nature of RICD poses challenges including different mechanisms of injury (neurogenesis, oxidative stress and neuroinflammation, dendritic structure alterations and vascular effects) and confounding factors like advanced age, and pre-existing conditions. Despite these challenges, several potential solutions exist. Neuroprotective agents like antioxidants can mitigate radiation damage, while cognitive rehabilitation techniques such as cognitive training and memory strategies improve cognitive function. Advanced imaging techniques like magnetic resonance imaging (MRI) help identify vulnerable brain areas, and proton therapy offers precise targeting of cancer cells, sparing healthy tissue. Multidisciplinary care teams are crucial for managing RICD's cognitive and psychological effects. Personalized medicine, using genetic and molecular data, can identify high-risk patients and tailor treatments accordingly. Emerging therapies, including stem cell therapy and regenerative medicine, offer hope for repairing or replacing damaged brain tissue. Addressing RICD is vital for cancer survivors, necessitating consideration of cognitive function and provision of appropriate support and resources for those experiencing cognitive decline.
Collapse
Affiliation(s)
| | - Arpeet Patel
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Yun Liang
- Radiation Oncology department, Allegheny Health Network, Pittsburgh, PA, USA
| | - Matthew J Shepard
- Neurosurgery Department, Allegheny Health Network, Pittsburgh, PA, USA
| | - Rodney E Wegner
- Radiation Oncology department, Allegheny Health Network, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Lee SG, Rhee J, Seok J, Kim J, Kim MW, Song GE, Park S, Jeong KS, Lee S, Lee YH, Jeong Y, Kim CY, Chung HM. Promotion of maturation of human pluripotent stem cell-derived cardiomyocytes via treatment with the peroxisome proliferator-activated receptor alpha agonist Fenofibrate. Stem Cells Transl Med 2024; 13:750-762. [PMID: 38946019 PMCID: PMC11328931 DOI: 10.1093/stcltm/szae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/04/2024] [Indexed: 07/02/2024] Open
Abstract
As research on in vitro cardiotoxicity assessment and cardiac disease modeling becomes more important, the demand for human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is increasing. However, it has been reported that differentiated hPSC-CMs are in a physiologically immature state compared to in vivo adult CMs. Since immaturity of hPSC-CMs can lead to poor drug response and loss of acquired heart disease modeling, various approaches have been attempted to promote maturation of CMs. Here, we confirm that peroxisome proliferator-activated receptor alpha (PPARα), one of the representative mechanisms of CM metabolism and cardioprotective effect also affects maturation of CMs. To upregulate PPARα expression, we treated hPSC-CMs with fenofibrate (Feno), a PPARα agonist used in clinical hyperlipidemia treatment, and demonstrated that the structure, mitochondria-mediated metabolism, and electrophysiology-based functions of hPSC-CMs were all mature. Furthermore, as a result of multi electrode array (MEA)-based cardiotoxicity evaluation between control and Feno groups according to treatment with arrhythmia-inducing drugs, drug response was similar in a dose-dependent manner. However, main parameters such as field potential duration, beat period, and spike amplitude were different between the 2 groups. Overall, these results emphasize that applying matured hPSC-CMs to the field of preclinical cardiotoxicity evaluation, which has become an essential procedure for new drug development, is necessary.
Collapse
Affiliation(s)
- Seul-Gi Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Gwangjin-Gu, Seoul 05029, Republic of Korea
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jooeon Rhee
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jin Seok
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jin Kim
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Min Woo Kim
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Gyeong-Eun Song
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Shinhye Park
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyu Sik Jeong
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Suemin Lee
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun Hyeong Lee
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Youngin Jeong
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - C-Yoon Kim
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyung Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Gwangjin-Gu, Seoul 05029, Republic of Korea
- Miraecell Bio Co. Ltd., Seoul 04795, Korea
| |
Collapse
|
13
|
Dey AD, Mannan A, Dhiman S, Singh TG. Unlocking new avenues for neuropsychiatric disease therapy: the emerging potential of Peroxisome proliferator-activated receptors as promising therapeutic targets. Psychopharmacology (Berl) 2024; 241:1491-1516. [PMID: 38801530 DOI: 10.1007/s00213-024-06617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
RATIONALE Peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate various physiological processes such as inflammation, lipid metabolism, and glucose homeostasis. Recent studies suggest that targeting PPARs could be beneficial in treating neuropsychiatric disorders by modulating neuronal function and signaling pathways in the brain. PPAR-α, PPAR-δ, and PPAR-γ have been found to play important roles in cognitive function, neuroinflammation, and neuroprotection. Dysregulation of PPARs has been associated with neuropsychiatric disorders like bipolar disorder, schizophrenia, major depression disorder, and autism spectrum disorder. The limitations and side effects of current treatments have prompted research to target PPARs as a promising novel therapeutic strategy. Preclinical and clinical studies have shown the potential of PPAR agonists and antagonists to improve symptoms associated with these disorders. OBJECTIVE This review aims to provide an overview of the current understanding of PPARs in neuropsychiatric disorders, their potential as therapeutic targets, and the challenges and future directions for developing PPAR-based therapies. METHODS An extensive literature review of various search engines like PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out with the keywords "PPAR, Neuropsychiatric disorders, Oxidative stress, Inflammation, Bipolar Disorder, Schizophrenia, Major depression disorder, Autism spectrum disorder, molecular pathway". RESULT & CONCLUSION Although PPARs present a hopeful direction for innovative therapeutic approaches in neuropsychiatric conditions, additional research is required to address obstacles and convert this potential into clinically viable and individualized treatments.
Collapse
Affiliation(s)
- Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | | |
Collapse
|
14
|
Putri AF, Utomo DH, Tunjung WAS, Putri WA. Analysis of the anti-Alzheimer potential of bioactive compounds from Citrus hystrix DC. peel, leaf, and essential oil by network pharmacology. Heliyon 2024; 10:e33496. [PMID: 39050443 PMCID: PMC11267028 DOI: 10.1016/j.heliyon.2024.e33496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease (AD) is the most known neurodegenerative disease, and its prevalence is predicted to increase significantly. Discovering novel drugs and treatments for AD is urgently needed. Drugs from natural products have been preferred lately due to their high potential and low toxicity. Citrus hystrix DC. (kaffir lime; KL) is one such herbal plant that is found abundantly in Southeast Asia with many biological activities. In this study, the potential of bioactive compounds from KL peel, leaf, and essential oil as anti-AD agents was explored using network pharmacology. First, the compounds were identified with KNApSAcK database and related literature. Subsequently, the targets of each corresponding compound were determined with SEA Search Server and Swiss Target Prediction, while the proteins associated with AD were identified using OMIM, GenCLiP3, and DisGeNET. Furthermore, a protein-protein interaction network and a compound-target interaction network were constructed to identify the most crucial proteins and compounds in the network by employing Cytoscape v3.9.1. The study continued with pathway enrichment analysis using STRING v1.7.1, molecular docking with PyRx and SwissDock, and molecular dynamics simulation with YASARA for further confirmation. Our results showed that almost all the secondary metabolites of KL targeted AD-associated genes, with oxypeucedanin and citrusoside A showing the highest anti-AD potential and targeting essential genes, EGFR and MAPK14, respectively. These targets were associated with inflammatory and oxidative stress pathways, indicating the potential mechanism of KL in attenuating AD clinical manifestation.
Collapse
Affiliation(s)
- Adhisa Fathirisari Putri
- Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
- Bioinformatics Research Center, INBIO-Indonesia, Malang, 65162, Indonesia
| | - Didik Huswo Utomo
- Bioinformatics Research Center, INBIO-Indonesia, Malang, 65162, Indonesia
- Biosystem Education Center, Brawijaya University, Malang, 65145, Indonesia
| | - Woro Anindito Sri Tunjung
- Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Wahyu Aristyaning Putri
- Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
| |
Collapse
|
15
|
Padamsey Z, Katsanevaki D, Maeso P, Rizzi M, Osterweil EE, Rochefort NL. Sex-specific resilience of neocortex to food restriction. eLife 2024; 12:RP93052. [PMID: 38976495 PMCID: PMC11230624 DOI: 10.7554/elife.93052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Mammals have evolved sex-specific adaptations to reduce energy usage in times of food scarcity. These adaptations are well described for peripheral tissue, though much less is known about how the energy-expensive brain adapts to food restriction, and how such adaptations differ across the sexes. Here, we examined how food restriction impacts energy usage and function in the primary visual cortex (V1) of adult male and female mice. Molecular analysis and RNA sequencing in V1 revealed that in males, but not in females, food restriction significantly modulated canonical, energy-regulating pathways, including pathways associated waith AMP-activated protein kinase, peroxisome proliferator-activated receptor alpha, mammalian target of rapamycin, and oxidative phosphorylation. Moreover, we found that in contrast to males, food restriction in females did not significantly affect V1 ATP usage or visual coding precision (assessed by orientation selectivity). Decreased serum leptin is known to be necessary for triggering energy-saving changes in V1 during food restriction. Consistent with this, we found significantly decreased serum leptin in food-restricted males but no significant change in food-restricted females. Collectively, our findings demonstrate that cortical function and energy usage in female mice are more resilient to food restriction than in males. The neocortex, therefore, contributes to sex-specific, energy-saving adaptations in response to food restriction.
Collapse
Affiliation(s)
- Zahid Padamsey
- Wellcome-MRC Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Danai Katsanevaki
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
| | - Patricia Maeso
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Manuela Rizzi
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Emily E Osterweil
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
- Rosamund Stone Zander Translational Neuroscience Center, F.M. Kirby Center, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Nathalie L Rochefort
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
16
|
Hu T, Yu WP, Wang XQ, Wang ZY, Xu ZQ, Hu FJ, Liu JC, Yu F, Wang LJ. Activation of PPAR-α attenuates myocardial ischemia/reperfusion injury by inhibiting ferroptosis and mitochondrial injury via upregulating 14-3-3η. Sci Rep 2024; 14:15246. [PMID: 38956068 PMCID: PMC11219969 DOI: 10.1038/s41598-024-64638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
This study aimed to explore the effects of peroxisome proliferator-activated receptor α (PPAR-α), a known inhibitor of ferroptosis, in Myocardial ischemia/reperfusion injury (MIRI) and its related mechanisms. In vivo and in vitro MIRI models were established. Our results showed that activation of PPAR-α decreased the size of the myocardial infarct, maintained cardiac function, and decreased the serum contents of creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and Fe2+ in ischemia/reperfusion (I/R)-treated mice. Additionally, the results of H&E staining, DHE staining, TUNEL staining, and transmission electron microscopy demonstrated that activation of PPAR-α inhibited MIRI-induced heart tissue and mitochondrial damage. It was also found that activation of PPAR-α attenuated MIRI-induced ferroptosis as shown by a reduction in malondialdehyde, total iron, and reactive oxygen species (ROS). In vitro experiments showed that intracellular contents of malondialdehyde, total iron, LDH, reactive oxygen species (ROS), lipid ROS, oxidized glutathione disulphide (GSSG), and Fe2+ were reduced by the activation of PPAR-α in H9c2 cells treated with anoxia/reoxygenation (A/R), while the cell viability and GSH were increased after PPAR-α activation. Additionally, changes in protein levels of the ferroptosis marker further confirmed the beneficial effects of PPAR-α activation on MIRI-induced ferroptosis. Moreover, the results of immunofluorescence and dual-luciferase reporter assay revealed that PPAR-α achieved its activity via binding to the 14-3-3η promoter, promoting its expression level. Moreover, the cardioprotective effects of PPAR-α could be canceled by pAd/14-3-3η-shRNA or Compound C11 (14-3-3η inhibitor). In conclusion, our results indicated that ferroptosis plays a key role in aggravating MIRI, and PPAR-α/14-3-3η pathway-mediated ferroptosis and mitochondrial injury might be an effective therapeutic target against MIRI.
Collapse
Affiliation(s)
- Tie Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wen-Peng Yu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xiu-Qi Wang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zi-Yao Wang
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Zhi-Qiang Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Fa-Jia Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Fan Yu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Li-Jun Wang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
17
|
Skoczyńska A, Ołdakowska M, Dobosz A, Adamiec R, Gritskevich S, Jonkisz A, Lebioda A, Adamiec-Mroczek J, Małodobra-Mazur M, Dobosz T. PPARs in Clinical Experimental Medicine after 35 Years of Worldwide Scientific Investigations and Medical Experiments. Biomolecules 2024; 14:786. [PMID: 39062500 PMCID: PMC11275227 DOI: 10.3390/biom14070786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
This year marks the 35th anniversary of Professor Walter Wahli's discovery of the PPARs (Peroxisome Proliferator-Activated Receptors) family of nuclear hormone receptors. To mark the occasion, the editors of the scientific periodical Biomolecules decided to publish a special issue in his honor. This paper summarizes what is known about PPARs and shows how trends have changed and how research on PPARs has evolved. The article also highlights the importance of PPARs and what role they play in various diseases and ailments. The paper is in a mixed form; essentially it is a review article, but it has been enriched with the results of our experiments. The selection of works was subjective, as there are more than 200,000 publications in the PubMed database alone. First, all papers done on an animal model were discarded at the outset. What remained was still far too large to describe directly. Therefore, only papers that were outstanding, groundbreaking, or simply interesting were described and briefly commented on.
Collapse
Affiliation(s)
- Anna Skoczyńska
- Department of Internal and Occupational Medicine and Hypertension, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Monika Ołdakowska
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Agnieszka Dobosz
- Department of Basic Medical Sciences and Immunology, Division of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Rajmund Adamiec
- Department of Diabetology and Internal Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
- Department of Internal Medicine, Faculty of Medical and Technical Sciences, Karkonosze University of Applied Sciences, Lwówiecka 18, 58-506 Jelenia Góra, Poland
| | - Sofya Gritskevich
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Anna Jonkisz
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Arleta Lebioda
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Joanna Adamiec-Mroczek
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Tadeusz Dobosz
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| |
Collapse
|
18
|
Żulińska S, Strosznajder AK, Strosznajder JB. Current View on PPAR-α and Its Relation to Neurosteroids in Alzheimer's Disease and Other Neuropsychiatric Disorders: Promising Targets in a Therapeutic Strategy. Int J Mol Sci 2024; 25:7106. [PMID: 39000217 PMCID: PMC11241121 DOI: 10.3390/ijms25137106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) may play an important role in the pathomechanism/pathogenesis of Alzheimer's disease (AD) and several other neurological/neuropsychiatric disorders. AD leads to progressive alterations in the redox state, ion homeostasis, lipids, and protein metabolism. Significant alterations in molecular processes and the functioning of several signaling pathways result in the degeneration and death of synapses and neuronal cells, leading to the most severe dementia. Peroxisome proliferator-activated receptor alpha (PPAR-α) is among the processes affected by AD; it regulates the transcription of genes related to the metabolism of cholesterol, fatty acids, other lipids and neurotransmission, mitochondria biogenesis, and function. PPAR-α is involved in the cholesterol transport to mitochondria, the substrate for neurosteroid biosynthesis. PPAR-α-coding enzymes, such as sulfotransferases, which are responsible for neurosteroid sulfation. The relation between PPAR-α and cholesterol/neurosteroids may have a significant impact on the course and progression of neurodegeneration/neuroprotection processes. Unfortunately, despite many years of intensive studies, the pathogenesis of AD is unknown and therapy for AD and other neurodegenerative diseases is symptomatic, presenting a significant goal and challenge today. This review presents recent achievements in therapeutic approaches for AD, which are targeting PPAR-α and its relation to cholesterol and neurosteroids in AD and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sylwia Żulińska
- Department of Cellular Signaling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland;
| | - Anna K. Strosznajder
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska St. 27, 00-665 Warsaw, Poland;
| | - Joanna B. Strosznajder
- Department of Cellular Signaling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland;
| |
Collapse
|
19
|
Saganuwan SA. Structure-activity relationship of pharmacophores and toxicophores: the need for clinical strategy. Daru 2024:10.1007/s40199-024-00525-y. [PMID: 38935265 DOI: 10.1007/s40199-024-00525-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVES Sometimes clinical efficacy and potential risk of therapeutic and toxic agents are difficult to predict over a long period of time. Hence there is need for literature search with a view to assessing cause of toxicity and less efficacy of drugs used in clinical practice. METHOD Hence literatures were searched for physicochemical properties, chemical formulas, molecular masses, pH values, ionization, receptor type, agonist and antagonist, therapeutic, toxic and structure-activity relationship of chemical compounds with pharmacophore and toxicophore, with a view to identifying high efficacious and relative low toxic agents. Inclusion criteria were manuscripts published on PubMed, Scopus, Web of Science, PubMed Central, Google Scholar among others, between 1960 and 2023. Keywords such as pharmacophore, toxicophore, structure-activity-relationship and disease where also searched. The exclusion criteria were the chemicals that lack pharmacophore, toxicophore and manuscripts published before 1960. RESULTS Findings have shown that pharmacophore and toxicophore functional groups determine clinical efficacy and safety of therapeutics, but if they overlap therapeutic and toxicity effects go concurrently. Hence the functional groups, dose, co-administration and concentration of drugs at receptor, drug-receptor binding and duration of receptor binding are the determining factors of pharmacophore and toxicophore activity. Molecular mass, chemical configuration, pH value, receptor affinity and binding capacity, multiple pharmacophores, hydrophilic/lipophilic nature of the chemical contribute greatly to functionality of pharmacophore and toxicophore. CONCLUSION Daily single therapy, avoidance of reversible pharmacology, drugs with covalent adduct, maintenance of therapeutic dose, and the use of multiple pharmacophores for terminal diseases will minimize toxicity and improve efficacy.
Collapse
Affiliation(s)
- Saganuwan Alhaji Saganuwan
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Federal University of Agriculture, Makurdi, P.M.B. 2373, Benue State, Nigeria.
| |
Collapse
|
20
|
Zhao P, Fan S, Zhou Y, Huang M, Gao Y, Bi H. Constitutive Androstane Receptor and Peroxisome Proliferator-Activated Receptor α Do Not Perform Liquid-Liquid Phase Separation in Cells. J Pharmacol Exp Ther 2024; 390:88-98. [PMID: 38719477 DOI: 10.1124/jpet.124.002174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/23/2024] [Indexed: 06/23/2024] Open
Abstract
Constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor α (PPARα) are members of the nuclear receptor superfamily, which regulates various physiologic and pathologic processes. Phase separation is a dynamic biophysical process in which biomacromolecules form liquid-like condensates, which have been identified as contributors to many cellular functions, such as signal transduction and transcription regulation. However, the possibility of phase separation for CAR and PPARα remains unknown. This study explored the potential phase separation of CAR and PPARα The computational analysis utilizing algorithm tools examining the intrinsically disordered regions of CAR and PPARα suggested a limited likelihood of undergoing phase separation. Experimental assays under varying conditions of hyperosmotic stress and agonist treatments confirmed the absence of phase separation for these receptors. Additionally, the optoDroplets assay, which utilizes blue light stimulation to induce condensate formation, showed that there was no condensate formation of the fusion protein of Cry2 with CAR or PPARα Furthermore, phase separation of CAR or PPARα did not occur despite reduced target expression under hyperosmotic stress. In conclusion, these findings revealed that neither the activation of CAR and PPARα nor hyperosmotic stress induces phase separation of CAR and PPARα in cells. SIGNIFICANCE STATEMENT: Constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor α (PPARα) are key regulators of various functions in the body. This study showed that CAR and PPARα do not exhibit phase separation under hyperosmotic stress or after agonist-induced activation. These findings provide new insights into the CAR and PPARα biology and physiology.
Collapse
Affiliation(s)
- Pengfei Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (P.Z., S.F., H.B.); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.Z., M.H., Y.G., H.B.); and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China (H.B.)
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (P.Z., S.F., H.B.); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.Z., M.H., Y.G., H.B.); and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China (H.B.)
| | - Yanying Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (P.Z., S.F., H.B.); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.Z., M.H., Y.G., H.B.); and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China (H.B.)
| | - Min Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (P.Z., S.F., H.B.); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.Z., M.H., Y.G., H.B.); and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China (H.B.)
| | - Yue Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (P.Z., S.F., H.B.); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.Z., M.H., Y.G., H.B.); and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China (H.B.)
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (P.Z., S.F., H.B.); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.Z., M.H., Y.G., H.B.); and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China (H.B.)
| |
Collapse
|
21
|
Kaszyńska AA. Cannabinoids: Potential for Modulation and Enhancement When Combined with Vitamin B12 in Case of Neurodegenerative Disorders. Pharmaceuticals (Basel) 2024; 17:813. [PMID: 38931480 PMCID: PMC11207064 DOI: 10.3390/ph17060813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The enduring relationship between humanity and the cannabis plant has witnessed significant transformations, particularly with the widespread legalization of medical cannabis. This has led to the recognition of diverse pharmacological formulations of medical cannabis, containing 545 identified natural compounds, including 144 phytocannabinoids like Δ9-THC and CBD. Cannabinoids exert distinct regulatory effects on physiological processes, prompting their investigation in neurodegenerative diseases. Recent research highlights their potential in modulating protein aggregation and mitochondrial dysfunction, crucial factors in conditions such as Alzheimer's Disease, multiple sclerosis, or Parkinson's disease. The discussion emphasizes the importance of maintaining homeodynamics in neurodegenerative disorders and explores innovative therapeutic approaches such as nanoparticles and RNA aptamers. Moreover, cannabinoids, particularly CBD, demonstrate anti-inflammatory effects through the modulation of microglial activity, offering multifaceted neuroprotection including mitigating aggregation. Additionally, the potential integration of cannabinoids with vitamin B12 presents a holistic framework for addressing neurodegeneration, considering their roles in homeodynamics and nervous system functioning including the hippocampal neurogenesis. The potential synergistic therapeutic benefits of combining CBD with vitamin B12 underscore a promising avenue for advancing treatment strategies in neurodegenerative diseases. However, further research is imperative to fully elucidate their effects and potential applications, emphasizing the dynamic nature of this field and its potential to reshape neurodegenerative disease treatment paradigms.
Collapse
Affiliation(s)
- Anna Aleksandra Kaszyńska
- The Centre of Neurocognitive Research, Institute of Psychology, SWPS University of Social Sciences and Humanities, Chodakowska 19/31, 03-815 Warszawa, Poland
| |
Collapse
|
22
|
Mhalhel K, Kadmi Y, Ben Chira A, Levanti M, Pansera L, Cometa M, Sicari M, Germanà A, Aragona M, Montalbano G. Urtica dioica Extract Abrogates Chlorpyrifos-Induced Toxicity in Zebrafish Larvae. Int J Mol Sci 2024; 25:6631. [PMID: 38928336 PMCID: PMC11203861 DOI: 10.3390/ijms25126631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Chlorpyrifos (CPF) is a widely used organophosphate insecticide, though its excessive use causes environmental contamination, raising concerns about its adverse effects on human health. In this regard, Urtica dioica stands out as a promising candidate for counteracting chemical 'contaminant' toxicity thanks to its therapeutic properties. Therefore, our study aimed to investigate the potential of an Urtica dioica ethanolic extract (UDE) to mitigate chlorpyrifos-induced toxicity. Eight compounds in the Urtica dioica ethanolic extract have been identified, most of which present significant potential as antioxidant, anti-inflammatory, and neuroprotective agents. Chlorpyrifos exposure altered hatching rates, increased the incidence of teratogenic effects, and upregulated the expression of brain-derived neurotrophic factor (Bdnf) in zebrafish larvae telencephalon. On the other hand, UDE demonstrated a preventive effect against CPF-induced teratogenicity, which is expressed by a lower morphological deformity rate. Moreover, the UDE showed a rather protective effect, maintaining the physiological condition of the telencephalon. Additionally, CPF altered the locomotor behavior of larvae, which was characterized by irregular swimming and increased activity. This defective behavioral pattern was slightly attenuated by the UDE. Our findings suggest that the UDE possesses significant protective properties against CPF-induced toxicity, probably conferred by its natural antioxidant and anti-inflammatory contents. Still, further research is needed to elucidate the recruited mechanisms and implicated pathways on UDE's protective effects.
Collapse
Affiliation(s)
- Kamel Mhalhel
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Yassine Kadmi
- LASIRE, Equipe Physico-Chimie de l’Environnement, CNRS UMR 8516, Université Lille, Sciences et Technologies, CEDEX, 59655 Villeneuve d′Ascq, France;
- Department of Chemistry, Université d’Artois, IUT de Béthune, 62400 Béthune, France
| | - Ahlem Ben Chira
- LR22ES01 Laboratory of Biomathematics, Faculty of Sciences of Sfax, Department of Mathematics, P.O. Box 1171, Sfax 3000, Tunisia;
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Marzio Cometa
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Mirea Sicari
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| |
Collapse
|
23
|
Tremblay C, Aslam S, Walker JE, Lorenzini I, Intorcia AJ, Arce RA, Choudhury P, Adler CH, Shill HA, Driver-Dunckley E, Mehta S, Piras IS, Belden CM, Atri A, Beach TG, Serrano GE. RNA sequencing of olfactory bulb in Parkinson's disease reveals gene alterations associated with olfactory dysfunction. Neurobiol Dis 2024; 196:106514. [PMID: 38663633 PMCID: PMC11132317 DOI: 10.1016/j.nbd.2024.106514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
The olfactory bulb is involved early in the pathophysiology of Parkinson's disease (PD), which is consistent with the early onset of olfactory dysfunction. Identifying the molecular mechanisms through which PD affects the olfactory bulb could lead to a better understanding of the pathophysiology and etiology of olfactory dysfunction in PD. We specifically aimed to assess gene expression changes, affected pathways and co-expression network by whole transcriptomic profiling of the olfactory bulb in subjects with clinicopathologically defined PD. Bulk RNA sequencing was performed on frozen human olfactory bulbs of 20 PD and 20 controls without dementia or any other neurodegenerative disorder, from the Arizona Study of Aging and Neurodegenerative disorders and the Brain and Body Donation Program. Differential expression analysis (19 PD vs 19 controls) revealed 2164 significantly differentially expressed genes (1090 upregulated and 1074 downregulated) in PD. Pathways enriched in downregulated genes included oxidative phosphorylation, olfactory transduction, metabolic pathways, and neurotransmitters synapses while immune and inflammatory responses as well as cellular death related pathways were enriched within upregulated genes. An overrepresentation of microglial and astrocyte-related genes was observed amongst upregulated genes, and excitatory neuron-related genes were overrepresented amongst downregulated genes. Co-expression network analysis revealed significant modules highly correlated with PD and olfactory dysfunction that were found to be involved in the MAPK signaling pathway, cytokine-cytokine receptor interaction, cholinergic synapse, and metabolic pathways. LAIR1 (leukocyte associated immunoglobulin like receptor 1) and PPARA (peroxisome proliferator activated receptor alpha) were identified as hub genes with a high discriminative power between PD and controls reinforcing an important role of neuroinflammation in the olfactory bulb of PD subjects. Olfactory identification test score positively correlated with expression of genes coding for G-coupled protein, glutamatergic, GABAergic, and cholinergic receptor proteins and negatively correlated with genes for proteins expressed in glial olfactory ensheathing cells. In conclusion, this study reveals gene alterations associated with neuroinflammation, neurotransmitter dysfunction, and disruptions of factors involved in the initiation of olfactory transduction signaling that may be involved in PD-related olfactory dysfunction.
Collapse
Affiliation(s)
| | - Sidra Aslam
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | | | | | | | | | | | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Holly A Shill
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Erika Driver-Dunckley
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Shyamal Mehta
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, AZ, USA; Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
24
|
Zhao Y, Zhao X, Feng X. Alpha-lipoic acid upregulates the PPARγ/NRF2/GPX4 signal pathway to inhibit ferroptosis in the pathogenesis of unexplained recurrent pregnancy loss. Open Med (Wars) 2024; 19:20240963. [PMID: 38859880 PMCID: PMC11163161 DOI: 10.1515/med-2024-0963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/16/2024] [Accepted: 04/07/2024] [Indexed: 06/12/2024] Open
Abstract
Aim With unknown etiology and limited treatment options, unexplained recurrent pregnancy loss (URPL) remains a thorny problem. Ferroptosis, a newly identified type of cell death, has been shown to be crucial in the development in reproductive disorders. This study aims to explore the specific mechanism of ferroptosis in URPL and to uncover whether alpha-lipoic acid (ALA) can inhibit ferroptosis, and then exert a protective effect in URPL. Method The decidua tissues of URPL and control patients who actively terminated pregnancy were collected. The CBA/J × DBA/2 murine models of URPL were established, and were randomly treated with peroxisome proliferator activated receptor γ (PPARγ) agonists (Rosiglitazone) and ALA. The CBA/J × BALB/c murine models of normal pregnancy were intraperitoneally injected with PPARγ inhibitors (T0070907). Here, we used reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH)/GSSG, and FeRhoNox-1 analysis to detect the level of ferroptosis. We used quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analysis to evaluate the mRNA level of PPARγ. Besides, western blot and immunofluorescence were utilized to test the expression profile of PPARγ/nuclear factor erythroid 2-related factor 2 (NRF2)/glutathione peroxidase 4 (GPX4). Results In this study, we found that iron deposition was increased in the decidual tissue of patients with URPL. Additionally, the changes in cell morphology, the level of ROS, MDA, GSH, and the expression of ferroptosis marker proteins NRF2/GPX4 confirmed activated ferroptosis in URPL. Besides, bioinformatics analysis combined with experiments confirmed that PPARγ was critical in triggering NRF2/GPX4 pathway in URPL. Furthermore, URPL mouse models were established, and the results showed that PPARγ/NRF2/GPX4-mediated ferroptosis was also significantly increased, which could be mitigated by ALA treatment. Conclusion Overall, these findings suggest that ferroptosis may play an important role in URPL, and ALA might be a promising therapeutic drug for improving pregnancy outcomes in URPL via targeting the PPARγ/NRF2/GPX4 pathway.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiaoxuan Zhao
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, China
| | - Xiaoling Feng
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| |
Collapse
|
25
|
Kwon S, Park KS, Yoon KH. Regulator of Lipid Metabolism NHR-49 Mediates Pathogen Avoidance through Precise Control of Neuronal Activity. Cells 2024; 13:978. [PMID: 38891110 PMCID: PMC11172349 DOI: 10.3390/cells13110978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Precise control of neuronal activity is crucial for the proper functioning of neurons. How lipid homeostasis contributes to neuronal activity and how much of it is regulated by cells autonomously is unclear. In this study, we discovered that absence of the lipid regulator nhr-49, a functional ortholog of the peroxisome proliferator-activated receptor (PPAR) in Caenorhabditis elegans, resulted in defective pathogen avoidance behavior against Pseudomonas aeruginosa (PA14). Functional NHR-49 was required in the neurons, and more specifically, in a set of oxygen-sensing body cavity neurons, URX, AQR, and PQR. We found that lowering the neuronal activity of the body cavity neurons improved avoidance in nhr-49 mutants. Calcium imaging in URX neurons showed that nhr-49 mutants displayed longer-lasting calcium transients in response to an O2 upshift, suggesting that excess neuronal activity leads to avoidance defects. Cell-specific rescue of NHR-49 in the body cavity neurons was sufficient to improve pathogen avoidance, as well as URX neuron calcium kinetics. Supplementation with oleic acid also improved avoidance behavior and URX calcium kinetics, suggesting that the defective calcium response in the neuron is due to lipid dysfunction. These findings highlight the role of cell-autonomous lipid regulation in neuronal physiology and immune behavior.
Collapse
Affiliation(s)
- Saebom Kwon
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Kyoung-hye Yoon
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| |
Collapse
|
26
|
Wu ZJ, Zhao YY, Hao SJ, Dong BB, Zheng YX, Liu B, Li J. Combining fecal 16 S rRNA sequencing and spinal cord metabolomics analysis to explain the modulatory effect of PPARα on neuropathic pain. Brain Res Bull 2024; 211:110943. [PMID: 38614408 DOI: 10.1016/j.brainresbull.2024.110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Existing evidence suggests that the composition of the gut microbiota is associated with neuropathic pain (NP), but the mechanistic link is elusive. Peroxisome proliferator-activated receptor α (PPARα) has been shown to be a pharmacological target for the treatment of metabolic disorders, and its expression is also involved in inflammatory regulation. The aim of this study was to investigate the important modulatory effects of PPARα on gut microbiota and spinal cord metabolites in mice subjected to chronic constriction injury. METHODS We analyzed fecal microbiota and spinal cord metabolic alterations in mice from the sham, CCI, GW7647 (PPARα agonist) and GW6471 (PPARα antagonist) groups by 16 S rRNA amplicon sequencing and untargeted metabolomics analysis. On this basis, the intestinal microbiota and metabolites that were significantly altered between treatment groups were analyzed in a combined multiomics analysis. We also investigated the effect of PPARα on the polarization fractionation of spinal microglia. RESULTS PPARα agonist significantly reduce paw withdrawal threshold and paw withdrawal thermal latency, while PPARα antagonist significantly increase paw withdrawal threshold and paw withdrawal thermal latency. 16 S rRNA gene sequencing showed that intraperitoneal injection of GW7647 or GW6471 significantly altered the abundance, homogeneity and composition of the gut microbiome. Analysis of the spinal cord metabolome showed that the levels of spinal cord metabolites were shifted after exposure to GW7647 or GW6471. Alterations in the composition of gut microbiota were significantly associated with the abundance of various spinal cord metabolites. The abundance of Licheniformes showed a significant positive correlation with nicotinamide, benzimidazole, eicosanoids, and pyridine abundance. Immunofluorescence results showed that intraperitoneal injection of GW7647 or GW6471 altered microglial activation and polarization levels. CONCLUSION Our study shows that PPARα can promote M2-type microglia polarization, as well as alter gut microbiota and metabolites in CCI mice. This study enhances our understanding of the mechanism of PPARα in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Zi-Jun Wu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yu-Ying Zhao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Shu-Jing Hao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Bei-Bei Dong
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yu-Xin Zheng
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Bin Liu
- Department of Critical Care Medicine, General Hospital of Tianjin Medical University, Tianjin 300052, China; Center for Critical Care Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China.
| | - Jing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| |
Collapse
|
27
|
Poddar J, Rangasamy SB, Pahan K. Therapeutic efficacy of cinnamein, a component of balsam of Tolu/Peru, in controlled cortical impact mouse model of TBI. Neurochem Int 2024; 176:105742. [PMID: 38641028 DOI: 10.1016/j.neuint.2024.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Traumatic brain injury (TBI) remains a major health concern which causes long-term neurological disability particularly in war veterans, athletes and young adults. In spite of intense clinical and research investigations, there is no effective therapy to cease the pathogenesis of the disease. It is believed that axonal injury during TBI is potentiated by neuroinflammation and demyelination and/or failure to remyelination. This study highlights the use of naturally available cinnamein, also chemically known as benzyl cinnamate, in inhibiting neuroinflammation, promoting remyelination and combating the disease process of controlled cortical impact (CCI)-induced TBI in mice. Oral delivery of cinnamein through gavage brought down the activation of microglia and astrocytes to decrease the expression of inducible nitric oxide synthase (iNOS), glial fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule 1 (Iba1) in hippocampus and cortex of TBI mice. Cinnamein treatment also stimulated remyelination in TBI mice as revealed by PLP and A2B5 double-labeling, luxol fast blue (LFB) staining and axonal double-labeling for neurofilament and MBP. Furthermore, oral cinnamein reduced the size of lesion cavity in the brain, improved locomotor functions and restored memory and learning in TBI mice. These results suggest a new neuroprotective property of cinnamein that may be valuable in the treatment of TBI.
Collapse
Affiliation(s)
- Jit Poddar
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Suresh B Rangasamy
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Kalipada Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
28
|
Firth W, Pye KR, Weightman Potter PG. Astrocytes at the intersection of ageing, obesity, and neurodegeneration. Clin Sci (Lond) 2024; 138:515-536. [PMID: 38652065 DOI: 10.1042/cs20230148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Once considered passive cells of the central nervous system (CNS), glia are now known to actively maintain the CNS parenchyma; in recent years, the evidence for glial functions in CNS physiology and pathophysiology has only grown. Astrocytes, a heterogeneous group of glial cells, play key roles in regulating the metabolic and inflammatory landscape of the CNS and have emerged as potential therapeutic targets for a variety of disorders. This review will outline astrocyte functions in the CNS in healthy ageing, obesity, and neurodegeneration, with a focus on the inflammatory responses and mitochondrial function, and will address therapeutic outlooks.
Collapse
Affiliation(s)
- Wyn Firth
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, U.K
| | - Katherine R Pye
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Paul G Weightman Potter
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| |
Collapse
|
29
|
Beigoli S, Hajizadeh AA, Taghavizadeh Yazdi ME, Khosravi R, Vafaee F, Boskabady MH. Improvement of inhaled paraquat induced lung and systemic inflammation, oxidative stress and memory changes by safranal. Toxicon 2024; 241:107687. [PMID: 38484848 DOI: 10.1016/j.toxicon.2024.107687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
The effects of safranal and pioglitazone alone and their combination on inhaled paraquat (PQ)-induced systemic oxidative stress and inflammation as well as behavioral changes were examined in rats. In this study, animals were exposed to saline (Ctrl) or PQ (PQ groups) aerosols. PQ exposed animals were treated with dexamethasone, 0.8 and 3.2 mg/kg/day safranal (Saf-L and Saf-H), 5 mg/kg/day pioglitazone (Pio), and Saf-L + Pio for 16 days during PQ exposure period. PQ group showed increased numbers of total and differential WBCs in blood and bronchoalveolar lavage fluid (BALF), increased malondialdehyde (MDA), in the serum BALF and brain reduced thiol, catalase (CAT), and superoxide dismutase (SOD) levels compared to the control group (for all, p < 0.001). The escape latency and traveled distance were enhanced, but the time spent in the target quadrant in the probe day and the latency to enter the dark room 3, 24, 48, and 72 h after receiving an electrical shock, (in the shuttle box test) were decreased in the PQ group (p < 0.05 to P < 0.001). In all treated groups, all measure values were improved compared to PQ group (p < 0.05 to p < 0.001). In combination treated group of Saf-L + Pio, most measured values were more improved than the Saf-L and Pio groups (p < 0.05 to p < 0.001). Saf and Pio improved PQ-induced changes similar to dexamethasone but the effects produced by combination treatments of Saf-L + Pio were more prominent than Pio and Saf-L alone, suggesting a potentiating effect for the combination of the two agents.
Collapse
Affiliation(s)
- Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Asghar Hajizadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Reyhaneh Khosravi
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Sharma S, Sharma D, Dhobi M, Wang D, Tewari D. An insight to treat cardiovascular diseases through phytochemicals targeting PPAR-α. Mol Cell Biochem 2024; 479:707-732. [PMID: 37171724 DOI: 10.1007/s11010-023-04755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Peroxisome proliferator-activated receptor-α (PPAR-α) belonging to the nuclear hormone receptor superfamily is a promising target for CVDs which mechanistically improves the production of high-density lipid as well as inhibit vascular smooth muscle cell proliferation. PPAR-α mainly interferes with adenosine monophosphate-activated protein kinase, transforming growth factor-β-activated kinase, and nuclear factor-κB pathways to protect against cardiac complications. Natural products/extracts could serve as a potential therapeutic strategy in CVDs for targeting PPAR-α with broad safety margins. In recent years, the understanding of naturally derived PPAR-α agonists has considerably improved; however, the information is scattered. In vitro and in vivo studies on acacetin, apigenin, arjunolic acid, astaxanthin, berberine, resveratrol, vaticanol C, hispidulin, ginsenoside Rb3, and genistein showed significant effects in CVDs complications by targeting PPAR-α. With the aim of demonstrating the tremendous chemical variety of natural products targeting PPAR-α in CVDs, this review provides insight into various natural products that can work to prevent CVDs by targeting the PPAR-α receptor along with their detailed mechanism.
Collapse
Affiliation(s)
- Supriya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Divya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Mahaveer Dhobi
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada.
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| |
Collapse
|
31
|
Zuo Q, Gao X, Fu X, Song L, Cen M, Qin S, Wu J. Association between mixed exposure to endocrine-disrupting chemicals and cognitive function in elderly Americans. Public Health 2024; 228:36-42. [PMID: 38262207 DOI: 10.1016/j.puhe.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024]
Abstract
OBJECTIVES Studies exploring the relationship between mixed exposure to endocrine-disrupting chemicals (EDCs) and cognition are limited, with even more scarce studies conducted in the elderly. The aim of this study was to investigate the association between mixed exposure to five categories of EDCs and cognition in elderly Americans. STUDY DESIGN Cross-sectional study. METHODS 727 participants from the 2011-2014 National Health and Nutrition Examination Survey were incorporated into this study, and the levels of 47 EDC metabolites were measured. Cognitive function was assessed using immediate recall test (IRT), delayed recall test (DRT), animal fluency test (AFT), and digit symbol substitution test (DSST), and all the cognitive test scores were standardized. The individual and combined effects of EDC metabolites on the cognitive function in older adults were assessed using three analytical methods. RESULTS The results showed that exposure to perfluorononanoic acid, polychlorinated biphenyl (PCB) 199, and PCB 206 was associated with the z-scores on the cognitive tests. Negative associations between mixed exposure to EDCs and the AFT and Global z-scores and a positive relationship with the DRT z-score were found in the WQS regression. The BKMR results revealed a positive trend between the mixture of EDCs and the DRT z-score. However, compared to the median, exposure to mixtures in the 45th percentile and below was associated with a decreased DRT z-score. CONCLUSIONS Mixed exposure to EDCs may adversely affect the global cognitive function in elderly individuals. Necessary measures are needed to restrict EDCs use to protect the cognitive health of older adults.
Collapse
Affiliation(s)
- Ql Zuo
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xx Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xh Fu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ll Song
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Mq Cen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Sf Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - J Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| |
Collapse
|
32
|
Abulaban AA, Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Alanazi A, Alexiou A, Papadakis M, Batiha GES. Role of fenofibrate in multiple sclerosis. Eur J Med Res 2024; 29:113. [PMID: 38336772 PMCID: PMC10854163 DOI: 10.1186/s40001-024-01700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Multiple sclerosis (MS) is the most frequent inflammatory and demyelinating disease of the central nervous system (CNS). The underlying pathophysiology of MS is the destruction of myelin sheath by immune cells. The formation of myelin plaques, inflammation, and injury of neuronal myelin sheath characterizes its neuropathology. MS plaques are multiple focal regions of demyelination disseminated in the brain's white matter, spinal cords, deep grey matter, and cerebral cortex. Fenofibrate is a peroxisome proliferative activated receptor alpha (PPAR-α) that attenuates the inflammatory reactions in MS. Fenofibrate inhibits differentiation of Th17 by inhibiting the expression of pro-inflammatory signaling. According to these findings, this review intended to illuminate the mechanistic immunoinflammatory role of fenofibrate in mitigating MS neuropathology. In conclusion, fenofibrate can attenuate MS neuropathology by modulating different pathways, including oxidative stress, autophagy, mitochondrial dysfunction, inflammatory-signaling pathways, and neuroinflammation.
Collapse
Affiliation(s)
- Ahmad A Abulaban
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Division of Neurology, King Abdulaziz Medical City, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, 14132, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, 14132, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Departments, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Asma Alanazi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Kingdom of Saudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
33
|
Mukhuty A, Mandal S, Fouzder C, Das S, Chattopadhyay D, Majumdar T, Kundu R. Nrf2 inhibition regulates intracellular lipid accumulation in mouse insulinoma cells and improves insulin secretory function. Mol Cell Endocrinol 2024; 581:112112. [PMID: 38000461 DOI: 10.1016/j.mce.2023.112112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
High amount of fat in the pancreas is linked to poor functioning of β-cells and raises the risk of type 2 diabetes. Here we report the putative role of a circulatory glycoprotein Fetuin-A, a known obesity marker, in promoting lipid accumulation in β-cells and its association with Fatty acid translocase/CD36 for lipid storage culminate in β-cell dysfunction. Additionally, this work reveals regulation of CD36 via Nrf2, a key regulator of oxidative stress, and reduction of lipid accumulation by suppression of Nrf2 that restores β-cell function. Palmitate (0.50 mM) and Fetuin-A (100 μg/mL) exposure showed high levels of intracellular lipid in MIN6 (mouse insulinoma cells) with a concomitant decrease in insulin secretion. This also increased the expression of important lipogenic factors, like CD36, PGC1α, PPARγ, and SREBP1. Flow cytometry analysis of CD36 membrane localization has been corroborated with an increased accumulation of lipids as indicated by Oil-Red-O staining. Immunoblotting and immunofluorescence of Nrf2 indicated its high expression in palmitate-fetuin-A incubation and translocation in the nucleus. Suppression of Nrf2 by siRNA showed a reduced expression of lipogenic genes, ablation of lipid droplets, decrease in the number of apoptotic cells, and restoration of insulin secretion with a corresponding increase of Pdx1, BETA2, and Ins1 gene expression. Our study thus suggested an important aspect of lipid accumulation in the pancreatic β-cells contributing to β-cell dysfunction and demonstrated the role of Fetuin-A in CD36 expression, with a possible way of restoring β-cell function by targeting Nrf2.
Collapse
Affiliation(s)
- Alpana Mukhuty
- Cell Signaling Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731 235, India
| | - Samanwita Mandal
- Cell Signaling Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731 235, India
| | - Chandrani Fouzder
- Cell Signaling Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731 235, India
| | - Snehasis Das
- Cellular and Molecular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731 235, India
| | - Dipanjan Chattopadhyay
- Cellular and Molecular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731 235, India
| | - Tanmay Majumdar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rakesh Kundu
- Cell Signaling Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731 235, India.
| |
Collapse
|
34
|
Wei RM, Zhang YM, Zhang KX, Liu GX, Li XY, Zhang JY, Lun WZ, Liu XC, Chen GH. An enriched environment ameliorates maternal sleep deprivation-induced cognitive impairment in aged mice by improving mitochondrial function via the Sirt1/PGC-1α pathway. Aging (Albany NY) 2024; 16:1128-1144. [PMID: 38231482 PMCID: PMC10866428 DOI: 10.18632/aging.205385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Early life stress can cause cognitive impairment in aged offspring. Environmental enrichment (EE) is considered to be an effective non-pharmacological treatment for improving cognitive decline. The aim of this research was to evaluate the effect of EE, on cognitive impairment in aged offspring induced by maternal sleep deprivation (MSD) and the underlying mechanisms involved to investigate its potential value in clinical practice. METHODS CD-1 damns were subjected or not to sleep deprivation during late gestation. Twenty-one days after birth, the offspring were assigned to standard or EE cages. At 18 months-old, the learning and memory function of the offspring mice was evaluated using Morris water maze. The hippocampal and prefrontal cortical levels of protein, gene, proinflammation cytokines, and oxidative stress indicators was examined by Western blot, real-time polymerase chain reaction, enzyme linked immunosorbent assay, and biochemical assays. RESULTS Offspring in MSD group exhibited declined learning and memory abilities compared with control animals. Moreover, the hippocampal and prefrontal cortical levels of Sirtuin1 (Sirt1), peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α), postsynaptic density protein-95, and synaptophysin were lower and those of proinflammation cytokines higher in the MSD group; meanwhile, the superoxide dismutase content was higher and the malondialdehyde and reactive oxygen species contents were lower. However, these deleterious changes were ameliorated by exposure to EE. CONCLUSIONS EE attenuates MSD-induced cognitive impairment, oxidative stress, and neuroinflammation and reverses the reduction in synaptic protein levels in aged offspring mice via the Sirt1/PGC-1α pathway.
Collapse
Affiliation(s)
- Ru-Meng Wei
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Kai-Xuan Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Gao-Xia Liu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Jing-Ya Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Wei-Zhong Lun
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Xue-Chun Liu
- Department of Neurology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei 230011, Anhui, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| |
Collapse
|
35
|
Nadalin S, Zatković L, Peitl V, Karlović D, Vilibić M, Silić A, Dević Pavlić S, Buretić-Tomljanović A. An association between PPARα-L162V polymorphism and increased plasma LDL cholesterol levels after risperidone treatment. Prostaglandins Leukot Essent Fatty Acids 2024; 200:102604. [PMID: 38113727 DOI: 10.1016/j.plefa.2023.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα) and antipsychotic medications both influence polyunsaturated fatty acids (PUFA) homeostasis, and thus PPARα polymorphism may be linked to antipsychotic treatment response. Here we investigated whether the functional leucine 162 valine (L162V) polymorphism in PPARα influenced antipsychotic treatment in a group of psychosis patients (N = 186), as well as in a patient subgroup with risperidone, paliperidone, or combination treatment (N = 65). Antipsychotic-naïve first-episode patients and nonadherent chronic individuals were genotyped by polymerase chain reaction analysis. At baseline, and after 8 weeks of treatment with various antipsychotic medications, we assessed the patients' Positive and Negative Syndrome Scale (PANSS) scores; PANSS factors; and metabolic syndrome-related parameters, including fasting plasma lipid and glucose levels, and body mass index. In the total patient group, PPARα polymorphism did not affect PANSS psychopathology or metabolic parameters. However, in the subgroup of patients with risperidone, paliperidone, or combination treatment, PPARα polymorphism influenced changes in plasma LDL cholesterol. Specifically, compared to PPARα-L162L homozygous patients, PPARα-L162V heterozygous individuals exhibited significantly higher increases of LDL cholesterol levels after antipsychotic treatment. The PPARα polymorphism had a strong effect size, but a relatively weak contribution to LDL cholesterol level variations (∼12.8 %).
Collapse
Affiliation(s)
- Sergej Nadalin
- Department of Psychiatry, General Hospital "Dr. Josip Benčević", Slavonski Brod, Croatia; School of Medicine, Catholic University of Croatia, Zagreb, Croatia.
| | - Lena Zatković
- Hospital Pharmacy, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Vjekoslav Peitl
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia; Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Dalibor Karlović
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia; Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Maja Vilibić
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia; Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Ante Silić
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia; Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Sanja Dević Pavlić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Alena Buretić-Tomljanović
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
36
|
Quan Q, Ma X, Li M, Li X, Yuan H. Ginsenoside Rg1 promotes β‑amyloid peptide degradation through inhibition of the ERK/PPARγ phosphorylation pathway in an Alzheimer's disease neuronal model. Exp Ther Med 2024; 27:31. [PMID: 38125359 PMCID: PMC10731411 DOI: 10.3892/etm.2023.12319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
β-Amyloid peptide (Aβ) deposition in the brain is an important pathological change in Alzheimer's disease (AD). Insulin-degrading enzyme (IDE), which is regulated transcriptionally by peroxisome proliferator-activated receptor γ (PPARγ), is able to proteolyze Aβ. One of the members of the MAPK family, ERK, is able to mediate the phosphorylation of PPARγ at Ser112, thereby inhibiting its transcriptional activity. Ginsenoside Rg1 is one of the active ingredients in the natural medicine ginseng and has inhibitory effects on Aβ production. The present study was designed to investigate whether ginsenoside Rg1 is able to affect the regulation of PPARγ based on the expression of its target gene, IDE, and whether it is able to promote Aβ degradation via inhibition of the ERK/PPARγ phosphorylation pathway. In the present study, primary cultured rat hippocampal neurons were treated with Aβ1-42, ginsenoside Rg1 and the ERK inhibitor PD98059, and subsequently TUNEL staining was used to detect the level of neuronal apoptosis. ELISA was subsequently employed to detect the intra- and extracellular Aβ1-42 levels, immunofluorescence staining and western blotting were used to detect the translocation of ERK from the cytoplasm to the nucleus, immunofluorescence double staining was used to detect the co-expression of ERK and PPARγ, and finally, western blotting was used to detect the phosphorylation of PPARγ at Ser112 and IDE expression. The results demonstrated that ginsenoside Rg1 or PD98059 were able to inhibit primary cultured hippocampal neuron apoptosis induced by Aβ1-42 treatment, reduce the levels of intra- and extraneuronal Aβ1-42 and inhibit the translocation of ERK from the cytoplasm to the nucleus. Furthermore, administration of ginsenoside Rg1 or PD98059 resulted in attenuated co-expression of ERK and PPARγ, inhibition of phosphorylation of PPARγ at Ser112 mediated by ERK and an increase in IDE expression. In addition, the effects when PD98059 to inhibit ERK followed by treatment with ginsenoside Rg1 were found to be more pronounced than those when using PD98059 alone. In conclusion, ginsenoside Rg1 was demonstrated to exert neuroprotective effects on AD via inhibition of the ERK/PPARγ phosphorylation pathway, which led to an increase in IDE expression, the promotion of Aβ degradation and the decrease of neuronal apoptosis. These results could provide a theoretical basis for the clinical application of ginsenoside Rg1 in AD.
Collapse
Affiliation(s)
- Qiankun Quan
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xinxin Ma
- Department of Psychology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ming Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xi Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Haifeng Yuan
- Department of Rehabilitation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
37
|
Sharma C, Mazumder A. A Comprehensive Review on Potential Molecular Drug Targets for the Management of Alzheimer's Disease. Cent Nerv Syst Agents Med Chem 2024; 24:45-56. [PMID: 38305393 DOI: 10.2174/0118715249263300231116062740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/25/2023] [Accepted: 10/04/2023] [Indexed: 02/03/2024]
Abstract
Alzheimer's disease (AD) is an onset and incurable neurodegenerative disorder that has been linked to various genetic, environmental, and lifestyle factors. Recent research has revealed several potential targets for drug development, such as the prevention of Aβ production and removal, prevention of tau hyperphosphorylation, and keeping neurons alive. Drugs that target numerous ADrelated variables have been developed, and early results are encouraging. This review provides a concise map of the different receptor signaling pathways associated with Alzheimer's Disease, as well as insight into drug design based on these pathways. It discusses the molecular mechanisms of AD pathogenesis, such as oxidative stress, aging, Aβ turnover, thiol groups, and mitochondrial activities, and their role in the disease. It also reviews the potential drug targets, in vivo active agents, and docking studies done in AD and provides prospects for future drug development. This review intends to provide more clarity on the molecular processes that occur in Alzheimer's patient's brains, which can be of use in diagnosing and preventing the condition.
Collapse
Affiliation(s)
- Chanchal Sharma
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida-201306, Uttar Pradesh, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida-201306, Uttar Pradesh, India
| |
Collapse
|
38
|
Nelson D, Thompson KJ, Wang L, Wang Z, Eberts P, Azarin SM, Kalari KR, Kandimalla KK. Pericyte Control of Gene Expression in the Blood-Brain Barrier Endothelium: Implications for Alzheimer's Disease. J Alzheimers Dis 2024; 99:S281-S297. [PMID: 38393902 DOI: 10.3233/jad-230907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Background A strong body of evidence suggests that cerebrovascular pathologies augment the onset and progression of Alzheimer's disease (AD). One distinctive aspect of this cerebrovascular dysfunction is the degeneration of brain pericytes-often overlooked supporting cells of blood-brain barrier endothelium. Objective The current study investigates the influence of pericytes on gene and protein expressions in the blood-brain barrier endothelium, which is expected to facilitate the identification of pathophysiological pathways that are triggered by pericyte loss and lead to blood-brain barrier dysfunction in AD. Methods Bioinformatics analysis was conducted on the RNA-Seq expression counts matrix (GSE144474), which compared solo-cultured human blood-brain barrier endothelial cells against endothelial cells co-cultured with human brain pericytes in a non-contact model. We constructed a similar cell culture model to verify protein expression using western blots. Results The insulin resistance and ferroptosis pathways were found to be enriched. Western blots of the insulin receptor and heme oxygenase expressions were consistent with those observed in RNA-Seq data. Additionally, we observed more than 5-fold upregulation of several genes associated with neuroprotection, including insulin-like growth factor 2 and brain-derived neurotrophic factor. Conclusions Results suggest that pericyte influence on blood-brain barrier endothelial gene expression confers protection from insulin resistance, iron accumulation, oxidative stress, and amyloid deposition. Since these are conditions associated with AD pathophysiology, they imply mechanisms by which pericyte degeneration could contribute to disease progression.
Collapse
Affiliation(s)
- Doug Nelson
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Kevin J Thompson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Lushan Wang
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Zengtao Wang
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Paulina Eberts
- Department of Chemical Engineering and Materials Science, College of Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, College of Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Krishna R Kalari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Karunya K Kandimalla
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
39
|
de la Monte SM. Conquering Insulin Network Dysfunctions in Alzheimer's Disease: Where Are We Today? J Alzheimers Dis 2024; 101:S317-S343. [PMID: 39422949 DOI: 10.3233/jad-240069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Functional impairments in the brain's insulin and insulin-like growth factor (IGF) signal transduction networks are recognized mediators of dysregulated energy metabolism, a major driver of the Alzheimer's disease (AD) neurodegeneration cascade. AD-associated insulin-deficient and insulin-resistant states mimic those of diabetes mellitus and affect all cell types in the brain. Besides accounting for abundant amyloid-β and hyperphosphorylated tau lesions in AD, insulin/IGF pathway dysfunctions cause cortical atrophy, loss of synaptic plasticity, white matter myelin/oligodendrocyte degeneration, astrocyte and microglial neuroinflammation and oxidative stress, deficits in energy metabolism, mitochondrial dysfunction, and microvascular disease. These same neuropathological processes have been linked to cognitive impairment in type 2 diabetes mellitus, Parkinson's disease, and vascular dementia. Strategies to address metabolic mediators of cognitive impairment have been borrowed from diabetes and other insulin-resistant diseases and leveraged on preclinical AD model data. The repurposing of diabetes drugs led to clinical trials with intranasal insulin, followed by insulin sensitizers including metformin and peroxisome-proliferator-activated receptor agonists, and then incretin mimetics primarily targeting GLP-1 receptors. In addition, other glucose-lowering agents have been tested for their efficacy in preventing cognitive declines. The strengths and limitations of these approaches are discussed. The main conclusion of this review is that we have now arrived at a stage in which it is time to address long-term deficits in trophic factor availability and receptor responsiveness, signaling abnormalities that extend beyond insulin and include IGFs and interconnected pathways, and the need for multi-pronged rather than single-pronged therapeutic targeting to remediate AD and other forms of neurodegeneration.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Departments of Pathology and Laboratory Medicine, Medicine, Neurology and Neurosurgery, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
40
|
Davra V, Benzeroual KE. Flavonoids and fibrate modulate apoE4-induced processing of amyloid precursor protein in neuroblastoma cells. Front Neurosci 2023; 17:1245895. [PMID: 38204816 PMCID: PMC10777729 DOI: 10.3389/fnins.2023.1245895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
Introduction Apolipoprotein (apo) E4, being a major genetic risk factor for Alzheimer's disease (AD), is actively involved in the proteolytic processing of amyloid precursor protein (APP) to amyloid β (Aβ) peptide, the principle constituent of amyloid plaques in Alzheimer Disease (AD) patients. ApoE4 is believed to affect APP processing through intracellular cholesterol homeostasis, whereas lowering the cholesterol level by pharmacological agents has been suggested to reduce Aβ production. This study has investigated the effects of hypolipidemic agents fenofibrate, and the flavonoids-naringenin and diosmetin-on apoE4-induced APP processing in rat neuroblastoma cells stably transfected with human wild-type APP 695 (B103-hAPP695wt). Results B103-hAPP695wt cells were pretreated with different doses of flavonoids and fenofibrate for 1 h prior to apoE4 exposure for 24 h. ApoE4-induced production of intra- and extracellular Aβ peptides has been reduced with fenofibrate, naringenin, and diosmetin treatments. Pretreatment with diosmetin has significantly reduced apoE4-induced full-length APP (fl- APP) expression, whereas naringenin and fenofibrate had no effect on it. In addition, the increase in the apoE4-induced secretion of sAPPtotal and sAPPα has been dose-dependently reduced with drug pretreatment. On the other hand, the decrease in the expression of both APP-carboxy terminal fragments (CTF)-α and -β (generated by the α- or β-secretase cleavage of APP) by apoE4 was dose-dependently increased in cells pretreated with fenofibrate and naringenin but not diosmetin. Conclusion Thus, we suggest that fenofibrate, naringenin, and diosmetin treatments can reduce apoE4- induced Aβ production by distinct mechanisms that may prove useful in developing drugs for AD patients.
Collapse
Affiliation(s)
| | - Kenza E. Benzeroual
- Department of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, United States
| |
Collapse
|
41
|
Hu M, Zhang J, Wu J, Su P. Lead exposure induced lipid metabolism disorders by regulating the lipophagy process in microglia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125991-126008. [PMID: 38008839 DOI: 10.1007/s11356-023-31086-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023]
Abstract
Environmental lead (Pb) pollution is a worldwide public health problem and causes various diseases, especially neurodegenerative diseases. It is increasingly recognized that microglia-mediated neuroinflammation plays a crucial role in lead neurotoxicity, but the underlying mechanisms remain to be further explored. Recent studies indicated that cell metabolism, especially lipid metabolism, regulates many microglial functions, including cytokine secretion and phagocytosis. Whether lipid metabolism is involved in Pb-induced neuroinflammation is still unknown. In the current studies, we investigated the effects of Pb on microglial lipid metabolism by utilizing lipidomics. Histochemistry staining and oxygen consumption rate (OCR) were used to validate lipidomics results. Fenofibrate (FEN), a peroxisome proliferator-activated receptor-α (PPAR-α) agonist, was applied to investigate whether lipid metabolism regulation mitigated Pb's neuroinflammatory response. Microglial autophagic proteins were detected to investigate the role of lipophagy in Pb's effect on lipid metabolism. Our results showed that Pb exposure increased concentrations of various lipid metabolites and induced lipid metabolism disorders, especially in fatty acid metabolism. Pb caused lipid droplet (LD) accumulation and slightly enhanced fatty acid oxidation (FAO) in microglia. FEN pretreatment markedly inhibited Pb's effects on LDs and further mitigated Pb-induced inflammatory response by reducing pro-cytokines' expression and enhancing phagocytosis function. FEN intervention also inhibited Pb's neurotoxicity by improving cognition-related behaviors. Pb exposure induced an abnormal increase of autophagic proteins, but the FEN addition partially neutralized Pb's effects on autophagy. Our data indicate that the Pb-induced neuroinflammation is regulated by fatty acid metabolism via the lipophagy process. Therapies focusing on lipid metabolism regulation are powerful tactics in Pb toxicity prevention and treatment.
Collapse
Affiliation(s)
- Min Hu
- College of Urban and Environmental Sciences, Northwest University, No. 1 Xuefu Ave., Guodu Education and Hi-Tech Industries Zone, Xi'an, 710075, China
| | - Jianbin Zhang
- Department of Occupational and Environmental Health & Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, No.169, Changle West Road, Xi'an, 710032, China
| | - Jinxia Wu
- Department of Occupational and Environmental Health & Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, No.169, Changle West Road, Xi'an, 710032, China
| | - Peng Su
- Department of Occupational and Environmental Health & Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, No.169, Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
42
|
Hu P, Li K, Peng X, Kan Y, Li H, Zhu Y, Wang Z, Li Z, Liu HY, Cai D. Nuclear Receptor PPARα as a Therapeutic Target in Diseases Associated with Lipid Metabolism Disorders. Nutrients 2023; 15:4772. [PMID: 38004166 PMCID: PMC10674366 DOI: 10.3390/nu15224772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Lipid metabolic diseases have substantial morbidity and mortality rates, posing a significant threat to human health. PPARα, a member of the peroxisome proliferator-activated receptors (PPARs), plays a crucial role in lipid metabolism and immune regulation. Recent studies have increasingly recognized the pivotal involvement of PPARα in diverse pathological conditions. This comprehensive review aims to elucidate the multifaceted role of PPARα in metabolic diseases including liver diseases, diabetes-related diseases, age-related diseases, and cancers, shedding light on the underlying molecular mechanisms and some regulatory effects of natural/synthetic ligands of PPARα. By summarizing the latest research findings on PPARα, we aim to provide a foundation for the possible therapeutic exploitation of PPARα in lipid metabolic diseases.
Collapse
Affiliation(s)
- Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Xiaoxu Peng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Yufei Kan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Hao Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Yanli Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Ziyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Zhaojian Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| |
Collapse
|
43
|
Jiang Y, MacNeil LT. Simple model systems reveal conserved mechanisms of Alzheimer's disease and related tauopathies. Mol Neurodegener 2023; 18:82. [PMID: 37950311 PMCID: PMC10638731 DOI: 10.1186/s13024-023-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023] Open
Abstract
The lack of effective therapies that slow the progression of Alzheimer's disease (AD) and related tauopathies highlights the need for a more comprehensive understanding of the fundamental cellular mechanisms underlying these diseases. Model organisms, including yeast, worms, and flies, provide simple systems with which to investigate the mechanisms of disease. The evolutionary conservation of cellular pathways regulating proteostasis and stress response in these organisms facilitates the study of genetic factors that contribute to, or protect against, neurodegeneration. Here, we review genetic modifiers of neurodegeneration and related cellular pathways identified in the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, focusing on models of AD and related tauopathies. We further address the potential of simple model systems to better understand the fundamental mechanisms that lead to AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
44
|
Sullere S, Kunczt A, McGehee DS. A cholinergic circuit that relieves pain despite opioid tolerance. Neuron 2023; 111:3414-3434.e15. [PMID: 37734381 PMCID: PMC10843525 DOI: 10.1016/j.neuron.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/19/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
Chronic pain is a tremendous burden for afflicted individuals and society. Although opioids effectively relieve pain, significant adverse outcomes limit their utility and efficacy. To investigate alternate pain control mechanisms, we explored cholinergic signaling in the ventrolateral periaqueductal gray (vlPAG), a critical nexus for descending pain modulation. Biosensor assays revealed that pain states decreased acetylcholine release in vlPAG. Activation of cholinergic projections from the pedunculopontine tegmentum to vlPAG relieved pain, even in opioid-tolerant conditions, through ⍺7 nicotinic acetylcholine receptors (nAChRs). Activating ⍺7 nAChRs with agonists or stimulating endogenous acetylcholine inhibited vlPAG neuronal activity through Ca2+ and peroxisome proliferator-activated receptor α (PPAR⍺)-dependent signaling. In vivo 2-photon imaging revealed that chronic pain induces aberrant excitability of vlPAG neuronal ensembles and that ⍺7 nAChR-mediated inhibition of these cells relieves pain, even after opioid tolerance. Finally, pain relief through these cholinergic mechanisms was not associated with tolerance, reward, or withdrawal symptoms, highlighting its potential clinical relevance.
Collapse
Affiliation(s)
- Shivang Sullere
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Alissa Kunczt
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Daniel S McGehee
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
45
|
Almaguer J, Hindle A, Lawrence JJ. The Contribution of Hippocampal All-Trans Retinoic Acid (ATRA) Deficiency to Alzheimer's Disease: A Narrative Overview of ATRA-Dependent Gene Expression in Post-Mortem Hippocampal Tissue. Antioxidants (Basel) 2023; 12:1921. [PMID: 38001775 PMCID: PMC10669734 DOI: 10.3390/antiox12111921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/26/2023] Open
Abstract
There is accumulating evidence that vitamin A (VA) deficiency contributes to the pathogenesis and progression of Alzheimer's disease (AD). All-trans retinoic acid (ATRA), a metabolite of VA in the brain, serves distinct roles in the human hippocampus. Agonists of retinoic acid receptors (RAR), including ATRA, promote activation of the non-amyloidogenic pathway by enhancing expression of α-secretases, providing a mechanistic basis for delaying/preventing amyloid beta (Aβ) toxicity. However, whether ATRA is actually deficient in the hippocampi of patients with AD is not clear. Here, using a publicly available human transcriptomic dataset, we evaluated the extent to which ATRA-sensitive genes are dysregulated in hippocampal tissue from post-mortem AD brains, relative to age-matched controls. Consistent with ATRA deficiency, we found significant dysregulation of many ATRA-sensitive genes and significant upregulation of RAR co-repressors, supporting the idea of transcriptional repression of ATRA-mediated signaling. Consistent with oxidative stress and neuroinflammation, Nrf2 and NfkB transcripts were upregulated, respectively. Interestingly, transcriptional targets of Nrf2 were not upregulated, accompanied by upregulation of several histone deacetylases. Overall, our investigation of ATRA-sensitive genes in the human hippocampus bolsters the scientific premise of ATRA depletion in AD and that epigenetic factors should be considered and addressed as part of VA supplementation.
Collapse
Affiliation(s)
- Joey Almaguer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Ashly Hindle
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - J. Josh Lawrence
- Department of Pharmacology and Neuroscience, Garrison Institute on Aging, Center of Excellence for Translational Neuroscience and Therapeutics, and Center of Excellence for Integrated Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
46
|
Zhang X, Cao R, Zhu C, Yang L, Zheng N, Ji W, Liu P, Chi T, Ji X, Zheng Z, Chen G, Zou L. Mechanism of anti-AD action of OAB-14 by enhancing the function of glymphatic system. Neurochem Int 2023; 171:105633. [PMID: 39491236 DOI: 10.1016/j.neuint.2023.105633] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
The number of patients with Alzheimer's disease is increasing year by year, but only a few medications are available. We found that OAB-14, a new small molecule, can improve cognitive deficits in various mouse AD models. The structure and mechanism of OAB-14 are distinct from anti-AD medications that have been unsuccessful in recent clinical trials. OAB-14 can effectively reduce the accumulation of Aβ in the brain, but has no inhibitory effect on Aβ production enzymes. Reportedly, Aβ can be drained into the systemic circulation to be metabolized through the glymphatic system and meningeal lymphatic vessels. Our research has shown that OAB-14 is capable of enhancing the glymphatic system function by promoting the influx and efflux of the CSF tracers to the brain and deep cervical lymph nodes, respectively. After blocking the central lymphatic drainage, the effect of OAB-14 in improving cognitive impairments disappeared. Furthermore, OAB-14 may up-regulate AQP4 expression by acting on PPARγ-P2X7r-AQP4 pathway and protect the polarity of AQP4 by upregulating the expression of SNTA1, Agrin, and Abca1, which are closely associated with the proper functioning of the glymphatic system. In summary, OAB-14 can promote the clearance of brain Aβ through the glymphatic system and improve cognitive impairment.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Ruolin Cao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Chao Zhu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Luxi Yang
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Na Zheng
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Wenshuang Ji
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Peng Liu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Tianyan Chi
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Xuefei Ji
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Zhonghui Zheng
- Shandong Xinhua Pharmaceutical Co., Ltd., Zibo, Shandong, 255086, PR China.
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Libo Zou
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
47
|
Yuan X, Ye W, Chen L, Luo D, Zhou L, Qiu Y, Zhuo R, Zhao Y, Peng L, Yang L, Jin X, Zhou Y. URB597 exerts neuroprotective effects against transient brain ischemia injury in mice by regulating autophagic flux and necroptosis. Eur J Pharmacol 2023; 957:175982. [PMID: 37572942 DOI: 10.1016/j.ejphar.2023.175982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/14/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Ischemic stroke is a leading cause of death and disability, and medical treatments for ischemic stroke are very limited. URB597 is a potent and selective inhibitor of fatty acid amide hydrolase (FAAH). However, the effect of URB597 on ischemic stroke and the underlying molecular mechanisms remain little known. In this study, focal cerebral ischemia was induced by transient middle cerebral artery occlusion in mice. Our results showed that URB597 dose-dependently improved neurological function and reduced brain infarct volume and brain edema 24 h after brain ischemia. The most effective dose was 1 mg/kg and the therapeutic time window was within 3 h after ischemic stroke. To further investigate the underlying mechanism, necroptosis and autophagy flux were detected by Western blot and/or immunofluorescence staining with or without chloroquine, an autophagic flux inhibitor. Our results showed that URB597 promoted autophagic flux and reduced neuronal necroptosis after brain ischemia and these effects could be abolished by chloroquine. In addition, we found that peroxisome proliferator-activated receptor α (PPARα) antagonist GW6471 partly abolished the effect of URB597 against brain ischemia and URB597 upregulated the expressions of PPARα. In conclusion, URB597 exerts a neuroprotective effect in a dose- and time-dependent manner, and this effect may be related to its restoration of autophagic flux and inhibition of neuronal necroptosis. PPARα is involved in the neuroprotective effect of URB597. This study provides novel evidence that URB597 may be a promising agent for the clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xiaoqian Yuan
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China.
| | - Wenxuan Ye
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China
| | - Ling Chen
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China
| | - Doudou Luo
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China; State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, 361102, China
| | - Li Zhou
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yan Qiu
- Key Laboratory of Chiral Drugs, Xiamen, 361102, China
| | - Rengong Zhuo
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China
| | - Yun Zhao
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China
| | - Lu Peng
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China
| | - Lichao Yang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China
| | - Xin Jin
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China
| | - Yu Zhou
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China; State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
48
|
Qu X, Zhang L, Wang L. Pterostilbene as a Therapeutic Alternative for Central Nervous System Disorders: A Review of the Current Status and Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14432-14457. [PMID: 37786984 DOI: 10.1021/acs.jafc.3c06238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Neurological disorders are diverse, have complex causes, and often result in disability; yet, effective treatments remain scarce. The resveratrol derivative pterostilbene possesses numerous physiological activities that hold promise as a novel therapy for the central nervous system (CNS) disorders. This review aimed to summarize the protective mechanisms of pterostilbene in in vitro and in vivo models of CNS disorders and the pharmacokinetics and safety to assess its possible effects on CNS disorders. Available evidence supports the protective effects of pterostilbene in CNS disorders involving mechanisms such as antioxidant and anti-inflammatory activity, regulation of lipid metabolism and vascular smooth muscle cell proliferation, improvement of synaptic function and neurogenesis, induction of glioma cell cycle arrest, and inhibition of glioma cell migration and invasion. Studies have identified possible molecular targets and pathways for the protective actions of pterostilbene in CNS disorders including the AMPK/STAT3, Akt, NF-κB, MAPK, and ERK signaling pathways. The possible pharmacological effects and molecular pathways of pterostilbene in CNS disorders are critically discussed in this review. Future studies should aim to increase our understanding of pterostilbene in animal models and humans to further evaluate its role in CNS disorders and the detailed mechanisms.
Collapse
Affiliation(s)
- Xin Qu
- Department of Orthopedics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, P.R. China
| | - Lijuan Zhang
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning, P.R. China
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning, P.R. China
| |
Collapse
|
49
|
Whittaker DS, Akhmetova L, Carlin D, Romero H, Welsh DK, Colwell CS, Desplats P. Circadian modulation by time-restricted feeding rescues brain pathology and improves memory in mouse models of Alzheimer's disease. Cell Metab 2023; 35:1704-1721.e6. [PMID: 37607543 PMCID: PMC10591997 DOI: 10.1016/j.cmet.2023.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023]
Abstract
Circadian disruptions impact nearly all people with Alzheimer's disease (AD), emphasizing both their potential role in pathology and the critical need to investigate the therapeutic potential of circadian-modulating interventions. Here, we show that time-restricted feeding (TRF) without caloric restriction improved key disease components including behavioral timing, disease pathology, hippocampal transcription, and memory in two transgenic (TG) mouse models of AD. We found that TRF had the remarkable capability of simultaneously reducing amyloid deposition, increasing Aβ42 clearance, improving sleep and memory, and normalizing daily transcription patterns of multiple genes, including those associated with AD and neuroinflammation. Thus, our study unveils for the first time the pleiotropic nature of timed feeding on AD, which has far-reaching effects beyond metabolism, ameliorating neurodegeneration and the misalignment of circadian rhythmicity. Since TRF can substantially modify disease trajectory, this intervention has immediate translational potential, addressing the urgent demand for accessible approaches to reduce or halt AD progression.
Collapse
Affiliation(s)
- Daniel S Whittaker
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA
| | - Laila Akhmetova
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA
| | - Daniel Carlin
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA
| | - Haylie Romero
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA
| | - David K Welsh
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA; Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Paula Desplats
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA; Department of Pathology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
50
|
Cummings JL, Osse AML, Kinney JW. Alzheimer's Disease: Novel Targets and Investigational Drugs for Disease Modification. Drugs 2023; 83:1387-1408. [PMID: 37728864 PMCID: PMC10582128 DOI: 10.1007/s40265-023-01938-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Novel agents addressing non-amyloid, non-tau targets in Alzheimer's Disease (AD) comprise 70% of the AD drug development pipeline of agents currently in clinical trials. Most of the target processes identified in the Common Alzheimer's Disease Research Ontology (CADRO) are represented by novel agents in trials. Inflammation and synaptic plasticity/neuroprotection are the CADRO categories with the largest number of novel candidate therapies. Within these categories, there are few overlapping targets among the test agents. Additional categories being evaluated include apolipoprotein E [Formula: see text] 4 (APOE4) effects, lipids and lipoprotein receptors, neurogenesis, oxidative stress, bioenergetics and metabolism, vascular factors, cell death, growth factors and hormones, circadian rhythm, and epigenetic regulators. We highlight current drugs being tested within these categories and their mechanisms. Trials will be informative regarding which targets can be modulated to produce a slowing of clinical decline. Possible therapeutic combinations of agents may be suggested by trial outcomes. Biomarkers are evolving in concert with new targets and novel agents, and biomarker outcomes offer a means of supporting disease modification by the putative treatment. Identification of novel targets and development of corresponding therapeutics offer an important means of advancing new treatments for AD.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Department of Brain Health, Chambers-Grundy Center for Transformative Neuroscience, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA.
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA.
- , 1380 Opal Valley Street, Henderson, Nevada, 89052, USA.
| | - Amanda M Leisgang Osse
- Department of Brain Health, Chambers-Grundy Center for Transformative Neuroscience, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
| | - Jefferson W Kinney
- Department of Brain Health, Chambers-Grundy Center for Transformative Neuroscience, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
| |
Collapse
|