1
|
Fernández-Arjona MDM, Navarro JA, López-Gambero AJ, de Ceglia M, Rodríguez M, Rubio L, Rodríguez de Fonseca F, Barrios V, Chowen JA, Argente J, Rivera P, Suárez J. Sex-based differences in growth-related IGF1 signaling in response to PAPP-A2 deficiency: comparative effects of rhGH, rhIGF1 and rhPAPP-A2 treatments. Biol Sex Differ 2024; 15:34. [PMID: 38589872 PMCID: PMC11000399 DOI: 10.1186/s13293-024-00603-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/15/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Children with pregnancy-associated plasma protein-A2 (PAPP-A2) mutations resulting in low levels of bioactive insulin-like growth factor-1 (IGF1) and progressive postnatal growth retardation have improved growth velocity and height following recombinant human (rh)IGF1 treatment. The present study aimed to evaluate whether Pappa2 deficiency and pharmacological manipulation of GH/IGF1 system are associated with sex-specific differences in growth-related signaling pathways. METHODS Plasma, hypothalamus, pituitary gland and liver of Pappa2ko/ko mice of both sexes, showing reduced skeletal growth, and liver of these mice treated with rhGH, rhIGF1 and rhPAPP-A2 from postnatal day (PND) 5 to PND35 were analyzed. RESULTS Reduced body and femur length of Pappa2ko/ko mice was associated with increases in: (1) components of IGF1 ternary complexes (IGF1, IGFBP5/Igfbp5, Igfbp3, Igfals) in plasma, hypothalamus and/or liver; and (2) key signaling regulators (phosphorylated PI3K, AKT, mTOR, GSK3β, ERK1/2 and AMPKα) in hypothalamus, pituitary gland and/or liver, with Pappa2ko/ko females having a more prominent effect. Compared to rhGH and rhIGF1, rhPAPP-A2 specifically induced: (1) increased body and femur length, and reduced plasma total IGF1 and IGFBP5 concentrations in Pappa2ko/ko females; and (2) increased Igf1 and Igf1r levels and decreased Ghr, Igfbp3 and Igfals levels in the liver of Pappa2ko/ko females. These changes were accompanied by lower phospho-STAT5, phospho-AKT and phospho-ERK2 levels and higher phospho-AMPK levels in the liver of Pappa2ko/ko females. CONCLUSIONS Sex-specific differences in IGF1 system and signaling pathways are associated with Pappa2 deficiency, pointing to rhPAPP-A2 as a promising drug to alleviate postnatal growth retardation underlying low IGF1 bioavailability in a female-specific manner.
Collapse
Affiliation(s)
- María Del Mar Fernández-Arjona
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- Servicio de Neurología, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| | - Juan Antonio Navarro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| | - Antonio Jesús López-Gambero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, 33000, France
| | - Marialuisa de Ceglia
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| | - Miguel Rodríguez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia. Facultad de Medicina, Universidad de Málaga, Bulevar Louis Pasteur 32, Málaga, 29071, Spain
| | - Leticia Rubio
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia. Facultad de Medicina, Universidad de Málaga, Bulevar Louis Pasteur 32, Málaga, 29071, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- Servicio de Neurología, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| | - Vicente Barrios
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Avenida Menéndez Pelayo 65, Madrid, 28009, Spain
- La Princesa Research Institute, Madrid, 28009, Spain
- Centro de Investigación Biomédica en Red Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Julie A Chowen
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Avenida Menéndez Pelayo 65, Madrid, 28009, Spain
- La Princesa Research Institute, Madrid, 28009, Spain
- Centro de Investigación Biomédica en Red Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
- IMDEA Food Institute, CEI UAM & CSIC, Madrid, 28049, Spain
| | - Jesús Argente
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Avenida Menéndez Pelayo 65, Madrid, 28009, Spain.
- La Princesa Research Institute, Madrid, 28009, Spain.
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
- Centro de Investigación Biomédica en Red Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain.
- IMDEA Food Institute, CEI UAM & CSIC, Madrid, 28049, Spain.
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain.
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain.
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain.
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia. Facultad de Medicina, Universidad de Málaga, Bulevar Louis Pasteur 32, Málaga, 29071, Spain.
| |
Collapse
|
2
|
Engin A. Protein Kinases in Obesity, and the Kinase-Targeted Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:199-229. [PMID: 39287853 DOI: 10.1007/978-3-031-63657-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The action of protein kinases and protein phosphatases is essential for multiple physiological responses. Each protein kinase displays its own unique substrate specificity and a regulatory mechanism that may be modulated by association with other proteins. Protein kinases are classified as dual-specificity kinases and dual-specificity phosphatases. Dual-specificity phosphatases are important signal transduction enzymes that regulate various cellular processes in coordination with protein kinases and play an important role in obesity. Impairment of insulin signaling in obesity is largely mediated by the activation of the inhibitor of kappa B-kinase beta and the c-Jun N-terminal kinase (JNK). Oxidative stress and endoplasmic reticulum (ER) stress activate the JNK pathway which suppresses insulin biosynthesis. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are important for proper regulation of glucose metabolism in mammals at both the hormonal and cellular levels. Additionally, obesity-activated calcium/calmodulin dependent-protein kinase II/p38 suppresses insulin-induced protein kinase B phosphorylation by activating the ER stress effector, activating transcription factor-4. To alleviate lipotoxicity and insulin resistance, promising targets are pharmacologically inhibited. Nifedipine, calcium channel blocker, stimulates lipogenesis and adipogenesis by downregulating AMPK and upregulating mTOR, which thereby enhances lipid storage. Contrary to the nifedipine, metformin activates AMPK, increases fatty acid oxidation, suppresses fatty acid synthesis and deposition, and thus alleviates lipotoxicity. Obese adults with vascular endothelial dysfunction have greater endothelial cells activation of unfolded protein response stress sensors, RNA-dependent protein kinase-like ER eukaryotic initiation factor-2 alpha kinase (PERK), and activating transcription factor-6. The transcriptional regulation of adipogenesis in obesity is influenced by AGC (protein kinase A (PKA), PKG, PKC) family signaling kinases. Obesity may induce systemic oxidative stress and increase reactive oxygen species in adipocytes. An increase in intracellular oxidative stress can promote PKC-β activation. Activated PKC-β induces growth factor adapter Shc phosphorylation. Shc-generated peroxides reduce mitochondrial oxygen consumption and enhance triglyceride accumulation and lipotoxicity. Liraglutide attenuates mitochondrial dysfunction and reactive oxygen species generation. Co-treatment of antiobesity and antidiabetic herbal compound, berberine with antipsychotic drug olanzapine decreases the accumulation of triglyceride. While low-dose rapamycin, metformin, amlexanox, thiazolidinediones, and saroglitazar protect against insulin resistance, glucagon-like peptide-1 analog liraglutide inhibits palmitate-induced inflammation by suppressing mTOR complex 1 (mTORC1) activity and protects against lipotoxicity.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
3
|
Engin A. The Unrestrained Overeating Behavior and Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:167-198. [PMID: 39287852 DOI: 10.1007/978-3-031-63657-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity-related co-morbidities decrease life quality, reduce working ability, and lead to early death. In the adult population, eating addiction manifests with excessive food consumption and the unrestrained overeating behavior, which is associated with increased risk of morbidity and mortality and defined as the binge eating disorder (BED). This hedonic intake is correlated with fat preference and the total amount of dietary fat consumption is the most potent risk factor for weight gain. Long-term BED leads to greater sensitivity to the rewarding effects of palatable foods and results in obesity fatefully. Increased plasma concentrations of non-esterified free fatty acids and lipid-overloaded hypertrophic adipocytes may cause insulin resistance. In addition to dietary intake of high-fat diet, sedentary lifestyle leads to increased storage of triglycerides not only in adipose tissue but also ectopically in other tissues. Lipid-induced apoptosis, ceramide accumulation, reactive oxygen species overproduction, endoplasmic reticulum stress, and mitochondrial dysfunction play role in the pathogenesis of lipotoxicity. Food addiction and BED originate from complex action of dopaminergic, opioid, and cannabinoid systems. BED may also be associated with both obesity and major depressive disorder. For preventing morbidity and mortality, as well as decreasing the impact of obesity-related comorbidities in appropriately selected patients, opiate receptor antagonists and antidepressant combination are recommended. Pharmacotherapy alongside behavioral management improves quality of life and reduces the obesity risk; however, the number of licensed drugs is very few. Thus, stereotactic treatment is recommended to break down the refractory obesity and binge eating in obese patient. As recent applications in the field of non-invasive neuromodulation, transcranial magnetic stimulation and transcranial direct current stimulation are thought to be important in image-guided deep brain stimulation in humans. Chronic overnutrition most likely provides repetitive and persistent signals that up-regulate inhibitor of nuclear factor kappa B (NF-κB) kinase beta subunit/NF-κB (IKKβ/NF-κB) in the hypothalamus before the onset of obesity. However, how the mechanisms of high-fat diet-induced peripheral signals affect the hypothalamic arcuate nucleus remain largely unknown.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
4
|
Ouchi Y, Komaki Y, Shimizu K, Fukano N, Sugino T, Shiraishi JI, Chowdhury VS, Bungo T. Comparison of oral administration of fructose and glucose on food intake and physiological parameters in broiler chicks. Poult Sci 2022; 102:102249. [PMID: 36335736 PMCID: PMC9640322 DOI: 10.1016/j.psj.2022.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Like glucose, fructose is a monosaccharide, but the mechanisms of its absorption and metabolism in the body are very different between the 2 molecules. In this study, we investigated the effects of oral administration of glucose and fructose on food intake, diencephalic gene expression, and plasma metabolite concentrations in broiler chicks. The animals used in this study were 4-day-old male broiler chicks (Ross 308). They were given glucose, fructose (200 mg/ 0.5 mL/ bird), or a similar volume of distilled water orally after 6 h fasting. After treatment, measurements of food intake (at 0, 30, and 60 min), and blood glucose as well as insulin concentrations were measured over time; however, diencephalic (hypothalamus) gene expression and plasma metabolites were measured at 30 min. The results showed that glucose administration suppressed food intake, but fructose administration did not suppress food intake and it was at the same level as distilled water administration. In addition, fructose administration did not increase plasma glucose and insulin levels as did glucose administration. In the diencephalon, expression levels of genes related to the melanocortin system were unaffected by the treatment, while gene expression levels related to intracellular energy regulation, such as AMP-activated protein kinase were affected by the glucose treatment in the fasted chicks. These results suggest that fructose administration does not suppress feeding behavior as a result of possible reduction in the energy levels in the diencephalon and associated energy metabolism.
Collapse
Affiliation(s)
- Yoshimitsu Ouchi
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Japan
| | - Yoshinori Komaki
- Graduate School of Bioresource Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Kensuke Shimizu
- Graduate School of Bioresource Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Natsuki Fukano
- Graduate School of Bioresource Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Toshihisa Sugino
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Jun-ichi Shiraishi
- Department of Animal Science, Nippon Veterinary and Life Science University, Musashino 180-8602, Japan
| | - Vishwajit S. Chowdhury
- Faculty of Arts and Science, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Takashi Bungo
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Japan,Corresponding author:
| |
Collapse
|
5
|
Drewe J, Boonen G, Culmsee C. Treat more than heat-New therapeutic implications of Cimicifuga racemosa through AMPK-dependent metabolic effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154060. [PMID: 35338990 DOI: 10.1016/j.phymed.2022.154060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cimicifuga racemosa extracts (CRE) have obtained a "well-established use status" in the treatment of postmenopausal (i.e., climacteric) complaints, which predominantly include vasomotor symptoms such as hot flushes and sweating, as well as nervousness, irritability, and metabolic changes. Although characteristic postmenopausal complaints are known for a very long time and the beneficial effects of CRE on climacteric symptoms are well accepted, both the pathophysiology of postmenopausal symptoms and the mechanism of action of CREs are not yet fully understood. In particular, current hypotheses suggest that changes in the α-adrenergic and serotonergic signaling pathways secondary to estrogen depletion are responsible for the development of hot flushes. PURPOSE Some of the symptoms associated with menopause cannot be explained by these hypotheses. Therefore, we attempted to extend our classic understanding of menopause by integrating of partly age-related metabolic impairments. METHODS A comprehensive literature survey was performed using the PubMed database for articles published through September 2021. The following search terms were used: (cimicifuga OR AMPK) AND (hot flush* OR hot flash* OR menopaus* OR osteoporos* OR cancer OR antioxida* OR cardiovasc*). No limits were set with respect to language, and the references cited in the articles retrieved were used to identify additional publications. RESULTS We found that menopause is a manifestation of the general aging process, with specific metabolic changes that aggravate menopausal symptoms, which are accelerated by estrogen depletion and associated neurotransmitter dysregulation. Cimicifuga extracts with their metabolic effects mitigate climacteric symptoms but may also modulate the aging process itself. Central to these effects are effects of CRE on the metabolic key regulator, the AMP-activated protein kinase (AMPK). CONCLUSIONS As an extension of this effect dimension, other off-label indications may appear attractive in the sense of repurposing of this herbal treatment.
Collapse
Affiliation(s)
- Jürgen Drewe
- Medical Department, Max Zeller Soehne AG, CH-8590 Romanshorn, Switzerland.
| | - Georg Boonen
- Medical Department, Max Zeller Soehne AG, CH-8590 Romanshorn, Switzerland
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, D-35043 Marburg, Germany; Center for Mind, Brain and Behavior, D-35032 Marburg, Germany
| |
Collapse
|
6
|
Drewe J, Küsters E, Hammann F, Kreuter M, Boss P, Schöning V. Modeling Structure-Activity Relationship of AMPK Activation. Molecules 2021; 26:molecules26216508. [PMID: 34770917 PMCID: PMC8587902 DOI: 10.3390/molecules26216508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
The adenosine monophosphate activated protein kinase (AMPK) is critical in the regulation of important cellular functions such as lipid, glucose, and protein metabolism; mitochondrial biogenesis and autophagy; and cellular growth. In many diseases-such as metabolic syndrome, obesity, diabetes, and also cancer-activation of AMPK is beneficial. Therefore, there is growing interest in AMPK activators that act either by direct action on the enzyme itself or by indirect activation of upstream regulators. Many natural compounds have been described that activate AMPK indirectly. These compounds are usually contained in mixtures with a variety of structurally different other compounds, which in turn can also alter the activity of AMPK via one or more pathways. For these compounds, experiments are complicated, since the required pure substances are often not yet isolated and/or therefore not sufficiently available. Therefore, our goal was to develop a screening tool that could handle the profound heterogeneity in activation pathways of the AMPK. Since machine learning algorithms can model complex (unknown) relationships and patterns, some of these methods (random forest, support vector machines, stochastic gradient boosting, logistic regression, and deep neural network) were applied and validated using a database, comprising of 904 activating and 799 neutral or inhibiting compounds identified by extensive PubMed literature search and PubChem Bioassay database. All models showed unexpectedly high classification accuracy in training, but more importantly in predicting the unseen test data. These models are therefore suitable tools for rapid in silico screening of established substances or multicomponent mixtures and can be used to identify compounds of interest for further testing.
Collapse
Affiliation(s)
- Jürgen Drewe
- Medical Department, Max Zeller Söhne AG, CH-8590 Romanshorn, Switzerland;
- Correspondence:
| | | | - Felix Hammann
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital University Hospital, CH-3012 Bern, Switzerland; (F.H.); (V.S.)
| | - Matthias Kreuter
- Medical Department, Max Zeller Söhne AG, CH-8590 Romanshorn, Switzerland;
| | - Philipp Boss
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, D-13125 Berlin, Germany;
| | - Verena Schöning
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital University Hospital, CH-3012 Bern, Switzerland; (F.H.); (V.S.)
| |
Collapse
|
7
|
Muthanandam S, Muthu J. Understanding Cachexia in Head and Neck Cancer. Asia Pac J Oncol Nurs 2021; 8:527-538. [PMID: 34527782 PMCID: PMC8420913 DOI: 10.4103/apjon.apjon-2145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/21/2021] [Indexed: 01/06/2023] Open
Abstract
One of the major comorbidities of cancer and cancer therapy is posing a global health problem in cancer cachexia. Cancer cachexia is now considered a multifactorial syndrome that presents with drastic loss of body weight, anorexia, asthenia, and anemia. Head and neck cancer (HNC) patients are at a greater risk for development and severity of cachexia syndrome as there is direct involvement of structures associated with nutritional intake. Yet, the scientific evidence, approach, and management of cachexia in HNCs are yet to be largely explored. The article aims to succinctly review the concepts of cancer cachexia with relevance to HNCs and summarizes the current findings from recent research.
Collapse
Affiliation(s)
- Sivaramakrishnan Muthanandam
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Indira Gandhi Institute of Dental Sciences, Sri Balaji Vidyapeeth (Deemed to be) University, Puducherry, India
| | - Jananni Muthu
- Department of Periodontology, Indira Gandhi Institute of Dental Sciences, Sri Balaji Vidyapeeth (Deemed to be) University, Puducherry, India
| |
Collapse
|
8
|
Soengas JL. Integration of Nutrient Sensing in Fish Hypothalamus. Front Neurosci 2021; 15:653928. [PMID: 33716662 PMCID: PMC7953060 DOI: 10.3389/fnins.2021.653928] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
The knowledge regarding hypothalamic integration of metabolic and endocrine signaling resulting in regulation of food intake is scarce in fish. Available studies pointed to a network in which the activation of the nutrient-sensing (glucose, fatty acid, and amino acid) systems would result in AMP-activated protein kinase (AMPK) inhibition and activation of protein kinase B (Akt) and mechanistic target of rapamycin (mTOR). Changes in these signaling pathways would control phosphorylation of transcription factors cAMP response-element binding protein (CREB), forkhead box01 (FoxO1), and brain homeobox transcription factor (BSX) leading to food intake inhibition through changes in the expression of neuropeptide Y (NPY), agouti-related peptide (AgRP), pro-opio melanocortin (POMC), and cocaine and amphetamine-related transcript (CART). The present mini-review summarizes information on the topic and identifies gaps for future research.
Collapse
Affiliation(s)
- José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
9
|
Sun B, Wu L, Wu Y, Zhang C, Qin L, Hayashi M, Kudo M, Gao M, Liu T. Therapeutic Potential of Centella asiatica and Its Triterpenes: A Review. Front Pharmacol 2020; 11:568032. [PMID: 33013406 PMCID: PMC7498642 DOI: 10.3389/fphar.2020.568032] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Centella asiatica (also known as Centella asiatica (L.) Urb. or Gotu kola) is a traditional Chinese medicine with extensive medicinal value, which is commonly used in Southeast Asian countries. This study aimed to summarize the effects of C. asiatica and its main components on neurological diseases, endocrine diseases, skin diseases, cardiovascular diseases, gastrointestinal diseases, immune diseases, and gynecological diseases, as well as potential molecular mechanisms, to study the pathological mechanism of these diseases based on the changes at the molecular level. The results showed that C. asiatica and its triterpenoids had extensive beneficial effects on neurological and skin diseases, which were confirmed through clinical studies. They exhibited anti-inflammatory, anti-oxidative stress, anti-apoptotic effects, and improvement in mitochondrial function. However, further clinical studies are urgently required due to the low level of evidence and lack of patients.
Collapse
Affiliation(s)
- Boju Sun
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - You Wu
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Chengfei Zhang
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Qin
- Technology Department, Beijing University of Chinese Medicine, Beijing, China
| | - Misa Hayashi
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
| | - Maya Kudo
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
| | - Ming Gao
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
| | - Tonghua Liu
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Blanco AM, Bertucci JI, Soengas JL, Unniappan S. In vitro insulin treatment reverses changes elicited by nutrients in cellular metabolic processes that regulate food intake in fish. J Exp Biol 2020; 223:jeb213454. [PMID: 32179544 DOI: 10.1242/jeb.213454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
This research assessed the direct effects of insulin on nutrient-sensing mechanisms in the brain of rainbow trout (Oncorhynchus mykiss) using an in vitro approach. Cultured hypothalamus and hindbrain were exposed to 1 µmol l-1 insulin for 3 h, and signals involved in appetite regulation and nutrient-sensing mechanisms were measured. Additionally, the involvement of the phosphatidylinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway in the actions of insulin was studied by using the inhibitor wortmannin. Treatment with insulin alone did not elicit many changes in the appetite regulators and nutrient-sensing-related genes and enzymes tested in the hypothalamus and hindbrain. However, we found that, when insulin and nutrients were added together, insulin reversed most of the effects exerted by nutrients alone, suggesting that insulin changes responsiveness to nutrients at the central level. Effects reversed by insulin included expression levels of genes related to the sensing of both glucose (slc2a2, slc5a1, gck, pck1, pklr, g6pcb, gys1, tas1r3 and nr1h3 in the hindbrain, and slc2a2, pklr and pck1 in the hypothalamus) and fatty acid (cd36 in the hindbrain, and cd36 and acly in the hypothalamus). Nutrient-induced changes in the activity of Acly and Cpt-1 in the hindbrain and of Pepck, Acly, Fas and Hoad in the hypothalamus were also reversed by insulin. Most of the insulin effects disappeared in the presence of wortmannin, suggesting the PI3K/Akt pathway is a mediator of the effects of insulin reported here. This study adds new information to our knowledge of the mechanisms regulating nutrient sensing in fish.
Collapse
Affiliation(s)
- Ayelén M Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5B4
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, 36330 Vigo, Pontevedra, Spain
| | - Juan I Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5B4
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5B3
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, 36330 Vigo, Pontevedra, Spain
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5B4
| |
Collapse
|
11
|
Conde-Sieira M, Capelli V, Álvarez-Otero R, Díaz-Rúa A, Velasco C, Comesaña S, López M, Soengas JL. Hypothalamic AMPKα2 regulates liver energy metabolism in rainbow trout through vagal innervation. Am J Physiol Regul Integr Comp Physiol 2019; 318:R122-R134. [PMID: 31692367 DOI: 10.1152/ajpregu.00264.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hypothalamic AMPK plays a major role in the regulation of whole body metabolism and energy balance. Present evidence has demonstrated that this canonical mechanism is evolutionarily conserved. Thus, recent data demonstrated that inhibition of AMPKα2 in fish hypothalamus led to decreased food intake and liver capacity to use and synthesize glucose, lipids, and amino acids. We hypothesize that a signal of abundance of nutrients from the hypothalamus controls hepatic metabolism. The vagus nerve is the most important link between the brain and the liver. We therefore examined in the present study whether surgical transection of the vagus nerve in rainbow trout is sufficient to alter the effect in liver of central inhibition of AMPKα2. Thus, we vagotomized (VGX) or not (Sham) rainbow trout and then intracerebroventricularly administered adenoviral vectors tagged with green fluorescent protein alone or linked to a dominant negative isoform of AMPKα2. The inhibition of AMPKα2 led to reduced food intake in parallel with changes in the mRNA abundance of hypothalamic neuropeptides [neuropeptide Y (npy), agouti-related protein 1 (agrp1), and cocaine- and amphetamine-related transcript (cartpt)] involved in food intake regulation. Central inhibition of AMPKα2 resulted in the liver having decreased capacity to use and synthesize glucose, lipids, and amino acids. Notably, these effects mostly disappeared in VGX fish. These results support the idea that autonomic nervous system actions mediate the actions of hypothalamic AMPKα2 on liver metabolism. Importantly, this evidence indicates that the well-established role of hypothalamic AMPK in energy balance is a canonical evolutionarily preserved mechanism that is also present in the fish lineage.
Collapse
Affiliation(s)
- Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Valentina Capelli
- Departamento de Fisiología, Grupo NeurObesity, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria and Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain.,Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Rosa Álvarez-Otero
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Adrián Díaz-Rúa
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Sara Comesaña
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Miguel López
- Departamento de Fisiología, Grupo NeurObesity, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria and Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
12
|
Gao X, Liu P, Wu C, Wang T, Liu G, Cao H, Zhang C, Hu G, Guo X. Effects of fatty liver hemorrhagic syndrome on the AMP-activated protein kinase signaling pathway in laying hens. Poult Sci 2019; 98:2201-2210. [DOI: 10.3382/ps/pey586] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022] Open
|
13
|
Velasco C, Comesaña S, Conde-Sieira M, Míguez JM, Soengas JL. Effects of CCK-8 and GLP-1 on fatty acid sensing and food intake regulation in trout. J Mol Endocrinol 2019; 62:101-116. [PMID: 30608904 DOI: 10.1530/jme-18-0212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022]
Abstract
We hypothesize that cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) are involved in the modulation of metabolic regulation of food intake by fatty acids in fish. Therefore, we assessed in rainbow trout (Oncorhynchus mykiss) the effects of intracerebroventricular treatment with 1 ng/g of CCK-8 and with 2 ng/g of GLP-1 on food intake, expression of neuropeptides involved in food intake control and the activity of fatty acid-sensing systems in hypothalamus and hindbrain. Food intake decreased up to 24 h post-treatment to 49.8-72.3% and 3.1-17.8% for CCK-8 and GLP-1, respectively. These anorectic responses are associated with changes in fatty acid metabolism and an activation of fatty acid-sensing mechanisms in the hypothalamus and hindbrain. These changes occurred in parallel with those in the expression of anorexigenic and orexigenic peptides. Moreover, we observed that the activation of fatty acid sensing and the enhanced anorectic potential elicited by CCK-8 and GLP-1 treatments occurred in parallel with the activation of mTOR and FoxO1 and the inhibition of AMPKα, BSX and CREB. The results are discussed in the context of metabolic regulation of food intake in fish.
Collapse
Affiliation(s)
- Cristina Velasco
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Laboratorio de Fisioloxía Animal, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Sara Comesaña
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Laboratorio de Fisioloxía Animal, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Marta Conde-Sieira
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Laboratorio de Fisioloxía Animal, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Jesús M Míguez
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Laboratorio de Fisioloxía Animal, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - José L Soengas
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Laboratorio de Fisioloxía Animal, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
14
|
Differential Role of Hypothalamic AMPKα Isoforms in Fish: an Evolutive Perspective. Mol Neurobiol 2018; 56:5051-5066. [PMID: 30460617 DOI: 10.1007/s12035-018-1434-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022]
Abstract
In mammals, hypothalamic AMP-activated protein kinase (AMPK) α1 and α2 isoforms mainly relate to regulation of thermogenesis/liver metabolism and food intake, respectively. Since both isoforms are present in fish, which do not thermoregulate, we assessed their role(s) in hypothalamus regarding control of food intake and energy homeostasis. Since many fish species are carnivorous and mostly mammals are omnivorous, assessing if the role of hypothalamic AMPK is different is also an open question. Using the rainbow trout as a fish model, we first observed that food deprivation for 5 days did not significantly increase phosphorylation status of AMPKα in hypothalamus. Then, we administered adenoviral vectors that express dominant negative (DN) AMPKα1 or AMPKα2 isoforms. The inhibition of AMPKα2 (but not AMPKα1) led to decreased food intake. The central inhibition of AMPKα2 resulted in liver with decreased capacity of use and synthesis of glucose, lipids, and amino acids suggesting that a signal of nutrient abundance flows from hypothalamus to the liver, thus suggesting a role for central AMPKα2 in the regulation of peripheral metabolism in fishes. The central inhibition of AMPKα1 induced comparable changes in liver metabolism though at a lower extent. From an evolutionary point of view, it is of interest that the function of central AMPKα2 remained similar throughout the vertebrate lineage. In contrast, the function of central AMPKα1 in fish relates to modulation of liver metabolism whereas in mammals modulates not only liver metabolism but also brown adipose tissue and thermogenesis.
Collapse
|
15
|
Conde-Sieira M, Ceinos RM, Velasco C, Comesaña S, López-Patiño MA, Míguez JM, Soengas JL. Response of rainbow trout’s (Oncorhynchus mykiss) hypothalamus to glucose and oleate assessed through transcription factors BSX, ChREBP, CREB, and FoxO1. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:893-904. [DOI: 10.1007/s00359-018-1288-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/05/2018] [Accepted: 09/09/2018] [Indexed: 01/22/2023]
|
16
|
Yokoyama T, Terawaki K, Minami K, Miyano K, Nonaka M, Uzu M, Kashiwase Y, Yanagihara K, Ueta Y, Uezono Y. Modulation of synaptic inputs in magnocellular neurones in a rat model of cancer cachexia. J Neuroendocrinol 2018; 30:e12630. [PMID: 29944778 DOI: 10.1111/jne.12630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/24/2018] [Indexed: 11/29/2022]
Abstract
In cancer cachexia, abnormal metabolism and neuroendocrine dysfunction cause anorexia, tissue damage and atrophy, which can in turn alter body fluid balance. Arginine vasopressin, which regulates fluid homeostasis, is secreted by magnocellular neurosecretory cells (MNCs) of the hypothalamic supraoptic nucleus. Arginine vasopressin secretion by MNCs is regulated by both excitatory and inhibitory synaptic activity, alterations in plasma osmolarity and various peptides, including angiotensin II. In the present study, we used whole-cell patch-clamp recordings of brain slices to determine whether hyperosmotic stimulation and/or angiotensin II potentiate excitatory synaptic input in a rat model of cancer cachexia, similar to their effects in normal (control) rats. Hyperosmotic (15 and 60 mmol L-1 mannitol) stimulation and angiotensin II (0.1 μmol L-1 ) increased the frequency, but not the amplitude, of miniature excitatory postsynaptic currents in normal rats; in model rats, both effects were significantly attenuated. These results suggest that cancer cachexia alters supraoptic MNC sensitivity to osmotic and angiotensin II stimulation.
Collapse
Affiliation(s)
- Toru Yokoyama
- Cancer Pathophysiology Division, National Cancer Center Research Institute, Tokyo, Japan
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Anesthesiology and Critical Care Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Kiyoshi Terawaki
- Cancer Pathophysiology Division, National Cancer Center Research Institute, Tokyo, Japan
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Kouichiro Minami
- Cancer Pathophysiology Division, National Cancer Center Research Institute, Tokyo, Japan
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Anesthesiology and Critical Care Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Kanako Miyano
- Cancer Pathophysiology Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Miki Nonaka
- Cancer Pathophysiology Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Miaki Uzu
- Cancer Pathophysiology Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Yohei Kashiwase
- Cancer Pathophysiology Division, National Cancer Center Research Institute, Tokyo, Japan
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Kazuyoshi Yanagihara
- Division of Biomarker Discovery, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yasuhito Uezono
- Cancer Pathophysiology Division, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
17
|
Soengas JL, Cerdá-Reverter JM, Delgado MJ. Central regulation of food intake in fish: an evolutionary perspective. J Mol Endocrinol 2018; 60:R171-R199. [PMID: 29467140 DOI: 10.1530/jme-17-0320] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/21/2018] [Indexed: 12/11/2022]
Abstract
Evidence indicates that central regulation of food intake is well conserved along the vertebrate lineage, at least between teleost fish and mammals. However, several differences arise in the comparison between both groups. In this review, we describe similarities and differences between teleost fish and mammals on an evolutionary perspective. We focussed on the existing knowledge of specific fish features conditioning food intake, anatomical homologies and analogies between both groups as well as the main signalling pathways of neuroendocrine and metabolic nature involved in the homeostatic and hedonic central regulation of food intake.
Collapse
Affiliation(s)
- José Luis Soengas
- Departamento de Bioloxía Funcional e Ciencias da SaúdeLaboratorio de Fisioloxía Animal, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - José Miguel Cerdá-Reverter
- Departamento de Fisiología de Peces y BiotecnologíaInstituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| | - María Jesús Delgado
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
18
|
Sun L, Liu J, Tian P, Ni Y, Zhao R. The effect of fasting on the appetite-associated factors and energy sensors expression in the hypothalamus of different TI broilers. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an15473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Tonic immobility (TI) is a behaviour related to fear and stress response. Birds can exhibit a short (STI) or long (LTI) tonic immobility phenotype on the basis in TI duration. In this study, the differences in the hypothalamic appetite-associated factors and energy sensor gene expression between STI and LTI broilers were evaluated under free feed access or 16-h fasting. The results showed that the concentrations of cholesterol, high density lipoprotein-cholesterol, non-esterified fatty acid, malonaldehyde, lactate dehydrogenase, creatine kinase, alanine aminotransferase and aspartate aminotransferase in plasma were significantly increased (P < 0.05) in fasting broilers compared with broilers fed ad libitum, whereas plasma glucose, triglyceride, and total antioxidant capacity concentrations were decreased (P < 0.05). With respect to TI, however, only low density lipoprotein-cholesterol and glutathione peroxidase concentrations in plasma showed significant differences between LTI and STI broilers, with higher concentrations in LTI compared with STI. Real-time PCR results showed that only NPY mRNA expression demonstrated a tendency to increase in STI broilers compared with LTI (P = 0.095). Fasting downregulated SREBP-1 and its target gene FAS but upregulated CPT1 in the hypothalamus. Additionally, levels of hypothalamic p-GR and p-AMPK protein expression decreased after fasting. These results indicate that a 16-h fasting results in a negative energy status, and is accompanied with changes in expression of hypothalamic energy sensor and appetite-associated factors.
Collapse
|
19
|
Blanco AM, Velasco C, Bertucci JI, Soengas JL, Unniappan S. Nesfatin-1 Regulates Feeding, Glucosensing and Lipid Metabolism in Rainbow Trout. Front Endocrinol (Lausanne) 2018; 9:484. [PMID: 30210451 PMCID: PMC6121026 DOI: 10.3389/fendo.2018.00484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022] Open
Abstract
Nesfatin-1 is an 82 amino acid peptide that has been involved in a wide variety of physiological functions in both mammals and fish. This study aimed to elucidate the role of nesfatin-1 on rainbow trout food intake, and its putative effects on glucose and fatty acid sensing systems. Intracerebroventricular administration of 25 ng/g nesfatin-1 resulted in a significant inhibition of appetite, likely mediated by the activation of central POMC and CART. Nesfatin-1 stimulated the glucosensing machinery (changes in sglt1, g6pase, gsase, and gnat3 mRNA expression) in the hindbrain and hypothalamus. Central fatty acid sensing mechanisms were unaltered by nesfatin-1, but this peptide altered the expression of mRNAs encoding factors regulating lipid metabolism (fat/cd36, acly, mcd, fas, lpl, pparα, and pparγ), suggesting that nesfatin-1 promotes lipid accumulation in neurons. In the liver, intracerebroventricular nesfatin-1 treatment resulted in decreased capacity for glucose use and lipogenesis, and increased the potential of fatty acid oxidation. Altogether, the present results demonstrate that nesfatin-1 is involved in the homeostatic regulation of food intake and metabolism in fish.
Collapse
Affiliation(s)
- Ayelén M. Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Cristina Velasco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Juan I. Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Chascomús, Argentina
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Suraj Unniappan
| |
Collapse
|
20
|
Velasco C, Otero-Rodiño C, Comesaña S, Míguez JM, Soengas JL. Hypothalamic mechanisms linking fatty acid sensing and food intake regulation in rainbow trout. J Mol Endocrinol 2017; 59:377-390. [PMID: 28951437 DOI: 10.1530/jme-17-0148] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/14/2017] [Indexed: 01/15/2023]
Abstract
We assessed in rainbow trout hypothalamus the effects of oleate and octanoate on levels and phosphorylation status of two transcription factors, FoxO1 and CREB, possibly involved in linking activation of fatty acid sensing with modulation of food intake through the expression of brain neuropeptides. Moreover, we assessed changes in the phosphorylation status of three proteins possibly involved in modulation of these transcription factors such as Akt, AMPK and mTOR. In a first experiment, we evaluated, in pools of hypothalamus incubated for 3 h and 6 h at 15°C in a modified Hanks' medium containing 100 or 500 µM oleate or octanoate, the response of fatty acid sensing, neuropeptide expression and phosphorylation status of proteins of interest. The activation of fatty acid sensing and enhanced anorectic potential occurred in parallel with the activation of Akt and mTOR, and the inhibition of AMPK. The changes in these proteins would relate to a neuropeptide expression through changes in the phosphorylation status of transcription factors under their control, such as CREB and FoxO1, which displayed inhibitory (CREB) or activatory (FoxO1) responses when tissues were incubated with oleate or octanoate. In a second experiment, we incubated hypothalamus for 6 h with 500 µM oleate or octanoate alone or in the presence of specific inhibitors of Akt, AMPK, mTOR, CREB or FoxO1. The presence of inhibitors counteracted the effects of oleate or octanoate on the phosphorylation status of the proteins of interest. The results support, for the first time in fish, the involvement of these proteins in the regulation of food intake by fatty acids.
Collapse
Affiliation(s)
- Cristina Velasco
- Laboratorio de Fisioloxía AnimalDepartamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Cristina Otero-Rodiño
- Laboratorio de Fisioloxía AnimalDepartamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Sara Comesaña
- Laboratorio de Fisioloxía AnimalDepartamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Jesús M Míguez
- Laboratorio de Fisioloxía AnimalDepartamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - José L Soengas
- Laboratorio de Fisioloxía AnimalDepartamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
21
|
Central Administration of 1-Deoxynojirimycin Attenuates Hypothalamic Endoplasmic Reticulum Stress and Regulates Food Intake and Body Weight in Mice with High-Fat Diet-Induced Obesity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3607089. [PMID: 28798799 PMCID: PMC5535735 DOI: 10.1155/2017/3607089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 12/19/2022]
Abstract
The α-glucosidase inhibitor, 1-deoxynojirimycin (DNJ), is widely used for its antiobesity and antidiabetic effects. Researchers have demonstrated that DNJ regulates body weight by increasing adiponectin levels, which affects energy intake and prevents diet-induced obesity. However, the mechanism by which centrally administered DNJ exerts anorexigenic effects has not been studied until now. We investigated the effect of DNJ in the hypothalamus of mice with high-fat diet-induced obesity. Results showed that intracerebroventricular (ICV) administration of DNJ reduced hypothalamic ER stress, which activated the leptin-induced Janus-activated kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) signaling pathway to cause appetite suppression. We conclude that DNJ may reduce obesity by moderating feeding behavior and ER stress in the hypothalamic portion of the central nervous system (CNS).
Collapse
|
22
|
Molecular mechanisms of appetite and obesity: a role for brain AMPK. Clin Sci (Lond) 2017; 130:1697-709. [PMID: 27555613 DOI: 10.1042/cs20160048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/07/2016] [Indexed: 01/15/2023]
Abstract
Feeding behaviour and energy storage are both crucial aspects of survival. Thus, it is of fundamental importance to understand the molecular mechanisms regulating these basic processes. The AMP-activated protein kinase (AMPK) has been revealed as one of the key molecules modulating energy homoeostasis. Indeed, AMPK appears to be essential for translating nutritional and energy requirements into generation of an adequate neuronal response, particularly in two areas of the brain, the hypothalamus and the hindbrain. Failure of this physiological response can lead to energy imbalance, ultimately with extreme consequences, such as leanness or obesity. Here, we will review the data that put brain AMPK in the spotlight as a regulator of appetite.
Collapse
|
23
|
Engin A. Human Protein Kinases and Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:111-134. [DOI: 10.1007/978-3-319-48382-5_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Velasco C, Moreiras G, Conde-Sieira M, Leao JM, Míguez JM, Soengas JL. Ceramide counteracts the effects of ghrelin on the metabolic control of food intake in rainbow trout. ACTA ACUST UNITED AC 2017; 220:2563-2576. [PMID: 28495865 DOI: 10.1242/jeb.159871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/02/2017] [Indexed: 12/31/2022]
Abstract
In mammals, ceramides are involved in the modulation of the orexigenic effects of ghrelin (GHRL). We previously demonstrated in rainbow trout that intracerebroventricular (ICV) treatment with ceramide (2.5 µg/100 g fish) resulted in an anorexigenic response, i.e. a response opposed to that described in mammals, where ceramide treatment is orexigenic. Therefore, we hypothesized that the putative interaction between GHRL and ceramide must be different in fish. Accordingly, in a first experiment, we observed that ceramide levels in the hypothalamus of rainbow trout did not change after ICV treatment with GHRL. In a second experiment, we assessed whether the effects of GHRL treatment on the regulation of food intake in rainbow trout changed in the presence of ceramide. Thus, we injected ICV GHRL and ceramide alone or in combination to evaluate in hypothalamus and hindbrain changes in parameters related to the metabolic control of food intake. The presence of ceramide generally counteracted the effects elicited by GHRL on fatty acid-sensing systems, the capacity of integrative sensors (AMPK, mTOR and SIRT-1), proteins involved in cellular signalling pathways (Akt and FoxO1) and neuropeptides involved in the regulation of food intake (AgRP, NPY, POMC and CART). The results are discussed in the context of regulation of food intake by metabolic and endocrine inputs.
Collapse
Affiliation(s)
- Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, 36310 Vigo, Spain
| | - Guillermo Moreiras
- Departamento de Química Analítica e Alimentaria, Facultade de Química, Universidade de Vigo, 36310 Vigo, Spain
| | - Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, 36310 Vigo, Spain
| | - José M Leao
- Departamento de Química Analítica e Alimentaria, Facultade de Química, Universidade de Vigo, 36310 Vigo, Spain
| | - Jesús M Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, 36310 Vigo, Spain
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
25
|
López M, Tena-Sempere M. Estradiol effects on hypothalamic AMPK and BAT thermogenesis: A gateway for obesity treatment? Pharmacol Ther 2017; 178:109-122. [PMID: 28351720 DOI: 10.1016/j.pharmthera.2017.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/21/2017] [Indexed: 12/24/2022]
Abstract
In addition to their prominent roles in the control of reproduction, estrogens are important modulators of energy balance, as evident in conditions of deficiency of estrogens, which are characterized by increased feeding and decreased energy expenditure, leading to obesity. AMP-activated protein kinase (AMPK) is a ubiquitous cellular energy gauge that is activated under conditions of low energy, increasing energy production and reducing energy wasting. Centrally, the AMPK pathway is a canonical route regulating energy homeostasis, by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. As a result of those actions, hypothalamic AMPK modulates feeding, as well as brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT). Here, we will review the central actions of estrogens on energy balance, with particular focus on hypothalamic AMPK. The relevance of this interaction is noteworthy, because some agents with known actions on metabolic homeostasis, such as nicotine, metformin, liraglutide, olanzapine and also natural molecules, such as resveratrol and flavonoids, exert their actions by modulating AMPK. This evidence highlights the possibility that hypothalamic AMPK might be a potential target for the treatment of obesity.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos II, Spain.
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos II, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, 14004 Córdoba, Spain; FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| |
Collapse
|
26
|
Abstract
Obesity-related co-morbidities decrease life quality, reduce working ability and lead to early death. The total amount of dietary fat consumption may be the most potent food-related risk factor for weight gain. In this respect, dietary intake of high-caloric, high-fat diets due to chronic over-eating and sedentary lifestyle lead to increased storage of triglycerides not only in adipose tissue but also ectopically in other tissues . Increased plasma concentrations of non-esterified free fatty acids and lipid-overloaded hypertrophic adipocytes may cause insulin resistance in an inflammation-independent manner. Even in the absence of metabolic disorders, mismatch between fatty acid uptake and utilization leads to the accumulation of toxic lipid species resulting in organ dysfunction. Lipid-induced apoptosis, ceramide accumulation, reactive oxygen species overproduction, endoplasmic reticulum stress, and mitochondrial dysfunction may play role in the pathogenesis of lipotoxicity. The hypothalamus senses availability of circulating levels of glucose, lipids and amino acids, thereby modifies feeding according to the levels of those molecules. However, the hypothalamus is also similarly vulnerable to lipotoxicity as the other ectopic lipid accumulated tissues. Chronic overnutrition most likely provides repetitive and persistent signals that up-regulate inhibitor of nuclear factor kappa B kinase beta subunit/nuclear factor kappa B (IKKβ/NF-κB) in the hypothalamus before the onset of obesity. However, the mechanisms by which high-fat diet induced peripheral signals affect the hypothalamic arcuate nucleus remain largely unknown. In this chapter, besides lipids and leptin, the role of glucose and insulin on specialized fuel-sensing neurons of hypothalamic neuronal circuits has been debated.
Collapse
|
27
|
Otero-Rodiño C, Velasco C, Álvarez-Otero R, López-Patiño MA, Míguez JM, Soengas JL. Changes in the levels and phosphorylation status of Akt, AMPK, CREB, and FoxO1 in hypothalamus of rainbow trout under conditions of enhanced glucosensing activity. J Exp Biol 2017; 220:4410-4417. [DOI: 10.1242/jeb.165159] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
There is no available information in fish about mechanisms linking glucosensing activation and changes in the expression of brain neuropeptides controlling food intake. Therefore, we assessed in rainbow trout hypothalamus the effects of raised levels of glucose on the levels and phosphorylation status of two transcription factors, FoxO1 and CREB, possibly involved in linking those processes. Moreover, we also aimed to assess the changes in the levels and phosphorylation status of two proteins possibly involved in the modulation of these transcription factors such as Akt and AMPK. Therefore, we evaluated in pools of hypothalamus incubated for 3h and 6h at 15 °C in modified Hanks’ medium containing 2, 4, or 8 mM D-glucose the response of parameters related to glucosensing mechanisms, neuropeptide expression, and levels and phosphorylation status of proteins of interest. The activation of hypothalamic glucosensing systems and the concomitant enhanced anorectic potential occurred in parallel with activation of Akt and inhibition of AMPK. The changes in these proteins would relate to neuropeptide expression through changes in the levels and phosphorylation status of transcription factors under their control, such as CREB and FoxO1, which displayed inhibitory (CREB) or activatory (FoxO1) responses to increased glucose.
Collapse
Affiliation(s)
- Cristina Otero-Rodiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Spain
| | - Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Spain
| | - Rosa Álvarez-Otero
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Spain
| | - Marcos A. López-Patiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Spain
| | - Jesús M. Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Spain
| |
Collapse
|
28
|
Jiang S, Zhai H, Li D, Huang J, Zhang H, Li Z, Zhang W, Xu G. AMPK-dependent regulation of GLP1 expression in L-like cells. J Mol Endocrinol 2016; 57:151-60. [PMID: 27493247 DOI: 10.1530/jme-16-0099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 08/04/2016] [Indexed: 12/25/2022]
Abstract
This study examined whether AMPK, an evolutionarily conserved sensor of cellular energy status, determines the production of glucagon-like peptide-1 (GLP1). A negative relation existed between phosphorylation of AMPKα and the expression and secretion of GLP1 during changes in energy status in STC-1 cells, an L-like cell line. High concentration of glucose (25 mmol/L) decreased AMPKα phosphorylation, whereas it stimulated the expression and secretion of GLP1 relative to 5.6 mmol/L glucose. Serum starvation upregulated AMPKα phosphorylation, whereas it reduced GLP1 production significantly. Stimulation of AMPK phosphorylation by AICAR and overexpression of wild-type AMPKα1, constitutively active AMPKα1 plasmids, or AMPKα1 lentivirus particles suppressed proglucagon mRNA and protein contents in STC-1 cells. Inactivation of AMPK by Compound C, AMPKα1 siRNA or kinase-inactive AMPKα1 mutant increased the expression and secretion of GLP1. Our results suggest that AMPKα1 may link energy supply with the production of GLP1 in L-like cells.
Collapse
Affiliation(s)
- Sushi Jiang
- Department of PhysiologySchool of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Hening Zhai
- Department of PhysiologySchool of Medicine, Jinan University, Guangzhou, Guangdong, China Endoscopy CenterThe First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Danjie Li
- Department of PhysiologySchool of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jiana Huang
- Department of PhysiologySchool of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Heng Zhang
- Department of PhysiologySchool of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Ziru Li
- Shenzhen University Diabetes CenterShenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Weizhen Zhang
- Endoscopy CenterThe First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China Department of SurgeryUniversity of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Geyang Xu
- Department of PhysiologySchool of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Glucosensing in liver and Brockmann bodies of rainbow trout through glucokinase-independent mechanisms. Comp Biochem Physiol B Biochem Mol Biol 2016; 199:29-42. [DOI: 10.1016/j.cbpb.2015.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/17/2015] [Accepted: 09/25/2015] [Indexed: 01/21/2023]
|
30
|
Velasco C, Librán-Pérez M, Otero-Rodiño C, López-Patiño MA, Míguez JM, Soengas JL. Ceramides are involved in the regulation of food intake in rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 2016; 311:R658-R668. [PMID: 27465737 DOI: 10.1152/ajpregu.00201.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022]
Abstract
We hypothesize that ceramides are involved in the regulation of food intake in fish. Therefore, we assessed in rainbow trout (Oncorhynchus mykiss) the effects of intracerebroventricular treatment with C6:0 ceramide on food intake. In a second experiment, we assessed the effects in brain areas of ceramide treatment on neuropeptide expression, fatty acid-sensing systems, and cellular signaling pathways. Ceramide treatment induced a decrease in food intake, a response opposed to the orexigenic effect described in mammals, which can be related to enhanced mRNA abundance of cocaine and amphetamine-related transcript and proopiomelanocortin and decreased mRNA abundance of Agouti-related protein and neuropeptide Y. Fatty acid-sensing systems appear to be inactivated by ceramide treatment. The mRNA abundance of integrative sensors AMPK and sirtuin 1, and the phosphorylation status of cellular signaling pathways dependent on protein kinase B, AMPK, mammalian target of rapamycin (mTOR), and forkhead box protein O1 (FoxO1) are generally activated by ceramide treatment. However, there are differences between hypothalamus and hindbrain in the phosphorylation status of AMPK (decreased in hypothalamus and increased in hindbrain), mTOR (decreased in hypothalamus and increased in hindbrain), and FoxO1 (increased in hypothalamus and decreased in hindbrain) to ceramide treatment. The results suggest that ceramides are involved in the regulation of food intake in rainbow trout through mechanisms comparable to those characterized previously in mammals in some cases.
Collapse
Affiliation(s)
- Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Marta Librán-Pérez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Cristina Otero-Rodiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Marcos A López-Patiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Jesús M Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
31
|
López M, Nogueiras R, Tena-Sempere M, Diéguez C. Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nat Rev Endocrinol 2016; 12:421-32. [PMID: 27199291 DOI: 10.1038/nrendo.2016.67] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AMP-activated protein kinase (AMPK) has a major role in the modulation of energy balance. AMPK is activated in conditions of low energy, increasing energy production and reducing energy consumption. The AMPK pathway is a canonical route regulating energy homeostasis by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. Current evidence has implicated AMPK in the hypothalamus and hindbrain with feeding, brown adipose tissue thermogenesis and browning of white adipose tissue, through modulation of the sympathetic nervous system, as well as glucose homeostasis. Interestingly, several potential antiobesity and/or antidiabetic agents, some of which are currently in clinical use such as metformin and liraglutide, exert some of their actions by acting on AMPK. Furthermore, the orexigenic and weight-gain effects of commonly used antipsychotic drugs are also mediated by hypothalamic AMPK. Overall, this evidence suggests that hypothalamic AMPK signalling is an interesting target for drug development, but is this approach feasible? In this Review we discuss the current understanding of hypothalamic AMPK and its role in the central regulation of energy balance and metabolism.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, 14004 Córdoba, Spain
- FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| |
Collapse
|
32
|
Kwon IG, Ha TK, Ryu SW, Ha E. Roux-en-Y gastric bypass stimulates hypothalamic miR-122 and inhibits cardiac and hepatic miR-122 expressions. J Surg Res 2015; 199:371-7. [DOI: 10.1016/j.jss.2015.05.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/16/2015] [Accepted: 05/28/2015] [Indexed: 01/06/2023]
|
33
|
Milbank E, Martinez MC, Andriantsitohaina R. Extracellular vesicles: Pharmacological modulators of the peripheral and central signals governing obesity. Pharmacol Ther 2015; 157:65-83. [PMID: 26617220 DOI: 10.1016/j.pharmthera.2015.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Obesity and its metabolic resultant dysfunctions such as insulin resistance, hyperglycemia, dyslipidemia and hypertension, grouped as the "metabolic syndrome", are chronic inflammatory disorders that represent one of the most severe epidemic health problems. The imbalance between energy intake and expenditure, leading to an excess of body fat and an increase of cardiovascular and diabetes risks, is regulated by the interaction between central nervous system (CNS) and peripheral signals in order to regulate behavior and finally, the metabolism of peripheral organs. At present, pharmacological treatment of obesity comprises actions in both CNS and peripheral organs. In the last decades, the extracellular vesicles have emerged as participants in many pathophysiological regulation processes. Whether used as biomarkers, targets or even tools, extracellular vesicles provided some promising effects in the treatment of a large variety of diseases. Extracellular vesicles are released by cells from the plasma membrane (microvesicles) or from multivesicular bodies (exosomes) and contain lipids, proteins and nucleic acids, such as DNA, protein coding, and non-coding RNAs. Owing to their composition, extracellular vesicles can (i) activate receptors at the target cell and then, the subsequent intracellular pathway associated to the specific receptor; (ii) transfer molecules to the target cells and thereby change their phenotype and (iii) be used as shuttle of drugs and, thus, to carry specific molecules towards specific cells. Herein, we review the impact of extracellular vesicles in modulating the central and peripheral signals governing obesity.
Collapse
Affiliation(s)
- Edward Milbank
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Université d'Angers, Angers, France
| | - M Carmen Martinez
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Université d'Angers, Angers, France
| | | |
Collapse
|
34
|
Librán-Pérez M, Velasco C, Otero-Rodiño C, López-Patiño MA, Míguez JM, Soengas JL. Effects of insulin treatment on the response to oleate and octanoate of food intake and fatty acid-sensing systems in rainbow trout. Domest Anim Endocrinol 2015; 53:124-35. [PMID: 26226227 DOI: 10.1016/j.domaniend.2015.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/08/2015] [Accepted: 06/25/2015] [Indexed: 12/14/2022]
Abstract
We hypothesized that food intake and the response of fatty acid (FA)-sensing systems in hypothalamus, liver, and Brockmann bodies of rainbow trout to raised levels of oleate (OL) or octanoate (OCT) is modified by insulin treatment. To assess this hypothesis, 15 fish per group received intraperitoneally 10-mL/kg injection of saline solution alone (control), or containing insulin (2-mg bovine insulin/kg body mass), OL (300 μg/kg), OCT (300 μg/kg), insulin + OL, or insulin + OCT to be sampled 6 h later to assess parameters related to FA sensing. Our results suggest that the modulatory role of insulin on the responses of hypothalamic FA-sensing systems to changes in circulating levels of OL or OCT was of minor importance in contrast to the mammalian model. However, this is in contrast with the effects observed in another experiment assessing changes in food intake after similar treatments because insulin treatment enhanced the anorectic effects of FA alone, and the effect was especially relevant (P < 0.001) for OCT, in contrast with the mammalian model where this FA is not inducing an anorectic response. In liver and Brockmann bodies, insulin treatment enhanced the responses to OL or OCT treatment in parameters related to FA sensing. Therefore, we provide for the first time in fish, and in a non-mammalian vertebrate, evidence for the modulation of FA-sensing systems by insulin.
Collapse
Affiliation(s)
- M Librán-Pérez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain
| | - C Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain
| | - C Otero-Rodiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain
| | - M A López-Patiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain
| | - J M Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain
| | - J L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
35
|
Mendes MCS, Pimentel GD, Costa FO, Carvalheira JBC. Molecular and neuroendocrine mechanisms of cancer cachexia. J Endocrinol 2015; 226:R29-43. [PMID: 26112046 DOI: 10.1530/joe-15-0170] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2015] [Indexed: 02/05/2023]
Abstract
Cancer and its morbidities, such as cancer cachexia, constitute a major public health problem. Although cancer cachexia has afflicted humanity for centuries, its underlying multifactorial and complex physiopathology has hindered the understanding of its mechanism. During the last few decades we have witnessed a dramatic increase in the understanding of cancer cachexia pathophysiology. Anorexia and muscle and adipose tissue wasting are the main features of cancer cachexia. These apparently independent symptoms have humoral factors secreted by the tumor as a common cause. Importantly, the hypothalamus has emerged as an organ that senses the peripheral signals emanating from the tumoral environment, and not only elicits anorexia but also contributes to the development of muscle and adipose tissue loss. Herein, we review the roles of factors secreted by the tumor and its effects on the hypothalamus, muscle and adipose tissue, as well as highlighting the key targets that are being exploited for cancer cachexia treatment.
Collapse
Affiliation(s)
- Maria Carolina S Mendes
- Department of Internal MedicineFaculty of Medical Sciences, State University of Campinas (UNICAMP), MA: 13083-970 Campinas, Sao Paulo, Brazil
| | - Gustavo D Pimentel
- Department of Internal MedicineFaculty of Medical Sciences, State University of Campinas (UNICAMP), MA: 13083-970 Campinas, Sao Paulo, Brazil
| | - Felipe O Costa
- Department of Internal MedicineFaculty of Medical Sciences, State University of Campinas (UNICAMP), MA: 13083-970 Campinas, Sao Paulo, Brazil
| | - José B C Carvalheira
- Department of Internal MedicineFaculty of Medical Sciences, State University of Campinas (UNICAMP), MA: 13083-970 Campinas, Sao Paulo, Brazil
| |
Collapse
|
36
|
Greig FH, Ewart MA, McNaughton E, Cooney J, Spickett CM, Kennedy S. The hypotensive effect of acute and chronic AMP-activated protein kinase activation in normal and hyperlipidemic mice. Vascul Pharmacol 2015. [PMID: 26196300 PMCID: PMC4673085 DOI: 10.1016/j.vph.2015.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AMP-activated protein kinase (AMPK) is present in the arterial wall and is activated in response to cellular stressors that raise AMP relative to ADP/ATP. Activation of AMPK in vivo lowers blood pressure but the influence of hyperlipidemia on this response has not been studied. ApoE−/− mice on high fat diet for 6 weeks and age-matched controls were treated with the AMPK activator, AICAR daily for two weeks. Under anesthesia, the carotid artery was cannulated for blood pressure measurements. Aortic tissue was removed for in vitro functional experiments and AMPK activity was measured in artery homogenates by Western blotting. ApoE−/− mice had significantly raised mean arterial pressure; chronic AICAR treatment normalized this but had no effect in normolipidemic mice, whereas acute administration of AICAR lowered mean arterial pressure in both groups. Chronic AICAR treatment increased phosphorylation of AMPK and its downstream target acetyl-CoA carboxylase in normolipidemic but not ApoE−/− mice. In aortic rings, AMPK activation induced vasodilation and an anticontractile effect, which was attenuated in ApoE−/− mice. This study demonstrates that hyperlipidemia dysregulates the AMPK pathway in the arterial wall but this effect can be reversed by AMPK activation, possibly through improving vessel compliance.
Collapse
Affiliation(s)
- Fiona H Greig
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Marie-Ann Ewart
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Eilidh McNaughton
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Josephine Cooney
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Corinne M Spickett
- School of Life & Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Simon Kennedy
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
37
|
Otero-Rodiño C, Librán-Pérez M, Velasco C, López-Patiño MA, Míguez JM, Soengas JL. Evidence for the Presence of Glucosensor Mechanisms Not Dependent on Glucokinase in Hypothalamus and Hindbrain of Rainbow Trout (Oncorhynchus mykiss). PLoS One 2015; 10:e0128603. [PMID: 25996158 PMCID: PMC4440750 DOI: 10.1371/journal.pone.0128603] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/28/2015] [Indexed: 11/18/2022] Open
Abstract
We hypothesize that glucosensor mechanisms other than that mediated by glucokinase (GK) operate in hypothalamus and hindbrain of the carnivorous fish species rainbow trout and stress affected them. Therefore, we evaluated in these areas changes in parameters which could be related to putative glucosensor mechanisms based on liver X receptor (LXR), mitochondrial activity, sweet taste receptor, and sodium/glucose co-transporter 1 (SGLT-1) 6h after intraperitoneal injection of 5 mL.Kg-1 of saline solution alone (normoglycaemic treatment) or containing insulin (hypoglycaemic treatment, 4 mg bovine insulin.Kg-1 body mass), or D-glucose (hyperglycaemic treatment, 500 mg.Kg-1 body mass). Half of tanks were kept at a 10 Kg fish mass.m-3 and denoted as fish under normal stocking density (NSD) whereas the remaining tanks were kept at a stressful high stocking density (70 kg fish mass.m-3) denoted as HSD. The results obtained in non-stressed rainbow trout provide evidence, for the first time in fish, that manipulation of glucose levels induce changes in parameters which could be related to putative glucosensor systems based on LXR, mitochondrial activity and sweet taste receptor in hypothalamus, and a system based on SGLT-1 in hindbrain. Stress altered the response of parameters related to these systems to changes in glycaemia.
Collapse
Affiliation(s)
- Cristina Otero-Rodiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Marta Librán-Pérez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Marcos A. López-Patiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Jesús M. Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
- * E-mail:
| |
Collapse
|
38
|
Xu J, Chen L, Tang L, Chang L, Liu S, Tan J, Chen Y, Ren Y, Liang F, Cui J. Electroacupuncture inhibits weight gain in diet-induced obese rats by activating hypothalamic LKB1-AMPK signaling. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:147. [PMID: 25963634 PMCID: PMC4485871 DOI: 10.1186/s12906-015-0667-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 04/30/2015] [Indexed: 12/19/2022]
Abstract
Background Electroacupuncture (EA) is reported to be an effective treatment for obesity, but its mechanism is unclear. This study aimed to investigate the relationship between hypothalamic LKB1-AMPK-ACC signaling and EA. Methods Fifty male Sprague–Dawley rats were divided into two groups fed either chow (chow-fed group) or high-fat diet (HF group). After 4 weeks of feeding, obese rats in the HF group (defined as weighing 20 % or more than rats in the chow-fed group) were randomly allocated into an EA or Diet-induced obesity (DIO) group. The EA group was given EA on bilateral ST25–ST36 for 4 weeks, while the DIO group received no further intervention. Body weight of the chow-fed, DIO, and EA groups were measured weekly. mRNA and protein levels of the hypothalamic LKB1-AMPK-ACC signaling pathway were detected using real-time (RT)-PCR and western blot, respectively. Results After 4 weeks of EA treatment, the weight growth trend of rats in the EA group was inhibited compared with those in the DIO group. RT-PCR and western blotting showed that EA upregulated the transcription of Adenosine 5′-monophosphate -activated protein kinase α2 (AMPKα2), promoted protein expression of Liver kinase B1 (LKB1) and AMPKα1, and inhibited acetyl-CoA carboxylase (ACC) protein expression in the hypothalamus. Conclusions This study suggests that hypothalamic LKB1-AMPK-ACC signaling plays an important role in EA treatment for obesity.
Collapse
|
39
|
Dysregulation of energy balance by trichothecene mycotoxins: Mechanisms and prospects. Neurotoxicology 2015; 49:15-27. [PMID: 25956358 DOI: 10.1016/j.neuro.2015.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/14/2015] [Accepted: 04/26/2015] [Indexed: 11/23/2022]
Abstract
Trichothecenes are toxic metabolites produced by fungi that constitute a worldwide hazard for agricultural production and both animal and human health. More than 40 countries have introduced regulations or guidelines for food and feed contamination levels of the most prevalent trichothecene, deoxynivalenol (DON), on the basis of its ability to cause growth suppression. With the development of analytical tools, evaluation of food contamination and exposure revealed that a significant proportion of the human population is chronically exposed to DON doses exceeding the provisional maximum tolerable daily dose. Accordingly, a better understanding of trichothecene impact on health is needed. Upon exposure to low or moderate doses, DON and other trichothecenes induce anorexia, vomiting and reduced weight gain. Several recent studies have addressed the mechanisms by which trichothecenes induce these symptoms and revealed a multifaceted action targeting gut, liver and brain and causing dysregulation in neuroendocrine signaling, immune responses, growth hormone axis, and central neurocircuitries involved in energy homeostasis. Newly identified trichothecene toxicosis biomarkers are just beginning to be exploited and already open up new questions on the potential harmful effects of chronic exposure to DON at apparently asymptomatic very low levels. This review summarizes our current understanding of the effects of DON and other trichothecenes on food intake and weight growth.
Collapse
|
40
|
Contreras C, Gonzalez F, Fernø J, Diéguez C, Rahmouni K, Nogueiras R, López M. The brain and brown fat. Ann Med 2015; 47:150-68. [PMID: 24915455 PMCID: PMC4438385 DOI: 10.3109/07853890.2014.919727] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 04/25/2014] [Indexed: 02/06/2023] Open
Abstract
Brown adipose tissue (BAT) is a specialized organ responsible for thermogenesis, a process required for maintaining body temperature. BAT is regulated by the sympathetic nervous system (SNS), which activates lipolysis and mitochondrial uncoupling in brown adipocytes. For many years, BAT was considered to be important only in small mammals and newborn humans, but recent data have shown that BAT is also functional in adult humans. On the basis of this evidence, extensive research has been focused on BAT function, where new molecules, such as irisin and bone morphogenetic proteins, particularly BMP7 and BMP8B, as well as novel central factors and new regulatory mechanisms, such as orexins and the canonical ventomedial nucleus of the hypothalamus (VMH) AMP- activated protein kinase (AMPK)-SNS-BAT axis, have been discovered and emerged as potential drug targets to combat obesity. In this review we provide an overview of the complex central regulation of BAT and how different neuronal cell populations co-ordinately work to maintain energy homeostasis.
Collapse
Affiliation(s)
- Cristina Contreras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria , Santiago de Compostela, 15782 , Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Librán-Pérez M, Geurden I, Dias K, Corraze G, Panserat S, Soengas JL. Feeding rainbow trout with a lipid-enriched diet: effects on fatty acid sensing, regulation of food intake, and cellular signaling pathways. J Exp Biol 2015; 218:2610-9. [DOI: 10.1242/jeb.123802] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/15/2015] [Indexed: 12/17/2022]
Abstract
Using rainbow trout fed with low fat (LF) or high-fat (HF) diets we aimed to determine if the response of food intake, mRNA abundance of hypothalamic neuropeptides involved in the metabolic regulation of food intake, and fatty acid (FA) sensing systems in hypothalamus and liver is similar to that previously observed when levels of specific FA were raised by injection. Moreover, we also aimed to determine if the phosphorylation state of intracellular energy sensor 5′-AMP-activated protein kinase (AMPK), and proteins involved in cellular signalling such as protein kinase B (Akt) and target of rapamycin (mTOR) display changes that could be related to FA-sensing and the control of food intake. The increased levels of FA in hypothalamus and liver of rainbow trout fed the HF diet only partially activated FA-sensing systems and did not elicit changes in food intake suggesting that FA-sensing response in fish to increased levels of FA is more dependent on the presence of specific FA such as oleate or octanoate rather than to the global increase in FA. We also obtained, for the first time in fish, evidence for the presence and function of energy sensors like AMPK and proteins involved in cellular signaling like mTOR and Akt in hypothalamus. These proteins in hypothalamus and liver were generally activated in fish fed the HF vs LF diet suggesting the activation of the cellular signaling pathways in response to the increased availability of FA.
Collapse
Affiliation(s)
- Marta Librán-Pérez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | - Inge Geurden
- INRA, UR 1067 Nutrition Metabolism Aquaculture, Aquapôle, CD918, F-64310 St-Pée-sur-Nivelle, France
| | - Karine Dias
- INRA, UR 1067 Nutrition Metabolism Aquaculture, Aquapôle, CD918, F-64310 St-Pée-sur-Nivelle, France
| | - Genevieve Corraze
- INRA, UR 1067 Nutrition Metabolism Aquaculture, Aquapôle, CD918, F-64310 St-Pée-sur-Nivelle, France
| | - Stephane Panserat
- INRA, UR 1067 Nutrition Metabolism Aquaculture, Aquapôle, CD918, F-64310 St-Pée-sur-Nivelle, France
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| |
Collapse
|
42
|
Roa J, Tena-Sempere M. Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators. Mol Cell Endocrinol 2014; 397:4-14. [PMID: 25289807 DOI: 10.1016/j.mce.2014.09.027] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 12/15/2022]
Abstract
It is well established that pubertal activation of the reproductive axis and maintenance of fertility are critically dependent on the magnitude of body energy reserves and the metabolic state of the organism. Hence, conditions of impaired energy homeostasis often result in deregulation of puberty and reproduction, whereas gonadal dysfunction can be associated with the worsening of the metabolic profile and, eventually, changes in body weight. While much progress has taken place in our knowledge about the neuroendocrine mechanisms linking metabolism and reproduction, our understanding of how such dynamic interplay happens is still incomplete. As paradigmatic example, much has been learned in the last two decades on the reproductive roles of key metabolic hormones (such as leptin, insulin and ghrelin), their brain targets and the major transmitters and neuropeptides involved. Yet, the molecular mechanisms whereby metabolic information is translated and engages into the reproductive circuits remain largely unsolved. In this work, we will summarize recent developments in the characterization of the putative central roles of key cellular energy sensors, such as mTOR, in this phenomenon, and will relate these with other molecular mechanisms likely contributing to the brain coupling of energy balance and fertility. In doing so, we aim to provide an updated view of an area that, despite still underdeveloped, may be critically important to fully understand how reproduction and metabolism are tightly connected in health and disease.
Collapse
Affiliation(s)
- Juan Roa
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofia, 14004 Córdoba, Spain
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofia, 14004 Córdoba, Spain.
| |
Collapse
|
43
|
Thiamine deficiency induces anorexia by inhibiting hypothalamic AMPK. Neuroscience 2014; 267:102-13. [PMID: 24607345 DOI: 10.1016/j.neuroscience.2014.02.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/08/2014] [Accepted: 02/21/2014] [Indexed: 01/26/2023]
Abstract
Obesity and eating disorders are prevailing health concerns worldwide. It is important to understand the regulation of food intake and energy metabolism. Thiamine (vitamin B1) is an essential nutrient. Thiamine deficiency (TD) can cause a number of disorders in humans, such as Beriberi and Wernicke-Korsakoff syndrome. We demonstrated here that TD caused anorexia in C57BL/6 mice. After feeding a TD diet for 16days, the mice displayed a significant decrease in food intake and an increase in resting energy expenditure (REE), which resulted in a severe weight loss. At the 22nd day, the food intake was reduced by 69% and 74% for male and female mice, respectively in TD group. The REE increased by ninefolds in TD group. The loss of body weight (17-24%) was similar between male and female animals and mainly resulted from the reduction of fat mass (49% decrease). Re-supplementation of thiamine (benfotiamine) restored animal's appetite, leading to a total recovery of body weight. The hypothalamic adenosine monophosphate-activated protein kinase (AMPK) is a critical regulator of food intake. TD inhibited the phosphorylation of AMPK in the arcuate nucleus (ARN) and paraventricular nucleus (PVN) of the hypothalamus without affecting its expression. TD-induced inhibition of AMPK phosphorylation was reversed once thiamine was re-supplemented. In contrast, TD increased AMPK phosphorylation in the skeletal muscle and upregulated the uncoupling protein (UCP)-1 in brown adipose tissues which was consistent with increased basal energy expenditure. Re-administration of thiamine stabilized AMPK phosphorylation in the skeletal muscle as well as energy expenditure. Taken together, TD may induce anorexia by inhibiting hypothalamic AMPK activity. With a simultaneous increase in energy expenditure, TD caused an overall body weight loss. The results suggest that the status of thiamine levels in the body may affect food intake and body weight.
Collapse
|
44
|
Ross MG, Desai M. Developmental Programming of Appetite/Satiety. ANNALS OF NUTRITION AND METABOLISM 2014; 64 Suppl 1:36-44. [DOI: 10.1159/000360508] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Ramamurthy S, Chang E, Cao Y, Zhu J, Ronnett GV. AMPK activation regulates neuronal structure in developing hippocampal neurons. Neuroscience 2013; 259:13-24. [PMID: 24295634 DOI: 10.1016/j.neuroscience.2013.11.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/21/2013] [Accepted: 11/23/2013] [Indexed: 12/25/2022]
Abstract
AMP-activated protein kinase (AMPK) is a serine/threonine kinase that functions as a cellular and whole organism energy sensor to regulate ATP-consuming (anabolic) and ATP-generating (catabolic) pathways. The heterotrimeric AMPK complex consists of a catalytic α-subunit, regulatory β-subunit, and an AMP/ATP-binding γ-subunit. Several alternate isoforms exist for each subunit (α1, α2, β1, β2, γ1, γ2 and γ3). However, little is known of the expression pattern or function of the individual catalytic complexes in regulating neuronal structure. In this study, we examined the role of AMPK subunits in differentiating hippocampal neurons. We found that during development, the expression of AMPK subunits increase and that activation of AMPK by energetic stress inhibits neuronal development at multiple stages, not only during axon outgrowth, but also during dendrite growth and arborization. The presence of a single functional AMPK catalytic complex was sufficient to mediate these inhibitory effects of energetic stress. Activation of AMPK mediates these effects by suppressing both the mTOR and Akt signaling pathways. These findings demonstrate that the energy-sensing AMPK pathway regulates neuronal structure in distinct regions of developing neurons at multiple stages of development.
Collapse
Affiliation(s)
- S Ramamurthy
- Department of Neuroscience, Johns Hopkins University School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA
| | - E Chang
- Department of Neuroscience, Johns Hopkins University School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA
| | - Y Cao
- Department of Neuroscience, Johns Hopkins University School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA
| | - J Zhu
- Department of Neuroscience, Johns Hopkins University School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA
| | - G V Ronnett
- Department of Neuroscience, Johns Hopkins University School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, 855 N Wolfe Street, Baltimore, MD 21205, USA; Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.
| |
Collapse
|
46
|
Steen VM, Nepal C, Ersland KM, Holdhus R, Nævdal M, Ratvik SM, Skrede S, Håvik B. Neuropsychological deficits in mice depleted of the schizophrenia susceptibility gene CSMD1. PLoS One 2013; 8:e79501. [PMID: 24244513 PMCID: PMC3828352 DOI: 10.1371/journal.pone.0079501] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022] Open
Abstract
Recent meta-analyses of schizophrenia genome-wide association studies (GWASs) have identified the CUB and SUSHI multiple domains 1 (CSMD1) gene as a statistically strong risk factor. CSMD1 is a complement control-related protein suggested to inhibit the classical complement pathway, being expressed in developing neurons. However, expression of CSMD1 is largely uncharacterized and relevance for behavioral phenotypes is not previously demonstrated. Here, we assess neuropsychological behaviors of a Csmd1 knockout (KO) mouse in a selection of standard behavioral tests. Deregulation of neuropsychological responses were observed in both the open field and the elevated plus maze tests, in which KO mice spent 55% and 33% less time than WT littermate mice in open areas, respectively. Altered behaviors were also observed in tail suspension and to higher acoustic stimuli, for which Csmd1 KO mice showed helplessness and moderate increase in startle amplitude, respectively. Furthermore, Csmd1 KO mice also displayed increased weight-gain and glucose tolerance, similar to a major phenotype of the metabolic syndrome that also has been associated to the human CSMD1 locus. Consistent with a role in the control of behaviors, Csmd1 was found highly expressed in the central nervous system (CNS), and with some expression in visceral fat and ovary, under tissue-specific control by a novel promoter-associated lncRNA. In summary, disruption of Csmd1 induces behaviors reminiscent of blunted emotional responses, anxiety and depression. These observations suggest an influence of the CSMD1 schizophrenia susceptibility gene on psychopathology and endophenotypes of the negative symptom spectra.
Collapse
Affiliation(s)
- Vidar M. Steen
- Dr E. Martens Research Group for Biological Psychiatry and K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Chirag Nepal
- Dr E. Martens Research Group for Biological Psychiatry and K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kari M. Ersland
- Dr E. Martens Research Group for Biological Psychiatry and K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Rita Holdhus
- Dr E. Martens Research Group for Biological Psychiatry and K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Marianne Nævdal
- Dr E. Martens Research Group for Biological Psychiatry and K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Siri M. Ratvik
- Dr E. Martens Research Group for Biological Psychiatry and K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Silje Skrede
- Dr E. Martens Research Group for Biological Psychiatry and K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Bjarte Håvik
- Dr E. Martens Research Group for Biological Psychiatry and K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
- * E-mail:
| |
Collapse
|
47
|
Nam HGW, Kim W, Yoo DY, Choi JH, Won MH, Hwang IK, Jeong JH, Hwang HS, Moon SM. Chronological changes and effects of AMP-activated kinase in the hippocampal CA1 region after transient forebrain ischemia in gerbils. Neurol Res 2013; 35:395-405. [DOI: 10.1179/1743132813y.0000000158] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Han Ga Wi Nam
- Department of NeurosurgeryHangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, South Korea,
| | - Woosuk Kim
- Department of Anatomy and Cell BiologyCollege of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea,
| | - Dae Young Yoo
- Department of Anatomy and Cell BiologyCollege of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea,
| | - Jung Hoon Choi
- Department of AnatomyCollege of Veterinary Medicine, Kangwon National University, Chuncheon, South Korea,
| | - Moo-Ho Won
- Department of NeurobiologySchool of Medicine, Kangwon National University, Chuncheon, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell BiologyCollege of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea,
| | - Je Hoon Jeong
- Department of NeurosurgeryHangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, South Korea,
| | - Hyung Sik Hwang
- Department of NeurosurgeryHangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, South Korea,
| | - Seung-Myung Moon
- Department of NeurosurgeryHangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, South Korea,
| |
Collapse
|
48
|
AMPK: An emerging target for modification of injury-induced pain plasticity. Neurosci Lett 2013; 557 Pt A:9-18. [PMID: 23831352 DOI: 10.1016/j.neulet.2013.06.060] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/24/2013] [Indexed: 12/11/2022]
Abstract
Chronic pain is a critical medical problem afflicting hundreds of millions of people worldwide with costly effects on society and health care systems. Novel therapeutic avenues for the treatment of pain are needed that are directly targeted to the molecular mechanisms that promote and maintain chronic pain states. Recent evidence suggests that peripheral pain plasticity is promoted and potentially maintained via changes in translation control that are mediated by mTORC1 and MAPK pathways. While these pathways can be targeted individually, stimulating the AMPK pathway with direct or indirect activators achieves inhibition of these pathways via engagement of a single kinase. Here we review the form, function and pharmacology of AMPK with special attention to its emerging role as a potential target for pain therapeutics. We present the existing evidence supporting a role of AMPK activation in alleviating symptoms of peripheral nerve injury- and incision-induced pain plasticity and the blockade of the development of chronic pain following surgery. We argue that these preclinical findings support a strong rationale for clinical trials of currently available AMPK activators and further development of novel pharmacological strategies for more potent and efficacious manipulation of AMPK in the clinical setting. Finally, we posit that AMPK represents a unique opportunity for drug development in the kinase area for pain because it is pharmacologically manipulated via activation rather than inhibition potentially offering a wider therapeutic window with interesting additional pharmacological opportunities. Altogether, the physiology, pharmacology and therapeutic opportunities surrounding AMPK make it an attractive target for novel intervention for chronic pain and its prevention.
Collapse
|
49
|
He M, Deng C, Huang XF. The role of hypothalamic H1 receptor antagonism in antipsychotic-induced weight gain. CNS Drugs 2013; 27:423-34. [PMID: 23640535 DOI: 10.1007/s40263-013-0062-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Treatment with second generation antipsychotics (SGAs), notably olanzapine and clozapine, causes severe obesity side effects. Antagonism of histamine H1 receptors has been identified as a main cause of SGA-induced obesity, but the molecular mechanisms associated with this antagonism in different stages of SGA-induced weight gain remain unclear. This review aims to explore the potential role of hypothalamic histamine H1 receptors in different stages of SGA-induced weight gain/obesity and the molecular pathways related to SGA-induced antagonism of these receptors. Initial data have demonstrated the importance of hypothalamic H1 receptors in both short- and long-term SGA-induced obesity. Blocking hypothalamic H1 receptors by SGAs activates AMP-activated protein kinase (AMPK), a well-known feeding regulator. During short-term treatment, hypothalamic H1 receptor antagonism by SGAs may activate the AMPK-carnitine palmitoyltransferase 1 signaling to rapidly increase caloric intake and result in weight gain. During long-term SGA treatment, hypothalamic H1 receptor antagonism can reduce thermogenesis, possibly by inhibiting the sympathetic outflows to the brainstem rostral raphe pallidus and rostral ventrolateral medulla, therefore decreasing brown adipose tissue thermogenesis. Additionally, blocking of hypothalamic H1 receptors by SGAs may also contribute to fat accumulation by decreasing lipolysis but increasing lipogenesis in white adipose tissue. In summary, antagonism of hypothalamic H1 receptors by SGAs may time-dependently affect the hypothalamus-brainstem circuits to cause weight gain by stimulating appetite and fat accumulation but reducing energy expenditure. The H1 receptor and its downstream signaling molecules could be valuable targets for the design of new compounds for treating SGA-induced weight gain/obesity.
Collapse
Affiliation(s)
- Meng He
- Centre for Translational Neuroscience, School of Health Sciences, 32.305, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | | |
Collapse
|
50
|
Schneeberger M, Claret M. Recent Insights into the Role of Hypothalamic AMPK Signaling Cascade upon Metabolic Control. Front Neurosci 2012; 6:185. [PMID: 23267314 PMCID: PMC3526739 DOI: 10.3389/fnins.2012.00185] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/04/2012] [Indexed: 12/31/2022] Open
Abstract
In 2004, two seminal papers focused on the role of AMP-activated protein kinase (AMPK) in the hypothalamus opened new avenues of research in the field of the central regulation of energy homeostasis. Over the following 8 years, hundreds of studies have firmly established hypothalamic AMPK as a key sensor and integrator of hormonal and nutritional signals with neurochemical and neurophysiological responses to regulate whole-body energy balance. In this review article we aim to discuss the most recent findings in this particular area of research, highlighting the function of hypothalamic AMPK in appetite, thermogenesis, and peripheral glucose metabolism. The diversity of mechanisms by which hypothalamic AMPK regulates energy homeostasis illustrates the importance of this evolutionary-conserved energy signaling cascade in the control of this complex and fundamental biological process.
Collapse
Affiliation(s)
- Marc Schneeberger
- Diabetes and Obesity Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain ; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas Barcelona, Spain ; Department of Endocrinology and Nutrition, Hospital Clínic, School of Medicine, University of Barcelona Barcelona, Spain
| | | |
Collapse
|