1
|
Meurs E, Morshed MN, Kahoush M, Kadi N. Study on Fenton-based discoloration of reactive-dyed waste cotton prior to textile recycling. Sci Rep 2024; 14:24536. [PMID: 39424624 PMCID: PMC11489705 DOI: 10.1038/s41598-024-75450-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
The aim of this study is to investigate the feasibility of an alternative Fenton-based advanced oxidation process for the discoloration of reactive-dyed waste cotton as a pre-treatment for textile recycling. For that, pre-wetted dark-colored (black and blue) knitted samples of 300 cm2 are treated in 1200mL Fenton-solution containing 14 mM Fe2+ and 280mM H2O2 at 40 °C. Characterization of the textiles before and after the treatments are performed by UV VIS-spectrophotometry measuring color strength, microscopy, FTIR spectroscopy, thermal analysis and tensile testing measuring tenacity and elongation. Afterwards, the cotton is mechanically shredded for qualitative analysis of the recyclability. The color-strength measurements of the black and blue cotton led to discoloration-efficiencies of respectively 61.5 and 72.9%. Microscopic analysis of discolored textile fabric also showed significant fading of the colored textiles. Mechanical analysis resulted in reduced tensile strength after treatment, indicating oxidation of the cellulosic structure besides the degradation of the dye-molecules, also confirmed by reductions in thermal stability found after thermal analysis. Shredding of the fabric resulted in enhanced opening, but shorter remaining fibers after treatment. The findings of this study provide a proof-of-concept for an alternative color-stripping treatment concerning a Fenton-based advanced oxidation process as a pre-treatment for textile recycling.
Collapse
Affiliation(s)
- Elise Meurs
- Department of Textile Technology, The Swedish School of Textiles, Faculty of Textiles, Engineering and Business, University of Borås, Allégatan 1, 503 32, Borås, Sweden.
- Department of Engineering and Chemical Sciences, Karlstad University, Universitetsgatan 2, 651 88, Karlstad, Sweden.
| | - Mohammad Neaz Morshed
- Department of Textile Technology, The Swedish School of Textiles, Faculty of Textiles, Engineering and Business, University of Borås, Allégatan 1, 503 32, Borås, Sweden
| | - May Kahoush
- Department of Textile Technology, The Swedish School of Textiles, Faculty of Textiles, Engineering and Business, University of Borås, Allégatan 1, 503 32, Borås, Sweden
| | - Nawar Kadi
- Department of Textile Technology, The Swedish School of Textiles, Faculty of Textiles, Engineering and Business, University of Borås, Allégatan 1, 503 32, Borås, Sweden
| |
Collapse
|
2
|
Song J, Zhu L, Yu S, Li G, Wang D. The synergistic effect of adsorption and Fenton oxidation for organic pollutants in water remediation: an overview. RSC Adv 2024; 14:33489-33511. [PMID: 39439830 PMCID: PMC11495274 DOI: 10.1039/d4ra03050h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/13/2024] [Indexed: 10/25/2024] Open
Abstract
Water pollution from industrial sources presents a significant environmental challenge due to the presence of recalcitrant organic contaminants. These pollutants threaten human health and necessitate effective remediation strategies. This article reviewed the synergistic application of adsorption and Fenton oxidation for water treatment. Adsorption, a common technique, concentrates pollutants onto a solid surface, but offers limited degradation. Fenton oxidation, an advanced oxidation process (AOP), utilizes hydroxyl radicals for efficient organic compound breakdown. When adsorption and Fenton oxidation combine, adsorption pre-concentrates pollutants, boosting Fenton oxidation effectiveness. This review delves into the mechanisms and advantages of this integrated approach, highlighting its potential for enhanced removal of organic contaminants. The discussion encompasses the mechanisms of Fenton oxidation and the synergistic effects it has with adsorption. Additionally, various support materials employed in this combined process are explored, including carbon-based supports (activated carbon, graphene, carbon nanotubes and biochar), metal-organic frameworks (MOFs), and clays. Finally, the applicability of this approach to diverse wastewater streams, such as medical and industrial wastewater, is addressed. The review contains 105 references and summarizes the key findings and future perspectives for this promising water remediation technology.
Collapse
Affiliation(s)
- Junzhe Song
- Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Ganjiang Innovation Academy, Chinese Academy of Sciences Ganzhou 341007 China
| | - Linan Zhu
- School of Mechanical and Materials Engineering, Washington State University Pullman WA 99164 USA
| | - Sheng Yu
- School of Mechanical and Materials Engineering, Washington State University Pullman WA 99164 USA
| | - Guobiao Li
- Ganjiang Innovation Academy, Chinese Academy of Sciences Ganzhou 341007 China
| | - Dong Wang
- Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Ganjiang Innovation Academy, Chinese Academy of Sciences Ganzhou 341007 China
| |
Collapse
|
3
|
Razzaq U, Nguyen TB, Saleem MU, Le VR, Chen CW, Bui XT, Dong CD. Recent progress in electro-Fenton technology for the remediation of pharmaceutical compounds in aqueous environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174253. [PMID: 38936713 DOI: 10.1016/j.scitotenv.2024.174253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The global focus on wastewater treatment has intensified in the contemporary era due to its significant environmental and human health impacts. Pharmaceutical compounds (PCs) have become an emerging concern among various pollutants, as they resist conventional treatment methods and pose a severe environmental threat. Advanced oxidation processes (AOPs) emerge as a potent and environmentally benign approach for treating recalcitrant pharmaceuticals. To address the shortcomings of traditional treatment methods, a technology known as the electro-Fenton (EF) method has been developed more recently as an electrochemical advanced oxidation process (EAOP) that connects electrochemistry to the chemical Fenton process. It has shown effective in treating a variety of pharmaceutically active compounds and actual wastewaters. By producing H2O2 in situ through a two-electron reduction of dissolved O2 on an appropriate cathode, the EF process maximizes the benefits of electrochemistry. Herein, we have critically reviewed the application of the EF process, encompassing diverse reactor types and configurations, the underlying mechanisms involved in the degradation of pharmaceuticals and other emerging contaminants (ECs), and the impact of electrode materials on the process. The review also addresses the factors influencing the efficiency of the EF process, such as (i) pH, (ii) current density, (iii) H2O2 concentration, (iv) and others, while providing insight into the scalability potential of EF technology and its commercialization on a global scale. The review delves into future perspectives and implications concerning the ongoing challenges encountered in the operation of the electro-Fenton process for the treatment of PCs and other ECs.
Collapse
Affiliation(s)
- Uzma Razzaq
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Muhammad Usman Saleem
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Science and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan; Department of Environmental Engineering, University of Engineering and Technology, Taxila 47050, Pakistan
| | - Van-Re Le
- Ho Chi Minh City University of Industry and Trade (HUIT), 140 Le Trong Tan Street, Tan Phu District, Ho Chi Minh City 700000, Viet Nam
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
4
|
Merouani S, Dehane A, Hamdaoui O. Ultrasonic destruction of surfactants. ULTRASONICS SONOCHEMISTRY 2024; 109:107009. [PMID: 39106667 PMCID: PMC11347850 DOI: 10.1016/j.ultsonch.2024.107009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
This study investigates the effectiveness of ultrasonic (US) treatment in removing and mineralizing surfactants in wastewater. It examines the complex mechanisms and variables (acoustic conditions, solution temperature, initial dose, etc.) that affect sonolytic processes. The effect of water matrix components (such as salts and the presence of secondary pollutants) on process performance is thoroughly investigated. Various treatments are analyzed through a detailed comparison of synergistic hybridization processes. The study also provides a comprehensive review of current environmental applications and explores potential directions for surfactant degradation using ultrasound. Insightful information is presented to advance sustainable wastewater treatment techniques. The literature review clearly reveals the promising future of sonotreatment for degrading various surfactants under different conditions. The use of multifrequency mechanisms and the integration of other advanced oxidation processes (AOPs) with the US process have significantly enhanced the energy efficiency of the sonochemical system. Additionally, the results highlight the need to focus on developing new sonoreactor designs, identifying degradation intermediates, and hybridizing the sonochemical system under innovative operating conditions.
Collapse
Affiliation(s)
- Slimane Merouani
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Salah Boubnider Constantine 3, P.O. Box 72, 25000 Constantine, Algeria
| | - Aissa Dehane
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Salah Boubnider Constantine 3, P.O. Box 72, 25000 Constantine, Algeria
| | - Oualid Hamdaoui
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421 Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Wu J, Yang X, Xu D, Ong SL, Hu J. Peroxydisulfate-based Non-radical Oxidation of Rhodamine B by Fe-Mn Doped Granular Activated Carbon: Kinetics and Mechanism Study. Chem Asian J 2024; 19:e202400482. [PMID: 38884566 DOI: 10.1002/asia.202400482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
While numerous persulfate-based advanced oxidation processes (AOPs) have been studied based on fancy catalysts, the practical combination of Fe or Mn modified granular activated carbon (GAC) has seldom been investigated. The present study focused on a green and readily synthesized Fe-Mn bimetallic oxide doped GAC (Fe-Mn@GAC), to uncover its catalytic kinetics and mechanism when used in the peroxydisulfate (PDS)-based oxidation process for degrading Rhodamine B (RhB), a representative xenobiotic dye. The synthesized Fe-Mn@GAC was characterized by SEM-EDS, XRD, ICP-OES and XPS analyses to confirm its physicochemical properties. The catalytic kinetics of Fe-Mn@GAC+PDS system were evaluated under varying conditions, including PDS and catalyst dosages, solution pH, and the presence of anions. It was found Fe-Mn@GAC exhibited robust catalytic performance, being insensitive to a wide pH range from 3 to 11, and the presence of anions such as Cl-, SO4 2-, NO3 - and CO3 2-. The catalytic mechanism was investigated by EPR and quenching experiments. The results indicated the catalytic system processed a non-radical oxidation pathway, dominated by direct electron transfer between RhB and Fe-Mn@GAC, with singlet oxygen (1O2) playing a secondary role. The catalytic system also managed to maintain a RhB removal above 81 % in successive 10 cycles, and recover to 89.5 % after simple DI water rinse, showing great reusability. The catalytic system was further challenged by real dye-containing wastewater, achieving a decolorization rate of 84.5 %. This work not only provides fresh insight into the kinetics and mechanism of the Fe-Mn@GAC+PDS catalytic system, but also demonstrates its potential in the practical application in real dye-containing wastewater treatment.
Collapse
Affiliation(s)
- Jiahua Wu
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, No.377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Xuan Yang
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, No.377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Dong Xu
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, No.377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Say Leong Ong
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, No.377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| | - Jiangyong Hu
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, No.377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| |
Collapse
|
6
|
Zhang X, Zhu Z, Guo Z, Huang Z, Zheng X, Wang X, Zhu L, Zhang G, Liu B, Xu D. Magnetic FNS/MILs nanofibers for highly efficient removal of norfloxacin via adsorption and Fenton-like reaction. CHEMOSPHERE 2024; 359:142258. [PMID: 38719119 DOI: 10.1016/j.chemosphere.2024.142258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
Iron-containing MOFs have attracted extensive interest as promising Fenton-like catalysts. In this work, magnetic Fe3O4 nanofiber (FNS)/MOFs composites with stable structure, included FNS/MIL-88B, FNS/MIL-88A and FNS/MIL-100, were prepared via the in-situ solvothermal method. The surface of the obtained fibers was covered by a dense and continuous MOFs layer, which could effectively solve the agglomeration problem of MOFs powder and improved the catalytic performance. The adsorption and catalytic properties of FNS/MOFs composites were evaluated by removal of norfloxacin. FNS/MIL-88B showed the best performance with a maximum adsorption capacity up to 214.09 mg/g, and could degrade 99% of NRF in 60 min. Meanwhile, FNS/MIL-88B had a saturation magnetization of 20 emu/g, and could be rapidly separated by an applied magnetic field. The self-supported nanofibers allowed the adequate contact between MOFs and pollutants, and promoted the catalytic activity and high stability. We believe that this work provided a new idea for the design and preparation of Fenton-like catalysts especially MOFs composites.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China
| | - Ze Zhu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China
| | - Zhenfeng Guo
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China
| | - Ziting Huang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China
| | - Xinhua Zheng
- Technology Center of Jinan Customs District, Jinan, 250014, PR China
| | - Xinqiang Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China.
| | - Luyi Zhu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China
| | - Guanghui Zhang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China
| | - Benxue Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China
| | - Dong Xu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China
| |
Collapse
|
7
|
van Brenk B, Kruidhof L, Kemperman AJB, van der Meer WGJ, Wösten HAB. Discoloration of textile dyes by spent mushroom substrate of Agaricus bisporus. BIORESOURCE TECHNOLOGY 2024; 402:130807. [PMID: 38723727 DOI: 10.1016/j.biortech.2024.130807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/18/2023] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
The textile industry discharges up to 5 % of their dyes in aqueous effluents. Here, use of spent mushroom substrate (SMS) of commercial white button mushroom production and its aqueous extract, SMS tea, was assessed to remove textile dyes from water. A total of 30-90 % and 5-85 % of the dyes was removed after a 24 h incubation in SMS and SMS tea, respectively. Removal of malachite green and remazol brilliant blue R was similar in SMS and its tea. In contrast, removal of crystal violet, orange G, and rose bengal was higher in SMS, explained by sorption to SMS and by the role of non-water-extractable SMS components in discoloration. Heat-treating SMS and its tea, thereby inactivating enzymes, reduced dye removal to 8-58 % and 0-31 %, respectively, indicating that dyes are removed by both enzymatic and non-enzymatic activities. Together, SMS of white button mushroom production has high potential to treat textile-dye-polluted aqueous effluents.
Collapse
Affiliation(s)
- Brigit van Brenk
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Leodie Kruidhof
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Antoine J B Kemperman
- Membrane Science and Technology Cluster, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Walter G J van der Meer
- Membrane Science and Technology Cluster, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands; Oasen N.V., P.O. Box 122, 2800 AC Gouda, the Netherlands
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
8
|
Karim N, Kyawoo T, Jiang C, Ahmed S, Tian W, Li H, Feng Y. Fenton-like Degradation of Methylene Blue on Attapulgite Clay Composite by Loading of Iron-Oxide: Eco-Friendly Preparation and Its Catalytic Activity. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2615. [PMID: 38893879 PMCID: PMC11174012 DOI: 10.3390/ma17112615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
The continuous discharge of organic dyes into freshwater resources poses a long-term hazard to aquatic life. The advanced oxidation Fenton process is a combo of adsorption and degradation of pollutants to detoxify toxic effluents, such as anti-bacterial drugs, antibiotics, and organic dyes. In this work, an activated attapulgite clay-loaded iron-oxide (A-ATP@Fe3O4) was produced using a two-step reaction, in which attapulgite serves as an enrichment matrix and Fe3O4 functions as the active degrading component. The maximum adsorption capacity (qt) was determined by assessing the effect of temperature, pH H2O2, and adsorbent. The results showed that the A-ATP@Fe3O4 achieves the highest removal rate of 99.6% under optimum conditions: 40 °C, pH = 3, H2O2 25 mM, and 0.1 g dosage of the composite. The dye removal procedure achieved adsorption and degradation equilibrium in 120 and 30 min, respectively, by following the same processes as the advanced oxidation approach. Catalytic activity, kinetics, and specified surface characteristics suggest that A-ATP@Fe3O4 is one of the most promising candidates for advanced oxidation-enrooted removal of organic dyes.
Collapse
Affiliation(s)
- Naveed Karim
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, China; (N.K.); (T.K.); (C.J.)
| | - Tin Kyawoo
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, China; (N.K.); (T.K.); (C.J.)
| | - Chao Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, China; (N.K.); (T.K.); (C.J.)
| | - Saeed Ahmed
- Department of Chemistry, University of Chakwal, Chakwal 48800, Pakistan;
| | - Weiliang Tian
- College of Chemistry and Chemical Engineering, Tarim University, Alar 843300, China;
| | - Huiyu Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, China; (N.K.); (T.K.); (C.J.)
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, China; (N.K.); (T.K.); (C.J.)
- College of Chemistry and Chemical Engineering, Tarim University, Alar 843300, China;
| |
Collapse
|
9
|
Li Y, Wang J, Zhu T, Zhan Y, Tang X, Xi J, Zhu X, Zhang Y, Liu J. A ROS storm generating nanocomposite for enhanced chemodynamic therapy through H 2O 2 self-supply, GSH depletion and calcium overload. NANOSCALE 2024; 16:8479-8494. [PMID: 38590261 DOI: 10.1039/d3nr06422k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Catalytic generation of toxic hydroxyl radicals (˙OH) from hydrogen peroxide (H2O2) is an effective strategy for tumor treatment in chemodynamic therapy (CDT). However, the intrinsic features of the microenvironment in solid tumors, characterized by limited H2O2 and overexpressed glutathione (GSH), severely impede the accumulation of intracellular ˙OH, posing significant challenges. To circumvent these critical issues, in this work, a CaO2-based multifunctional nanocomposite with a surface coating of Cu2+ and L-buthionine sulfoximine (BSO) (named CaO2@Cu-BSO) is designed for enhanced CDT. Taking advantage of the weakly acidic environment of the tumor, the nanocomposite gradually disintegrates, and the exposed CaO2 nanoparticles subsequently decompose to produce H2O2, alleviating the insufficient supply of endogenous H2O2 in the tumor microenvironment (TME). Furthermore, Cu2+ detached from the surface of CaO2 is reduced by H2O2 and GSH to Cu+ and ROS. Then, Cu+ catalyzes H2O2 to generate highly cytotoxic ˙OH and Cu2+, forming a cyclic catalysis effect for effective CDT. Meanwhile, GSH is depleted by Cu2+ ions to eliminate possible ˙OH scavenging. In addition, the decomposition of CaO2 by TME releases a large amount of free Ca2+, resulting in the accumulation and overload of Ca2+ and mitochondrial damage in tumor cells, further improving CDT efficacy and accelerating tumor apoptosis. Besides, BSO, a molecular inhibitor, decreases GSH production by blocking γ-glutamyl cysteine synthetase. Together, this strategy allows for enhanced CDT efficiency via a ROS storm generation strategy in tumor therapy. The experimental results confirm and demonstrate the satisfactory tumor inhibition effect both in vitro and in vivo.
Collapse
Affiliation(s)
- Yong Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China, 200444.
| | - Jing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China, 200444.
| | - Tao Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China, 200444.
| | - Ying Zhan
- School of Life Science, Shanghai University, Shanghai, China, 200444
| | - Xiaoli Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China, 200444.
| | - Jianying Xi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China, 200444.
| | - Xiaohui Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China, 200444.
| | - Yong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China, 200444.
| |
Collapse
|
10
|
Sun H, Yao J, Ma B, Knudsen TS, Yuan C. Siderite's green revolution: From tailings to an eco-friendly material for the green economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169922. [PMID: 38199373 DOI: 10.1016/j.scitotenv.2024.169922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Siderite, extensively mined as a natural iron mineral, is often discarded as tailings due to the low grade of the ore and due to the high cost of current sorting technologies. Yet, this mineral has demonstrated significant potential in several pivotal areas of the environmental remediation. Siderite not only possesses exceptional adsorption, catalytic, and microbial carrier capabilities but also offers an eco-friendly and cost-effective solution for the environmental pollution management. This article consolidates research advancements and achievements over the past few decades concerning siderite's role in pollution control, delving deeply into its various remediation pathways. Initially, the paper contrasts the performance differences between natural and synthetic siderite, followed by a comprehensive overview of siderite's adsorption mechanisms for various inorganic pollutants. Furthermore, this paper analyzes the unique physicochemical attributes of siderite as both, a reductant and the catalyst, with a special emphasis on its use in the preparation of SCR catalysts and in the catalytic advanced oxidation processes for organic pollutants' degradation. This paper also enumerates and discusses the myriad advantages of siderite as a microbial carrier, thereby enhancing our understanding of biogeochemical cycles and pollutant transformations. In essence, this review systematically elucidates the mechanisms and intrinsic physicochemical properties of siderite in pollution control, paving the way for novel strategies to augment siderite's environmental remediation performance.
Collapse
Affiliation(s)
- Haoxiang Sun
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China.
| | - Bo Ma
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Tatjana Solevic Knudsen
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11 000, Belgrade, Serbia
| | - Chenyi Yuan
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| |
Collapse
|
11
|
Farhan A, Khalid A, Maqsood N, Iftekhar S, Sharif HMA, Qi F, Sillanpää M, Asif MB. Progress in layered double hydroxides (LDHs): Synthesis and application in adsorption, catalysis and photoreduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169160. [PMID: 38086474 DOI: 10.1016/j.scitotenv.2023.169160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Layered double hydroxides (LDHs), also known as anionic clays, have attracted significant attention in energy and environmental applications due to their exceptional physicochemical properties. These materials possess a unique structure with surface hydroxyl groups, tunable properties, and high stability, making them highly desirable. In this review, the synthesis and functionalization of LDHs have been explored including co-precipitation and hydrothermal methods. Furthermore, extensive research on LDH application in toxic pollutant removal has shown that modifying or functionalizing LDHs using materials such as activated carbon, polymers, and inorganics is crucial for achieving efficient pollutant adsorption, improved cyclic performance, as well as effective catalytic oxidation of organics and photoreduction. This study offers a comprehensive overview of the progress made in the field of LDHs and LDH-based composites for water and wastewater treatment. It critically discusses and explains both direct and indirect synthesis and modification techniques, highlighting their advantages and disadvantages. Additionally, this review critically discusses and explains the potential of LDH-based composites as absorbents. Importantly, it focuses on the capability of LDH and LDH-based composites in heterogeneous catalysis, including the Fenton reaction, Fenton-like reactions, photocatalysis, and photoreduction, for the removal of organic dyes, organic micropollutants, and heavy metals. The mechanisms involved in pollutant removal, such as adsorption, electrostatic interaction, complexation, and degradation, are thoroughly explained. Finally, this study outlines future research directions in the field.
Collapse
Affiliation(s)
- Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Aman Khalid
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Nimra Maqsood
- Department of Chemistry, University of Science and Technology, Hefei, China
| | - Sidra Iftekhar
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | | | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, Doornfontein, South Africa; Sustainability Cluster, School of Advanced Engineering, UPES, Bidholi, Dehradun, Uttarakhand, India; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Muhammad Bilal Asif
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
12
|
García-Martín AB, Rodríguez J, Molina-Guijarro JM, Fajardo C, Domínguez G, Hernández M, Guillén F. Induction of Extracellular Hydroxyl Radicals Production in the White-Rot Fungus Pleurotus eryngii for Dyes Degradation: An Advanced Bio-oxidation Process. J Fungi (Basel) 2024; 10:52. [PMID: 38248961 PMCID: PMC10821177 DOI: 10.3390/jof10010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Among pollution remediation technologies, advanced oxidation processes (AOPs) are genuinely efficient since they are based on the production of strong, non-selective oxidants, mainly hydroxyl radicals (·OH), by a set of physicochemical methods. The biological counterparts of AOPs, which may be referred to as advanced bio-oxidation processes (ABOPs), have begun to be investigated since the mechanisms of induction of ·OH production in fungi are known. To contribute to the development of ABOPs, advanced oxidation of a wide number of dyes by the white-rot fungus Pleurotus eryngii, via a quinone redox cycling (QRC) process based on Fenton's reagent formation, has been described for the first time. The fungus was incubated with 2,6-dimethoxy-1,4-benzoquinone (DBQ) and Fe3+-oxalate, with and without Mn2+, leading to different ·OH production rates, around twice higher with Mn2+. Thanks to this process, the degradative capacity of the fungus increased, not only oxidising dyes it was not otherwise able to, but also increasing the decolorization rate of 20 dyes by more than 7 times in Mn2+ incubations. In terms of process efficacy, it is noteworthy that with Mn2+ the degradation of the dyes reached values of 90-100% in 2-4 h, which are like those described in some AOPs based on the Fenton reaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francisco Guillén
- Department of Biomedicine and Biotechnology, Universidad de Alcalá, 28805 Alcalá de Henares, Spain; (A.B.G.-M.); (J.R.); (J.M.M.-G.); (C.F.); (G.D.); (M.H.)
| |
Collapse
|
13
|
Hou Y, Jia A, Qin X, Yang X, Xie J, Li X, Zhao Y. New insights on the preparation of amine covalent organic polymer and its adsorption properties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122659. [PMID: 37839682 DOI: 10.1016/j.envpol.2023.122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023]
Abstract
Dye pollution is becoming increasingly severe. This study used the Schiff base reaction to synthesize a polyaromatic ring covalent organic polymer material with amide bonds and high electronegativity named SLEL-9 to adsorb Methylene Blue (MB) and Rhodamine B (RhB). SLEL-9 was characterized by Fourier transform infra-red spectra, X-ray photoelectron spectra, Brunauer-Emmett-Teller (BET), zeta potential analysis, and other techniques. It was found that SLEL-9 material contains C-C, CN, C-N, and CO. SLEL-9 had a zeta potential of about -45 mV under neutral conditions, which proved that the material had been synthesized successfully. The BET and Langmuir surface areas of SLEL-9 were 35.187 m2 g-1 and 56.419 m2 g-1, respectively. The adsorptions of SLEL-9 on low concentration (10 mg L-1) Methylene Blue and Rhodamine B reached equilibrium within 48 h. The results showed that SLEL-9's adsorption of dye molecules are more consistent with pseudo-second-order kinetic and Langmuir isotherm model. The adsorption experiments showed that the adsorption process is a spontaneous endothermic reaction, mainly chemisorption. The maximum adsorption capacity of SLEL-9 for MB and RhB were 132.45 mg g-1 and 101.94 mg g-1. In addition, this study investigated to determine the optimal reaction parameters. The primary mechanisms of SLEL-9 adsorption of two dyes are n→π* interaction, π-π EDA interaction and electrostatic attraction. Selective adsorb ability experiment results showed that SLEL-9 could selectively adsorb MB and RhB to a certain extent. Finally, it was found that SLEL-9 can maintain over 70% adsorption capacity after five reuses and can maintain stability after soaking in different pH water and organic solvents for 120 h. SLEL-9 proved to be a promising organic covalent polymer adsorption material for the removal of Methylene Blue and Rhodamine B in water.
Collapse
Affiliation(s)
- Yutong Hou
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Aiyuan Jia
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Xueming Qin
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Xinru Yang
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Jiayin Xie
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Xiaoyu Li
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Yongsheng Zhao
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
14
|
Teixeira AR, Jorge N, Lucas MS, Peres JA. Winery and olive mill wastewaters treatment using nitrilotriacetic acid/UV-C/Fenton process: Batch and semi-continuous mode. ENVIRONMENTAL RESEARCH 2024; 240:117545. [PMID: 37914014 DOI: 10.1016/j.envres.2023.117545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
In this work, both red and white winery wastewaters (WW) and olive mill wastewater (OMW) were submitted to a treatment by Fenton-based processes (FBPs). The main aim was to evaluate the most efficient and economic process. Initial tests, resorting to a batch reactor, demonstrated that UV-C/Fenton (λ = 254 nm) was the most effective process. Operational conditions such as pH, H2O2 and Fe2+ concentrations revealed to have a superior influence within dissolved organic carbon (DOC) removal as well as regarding the reactor's energy consumption. As a means to prevent iron precipitation, the addition of nitrilotriacetic acid (NTA) was tested. With experimental conditions pH = 3.0, [H2O2] = 194 mM, [Fe2+] = 1.0 mM, [NTA] = 1.0 mM, radiation UV-C (254 nm), time = 240 min, the kinetic rate related with DOC removal showed a kredWW = 0.0128 min-1 > kOMW = 0.0124 min-1 > kwhiteWW = 0.0104 min-1 and both the WW and OMW achieved the Portuguese legal limit values for wastewater discharge. Furthermore, comparative experiments were performed in a semi-continuous reactor, being that the results put in evidence that the concentration of H2O2 added and the flow rate of reagents' addition (F) had a significant effect on the efficiency of the reactor. Under an optimum experimental procedure pH = 3.0, [H2O2] = 97 mM, [Fe2+] = 1.0 mM, [NTA] = 1.0 mM, radiation UV-C (254 nm), F = 1 mL min-1, time = 240 min, there were observed higher DOC removal kinetic rates (kOMW = 15.20 × 10-3 min-1 > kredWW = 11.64 × 10-3 min-1 > kwhiteWW = 11.57 × 10-3 min-1) and a cost ranging between 0.0402 and 0.0419 €/g.DOC. These results showed that semi-continuous reactors have the potential to be applied to large scale treatments, with low reagents consumption and reduced energy requirements.
Collapse
Affiliation(s)
- Ana R Teixeira
- Centro de Química de Vila Real (CQVR), Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Nuno Jorge
- Centro de Química de Vila Real (CQVR), Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Marco S Lucas
- Centro de Química de Vila Real (CQVR), Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José A Peres
- Centro de Química de Vila Real (CQVR), Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| |
Collapse
|
15
|
Letwin NV, Gillespie AW, Ijzerman MM, Kudla YM, Csajaghy JD, Prosser RS. Characterizing the Microplastic Content of Biosolids in Southern Ontario, Canada. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023. [PMID: 38116985 DOI: 10.1002/etc.5813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
The application of biosolids to agricultural land has been identified as a major pathway of microplastic (MP) pollution to the environment. Very little research, however, has been done on the MP content of biosolids within Canada. Fifteen biosolid samples from different treatment processes (liquid, dewatered, pelletized, and alkali-stabilized) were collected from 11 sources across southern Ontario to quantify and characterize the MP load within them. All samples exhibited MP concentrations ranging from 188 200 (±24 161) to 512 000 (±28 571) MPs/kg dry weight and from 4122 (±231) to 453 746 (±38 194) MPs/kg wet weight. Field amendment of these biosolids can introduce up to 3.73 × 106 to 4.12 × 108 MP/ha of agricultural soil. There was no significant difference in the MP concentrations of liquid, dewatered, and pelletized samples; but a reduction in MP content was observed in alkali-stabilized biosolids. Fragments composed 57.6% of the MPs identified, while 36.7% were fibers. In addition, MPs showed an exponential increase in abundance with decreasing size. Characterization of MPs confirmed that polyester was the most abundant, while polyethylene, polypropylene, polyamide, polyacrylamide, and polyurethane were present across the majority of biosolid samples. The results of the present study provide an estimate of the potential extent of MP contamination to agricultural fields through the amendment of biosolids. Environ Toxicol Chem 2024;00:1-14. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Nicholas V Letwin
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Adam W Gillespie
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Moira M Ijzerman
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Yaryna M Kudla
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Joel D Csajaghy
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
16
|
Mukherjee J, Lodh BK, Sharma R, Mahata N, Shah MP, Mandal S, Ghanta S, Bhunia B. Advanced oxidation process for the treatment of industrial wastewater: A review on strategies, mechanisms, bottlenecks and prospects. CHEMOSPHERE 2023; 345:140473. [PMID: 37866496 DOI: 10.1016/j.chemosphere.2023.140473] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Due to its complex and, often, highly contaminated nature, treating industrial wastewater poses a significant environmental problem. Many of the persistent pollutants found in industrial effluents cannot be effectively removed by conventional treatment procedures. Advanced Oxidation Processes (AOPs) have emerged as a promising solution, offering versatile and effective means of pollutant removal and mineralization. This comprehensive review explores the application of various AOP strategies in industrial wastewater treatment, focusing on their mechanisms and effectiveness. Ozonation (O3): Ozonation, leveraging ozone (O3), represents a well-established AOP for industrial waste water treatment. Ozone's formidable oxidative potential enables the breakdown of a broad spectrum of organic and inorganic contaminants. This paper provides an in-depth examination of ozone reactions, practical applications, and considerations involved in implementing ozonation. UV/Hydrogen Peroxide (UV/H2O2): The combination of ultraviolet (UV) light and hydrogen peroxide (H2O2) has gained prominence as an AOP due to its ability to generate hydroxyl radicals (ȮH), highly efficient in pollutant degradation. The review explores factors influencing the efficiency of UV/H2O2 processes, including H2O2 dosage and UV radiation intensity. Fenton and Photo-Fenton Processes: Fenton's reagent and Photo-Fenton processes employ iron ions and hydrogen peroxide to generate hydroxyl radicals for pollutant oxidation. The paper delves into the mechanisms, catalyst selection, and the role of photoactivation in enhancing degradation rates within the context of industrial wastewater treatment. Electrochemical Advanced Oxidation Processes (EAOPs): EAOPs encompass a range of techniques, such as electro-Fenton and anodic oxidation, which employ electrode reactions to produce ȮH radicals. This review explores the electrochemical principles, electrode materials, and operational parameters critical for optimizing EAOPs in industrial wastewater treatment. TiO2 Photocatalysis (UV/TiO2): Titanium dioxide (TiO2) photocatalysis, driven by UV light, is examined for its potential in industrial wastewater treatment. The review investigates TiO2 catalyst properties, reaction mechanisms, and the influence of parameters like catalyst loading and UV intensity on pollutant removal. Sonolysis (Ultrasonic Irradiation): High-frequency ultrasound-induced sonolysis represents a unique AOP, generating ȮH radicals during the formation and collapse of cavitation bubbles. This paper delves into the physics of cavitation, sonolytic reactions, and optimization strategies for industrial wastewater treatment. This review offers a critical assessment of the applicability, advantages, and limitations of these AOP strategies in addressing the diverse challenges posed by industrial wastewater. It emphasizes the importance of selecting AOPs tailored to the specific characteristics of industrial effluents and outlines potential directions for future research and practical implementation. The integrated use of these AOPs, when appropriately adapted, holds the potential to achieve sustainable and efficient treatment of industrial wastewater, contributing significantly to environmental preservation and regulatory compliance.
Collapse
Affiliation(s)
- Jayanti Mukherjee
- Department of Pharmaceutical Chemistry, CMR College of Pharmacy, Affiliated to Jawaharlal Nehru Technological University Hyderabad, Hyderabad, Telangana, 501401, India.
| | - Bibhab Kumar Lodh
- Department of Chemical Engineering, National Institute of Technology, Agartala, 799046, India.
| | - Ramesh Sharma
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India.
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, India.
| | - Maulin P Shah
- Industrial Wastewater Research Lab, Division of Applied & Environmental Microbiology, Enviro Technology Limited, Ankleshwar, Gujarat, India.
| | - Subhasis Mandal
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, 673 601, India.
| | - Susanta Ghanta
- Department of Chemistry, National Institute of Technology, Agartala, 799046, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India.
| |
Collapse
|
17
|
Abilaji S, Narenkumar J, Das B, S S, Rajakrishnan R, Sathishkumar K, Rajamohan R, Rajasekar A. Electrochemical oxidation of azo dyes degradation by RuO 2-IrO 2-TiO 2 electrode with biodegradation Aeromonas hydrophila AR1 and its degradation pathway: An integrated approach. CHEMOSPHERE 2023; 345:140516. [PMID: 37879370 DOI: 10.1016/j.chemosphere.2023.140516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Azo dyes are the most varied class of synthetic chemicals with non-degradable characteristics. They are complex compounds made up of many different parts. It was primarily utilized for various application procedures in the dyeing industry. Therefore, it's crucial to develop an economical and environmentally friendly approach to treating azo dyes. Our present investigation is an integrated approach to the electrooxidation (EO) process of azo dyes using RuO2-IrO2-TiO2 (anode) and titanium mesh (cathode) electrodes, followed by the biodegradation process (BD) of the treated EO dyes. Chemical oxygen demand (COD) removal efficiency as follows MB (55%) ≥ MR (45%) ≥ TB (38%) ≥ CR (37%) correspondingly. The fragment generated during the degradation process which was identified with high-resolution mass spectrometry (HRMS) and its degradation mechanism pathway was proposed as demethylation reaction and N-N and C-N/C-S cleavage reaction occurs during EO. In biodegradation studies by Aeromonas hydrophila AR1, the EO treated dyes were completely mineralized aerobically which was evident by the COD removal efficiency as MB (98%) ≥ MR (92.9%) ≥ TB (88%) ≥ CR (87%) respectively. The EO process of dyes produced intermediate components with lower molecular weights, which was effectively utilized by the Aeromonas hydrophila AR1 and resulted in higher degradation efficiency 98%. We reported the significance of the enhanced approach of electrochemical oxidation with biodegradation studies in the effective removal of the pollutants in dye industrial effluent contaminated water environment.
Collapse
Affiliation(s)
- Subramani Abilaji
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, India
| | - Jayaraman Narenkumar
- Department of Environmental & Water Resources Engineering.School of Civil Engineering (SCE). Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Bhaskar Das
- Department of Environmental & Water Resources Engineering.School of Civil Engineering (SCE). Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Suresh S
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Rajagopal Rajakrishnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kuppusamy Sathishkumar
- Rhizosphere Biology Laboratory, Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Rajaram Rajamohan
- Organic Materials Synthesis Laboratory, School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, India.
| |
Collapse
|
18
|
Pervez MN, Mishu MMR, Tanvir NP, Talukder ME, Cai Y, Telegin FY, Zhao Y, Naddeo V. Insights into the structures and properties of dyes in the Fenton catalytic process for treating wastewater effluent. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10948. [PMID: 38062884 DOI: 10.1002/wer.10948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023]
Abstract
A notable level of apprehension exists over the adverse impacts of dye pollution on aquatic ecosystems and human well-being. The primary objective of this research is to assess the effectiveness of Fenton catalytic reactions in degrading 14 different commercial azo dyes (both single and double) present in aqueous solutions. The investigation focused on the function of dye structures, using a combination of experimental data and examination of theoretical factors. Dye degradation process was carried out at pH 3, and the concentrations of Fe2+ (10-4 mol/L), H2 O2 (2 × 10-3 mol/L), and dye (0.05 g/L). The findings revealed that dyes with a larger molecular weight were more effective at degrading (D%), with the overall degradation efficiency varying from 0% to 94%. Functional groups played an important role in degradation efficiency; for example, dyes with higher aromatic rings led to less D%, while a higher number of sulfonic, methyl, and nitro groups was responsible for better D%. Notably, the presence of OH groups in the backbone of dyes (AB 24, ABE 113, and MB 9) formed the Fe complex during the catalytic process, and the D% was minimal. On the other hand, theoretical quantum calculations such as the greater the JCLogP, highest occupied molecular orbital, and Dipole moment value, the higher the degradation efficiency. And dyes with low lowest unoccupied molecular orbital tended to have a better degradation efficiency. To some extent, UV-Vis spectral analysis was investigated to determine the degradation pathway, and the pseudo-second-order kinetic model fitted better in the degradation process. The overall experimental and theoretical findings suggested that dye degradation efficiency by the Fenton process is structure-dependent. PRACTITIONER POINTS: Insights into the role of azo dye structures-properties on degradation efficiency. Higher molecular weight and sulfonic groups containing dyes showed better degradation efficiency. Hydroxyl groups play the formation of the Fe complex during the degradation process. Higher values of HOMO and lower values of LUMO enhanced degradation efficiency. The pseudo-second-order (PSO) kinetic model obeyed the Fenton process.
Collapse
Affiliation(s)
- Md Nahid Pervez
- Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-based Textile Materials, Wuhan Textile University, Wuhan, China
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Fisciano, Italy
| | - Mst Monira Rahman Mishu
- Faculty of Nutrition and Food Science, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Naim Pervez Tanvir
- Department of Chemistry, Patuakhali Govt. College, Patuakhali, Bangladesh
| | - Md Eman Talukder
- Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-based Textile Materials, Wuhan Textile University, Wuhan, China
| | - Yingjie Cai
- Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-based Textile Materials, Wuhan Textile University, Wuhan, China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
| | - Felix Y Telegin
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russia
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University and Institute of Eco-Chongming, Shanghai, China
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Fisciano, Italy
| |
Collapse
|
19
|
Wang Y, Zhu Q, Xie T, Peng Y, Wang J, Yao Z. Performance and mechanism of FeS 2/FeS xO y as highly effective Fenton-like catalyst for phenol degradation. ENVIRONMENTAL TECHNOLOGY 2023; 44:3731-3740. [PMID: 35481420 DOI: 10.1080/09593330.2022.2071640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Developing a highly efficient Fenton-like catalyst working in a wide pH range is imperative to accomplish its practical wastewater treatment. Herein, FeS2/FeSxOy catalyst was synthesized by hydrothermal-solvothermal vulcanization with thioacetamide as a sulfur source. Characterization results confirmed FeS2/FeSxOy consisted of pyrite, kornelite, and szomolnokite. FeS2/FeSxOy exhibited superior catalytic activity toward H2O2 activation with more than 96% phenol removal within 5 min in pH 3.0 ∼ 8.0 at 30°C. Radical scavenging experiment and EPR analysis revealed both hydroxyl radicals (·OH) and superoxide anion radicals (O2·-) anticipated in phenol elimination, but ·OH played a dominant role. The detailed degradation experiments and density functional theory (DFT) calculation confirmed the vital role of FeS2 in enhancing phenol abatement. This study not only developed a highly active catalyst for H2O2 activation but also theoretically analyzed the FeS2 function in depth, which provided a guide for designing a highly efficient Fenton-like catalyst.
Collapse
Affiliation(s)
- Yajing Wang
- College of Materials Science and Engineering, Yangtze Normal University, Chongqing, People's Republic of China
| | - Quanxi Zhu
- College of Materials Science and Engineering, Yangtze Normal University, Chongqing, People's Republic of China
| | - Taiping Xie
- College of Materials Science and Engineering, Yangtze Normal University, Chongqing, People's Republic of China
| | - Yuan Peng
- College of Materials Science and Engineering, Yangtze Normal University, Chongqing, People's Republic of China
| | - Jiankang Wang
- College of Materials Science and Engineering, Yangtze Normal University, Chongqing, People's Republic of China
| | - Zhongping Yao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| |
Collapse
|
20
|
Nasab EA, Nasseh N, Damavandi S, Amarzadeh M, Ghahrchi M, Hoseinkhani A, Alver A, Khan NA, Farhadi A, Danaee I. Efficient purification of aqueous solutions contaminated with sulfadiazine by coupling electro-Fenton/ultrasound process: optimization, DFT calculation, and innovative study of human health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84200-84218. [PMID: 37365361 DOI: 10.1007/s11356-023-28235-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
In the current work, the hybrid process potential of ultrasound (US) and electro-Fenton (EF), named sono-electro-Fenton (SEF), was fully investigated for sulfadiazine (SDZ) degradation. The decontamination in the integration approach was revealed to be greater than in individual procedures, i.e., EF process (roughly 66%) and US process (roughly 15%). The key operating process factors (i.e., applied voltage, H2O2 content, pH, initial concentration of SDZ, and reaction time) affecting SDZ removal were evaluated and optimized using Box-Behnken Design (BBD). In addition, an adaptive neuro-fuzzy inference system (ANFIS) as an efficient predictive model was applied to forecast the decontamination efficiency of SDZ through the SEF process based on the same findings produced from BBD. The results revealed that the predictability of SDZ elimination by the ANFIS and BBD approaches exhibited an excellent agreement (a greater R2 of 0.99%) among the both models. Density functional theory was also employed to forecast the plausible decomposition elucidation by the bond-breaking mechanism of organic substances. Plus, the main side products of SDZ degradation during the SEF process were tracked. Eventually, the non-carcinogenic risk assessment of different samples of natural water containing SDZ that was treated by adopting US, EF, and SEF processes was examined for the first time. The findings indicated that the non-carcinogenic risk (HQ) values of all the purified water sources were computed in the permissible range.
Collapse
Affiliation(s)
- Ehsan Abbasi Nasab
- Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran
| | - Negin Nasseh
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Sobhan Damavandi
- Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran
| | - Mohamadamin Amarzadeh
- Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran
| | - Mina Ghahrchi
- Department of Environmental Health Engineering, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Atefeh Hoseinkhani
- Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran
| | - Alper Alver
- Department of Environmental Protection Technologies, Technical Sciences Vocational School, Aksaray University, 68100, Aksaray, Turkey
| | - Nadeem A Khan
- Civil Engineering Department Mewat Engineering College, Nuh Haryana, India, 122107
| | - Asadollah Farhadi
- Ahwaz Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran
| | - Iman Danaee
- Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran.
| |
Collapse
|
21
|
Li N, He X, Ye J, Dai H, Peng W, Cheng Z, Yan B, Chen G, Wang S. H 2O 2 activation and contaminants removal in heterogeneous Fenton-like systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131926. [PMID: 37379591 DOI: 10.1016/j.jhazmat.2023.131926] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
Emerging contaminants can be removed effectively in heterogeneous Fenton-like systems. Currently, catalyst activity and contaminant removal mechanisms have been studied extensively in Fenton-like systems. However, a systematic summary was lacking. This review summarized: 1) The effects of various heterogeneous catalysts on emerging contaminants degradation by activating H2O2; 2) The role of active sites in different catalysts during the activation of H2O2 and their contribution to the generation of active species; 3) The modulation of degradation pathways of emerging contaminants. This paper will help scholars to advance the controlled construction of active sites in heterogeneous Fenton-like systems. Suitable heterogeneous Fenton catalysts can be selected in practical water treatment processes.
Collapse
Affiliation(s)
- Ning Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Xu He
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Jingya Ye
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Haoxi Dai
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Lab of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
22
|
Casado J. Minerals as catalysts of heterogeneous Electro-Fenton and derived processes for wastewater treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27776-7. [PMID: 37266777 DOI: 10.1007/s11356-023-27776-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Advanced oxidation processes (AOPs) such as Fenton's reagent, which generates highly reactive oxygen species, are efficient in removing biorefractory organic pollutants from wastewater. However, Fenton's reagent has drawbacks such as the generation of iron sludge, high consumption of H2O2, and the need for pH control. To address these issues, Electro-Fenton (EF) and heterogeneous Electro-Fenton (HEF) have been developed. HEF, which uses solid catalysts, has gained increasing attention, and this review focuses on the use of mineral catalysts in HEF and derived processes. The reviewed studies highlight the advantages of using mineral catalysts, such as efficiency, stability, affordability, and environmental friendliness. However, obstacles to overcome include the agglomeration of unsupported nanoparticles and the complex preparation techniques and poor stability of some catalyst-containing cathodes. The review also discusses the optimal pH range and dosage of the heterogeneous catalysts and compares the performance of iron sulfides versus iron oxides. Although natural minerals appear to be the best choice for effluents at pH>4, no scale-up reports have been found. The need for further development in this field and the importance of considering the environmental impact of trace toxic metals or catalytic nanoparticles in the treated water on the receiving ecosystem is emphasized. Finally, the article acknowledges the high energy consumption of HEF processes at the lab scale and calls for their performance development to achieve environmentally friendly and cost-effective results using real wastewaters on a pilot scale.
Collapse
Affiliation(s)
- Juan Casado
- Facultad de Ciencias y Biociencias, Universidad Autónoma de Barcelona, Campus UAB s/n, 08038, Bellaterra, Barcelona, Spain.
| |
Collapse
|
23
|
Han M, Wang H, Jin W, Chu W, Xu Z. The performance and mechanism of iron-mediated chemical oxidation: Advances in hydrogen peroxide, persulfate and percarbonate oxidation. J Environ Sci (China) 2023; 128:181-202. [PMID: 36801034 DOI: 10.1016/j.jes.2022.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 06/18/2023]
Abstract
Many studies have successfully built iron-mediated materials to activate or catalyze Fenton-like reactions, with applications in water and wastewater treatment being investigated. However, the developed materials are rarely compared with each other regarding their performance of organic contaminant removal. In this review, the recent advances of Fenton-like processes in homogeneous and heterogeneous ways are summarized, especially the performance and mechanism of activators including ferrous iron, zero valent iron, iron oxides, iron-loaded carbon, zeolite, and metal organic framework materials. Also, this work mainly compares three O-O bond containing oxidants including hydrogen dioxide, persulfate, and percarbonate, which are environmental-friendly oxidants and feasible for in-situ chemical oxidation. The influence of reaction conditions, catalyst properties and benefits are analyzed and compared. In addition, the challenges and strategies of these oxidants in applications and the major mechanisms of the oxidation process have been discussed. This work can help understand the mechanistic insights of variable Fenton-like reactions, the role of emerging iron-based materials, and provide guidance for choosing appropriate technologies when facing real-world water and wastewater applications.
Collapse
Affiliation(s)
- Mengqi Han
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Hui Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Wei Jin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, China.
| |
Collapse
|
24
|
Singh S, Patidar R, Srivastava VC, Qiao Q, Kumar P, Singh A, Lo SL. Peroxymonosulfate activation with an α-MnO 2/Mn 2O 3/Mn 3O 4 hybrid system: parametric optimization and oxidative degradation of organic dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27422-2. [PMID: 37243765 DOI: 10.1007/s11356-023-27422-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 04/28/2023] [Indexed: 05/29/2023]
Abstract
The present study proposed the synthesis of low-toxicity and eco-friendly spherically shaped manganese oxides (α-MnO2, Mn2O3, and Mn3O4) by using the chemical precipitation method. The unique variable oxidation states and different structural diversity of manganese-based materials have a strong effect on fast electron transfer reactions. XRD, SEM, and BET analyses were used to confirm the structure morphology, higher surface area, and excellent porosity. The catalytic activity of as-prepared manganese oxides (MnOx) was investigated for the rhodamine B (RhB) organic pollutant with peroxymonosulfate (PMS) activation under the condition of control pH. In acidic conditions (pH = 3), complete RhB degradation and 90% total organic carbon (TOC) reduction were attained in 60 min. The effects of operating parameters such as solution pH, PMS loading, catalyst dosage, and dye concentration on RhB removal reduction were also tested. The different oxidation states of MnOx promote the oxidative-reductive reaction under acidic conditions and enhance the SO4•-/•OH radical formation during the treatment, whereas the higher surface area offers sufficient absorption sites for interaction of the catalyst with pollutants. A scavenger experiment was used to investigate the generation of more reactive species that participate in dye degradation. The effect of inorganic anions on divalent metal ions that genuinely occur in water bodies was also studied. Additionally, separation and mass analysis were used to investigate the RhB dye degradation mechanism at optimum conditions based on the intermediate's identification. Repeatability tests confirmed that MnOx showed superb catalytic performance on its removal trend.
Collapse
Affiliation(s)
- Seema Singh
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei, Taiwan, Republic of China
| | - Ritesh Patidar
- Department of Petroleum Engineering, Rajasthan Technical University, Kota, Rajasthan, 324010, India
| | - Vimal Chandra Srivastava
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Qicheng Qiao
- School of Environment and Biological Engineering, Nantong College of Science and Technology, Nantong City, Jiangsu, 226007, People's Republic of China
| | - Praveen Kumar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Ajay Singh
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Shang-Lien Lo
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei, Taiwan, Republic of China.
- Water Innovation, Low Carbon and Environmental Sustainability Research Center, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
25
|
Mim S, Hashem MA, Payel S. Coagulation-adsorption-oxidation for removing dyes from tannery wastewater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:695. [PMID: 37208564 DOI: 10.1007/s10661-023-11309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/25/2023] [Indexed: 05/21/2023]
Abstract
Dye removal from tannery wastewater is now a great concern given the ramifications for the environment in which the effluent ends up. Recently, the application of tannery solid waste as a byproduct to remove pollutants from tannery wastewater has garnered increasing attention. This study aims to extract biochar from tannery liming sludge for the removal of dye from wastewater. The activated (600 ºC) biochar was characterized by SEM (Scanning Electron Microscope), EDS (Energy Dispersive Spectroscopy), FTIR (Fourier Transform Infrared Spectroscopy), and surface area analysis utilizing the BET (Brunauer-Emmett-Teller) method and pHpzc (point of zero charges) analysis. The surface area and pHpzc of the biochar were determined as 9.29 m2/g and 8.7, respectively. The batch-wise coagulation-adsorption-oxidation was investigated for its efficacy in dye removal. The optimized conditions were as follows: the efficiency of dye, BOD (Biochemical Oxygen Demand) and COD (Chemical Oxygen Demand) were attained at 94.9%, 95.7% and 93.5%, respectively. SEM, EDS, and FTIR analyses before and after adsorption revealed that the derived biochar could adsorb dye from tannery wastewater. The adsorption behavior of the biochar fitted well to the Freundlich isotherm (R2 = 0.9987) and Pseudo 2nd order (R2 = 0.9996) kinetic model. This investigation provides a new dimension for state-of-the-art utilization of tannery solid waste as a feasible strategy to remove dye from tannery wastewater.
Collapse
Affiliation(s)
- Sadia Mim
- Department of Leather Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Md Abul Hashem
- Department of Leather Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh.
| | - Sofia Payel
- Department of Leather Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| |
Collapse
|
26
|
A Comparison of Different Reagents Applicable for Destroying Halogenated Anionic Textile Dye Mordant Blue 9 in Polluted Aqueous Streams. Catalysts 2023. [DOI: 10.3390/catal13030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
This article aimed to compare the degradation efficiencies of different reactants applicable for the oxidative or reductive degradation of a chlorinated anionic azo dye, Mordant Blue 9 (MB9). In this article, the broadly applied Fenton oxidation process was optimized for the oxidative treatment of MB9, and the obtained results were compared with other innovative chemical reduction methods. In the reductive degradation of MB9, we compared the efficiencies of different reductive agents such as Fe0 (ZVI), Al0, the Raney Al-Ni alloy, NaBH4, NaBH4/Na2S2O5, and other combinations of these reductants. The reductive methods aimed to reduce the azo bond together with the bound chlorine in the structure of MB9. The dechlorination of MB9 produces non-chlorinated aminophenols, which are more easily biodegradable in wastewater treatment plants (WWTPs) compared to their corresponding chlorinated aromatic compounds. The efficiencies of both the oxidative and reductive degradation processes were monitored by visible spectroscopy and determined based on the chemical oxygen demand (COD). The hydrodechlorination of MB9 to non-chlorinated products was expressed using the measurement of adsorbable organically bound halogens (AOXs) and controlled by LC–MS analyses. Optimally, 28 mol of H2SO4, 120 mol of H2O2, and 4 mol of FeSO4 should be applied per one mol of dissolved MB9 dye for a practically complete oxidative degradation after 20 h of action. On the other hand, the application of the Al-Ni alloy/NaOH (100 mol of Al in the Al-Ni alloy + 100 mol of NaOH per one mol of MB9) proceeded smoothly and seven-times faster than the Fenton reaction, consumed similar quantities of reagents, and produced dechlorinated aminophenols. The cost of the Al-Ni alloy/NaOH-based method could be decreased significantly by applying a pretreatment with Al0/NaOH and a subsequent hydrodechlorination using smaller Al-Ni alloy doses. The homogeneous reduction accompanied by HDC using in situ produced Na2S2O4 (by the action of NaBH4/Na2S2O5) was an effective, rapid, and simple treatment method. This reductive system consumed quantities of reagents that are almost twice as low (66 mol of NaBH4 + 66 mol of Na2S2O5 + 18 mol of H2SO4 per one mol of MB9) in comparison with the other oxidative/reductive systems and allowed the effective and fast degradation of MB9 accompanied by the effective removal of AOX. A comparison of the oxidative and reductive methods for chlorinated acid azo dye MB9 degradation showed that an innovative combination of reduction methods offers a smooth, simple, and efficient degradation and hydrodehalogenation of chlorinated textile MB9 dye.
Collapse
|
27
|
Zhao P, Li H, Bu W. A Forward Vision for Chemodynamic Therapy: Issues and Opportunities. Angew Chem Int Ed Engl 2023; 62:e202210415. [PMID: 36650984 DOI: 10.1002/anie.202210415] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Indexed: 01/19/2023]
Abstract
Since the insight to fuse Fenton chemistry and nanomedicine into cancer therapy, great signs of progress have been made in the field of chemodynamic therapy (CDT). However, the exact mechanism of CDT is obscured by the unique tumor chemical environment and inevitable nanoparticle-cell interactions, thus impeding further development. In this Scientific Perspective, the significance of CDT is clarified, the complex mechanism is deconstructed into primitive chemical and biological interactions, and the mechanism research directions based on the chemical kinetics and biological signaling pathways are discussed in detail. Moreover, beneficial outlooks are presented to enlighten the evolution of next-generation CDT. Hopefully, this Scientific Perspective can inspire new ideas and advances for CDT and provide a reference for breaking down the interdisciplinary barriers in the field of nanomedicine.
Collapse
Affiliation(s)
- Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P.R. China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P.R. China
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P.R. China
| |
Collapse
|
28
|
Kumar M, Ambika S, Hassani A, Nidheesh PV. Waste to catalyst: Role of agricultural waste in water and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159762. [PMID: 36306836 DOI: 10.1016/j.scitotenv.2022.159762] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Presently, owing to the rapid development of industrialization and urbanization activities, a huge quantity of wastewater is generated that contain toxic chemical and heavy metals, imposing higher environmental jeopardies and affecting the life of living well-being and the economy of the counties, if not treated appropriately. Subsequently, the advancement in sustainable cost-effective wastewater treatment technology has attracted more attention from policymakers, legislators, and scientific communities. Therefore, the current review intends to highlight the recent development and applications of biochars and/or green nanoparticles (NPs) produced from agricultural waste via green routes in removing the refractory pollutants from water and wastewater. This review also highlights the contemporary application and mechanism of biochar-supported advanced oxidation processes (AOPs) for the removal of organic pollutants in water and wastewater. Although, the fabrication and application of agriculture waste-derived biochar and NPs are considered a greener approach, nevertheless, before scaling up production and application, its toxicological and life-cycle challenges must be taken into account. Furthermore, future efforts should be carried out towards process engineering to enhance the performance of green catalysts to improve the economy of the process.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Selvaraj Ambika
- Faculty, Department of Civil Engineering, Indian Institute of Technology Hyderabad, Telangana, India; Adjunct Faculty, Department of Climate Change, Indian Institute of Technology Hyderabad, Telangana, India; Faculty and Program Coordinator, E-Waste Resources Engineering and Management, Indian Institute of Technology Hyderabad, Telangana, India
| | - Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
29
|
Paquini LD, Marconsini LT, Profeti LPR, Campos OS, Profeti D, Ribeiro J. An overview of electrochemical advanced oxidation processes applied for the removal of azo-dyes. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1007/s43153-023-00300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
30
|
Zhao P, Li H, Bu W. A Forward Vision for Chemodynamic Therapy: Issues and Opportunities. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202210415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P.R. China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P.R. China
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P.R. China
| |
Collapse
|
31
|
Dung NT, Thuy BM, Son LT, Ngan LV, Thao VD, Takahashi M, Maenosono S, Thu TV. Mechanistic insights into efficient peroxymonosulfate activation by NiCo layered double hydroxides. ENVIRONMENTAL RESEARCH 2023; 217:114488. [PMID: 36400227 DOI: 10.1016/j.envres.2022.114488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The efficient removal of organic refractory pollutants such as dyes and antibiotics in wastewater is crucial for protecting the environment and human health. In this work, a NiCo-layered double hydroxide (NiCo-LDH) with a uniform microspherical, hierarchical structure and a high surface area was successfully synthesized as an effective peroxymonosulfate (PMS) activator for the degradation of various organic dyes and antibiotics. The influence of various parameters on the catalytic activity of the NiCo-LDH was determined. Radical scavenger studies unveiled the major reactive oxygen species (ROSs) generated in the NiCo-LDH/PSM system to be 1O2, SO4•-, and O2•-. Ex-situ X-ray photoelectron spectroscopy (XPS) analysis uncovered the role of Co sites and oxygen vacancy as active sites and revealed the reversible redox properties of NiCo-LDH based on Co2+/Co3+ cycles. The activation mechanism and Rhodamine B (RhB) degradation pathways were experimentally studied and proposed. The NiCo-LDH is highly versatile, reusable and stable as shown by post-catalysis characterizations. This work shows the excellent catalysis performances and provides insights into the activation mechanism of PMS by NiCo-LDH for organic pollutant remediation.
Collapse
Affiliation(s)
- Nguyen T Dung
- Department of Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi, 100000, Viet Nam.
| | - Bui M Thuy
- Department of Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi, 100000, Viet Nam
| | - Le T Son
- Department of Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi, 100000, Viet Nam; School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Le V Ngan
- National Institute for Food Control, 65 Pham Than Duat, Hanoi, 100000, Viet Nam
| | - Vu D Thao
- Department of Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi, 100000, Viet Nam
| | - Mari Takahashi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Shinya Maenosono
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Tran V Thu
- Department of Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi, 100000, Viet Nam.
| |
Collapse
|
32
|
Scaria J, Nidheesh PV. Pre-treatment of real pharmaceutical wastewater by heterogeneous Fenton and persulfate oxidation processes. ENVIRONMENTAL RESEARCH 2023; 217:114786. [PMID: 36395865 DOI: 10.1016/j.envres.2022.114786] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/23/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
This study compares the pre-oxidation of pharmaceutical wastewater by hydroxyl radical based advanced oxidation (HR-AOP) and a sulfate radical based advanced oxidation process (SR-AOP). The heterogeneous Fenton process is chosen as a model HR-AOP and persulfate (PS) activation as a model SR-AOP. The pre-treatment efficacy of both processes in terms of TOC, and COD removals using Fe3O4-rGO catalyst were considered. Under the investigated experimental conditions, both processes yielded fluctuating COD values with time. The heterogeneous Fenton process discovered to be the most efficient to remove 68.7% TOC in 180 min of treatment, when Fe3O4-rGO: H2O2 = 300 mg L-1:150 mM H2O2 was used at pH 3. Notably, the heterogeneous Fenton system was not considerably inhibited at the natural pH of pharmaceutical wastewater (6.75), as the process successfully removed 64.6% TOC. On the other hand, in persulfate activation studies, Fe3O4-rGO: PS = 400 mg L-1: 5 mM was the ideal condition for removing 59.5% TOC in 180 min at pH 3. Whereas the natural pH condition significantly inhibited the TOC removal, as only 20.8% TOC removal was feasible. The wastewater characterisation before and after Fenton treatment reveals that Fenton oxidation leads to an increase in inorganics (chlorides: 160 ± 15 mg L-1, nitrates: 63.14 ± 3.08 mg L-1, sulfates: 266.31 ± 31.39 mg L-1) necessitating an additional treatment step to reduce COD and inorganics further.
Collapse
Affiliation(s)
- Jaimy Scaria
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - P V Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
33
|
Degradation of Textile Dye by Bimetallic Oxide Activated Peroxymonosulphate Process. Catalysts 2023. [DOI: 10.3390/catal13010195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The sulphate radical based advanced oxidation processes (AOPs) are highly in demand these days, owing to their numerous advantages. Herein, the Fe-Mn bimetallic oxide particle was used to activate peroxymonosulphate (PMS) for Rhodamine B (RhB) degradation. Three bimetallic catalysts were synthesized via the chemical precipitation method with different concentrations of metals; Fe-Mn (1:1), Fe-Mn (1:2) and Fe-Mn (2:1). The best performance was shown by Fe-Mn (2:1) system at optimized conditions; 96% of RhB was removed at optimized conditions. Scavenging experiments displayed the clear dominance of hydroxyl radical in pH 3, while sulphate radical was present in a large amount at pH 7 and 10. The monometallic Fe and Mn oxides were also synthesized to confirm the synergistic effect that was present in the bimetallic oxide system. The application of optimized condition in real textile wastewater was conducted, which revealed the system works efficiently at high concentrations of PMS and catalyst dosage.
Collapse
|
34
|
Abdel Aziz YS, Sanad MMS, Abdelhameed RM, Zaki AH. In-situ construction of Zr-based metal-organic framework core-shell heterostructure for photocatalytic degradation of organic pollutants. Front Chem 2023; 10:1102920. [PMID: 36688034 PMCID: PMC9845943 DOI: 10.3389/fchem.2022.1102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Photocatalysis is an eco-friendly promising approach to the degradation of textile dyes. The majority of reported studies involved remediation of dyes with an initial concentration ≤50 mg/L, which was away from the existing values in textile wastewater. Herein, a simple solvothermal route was utilized to synthesize CoFe2O4@UiO-66 core-shell heterojunction photocatalyst for the first time. The photocatalytic performance of the as-synthesized catalysts was assessed through the photodegradation of methylene blue (MB) and methyl orange (MO) dyes at an initial concentration (100 mg/L). Under simulated solar irradiation, improved photocatalytic performance was accomplished by as-obtained CoFe2O4@UiO-66 heterojunction compared to bare UiO-66 and CoFe2O4. The overall removal efficiency of dyes (100 mg/L) over CoFe2O4@UiO-66 (50 mg/L) reached >60% within 180 min. The optical and photoelectrochemical measurements showed an enhanced visible light absorption capacity as well as effective interfacial charge separation and transfer over CoFe2O4@UiO-66, emphasizing the successful construction of heterojunction. The degradation mechanism was further explored, which revealed the contribution of holes (h+), superoxide (•O2 -), and hydroxyl (•OH) radicals in the degradation process, however, h+ were the predominant reactive species. This work might open up new insights for designing MOF-based core-shell heterostructured photocatalysts for the remediation of industrial organic pollutants.
Collapse
Affiliation(s)
| | | | - Reda M. Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Giza, Egypt
| | - Ayman H. Zaki
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef, Egypt
- International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Japan
| |
Collapse
|
35
|
Gradinac J, Jovović A. Investigation regarding the application of the titanium electrode for the water treatment plant in a steel manufacturing plant. Front Chem 2022; 10:1065332. [PMID: 36605122 PMCID: PMC9810260 DOI: 10.3389/fchem.2022.1065332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Hard water causes problems in the industry since the deposits inside pipes and equipment lead to lower plant efficiency and electricity costs. The growing demands for high-quality water necessitate the development of modern and cost-effective technologies for softening very hard water. One of these techniques is the electrocoagulation process (EC). This study aimed to examine the effectiveness of the electrocoagulation (EC) process for removing scale ions in water using titanium rod electrodes. The research was carried out on pilot electrodes. The results that were obtained have focused on showing the effectiveness and efficiency of the application of titanium electrodes for removing hardness from makeup and process water inside a closed system, utilizing a Universal Environmental Technologies system (UET system). The plant consisted of a heat pump, heat exchanger, cooling tower, and Universal Environmental Technologies reactor with a titanium rod.
Collapse
|
36
|
Zhao F, Xiao J, Geng S, Wang Y, Tsiakaras P, Song S. Novel Fe7S8/C nanocomposites with accelerating iron cycle for enhanced heterogeneous electro-Fenton degradation of dyes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Islam MA, Akter J, Lee I, Shrestha S, Pandey A, Gyawali N, Hossain MM, Hanif MA, Jang SG, Hahn JR. Facile Preparation of a Bispherical Silver-Carbon Photocatalyst and Its Enhanced Degradation Efficiency of Methylene Blue, Rhodamine B, and Methyl Orange under UV Light. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3959. [PMID: 36432244 PMCID: PMC9698814 DOI: 10.3390/nano12223959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The combination of organic and inorganic materials is attracting attention as a photocatalyst that promotes the decomposition of organic dyes. A facile thermal procedure has been proposed to produce spherical silver nanoparticles (AgNPs), carbon nanospheres (CNSs), and a bispherical AgNP-CNS nanocomposite. The AgNPs and CNSs were each synthesized from silver acetate and glucose via single- and two-step annealing processes under sealed conditions, respectively. The AgNP-CNS nanocomposite was synthesized by the thermolysis of a mixture of silver acetate and a mesophase, where the mesophase was formed by annealing glucose in a sealed vessel at 190 °C. The physicochemical features of the as-prepared nanoparticles and composite were evaluated using several analytical techniques, revealing (i) increased light absorption, (ii) a reduced bandgap, (iii) the presence of chemical interfacial heterojunctions, (iv) an increased specific surface area, and (v) favorable band-edge positions of the AgNP-CNS nanocomposite compared with those of the individual AgNP and CNS components. These characteristics led to the excellent photocatalytic efficacy of the AgNP-CNS nanocomposite for the decomposition of three pollutant dyes under ultraviolet (UV) radiation. In the AgNP-CNS nanocomposite, the light absorption and UV utilization capacity increased at more active sites. In addition, effective electron-hole separation at the heterojunction between the AgNPs and CNSs was possible under favorable band-edge conditions, resulting in the creation of reactive oxygen species. The decomposition rates of methylene blue were 95.2, 80.2, and 73.2% after 60 min in the presence of the AgNP-CNS nanocomposite, AgNPs, and CNSs, respectively. We also evaluated the photocatalytic degradation efficiency at various pH values and loadings (catalysts and dyes) with the AgNP-CNS nanocomposite. The AgNP-CNS nanocomposite was structurally rigid, resulting in 93.2% degradation of MB after five cycles of photocatalytic degradation.
Collapse
Affiliation(s)
- Md. Akherul Islam
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju 54896, Korea
| | - Jeasmin Akter
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Korea
| | - Insup Lee
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Korea
| | - Santu Shrestha
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Korea
| | - Anil Pandey
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Korea
| | - Narayan Gyawali
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Korea
| | - Md. Monir Hossain
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju 54896, Korea
- Functional Composite Materials Research Center, Institute of Advanced Composites Materials, Korea Institute of Science and Technology, Wanju, Jeonbuk 55324, Korea
| | - Md. Abu Hanif
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju 54896, Korea
| | - Se Gyu Jang
- Functional Composite Materials Research Center, Institute of Advanced Composites Materials, Korea Institute of Science and Technology, Wanju, Jeonbuk 55324, Korea
| | - Jae Ryang Hahn
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Korea
- Textile Engineering, Chemistry and Science, North Carolina State University 2401 Research Dr., Raleigh, NC 27695-8301, USA
| |
Collapse
|
38
|
Alula MT, Madingwane ML, Yan H, Lemmens P, Zhe L, Etzkorn M. Biosynthesis of bifunctional silver nanoparticles for catalytic reduction of organic pollutants and optical monitoring of mercury (II) ions using their oxidase-mimic activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81938-81953. [PMID: 35739451 DOI: 10.1007/s11356-022-21619-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
In this study, an aqueous extract of Sclerocarya birrea leaves was used as a reducing agent to synthesize silver nanoparticles (AgNPs). The synthesis was carried out at room temperature and was both rapid and simple. Different characterization techniques such as UV/visible spectroscopy, surface-enhanced Raman spectroscopy, X-ray diffraction, and focused ion beam scanning electron microscopy were used to confirm the formation of AgNPs. The synthesized nanoparticles exhibited catalytic activity for the reduction of 4-nitrophenol, methyl orange, methylene blue, and rhodamine 6G. The catalytic activity was monitored by measuring the UV/visible absorbance spectra of the compounds using sodium borohydride as a reducing agent and found to be high. Additionally, the particles displayed oxidase-like activity. In the presence of AgNPs, 3, 3', 5, 5'-tetramethylbenzidine (TMB) which is colorless was transformed to oxidized TMB, which is blue, using dissolved oxygen as the oxidant. In the presence of Hg2+, the oxidase-like activity was enhanced. On the basis of this observation, an assay for the analysis of Hg2+ was developed. The linear range of the calibration curve is wide (0-600 µM) and the limit of detection (LOD) is low, as small as 34.8 nM. The method is strongly selective towards Hg2+. Tap water obtained from the laboratory where these experiments were carried out was used to study the feasibility of the method in real sample analyses.
Collapse
Affiliation(s)
- Melisew Tadele Alula
- Department of Chemical and Forensic Sciences, Faculty of Science, Botswana International University of Science and Technology, Plot 10071, Private Bag 16, Palapye, Botswana.
| | - Mildred Lesang Madingwane
- Department of Chemical and Forensic Sciences, Faculty of Science, Botswana International University of Science and Technology, Plot 10071, Private Bag 16, Palapye, Botswana
| | - Hongdan Yan
- Institute for Condensed Matter Physics and Lab. for Emergent Nanometrology (LENA), Braunschweig University of Technology, Mendelssohnsstr. 3, 38106, Braunschweig, Germany
| | - Peter Lemmens
- Institute for Condensed Matter Physics and Lab. for Emergent Nanometrology (LENA), Braunschweig University of Technology, Mendelssohnsstr. 3, 38106, Braunschweig, Germany
| | - Liu Zhe
- Institute Applied Physics and Lab. for Emergent Nanometrology (LENA), Braunschweig University of Technology, Mendelssohnsstr. 3, 38106, Braunschweig, Germany
| | - Markus Etzkorn
- Institute Applied Physics and Lab. for Emergent Nanometrology (LENA), Braunschweig University of Technology, Mendelssohnsstr. 3, 38106, Braunschweig, Germany
| |
Collapse
|
39
|
Jung J, Kim J, Yoon S, Kumar Reddy PA, Hwang Y, Bae S. The role of Fe dissolution in olivine-hydroxylamine-induced Fenton reaction for enhanced oxidative degradation of organic pollutant. CHEMOSPHERE 2022; 306:135557. [PMID: 35780991 DOI: 10.1016/j.chemosphere.2022.135557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
In this study, a dye pollutant (methyl orange, MO) was effectively oxidized in a hydroxylamine (HA)-assisted Fenton system using various Al/Si/Fe- and Fe-containing minerals. The fastest degradation kinetics of MO were observed in the olivine-HA Fenton system, whereas other Al/Si/Fe and Fe-rich minerals (magnetite and lepidocrocite) demonstrated much slower degradation kinetics. The degradation rate constants were proportional to dissolved Fe(II) quantities in mineral suspensions (R2 = 0.98), indicating the crucial role of dissolved Fe(II) quantity in HA-assisted Fenton reactions. Radical scavenging and electron spin resonance results revealed that MO was dominantly oxidized by ·HO produced in the olivine-HA Fenton system. The continuous production of aqueous Fe(II) via direct Fe(II) dissolution at a pH of 3 and further Fe dissolution from the reductive dissolution of surface Fe(III) by HA was the main driving force for efficient MO degradation. Furthermore, lowering the pH by the addition of hydroxylamine hydrochloride resulted in the effective removal of MO under various pH conditions (3-9), indicating the additional advantage of HA use in Fenton reactions. Liquid chromatography-mass spectroscopy analysis revealed that the cleavage of C-N and C-C bonds, demethylation, hydroxylation, and dehydroxylation were the main processes for MO oxidation in the olivine-HA Fenton system.
Collapse
Affiliation(s)
- Jueun Jung
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Joohyun Kim
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sunho Yoon
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - P Anil Kumar Reddy
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yuhoon Hwang
- Department of Environmental Engineering, Seoul National University of Science and Technology, 01811, Seoul, Republic of Korea
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
40
|
Biodegradation of Congo Red Using Co-Culture Anode Inoculum in a Microbial Fuel Cell. Catalysts 2022. [DOI: 10.3390/catal12101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Congo red is an azo dye widely used as a colouring agent in textile industries. It is a serious threat due to its carcinogenic effects. Its degradation has been challenging due to its complex yet stable structure. The present study was aimed to investigate the effective degradation of Congo red by bioremediating bacteria isolated from different environments. To investigate predominant microorganisms that degrade Congo red and its functions in microbial fuel cells (MFCs), strains isolated from cow dung (Enterococcus faecalis SUCR1) and soil (Pseudomonas aeruginosa PA1_NCHU) were used as a co-culture inocula. The remarkable results establish that E. faecalis as an excellent microbial source for the biological degradation of dye-contaminated wastewater treatment alongside bioactive treating wastewater with varied concentrations of congo red dye. The highest efficiency percentage of dye degradation was 98% after 3 days of incubation at pH 7 and 37 °C, whereas findings have shown that the decolorization at pH 5 and 6 was lower at 66% and 83.3%, respectively, under the same incubation conditions. Furthermore, the co-culture of E. faecalis SUCR1 and P. aeruginosa at a 1:1 ratio demonstrated improved power generation in MFCs. The maximum power density of 7.4 W/m3 was recorded at a 150 mg L−1 concentration of Congo red, indicating that the symbiotic relation between these bacterium resulted in improved MFCs performance simultaneous to dye degradation.
Collapse
|
41
|
Singh P, Mohan B, Madaan V, Ranga R, Kumari P, Kumar S, Bhankar V, Kumar P, Kumar K. Nanomaterials photocatalytic activities for waste water treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69294-69326. [PMID: 35978242 DOI: 10.1007/s11356-022-22550-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Water is necessary for the survival of life on Earth. A wide range of pollutants has contaminated water resources in the last few decades. The presence of contaminants incredibly different dyes in waste, potable, and surface water is hazardous to environmental and human health. Different types of dyes are the principal contaminants in water that need sudden attention because of their widespread domestic and industrial use. The toxic effects of these dyes and their ability to resist traditional water treatment procedures have inspired the researcher to develop an eco-friendly method that could effectively and efficiently degrade these toxic contaminants. Here, in this review, we explored the effective and economical methods of metal-based nanomaterials photocatalytic degradation for successfully removing dyes from wastewater. This study provides a tool for protecting the environment and human health. In addition, the insights into the transformation of solar energy for photocatalytic reduction of toxic metal ions and photocatalytic degradation of dyes contaminated wastewater will open a gate for water treatment research. The mechanism of photocatalytic degradation and the parameters that affect the photocatalytic activities of various photocatalysts have also been reported.
Collapse
Affiliation(s)
- Permender Singh
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Brij Mohan
- College of Ocean Food and Biological Engineering, Jimei University, 185 Yinjiang Road, Jimei District, Xiamen, 361021, China
| | - Vasundhara Madaan
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Rohit Ranga
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Parveen Kumari
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Sandeep Kumar
- Department of Chemistry, J. C. Bose University of Science & Technology, YMCA, Faridabad, 126006, Haryana, India
| | - Vinita Bhankar
- Department of Biochemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Parmod Kumar
- Department of Physics, J. C. Bose University of Science & Technology, YMCA, Faridabad, 126006, Haryana, India
| | - Krishan Kumar
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India.
| |
Collapse
|
42
|
Gogate PR. Intensified sulfate radical oxidation using cavitation applied for wastewater treatment. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
43
|
Rodrigues-Silva F, Masceno GP, Panicio PP, Imoski R, Prola LDT, Vidal CB, Xavier CR, Ramsdorf WA, Passig FH, Liz MVD. Removal of micropollutants by UASB reactor and post-treatment by Fenton and photo-Fenton: Matrix effect and toxicity responses. ENVIRONMENTAL RESEARCH 2022; 212:113396. [PMID: 35525292 DOI: 10.1016/j.envres.2022.113396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Literature is scarce on the performance of Fenton-based processes as post-treatment of municipal wastewater treated by upflow anaerobic sludge blanket (UASB) reactor. This study aims to perform Fenton and photo-Fenton from UASB influent and effluent matrices to remove micropollutants (MPs) models: atrazine (ATZ), rifampicin (RIF), and 17α-ethynylestradiol (EE2). A UASB reactor at bench-scale (14 L) was operated with these MPs, and the AOPs experiments at bench-scale were performed on a conventional photochemical reactor (1 L). A high-pressure vapor mercury lamp was used for photo-Fenton process (UVA-Vis) as a radiation source. Microcrustacean Daphnia magna (acute toxicity) and seeds of Lactuca sativa (phytotoxicity) were indicator organisms for toxicity monitoring. The UASB reactor showed stability removing 90% of the mean chemical oxygen demand, and removal efficiencies for ATZ, RIF, and EE2 were 16.5%, 45.9%, and 15.7%, respectively. A matrix effect was noted regarding the application of both Fenton and photo-Fenton in UASB influent and effluent to remove MPs and toxicity responses. The pesticide ATZ was the most recalcitrant compound, yet the processes carried out from UASB effluent achieved removal >99.99%. The post-treatment of the UASB reactor by photo-Fenton removed acute toxicity in D. magna for all treatment times. However, only the photo-Fenton conducted for 90 min did not result in a phytotoxic effect in L. sativa.
Collapse
Affiliation(s)
- Fernando Rodrigues-Silva
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Gabriella Paini Masceno
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Paloma Pucholobek Panicio
- Laboratory of Ecotoxicology, Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Rafaela Imoski
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Liziê Daniela Tentler Prola
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Carla Bastos Vidal
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Claudia Regina Xavier
- Laboratory of Wastewater Treatment, Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Wanessa Algarte Ramsdorf
- Laboratory of Ecotoxicology, Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Fernando Hermes Passig
- Laboratory of Sanitation, Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Marcus Vinicius de Liz
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil.
| |
Collapse
|
44
|
Tabelini CHB, Lima JPP, Aguiar A. Gallic acid influence on azo dyes oxidation by Fenton processes. ENVIRONMENTAL TECHNOLOGY 2022; 43:3390-3400. [PMID: 33890835 DOI: 10.1080/09593330.2021.1921855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/19/2021] [Indexed: 05/27/2023]
Abstract
The present work consisted in evaluating the effect of a natural plant reducer, gallic acid (GA), on the discolouration/oxidation of two azo dyes by Fenton processes (Fe3+/H2O2 and Fe2+/H2O2). A kinetic study was performed to better interpret the discolouration data at different temperatures. The 1st-order kinetic model presented the best fit for the experimental data of methyl orange discolouration, while the 2nd-order was better for chromotrope 2R. Due to the addition of GA and the temperature rise, there were increases in discolouration and in the reaction rate constant values. As a highlight, it was possible to verify the reduction of the apparent activation energy (Ea) due to the presence of GA. For example, Ea for discolouring methyl orange corresponded to 81.5 and 53.6 kJ.mol-1 by Fe2+/H2O2 and Fe2+/H2O2/GA, respectively. Thus, it can be inferred that the GA reduces the energy barrier to increase the oxidation of dyes by Fenton processes.
Collapse
Affiliation(s)
| | | | - André Aguiar
- Instituto de Recursos Naturais, Universidade Federal de Itajubá, Itajubá, Brazil
| |
Collapse
|
45
|
Dadigala R, Bandi R, Alle M, Park CW, Han SY, Kwon GJ, Lee SH. Effective fabrication of cellulose nanofibrils supported Pd nanoparticles as a novel nanozyme with peroxidase and oxidase-like activities for efficient dye degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129165. [PMID: 35739705 DOI: 10.1016/j.jhazmat.2022.129165] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Nanozyme-based dye degradation methods are promising for the remediation of water pollution. Though Pd nanoparticles (PdNPs) are known to act as nanozymes, their dye degradation capability has not been investigated. Low nanozyme activities, easy aggregation, difficulties in recovery and reuse are the major challenges in achieving this. For the first time, cellulose nanofibrils-supported PdNPs (PdNPs/PCNF) as a novel nanozyme with good peroxidase and oxidase-mimicking activities and easy recyclability is explored for dye degradation. An efficient and rapid method of PdNPs/PCNF preparation was demonstrated by adjusting the pH and microwave irradiation. Enzyme kinetic studies revealed good kinetic parameters and specific activities of 415 and 277 U/g for peroxidase and oxidase, respectively. PdNPs/PCNF offered 99.64% degradation of methylene blue within 12 min (0.468 min-1) with 0.4 M H2O2 at pH 5.0. Mechanistic studies revealed the involvement of hydroxyl and superoxide radicals. Owing to the network-like structure of PCNF, films and foams were prepared, their dye degradation potentials were compared, and recyclability was tested. Successful degradation of mixed dye solutions and spiked real water samples was achieved and a continuous flow method was demonstrated using a foam-packed column.
Collapse
Affiliation(s)
- Ramakrishna Dadigala
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Rajkumar Bandi
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Madhusudhan Alle
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chan-Woo Park
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Song-Yi Han
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gu-Joong Kwon
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Institute of Inclusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung-Hwan Lee
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
46
|
Hou K, Pi Z, Chen F, He L, Yao F, Chen S, Li X, Dong H, Yang Q. Sulfide enhances the Fe(II)/Fe(III) cycle in Fe(III)-peroxymonosulfate system for rapid removal of organic contaminants: Treatment efficiency, kinetics and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128970. [PMID: 35462188 DOI: 10.1016/j.jhazmat.2022.128970] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/30/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
The activation of peroxymonosulfate (PMS) by Fe(II) or Fe(III) for environmental decontamination is severely limited by the low conversion rate from Fe(III) to Fe(II). Here, we found that this puzzling problem could virtually be solved by introducing trace amounts of S2-. With the addition of 0.2 mM S2-, the bisphenol A (BPA) degradation efficiency and total organic carbon (TOC) removal in PMS/Fe(III) system were improved by 3.8 and 6.0 times, respectively. Meanwhile, the kobs and PMS utilization efficiency also markedly increased by 650% and 160%, respectively. The constructed PMS/Fe(III)/S2- system exhibited a good applicability to a wide pH range (3.2 ~ 9.5) and high resistance to humic acid, Cl- and NO3-. The main reactive oxidant species in PMS/Fe(III)/S2- system were identified by scavenging experiments, electron paramagnetic resonance measurement, chemical probe approach, and 18O isotope-labeling technique. The identification results revealed that FeIVO2+ was the primary reactive oxidant species, while •OH, SO4•-, O2•- and 1O2 were also involved in the degradation of BPA. Finally, the generalizability of PMS/Fe(III)/S2- system was evaluated by varying the target pollutants, oxidants, and reducing S species. The construction of PMS/Fe(III)/S2- system provides some insights into the treatment of organic wastewaters containing S2-, e.g., from refineries and tanneries.
Collapse
Affiliation(s)
- Kunjie Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Zhoujie Pi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Fei Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Li He
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Fubing Yao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Shengjie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| |
Collapse
|
47
|
Aberkane F, Khelifa T, Lamraoui H, Abdou I, Zine N, Errachid A, Elaissari A. Free Energy of Adsorption of Methylene Blue on Polyvinyl Chloride Containing Iron Oxide Nanoparticles Coated with Poly[2-(dimethylamino)ethyl methacrylate]. J MACROMOL SCI B 2022. [DOI: 10.1080/00222348.2022.2093015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Fairouz Aberkane
- Department of Chemistry, Faculty of Matter Science, LCCE Laboratory, University of Batna-1, Batna, Algeria
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Villeurbanne, France
| | - Teqwa Khelifa
- Department of Chemistry, Faculty of Matter Science, LCCE Laboratory, University of Batna-1, Batna, Algeria
| | - Hamoudi Lamraoui
- Department of Chemistry, Faculty of Matter Science, LCCE Laboratory, University of Batna-1, Batna, Algeria
| | - Imene Abdou
- Higher National School of Renewable Energies, Environment, and Sustainable Development, Batna, Algeria
| | - Nadia Zine
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Villeurbanne, France
| | - Abdelhamid Errachid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Villeurbanne, France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Villeurbanne, France
| |
Collapse
|
48
|
|
49
|
Moyo S, Makhanya BP, Zwane PE. Use of bacterial isolates in the treatment of textile dye wastewater: A review. Heliyon 2022; 8:e09632. [PMID: 35677403 PMCID: PMC9168152 DOI: 10.1016/j.heliyon.2022.e09632] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/25/2021] [Accepted: 05/26/2022] [Indexed: 01/15/2023] Open
Abstract
The textile industry uses large amounts of dyes like reactive, azo, anthraquinone, and triphenylmethane to colour textiles. Dyes that are not used up during the colouration process usually end up in water bodies as waste leading to the pollution of the water bodies. This makes the industry to be one of the major contributors to water pollution in the world. Bacterial agents isolated from various sources like dye contaminated soil and textile wastewater have shown to have the ability to effectively decolourise and degrade these dye pollutants leading to improved water quality. This review discusses bacterial isolates that have been used successfully to degrade and decolourise textile dyes, their mode of dye removal as well as the factors that affect their dye degradation ability. It further looks at the latest wastewater treatment technologies that incorporate bacterial microorganisms to treat dye wastewater.
Collapse
Affiliation(s)
- Senelisile Moyo
- Department of Textile and Apparel Design, University of Eswatini, Eswatini
| | | | - Pinkie E. Zwane
- University of Eswatini, Private Bag 4, Kwaluseni Campus, Eswatini
| |
Collapse
|
50
|
Comparison of hydroxyl-radical-based advanced oxidation processes with sulfate radical-based advanced oxidation processes. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100830] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|