1
|
Papazlatani CV, Vasileiadis S, Panagopoulou EI, Damalas DE, Karas PA, Gerovasileiou E, Thomaidis NS, Karpouzas DG. Genomic, Transcriptomic and Suspect/Non-Target Screening Analyses Reveal the Role of CYP450s in the Degradation of Imazalil and Delineate Its Transformation Pathway by Cladosporium herbarum. Microb Biotechnol 2025; 18:e70102. [PMID: 39972684 DOI: 10.1111/1751-7915.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/07/2025] [Accepted: 01/23/2025] [Indexed: 02/21/2025] Open
Abstract
Imazalil (IMZ), a major surface water contaminant characterised by high environmental recalcitrance and toxicity, is used in fruit-packaging plants to control fungal infestations during storage. This leads to the production of wastewaters which should be treated on site before their environmental release. We previously isolated a Cladosporium herbarum strain, the first microorganism that could degrade IMZ. Here we describe the genetic network utilised by the fungus to degrade IMZ and its detailed transformation. Genomic and transcriptomic analysis of C. herbarum pointed to the involvement of strongly upregulated CYP450s in IMZ degradation, as further verified by cessation of its biodegradation by CYP450 inhibitors. LC-QTOF-HRMS analysis and suspect/non-target screening identified nine transformation products (TPs) of IMZ. IMZ biotransformation mainly proceeded through O-dealkylation, while other less important paths, most probably controlled by upregulated oxidases, were operative involving successive hydroxylation reactions. These lead to the formation of TPs like IMZ_313 and IMZ_331, with the former being further transformed through imidazole ring scission to IMZ_288, a TP reported for the first time. We provide first evidence for the transformation mechanism of IMZ by C. herbarum and the potential genes/enzymes involved, paving the way for the use of C. herbarum in the biodepuration of agro-industrial effluents.
Collapse
Affiliation(s)
| | - Sotirios Vasileiadis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Eleni I Panagopoulou
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Greece
| | - Dimitrios E Damalas
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Greece
| | - Panagiotis A Karas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Evdoxia Gerovasileiou
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Nikolaos S Thomaidis
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Greece
| | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
2
|
Koli M, Kanwar B, Singh SP. Impact of operating parameters on the electrooxidation of methylene blue and ciprofloxacin: a comprehensive analysis and degradation pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35992-6. [PMID: 39885076 DOI: 10.1007/s11356-025-35992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/19/2025] [Indexed: 02/01/2025]
Abstract
In recent decades, freshwater bodies have experienced significant stress due to the excessive disposal of dyes from textile industries and waste antibiotic discharges from pharmaceutical industries. The continuous disposal of these substances may harm the natural ecosystem and generate antibiotic resistance in living organisms. Conventional treatment facilities are inadequate in treating these contaminants effectively, leading to a focused interest in advanced technologies, such as electrooxidation. This study aimed to assess graphite sheet electrode's efficacy in removing methylene blue (MB) dye and antibiotic ciprofloxacin (CIP) under different operating conditions, such as voltage (2.5, 5, and 7.5 V), initial concentration (5, 10, 25, and 50 ppm), pH (3, 6, and 9), and electrolyte (Na2SO4 and NaCl). The results indicated that 10 ppm MB and CIP could be removed by more than 99%, with pseudo-first-order reaction kinetics in 2 h. The degradation was more effective in the NaCl medium than in Na2SO4 due to the presence of highly active chlorine species. The degradation by-products revealed successful degradation of MB and CIP molecules in both electrolytes yielding low m/z value by-products and the toxicity analysis via ECOSAR V2.2 reveals that the daughter products are not harmful. The operating cost of the system was between 0.05 and 0.07 $ m-3 for degradation in both electrolyte systems. These findings suggest that electrooxidation systems utilizing thin graphite sheet electrodes may be promising for dye and pharmaceutical wastewater treatment due to their effectiveness, versatility, and relatively low environmental impact.
Collapse
Affiliation(s)
- Mitil Koli
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Bhavana Kanwar
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Centre for Climate Studies, Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Centre of Excellence On Membrane Technologies for Desalination, Brine Management and Water Recycling (DeSaltM), Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
3
|
Abd FH, Abbar AH. Treatment of hospital wastewater by anodic oxidation using a new approach made by combining rotation with pulsed electric current on Cu-SnO 2-Sb 2O 5 rotating cylinder anode. Heliyon 2025; 11:e42069. [PMID: 39897935 PMCID: PMC11787683 DOI: 10.1016/j.heliyon.2025.e42069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
A high-efficiency, low-cost Cu-SnO2-Sb2O5 anode was prepared using a novel approach that combines the effects of rotation with pulsed current. The effects of operating variables such as rotation speed (50-250 rpm), pulsed current density (5-20 mA/cm2), and electrodepostion time (30-60 min) on the morphology and activity of Cu-SnO2-Sb2O5 anode were investigated. The structure of Cu-SnO2-Sb2O5 anode was examined by SEM, EDS, and XRD techniques. The results showed that using higher rotation speed combined with pulsed current gave better properties of Cu-SnO2-Sb2O5 anode in terms of higher oxidation activity and longer service life time. The optimum conditions for preparing Cu-SnO2-Sb2O5 anode were a pulsed current density of 10 mA/cm2, rotation speed of 250 rpm, and deposition time of 60 min. The prepared anode has the ability to remove methylene blue (MB) with an efficiency of 99.7 %. It has an excellent service life of 30 h. Additionally, the prepared anode has the potential to remove COD from hospital wastewater with 85 % efficiency by applying a current density of 10 mA/cm2 for 120 min at an initial pH of 3 where an energy consumption of 2.85 kWh/kg was claimed. The novel approach of combining rotation with pulsed electric current in preparing Cu-SnO2-Sb2O5 anode offers enhanced methylene blue degradation efficiency and extended anode life, demonstrating potential for industrial-scale hospital wastewater treatment.
Collapse
Affiliation(s)
- Falah H. Abd
- Department of Biochemical Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, 10071, Iraq
| | - Ali H. Abbar
- Department of Biochemical Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, 10071, Iraq
| |
Collapse
|
4
|
Kanwar B, Koli M, Singh SP. Antibiotic amoxicillin degradation by electrochemical oxidation process: effects of process parameters and degradation pathway at environmentally relevant concentrations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:575-586. [PMID: 39695035 DOI: 10.1007/s11356-024-35780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Amoxicillin (AMX) is a common antibiotic used in both human and veterinary medicine in order to both cure and avoid bacterial infections. Traces of AMX have been found in ground and surface water, urban effluents, water, and wastewater treatment facilities due to its widespread use. The level of hazard and disposal of this class of micropollutants is the reason for concern. Advanced technology is required since conventional wastewater treatment plants are ineffective at eliminating these emerging contaminants. Electrochemical oxidation is a promising method of treating wastewater, which uses electrogenerated radicals to mineralize organic pollutants. This work investigated the detailed process mechanism for AMX degradation utilizing a low-cost, thin, flexible graphite sheet with lower AMX concentrations, initial pH value, voltage, electrolyte concentration, and wastewater matrix. The degradation of AMX by in situ generated hydroxyl radicals is a function of applied voltage and follows pseudo-first-order reaction kinetics. The removal efficiencies of AMX have been achieved up to 99% within 3 h. Moreover, intermediate by-products have been identified using liquid chromatography-mass spectrometry, and a plausible pathway has been proposed. This study could serve as a process reference for controlling AMX wastewater contamination via the electrochemical oxidation technique.
Collapse
Affiliation(s)
- Bhavana Kanwar
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Mitil Koli
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Centre of Climate Studies, Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Centre of Excellence On Membrane Technologies for Desalination, Brine Management, and Water Recycling (DesaltM), Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
5
|
Ren N, Qu C, Zhang A, Yu C, Li X, Meng S, Fang J, Liang D. Multistage Generation Mechanisms of Reactive Oxygen Species and Reactive Chlorine Species in a Synergistic System of Anodic Oxidation Coupled with in Situ Free Chlorine and H 2O 2 Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22829-22839. [PMID: 39661661 DOI: 10.1021/acs.est.4c09855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Electro-oxidation (EO) is an efficient approach to removing refractory organics in wastewater. However, the interference from chlorine ions (Cl-) can generate reactive chlorine species (RCS), potentially leading to the production of undesirable chlorinated byproducts. A novel approach involving the cathodic oxygen reduction reaction (ORR) for in situ H2O2 production has emerged as a promising strategy to counteract this issue. This study systematically investigated the dynamics and transformation of RCS and reactive oxygen species (ROS) in an ORR/chloride-containing EO (EO-Cl) system, elucidating their respective roles in organic removal and chlorinated byproduct minimization. Distinct generation rates and patterns were observed for free chlorine and H2O2 in the ORR/EO-Cl system. The rapid generation of free chlorine at the anode quickly reached a dynamic equilibrium, which contrasted with the moderate, continuous cathodic production of H2O2, resulting in considerable H2O2 accumulation over time. This difference established kinetics-driven ROS and RCS formation and distribution, influencing the subsequent organic degradation process. Three distinct stages were identified in the degradation process. In stage I, free chlorine was the primary species, along with reactive species including Cl2•-, 1O2, ClO•, HO•, and Cl•. In stage II, the gradual accumulation of H2O2 consumed free chlorine, favoring the formation of 1O2 and HO•. In stage III, excessive H2O2 quenched the free radicals. Insights into these multistage mechanisms reveal that the rapid degradation of chlorinated byproducts by 1O2 and HO• occurs in stage II of the ORR/EO-Cl system.
Collapse
Affiliation(s)
- Na Ren
- Department of Materials Chemistry, School of Materials Science and Engineering, Beihang University, Beijing 102206, China
| | - Chao Qu
- Department of Environmental Science, College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Ao Zhang
- Department of Materials Chemistry, School of Materials Science and Engineering, Beihang University, Beijing 102206, China
| | - Chen Yu
- Department of Materials Chemistry, School of Materials Science and Engineering, Beihang University, Beijing 102206, China
| | - Xiaohu Li
- Department of Materials Chemistry, School of Materials Science and Engineering, Beihang University, Beijing 102206, China
| | - Shujuan Meng
- Department of Materials Chemistry, School of Materials Science and Engineering, Beihang University, Beijing 102206, China
| | - Jingyun Fang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dawei Liang
- Department of Materials Chemistry, School of Materials Science and Engineering, Beihang University, Beijing 102206, China
| |
Collapse
|
6
|
Bolaños-Romero KV, López-Carbajal RL, Sandoval-González A, Oza G, Manríquez Rocha J, Gaucin-Gutiérrez SC, Romero-Ibarra IC, Frausto-Castillo RF, Rodríguez-López J, Bustos Bustos E. Multistep Removal System of Gaseous Toluene: Adsorption, Electrochemical, and Photolytic Treatments. Chempluschem 2024:e202400532. [PMID: 39625698 DOI: 10.1002/cplu.202400532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/28/2024] [Indexed: 12/06/2024]
Abstract
A large amount of atmospheric emissions result from various anthropogenic activities worldwide. Given the complexity of volatile organic compounds (VOCs) and their different adsorption capacities, redox potentials, and photolytic properties, an air purification system for the removal of VOCs that combines multiple physical processes was proposed in this study using toluene as an example. These processes include, in the first step, an adsorption treatment (AT) with activated carbon (AC), where toluene adsorption results from the insertion of aromatic rings (nonpolar groups) between the graphitic carbon planes, as demonstrated by the Raman spectroscopy; in the second step, electrochemical treatment (ECT) using TiO2,nt|Ti||SS-304 electrodes applying an electric field to accelerate the oxidation of toluene through the production of free radicals (⋅OH), hydroperoxyl radicals and benzyl groups, followed by the rupture of aromatic rings to generate aliphatic compounds and the consequent mineralization to CO, CO2, and H2O; in the third step, photolytic treatment (PT) with a 254-nm UV lamp for toluene degradation is used, which is influenced by the addition of radicals, such as ⋅OH or ⋅O- 2ad, to transform toluene into either benzene or phenol. The multistep system integrating AT, ECT and PT was more efficient overall (99.58 %) than the individual treatments (AT=50.29 %, ECT=44.38 %, and PT=52.71 %) as evaluated by gas chromatography with a BID detector; it showed enhanced efficiency enabled by the synergistic effects of combining multiple technologies to enhance the overall toluene degradation efficiency and flexibility. The multistage systems can be adapted to specific contamination conditions and process requirements with the generation of residual toluene, phenol, and aliphatic compounds and possible mineralization to molecules such as CO2, CO, and H2O. This small and portable multistep system provides a novel approach for treating outdoor and/or indoor air contaminated with toluene.
Collapse
Affiliation(s)
- Karla Verónica Bolaños-Romero
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. (CIDETEQ)., Parque Tecnológico Querétaro s/n, San Fandila, 76730, Pedro Escobedo, Querétaro, México
| | - Rosa Luz López-Carbajal
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. (CIDETEQ)., Parque Tecnológico Querétaro s/n, San Fandila, 76730, Pedro Escobedo, Querétaro, México
| | - Antonia Sandoval-González
- Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT) - CIDETEQ., Parque Tecnológico Querétaro s/n, San Fandila, 76730, Pedro Escobedo, Querétaro, México
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. (CIDETEQ)., Parque Tecnológico Querétaro s/n, San Fandila, 76730, Pedro Escobedo, Querétaro, México
| | - Juan Manríquez Rocha
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. (CIDETEQ)., Parque Tecnológico Querétaro s/n, San Fandila, 76730, Pedro Escobedo, Querétaro, México
| | - Susana Citlaly Gaucin-Gutiérrez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. (CIDETEQ)., Parque Tecnológico Querétaro s/n, San Fandila, 76730, Pedro Escobedo, Querétaro, México
| | - Issis Claudette Romero-Ibarra
- Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas (UPIITA) Instituto Politécnico Nacional., Av. Instituto Politécnico Nacional No. 2580, Col. Barrio La Laguna Ticomán, 07340, Gustavo A. Madero, CDMX, México
| | - Roberto Fernando Frausto-Castillo
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. (CIDETEQ)., Parque Tecnológico Querétaro s/n, San Fandila, 76730, Pedro Escobedo, Querétaro, México
| | - Joaquín Rodríguez-López
- Department of Chemistry, University of Illinois Urbana - Champaign, 61801, Urbana, Illinois, United States
| | - Erika Bustos Bustos
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. (CIDETEQ)., Parque Tecnológico Querétaro s/n, San Fandila, 76730, Pedro Escobedo, Querétaro, México
| |
Collapse
|
7
|
Jeong C, Kim TH, Lee KW, Lee TS. Efficient, electrochemical degradation of organic pollutants via nanofibrous Pt/Ir-RuO 2 electrode with enhanced stability. CHEMOSPHERE 2024; 369:143826. [PMID: 39608655 DOI: 10.1016/j.chemosphere.2024.143826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
A diverse range of surfactants and chelating agents are frequently used in industrial processes, especially in the decontamination of nuclear facilities for decommissioning. To treat and degrade these organic pollutants, electrooxidation (EO) has emerged as a cost-effective method. Along these lines, in this work, a nanofibrous electrode was constructed to facilitate efficient EO. Among various metal oxide for EO, RuO2 is known for its excellent electrochemical activity, which was fabricated into a nanofiber structure with a large specific surface area and doped with IrO2 to increase its stability. In addition to the use of nanofibrous Ir-RuO2, a Pt intermediate layer was incorporated to increase both structural stability and electrical conductivity. The nanofibrous electrode with a Ru:Ir composition of 9:1 showed an electrochemical activation area 1.7 times larger and a charge transfer resistance 4.7 times smaller than a flat-type electrode with the same composition. Efficient degradation (99%) of organic pollutants (sodium dodecyl benzene sulfonate, Triton X-100, ethylenediaminetetraacetic acid, and nitrilotriacetic acid (NTA)) was successfully performed using the nanofibrous electrode. Effective decomposition of radioactive waste (NTA combined with Co ions) with 99% degradation within 4 h was achieved.
Collapse
Affiliation(s)
- Chanhee Jeong
- Department of Applied Organic Materials Engineering, Daejeon, 34134, South Korea
| | - Tae Hyeon Kim
- Institute of Chemical and Biological Engineering, Chungnam National University, Daejeon, 34134, South Korea
| | - Kune-Woo Lee
- Institute of Chemical and Biological Engineering, Chungnam National University, Daejeon, 34134, South Korea
| | - Taek Seung Lee
- Department of Applied Organic Materials Engineering, Daejeon, 34134, South Korea.
| |
Collapse
|
8
|
Garomsa FS, Berhanu YM, Desta WM, Bidira F. Indigenous bio-coagulant assisted electrocoagulation process for the removal of contaminants from brewery wastewater: Performance evaluation and response surface methodology optimization. Heliyon 2024; 10:e40394. [PMID: 39634402 PMCID: PMC11615482 DOI: 10.1016/j.heliyon.2024.e40394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Wastewater from human activities, particularly from brewery industries, is a significant source of pollution. Large volumes of biodegradable and non-biodegradable substances found in brewery effluent make them suitable for natural coagulant-assisted electrocoagulation. The treatment options available today are highly harmful and not economical. To solve this problem and provide a simple method of treating brewery wastewater, the biocoagulant (Custard apple)-assisted electrocoagulation process was created. This study presents an environmentally friendly way of treating wastewater by combining electrocoagulation with biocoagulant. The approach treats wastewater from breweries with a high organic load and a variable composition. Bio- and electrocoagulation are used in the process to target certain contaminants and when combined the method has high efficiency and is environmentally also friendly. The performance of bio-coagulant-assisted electrocoagulation was studied, considering parameters such as pH, time, current, and bio-coagulant dosage. In each experiment, operating parameters were adjusted and their removal efficiency was evaluated after treatment. The bio-coagulant-assisted electrocoagulation process removed COD (99.01 %), BOD (99.09 %), TDS (99.02 %), and) at an ideal pH of 7, a current of 0.5 A, a time of 40 min, and power consumed (0.54kwh/m3) with a constant dose of 0.75 g/l NaCl as electrolytes. The study found that Indigenous bio-coagulant (Custard apple)-assisted electrocoagulation processes were effective and efficient in removing pollutants from brewery wastewater. In the process of treatment operating factors have a high effect on the performance of the method. The parameters were customized using Response Surface Methodology (RSM), and the dependent variable's value was determined through regression analysis with a design expert.
Collapse
Affiliation(s)
- Firomsa Sufa Garomsa
- Department of Water Resourse and Irrigation Engineering, Wollega University, P.O. box 38, Ethiopia
| | - Yenealem Mehari Berhanu
- School of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, P.O. Box 378, Ethiopia
| | - Wendesen Mekonin Desta
- School of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, P.O. Box 378, Ethiopia
| | - Firomsa Bidira
- School of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, P.O. Box 378, Ethiopia
| |
Collapse
|
9
|
Yuan X, Luo L, Li X, Lu Y, Chen S, Luan T. Recent advances in the removal of psychoactive substances from aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176156. [PMID: 39255934 DOI: 10.1016/j.scitotenv.2024.176156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Psychoactive substances (PS) have become emerging contaminants in aquatic environments, characterized by their wide distribution, high persistence, bioaccumulation and toxicity. They are difficult to be completely removed in sewage treatment plants due to their high stability under different conditions. The incomplete removal of PS poses a threat to the aquatic animals and can also lead to human health problems through accumulation in the food chain. PS has become a huge burden on global health systems. Therefore, finding an effective technology to completely remove PS has become a "hot topic" for researchers. The methods for removal PS include physical techniques, chemical methods and biological approaches. However, there is still a lack of comprehensive and systematic exploration of these methods. This review aims to address this gap by providing a comprehensive overview of traditional strategies, highlighting recent advancements, and emphasizing the potential of natural aquatic plants in removing trace PS from water environments. Additionally, the degradation mechanisms that occur during the treatment process were discussed and an evaluation of the strengths and weaknesses associated with each method was provided. This work would help researchers in gaining a deeper understanding of the methodologies employed and serve as a reference point for future research endeavors and promoting the sustainable and large-scale application of PS elimination.
Collapse
Affiliation(s)
- Xueting Yuan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Lijuan Luo
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xinyan Li
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaobin Lu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Shanshan Chen
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Tiangang Luan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
10
|
Olvera-Vargas H, Trellu C, Nidheesh PV, Mousset E, Ganiyu SO, Martínez-Huitle CA, Zhou M, Oturan MA. Challenges and opportunities for large-scale applications of the electro-Fenton process. WATER RESEARCH 2024; 266:122430. [PMID: 39278119 DOI: 10.1016/j.watres.2024.122430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
As an electrochemical advanced oxidation process, the electro-Fenton (EF) process has gained significant importance in the treatment of wastewater and persistent organic pollutants in recent years. As recently reported in a bibliometric analysis, the number of scientific publications on EF have increased exponentially since 2002, reaching nearly 500 articles published in 2022 (Deng et al., 2022). The influence of the main operating parameters has been thoroughly investigated for optimization purposes, such as type of electrode materials, reactor design, current density, and type and concentration of catalyst. Even though most of the studies have been conducted at a laboratory scale, focusing on fundamental aspects and their applications to degrade specific pollutants and treat real wastewater, important large-scale attempts have also been made. This review presents and discusses the most recent advances of the EF process with special emphasis on the aspects more closely related to future implementations at the large scale, such as applications to treat real effluents (industrial and municipal wastewaters) and soil remediation, development of large-scale reactors, costs and effectiveness evaluation, and life cycle assessment. Opportunities and perspectives related to the heterogeneous EF process for real applications are also discussed. This review article aims to be a critical and exhaustive overview of the most recent developments for large-scale applications, which seeks to arouse the interest of a large scientific community and boost the development of EF systems in real environments.
Collapse
Affiliation(s)
- Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Morelos 62580, Mexico.
| | - Clément Trellu
- Laboratoire Géomatériaux et Environnement EA 4508, Université Gustave Eiffel, Cedex 2, Marne-la-Vallée 77454, France.
| | | | - Emmanuel Mousset
- Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, F-85000 La Roche-sur-Yon, France
| | - Soliu O Ganiyu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton AB, T6G 2W2, Canada
| | - Carlos A Martínez-Huitle
- Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova, CEP, Natal, RN 59078-970, Brazil
| | - Minghua Zhou
- Nankai University, College of Environmental Science and Engineering, Tianjin 300350, China
| | - Mehmet A Oturan
- Laboratoire Géomatériaux et Environnement EA 4508, Université Gustave Eiffel, Cedex 2, Marne-la-Vallée 77454, France.
| |
Collapse
|
11
|
Parrilla J, Segundo ID, Marchante CMF, Santos EV, Lobato J, Castro SSL, Martínez-Huitle CA, Rodrigo MA. Proof of Concept for the Organic Electrorefinery Technology with Actual Effluents. Ind Eng Chem Res 2024; 63:18734-18745. [PMID: 39525072 PMCID: PMC11544606 DOI: 10.1021/acs.iecr.4c02235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 11/16/2024]
Abstract
This work describes results of a first proof of the concept of electrorefinery with a real waste obtained from a cashew nut factory, and it shows the effect of the current densities of both the anodic oxidation and electrochemically assisted separation processes on the performance of the system. Results obtained demonstrate that electrorefinery is a promising option to minimize the carbon fingerprint, worth studying for increasing the sustainability of the environmental remediation of wastes, because valuable species can be obtained from the destruction of pollutants and recovered within the same integrated process. They also point out that there is still a long way to reach an optimum solution for this technology, but it is worth the effort to be made. Many different carboxylates were detected, but oxalate was the primary product both in the reaction tank and in the recovery tank. The production is almost linear during the electrolysis, with a reaction rate of 23.3 mg C h-1 in the case of oxalate and a separation ration of around 20% in the electrodialysis stage. There is a negligible crossover of aromatic species into the recovery solution, which becomes an important advantage for further processing of the carboxylate solutions in the search to valorize these species in terms of circular economy principles. Energy efficiencies in the range of 0.04-0.21 mg C-carboxylates (Wh)-1 and Coulombic efficiencies in the range 0.92-2.03 mg C-carboxylates (Ah)-1 were obtained in this work. A life cycle assessment indicated carbon dioxide and water footprints as low as 0.31 g of CO2 mg-1 C and 30 mL of H2O mg-1 C recovered in the products obtained, respectively.
Collapse
Affiliation(s)
- Jesús Parrilla
- Chemical
Engineering Department, University of Castilla-La
Mancha, Ed. Enrique
Costa Novella, Campus Universitario s/n, Ciudad Real 13005, Spain
| | - Inalmar Dantas
Barbosa Segundo
- School
of Science and Technology, Federal University
of Rio Grande do Norte, Campus Universitário, Av.Salgado Filho 3000, Lagoa Nova, Natal, RN CEP 59078-970, Brazil
| | - Carmen María Fernández Marchante
- Chemical
Engineering Department, University of Castilla-La
Mancha, Ed. Enrique
Costa Novella, Campus Universitario s/n, Ciudad Real 13005, Spain
| | - Elisama Vieira
Dos Santos
- School
of Science and Technology, Federal University
of Rio Grande do Norte, Campus Universitário, Av.Salgado Filho 3000, Lagoa Nova, Natal, RN CEP 59078-970, Brazil
- Renewable
Energies and Environmental Sustainability Research Group, Institute
of Chemistry, Federal University of Rio
Grande do Norte, Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal, Rio Grande do Norte CEP 59078-970, Brazil
| | - Justo Lobato
- Chemical
Engineering Department, University of Castilla-La
Mancha, Ed. Enrique
Costa Novella, Campus Universitario s/n, Ciudad Real 13005, Spain
| | - Suely S. L. Castro
- Faculty
of Exact and Natural Sciences, State University
of Rio Grande do Norte, Campus Central, Mossoró, Rio Grande do Norte P59625-620, Brazil
| | - Carlos Alberto Martínez-Huitle
- Renewable
Energies and Environmental Sustainability Research Group, Institute
of Chemistry, Federal University of Rio
Grande do Norte, Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal, Rio Grande do Norte CEP 59078-970, Brazil
| | - Manuel Andrés Rodrigo
- Chemical
Engineering Department, University of Castilla-La
Mancha, Ed. Enrique
Costa Novella, Campus Universitario s/n, Ciudad Real 13005, Spain
| |
Collapse
|
12
|
de Aguiar Pedott V, Della Rocca DG, Weschenfelder SE, Mazur LP, Gomez Gonzalez SY, Andrade CJD, Moreira RFPM. Principles, challenges and prospects for electro-oxidation treatment of oilfield produced water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122638. [PMID: 39342833 DOI: 10.1016/j.jenvman.2024.122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The oil industry is facing substantial environmental challenges, especially in managing waste streams such as Oilfield Produced Water (OPW), which represents a significant component of the industrial ecological footprint. Conventional treatment methods often fail to effectively remove dissolved oils and grease compounds, leading to operational difficulties and incomplete remediation. Electrochemical oxidation (EO) has emerged as a promising alternative due to its operational simplicity and ability to degrade pollutants directly and indirectly, which has already been applied in treating several effluents containing organic compounds. The application of EO treatment for OPW is still in an initial stage, due to the intricate nature of this matrix and scattered information about it. This study provides a technological overview of EO technology for OPW treatment, from laboratory scale to the development of large-scale prototypes, identifying design and process parameters that can potentially permit high efficiency, applicability, and commercial deployment. Research in this domain has demonstrated notable rates of removal of recalcitrant pollutants (>90%), utilizing active and non-active electrodes. Electro-generated active species, primarily from chloride, play a pivotal role in the oxidation of organic compounds. However, the highly saline conditions in OPW hinder the complete mineralization of these organics, which can be improved by using non-active anodes and lower salinity levels. The performance of electrodes greatly influences the efficiency and effectiveness of OPW treatment. Various factors must be considered when selecting the electrode material, such as its conductivity, stability, surface area, corrosion resistance, and cost. Additionally, the specific contaminants present in the OPW, and their electrochemical reactivity must be considered to ensure optimal treatment outcomes. Balancing these considerations can be challenging, but it is crucial for achieving successful OPW treatment. Active electrode materials exhibit a high affinity for chloride molecules, generating more active species than non-active materials, which exhibit more significant degradation potential due to the production of hydroxyl radicals. Regarding scale-up, key challenges include low current efficiency, the formation of by-products, electrode deactivation, and limitations in mass transfer. To address these issues, enhanced mass transfer rates and appropriate residence times can be achieved using flow-through mesh anodes and moderate current densities, which have proven to be the optimal configuration for this process.
Collapse
Affiliation(s)
- Victor de Aguiar Pedott
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Daniela Gier Della Rocca
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Luciana Prazeres Mazur
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Sergio Yesid Gomez Gonzalez
- Laboratory of Mass Transfer and Numerical Simulation of Chemical Systems - LABSIN-LABMASSA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Cristiano José de Andrade
- Laboratory of Mass Transfer and Numerical Simulation of Chemical Systems - LABSIN-LABMASSA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Regina F P M Moreira
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
13
|
Chao J, Yang X, Zhu Y, Shen J. Oxygen doping regulation of Co single atom catalysts for electro-Fenton degradation of tetracycline. J Colloid Interface Sci 2024; 673:434-443. [PMID: 38878377 DOI: 10.1016/j.jcis.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/26/2024]
Abstract
Electro-Fenton is an effective process for degrading hard-to-degrade organic pollutants, such as tetracycline (TC). However, the degradation efficiency of this process is limited by the activity and stability of the cathode catalyst. Herein, a temperature gradient pyrolysis strategy and oxidation treatment is proposed to modulate the coordination environment to prepare oxygen-doped cobalt monoatomic electrocatalysts (CoNOC). The CoNOC catalysts can achieve the selectivity of 93 % for H2O2 with an electron transfer number close to 2. In the H-cell, the prepared electrocatalysts can achieve more than 100 h of H2O2 production with good stability and the yield of 1.41 mol gcatalyst-1 h-1 with an average Faraday efficiency (FE) of more than 88 %. The calculations indicate that the epoxy groups play a crucial role in modulating the oxygen reduction pathway. The O doping and unique N coordination of Co single-atom active sites (CoN(Pd)3N(Po)1O1) can effectively weaken the O2/OOH* interaction, thereby promoting the production of H2O2. Finally, the electro-Fenton system could achieve a TC degradation rate of 94.9 % for 120 min with a mineralization efficiency of 87.8 % for 180 min, which provides a reliable option for antibiotic treatment. The significant involvement of OH in the electro-Fenton process was confirmed, and the plausible mineralization pathway for TC was proposed.
Collapse
Affiliation(s)
- Jiayu Chao
- Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoling Yang
- Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yihua Zhu
- Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jianhua Shen
- Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
14
|
Sari Erkan H, Kaska D, Kara N, Onkal Engin G. Fluoxetine removal by anodic oxidation using different anode materials and graphite cathode. ENVIRONMENTAL TECHNOLOGY 2024; 45:5674-5687. [PMID: 38234107 DOI: 10.1080/09593330.2024.2304660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Fluoxetine (FLX) is a selective serotonin reuptake inhibitor (SSRI) medication commonly used to treat mental health disorders, but it can be harmful to the environment if not properly disposed of due to incomplete metabolism. In this study, electrochemical anodic oxidation with mixed metal oxide anodes was studied as a method to remove FLX from water and wastewater. Iridium dioxide-coated titanium (Ti/IrO2) and ruthenium dioxide-coated Ti (Ti/RuO2) electrodes were found to be more effective than platinum-coated Ti (Ti/Pt) electrodes, with removal efficiencies of 91.5% and 93.9%, respectively. Optimal conditions for FLX removal were determined to be an applied current of 150 mA, initial pH of 5, and oxidation time of 120 min. The rate of FLX degradation (kFLX) for the Ti/Pt, Ti/IrO2, and Ti/RuO2 electrodes were determined to be 0.0081 min-1 (R2:0,8161), 0.0163 min-1 (R2:0,9823), and 0.0168 (R2:0,9901) min-1 for 25 mg/L initial FLX concentration, respectively. The kFLX values varied based on the initial FLX concentration and decreased as the initial FLX concentration increased. The specific energy consumption (SEC) after 120 min of operation was 51.0 kWh/m3 for the Ti/Pt electrode, 39.6 kWh/m3 for the Ti/IrO2 electrode, and 48.6 kWh/m3 for the Ti/RuO2 electrode under optimised conditions. Overall, electrochemical anodic oxidation is an effective method for removing FLX from water and wastewater, with Ti/IrO2 and Ti/RuO2 electrodes providing superior performance compared to Ti/Pt electrodes.
Collapse
Affiliation(s)
- Hanife Sari Erkan
- Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Deniz Kaska
- Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Narin Kara
- Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Guleda Onkal Engin
- Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
15
|
Kushwaha JP, Ahuja S, Singh N, Kaur R. Mathematical modeling and kinetics of batch and continuous electro-catalytic oxidation of pharmaceutical-contaminated wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122871. [PMID: 39405857 DOI: 10.1016/j.jenvman.2024.122871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
An accurate yet simple model is the key to the design and control of intricate electro-catalytic oxidation of pharmaceutical contaminated wastewater. For both batch and unsteady-state continuous flow stirred tank reactors (CSTR), batch reactor models have been used earlier. Further, these models do not correlate rate to the operating conditions, and consider pseudo-first/second-order kinetics. Here, first-principles models are proposed by formulating unsteady-state mass balances, modifying them to attain realistic final conditions, and incorporating fractional variable-order kinetics. Following integral analysis, analytical solutions are obtained. These are independently applicable to design, unlike a numerical solution. Nonlinear regression is performed to estimate the model parameters from the transient experimental data. The simulations yield markedly accurate model parameters together with a better fit to the experimental data of Ti/RuO2-mediated amoxicillin-trihydrate electro-oxidation, for CSTR and batch reactors. For the batch reactor, the operating conditions are varied one at a time. Their effects on the model parameters are elucidated based on the oxidant and transformation species formed. The computed optimum model parameters are: rate constant 3.318 × 10-3 mg-0.092 m1.276 min-1, order 1.092, initial rate 4.032 × 102 mg m-2 min-1, and final conversion 90.6% in 180 min. The corresponding operating conditions are: pH 2.0, feed 50 mg L-1, electrolyte 2 g L-1, and current 1 A. A simple generalized power-law correlation, associating rate to the operating conditions, is then estimated. Statistical analysis of these models using central composite design delivers R2 0.99, predicted R2 0.96, and optimum set close to the above. The corresponding sensitivity analysis and generalized correlation, both show applied current to be the most significant operating condition. The dynamic modeling approaches proposed here can be extended to model, control, and scale-up complex reaction systems.
Collapse
Affiliation(s)
- Jai Prakash Kushwaha
- Chemical Engineering Department, Thapar Institute of Engineering and Technology (Deemed to be University), Bhadson Road, Patiala, Punjab, India.
| | - Sanjeev Ahuja
- Chemical Engineering Department, Thapar Institute of Engineering and Technology (Deemed to be University), Bhadson Road, Patiala, Punjab, India.
| | - Neetu Singh
- Chemical Engineering Department, Thapar Institute of Engineering and Technology (Deemed to be University), Bhadson Road, Patiala, Punjab, India.
| | - Ravneet Kaur
- Chemical Engineering Department, Thapar Institute of Engineering and Technology (Deemed to be University), Bhadson Road, Patiala, Punjab, India.
| |
Collapse
|
16
|
Rekik H, Pichon L, Teymoorian T, Arab H, Sauvé S, El Khakani MA, Drogui P. Efficient electro-oxidation-based degradation of per- and polyfluoroalkyl (PFAS) persistent pollutants by using plasma torch synthesized pure-Magnéli phase-Ti 4O 7 anodes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122929. [PMID: 39427626 DOI: 10.1016/j.jenvman.2024.122929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Pure Magnéli-phase Ti4O7 were prepared by means of a Plasma Torch (PT) coating method and integrated into an advanced electro-catalytic oxidation (AEO) process in order to degrade perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) persistent pollutants present in waters. The X-ray diffraction analysis confirmed the polycrystalline nature of the pure Magnéli phase PT-Ti4O7 coatings (∼100 μm thick)). The Raman spectra of the PT-Ti4O7 coatings also exhibited the two characteristic peaks (at 138 and 183 cm-1) of the PT-Ti4O7 Magnéli phase. Scanning electron microscopy revealed the nanostructured hierarchical morphology of the PT-Ti4O7 thus conferring them high surface area. The PT-Ti4O7 anodes are shown to achieve higher degradation efficiencies towards PFOA and PFOS in comparison with the conventional boron-doped diamond anodes. By investigating several AEO parameters (including current density, treatment time, nature of the anode material), we were able to optimise the AEO process. Thus, for both PFOA and PFOS (at an initial concentration of 500 ppb in synthetic wastewaters), degradation efficiencies as high as 96.6% and 99.7% were achieved, respectively, with a current density of 20 mA/cm2, a treatment time of 120 min and PT-Ti4O7 mesh-type anodes. PFOA and PFOS can be degraded by both direct anodic electrochemical oxidation (•OH radicals) and indirect electrochemical oxidation via mediators, such as persulphate acid (H2S2O8) generated by sulphate anodic oxidation. The degradation of both compounds followed pseudo-first-order kinetics. The reaction rate constant (k) for PFOS removal was 4.63 × 10-2 min-1, whereas 2.76 × 10-2 min-1 was recorded for PFOA removal. Subsequently, we have used the above optimal AEO operating conditions to treat real wastewater effluents (containing 17 types of PFAS molecules with a total content of 8500 ppb) and achieved a degradation rate of 39.1%-87.4% for eight of the 17 PFAS compounds. The degradation rate was found to be dependent on the chemical structure and chain length of each PFOA/PFOS component.
Collapse
Affiliation(s)
- Hela Rekik
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Loick Pichon
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications (EMT), 1650, Boulevard Lionel-Boulet, Varennes, J3X 1P7, QC, Canada
| | - Termeh Teymoorian
- Université de Montréal, 2900, boul. Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Hamed Arab
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Sébastien Sauvé
- Université de Montréal, 2900, boul. Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - My Ali El Khakani
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications (EMT), 1650, Boulevard Lionel-Boulet, Varennes, J3X 1P7, QC, Canada.
| | - Patrick Drogui
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada.
| |
Collapse
|
17
|
Santacruz W, Faria J, De Mello R, Boldrin MV, Motheo ADJ. Comparative study of MMO and BDD anodes for electrochemical degradation of diuron in methanol medium. CHEMOSPHERE 2024; 366:143517. [PMID: 39395476 DOI: 10.1016/j.chemosphere.2024.143517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Treating emerging pollutants at low concentrations presents significant challenges in terms of degradation efficiency. Anodic oxidation using active and non-active electrodes shows great potential for wastewater treatment. Thus, this study compared the efficiency of a commercial mixed metal oxide anode (MMO: Ti/Ti0.7Ru0.3O2) and a boron-doped diamond anode (BDD) for the electrochemical oxidation of diuron in methanol, in chloride and sulfate media. The MMO anode achieved diuron removal rates of 94.9% and 92.8% in chloride and sulfate media, respectively, with pseudo-first-order kinetic constants of 0.0177 and 0.0143 min-1. The BDD anode demonstrated slightly higher removal rates, achieving 96.2% in sulfate medium and 96.9% in chloride medium, with respective kinetic constants of 0.0193 min⁻1 and 0.0177 min⁻1. Increasing the current density enhanced diuron removal by up to 15% for both electrodes; however, excessively high current densities led to increased energy consumption due to side reactions. The present of water had antagonistic effects, resulting in removal rates of 91.1% for chloride media using the BDD anode; and 87.4% and 90.4% in sulfate media with MMO and BDD anodes, respectively. The MMO anode in chloride medium did not show significant difference in the degradation percentage, reaching 96% of diuron removals. The degradation mechanism was proposed based on the detection of various by-products. The primary reactions observed during the oxidation of diuron in methanol involved chlorine substitution in the aromatic ring and dealkylation. These processes generated several intermediates and by-products at low concentrations, ultimately leading to high diuron removal.
Collapse
Affiliation(s)
- William Santacruz
- University of São Paulo (USP), São Carlos Institute of Chemistry, São Carlos, SP, CEP 13560-97, Brazil
| | - Julia Faria
- University of São Paulo (USP), São Carlos Institute of Chemistry, São Carlos, SP, CEP 13560-97, Brazil
| | - Rodrigo De Mello
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, CEP 14800-060, Brazil; National Institute of Alternative Technologies for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), São Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, CEP 14800-060, Brazil
| | - Maria Valnice Boldrin
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, CEP 14800-060, Brazil; National Institute of Alternative Technologies for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), São Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, CEP 14800-060, Brazil
| | - Artur de Jesus Motheo
- University of São Paulo (USP), São Carlos Institute of Chemistry, São Carlos, SP, CEP 13560-97, Brazil.
| |
Collapse
|
18
|
Zhao L, Padilla JA, Xuriguera E, Cabot PL, Brillas E, Sirés I. Enhanced mineralization of pharmaceutical residues at circumneutral pH by heterogeneous electro-Fenton-like process with Cu/C catalyst. CHEMOSPHERE 2024; 364:143249. [PMID: 39233296 DOI: 10.1016/j.chemosphere.2024.143249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Conventional electro-Fenton (EF) process at acidic pH ∼3 is recognized as a highly effective strategy to degrade organic pollutants; however, homogeneous metal catalysts cannot be employed in more alkaline media. To overcome this limitation, pyrolytic derivatives from metal-organic frameworks (MOFs) have emerged as promising heterogeneous catalysts. Cu-based MOFs were prepared using trimesic acid as the organic ligand and different pyrolysis conditions, yielding a set of nano-Cu/C catalysts that were analyzed by conventional methods. Among them, XPS revealed the surface of the Cu/C-A2-Ar/H2 catalyst was slightly oxidized to Cu(I) and, combined with XRD and HRTEM data, it can be concluded that the catalyst presents a core-shell structure where metallic copper is embedded in a carbon layer. The antihistamine diphenhydramine (DPH), spiked into either synthetic Na2SO4 solutions or actual urban wastewater, was treated in an undivided electrolytic cell equipped with a DSA-Cl2 anode and a commercial air-diffusion cathode able to electrogenerate H2O2. Using Cu/C as suspended catalyst, DPH was completely degraded in both media at pH 6-8, outperforming the EF process with Fe2+ catalyst at pH 3 in terms of degradation rate and mineralization degree thanks to the absence of refractory Fe(III)-carboxylate complexes that typically decelerate the TOC abatement. From the by-products detected by GC/MS, a reaction sequence for DPH mineralization is proposed.
Collapse
Affiliation(s)
- Lele Zhao
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - José A Padilla
- DIOPMA, Departament de Ciència de Materials i Química Física, Secció de Ciència de Materials, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain; Grup de Recerca en Tecnologies de Fabricació, Departament d'Enginyeria Mecànica, Escola Tècnica Superior d'Enginyeria Industrial de Barcelona, Av. Diagonal 647, 08028, Barcelona, Spain
| | - Elena Xuriguera
- DIOPMA, Departament de Ciència de Materials i Química Física, Secció de Ciència de Materials, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Pere L Cabot
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| |
Collapse
|
19
|
Ma H, Li H, Wang J, Wang X, Wang G, Liu X. Developing Z-scheme Bi 2MoO 6@α-MnO 2 beaded core-shell heterostructure in photoelectrocatalytic treatment of organic wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121964. [PMID: 39067335 DOI: 10.1016/j.jenvman.2024.121964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Photoelectrocatalysis (PEC) oxidation technology with the combination of electrocatalysis and photocatalysis is an ideal candidate for treatment of dyeing wastewater containing multifarious intractable organic compounds with high chroma. Constructing high-quality heterojunction photoelectrodes can effectively suppress the recombination of photo-generated carriers, thereby achieving efficient removal of pollution. Herein, a beaded Bi2MoO6@α-MnO2 core-shell architecture with tunable hetero-interface was prepared by simple hydrothermal-solvothermal process. The as-synthesized Bi2MoO6@α-MnO2 had larger electrochemically active surface area, smaller charge transfer resistance and negative flat band potential, and higher separation efficiency of e-/h+ pairs than pure α-MnO2 or Bi2MoO6. It is noteworthy that the as-synthesized Bi2MoO6@α-MnO2 showed Z-scheme heterostructure as demonstrated by the free radical quenching experiments. The optimized Bi2MoO6@α-MnO2-2.5 exhibited the highest degradation rate of 88.64% in 120 min for reactive brilliant blue (KN-R) and accelerated stability with long-term(∼10000s) at the current density of 50 mA cm-2 in 1.0 mol L-1 H2SO4 solution. This study provides valuable insights into the straightforward preparation of heterogeneous electrodes, offering a promising approach for the treatment of wastewater in various industrial applications.
Collapse
Affiliation(s)
- Hongchao Ma
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian, 116034, PR China
| | - Huijun Li
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian, 116034, PR China
| | - Jiaxin Wang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian, 116034, PR China; Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang, 441003, PR China
| | - Xinyue Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian, 116034, PR China.
| | - Guowen Wang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian, 116034, PR China
| | - Xinghui Liu
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang, 441003, PR China.
| |
Collapse
|
20
|
Zhang K, Crittenden JC. Increased energy efficiency using pulse-potential electrochemical advanced oxidation processes. CHEMOSPHERE 2024; 362:142480. [PMID: 38849100 DOI: 10.1016/j.chemosphere.2024.142480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
The research investigated the pulse potential effect on Electrochemical Advanced Oxidation Processes (EAOPs) for benzoic acid oxidation. The current efficiency of the electrooxidation is enhanced by changing the pulse frequency and potential on electrodes. The experiments showed that there are opposing phenomena affecting energy efficiency. On the one hand, pulse potential accelerates the mass transfer of benzoic acid in an electric field. On the other hand, pulse potential increases the non-faradic current that uses energy without causing oxidation. Using the Sand equation and the electric double-layer theory, we optimized the pulse frequency and voltage amplitude to achieve the highest energy efficiency for the pulse potential EAOPs. Compared with DC (Direct current) EAOPs, the pulse potential EAOPs save 50% EE/O and have a 41 % CE for the 4_2 V cycle at 50 Hz. Therefore, pulse potential EAOPs can achieve both high pollutant degradation efficiency and low energy consumption at the same time.
Collapse
Affiliation(s)
- Kaihang Zhang
- Brook Byers Institute of Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - John C Crittenden
- Brook Byers Institute of Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
21
|
Chen W, Rigby K, Lim HJ, Kim DJ, Kim JH. Tackling Challenges of Long-Term Electrode Stability in Electrochemical Treatment of 1,4-Dioxane in Groundwater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39014918 PMCID: PMC11296307 DOI: 10.1021/acs.est.4c03189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Electrochemical advanced oxidation is an appealing point-of-use groundwater treatment option for removing pollutants such as 1,4-dioxane, which is difficult to remove by using conventional separation-based techniques. This study addresses a critical challenge in employing electrochemical cells in practical groundwater treatment─electrode stability over long-term operation. This study aims to simulate realistic environmental scenarios by significantly extending the experimental time scale, testing a flow-through cell in addition to a batch reactor, and employing an electrolyte with a conductivity equivalent to that of groundwater. We first constructed a robust titanium suboxide nanotube mesh electrode that is utilized as both anode and cathode. We then implemented a pulsed electrolysis strategy in which reactive oxygen species are generated during the anodic cycle, and the electrode is regenerated during the cathodic cycle. Under optimized conditions, single-pass treatment through the cell (effective area: 2 cm2) achieved a remarkable 65-70% removal efficiency for 1,4-dioxane in the synthetic groundwater for over 100 h continuous operation at a low current density of 5 mA cm-2 and a water flux of 6 L m-2 h-1. The electrochemical cell and pulse treatment scheme developed in this study presents a critical advancement toward practical groundwater treatment technology.
Collapse
Affiliation(s)
- Wensi Chen
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Zachry
Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kali Rigby
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Hyun Jeong Lim
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Department
of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic
of Korea
| | - David J. Kim
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Jae-Hong Kim
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
22
|
Rücker T, Schupp N, Sprang F, Horsten T, Wittgens B, Waldvogel SR. Peroxodicarbonate - a renaissance of an electrochemically generated green oxidizer. Chem Commun (Camb) 2024; 60:7136-7147. [PMID: 38912960 DOI: 10.1039/d4cc02501f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The direct anodic conversion of alkali carbonates in aqueous media provides access to peroxodicarbonate, which is a safe to use and green oxidizer. Although first reports date back around 150 years, its low concentrations and limited thermal stability have consigned this reagent to oblivion. Boron-doped diamond anodes, novel electrolyser concepts for heat dissipation, and the mixed cation trick allow record breaking peroxodicarbonate concentrations >900 mM. The electrochemical generation of peroxodicarbonate was already demonstrated on a pilot scale. The inherent safety is ensured by the limited stability of the peroxodicarbonate solution, which decomposes under ambient conditions to oxygen and facilitates subsequent downstream processing. This peroxide has, in particular at higher concentrations, an unusual reactivity and seems to be an ideal reagent when peroxo-equivalents in combination with alkaline base are required. The conversions with peroxodicarbonate include the Dakin reaction, epoxidation, oxidation of amines (aliphatic and aromatic) and sulfur compounds, deborolative hydroxylation reactions, and many more. Since the base equivalents also represent the makeup chemical for pulping plants, peroxodicarbonate is an ideal reagent for the selective degradation of lignin to vanillin. Moreover, peroxodicarbonate can be used as a halogen-free bleaching agent. The emerging electrogeneration and use of this green platform oxidizer are surveyed for the first time.
Collapse
Affiliation(s)
- Theresa Rücker
- Process Technology, SINTEF Industry, Trondheim, Norway
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany.
| | - Niclas Schupp
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany.
| | - Fiona Sprang
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany.
| | - Tomas Horsten
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany.
| | | | - Siegfried R Waldvogel
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany.
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
| |
Collapse
|
23
|
Chipoco Haro DA, Barrera L, Iriawan H, Herzog A, Tian N, Medford AJ, Shao-Horn Y, Alamgir FM, Hatzell MC. Electrocatalysts for Inorganic and Organic Waste Nitrogen Conversion. ACS Catal 2024; 14:9752-9775. [PMID: 38988657 PMCID: PMC11232026 DOI: 10.1021/acscatal.4c01398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 07/12/2024]
Abstract
Anthropogenic activities have disrupted the natural nitrogen cycle, increasing the level of nitrogen contaminants in water. Nitrogen contaminants are harmful to humans and the environment. This motivates research on advanced and decarbonized treatment technologies that are capable of removing or valorizing nitrogen waste found in water. In this context, the electrocatalytic conversion of inorganic- and organic-based nitrogen compounds has emerged as an important approach that is capable of upconverting waste nitrogen into valuable compounds. This approach differs from state-of-the-art wastewater treatment, which primarily converts inorganic nitrogen to dinitrogen, and organic nitrogen is sent to landfills. Here, we review recent efforts related to electrocatalytic conversion of inorganic- and organic-based nitrogen waste. Specifically, we detail the role that electrocatalyst design (alloys, defects, morphology, and faceting) plays in the promotion of high-activity and high-selectivity electrocatalysts. We also discuss the impact of wastewater constituents. Finally, we discuss the critical product analyses required to ensure that the reported performance is accurate.
Collapse
Affiliation(s)
- Danae A Chipoco Haro
- School of Materials Science and Engineering, Georgia Institute of Technology, North Avenue 771 Ferst Dr., Atlanta, Georgia 30332, United States
| | - Luisa Barrera
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 Ferst Ave, Atlanta, Georgia 30309, United States
| | - Haldrian Iriawan
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Antonia Herzog
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Nianhan Tian
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andrew J Medford
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yang Shao-Horn
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Faisal M Alamgir
- School of Materials Science and Engineering, Georgia Institute of Technology, North Avenue 771 Ferst Dr., Atlanta, Georgia 30332, United States
| | - Marta C Hatzell
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 Ferst Ave, Atlanta, Georgia 30309, United States
| |
Collapse
|
24
|
Xia C, Shen X. Analysis of factors influencing on Electro-Fenton and research on combination technology (II): a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46910-46948. [PMID: 38995339 DOI: 10.1007/s11356-024-34159-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
The principle of Fenton reagent is to produce ·OH by mixing H2O2 and Fe2+ to realize the oxidation of organic pollutants, although Fenton reagent has the advantages of non-toxicity and short reaction time, but there are its related defects. The Fenton-like technology has been widely studied because of its various forms and better results than the traditional Fenton technology in terms of pollutant degradation efficiency. This paper reviews the electro-Fenton technology among the Fenton-like technologies and provides an overview of the homogeneous electro-Fenton. It also focuses on summarizing the effects of factors such as H2O2, reactant concentration, reactor volume and electrode quality, reaction time and voltage (potential) on the efficiency of electro-Fenton process. It is shown that appropriate enhancement of H2O2 concentration, voltage (potential) and reaction volume can help to improve the process efficiency; the process efficiency also can be improved by increasing the reaction time and electrode quality. Feeding modes of H2O2 have different effects on process efficiency. Finally, a considerable number of experimental studies have shown that the combination of electro-Fenton with ultrasound, anodic oxidation and electrocoagulation technologies is superior to the single electro-Fenton process in terms of pollutant degradation.
Collapse
Affiliation(s)
- Chongjie Xia
- School of Environmental and Chemical Engineering, Shenyang University of Technology, 110870, Shenyang, People's Republic of China
| | - Xinjun Shen
- School of Environmental and Chemical Engineering, Shenyang University of Technology, 110870, Shenyang, People's Republic of China.
| |
Collapse
|
25
|
Patel RVP, Raval H. Comparative assessment of treatment technologies for minimizing reverse osmosis concentrate volume for industrial applications: A review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:314-343. [PMID: 39007322 DOI: 10.2166/wst.2024.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/09/2024] [Indexed: 07/16/2024]
Abstract
Desalination of seawater, brackish water, and reclaimed water is becoming increasingly prevalent worldwide to supplement and diversify fresh water supplies. However, particularly for industrial wastewater, the need for environment-friendly and economically viable alternatives for concentrate management is the major impediment to deploying large-scale desalination. This review covers various strategies and technologies for managing reverse osmosis concentrate (ROC) and also includes their disposal, treatment, and potential applications. Developing energy-efficient, economical, and ecologically sound ROC management systems is essential if desalination and wastewater treatment are being implemented for a sustainable water future, particularly for industrial wastewater. The limitations and benefits of various concentrate management strategies are examined in this review. Moreover, it explores the potential of innovative technologies in reducing concentrate volume, enhancing water recovery, eliminating organic pollutants, and extracting valuable resources. This review critically discusses concentrate management approaches and technologies, including disposal, treatment, and reuse, including new technologies for reducing concentrate volume, boosting water recovery, eliminating organic contaminants, recovering valuable commodities, and minimizing energy consumption.
Collapse
Affiliation(s)
- Raj Vardhan Prasad Patel
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hiren Raval
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India E-mail:
| |
Collapse
|
26
|
Tully JJ, Houghton D, Breeze BG, Mollart TP, Macpherson JV. Quantitative Measurement Technique for Anodic Corrosion of BDD Advanced Oxidation Electrodes. ACS MEASUREMENT SCIENCE AU 2024; 4:267-276. [PMID: 38910859 PMCID: PMC11191721 DOI: 10.1021/acsmeasuresciau.3c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 06/25/2024]
Abstract
Electrochemical advanced oxidation (EAO) systems are of significant interest due to their ability to treat a wide range of organic contaminants in water. Boron doped diamond (BDD) electrodes have found considerable use in EAO. Despite their popularity, no laboratory scale method exists to quantify anodic corrosion of BDD electrodes under EAO conditions; all are qualitative using techniques such as scanning electron microscopy, electrochemistry, and spectroscopy. In this work, we present a new method which can be used to quantify average corrosion rates as a function of solution composition, current density, and BDD material properties over relatively short time periods. The method uses white light interferometry (WLI), in conjunction with BDD electrodes integrated into a 3D-printed flow cell, to measure three-dimensional changes in the surface structure due to corrosion over a 72 h period. It is equally applicable to both thin film and thicker, freestanding BDD. A further advantage of WLI is that it lends itself to large area measurements; data are collected herein for 1 cm diameter disk electrodes. Using WLI, corrosion rates as low as 1 nm h-1 can be measured. This enables unequivocal demonstration that organics in the EAO solution are not a prerequisite for BDD anodic corrosion. However, they do increase the corrosion rates. In particular, we quantify that addition of 1 M acetic acid to 0.5 M potassium sulfate results in the average corrosion rate increasing ∼60 times. In the same solution, microcrystalline thin film BDD is also found to corrode ∼twice as fast compared to freestanding polished BDD, attributed to the presence of increased sp2 carbon content. This methodology also represents an important step forward in the prediction of BDD electrode lifetimes for a wide range of EAO applications.
Collapse
Affiliation(s)
- Joshua J. Tully
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Daniel Houghton
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Centre
for Doctoral Training in Diamond Science and Technology, University of Warwick, Coventry CV4 7AL, U.K.
| | - Ben G. Breeze
- Spectroscopy
Research Technology Platforms, University
of Warwick, Coventry CV4 7AL, U.K.
| | | | | |
Collapse
|
27
|
Albarrán G, Mendoza E. Radiolytic degradation of 4-hydroxybenzoate in aerated and deoxygenated aqueous solutions. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:3178-3191. [PMID: 39150419 DOI: 10.2166/wst.2024.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/11/2024] [Indexed: 08/17/2024]
Abstract
The radiolytic degradation of 4-hydroxybenzoate (4-HBA-) in aerated, oxygen-free and N2O-saturated aqueous solutions at concentrations of 0.10 and 0.25 mmol/dm3 were gamma irradiated at different doses in a source of Co-60. The results show that ·OH adds predominantly to the 3 position of the aromatic ring, and elimination of the acid group leads to the degradation of 4-HBA-. With an N2O-saturated 0.10 mmol/dm3 4-HBA- solution, total degradation occurred at 1.6 kGy, and with a 0.25 mmol/dm3 solution, total degradation occurred at 3.5 kGy. In the aerated and oxygen-free 0.25 mmol/dm3 4-HBA- solutions, the behavior was similar, degradation occurring at a dose of 13.1 kGy. At the concentration of 0.10 mmol/dm3, total degradation occurred at 7.0 kGy, with small amounts of radiolytic products and byproducts. We propose a mechanism for the degradation of 4-HBA- caused by water radicals produced in the three environments, leading to formation of the identified stable products. Oxidation was followed by chemical oxygen demand (COD), which decreased as the 4-HBA- concentration increased. The kinetics showed a pseudo-first-order behavior. The rate constant of degradation was similar for the solutions with and without oxygen.
Collapse
Affiliation(s)
- Guadalupe Albarrán
- Universidad Nacional Autónoma de México, Instituto de Ciencias Nucleares, Circuito Exterior, Cd. Universitaria, Cd de México, C.P. 04510, México E-mail:
| | - Edith Mendoza
- Universidad Nacional Autónoma de México, Instituto de Ciencias Nucleares, Circuito Exterior, Cd. Universitaria, Cd de México, C.P. 04510, México
| |
Collapse
|
28
|
Acosta-Angulo B, Lara-Ramos J, Niño-Vargas A, Diaz-Angulo J, Benavides-Guerrero J, Bhattacharya A, Cloutier S, Machuca-Martínez F. Unveiling the potential of machine learning in cost-effective degradation of pharmaceutically active compounds: A stirred photo-reactor study. CHEMOSPHERE 2024; 358:142222. [PMID: 38714249 DOI: 10.1016/j.chemosphere.2024.142222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/30/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
In this study, neural networks and support vector regression (SVR) were employed to predict the degradation over three pharmaceutically active compounds (PhACs): Ibuprofen (IBP), diclofenac (DCF), and caffeine (CAF) within a stirred reactor featuring a flotation cell with two non-concentric ultraviolet lamps. A total of 438 datapoints were collected from published works and distributed into 70% training and 30% test datasets while cross-validation was utilized to assess the training reliability. The models incorporated 15 input variables concerning reaction kinetics, molecular properties, hydrodynamic information, presence of radiation, and catalytic properties. It was observed that the Support Vector Regression (SVR) presented a poor performance as the ε hyperparameter ignored large error over low concentration levels. Meanwhile, the Artificial Neural Networks (ANN) model was able to provide rough estimations on the expected degradation of the pollutants without requiring information regarding reaction rate constants. The multi-objective optimization analysis suggested a leading role due to ozone kinetic for a rapid degradation of the contaminants and most of the results required intensification with hydrogen peroxide and Fenton process. Although both models were affected by accuracy limitations, this work provided a lightweight model to evaluate different Advanced Oxidation Processes (AOPs) by providing general information regarding the process operational conditions as well as know molecular and catalytic properties.
Collapse
Affiliation(s)
- B Acosta-Angulo
- Escuela de Ingeniería Química, Universidad Del Valle, Santiago de, Cali, 760026, Valle Del Cauca, Colombia
| | - J Lara-Ramos
- Escuela de Ingeniería Química, Universidad Del Valle, Santiago de, Cali, 760026, Valle Del Cauca, Colombia
| | - A Niño-Vargas
- Escuela de Ingeniería Química, Universidad Del Valle, Santiago de, Cali, 760026, Valle Del Cauca, Colombia
| | - J Diaz-Angulo
- Research and Technological Development in Water Treatment, Processes Modelling and Disposal of Residues - GITAM, Cauca, Colombia
| | - J Benavides-Guerrero
- Department of Electrical Engineering, Ecole de Technologia Superieure, 1100 Notre-Dame West, Montreal, H3C 1K3, Quebec, Canada
| | - A Bhattacharya
- Department of Electrical Engineering, Ecole de Technologia Superieure, 1100 Notre-Dame West, Montreal, H3C 1K3, Quebec, Canada
| | - S Cloutier
- Department of Electrical Engineering, Ecole de Technologia Superieure, 1100 Notre-Dame West, Montreal, H3C 1K3, Quebec, Canada
| | - F Machuca-Martínez
- Escuela de Ingeniería Química, Universidad Del Valle, Santiago de, Cali, 760026, Valle Del Cauca, Colombia.
| |
Collapse
|
29
|
Hasnine T, Lumbaque EC, Yuan Q. Optimisation of electrochemical oxidation process with boron doped diamond (BDD) for removing COD, colour, ammonium, and phosphate in landfill leachate. ENVIRONMENTAL TECHNOLOGY 2024; 45:3141-3154. [PMID: 37139901 DOI: 10.1080/09593330.2023.2210769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
This study investigated the electrooxidation (EO) of mature landfill leachate from the Brady Road Resource Management Facility, Winnipeg (Canada). EO using boron-doped diamond (BDD) electrodes were applied to treat real landfill leachate using a batch reactor. Response surface methodology (RSM) was used to determine the optimum process parameter levels. This research mainly focused on how different current densities (64, 95, and 125 mA/cm2) and operational time (30 min, 1, 1.5, 2, 2.5, and 3 hr.) influenced the optimisation of parameters such as chemical oxygen demand (COD), colour, ammonium, and phosphate removal in mature landfill leachate at varied pH. To attain a high percentage of removal for the parameters mentioned above, the optimal conditions were found to be a current density (J) of 125 mA/cm2 and a pH of 8. The optimum conditions resulted in removal percentages of 95.47%, 80.27%, 71.15%, and 47.15% for colour, NH4+, COD, and PO43- respectively, with an energy consumption of 0.05 kWh/dm3. The removal is related to a mechanism of the decomposition of water molecules to hydroxyl radicals and by direct anodic oxidation where the pollutants are transformed to CO2 and H2O. The novelty of this research lies in the optimisation of BDD electrode-based treatment for the simultaneous removal of COD, ammonium, phosphate, and colour from mature leachate collected from a severely cold climatic region of Canada. The BDD electrode showed excellent removal efficiencies for the targeted contaminants with lower energy consumption, making it a feasible method for on-site landfill leachate treatment.
Collapse
Affiliation(s)
- Tanvir Hasnine
- Department of Civil Engineering, University of Manitoba, Winnipeg, Canada
| | | | - Qiuyan Yuan
- Department of Civil Engineering, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
30
|
Xue Q, Chen Z, Xie W, Zhang S, Jiang J, Sun G. Impact of Condition Variations on Bioelectrochemical System Performance: An Experimental Investigation of Sulfamethoxazole Degradation. Molecules 2024; 29:2276. [PMID: 38792137 PMCID: PMC11124217 DOI: 10.3390/molecules29102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Bioelectrochemical systems (BESs) are an innovative technology for the efficient degradation of antibiotics. Shewanella oneidensis (S. oneidensis) MR-1 plays a pivotal role in degrading sulfamethoxazole (SMX) in BESs. Our study investigated the effect of BES conditions on SMX degradation, focusing on microbial activity. The results revealed that BESs operating with a 0.05 M electrolyte concentration and 2 mA/cm2 current density outperformed electrolysis cells (ECs). Additionally, higher electrolyte concentrations and elevated current density reduced SMX degradation efficiency. The presence of nutrients had minimal effect on the growth of S. oneidensis MR-1 in BESs; it indicates that S. oneidensis MR-1 can degrade SMX without nutrients in a short period of time. We also highlighted the significance of mass transfer between the cathode and anode. Limiting mass transfer at a 10 cm electrode distance enhanced S. oneidensis MR-1 activity and BES performance. In summary, this study reveals the complex interaction of factors affecting the efficiency of BES degradation of antibiotics and provides support for environmental pollution control.
Collapse
Affiliation(s)
- Qun Xue
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100091, China; (Q.X.); (Z.C.); (W.X.); (S.Z.)
| | - Zhihui Chen
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100091, China; (Q.X.); (Z.C.); (W.X.); (S.Z.)
| | - Wenjing Xie
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100091, China; (Q.X.); (Z.C.); (W.X.); (S.Z.)
| | - Shuke Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100091, China; (Q.X.); (Z.C.); (W.X.); (S.Z.)
| | - Jie Jiang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100091, China; (Q.X.); (Z.C.); (W.X.); (S.Z.)
| | - Guoxin Sun
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
31
|
da Silva L, Mena IF, Saez C, Motheo AJ, Rodrigo MA. Treatment of Organics in Wastewater Using Electrogenerated Gaseous Oxidants. Ind Eng Chem Res 2024; 63:6512-6520. [PMID: 38660619 PMCID: PMC11036394 DOI: 10.1021/acs.iecr.3c03265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
This work focuses on the comparison of the performance of direct electrochemical oxidation with indirect electrolysis mediated by gaseous oxidants in the treatment of diluted wastewater. To do this, energy consumptions of the electrolysis using mixed metal oxide (MMO) electrodes are compared with those required for the production and use of chlorine dioxide in the degradation of methomyl contained in aqueous solutions. Results demonstrate the feasibility of the mediated oxidation process and that this process is competitive with direct oxidation. The oxidants are produced under optimized conditions using the same anodic material applied for the direct degradation of organics, thus avoiding efficiency losses associated with mass transfer limitations in the degradation of dilute organic solutions. Thus, using the ClO2 gaseous oxidant, a concentration of 0.1 mM of methomyl from a solution containing 500 mL is completely removed with an energy consumption as low as 50 Wh. The application of the same energy to a direct electrolytic process for treating the same wastewater can only reach less than half of this removal. These findings may have a very important application in the use of electrochemical technology to achieve the remediation of persistent pollutants in wastewater, where their low concentrations typically make direct processes very inefficient.
Collapse
Affiliation(s)
- Leticia
Mirella da Silva
- São
Carlos Institute of Chemistry, University
of São Paulo, P.O. Box 780, CEP 13560-970 São Carlos, SP, Brazil
- Department
of Chemical Engineering. Faculty of Chemical Sciences and Technologies, University of Castilla La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - Ismael F. Mena
- Department
of Chemical Engineering. Faculty of Chemical Sciences and Technologies, University of Castilla La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - Cristina Saez
- Department
of Chemical Engineering. Faculty of Chemical Sciences and Technologies, University of Castilla La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - Artur J. Motheo
- São
Carlos Institute of Chemistry, University
of São Paulo, P.O. Box 780, CEP 13560-970 São Carlos, SP, Brazil
| | - Manuel A. Rodrigo
- Department
of Chemical Engineering. Faculty of Chemical Sciences and Technologies, University of Castilla La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| |
Collapse
|
32
|
He Y, Zhong D, Xu Y, Jiang R, Zhang J, Liao P. Preparation of Ti/SnO 2-Sb 2O 4-La Electrode with TiO 2 Nanotubes Intermediate Layer and the Electrochemical Oxidation Performance of Rhodamine B. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7569-7580. [PMID: 38544311 DOI: 10.1021/acs.langmuir.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
A La-doped Ti/SnO2-Sb2O4 electrode with TiO2-NTs intermediate layer (Ti/TiO2-NTs/SnO2-Sb2O4-La) was created via the electrodeposition technique. The physicochemical and electrochemical properties of the electrode were analyzed through FESEM, XRD, XPS, CV, and LSV electrochemical tests. The results showed that TiO2-NTs were tightly packed on the surface of Ti substrate, thus improving the binding force of the SnO2-Sb2O4-La coating, offering greater specific surface area, more active spots, higher current response, and longer lifespan for the degradation of rhodamine B. The lifespan of the Ti/TiO2-NTs/SnO2-Sb2O4-La electrode reached 200 min (1000 mA cm-2, 1 M H2SO4), while the actual service life was up to 3699 h. Under the conditions of initial pH 3.0, Na2SO4 concentration of 0.1 M, current density of 30 mA cm-2, and initial rhodamine B concentration of 20 mg L-1, the color and TOC removal rate of rhodamine B reached 100% and 86.13% within 15 and 30 min, respectively. Rhodamine B was decomposed into acids, esters, and other molecular compounds under the action of •OH and SO4•- free radicals and electrocatalysis, and finally completely mineralized into CO2 and H2O. It is anticipated that this work will yield a novel research concept for producing DSA electrodes with superior catalytic efficacy and elevated stability.
Collapse
Affiliation(s)
- Yuanzhen He
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Dengjie Zhong
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yunlan Xu
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Ran Jiang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jiayou Zhang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Pengfei Liao
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
33
|
Yatoo AM, Hamid B, Sheikh TA, Ali S, Bhat SA, Ramola S, Ali MN, Baba ZA, Kumar S. Global perspective of municipal solid waste and landfill leachate: generation, composition, eco-toxicity, and sustainable management strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23363-23392. [PMID: 38443532 DOI: 10.1007/s11356-024-32669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
Globally, more than 2 billion tonnes of municipal solid waste (MSW) are generated each year, with that amount anticipated to reach around 3.5 billion tonnes by 2050. On a worldwide scale, food and green waste contribute the major proportion of MSW, which accounts for 44% of global waste, followed by recycling waste (38%), which includes plastic, glass, cardboard, and paper, and 18% of other materials. Population growth, urbanization, and industrial expansion are the principal drivers of the ever-increasing production of MSW across the world. Among the different practices employed for the management of waste, landfill disposal has been the most popular and easiest method across the world. Waste management practices differ significantly depending on the income level. In high-income nations, only 2% of waste is dumped, whereas in low-income nations, approximately 93% of waste is burned or dumped. However, the unscientific disposal of waste in landfills causes the generation of gases, heat, and leachate and results in a variety of ecotoxicological problems, including global warming, water pollution, fire hazards, and health effects that are hazardous to both the environment and public health. Therefore, sustainable management of MSW and landfill leachate is critical, necessitating the use of more advanced techniques to lessen waste production and maximize recycling to assure environmental sustainability. The present review provides an updated overview of the global perspective of municipal waste generation, composition, landfill heat and leachate formation, and ecotoxicological effects, and also discusses integrated-waste management approaches for the sustainable management of municipal waste and landfill leachate.
Collapse
Affiliation(s)
- Ali Mohd Yatoo
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India.
- Department of Environmental Sciences, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India.
| | - Basharat Hamid
- Department of Environmental Sciences, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Tahir Ahmad Sheikh
- Faculty of Agriculture, SKUAST-Kashmir, Jammu and Kashmir, Wadura, 193201, India
| | - Shafat Ali
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Sartaj Ahmad Bhat
- River Basin Research Centre, Gifu University, 1-1 Yanagido, Gifu, Japan
- Waste Re-Processing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440020, India
| | - Sudipta Ramola
- Zhejiang University of Technology, Hangzhou, 310014, China
| | - Md Niamat Ali
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Zahoor Ahmad Baba
- Faculty of Agriculture, SKUAST-Kashmir, Jammu and Kashmir, Wadura, 193201, India
| | - Sunil Kumar
- Waste Re-Processing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440020, India
| |
Collapse
|
34
|
Vilar DS, Correia da Silva HH, Dória AR, Torres NH, Vallim JH, Salgado de Castro VLS, Américo-Pinheiro JHP, Salazar-Banda GR, Barrios Eguiluz KI, Ferreira LFR. Reducing citrus effluent toxicity: Biological-electrochemical treatment with diamond anode. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123688. [PMID: 38431247 DOI: 10.1016/j.envpol.2024.123688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
One challenge of the citrus industry is the treatment and disposal of its effluents due to their high toxicity, substantial organic load, and consequent resistance to conventional biotechnological processes. This study introduces a novel approach, using electrochemical oxidation with a boron-doped diamond anode to efficiently remove organic compounds from biodegraded pulp wash (treated using the fungus Pleurotus sajor-caju.) The findings reveal that employing a current density of 20 mA cm-2 achieves notable results, including a 44.1% reduction in color, a 70.0% decrease in chemical oxygen demand, an 88.0% reduction in turbidity, and an impressive 99.7% removal of total organic carbon (TOC) after 6 h of electrolysis. The energy consumption was estimated at 2.93 kWh g-1 of removed TOC. This sequential biological-electrochemical procedure not only significantly reduced the mortality rate (85%) of Danio rerio embryos but also reduced the incidence of morphologically altered parameters. Regarding acute toxicity (LC50) of the residue, the process demonstrated a mortality reduction of 6.97% for D. rerio and a 40.88% lethality decrease for Lactuca sativa seeds. The substantial reduction in toxicity and organic load observed in this study highlights the potential applicability of combined biological and electrochemical treatments for real agroindustrial residues or their effluents.
Collapse
Affiliation(s)
- Débora S Vilar
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju-Sergipe, Brazil
| | - Hugo H Correia da Silva
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju-Sergipe, Brazil
| | - Aline R Dória
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju-Sergipe, Brazil; Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju-Sergipe, Brazil
| | - Nádia H Torres
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, 71966-700, Brazil.
| | - José H Vallim
- Laboratory of Ecotoxicology and Biosafety, Embrapa Environment, Jaguariuna, São Paulo 13820-000, Brazil
| | | | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP, 18610-034, Brazil; Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo - SP, 08230-030, Brazil
| | - Giancarlo R Salazar-Banda
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju-Sergipe, Brazil; Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju-Sergipe, Brazil.
| | - Katlin I Barrios Eguiluz
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju-Sergipe, Brazil; Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju-Sergipe, Brazil
| | - Luiz Fernando R Ferreira
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, 71966-700, Brazil.
| |
Collapse
|
35
|
Blach T, Engelhart M. Electrochemical oxidation of refractory compounds from hydrothermal carbonization process waters. CHEMOSPHERE 2024; 352:141310. [PMID: 38320739 DOI: 10.1016/j.chemosphere.2024.141310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Hydrothermal carbonization (HTC) is an emerging technology for treating sewage sludge. However, the resulting HTC process water is heavily contaminated with various carbonaceous and nitrogenous components, some of them being non-biodegradable. To implement HTC as a full-scale treatment alternative for sewage sludge, effective concepts for treating process water are crucial. This study focuses on the electrochemical oxidation (EO) using a boron-doped diamond electrode to treat one HTC process waters with different pretreatments: (i) without pretreatment, (ii) biologically pretreated with chemical oxygen demand (COD) removal, (iii) biologically pretreated with nitrification and denitrification. The EO removed COD of all HTC process waters by over 97%, but as COD concentrations decreased, the instantaneous current efficiency (ICE) dropped below 5% and energy consumption increased. The organically bound and refractory nitrogen was completely mineralized and converted to mainly NO3-N. After EO of process waters without nitrification/denitrification, nitrogen was present as NO3-N with up to 730 mg/L and NH4-N with up to 1813 mg/L. Such high ammonium concentrations treatment could be interesting for nitrogen recovery. In addition, the toxicity towards Vibrio fischeri could be reduced to a large extent. The findings suggest that EO after a biological step with COD removal is a viable solution for HTC process water treatment.
Collapse
Affiliation(s)
- T Blach
- Technical University of Darmstadt, Institute IWAR, Franziska-Braun-Str. 7, 64287, Darmstadt, Germany.
| | - M Engelhart
- Technical University of Darmstadt, Institute IWAR, Franziska-Braun-Str. 7, 64287, Darmstadt, Germany
| |
Collapse
|
36
|
Trench AB, Fernandes CM, Moura JPC, Lucchetti LEB, Lima TS, Antonin VS, de Almeida JM, Autreto P, Robles I, Motheo AJ, Lanza MRV, Santos MC. Hydrogen peroxide electrogeneration from O 2 electroreduction: A review focusing on carbon electrocatalysts and environmental applications. CHEMOSPHERE 2024; 352:141456. [PMID: 38367878 DOI: 10.1016/j.chemosphere.2024.141456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Hydrogen peroxide (H2O2) stands as one of the foremost utilized oxidizing agents in modern times. The established method for its production involves the intricate and costly anthraquinone process. However, a promising alternative pathway is the electrochemical hydrogen peroxide production, accomplished through the oxygen reduction reaction via a 2-electron pathway. This method not only simplifies the production process but also upholds environmental sustainability, especially when compared to the conventional anthraquinone method. In this review paper, recent works from the literature focusing on the 2-electron oxygen reduction reaction promoted by carbon electrocatalysts are summarized. The practical applications of these materials in the treatment of effluents contaminated with different pollutants (drugs, dyes, pesticides, and herbicides) are presented. Water treatment aiming to address these issues can be achieved through advanced oxidation electrochemical processes such as electro-Fenton, solar-electro-Fenton, and photo-electro-Fenton. These processes are discussed in detail in this work and the possible radicals that degrade the pollutants in each case are highlighted. The review broadens its scope to encompass contemporary computational simulations focused on the 2-electron oxygen reduction reaction, employing different models to describe carbon-based electrocatalysts. Finally, perspectives and future challenges in the area of carbon-based electrocatalysts for H2O2 electrogeneration are discussed. This review paper presents a forward-oriented viewpoint of present innovations and pragmatic implementations, delineating forthcoming challenges and prospects of this ever-evolving field.
Collapse
Affiliation(s)
- Aline B Trench
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Caio Machado Fernandes
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - João Paulo C Moura
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Lanna E B Lucchetti
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Thays S Lima
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Vanessa S Antonin
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - James M de Almeida
- Ilum Escola de Ciência - Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Brazil
| | - Pedro Autreto
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Irma Robles
- Center for Research and Technological Development in Electrochemistry, S.C., Parque Tecnologico Queretaro, 76703, Sanfandila, Pedro Escobedo, Queretaro, Mexico
| | - Artur J Motheo
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Mauro C Santos
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil.
| |
Collapse
|
37
|
Li Q, Fang X, Jin L, Sun X, Huang H, Ma R, Zhao H, Ren H. Scientometric analysis of electrocatalysis in wastewater treatment: today and tomorrow. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19025-19046. [PMID: 38374500 DOI: 10.1007/s11356-024-32472-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
Electrocatalytic methods are valuable tools for addressing water pollution and scarcity, offering effective pollutant removal and resource recovery. To investigate the current status and future trends of electrocatalysis in wastewater treatment, a detailed analysis of 9417 papers and 4061 patents was conducted using scientometric methods. China emerged as the leading contributor to publications, and collaborations between China and the USA have emerged as the most frequent partnerships. Primary article co-citation clusters focused on oxygen evolution reaction and electrochemical oxidation, transitioning towards advanced oxidation processes ("persulfate activation"), and electrocatalytic reduction processes ("nitrate reduction"). Bifunctional catalysts, theoretical calculations, electrocatalytic combination technologies, and emerging contaminants were identified as current research hotspots. Patent analysis revealed seven types of electrochemical technologies, which were compared using SWOT analysis, highlighting electrochemical oxidation as prominent. The technological evolution presented the pathway of electro-Fenton to combined electrocatalytic technologies with biochemical processes, and finally to coupling with electrocoagulation. Standardized evaluation systems, waste resource utilization, and energy conservation were important directions of innovation in electrocatalytic technologies. Overall, this study provided a reference for researchers to understand the framework of electrocatalysis in wastewater treatment and also shed light on potential avenues for further innovation in the field.
Collapse
Affiliation(s)
- Qianqian Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Xiaoya Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Lili Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Xiangzhou Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China.
| | - Rui Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Han Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| |
Collapse
|
38
|
Mostefaoui N, Oturan N, Bouafia SC, Hien SA, Gibert-Vilas M, Lesage G, Pechaud Y, Tassin B, Oturan M, Trellu C. Integration of electrochemical processes in a treatment system for landfill leachates based on a membrane bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168841. [PMID: 38036133 DOI: 10.1016/j.scitotenv.2023.168841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
The use of electrocoagulation (EC) and anodic oxidation (AO) processes was studied for improving a treatment system for landfill leachates based on a membrane bioreactor (MBR) and a nanofiltration step. The main limitation of the current full-scale system is related to the partial removal of organic compounds that leads to operation of the nanofiltration unit with a highly concentrated feed solution. Application of the EC before the MBR participated in partial removal of the organic load (40 %) with limited energy consumption (2.8 kWh m-3) but with additional production of iron hydroxide sludge. Only AO allowed for non-selective removal of organic compounds. As a standalone process, AO would require a sharp increase of the energy consumption (116 kWh for 81 % removal of total organic carbon). But using lower electric charge and combining AO with EC and MBR processes would allow for achieving high overall removal yields with limited energy consumption. For example, the overall removal yield of total organic carbon was 65 % by application of AO after EC, with an energy consumption of 21 kWh m-3. Results also showed that such treatment strategy might allow for a significant increase of the biodegradability of the effluent before treatment by the MBR. The MBR might then be dedicated to the removal of the residual organic load as well as to the removal of the nitrogen load. The data obtained in this study also showed that the lower electric charge required for integrating AO in a coupled process would allow for strongly decreasing the formation of undesired by-products such as ClO3- and ClO4-.
Collapse
Affiliation(s)
- Nabil Mostefaoui
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France; Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering USTHB, BP 32, El-Allia, Bab-Ezzouar, Algiers 16111, Algeria
| | - Nihal Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Souad Chergui Bouafia
- Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering USTHB, BP 32, El-Allia, Bab-Ezzouar, Algiers 16111, Algeria
| | - Sié Alain Hien
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France; Laboratoire des Procédés Industriels, de Synthèse de l'Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Houphouët-Boigny, BP 1313, Yamoussoukro, Côte d'Ivoire
| | - Màxim Gibert-Vilas
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Yoan Pechaud
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Bruno Tassin
- Laboratoire Eau Environnement et Systèmes Urbains, LEESU, Ecole des Ponts, Université Paris-Est Créteil, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | - Mehmet Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Clément Trellu
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France.
| |
Collapse
|
39
|
Wang J, Lai Y, Wang X, Ji H. Advances in ultrasonic treatment of oily sludge: mechanisms, industrial applications, and integration with combined treatment technologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14466-14483. [PMID: 38296931 DOI: 10.1007/s11356-024-32089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
In the petroleum sector, the generation of oily sludge is an unavoidable byproduct, necessitating the development of efficient treatment strategies for both economic gain and the mitigation of negative environmental impacts. The intricate composition of oily sludge poses a formidable challenge, as existing treatment methodologies frequently fall short of achieving baseline disposal criteria. The processes of demulsification and dehydration are integral to diminishing the oil content and reclaiming valuable crude oil, thereby playing a critical role in the management of oily sludge. Among the myriad of treatment solutions, ultrasonic technology has emerged as a particularly effective physical method, celebrated for its diverse applications and lack of resultant secondary pollution. This comprehensive review delves into the underlying mechanisms and recent progress in the ultrasonic treatment of oily sludge, with a specific focus on its industrial implementations within China. Both isolated ultrasonic treatment and its combination with other technological approaches have proven successful in addressing oily sludge challenges. The adoption of industrial-scale systems that amalgamate ultrasound with multi-technological processes has shown marked enhancements in treatment efficacy. The fusion of ultrasonic technology with other cutting-edge methods holds considerable potential across a spectrum of applications. To fulfill the goals of resource recovery, reduction, and neutralization in oily sludge management, the industrial adoption and adept application of a variety of treatment technologies are imperative.
Collapse
Affiliation(s)
- Jian Wang
- University of Science and Technology Beijing, Beijing, China
| | - Yujian Lai
- University of Science and Technology Beijing, Beijing, China
| | - Xuemei Wang
- University of Science and Technology Beijing, Beijing, China
| | - Hongbing Ji
- University of Science and Technology Beijing, Beijing, China.
| |
Collapse
|
40
|
Li S, Jiang B, Liu G, Shi C, Yu H, Lin Y. Recent progress of particle electrode materials in three-dimensional electrode reactor: synthesis strategy and electrocatalytic applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11490-11506. [PMID: 38198081 DOI: 10.1007/s11356-023-31807-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
With the complete promotion of a green, low-carbon, safe, and efficient economic system as well as energy system, the promotion of clean governance technology in the field of environmental governance becomes increasingly vital. Because of its low energy consumption, great efficiency, and lack of secondary pollutants, three-dimensional (3D) electrode technology is acknowledged as an environmentally beneficial and sustainable way to managing clean surroundings. The particle electrode is an essential feature of the 3D electrode reactor. This study provides an in-depth examination of the most current advancements in 3D electrode technology. The significance of 3D electrode technology is emphasized, with an emphasis on its use in a variety of sectors. Furthermore, the particle electrode synthesis approach and mechanism are summarized, providing vital insights into the actual implementation of this technology. Furthermore, by a metrological examination of the research literature in this sector, the paper expounds on the potential and obstacles in the development and popularization of future technology.
Collapse
Affiliation(s)
- Siwen Li
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Bo Jiang
- Jilin Research and Design Institute of Building Science (Jilin Province Construction Engineering Quality Test Center), Changchun, 130011, China
| | - Gen Liu
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Chunyan Shi
- The University of Kitakyushu, 1-1 Hibikino, Wakamatsuku, Kitakyushu, Fukuoka, Japan
| | - Hongbin Yu
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yingzi Lin
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China.
| |
Collapse
|
41
|
Wang Z, Ma J, Zhu L, He Q, Ke Q, Ke S. Enhanced sludge solubilization by a fluidized electrode: Granular activated carbon promoted electrochemical oxidation. BIORESOURCE TECHNOLOGY 2024; 394:130210. [PMID: 38113949 DOI: 10.1016/j.biortech.2023.130210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Electrochemical sludge pretreatment is receiving increasing attention because of its small footprint and higher environmental compatibility. However, the limited effective area of electrode plates and the low conductivity of sludge hinder the widespread application of electrochemical pretreatment. In this study, granular activated carbon (GAC) was employed to construct a fluidized electrode electrochemical system (FEE) to promote electrochemical pretreatment. Under the optimal operating parameters, the FEE system could effectively facilitate sludge decomposition, indicated by 126% increase in soluble chemical oxygen demand (SCOD) and 23.1% reduction in sludge volume. Mechanism study revealed that the addition of GAC significantly enhanced the conductivity of sludge, thereby promoting the oxidation capacity of FEE system. Furthermore, continuously generated H2O2 in FEE further promoted sludge solubilization. GAC offered an effectively, green and sustainable enhancement approach for sludge electrochemical pretreatment.
Collapse
Affiliation(s)
- Zhanhang Wang
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Jingwei Ma
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.
| | - Liang Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Qiulai He
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.
| | - Qiang Ke
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035,China
| | - Shuizhou Ke
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
42
|
Yan L, Liu R, Zhang C, Fu D. Investigation into the electrochemical advanced oxidation of p-arsanilic acid: Peculiar role of electrolytes and unexpected formation of coupling byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167538. [PMID: 37797755 DOI: 10.1016/j.scitotenv.2023.167538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/19/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
Although banned in some countries, p-arsanilic acid (ASA) is still widely used as feed additive in poultry production. As a result, ASA is usually released into the aquatic environment without any treatments. Although ASA exhibits low toxicity, it can be transformed into highly toxic aromatic amines and inorganic arsenic species (As (V) as H2AsO4- and HAsO42-) under natural environmental conditions. Hence, it is necessary to develop efficient technologies for its removal or degradation. In this contribution, electrochemical advanced oxidation technology with boron-doped diamond (BDD) had been initially used to degrade ASA pollutants. A five-level central composite rotatable design (CCRD) was implemented to optimize the various influencing factors involved, among applied current density, NaCl concentration, Na2SO4 concentration and NaHCO3 concentration on the oxidation efficiency; the latter was assessed in terms of ASA degradation percentage. The results obtained highlighted the unique and important roles of electrolytes during the electrolytic oxidations. Meanwhile, the major degradation byproducts detected were also strongly dependent on the electrolyte adopted. In particular, several oligomer byproducts with novel structures were initially identified in BDD-treated ASA solutions. Two different electrochemical transformation pathways of ASA on BDD anode were thus proposed. This study demonstrated the effectiveness of BDD technology in the degradation of ASA, as well as the potential minor risk of its application in actual ASA wastewater treatment.
Collapse
Affiliation(s)
- Lihua Yan
- College of Science, Nanjing Agricultural University, Nanjing 210095, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruochen Liu
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunyong Zhang
- College of Science, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.
| | - Degang Fu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|
43
|
Rivera-Vera C, Rodrigo-Rodrigo MA, Saez C, Thiam A, Salazar-González R. Electrogeneration of H 2O 2 through carbon-based ink on Al foam for electro-Fenton treatment of micropollutants in water. CHEMOSPHERE 2024; 348:140764. [PMID: 37992901 DOI: 10.1016/j.chemosphere.2023.140764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/20/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
In the present work, the catalytic efficiency of inks based on different carbon materials, namely activated carbon (AC), carbon graphite (CG), and carbon black (CB) was investigated for the oxygen reduction reaction (ORR). Additionally, we explored the feasibility of using this ink as a coating for an Aluminum foam (Alfoam) cathode in an electrochemical cell. The goal was to utilize this setup to produce hydrogen peroxide (H2O2) in the electro-Fenton (EF) process, targeting for treating water contaminated with contaminants of emerging concern (CECs). Among the materials investigated, all of them exhibited the ability to facilitate the ORR. However, AC proved to be the most suitable material due to its optimal balance between physical and electrocatalytic properties, thus enabling the formation of H2O2. When the different inks were applied to the surface of aluminum foam, it was observed that only the ink based on carbon black CB achieved a homogeneous distribution with the same ink quantity. As a result, it was observed that the Alfoam/CB electrode exhibited the highest H2O2 generation capacity, producing 45.6 mg L-1, followed by electro-generation of 5.1 mg L-1 using Alfoam/AC and 11 mg L-1 using Alfoam/CG. Furthermore, the application of Alfoam/CB in EF processes allowed for the almost complete degradation of 15 emerging contaminants of concern (CECs) present in secondary effluent. The innovative outcome of this study positions the developed technology as a promising and effective alternative for the treatment of water contaminated with CECs, demonstrating significant potential for industrial-scale application.
Collapse
Affiliation(s)
- Camilo Rivera-Vera
- Department of Chemical of Materials, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago, Chile; Research Group of Analysis, Treatments, Electrochemistry, Recovery and Reuse of Water (WATER2), Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile.
| | - Manuel A Rodrigo-Rodrigo
- Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - Cristina Saez
- Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - Abdoulaye Thiam
- Programa Institucional de Fomento a la I+D+i, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O. Box 8940577, San Joaquín, Santiago, Chile
| | - Ricardo Salazar-González
- Research Group of Analysis, Treatments, Electrochemistry, Recovery and Reuse of Water (WATER2), Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
44
|
Sarrouf S, Taqieddin A, Ehsan MF, Alshawabkeh AN. Engineering Electrode Polarity for Enhancing In Situ Generation of Hydroxyl Radicals Using Granular Activated Carbon. Catalysts 2024; 14:52. [PMID: 39183743 PMCID: PMC11343566 DOI: 10.3390/catal14010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Recently, granular activated carbon (GAC) has shown its effectiveness as a cathode material for in situ ROS generation. Here, we present an electrochemically modified GAC cathode using electrode polarity reversal (PR) approach for enhanced H2O2 decomposition via 2-electron oxygen reduction reaction (2e-ORR). The successful GAC modification using PR necessitates tuning of the operational parameters such as frequency, current, and time intervals between the PR cycles. This modification enhances the GAC hydrophilicity by increasing the density of surface oxygen functionalities. After optimization of the electrode polarity, using the 20 (No PR)-2 (PR) interval and 140 mA current intensity, the •OH concentration reaches 38.9 μM compared to the control (No PR) (28.14 μM). Subsequently, we evaluated the enhanced •OH generation for the removal of glyphosate, a persistent pesticide used as a model contaminant. The modified GAC using PR removed 67.6% of glyphosate compared to 40.6% by the unmodified GAC without PR, respectively. The findings from this study will advance the utilization of GAC for in situ ROS synthesis, which will have direct implications on increasing the effectiveness of electrochemical water treatment systems.
Collapse
Affiliation(s)
- Stephanie Sarrouf
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Amir Taqieddin
- Department of Mechanical & Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Muhammad Fahad Ehsan
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Akram N. Alshawabkeh
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
45
|
Wu L, Gong X, Ma C, Xu L, Li M, Lyu C, Sun N. Preparation of chitosan/citral forward osmosis membrane via Schiff base reaction with enhanced anti-bacterial properties. CHEMOSPHERE 2023; 345:140411. [PMID: 37844700 DOI: 10.1016/j.chemosphere.2023.140411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
In this study, hydrogels generated by the Schiff base reaction between citral and chitosan (CS) were used for the first time to improve the anti-bacterial property of forward osmosis (FO) membranes. The composite membranes were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), Water contact angle (WCA), Zeta potential and confocal laser scanning microscopic (CLSM). In the FO filtration experiment, the membrane performance of TFC-1 with 1 M sodium chloride solution as the draw solution and deionized water as the feed solution was the best, with the water flux of 25.54 ± 0.7 L m-2 h-1 and the reverse salt flux of 4.7 ± 0.4 g m-2 h-1. Although the hydrogel coating produced a certain hydraulic resistance, the flux of the modified membrane was only reduced by about 8%, compared with the unmodified membrane. However, the anti-bacterial property (Pseudomonas aeruginosa) and anti-fouling properties (bovine serum protein and lysozyme protein) of the modified membranes were improved, showing good antibacterial properties (99%) and flux recovery rate (over 90%). The modified method has the advantages of easy access to raw materials, simple operation and no risk of secondary pollution, which can effectively reduce the cost of chemical cleaning and extend the service life of the membrane. The modification of membrane by chitosan-based hydrogel is a promising option in the field of membrane anti-bacteria.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130000, China
| | - Xiaolu Gong
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Lan Xu
- Shanghai Baiyulan Tobacco Materials Co., Ltd, Shanghai, 201210, China.
| | - Ming Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130000, China
| | - Chen Lyu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130000, China
| | - Nan Sun
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
46
|
Mugwili ME, Waanders FB, Masindi V, Fosso-Kankeu E. An update on sustainabilities and challenges on the removal of ammonia from aqueous solutions: A state-of-the-art review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119172. [PMID: 37793297 DOI: 10.1016/j.jenvman.2023.119172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
An insightful attempt has been made in this review and the primary objective was to meticulously provide an update on the sustainabilities, advances and challenges pertaining the removal of ammonia from water and wastewater. Specifically, ammonia is a versatile compound that prevails in various spheres of the environment, and if not properly managed, this chemical species could pose severe ecological pressure and toxicity to different receiving environments and its biota. The notorious footprints of ammonia could be traced to anoxic conditions, an infestation of aquatic ecosystems, hyperactivity, convulsion, and methaemoglobin, popularly known as the "blue baby syndrome". In this review, latest updates regarding the sustainabilities, advancements and challenges for the removal of ammonia from aqueous solutions, i.e., river and waste waters, are briefly elucidated in light of future perspectives. Viable routes and ideal hotspots, i.e., wastewater and drinking water, for ammonia removal under the cost-effective options have been unpacked. Key mechanisms for the removal of ammonia were grossly bioremediation, oxidation, adsorption, filtration, precipitation, and ion exchange. Finally, this review denoted biological nutrient removal, struvite precipitation, and breakpoint chlorination as the most effective and promising technologies for the removal of ammonia from aquatic environments, although at the expense of energy and operational cost. Lastly, the future perspective, avenues of exploitation, and technical facets that deserve in-depth exploration are duly underscored.
Collapse
Affiliation(s)
- Muyahavho Enemiah Mugwili
- Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, North-West University, Potchefstroom, 2531, South Africa; Magalies Water, Scientific Services, Research & Development Division, Erf 3475, Stoffberg Street, Brits, 0250, South Africa
| | - Frans Boudewijn Waanders
- Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, North-West University, Potchefstroom, 2531, South Africa
| | - Vhahangwele Masindi
- Magalies Water, Scientific Services, Research & Development Division, Erf 3475, Stoffberg Street, Brits, 0250, South Africa; Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), P. O. Box 392, Florida, 1710, South Africa.
| | - Elvis Fosso-Kankeu
- Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, North-West University, Potchefstroom, 2531, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology (CSET), University of South Africa, Florida Science Campus, South Africa; Department of Mining Engineering, College of Science Engineering and Technology, University of South Africa, Florida Science Campus, South Africa
| |
Collapse
|
47
|
Farissi S, Zakkariya S, Akhilghosh KA, Prasanthi T, Muthukumar A, Muthuchamy M. Electrooxidation of amoxicillin in aqueous solution with graphite electrodes: Optimization of degradation and deciphering of byproducts using HRMS. CHEMOSPHERE 2023; 345:140415. [PMID: 37844704 DOI: 10.1016/j.chemosphere.2023.140415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/26/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
Contaminants of emerging concern (CECs) such as antibiotics have become a matter of worry in aquatic environments worldwide. Their presence in the environment has been increasing due to the inability of conventional wastewater and water treatments to annihilate them. Hence, attempts have been made to remove CECs using electrochemical oxidation (EO). Present study employed the low cost, active carbon based graphite sheet electrodes as anode and cathode to oxidize and degrade Amoxicillin (AMOX)- a β-lactum thiazolidine antibiotic. Optimization studies found pH 9, 45 mA cm-2, 81 cm2 electrode surface area, 6 mM electrolyte concentration and 60 min treatment time to be optimal for AMOX removal. Studies with varying concentrations of AMOX (20 mg L-1, 30 mg L-1 and 40 mg L-1) found that increase in concentrations of AMOX require higher current densities and treatment time for better TOC removal. High performance liquid chromatography photo diode array (HPLC-PDA) studies found 94% removal for 40 mg L-1 of AMOX at optimal conditions with 90% COD and 46% TOC removal. High resolution mass spectrometry (HRMS) studies using Ultra performance liquid chromatography-quadrupole time of flight-mass spectrometry (UPLC-Q-ToF-MS) identified major degradation mechanisms to be hydroxylation, β-lactum ring cleavage, breakage of thiazolidine ring chain from the aromatic ring and piperazinyl ring formation. The final byproducts of AMOX oxidation were carboxylic acids.
Collapse
Affiliation(s)
- Salman Farissi
- Department of Environmental Science, Central University of Kerala, Periye, 671320, Kerala, India
| | - Shajahan Zakkariya
- Department of Environmental Science, Central University of Kerala, Periye, 671320, Kerala, India
| | | | - Tejomurtula Prasanthi
- Department of Environmental Science, Central University of Kerala, Periye, 671320, Kerala, India
| | - Anbazhagi Muthukumar
- Department of Environmental Science, Central University of Kerala, Periye, 671320, Kerala, India
| | - Muthukumar Muthuchamy
- Department of Environmental Science, Central University of Kerala, Periye, 671320, Kerala, India.
| |
Collapse
|
48
|
Shen Y, Long Y, Li F, Ji Y, Cong Y, Jiang B, Zhang Y. SnS 2/MWNTs/sponge electrode combined with plasma dielectric barrier discharge catalytic system: CO 2 reduction and pollutant degradation. CHEMOSPHERE 2023; 344:140365. [PMID: 37802478 DOI: 10.1016/j.chemosphere.2023.140365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
SnS2 nanosheets combined with multi-walled carbon nanotubes (MWNTs) were made into sponge electrodes which were used for CO2 reduction reaction (CO2RR) in dielectric barrier discharges (DBD) system. The amounts of formate and formaldehyde produced by CO2 reduction with SnS2/MWNTs/sponge electrode were 299.52 and 31.62 μmol h-1, which were higher than that of MWNTs/sponge electrodes. The addition of pollutants had different degrees of inhibitory effect on CO2 reduction, among which addition of bisphenol A (BPA) had the smallest effect that the degradation rate of BPA was 94.37% and the C1 products remained 204.43 μmol after 60 min discharge. The mechanism of CO2RR was studied by quencher experiment, and the main contribution order of the active substance in DBD system for CO2RR is: H+>e->·OH>·O2-. It was found that the degradation process of pollutants consumed H+ and e- in solution, thereby inhibiting CO2RR. Generally, the SnS2/MWNTs/sponge electrode provided a reference for the design of catalysts for CO2 reduction and pollutant degradation in plasma gas-liquid system.
Collapse
Affiliation(s)
- Yiping Shen
- Zhejiang Gongshang University, School of Environmental Science and Engineering, Hangzhou, 310018, China
| | - Yupei Long
- Zhejiang Gongshang University, School of Environmental Science and Engineering, Hangzhou, 310018, China
| | - Fangying Li
- Zhejiang Gongshang University, School of Environmental Science and Engineering, Hangzhou, 310018, China
| | - Yun Ji
- Zhejiang Gongshang University, School of Environmental Science and Engineering, Hangzhou, 310018, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yanqing Cong
- Zhejiang Gongshang University, School of Environmental Science and Engineering, Hangzhou, 310018, China
| | - Boqiong Jiang
- Zhejiang Gongshang University, School of Environmental Science and Engineering, Hangzhou, 310018, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yi Zhang
- Zhejiang Gongshang University, School of Environmental Science and Engineering, Hangzhou, 310018, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
49
|
Jennyfer DA, Jose LR, Fiderman MM. Scientific and academic contributions of professor Enric Brillas through an analysis social network analysis and data science. CHEMOSPHERE 2023; 345:140466. [PMID: 37866502 DOI: 10.1016/j.chemosphere.2023.140466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/02/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
This work describes the scientific and academic contributions of Professor Enric Brillas through the analysis of Social Network Analysis and data science. The study examines the research collaborations and co-authorship networks of Professor Brillas, indicating his active engagement and up-to-date collaborations with key co-authors, including Ignasi Sirés and Pere.L. Cabot. The analysis also reveals Professor Brillas' significant research focus on water treatment and related concepts such as oxidation-reduction, Fenton reactions, photoelectro-Fenton, and electrocatalysis. Furthermore, the most cited and recent articles by Professor Brillas are identified and discusses. Overall, the research demonstrates Professor Brillas' notable contributions to the field of electrochemical water treatment and highlights his ongoing research and collaborations in this area.
Collapse
Affiliation(s)
- Diaz-Angulo Jennyfer
- Investigación y desarrollo tecnológico en tratamiento de aguas, Modelado de procesos y gestión de residuos, GITAM, Colombia; Laboratorio de simulación y procesos-SIMPROLAB, Turbaco, Colombia
| | - Lara-Ramos Jose
- Laboratorio de simulación y procesos-SIMPROLAB, Turbaco, Colombia; Escuela de Ingeniería Química, Universidad del Valle, Ciudad Universitaria Meléndez-A.A., Cali, 23360, Colombia
| | - Machuca-Martínez Fiderman
- Escuela de Ingeniería Química, Universidad del Valle, Ciudad Universitaria Meléndez-A.A., Cali, 23360, Colombia.
| |
Collapse
|
50
|
Luo Z, Huang W, Yu W, Tang S, Wei K, Yu Y, Xu L, Yin H, Niu J. Insights into electrochemical oxidation of tris(2-butoxyethyl) phosphate (TBOEP) in aquatic media: Degradation performance, mechanisms and toxicity changes of intermediate products. CHEMOSPHERE 2023; 343:140267. [PMID: 37758090 DOI: 10.1016/j.chemosphere.2023.140267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/13/2023] [Accepted: 09/23/2023] [Indexed: 09/30/2023]
Abstract
Tris (2-butoxyethyl) phosphate (TBOEP) has gained significant attention due to its widespread presence and potential toxicity in the environment. In this study, the degradation of TBOEP in aquatic media was investigated using electrochemical oxidation technology. The anode Ti/SnO2-Sb/La-PbO2 demonstrated effective degradation performance, with a reaction constant (k) of 0.6927 min-1 and energy consumption of 1.24 kW h/m3 at 10 mA/cm2. CV tests, EPR tests, and quenching experiments confirmed that indirect degradation is the main degradation mechanism and ·OH radicals were the predominant reactive species, accounting for up to 93.8%. The presence of various factors, including Cl-, NO3-, HCO3- and humic acid (HA), inhibited the degradation of TBOEP, with the inhibitory effect dependent on the concentrations. A total of 13 intermediates were identified using UPLC-Orbitrap-MS/MS, and subsequent reactions led to their further degradation. Two main degradation pathways involving bond breaking, hydroxylation, and oxidation were proposed. Both Flow cytometry and the ECOSAR predictive model indicated that the intermediates exhibited lower toxic than the parent compound, resulting in a high detoxification rate of 95.9% for TBOEP. Although the impact of TBOEP on the phylum-level microbial community composition was found to be insignificant, substantial alterations in bacterial abundance were noted when examining the genus level. The dominant genus Methylotenera, representing 17.4% in the control group, decreased to 6.9% in the presence of TBOEP and slightly increased to 8.7% in the 4-min exposure group of degradation products. Electrochemical oxidation demonstrated its effectiveness for the degradation and detoxification of TBOEP in aqueous solutions, while it is essential to consider the potential impact of degradation products on sediment microbial communities.
Collapse
Affiliation(s)
- Zhujun Luo
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wantang Huang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wenyan Yu
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shaoyu Tang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Kun Wei
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yuanyuan Yu
- China Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Lei Xu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hua Yin
- China Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|