1
|
Weng C, Ding D, Cui Z, Qu K, Wei Y, Hu H. Effects of heavy metal concentration on zooplankton community composition and abundance in the Yellow Sea coast. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106870. [PMID: 39615105 DOI: 10.1016/j.marenvres.2024.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 02/09/2025]
Abstract
The coastal area of the Yellow Sea is a highly urbanized and industrialized region in China, which has been severely polluted because of intensive human activities. And the heavy metals (HMs) pollution has posed a serious threat to aquatic environments and ecosystem health. However, most studies have focused on the toxicity and bio-accumulation of HMs in zooplankton, while neglecting their effects on the overall community structure. To address the gap in this field, four research cruises was conducted in 2022 to analyze the concentrations of representative HMs (Hg, As, Cu, Zn, Pb, and Cd) in surface seawater along the Yellow Sea coast, as well as the composition and abundance of zooplankton communities, aiming to assess the potential ecological impacts in the region. The results indicated that the concentrations of the six HMs in the seawater were in the low to moderate range. Analytical results showed that Zn and As were key metals influencing the abundance and community composition of zooplankton along the Yellow Sea coast: an increase in Zn concentration, coupled with a decrease in As concentration, was associated with an increase in total zooplankton abundance and a more diverse community. The most frequently occurring zooplankton in the survey were copepods, which exhibited a higher tolerance to HMs. Additionally, the significant fluctuations of Zn, As, and Hg during spring and autumn led to explosive growth of Noctiluca scintillans. We observed that the influence of HMs on marine zooplankton was not isolated but rather interacts with multiple factors. Overall, this study highlights the possibility of alterations in marine ecological structures due to changes in HMs concentration levels. It underscores the importance of continuous monitoring of heavy metal concentrations in the Yellow Sea for the long-term protection of marine ecosystems.
Collapse
Affiliation(s)
- Chenshi Weng
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Dongsheng Ding
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Zhengguo Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Keming Qu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Yuqiu Wei
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| | - Haiyan Hu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
2
|
Rajar AB, Malik Z, Ujan JA, Rind KH, Ullah R, Naz S, Ullah M, Zahid M, Khan K, Khayyam K, Al-Rejaie SS, Mohany M. Implications of Heavy Metal Accumulation in Fish Feed, Water, Sediment, and Different Fish Species in a Polyculture System. Biol Trace Elem Res 2025; 203:1085-1096. [PMID: 38709368 DOI: 10.1007/s12011-024-04217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Heavy metal bioaccumulation in organisms is primarily a result of dietary uptake. The current study examines the concentrations of heavy metals (Pb, Cd, Cr, and Cu) in fish feed, water, sediment, and three fish species (Catla catla, Labeo rohita, and Cyprinus carpio) from different feeding zones in a polyculture pond system. Furthermore, associated human health risks were also evaluated. The fish samples (n = 25 for each species) were collected from 10 different fish ponds in the Kohat district, Pakistan. Heavy metals were determined using an atomic absorption spectrometer. Results revealed higher concentrations of heavy metals in sediment, followed by water. However, the concentration of heavy metals in fish feed was lower than the standard limits. In the case of fish, the bottom feeder (C. carpio) notably exhibited higher (P < 0.05) levels of heavy metals than the column feeder (L. rohita) and surface feeder (C. catla) fish. Moreover, in the liver of all fish species, the bioaccumulation of heavy metals was higher, followed by the gills. Principal component analysis (PCA) demonstrated a strong correlation of heavy metals in C. carpio gills, flesh, feed, and pond water, while the heavy metals in the liver correlated with the detected metals in sediment. The human health risk analysis shows that bottom feeder fish had higher estimated daily intake (EDI), target hazard quotient (THQ), and hazard index (HI) values (> 1). Consequently, the exposed population may experience adverse health effects. The findings of this study suggest that the bottom feeder (C. carpio) bioaccumulates a higher concentration of heavy metals than column (L. rohita) and surface feeder (C. catla) in the polyculture system.
Collapse
Affiliation(s)
- Allah Bachayo Rajar
- Muhammad Medical College Mirpurkhas/Ibn-e-Sina University, Mirpurkhas, 69012, Sindh, Pakistan
| | - Zainab Malik
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Faisalabad, 38040, Punjab, Pakistan
| | - Javed Ahmed Ujan
- Department of Zoology, Shah Abdul Latif University Khairpur, Khairpur, 66020, Sindh, Pakistan
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32608, USA
| | - Khalid Hussian Rind
- Department of Molecular Biology and Genetics, Shaheed Benazir Bhutto University, Shaheed Benazirabad, 67450, Sindh, Pakistan
| | - Raqeeb Ullah
- Department of Zoology, Bacha Khan University Charsadda, Charsadda, 24540, Khyber Pakhtunkhwa, Pakistan
| | - Saira Naz
- Centre for Research on Fish Nutrition and Environmental Ecology of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
- Department of Zoology, University of Lahore, Sargodha, 40100, Punjab, Pakistan.
| | - Mujeeb Ullah
- Department of Zoology, Islamia College University Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zahid
- Department of Zoology, Islamia College University Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Khalid Khan
- Department of Zoology, Islamia College University Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Khayyam Khayyam
- Department of Zoology, Islamia College University Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Villa B, Bettinetti R, Santolini C, Monticelli D, Corti C, Binda G, Mastore M, Magni G, Pachner J, Liguori G, Zanoletti A, Boldrocchi G. Evaluation of the Adriatic Sea pollution using mesozooplankton as an environmental indicator. CHEMOSPHERE 2024; 366:143553. [PMID: 39419336 DOI: 10.1016/j.chemosphere.2024.143553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
The Adriatic Sea is an enclosed basin threatened by marine pollution due to its hydrographic features and anthropogenic pressure. Although zooplankton has been worldwide regarded as an immediate warning signal of contamination, limited information is available on the contamination of these organisms at the Adriatic level. Hence, this study provides comprehensive data on the presence and levels of multiple pollutants in zooplankton collected from 46 locations. With regards to legacy contaminants, both PCB and DDT levels have declined since the 1980s. Specifically, most samples were characterized by low DDT contamination (average of 3 ± 2.7 ng g- 1 dry weight) and only few of these accumulated levels of concern for what concerns PCB, pointing out possible hotspots of contamination in the central-eastern Adriatic Sea. As regards metal(loid)s, the Metal Pollution Index identified areas of concern in the north Adriatic Sea (Gulf of Venice) with high levels of Co, Cu, Hg, Cr and Pb; in the Central Adriatic Sea (Tremiti islands) with high levels of Co, Ni, Hg, Cr and Pb; in the Southern Adriatic Sea (Taranto and offshore Corfu), with high levels of most metal(loid)s, especially Cr, Ni and Zn. Certain metal(loid)s (e.g. Cd, Pb and Hg) have declined over time and most of them are lower than well-known contaminated worldwide marine ecosystems. Only Cu appears to be particularly high in the Mediterranean zooplankton. Overall, this work suggests a general improvement of the status of contamination of the Adriatic Sea.
Collapse
Affiliation(s)
- B Villa
- Department of Human Sciences, Innovation and Territory, University of Insubria, Via Valleggio 11, Como, Italy; One Ocean Foundation, Via Gesù 10, 20121, Milan, Italy
| | - R Bettinetti
- Department of Human Sciences, Innovation and Territory, University of Insubria, Via Valleggio 11, Como, Italy
| | - C Santolini
- Department of Human Sciences, Innovation and Territory, University of Insubria, Via Valleggio 11, Como, Italy; University School for Advanced Studies IUSS, Pavia, Italy
| | - D Monticelli
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como, Italy
| | - C Corti
- Department of Human Sciences, Innovation and Territory, University of Insubria, Via Valleggio 11, Como, Italy
| | - G Binda
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como, Italy; Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway
| | - M Mastore
- Department of Theoretical and Applied Sciences, University of Insubria, 21100, Varese, Italy
| | - G Magni
- One Ocean Foundation, Via Gesù 10, 20121, Milan, Italy
| | - J Pachner
- One Ocean Foundation, Via Gesù 10, 20121, Milan, Italy
| | - G Liguori
- One Ocean Foundation, Via Gesù 10, 20121, Milan, Italy
| | - A Zanoletti
- Fondazione Centro Velico Caprera E.T.S., Via Cornelio Tacito 6, 20137, Milan, Italy
| | - G Boldrocchi
- Department of Human Sciences, Innovation and Territory, University of Insubria, Via Valleggio 11, Como, Italy; One Ocean Foundation, Via Gesù 10, 20121, Milan, Italy.
| |
Collapse
|
4
|
Wei Y, Song L, Ma Y, Mu J, Yi W, Sun J, Qu K, Cui Z. Implications of ocean warming and acidification on heavy metals in surface seawater of the Bohai Sea. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135305. [PMID: 39053071 DOI: 10.1016/j.jhazmat.2024.135305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/15/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
At present, a clear dependency of the dynamics upon temperature and pH has not been established for many heavy metals (HMs), so making it difficult to project and quantify the impact of ocean warming and acidification on metal biogeochemistry in future scenarios. To understand the responses of HMs to future ocean warming and acidification, we estimated the spatial-temporal variations and pollution status of six dissolved HMs (i.e., Cu, Zn, Pb, Cd, Hg, and As) in surface seawater throughout the Bohai Sea during 2012-2014. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Hg, and As in seawater of the Bohai Sea were between 2.01-3.18, 10.47-15.58, 0.85-2.31, 0.25-0.55, 0.05-0.13, and 1.24-1.98 μg L-1, respectively. Spatially, the average concentrations of the studied HMs generally decreased from the three bays towards the central area, except for Hg which was relatively high in the central Bohai Sea in some cases. This implied that, in addition to continental inputs, there may be other processes affecting the distribution pattern of Hg, such as cyclonic or anticyclonic gyres, benthic fluxes between surface and bottom layers, and some marine planktonic and microbial activities. The pollution assessments of six HMs in seawater revealed that the major risk pollutants were Pb and Hg across the Bohai Sea. Analyses of the local and interactive effects of temperature and pH on HMs showed that the interactive effect of changing temperature and pH on HMs is much more complex than a direct temperature/pH relationship with HMs. Altogether, the results suggested that future ocean warming and acidification will significantly influence the concentrations of dissolved HMs in seawater of the Bohai Sea, but with different relationships.
Collapse
Affiliation(s)
- Yuqiu Wei
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Lun Song
- Key Laboratory of Marine Biological Resources and Ecology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Yuanqing Ma
- Shandong Marine Resources and Environment Research Institute, Yantai, China
| | - Jiandong Mu
- Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao, China
| | - Wei Yi
- Tianjin Agro-Ecological Environment Monitoring and Agricultural Product Quality Testing Center, Tianjin, China
| | - Jun Sun
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, China
| | - Keming Qu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Zhengguo Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.
| |
Collapse
|
5
|
Razak MR, Wee SY, Yusoff FM, Yusof ZNB, Aris AZ. Zooplankton-based adverse outcome pathways: A tool for assessing endocrine disrupting compounds in aquatic environments. ENVIRONMENTAL RESEARCH 2024; 252:119045. [PMID: 38704014 DOI: 10.1016/j.envres.2024.119045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Endocrine disrupting compounds (EDCs) pose a significant ecological risk, particularly in aquatic ecosystems. EDCs have become a focal point in ecotoxicology, and their identification and regulation have become a priority. Zooplankton have gained global recognition as bioindicators, benefiting from rigorous standardization and regulatory validation processes. This review aims to provide a comprehensive summary of zooplankton-based adverse outcome pathways (AOPs) with a focus on EDCs as toxicants and the utilisation of freshwater zooplankton as bioindicators in ecotoxicological assessments. This review presents case studies in which zooplankton have been used in the development of AOPs, emphasizing the identification of molecular initiating events (MIEs) and key events (KEs) specific to zooplankton exposed to EDCs. Zooplankton-based AOPs may become an important resource for understanding the intricate processes by which EDCs impair the endocrine system. Furthermore, the data sources, experimental approaches, advantages, and challenges associated with zooplankton-based AOPs are discussed. Zooplankton-based AOPs framework can provide vital tools for consolidating toxicological knowledge into a structured toxicity pathway of EDCs, offering a transformative platform for facilitating enhanced risk assessment and chemical regulation.
Collapse
Affiliation(s)
- Muhammad Raznisyafiq Razak
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Sze Yee Wee
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Fatimah Md Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia; Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
6
|
Arisekar U, Shalini R, Jeya Shakila R, Abuthagir Iburahim S, Anantharaja K, Bharathi Rathinam R, Sundhar S. Selenium and mercury concentration, Se/Hg molar ratio and risk-benefit assessment of marine fish consumption: Human health risks and protective role of Se against Hg toxicity. Food Res Int 2024; 180:114086. [PMID: 38395583 DOI: 10.1016/j.foodres.2024.114086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/14/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
This study aimed to explore the concentrations of Se and Hg in marine fish along the Gulf of Mannar (southeast coast of India) and to assess related risks and risk-based consumption limits for children, pregnant women, and adults. Se concentrations in pelagic and benthic fish ranged from 0.278 to 0.470 mg/kg and 0.203 to 0.294 mg/kg, respectively, whereas Hg concentrations ranged from 0.028 to 0.106 mg/kg and 0.026 to 0.097 mg/kg, respectively. Se and Hg contents in demersal fish (Nemipterus japonicus) were 0.282 and 0.039 mg/kg, respectively. The lowest and highest Hg concentrations in pelagic fish were found in Scomberomorus commersoni and Euthynnus affinis whereas the lowest and highest Se concentrations in benthic fish were found in Scarus ghobban and Siganus javus. Se concentrations in marine fishes were found in the following order: pelagic > demersal > benthic whereas Hg concentrations were found in the following order: pelagic > benthic > demersal. The presence of Se in fish was positively correlated with trophic level (TL) and size whereas that of Hg was weakly correlated with TL and habitat and negatively correlated with size. Se risk-benefit analysis, the AI/RDI (actual intake/recommended daily intake) ratio was > 100 % and the AI/UL (upper limit) ratio was < 100 %, indicating that all fish have sufficient levels of Se to meet daily requirements without exceeding the UL. Hg level was below the maximum residual limit (MRL) of 0.5 mg/kg for most fish but it was 1 mg/kg in E. affinis and Lethrinus lentjan. The target hazard quotient (THQ < 1) and hazard index (HI < 1) imply that the consumption of fish poses no noncarcinogenic health risks. However, all examined fish had a mean Se/Hg molar ratio > 1, indicating that human intake of fishwas rather safe relative to Hg content. Health benefit indexes (Se-HBV and HBVse) with high positive values in all fish supported the protective effect of Se against Hg toxicity, suggesting the overall safety of fish consumption. The high Se/Hg ratio in fish could be attributed to the replacement of Se bound to Hg, thereby suppressing Hg toxicity and maintaining normal selenoprotein synthesis. This insight is useful for a better understanding of food safety analysis.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India
| | | | - Kanagaraja Anantharaja
- Regional Research Centre of ICAR - Central Institute of Freshwater Aquaculture, Bengaluru 560 089, Karnataka, India
| | - R Bharathi Rathinam
- ICAR-Central Institute of Fisheries Education, Mumbai 400 061, Maharashtra, India
| | - Shanmugam Sundhar
- Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India
| |
Collapse
|
7
|
Rishan ST, Kline RJ, Rahman MS. Exploitation of environmental DNA (eDNA) for ecotoxicological research: A critical review on eDNA metabarcoding in assessing marine pollution. CHEMOSPHERE 2024; 351:141238. [PMID: 38242519 DOI: 10.1016/j.chemosphere.2024.141238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
The rise in worldwide population has led to a noticeable spike in the production, consumption, and transportation of energy and food, contributing to elevated environmental pollution. Marine pollution is a significant global environmental issue with ongoing challenges, including plastic waste, oil spills, chemical pollutants, and nutrient runoff, threatening marine ecosystems, biodiversity, and human health. Pollution detection and assessment are crucial to understanding the state of marine ecosystems. Conventional approaches to pollution evaluation usually represent laborious and prolonged physical and chemical assessments, constraining their efficacy and expansion. The latest advances in environmental DNA (eDNA) are valuable methods for the detection and surveillance of pollution in the environment, offering enhanced sensibility, efficacy, and involvement. Molecular approaches allow genetic information extraction from natural resources like water, soil, or air. The application of eDNA enables an expanded evaluation of the environmental condition by detecting both identified and unidentified organisms and contaminants. eDNA methods are valuable for assessing community compositions, providing indirect insights into the intensity and quality of marine pollution through their effects on ecological communities. While eDNA itself is not direct evidence of pollution, its analysis offers a sensitive tool for monitoring changes in biodiversity, serving as an indicator of environmental health and allowing for the indirect estimation of the impact and extent of marine pollution on ecosystems. This review explores the potential of eDNA metabarcoding techniques for detecting and identifying marine pollutants. This review also provides evidence for the efficacy of eDNA assessment in identifying a diverse array of marine pollution caused by oil spills, harmful algal blooms, heavy metals, ballast water, and microplastics. In this report, scientists can expand their knowledge and incorporate eDNA methodologies into ecotoxicological research.
Collapse
Affiliation(s)
- Sakib Tahmid Rishan
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Richard J Kline
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Md Saydur Rahman
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA.
| |
Collapse
|
8
|
Ge J, Jin P, Xie S, Beardall J, Feng Y, Guo C, Ma Z, Gao G. Micro- and nanoplastics interact with conventional pollutants on microalgae: Synthesis through meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123127. [PMID: 38072023 DOI: 10.1016/j.envpol.2023.123127] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/10/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023]
Abstract
Micro- and nanoplastics (MNPs) have been found to occur intensively in aquatic environments, along with other conventional pollutants (Po) such as heavy metals, pesticides, pharmaceuticals, etc. However, our understanding of how MNPs and Po interact on aquatic primary producers is fragmented. We performed a quantitative meta-analysis based on 933 published experimental assessments from 44 studies to examine the coupled effects of MNPs and Po on microalgae. Although the results based on interaction type frequency (the proportion of each interaction type in all results) revealed dominantly additive interactions (56%) for overall physiological performance, an overall antagonistic effect was observed based on the mean interaction effect sizes. A higher proportion of antagonistic interaction type frequency was found in marine species compared to fresh species. The antagonistic effects were particularly significant for growth, oxidative responses, and photosynthesis, which could be attributed to the adsorption effect of MNPs on Po and thus the decreasing concentrations of pollutants in the medium. Larger-sized, negatively charged or uncharged and aged MNPs had higher proportions of antagonistic effects compared to smaller-sized, positively charged and virgin MNPs, due to their stronger adsorption capacity to Po. This study provides a comprehensive insight into the interactive effects of MNPs and Po on microalgae.
Collapse
Affiliation(s)
- Jingke Ge
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Shuyu Xie
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - John Beardall
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China; School of Biological Sciences, Monash University, Clayton, VI 3800, Australia
| | - Yuan Feng
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Can Guo
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Guang Gao
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
9
|
Ma T, Ding Y, Xu F, Zhang C, Zhou M, Tang Y, Chen Y, Wen Y, Chen R, Tang B, Wang S. Effects of acute and chronic chromium stress on the expression of heat shock protein genes and activities of antioxidant enzymes in larvae of Orthetrum albistylum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122712. [PMID: 37813144 DOI: 10.1016/j.envpol.2023.122712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
The dragonfly species Orthetrum albistylum, can accumulate heavy metals from its aquatic environment and thus serves as a biological indicator for monitoring and evaluating water quality. Heat shock proteins (HSPs) play important biological roles in resistance to various types of environmental stress. The full-length cDNA sequences of the heat shock cognate (hsc) 70 and heat shock protein (hsp) 70 genes were cloned from O. albistylum larvae. Relative levels of expression of hsc70 and hsp70 in the head, epidermis, midgut, and adipose tissue were measured by qRT-PCR after chronic and acute contamination of 5-8 instar larvae with chromium (Cr) solution, and under control conditions. Activities of superoxide dismutase (SOD) and catalase (CAT) in chronically contaminated larvae were also measured. Phylogenetic analysis revealed that the cloned hsc70 and hsp70 genes were highly homologous to known HSP70 family members reported in other insects. The mRNA levels of hsc70 and hsp70 did not differ significantly in various larval tissues. Under chronic chromium stress, hsc70 and hsp70 expression were upregulated to a maximum and then downregulated; hsp70 mRNA levels were higher than those of hsc70 at all concentrations of chromium. Under acute chromium stress, hsc70 expression was inhibited at low chromium concentrations and upregulated at chromium concentrations higher than 125 mg/L. However, hsp70 expression was higher than that in the control group and markedly higher than that of hsc70. Changes in SOD and CAT activities displayed consistent trends for different chronic chromium concentrations, first increasing and then decreasing over time. Collectively, these findings demonstrated the response of the HSP family of genes and antioxidant enzymes following exposure to heavy metal stress, as well as their potential applicability as biomarkers for monitoring environmental pollutants.
Collapse
Affiliation(s)
- Tingting Ma
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yanjuan Ding
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Fengjiao Xu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Chen Zhang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Min Zhou
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yanrong Chen
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yating Wen
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Rufei Chen
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Shigui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
10
|
Nayak SK, Nandimandalam JR. Impacts of climate change and coastal salinization on the environmental risk of heavy metal contamination along the odisha coast, India. ENVIRONMENTAL RESEARCH 2023; 238:117175. [PMID: 37741567 DOI: 10.1016/j.envres.2023.117175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/17/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
Climate change-mediated rise in sea level and storm surges, along with indiscriminate exploitation of groundwater along populous coastal regions have led to seawater intrusion. Studies on groundwater salinization and heavy metal contamination trends are limited. Present study investigated the heavy metal contamination, associated risks and provided initial information on the impacts of groundwater salinization on heavy metals along the coastal plains of Odisha, India. Total 50 groundwater samples (25 each in post- and pre-monsoon) were collected and analysed. Concentrations of Fe (44%), Mn (44%), As (4%) and Al (4%) in post-monsoon and Fe (32%), Mn (32%), As (4%), B (8%) and Ni (16%) in pre-monsoon exceeded Bureau of Indian Standards (BIS) drinking water limits. High concentrations of heavy metals (Fe, Sr, Mn, B, Ba, Li, Ni and Co) and high EC (>3000 μS/cm) indicated that the groundwater-seawater mixing process has enhanced the leaching and ion exchange of metallic ions in central part of the study area. Multivariate statistical analysis suggested leaching process, seawater intrusion and agricultural practices as the main heavy metal sources in the groundwater. 4% of samples in post- and 16% in pre-monsoon represented high heavy metal pollution index (HPI). Pollution indices indicated the central and south-central regions are highly polluted due to saline water intrusion and high agricultural activities. Ecological risks in the groundwater systems found low (ERI <110) in both seasons. Children population found more susceptible to health risks than adults. Hazard index (HI > 1) has shown significant non-carcinogenic risks where Fe, Mn, As, B, Li and Co are the potential contributors. Incremental lifetime cancer risk (ILCR >1.0E-03) has suggested high carcinogenic risks, where As and Ni are the major contributors. The study concluded that groundwater salinization could increase the heavy metal content and associated risks. This would help policymakers to take appropriate measures for sustainable coastal groundwater management.
Collapse
Affiliation(s)
- Soumya Kanta Nayak
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | |
Collapse
|
11
|
Castillo A, Valdés J, Marambio Y, Figueroa L, Letelier J, Carcamo F. Metal(loid)s content in Concholepas concholepas (Mollusca) and human health assessment in a coastal environmental sacrifice zone, central Chile (∼32°S). MARINE POLLUTION BULLETIN 2023; 197:115738. [PMID: 37948871 DOI: 10.1016/j.marpolbul.2023.115738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
In seafood, the study of metal(loid)s is essential to assess their toxicity and to establish risks of human exposure. This study investigates the content of As, Cd, Cu, Ni and Pb in Concholepas concholepas in a coastal environmental sacrifice zone (Chile) to assess potential human-health risks by consumption of C. concholepas. The Cu and Cd content was found to be above the safety level established in chilean and international regulations. The Estimated Daily Intake (EDI) and Target Hazard Quotient (THQ) for As were comparatively high with respect to the other metals analysed. The THQ-As and Hazard Index (HI) suggest a moderate carcinogenic risk due to the consumption of C. concholepas in six of the nine sectors analysed. THQ and HI are reasonable indicators to assess risks to human-health from the consumption of shellfish with HMs. C. concholepas can be considered as a biomonitor to study metal(loid)s on the Chilean coast.
Collapse
Affiliation(s)
- Alexis Castillo
- Centro de Investigación y Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Campus San Miguel, Av. San Miguel Talca, Chile; J'EAI-CHARISMA (UMNG-Colombia, UPCH-Perú, IGP-Peru, UCM-Chile, UCh-Chile, UA-Chile, IRD-France), Colombia; ANID-Millenium Science Initiative Program Nucleo Milenio UPWELL, La Serena, Chile.
| | - Jorge Valdés
- Laboratorio de Sedimentología y Paleoambientes, Instituto de Cs. Naturales A. von Humboldt, Facultad de Ciencias del Mar y de Recursos Biológicos, Universidad de Antofagasta, Chile
| | | | - Luis Figueroa
- Laboratorio de Estudios Ecosistémicos, Escuela de Agronomía y Veterinaria, Universidad de Viña del Mar, Viña del Mar, Chile
| | - Jaime Letelier
- Departamento de Oceanografía y Medio Ambiente, división de Pesquería, Instituto de Fomento Pesquero, Valparaíso, Chile
| | - Francisco Carcamo
- Departamento de Repoblamiento y Cultivo, división de Acuicultura, Pesquería, Instituto de Fomento Pesquero, Puerto Montt, Chile
| |
Collapse
|
12
|
Yang Y, Wang M, Yu X, Wei J, Wu S, Wu C, Chang AK, Ying X. Assessment of toxic metal pollution in Yueqing Bay and the extent of metal-induced oxidative stress in Tegillarca granosa raised in this water. MARINE POLLUTION BULLETIN 2023; 194:115444. [PMID: 37647698 DOI: 10.1016/j.marpolbul.2023.115444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Yueqing Bay is an important economic shellfish culture zone in Zhejiang Province, China. However, increased pollution in the water caused by toxic metals has led to the bioaccumulation of toxic metals in cockles such as Tegillarca granosa, and the consequence of toxic metal-associated toxicity in these animals. This study aimed to assess the concentration of toxic metals in the water and sediment in four different sites (Baisha, Qingjiang, Nanyue, and Wengyang) within Yueqing Bay and to evaluate the extent of metal bioaccumulation in T. granosa raised in the aquaculture farms located within the four sites, as well as the changes in biomarkers in T. granosa in response to the metals. The assessment was carried out at two different times of the year, January and July. The water and sediment samples taken from the aquaculture farms in Baisha (S1), Qingjiang (S2) and Nanyue (S3) were found to have a comprehensive toxic metal pollution index (Pc) <1, indicating that these farms were not polluted. However, the water and sediment samples taken from the aquaculture farm in Wengyang (S4) had a Pc between 1 and 2, indicating mild toxic metal pollution. The edible risk assessments (HQ) of T. granosa in all four farms were <1, and therefore, these cockles could be considered safe for human consumption. The toxic metal enrichment in T. granosa exhibited a strong correlation with the toxic metal content in the sediment. In all four farms, CAT and SOD activity levels in the visceral mass of T. granosa were higher than those found in the foot, and a significantly higher level of CAT activity was detected in July compared with January. Similarly, MDA and H2O2 contents in the visceral mass were also higher in July than in January. Tegillarca granosa individuals taken from S4 and S3 farms exhibited significantly higher levels of metallothionein (MT) mRNA and MDA compared with individuals from S1 and S2 farms. Furthermore, the levels of MDA and MT mRNA showed significant positive correlations with Cd, Cr, Hg, and Cu. Elevation of lipid peroxidation in these cockles coincided with increasing levels of endogenous antioxidants. The visceral mass of T. granosa and its MDA level could be used as a tissue indicator and a biochemical marker, respectively, for detecting toxic metal pollution. MT mRNA might also be used as a molecular marker of toxic metal pollution. The integrated biomarker response version 2 (IBRv2) values of the four aquaculture farms in Yueqing Bay showed the order S4 > S3 > S2 > S1, indicating that S4 had the most serious metal-induced stress. Furthermore, the IBRv2 values correlated with the Nemerow composite index (Pc) for all the cockles examined. Thus, as far as the contamination of aquaculture farms in Yueqing Bay by toxic metals is concerned, the aquaculture farm in Wengyang (S4) was mildly contaminated by toxic metals. However, the contamination was relatively low, presenting a low risk for the local population of T. granosa.
Collapse
Affiliation(s)
- Yuqing Yang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Mengci Wang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xinyu Yu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jinyan Wei
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shuwen Wu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Chenghui Wu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Alan Kueichieh Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xueping Ying
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, 325035 Wenzhou, China.
| |
Collapse
|
13
|
Asiedu DA, Søndergaard J, Jónasdóttir S, Juul-Pedersen T, Koski M. Concentration of mercury and other metals in an Arctic planktonic food web under a climate warming scenario. MARINE POLLUTION BULLETIN 2023; 194:115436. [PMID: 37660452 DOI: 10.1016/j.marpolbul.2023.115436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Arctic marine ecosystems act as a global sink of mercury (Hg) and other metals, and high concentrations of these have been measured in higher trophic-level organisms. Nevertheless, the concentrations of metals at the basis of the marine food web in the Arctic is less known despite the likelihood of biomagnification from dietary sources. We investigated the concentrations of mercury (Hg) and other metals in different size fractions of plankton in West Greenland. All size fractions contained detectable levels of Hg (ranging from 4.8 to 241.3 ng g dw-1) at all stations, although with high geographic variability, likely reflecting the sources of mercury (e.g., meltwater). In many cases, the concentrations in the larger-size fractions were lower than in the smaller-size fractions, suggesting depuration through the metabolic activity of mesozooplankton. Concentrations of Cd, Pb, V, Ni, and Cr were higher than previously reported elsewhere in the Arctic.
Collapse
Affiliation(s)
- Delove Abraham Asiedu
- National Institute of Aquatic Resources, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Jens Søndergaard
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Sigrun Jónasdóttir
- National Institute of Aquatic Resources, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Thomas Juul-Pedersen
- Greenland Climate Research Center, Greenland Institute of Natural Resources, Nuuk 3900, Greenland
| | - Marja Koski
- National Institute of Aquatic Resources, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
14
|
Kukavica B, Davidović-Plavšić B, Savić A, Dmitrović D, Šukalo G, Đurić-Savić S, Vučić G. Oxidative Stress and Neurotoxicity of Cadmium and Zinc on Artemia franciscana. Biol Trace Elem Res 2023; 201:2636-2649. [PMID: 35831694 DOI: 10.1007/s12011-022-03352-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/01/2022] [Indexed: 11/24/2022]
Abstract
Despite not being redox-active metals, Cd and Zn can disrupt cellular redox homeostasis by acting pro-oxidatively. The aim of this study was to examine the effects of exposure to Zn (14 and 72 mg/L) and Cd (7.7 and 77 mg/L) for 24 and 48 h on oxidative and antioxidative parameters and the activity of glutathione-S-transferase in Artemia franciscana tissue. In addition, the neurotoxicity of the metals was examined by determining the activity of acetylcholinesterase (AChE). In A. franciscana tissue, Cd (0.0026 ± 0.0001 mg/L) was detected only after 48 h of exposure to 77 mg/L Cd. After 24 h, the 14- and 72-mg/L Zn treatments resulted in significant increases in the Zn concentration (0.54 ± 0.026 mg/L (p < 0.01) and 0.68 ± 0.035 (p < 0.0001), respectively) in A. franciscana tissue compared with the control level, and significant increases were also detected after 48 h (0.59 ± 0.02 (p < 0.0001) and 0.79 ± 0.015 (p < 0.0001), respectively). The malondialdehyde (MDA) concentration in the metal-treated samples was increased after 24 h of exposure, whereas after 48 h, an increase in the MDA concentration was detected only with 7.7. mg/L Cd. A significant increase in the H2O2 concentration after 24 h was measured only after treatment with 72 mg/L Zn. The treatment with 7.7 mg/L Cd for 24 h induced a significant increase in the AChE activity, whereas 48 h of treatment with 77 mg/L Cd and 14 mg/L Zn significantly inhibited AChE. The results indicate that lipid peroxidation resulting from metal toxicity may constitute the basis of neurotoxicity.
Collapse
Affiliation(s)
- Biljana Kukavica
- Departmant of Biology, Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina.
| | - Biljana Davidović-Plavšić
- Departmant of Chemistry, Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Ana Savić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| | - Dejan Dmitrović
- Departmant of Biology, Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Goran Šukalo
- Departmant of Biology, Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | | | - Goran Vučić
- Faculty of Technology, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
15
|
Krishnasamy Sekar R, Arunachalam R, Anbazhagan M, Palaniyappan S, Veeran S, Sridhar A, Ramasamy T. Accumulation, Chronicity, and Induction of Oxidative Stress Regulating Genes Through Allium cepa L. Functionalized Silver Nanoparticles in Freshwater Common Carp (Cyprinus carpio). Biol Trace Elem Res 2023; 201:904-925. [PMID: 35199287 DOI: 10.1007/s12011-022-03164-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/14/2022] [Indexed: 01/21/2023]
Abstract
Green evolutionary products such as biologically fabricated nanoparticles (NPs) pose a hazard to aquatic creatures. Herein, biogenic silver nanoparticles (AgNPs) were synthesized by the reaction between ionic silver (AgNO3) and aqueous onion peel extract (Allium cepa L). The synthesized biogenic AgNPs were characterized with UV-Visible spectrophotometer, XRD, FT-IR, and TEM with EDS analysis; then, their toxicity was assessed on common carp fish (Cyprinus carpio) using biomarkers of haematological alterations, oxidative stress, histological changes, differential gene expression patterns, and bioaccumulation. The 96 h lethal toxicity was analysed with various concentrations (2, 4, 6, 8, and 10 mg/l) of biogenic AgNPs. Based on 96 h LC50, sublethal concentrations (1/15th, 1/10th, and 1/5th) were given to C. carpio for 28 days. At the end of experiment, the bioaccumulations of Ag content were accumulated mainly in the gills, followed by the liver and muscle. At an interval of 7 days, the haematological alterations showed significance (p < 0.05) and elevation of antioxidant defence mechanism reveals the toxicity of biogenic synthesized AgNPs. Adverse effects on oxidative stress were probably related to the histopathological damage of its vital organs like gill, liver, and muscle. Finally, the fish treated with biogenic synthesized AgNPs were significantly (p < 0.05) downregulates the oxidative stress genes such as Cu-Zn SOD, CAT, GPx1a, GST-α, CYP1A, and Nrf-2 expression patterns. The present study provides evidence of biogenic synthesized AgNPs influence on the aquatic life through induction of oxidative stress.
Collapse
Affiliation(s)
- Rajkumar Krishnasamy Sekar
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620 024, India
| | - Ramkumar Arunachalam
- UGC-National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tamil Nadu, 620 024, Tiruchirappalli, India
| | - Murugadas Anbazhagan
- UGC-National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tamil Nadu, 620 024, Tiruchirappalli, India
- Department of Pediatrics, School of Medicine, Emory University, GA, 30322, Atlanta, USA
| | - Sivagaami Palaniyappan
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620 024, India
| | - Srinivasan Veeran
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620 024, India
| | - Arun Sridhar
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620 024, India
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620 024, India.
- UGC-National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tamil Nadu, 620 024, Tiruchirappalli, India.
| |
Collapse
|
16
|
Albarico FPJB, Chen CW, Lim YC, Wang MH, Chen CF, Dong CD. Non-proportional distribution and bioaccumulation of metals between phytoplankton and zooplankton in coastal waters. MARINE POLLUTION BULLETIN 2022; 184:114168. [PMID: 36183508 DOI: 10.1016/j.marpolbul.2022.114168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Metal concentrations were concurrently quantified in seawater, phytoplankton, and zooplankton from a heavily impacted coast of southern Taiwan. Combined size and density fractionation were used to accurately quantify metal concentrations in phytoplankton. Cr, Co, Ni, Cu, As, and Pb were analyzed using an inductively coupled plasma mass spectrometer (ICP-MS). As expected, metals significantly increased with an order of seawater < phytoplankton < zooplankton (p < 0.05); but did not differ between estuarine, nearshore, and offshore sites (p > 0.05). Metals were higher along Kaohsiung Harbor and marine outfall diffusion sites, highlighting their major impacts on plankton metal contamination. Notably, phytoplankton (Cr BCF > 100; half of the sites) significantly accumulated more metals contrary to zooplankton (BAF < 10). Metal concentrations and bioaccumulation factors between phytoplankton and zooplankton showed significant negative correlations. This demonstrates a non-proportional distribution and bioaccumulation of metals in phytoplankton and zooplankton-corroborating laboratory findings on zooplankton ability to control metals, irrespective of significantly high bioaccumulation in phytoplankton.
Collapse
Affiliation(s)
- Frank Paolo Jay B Albarico
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; College of Fisheries and Allied Sciences, Northern Negros State College of Science and Technology, Sagay City 6122, Philippines
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Ming-Huang Wang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
17
|
Harris EK, Montagna PA, Douglas AR, Vitale L, Buzan D. Influence of an industrial discharge on long-term dynamics of abiotic and biotic resources in Lavaca Bay, Texas, USA. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:40. [PMID: 36301373 PMCID: PMC9613729 DOI: 10.1007/s10661-022-10665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The current study seeks to identify possible anthropogenic and/or natural environmental stressors that may account for the long-term decline of ecosystem health in Lavaca Bay, Texas, USA. The Formosa Plastics Corporation instituted monitoring of an industrial discharge into the bay with 16 fixed point stations and quarterly sampling from 1993 to 2020. Comprehensive measurements included organic and inorganic solutes in surface water, porewater and sediment, sediment content, plankton, nekton, and infaunal benthos. All parameter trends changed over time due to climate, freshwater inflow events, and/or seasonal changes. Biological community structure and sediment changed with distance from the discharge site. Dominance characterized community structure because three to four taxa comprised > 70% of individuals for nekton (trawl and gill net), phytoplankton, zooplankton, and ichthyoplankton samples. Sediment became sandier over time (48 to 75%) and away from the discharge. Surface water and porewater at reference (R) stations and stations near the discharge site had similar hydrographical and biological trends over time, indicating no long-term impact due to the discharge. However, 99.9% of 424,671 measurements of organic contaminants were non-detectable because the methods were insensitive to ambient concentrations. Thus, it is still not known if contaminants play a role in the long-term decline of ecosystem health in Lavaca Bay. Furthermore, only four R stations were sampled and were all 3810 m from the discharge site, so it is possible that trends in R stations do not represent the natural background. Future studies should include more R stations and lower detection limits for contaminants.
Collapse
Affiliation(s)
- Elizabeth K. Harris
- Harte Research Institute for Gulf of Mexico Studies, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Unit 5869, Corpus Christi, TX 78412 USA
| | - Paul A. Montagna
- Harte Research Institute for Gulf of Mexico Studies, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Unit 5869, Corpus Christi, TX 78412 USA
| | - Audrey R. Douglas
- Harte Research Institute for Gulf of Mexico Studies, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Unit 5869, Corpus Christi, TX 78412 USA
| | - Lisa Vitale
- Freese and Nichols, Inc, 10431 Morado Circle, Bldg. 5, Suite 300, Austin, TX 78759 USA
| | - David Buzan
- Freese and Nichols, Inc, 10431 Morado Circle, Bldg. 5, Suite 300, Austin, TX 78759 USA
| |
Collapse
|
18
|
Vinothkannan A, Charles PE, Rajaram R. Consumption of metal-contaminated shellfish from the Cuddalore coast in Southeastern India poses a hazard to public health. MARINE POLLUTION BULLETIN 2022; 181:113827. [PMID: 35716490 DOI: 10.1016/j.marpolbul.2022.113827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Seasonal distribution of four metals (Cd, Cu, Pb, and Zn) in eight shellfish species collected from the heavily contaminated Cuddalore coast in Tamil Nadu, Southern India, were analyzed. Metal concentrations in all shellfish species were determined using atomic absorption spectrometry. All metals were present in all seasons in most of the species, however, with a few exceptions. Overall, the metal concentration was in the descending order: Zn > Cu > Pb > Cd. Metals might have emerged from both natural and anthropogenic sources as per multivariate statistical analysis. Bioaccumulation factor results showed that cadmium was more bioaccumulated and beyond the threshold limit. Hazard index (HI) values revealed that consuming shellfish from Cuddalore coast can pose hazards to human health, with all HI values beyond threshold limit across all seasons - premonsoon (1.33), monsoon (1.73), postmonsoon (2.55), and summer (2.64). It is evident that consumption of shellfish across all seasons may have adverse health impacts to the people.
Collapse
Affiliation(s)
- Anbazhagan Vinothkannan
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Partheeban Emmanuel Charles
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Rajendran Rajaram
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India.
| |
Collapse
|
19
|
Chen L, Cai X, Cao M, Liu H, Liang Y, Hu L, Yin Y, Li Y, Shi J. Long-term investigation of heavy metal variations in mollusks along the Chinese Bohai Sea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113443. [PMID: 35364504 DOI: 10.1016/j.ecoenv.2022.113443] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Biomonitoring is an effective way to assess the effects of pollutants on marine ecosystems. As an important fishing region in China, the Chinese Bohai Sea has been contaminated with heavy metals, posing great risks to seafood safety and human health. Herein, the spatiotemporal variations in the concentrations of seven heavy metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) in 11 species of mollusks (658 samples) collected from the Chinese Bohai Sea were studied during 2006-2016. The concentrations of Cr, As, Cd, and Pb in approximately 41%, 100%, 71%, and 18% of the sampled mollusks exceeded the maximum permissible levels in aquatic products set by China, indicating that the mollusks were contaminated with varied concentrations of heavy metals. Except for slight fluctuations, no significant temporal variations were observed during the sampling period, suggesting a relatively stable status of these metals. Cluster analysis showed that oyster had higher bioaccumulation potential for Zn and Cu, whereas Mactra veneriformis, Rapana venosa, Meretrix meretrix, Chlamys farreri, and Mya arenaria had higher bioaccumulation potentials for Cr, As, Ni, Cd, and Pb, respectively. These findings are useful for biomonitoring and developing guidelines for seafood consumption in coastal regions. Significant relationships were observed between heavy metal concentrations in mollusks and socioeconomic indices (gross domestic product, per capita gross domestic product, and population amount), suggesting the effects of anthropogenic activities on heavy metal contamination. Our study established a good model to evaluate the risks of heavy metals and provided a sound scientific basis for controlling seafood safety in coastal regions.
Collapse
Affiliation(s)
- Lufeng Chen
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoyan Cai
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mengxi Cao
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongwei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Liang
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jianbo Shi
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China.
| |
Collapse
|
20
|
Sharifian S, Taherizadeh MR, Dehghani M, Nabavi M. Food safety of the green tiger shrimp Penaeus semisulcatus from the Persian Gulf. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23861-23870. [PMID: 34817819 DOI: 10.1007/s11356-021-17620-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Seafood is a rich source of essential compounds for human health, but the consumption of aquatic products that are exposed to environmental pollutants, especially trace metals, comes with risk. Therefore, in this study, the levels of nickel, zinc, and lead in the muscle of shrimp Penaeus semisulcatus caught from the north of the Persian Gulf as a polluted environment were measured, and the health risks were assessed. The results showed that the level of Zn (300.88 ± 2.76 µg/g) in the muscle of shrimp was higher than Ni (6.82 ± 0.10) and Pb (1.10 ± 0.09 µg/g), and the amount of accumulation of all three metals is higher than the allowable limit proposed by the FAO/WHO. According to values of estimated daily intake (EDI) and target hazard quotient (THQ), the consumption of shrimp has no or minimal risk for health. However, the target cancer risk (TR) of Ni (adult, 0.00294; child, 0.00196) indicated that Ni accumulation is associated with carcinogenic risks. These findings may be helpful in the proper management of seafood quality and public health in the Persian Gulf.
Collapse
Affiliation(s)
- Sana Sharifian
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
| | - Mohammad Reza Taherizadeh
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Mohsen Dehghani
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Moein Nabavi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| |
Collapse
|
21
|
Noman MA, Feng W, Zhu G, Hossain MB, Chen Y, Zhang H, Sun J. Bioaccumulation and potential human health risks of metals in commercially important fishes and shellfishes from Hangzhou Bay, China. Sci Rep 2022; 12:4634. [PMID: 35301375 PMCID: PMC8931090 DOI: 10.1038/s41598-022-08471-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/04/2022] [Indexed: 11/08/2022] Open
Abstract
Hangzhou Bay is facing severe anthropogenic perturbation because of its geographic position. We studied species-specific bioaccumulation of metals in commercially important fishes and shellfishes, and calculated the potential human health hazards through their consumption, which has not been reported earlier from this area. The hierarchy of metal concentration in organisms was in the decreasing order of Zn (10.32 ± 7.13) > Cu (2.40 ± 2.66) > As (0.42 ± 0.26) > Cr (0.11 ± 0.08) > Cd (0.07 ± 0.07) > Pb (0.05 ± 0.02) > Hg (0.012 ± 0.009). Except for Cd and As concentrations in fishes, metal concentrations have not exceeded the national and international guideline values. P. laevis and P. trituberculatus were the most bioaccumulative of the species studied. According to the non-carcinogenic risk assessment, children were more susceptible to metal contamination than adults. The carcinogenic risk (CR) values indicated that children were likely to experience carcinogenic threats for taking cancer-causing agents As and Cd through fish consumption. In terms of organisms, intake of two crab species, P. trituberculatus and E. sinensis, as well as the oyster species P. laevis, could be detrimental to consumers.
Collapse
Affiliation(s)
- Md Abu Noman
- College of Marine Science and Technology, China University of Geosciences (Wuhan), No.388 Road Rumo, Wuhan, 430074, China
| | - Weihua Feng
- Key Laboratory of Marine Ecosystem Dynamics and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Genhai Zhu
- Key Laboratory of Marine Ecosystem Dynamics and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - M Belal Hossain
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
- School of Engineering and Built Environment, Griffith University, Nathan Campus, Griffith, QLD, Australia
| | - Yue Chen
- Key Laboratory of Marine Ecosystem Dynamics and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Haifeng Zhang
- Key Laboratory of Marine Ecosystem Dynamics and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences (Wuhan), No.388 Road Rumo, Wuhan, 430074, China.
| |
Collapse
|
22
|
Rajkumar KS, Sivagaami P, Ramkumar A, Murugadas A, Srinivasan V, Arun S, Senthil Kumar P, Thirumurugan R. Bio-functionalized zinc oxide nanoparticles: Potential toxicity impact on freshwater fish Cyprinus carpio. CHEMOSPHERE 2022; 290:133220. [PMID: 34914955 DOI: 10.1016/j.chemosphere.2021.133220] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
There is a growing concern nowadays over the exposure of nanomaterials and their effects in aquatic life. In spite of reporting the changes in physiology, reproduction and behaviour in fish by different nanoparticles, the molecular events underlying in the aquatic bodies due to the toxicity of zinc oxide nanoparticles (ZnO NPs) are mainly unexplored. Therefore, the present study carried out an ex vivo exposure of ZnO NPs at various concentrations (0.382, 0.573 and 1.146 mg L-1) in freshwater fish Cyprinus carpio to investigate the potential adverse effects. The results revealed that ZnO NPs exposure altered the haematological parameter and induces the reactive oxygen species (ROS) that leads to elevation of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidise (GPx), glutathione S-transferase (GST) and reduced glutathione (GSH) activity in C. carpio. Furthermore, histopathological analysis exhibited that the ZnO NPs caused lamellar fusion, aneurism, cytoplasmic vacuolation, nuclear alteration, necrotic muscle fiber and pyknotic nuclei in the gills, liver and muscles of C. carpio. ZnO NPs exposure significantly up-regulated the overlapping expressions of SOD1, CAT, GPx1a, GST-α, CYP1A, and Nrf-2 genes. A higher level of Zn bioaccumulation was observed in the following order: gill (35.03 ± 2.50 μg g-1), liver (5.33 ± 0.73 μg g-1) and muscle (2.30 ± 0.20 μg g-1) at 1.146 mg L-1 exposure of ZnO NPs. Hence, the current study indicated that the biogenic ZnO NPs generate toxicity in fishes by modifying the antioxidant defense mechanisms, histomorphology, and oxidative stress encoding genes.
Collapse
Affiliation(s)
- Krishnasamy Sekar Rajkumar
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Palaniyappan Sivagaami
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Arunachalam Ramkumar
- UGC-National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Anbazhagan Murugadas
- UGC-National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Veeran Srinivasan
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Sridhar Arun
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - Ramasamy Thirumurugan
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; UGC-National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
23
|
Yu C, Sui W, Liang B, Bao C, Ma M. Temporal trends of heavy metals in the sediments of Bohai Bay in China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:79. [PMID: 35006389 DOI: 10.1007/s10661-021-09747-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The status and trend of mercury (Hg), cadmium (Cd), lead (Pb), copper (Cu), chromium (Cr), zinc (Zn), and arsenic (As) in the sediment of Bohai Bay from 1978 to 2017 were evaluated. The results indicated that the sediment status in 2017 was good. The contents of Hg, Cd, Pb, Cu, Cr, Zn, and As in all the monitoring stations were lower than category I. But, it is worth noting that the contents of Cu, Cr, and As in some stations were between threshold effects levels (TEL) and probable effects levels (PEL) guidelines, which were occasionally correlated to negative ecological effects. Since the reform and opening up of China, only the average content of Cd in 1996 was between category II and category III, but that in other years did not exceed category I. The average contents of Hg, Pb, Cu, Cr, Zn, and As were lower than category I. The Chinese Government should continue to pay high attention to the total quantity control measures of major risk factors Cd, Cu, Cr, and As.
Collapse
Affiliation(s)
- Chunyan Yu
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Weina Sui
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Bin Liang
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Chenguang Bao
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Minghui Ma
- National Marine Environmental Monitoring Center, Dalian, 116023, China.
| |
Collapse
|
24
|
Health Risk Assessment and Levels of Heavy Metals in Farmed Nile Tilapia (Oreochromis niloticus) from the Volta Basin of Ghana. J CHEM-NY 2021. [DOI: 10.1155/2021/2273327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Heavy metals (Pb, Cd, As, Mn, Fe, Zn, Cu, Ni, and Cr) are some of the most toxic elements that can bioaccumulate from sources linked to human activities, such as industry and agriculture. This study quantifies the concentrations of several heavy metals in caged tilapia found in Ghana’s Volta Basin and assesses the associated health risks. The levels of heavy metals in the tissues of Oreochromis niloticus from three cage farms (N = 52) were determined using Atomic Absorption Spectrometry (AAS). The implication for human health was assessed using several risk assessment techniques. Fe (50.11 ± 10.22 mg/kg) and Cr (0.31 ± 0.07 mg/kg) had the highest and lowest accumulated metal concentrations, respectively. Heavy metal concentrations in tilapia tissue from fish farms were ordered as follows: Fe > Mn > Zn > Ni > Cr (farm A), Fe > Zn > Ni > Mn (farm B), and Fe > Mn > Zn > Ni > Cr (farm C). All metals had an estimated daily intake (EDI) below the threshold, and mean differences between sample farms were not statistically significant. Similarly, the values of target hazard quotients (HQs) and hazard indices (HIs) were less than one. According to the risk assessment results, eating tilapia from farms posed no risk to human health. The presence of Mn, Fe, and Ni concentrations above the maximum level in the fish, on the other hand, suggests that they may affect fish health.
Collapse
|
25
|
La Colla NS, Botté SE, Simonetti P, Negrin VL, Serra AV, Marcovecchio JE. Water, sediments and fishes: First multi compartment assessment of metal pollution in a coastal environment from the SW Atlantic. CHEMOSPHERE 2021; 282:131131. [PMID: 34470169 DOI: 10.1016/j.chemosphere.2021.131131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
This is an integrated assessment of the distribution of Cd, Cr, Hg and Pb in dissolved water, sediments and muscle fish tissues (Cynoscion guatucupa, Micropogonias furnieri, Mustelus schmitti and Ramnogaster arcuata) from the Bahía Blanca estuary, Argentina. Within the water fraction (μg L-1), Hg and Pb concentrations ranged from below the limit of detection (<LOD) to 0.53 and 54, respectively. For Cd and Cr, values varied from 0.060 to 0.56 and from 1.6 to 18, respectively. In the sediment fraction (μg g-1) values ranged from <LOD to 0.21 and 0.47 for Cd and Hg, respectively, from 11 to 18 for Cr and from 5.1 to 10 for Pb. Metals in fish muscle tissues (μg g-1) ranged from <LOD to 2.8, 0.53 and 0.52 for Cr, Hg and Pb, respectively. All Cd values were <LOD. This marine environment is potentially vulnerable to anthropogenic pollution since dissolved Cr, Hg and Pb values exceeded established environmental quality guidelines. Moreover, the sediment pollution indices indicated a deterioration of the estuarine environment, with Cr and Pb associated to anthropogenic impacts, whereas Hg could be occasionally associated with adverse biological effects. The biota to water accumulation factor (BWAF) reflected that fish species showed potential to accumulate Cr (BWAF: 73-510) and, especially, Hg (BWAF: 1000-8000). The high biota to sediment accumulation factor found for Hg (up to 9.8) indicated that fish species behaved as macro or micro concentrators. These results highlights the importance of a multi compartment approach in pollution assessment, with implicances for future works.
Collapse
Affiliation(s)
- Noelia S La Colla
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Carrindanga km. 7.5, Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina.
| | - Sandra E Botté
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Carrindanga km. 7.5, Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, Bahía Blanca, 8000, Argentina
| | - Pia Simonetti
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Carrindanga km. 7.5, Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina
| | - Vanesa L Negrin
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Carrindanga km. 7.5, Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, Bahía Blanca, 8000, Argentina
| | - Analía V Serra
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Carrindanga km. 7.5, Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina
| | - Jorge E Marcovecchio
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Carrindanga km. 7.5, Bahía Blanca, 8000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina; Universidad de la Fraternidad de Agrupaciones Santo Tomás de Aquino, Gascón 3145, Mar del Plata, 7600, Argentina; Universidad Tecnológica Nacional - FRBB, 11 de Abril 445, Bahía Blanca, 8000, Argentina; Academia Nacional de Ciencias Exactas, Físicas y Naturales (ANCEFN), Av. Alvear 1711, Ciudad Autónoma de Buenos Aires, 1014, Argentina
| |
Collapse
|
26
|
Annabi-Trabelsi N, Guermazi W, Karam Q, Ali M, Uddin S, Leignel V, Ayadi H. Concentrations of trace metals in phytoplankton and zooplankton in the Gulf of Gabès, Tunisia. MARINE POLLUTION BULLETIN 2021; 168:112392. [PMID: 33894587 DOI: 10.1016/j.marpolbul.2021.112392] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/29/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
The concentrations of four trace metals (Cd, Cu, Pb, and Zn) were investigated for the first time in phytoplankton, zooplankton, and the seawater samples collected from the coast of Gabès, Tunisia, Mediterranean Sea. For over 40 years, this coast has witnessed significant anthropogenic impacts form fertilizer processing. Results obtained for Cd, Cu, Pb, and Zn in seawater far exceed the concentration reported for other Mediterranean coastal waters, highlighting the Gulf of Gabès as a pollution hotspot. The average metals concentration was in the order Zn > Pb > Cu > Cd in water, and phytoplankton, whereas Pb > Zn > Cu > Cd in zooplankton. The biomagnification in phytoplankton and zooplankton for Zn, Pb, Cu, and Cd was 116, 56, 38, 31, and 127, 157, 30 and 27. The biomagnification of Zn and Pb was higher in zooplankton than phytoplankton, while Cu and Cd were higher in phytoplankton.
Collapse
Affiliation(s)
- Neila Annabi-Trabelsi
- Université de Sfax, Laboratoire Biodiversité Marine et Environnement (LR18ES30), Route soukra Km 3.5, B.P. 1171, CP 3000 Sfax, Tunisia
| | - Wassim Guermazi
- Université de Sfax, Laboratoire Biodiversité Marine et Environnement (LR18ES30), Route soukra Km 3.5, B.P. 1171, CP 3000 Sfax, Tunisia
| | - Qusaie Karam
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - Mohammad Ali
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - Saif Uddin
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait.
| | - Vincent Leignel
- Laboratoire Mer Molécules Santé EA2160 FR-CNRS 3473 IUML, Le Mans Université, France, Avenue O Messiaen, 72000, France
| | - Habib Ayadi
- Université de Sfax, Laboratoire Biodiversité Marine et Environnement (LR18ES30), Route soukra Km 3.5, B.P. 1171, CP 3000 Sfax, Tunisia
| |
Collapse
|
27
|
Strogyloudi E, Paraskevopoulou V, Campillo JA, Zervoudaki S, Bouga V, Catsiki VA, Dassenakis E, Krasakopoulou E. Metal and metallothionein levels in zooplankton in relation to environmental exposure: spatial and temporal variability (Saronikos Gulf, Greece). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28640-28657. [PMID: 33544340 DOI: 10.1007/s11356-021-12591-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Metal and metallothionein (MT) in mixed zooplankton were investigated as means of monitoring metal availability regarding environmental exposure. Spatial and temporal variability of Cd, Cu, Ni, Zn, Fe, Mn and Pb in zooplankton and seawater were studied in Saronikos Gulf (Aegean Sea, Eastern Mediterranean), once every second month during an annual cycle (2011-2012). Particulate organic carbon and chlorophyll α were also measured in seawater samples. Median zooplankton metal concentrations were 0.65, 32.4, 7.1, 864, 1420, 40.2 and 26.8 μg g-1 dw for Cd, Cu, Ni, Zn, Fe, Mn and Pb, respectively, and 109 μg g-1 ww for MTs. Metal levels in zooplankton and MTs were higher at sites influenced by human-derived pressures. Additionally, metal concentrations in pelagic fish flesh from the Greek MED-POL data base were used for bioconcentration and biomagnification factors calculation. Bioconcentration from water to zooplankton was higher than metal transfer from either seston to zooplankton or zooplankton to fish.
Collapse
Affiliation(s)
- Evangelia Strogyloudi
- Hellenic Centre for Marine Research, Institute of Oceanography, P.O. Box 712, Mavro Lithari, 19013, Anavissos, Greece.
| | - Vasiliki Paraskevopoulou
- Laboratory of Environmental Chemistry, Faculty of Chemistry, University of Athens, Panepistimioupoli Zografou, 15784, Athens, Greece
| | - Juan Antonio Campillo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía, Apdo. 22, C/Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain
| | - Soultana Zervoudaki
- Hellenic Centre for Marine Research, Institute of Oceanography, P.O. Box 712, Mavro Lithari, 19013, Anavissos, Greece
| | - Vasiliki Bouga
- Laboratory of Environmental Chemistry, Faculty of Chemistry, University of Athens, Panepistimioupoli Zografou, 15784, Athens, Greece
| | - Vasiliki Angelique Catsiki
- Hellenic Centre for Marine Research, Institute of Oceanography, P.O. Box 712, Mavro Lithari, 19013, Anavissos, Greece
| | - Emmanuil Dassenakis
- Laboratory of Environmental Chemistry, Faculty of Chemistry, University of Athens, Panepistimioupoli Zografou, 15784, Athens, Greece
| | - Evangelia Krasakopoulou
- Department of Marine Sciences, University of the Aegean, Lofos Panepistimiou, 81100, Mytilene, Greece
| |
Collapse
|
28
|
Canzanella S, Danese A, Mandato M, Lucifora G, Riverso C, Federico G, Gallo P, Esposito M. Concentrations of trace elements in tissues of loggerhead turtles (Caretta caretta) from the Tyrrhenian and the Ionian coastlines (Calabria, Italy). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26545-26557. [PMID: 33484457 DOI: 10.1007/s11356-021-12499-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Toxic trace elements from both, natural and anthropogenic origin, pose a threat to aquatic environments and marine wildlife due to their long-range transport, bioaccumulative nature, and biomagnification through the food chain. Being long-lived and migratory animals, sea turtles can be exposed to elevated levels of toxic elements, and are therefore considered sentinel species for chemical pollution. In this study, concentrations of trace elements (arsenic, cadmium, lead, mercury) were determined in tissues of 46 loggerhead sea turtles (Caretta caretta) stranded along Tyrrhenian and Ionian coasts of Calabria, in Southern Italy, between 2014 and 2020. Curved carapace length (CCL), curved carapace width (CCW), body mass (BM), and sex were determined and the correlations of these parameters with toxic elements concentrations were investigated. During necropsy, kidney, liver, and muscle tissues were collected and the concentration and distribution of metals determined. Muscle tissues showed the lowest toxic element burdens, except for As that showed the highest mean concentrations in this tissue. The kidney was the main accumulation organ for Cd, while similar levels of Hg and Pb were measured in kidney, liver, and muscle tissues. The risk assessment performed for Cd, Hg, and Pb in sea turtles' liver highlighted possible negative effects on sea turtles' health and the need for marine turtle toxicology researches. This is the first study reporting levels and distribution of toxic elements in tissues of Caretta caretta turtles from the Tyrrhenian and Ionian coasts of Calabria.
Collapse
Affiliation(s)
- Silvia Canzanella
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy.
| | - Amalia Danese
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
| | - Maria Mandato
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
| | - Giuseppe Lucifora
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
| | - Caterina Riverso
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
| | - Giovanni Federico
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
| | - Pasquale Gallo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
| | - Mauro Esposito
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
| |
Collapse
|
29
|
Liu Y, Xu J, Wang Y, Yang S. Trace metal bioaccumulation in oysters (Crassostrea gigas) from Liaodong Bay (Bohai Sea, China). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20682-20689. [PMID: 33410070 PMCID: PMC8099804 DOI: 10.1007/s11356-020-11968-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Cd, Cr, Cu, Pb, and Zn concentrations were measured in oysters (C. gigas), plankton, and seawater during spring, summer, and autumn in Liaodong Bay (Bohai Sea, China) to elucidate the effects of season, region, and oyster size on metal bioaccumulation in oysters. Metal concentrations were quantified via atomic absorption spectrophotometry. Our study determined that metal concentrations in oysters, plankton, and seawater were the highest in summer, whereas the lowest levels occurred in autumn. Regarding oyster sizes, the highest Pb levels occurred in C3-sized oysters (> 5-cm length), whereas the highest Cd, Cr, Cu, and Zn levels occurred in C2 (3-5-cm length) oysters. In contrast, the lowest Cu and Pb levels occurred in C1 (< 3-cm length) oysters, whereas the lowest mean Cd, Cr, and Zn concentrations were observed in C3 oysters. Significant differences in trace metal concentrations in the three sample types were observed in all sampling sites.
Collapse
Affiliation(s)
- Yonghua Liu
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, No. 40 Songpo Street Linghe District, Jinzhou, 121000 Liaoning Province China
| | - Jiayu Xu
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, No. 40 Songpo Street Linghe District, Jinzhou, 121000 Liaoning Province China
| | - Yong Wang
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, No. 40 Songpo Street Linghe District, Jinzhou, 121000 Liaoning Province China
| | - Song Yang
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, No. 40 Songpo Street Linghe District, Jinzhou, 121000 Liaoning Province China
| |
Collapse
|
30
|
Ju YR, Chen CF, Chen CW, Wang MH, Joung SJ, Yu CJ, Liu KM, Tsai WP, Vanson Liu SY, Dong CD. Profile and consumption risk assessment of trace elements in megamouth sharks (Megachasma pelagios) captured from the Pacific Ocean to the east of Taiwan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116161. [PMID: 33302089 DOI: 10.1016/j.envpol.2020.116161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Focusing on 27 rare filter-feeding megamouth sharks (Megachasma pelagios) captured as a by-catch of drift gillnet fishery in the Pacific Ocean to the east of Taiwan, this study analyzes the concentrations of 24 elements in their muscle, discusses the bioaccumulation of each element and the correlation between different elements, and assesses the potential health risks of consuming megamouth shark muscle. Among the 24 elements, mean concentrations of Ga, Ag, Li, Bi, Hg, Co, and Cd were relatively low ranging from 10-3 to 10-1 mg/kg, those of Pb, Ba, Mn, Ni, As, Cr, B, Sr, Cu, and Zn ranged from 10-1-101 mg/kg, and those of Fe, Ca, Al, K, Mg, Ti, and Na were relatively high ranging from 101 to 103 mg/kg. The toxic element content index was most significantly correlated with the concentration of Cu. Hence, this study recommends that the concentration of Cu could be used as an indicator of metal accumulation in megamouth shark muscle. The log bioconcentration factor (BCF) ranged from less than 0 to 7.85 in shark muscle. For elements with a concentration of less than 100 μg/L in seawater, the log BCF was inversely proportional to their concentration in seawater. According to the correlation analysis, the accumulation of elements in muscle of megamouth sharks is primarily affected by the concentrations of dissolved elements in seawater, except that the accumulation of Hg, As, Cu, Ti, Al, and Fe appears to be mainly affected by feeding behaviors. The assessment of the health risk of consuming megamouth shark muscle showed that its total hazard index was greater than 1. This suggests that the long-term or high-frequency consumption of megamouth shark muscle may cause health hazards due to the accumulation of trace elements, particularly those with a large contribution of health risk, including As, Hg, and Cu.
Collapse
Affiliation(s)
- Yun-Ru Ju
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan
| | - Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Ming-Huang Wang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Shoou-Jeng Joung
- Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Chi-Ju Yu
- Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Kwang-Ming Liu
- Institute of Marine Affairs and Resource Management, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Wen-Pei Tsai
- Department of Fisheries Production and Management, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Shang Yin Vanson Liu
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| |
Collapse
|
31
|
Wang Y, Tian C, Wang Z, He D, Wu N, Zhang H, He S, Pan L, Ying C. Health risk and temporal trend of dietary potentially toxic elements exposure in the residents of the Shenzhen metropolis, China, between 2005 and 2017: a risk assessment based on probabilistic estimation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:113-126. [PMID: 32748301 DOI: 10.1007/s10653-020-00675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Dietary potentially toxic elements (PTEs) exposure in developing countries is of great concern. Probabilistic estimation exhibits great superiority in risk assessment by dealing with the variability and uncertainty of the parameters. Here, a probabilistic estimation based on two dimensions, PTEs in foods and food intake, was conducted. A total of 13 foods were collected from Shenzhen markets during 2005-2017, and the concentrations of Pb, Cd, Hg, and As were detected. A total of 853 residents from 245 households participated in a total diet study. The mean concentrations of Pb, Cd, Hg and As were 0.046, 0.0196, 0.0038, and 0.029 mg kg-1 in cereals, 0.042, 0.0174, 0.0027, and 0.014 mg kg-1 in vegetables, 0.044, 0.0237, 0.0056, and 0.021 mg kg-1 in meat, and 0.081, 0.1035, 0.0257, and 0.680 mg kg-1 in aquatic products, respectively. The probability density function showed that the 95th percentiles of the Pb, Cd, Hg, As hazard quotients (HQ) and the hazard index (HI) were 0.68, 1.57, 0.38, 5.81 and 7.51, respectively. Cumulative probability and sensitivity analysis showed that cereals and vegetables contributed most to Pb and Cd exposure; aquatic products to Hg exposure; and cereals and aquatic products to As exposure. The results showed that Shenzhen residents were at risk of exposure to Cd, As, and four PTEs in combination, although a temporal decreasing trend was observed. The probabilistic estimation used here reveals a complete picture of multiple PTEs exposure risk and identifies major contributing food categories, providing a valuable means for risk assessment.
Collapse
Affiliation(s)
- Yue Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chong Tian
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhou Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Dongliang He
- Department of Nutritional Sciences, The Central Hospital of Hengyang City, Hengyang, 421000, Hunan, China
| | - Nannan Wu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Huimin Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Shuiqing He
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Liubo Pan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China.
| | - Chenjiang Ying
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
32
|
Biological Risk Assessment of Heavy Metals in Sediments and Health Risk Assessment in Marine Organisms from Daya Bay, China. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse9010017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The concentrations of heavy metals in sediments and marine organisms in Daya Bay were investigated, and the Monte Carlo method was used to analyze the uncertainty of the results of geo-accumulation characteristics and ecological and health risks. The mean concentrations of metal elements in sediments were in the following order: Zn > Cr > Cu > As > Cd > Hg, while those in marine organisms were Zn > Cu > As > Cr ≈ Cd > Hg. The geo-accumulation index (Igeo) indicated that the primary pollutant was Hg, with 5.46% moderately polluted, and 39.52% for unpolluted to moderately polluted. Potential ecological risks (RI) were between low and high risks, and the contributions of Hg, Cd, and As to ecological risks were 50.85%, 33.92%, and 11.47%, respectively. The total hazard coefficients (THQ) were less than 1, but on the basis of total carcinogenic risks (TCR), the probability of children and adults exceeded the unacceptable risk threshold of 22.27% and 11.19%, respectively. Sensitivity analysis results showed that the concentrations of carcinogenic elements contributed to risk in the order of As > Cd > Cr. Therefore, in order to effectively control heavy metals contamination in Daya Bay, it is necessary to strengthen the management of Hg, Cd, and As emissions.
Collapse
|
33
|
Zhang L, Yan W, Xie Z, Cai G, Mi W, Xu W. Bioaccumulation and changes of trace metals over the last two decades in marine organisms from Guangdong coastal regions, South China. J Environ Sci (China) 2020; 98:103-108. [PMID: 33097140 DOI: 10.1016/j.jes.2020.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Trace metal (Cr, Ni, Cu, Zn, Cd and Pb) exposures, distribution and bioaccumulation were investigated in marine organisms from Guangdong coastal regions, South China. The results showed that all of the selected metals were observed in marine organisms with a predomination of Cu and Zn. The metal exposure levels exhibited obvious variations between species with the decreasing order of crab>shellfish>shrimp>fish. The higher metals enrichment seen in shellfish and crab species primarily attributed to their living habits and the higher sediment background values of trace metals. Endpoint bioaccumulation factor (BAFfd) was used to characterize the bioaccumulation potentials of marine organisms to trace metals, of which Cu and Zn were the most accumulated elements. The exposure of trace metals in the cultured organisms was far lower than those in wild marine organisms, which is probably due to the effect of growth dilution. Comparisons with previous studies demonstrated that the concentration profiles of most trace metals declined over the last one to two decades, except Cu, that increased indistinctively.
Collapse
Affiliation(s)
- Lulu Zhang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Wen Yan
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Zhiyong Xie
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Geesthacht 21502, Germany
| | - Guanqiang Cai
- Guangzhou Marine Geological survey, Guangzhou 510760, China
| | - Wenying Mi
- MINJIE Institute of Environmental Science and Health Research, Geesthacht 21502, Germany
| | - Weihai Xu
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
34
|
Hidayati NV, Prudent P, Asia L, Vassalo L, Torre F, Widowati I, Sabdono A, Syakti AD, Doumenq P. Assessment of the ecological and human health risks from metals in shrimp aquaculture environments in Central Java, Indonesia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41668-41687. [PMID: 32696401 DOI: 10.1007/s11356-020-09967-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
The occurrence and contamination level of seven important toxic metals (Cd, Cu, Co, Cr, Hg, Pb, and Zn) and three additional metals (Al, Fe, and Mn) in the water, sediment, and shrimp muscle in aquaculture areas located in Central Java, Indonesia, were investigated. The results suggest that the majority of metals have higher concentrations in the inlet followed by the outlet and ponds. Cd dissolved in the waters exhibited the highest level in Pekalongan (3.15 ± 0.33 μg L-1). Although Pb was not detected in the water, it was detected in the sediment, and the concentration ranged from 7.6 to 15.40 mg kg-1 dw. In general, the heavy metal concentrations in the sediments were found to decrease in the sequence Al > Fe > Mn > Zn > Cr > Cu > Co > Pb. Concentrations below the effects range low level based on the Canadian sediment quality guidelines were found for Cr, Cu, Pb, and Zn, whereas moderate sediment pollution (25-75 mg kg-1 dw) was observed for Cr (all regions), Cu (except in the Pekalongan region), and Zn (Brebes and Tegal regions) according to the US EPA standard. The status of the waters was evaluated by calculating a pollution index derived mostly from Mn and Zn. The ecological risk (geoaccumulation index (Igeo), contamination factor (CF), pollution load index (PLI), and potential ecological risk index (ERI)) determined in the sediments indicated that all studied areas had low to moderate contamination. The concentrations of all metals in shrimp were generally below the maximum limits for seafood, except for Zn (in all stations), Pb, and Cr (Tegal and Pekalongan). The hazard index values for metals indicated that consuming shrimp would not have adverse effects on human health.
Collapse
Affiliation(s)
- Nuning Vita Hidayati
- Aix-Marseille University, CNRS, LCE, Marseille, France
- Fisheries and Marine Science Faculty, Jenderal Soedirman University, Kampus Karangwangkal, Jl. dr. Suparno, Purwokerto, 53123, Indonesia
- Faculty of Fisheries and Marine Sciences, Diponegoro University, Jl. Prof. H. Soedharto, SH, Tembalang, Semarang, 50275, Indonesia
- Center for Maritime Biosciences Studies - Institute for Sciences and Community Service, Jenderal Soedirman University, Kampus Karangwangkal, Jl. dr. Suparno, Purwokerto, 53123, Indonesia
| | | | - Laurence Asia
- Aix-Marseille University, CNRS, LCE, Marseille, France
| | | | - Franck Torre
- Aix-Marseille University, CNRS, IMBE, IRD, Avignon Université, Marseille, France
| | - Ita Widowati
- Faculty of Fisheries and Marine Sciences, Diponegoro University, Jl. Prof. H. Soedharto, SH, Tembalang, Semarang, 50275, Indonesia
| | - Agus Sabdono
- Faculty of Fisheries and Marine Sciences, Diponegoro University, Jl. Prof. H. Soedharto, SH, Tembalang, Semarang, 50275, Indonesia
| | - Agung Dhamar Syakti
- Center for Maritime Biosciences Studies - Institute for Sciences and Community Service, Jenderal Soedirman University, Kampus Karangwangkal, Jl. dr. Suparno, Purwokerto, 53123, Indonesia.
- Marine Science and Fisheries Faculty, Raja Ali Haji Maritime University, Jl. Politeknik, Senggarang, Tanjungpinang, Riau Islands Province, 29100, Indonesia.
| | | |
Collapse
|
35
|
Zhu G, Noman MA, Narale DD, Feng W, Pujari L, Sun J. Evaluation of ecosystem health and potential human health hazards in the Hangzhou Bay and Qiantang Estuary region through multiple assessment approaches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114791. [PMID: 32428818 DOI: 10.1016/j.envpol.2020.114791] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/05/2020] [Accepted: 05/09/2020] [Indexed: 05/28/2023]
Abstract
Anthropogenic pollution has become a major issue governing ecosystem and human health risks. The Hangzhou Bay and Qiantang Estuary region are facing unusual perturbation due to rapid development along the embayment in recent decades. This study evaluated the organic and inorganic pollutants in water, sediment, and from the muscles of higher trophic organisms (fish, crustacean, shellfish) during four different seasons (in 2018-2019) along the Qiantang Estuary and Hangzhou Bay region to assess the ecosystem health and potential hazard status. Dissolved inorganic phosphate and nitrogen were the major pollutants in this area, which led to severe eutrophication throughout the study period. Eutrophication signals coincided well with the phytoplankton abundance, which revels the control of nutrient enrichment on the spatio-temporal distribution of phytoplankton. Food availability, along with salinity and temperature, drives the zooplankton population distribution. Heavy metals were not the issue of water quality as their concentrations meet the national and international baseline standards. However, in the sediments, Copper (Cu) and Arsenic (As) concentrations were higher than the baseline value. Towards the northwestern part of the Qiantang Estuary, the overall potential risk index of sediment with higher Cadmium (Cd) and Mercury (Hg) depicted delicate condition with moderate risk for the sediment contamination. The As concentration in fishes was close to the baseline standards limit irrespective of low As values within water and sediments. The higher concentrations of Zinc (Zn) and As in shellfish muscles, whereas other metals were within the limit of baseline standard in all the organisms. However, the hazard analysis (Targeted hazard quotient, THQ) values for the seafood consumption to human health indicates the potentially threatening consequences of shellfish and crustacean consumption on human health.
Collapse
Affiliation(s)
- Genhai Zhu
- Key Laboratory of Marine Ecosystem Dynamics and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Md Abu Noman
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China; Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Dhiraj Dhondiram Narale
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Weihua Feng
- Key Laboratory of Marine Ecosystem Dynamics and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Laxman Pujari
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jun Sun
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China; Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| |
Collapse
|
36
|
Lopes TOM, Passos LS, Vieira LV, Pinto E, Dorr F, Scherer R, de Andrade Salustriano N, Carneiro MTWD, Postay LF, Gomes LC. Metals, arsenic, pesticides, and microcystins in tilapia (Oreochromis niloticus) from aquaculture parks in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20187-20200. [PMID: 32239400 DOI: 10.1007/s11356-020-08493-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
The production of Nile tilapia (Oreochromis niloticus) in Brazil exhibits the highest growth rate in the world and represents approximately 45% of the total fish production. The objective of the present study was to assess the risk for human health due the consumption of tilapia farmed in net cages in eight aquaculture parks in Brazil. The concentrations of pesticides (40 compounds), metals (Mn, Ni, Zn, Cd, Pb, and Sn), arsenic, and cyanotoxins (microcystins) were evaluated in 16 fish from each park. Among analyzed pesticides, pyraclostrobin (0.18-0.32 mg/kg) and fenthion (0.0026-0.0037 mg/kg) exhibited values above the limit of quantification in the tilapia from Aracoiaba, Castanhão, and Ilha Solteira. The highest concentrations of As (0.44 μg/g) in fish tissues were found in Juara, Mn (0.21 μg/g) in Castanhão, and Zi (11.5 μg/g) were found in Três Marias. Furnas and Linhares exhibited the lowest metal concentrations. The estimated daily intake of muscle by the average Brazilian with 70 kg body weight is below the reference dose for all studied metals in all parks. Total free microcystins showed an accumulation pattern (muscle < gill < liver). The highest concentration in muscle was found in Castanhão (1043 μg/kg) samples. The results showed that fish exhibited metal, As, and pesticide tolerable daily intake (TDI) below the limit and pose low risk for human consumption. Otherwise, TDI for microcystins in fish of all studied parks was above the maximum level recommended by the World Health Organization, indicating that there exists a toxicity risk of fish consumption.
Collapse
Affiliation(s)
- Taciana Onesorge Miranda Lopes
- Laboratório de Ictiologia Aplicada - LABPEIXE, Universidade Vila Velha, Complexo de Biopráticas - Rua José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-770, Brazil
| | - Larissa Souza Passos
- Laboratório de Ictiologia Aplicada - LABPEIXE, Universidade Vila Velha, Complexo de Biopráticas - Rua José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-770, Brazil
| | - Luiza Valli Vieira
- Laboratório de Espectrometria Atômica - LEA/LABPETRO, Departamento de Química, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514 - Goiabeiras, Vitoria, ES, 29075-910, Brazil
| | - Ernani Pinto
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo - FCF-USP, Av. Prof. Lineu Prestes, 580 - Bloco 17, Sao Paulo, SP, 05508-000, Brazil
| | - Fabiane Dorr
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo - FCF-USP, Av. Prof. Lineu Prestes, 580 - Bloco 17, Sao Paulo, SP, 05508-000, Brazil
| | - Rodrigo Scherer
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Vila Velha - Rua José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-770, Brazil
| | - Nathacha de Andrade Salustriano
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Vila Velha - Rua José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-770, Brazil
| | - Maria Tereza Weitzel Dias Carneiro
- Laboratório de Espectrometria Atômica - LEA/LABPETRO, Departamento de Química, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514 - Goiabeiras, Vitoria, ES, 29075-910, Brazil
| | - Lais Frigini Postay
- Laboratório de Ictiologia Aplicada - LABPEIXE, Universidade Vila Velha, Complexo de Biopráticas - Rua José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-770, Brazil
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Vila Velha - Rua José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-770, Brazil
| | - Levy Carvalho Gomes
- Laboratório de Ictiologia Aplicada - LABPEIXE, Universidade Vila Velha, Complexo de Biopráticas - Rua José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-770, Brazil.
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Vila Velha - Rua José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-770, Brazil.
| |
Collapse
|
37
|
Ji Y, Zhang J, Liu Y, Zhou J, Wu N, Zhang H. Environmental behavior of and gastropod biomarker response to trace metals from a backwater area of Xian'nv lake. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110381. [PMID: 32145529 DOI: 10.1016/j.ecoenv.2020.110381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Combined with sediment pollutant analysis, the gastropod Cipangopaludina cahayensis was chosen as an indicator organism to evaluate the environmental behavior of trace metals and the aquatic ecological risk that they present in a backwater area of Xian'nv Lake. Based on hydrological characteristics, 24 sampling sites representing the main stream (MS), tributaries (TR), lake area (LA) and lake tributaries (LT) were collected. The results revealed that cadmium (Cd) was the main pollutant and that it significantly accumulated in sediments of the research area. Based on the pollutant concentrations, the degree of Cd pollution was ranked in the following order: LA > MS > TR > LT. Several intersections between the rivers and Xian'nv Lake, including LA1, LA7 and LA 10, were observed to have higher Cd deposition. There was a significant difference in the spatial distribution of pollutants, which resulted in a higher accumulation of trace metals in the backwater area and its tributary. The Cd content in the visceral sac of C. cahayensis was positively correlated with the concentration of heavy metals in the sediment. The response of multiple antioxidant biomarkers, including superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST), as well as the glutathione (GSH) content and the level of by-products of lipid peroxidation (TBARS), in C. cahayensis revealed a potential relationship to the environmental behavior of the pollutants. By combining the different biomarkers responses, the integrated biomarker response index (IBR) corresponded well with the pollution distribution characteristics in different areas.
Collapse
Affiliation(s)
- Yong Ji
- College of Water Conservancy and Ecological Engineering, Nanchang Institute of Technology, Nanchang, 330099, China.
| | - Jie Zhang
- College of Water Conservancy and Ecological Engineering, Nanchang Institute of Technology, Nanchang, 330099, China.
| | - Ye Liu
- College of Water Conservancy and Ecological Engineering, Nanchang Institute of Technology, Nanchang, 330099, China
| | - Juan Zhou
- College of Water Conservancy and Ecological Engineering, Nanchang Institute of Technology, Nanchang, 330099, China
| | - Naichen Wu
- Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, 8000, Aarhus C, Denmark
| | - Hao Zhang
- Faculty of Science and Technology, Kochi University, Monobe B200, Nankoku, Kochi, 783-8502, Japan
| |
Collapse
|
38
|
Brinza L, Geraki K, Cojocaru C, Holdt SL, Neamtu M. Baltic Fucus vesiculosus as potential bio-sorbent for Zn removal: Mechanism insight. CHEMOSPHERE 2020; 238:124652. [PMID: 31473524 DOI: 10.1016/j.chemosphere.2019.124652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
This research aimed to find the best phenotype of the brown algae Fucus vesiculosus (kelp) which has the greater potential to become a sorption byproduct for Zn removal from contaminated waters. Thus, the Zn uptake capacity and sorption mechanisms of the kelp collected from the Baltic Sea shore was, for the first time, investigated under various conditions, and compared to the phenotype habiting on the Irish Sea shore. Sorption studies were performed investigating the effect of algal dosage, Zn sources as well as algal harvesting time of the year on Zn uptake capacity. The results suggested that the Baltic algae is a better bio-sorbent for Zn uptake. Sorption mechanisms were studied by employing various indirect and direct approaches, more importantly, including high resolution synchrotron X-Ray Fluorescence and X-Ray Absorption Spectroscopy (XAS) and molecular modelling (MM). The results revealed that alginate and cellulose are among the main polysaccharide bonding Zn at algal surface, via coordination with O atoms from carboxyl and hydroxyl groups. XAS results giving direct measurements of Zn bonding environment on algal surface are supported by MM outputs and suggested that Zn is surrounded by ca. 5 O atoms at interatomic distances varying from 1.94 to 2.02 Å. The results contribute to understanding sorption mechanisms which can further lead to finding the best eluent for Zn desorption from the used biomass, bio sorbent reconditioning and reuse in multiple sorption desorption cycles as well as process optimization before industrial scaling up.
Collapse
Affiliation(s)
- Loredana Brinza
- "Alexandru Ioan Cuza" University of Iasi, Institute of Interdisciplinary Research - Science Research Department, Iasi, 700107, Romania.
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, Oxfordshire, United Kingdom.
| | - Corneliu Cojocaru
- "Petru Poni" Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, Iasi, 700487, Romania.
| | - Susan Løvstad Holdt
- Technical University of Denmark, National Food Institute, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
| | - Mariana Neamtu
- "Alexandru Ioan Cuza" University of Iasi, Institute of Interdisciplinary Research - Science Research Department, Iasi, 700107, Romania.
| |
Collapse
|
39
|
Park J, Lee S, Lee E, Noh H, Seo Y, Lim H, Shin H, Lee I, Jung H, Na T, Kim SD. Probabilistic ecological risk assessment of heavy metals using the sensitivity of resident organisms in four Korean rivers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109483. [PMID: 31362159 DOI: 10.1016/j.ecoenv.2019.109483] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/25/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
The environment has been continuously exposed to heavy metals by various routes, from both natural and artificial sources. In particular, heavy metals in water can affect aquatic organisms adversely, even at very low concentrations, and can lead to the disturbance of the ecosystem balance and biodiversity. Ecological risk assessments are conducted to protect the environment from such situations, primarily by deriving the predicted no-effect concentration (PNEC) from the species sensitivity distribution (SSD). This study developed the SSDs based on the species living in Korean freshwater for four heavy metals including cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn). The species compositions of the SSDs were examined, and three types of PNECs were derived by applying different assessment factors (AF). In addition, the occurrence and concentrations of heavy metals in Korean rivers were investigated, and the ecological risk assessment was carried out to compare the SSDs with the environmental concentrations. The SSDs were developed using a sufficient number of species, but the missing data of plants and insects provided an incomplete species composition. The results show that Cd and Pb in the environmental concentrations of rivers would not cause any risk to aquatic organisms from the derived PNEC. However, some organisms might be adversely affected by the concentrations of Zn, and a small amount of risk was expected under the conservative PNEC. The distribution of Cu in the rivers was not considered to be safe for aquatic organisms because the average environmental concentrations potentially affected the proportion of the SSD, and the environmental concentrations exceeded the PNECs. The concentrations of Cu and Zn in industrial waters indicated a considerable risk to aquatic organisms, and the probability of exceeding the PNECs appeared to be quite high. Therefore, this study indicates that additional actions and parallel field studies are required based on the risk posed to aquatic organisms by Cu and Zn in four Korean rivers.
Collapse
Affiliation(s)
- Jinhee Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Sunhong Lee
- Water Quality Research Center, K-water Convergence Institute, 200 Sintanjin-ro, Daedeok-gu, Daejeon, 34350, Republic of Korea
| | - Eunhee Lee
- Department of Environmental Engineering, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do, 26339, Republic of Korea
| | - Hyeran Noh
- Han-river Environment Research Center, National Institute of Environmental Research, 42 Dumulmeori-gil 68beon-gil, Yangseo-myeon, Yangpyeong-gun, Gyeonggi-do, 12585, Republic of Korea
| | - Yongchan Seo
- Department of Environmental Engineering, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do, 26339, Republic of Korea
| | - HyunHee Lim
- Drug Abuse Research Center, Kongju National University, 56 Gongjudaehak-ro, Kongju-si, Chungcheongnam-do, 32588, Republic of Korea
| | - HoSang Shin
- Department of Environmental Education, Kongju National University, 56 Gongjudaehak-ro, Kongju-si, Chungcheongnam-do, 32588, Republic of Korea
| | - Injung Lee
- Nakdong River Environment Research Center, National Institute of Environment Research, 24 Pyeongni 1-gil, Dasan-myeon, Goryeong-gun, Gyeongsangbuk-do, 40103, Republic of Korea
| | - Heejung Jung
- Yeongsan River Environment Research Center, 5 Cheomdangwagi-ro 208 beon-gil, Buk-gu, Gwangju, 61011, Republic of Korea
| | - Taewoong Na
- Yeongsan River Environment Research Center, 5 Cheomdangwagi-ro 208 beon-gil, Buk-gu, Gwangju, 61011, Republic of Korea
| | - Sang D Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
40
|
Yang HZ, Gu WJ, Chen W, Hwang JS, Wang L. Metal binding characterization of heterologously expressed metallothionein of the freshwater crab Sinopotamon henanense. CHEMOSPHERE 2019; 235:926-934. [PMID: 31299706 DOI: 10.1016/j.chemosphere.2019.06.097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 06/10/2023]
Abstract
We characterized the metal tolerance of recombinant strains harboring metallothionein from the freshwater crab Sinopotamon henanense (ShMT) in vivo and metal binding properties of ShMT purified in vitro. The recombinant strains harboring ShMT were exposed to 0.1 mM Cd2+, 0.3 mM Cu2+, 0.5 mM Pb2+, and 0.8 mM Zn2+. The growth curves and spot assays of recombinant strains and the contents of heavy metal ions were analysed in the media supplemented with above metal ions provided to recombinant E. coli synthesis. The structural characteristics of the Cd-, Cu-, Pb-, and Zn-ShMT were determined through ultraviolet spectroscopy (UV-vis), circular dichroism (CD), and isothermal titration calorimetry (ITC). The in vivo results showed that, compared to control strains, recombinant strains tolerated Cd2+, Cu2+, Pb2+, and Zn2+. Furthermore, the contents of Cd2+ and Pb2+ in media decreased substantially. In vitro and the Cd-ShMT had a higher degree of folding compactness in solution. 5,5'-Dithiobis-(2-nitrobenzoic) acid (DTNB) reaction and ITC results demonstrated that ShMT yielded Cd6-, Cu7-, and Pb6-ShMT. The binding stability order was Cu-ShMT > Cd-ShMT > Pb-ShMT > Zn-ShMT. Overall, ShMT is a canonical crustacean MT and is defined as a Cd-specific MT isoform that functions mainly in a detoxifying Cd2+ and Pb2+ and in regulating Zn2+ homeostasis in S. henanense. This research on the metal binding properties of ShMT provides a better understanding of the physiological function of ShMT reducing heavy metal bioavailability and by regulating essential trace metals.
Collapse
Affiliation(s)
- Hui Zhen Yang
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, 030006, China
| | - Wen J Gu
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, 030006, China
| | - Wei Chen
- Medical School, Duke University, USA
| | - Jiang S Hwang
- School of Life Science, Taiwan Ocean University, Taiwan
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, 030006, China.
| |
Collapse
|
41
|
Ju YR, Lo WT, Chen CF, Chen CW, Huang ZL, Dong CD. Effect of metals on zooplankton abundance and distribution in the coast of southwestern Taiwan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33722-33731. [PMID: 29730755 DOI: 10.1007/s11356-018-2169-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Three transects were established along the southwestern coast of Taiwan; transects from north to south were respectively extended from the Kaohsiung Harbor, Kaoping River estuary, and Fangshan River estuary. Six metals including Pb, Cd, Cr, Cu, Zn, and Ni were analyzed in the zooplankton and seawater samples. A total of 24 groups of zooplankton were identified. Calanoid was the frequently collected group and accounted for greater than 40% of the relative abundance of zooplankton. Results showed that metal concentrations in seawater close to coast were higher than those in the outside of transect. The mean of metal concentrations in zooplankton followed the hierarchy: Zn > Cu > Pb > Ni > Cr > Cd. On the whole, metal concentrations in zooplankton from sampling sites in the coastal region were observed to be higher than those in the offshore region. The bioconcentration factor of zooplankton ranged within 103-105 for all studied metals and indicated that zooplankton in the seawater of southwestern Taiwan can accumulate metal even at background concentrations of metals. The value of diversity indices exhibited an increase in the distance to the coast, whereas the abundance showed no significant correlation with that. Consequently, the lowest mean abundance of zooplankton and the highest average metal bioaccumulation were found in transect outside Kaohsiung Harbor, representing that Kaohsiung Harbor has the contamination of anthropogenic metals that results in the impact on zooplankton.
Collapse
Affiliation(s)
- Yun-Ru Ju
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Wen-Tseng Lo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Zhi-Ling Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| |
Collapse
|
42
|
Xu Y, Ren C, Han D, Gong X, Zhang X, Huang H, Jiang F, Cui Y, Zheng W, Tian X. Analysis of amantadine in Laminaria Japonica and seawater of Daqin Island by ultra high performance liquid chromatography with positive electrospray ionization tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1126-1127:121697. [PMID: 31387011 DOI: 10.1016/j.jchromb.2019.06.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/04/2019] [Accepted: 06/20/2019] [Indexed: 11/25/2022]
Abstract
A sensitive and validated method for determination of amantadine in Laminaria Japonica and seawater was established using ultra high performance liquid chromatography with positive electrospray ionization tandem spectrometry (UHPLC-ESI-MS/MS). Laminaria Japonica was extracted with acetonitrile containing formic acid (1%), then purified with 10.0 g anhydrous sodium sulfate, 0.50 g C18 and 0.50 g PSA powder. Seawater added 10.0 mL 0.20 mol/L hydrochloric acid was purified with MCX solid phase extraction (SPE) cartridge. After extraction and purification, the supernatant of Laminaria Japonica and eluate of seawater were evaporated to nearly dry under a gentle stream of nitrogen at 40 °C. Acetonitrile-0.1% formic acid in water (3/7, v/v) was adjusted to 1.00 mL final volume. An aliquot (10 μL) was injected into the C18 column for separation with the mobile phase of acetonitrile and 0.1% formic acid in water at 0.25 mL·min-1. Calibration curves were linear ranged from 1.00 ng/mL to 20.0 ng/mL. Mean recoveries were 73.5% to 95.8%, and limit of detection (LOD) and quantification (LOQ) were 0.50 μg/kg and 1.00 μg/kg for Laminaria Japonica. Mean recoveries were 75.8% to 93.4%, and LOD and LOQ were 0.50 ng/L and 1.00 ng/L for seawater. Based on the method above, Laminaria Japonica and seawater in Daqin Island were analyzed in February to June continuously, lgBAF3.71 (bioaccumulation factor), indicating a bioenrichment effect.
Collapse
Affiliation(s)
- Yingjiang Xu
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Chuanbo Ren
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Dianfeng Han
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Xianghong Gong
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Xiuzhen Zhang
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Hui Huang
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Fang Jiang
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Yanmei Cui
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Weiyun Zheng
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Xiuhui Tian
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China.
| |
Collapse
|
43
|
Lao Q, Su Q, Liu G, Shen Y, Chen F, Lei X, Qing S, Wei C, Zhang C, Gao J. Spatial distribution of and historical changes in heavy metals in the surface seawater and sediments of the Beibu Gulf, China. MARINE POLLUTION BULLETIN 2019; 146:427-434. [PMID: 31426177 DOI: 10.1016/j.marpolbul.2019.06.080] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/12/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
To study the impact of rapid industrialization and urbanization in Guangxi Province on the coastal environment in recent years, seven metals (Hg, Cu, Pb, Cd, Cr, Zn and As) were investigated in the surface seawater and sediments of the northern Beibu Gulf. The levels of the metals were lower than in other regions in China, but Hg, Cu and Cd showed a significant increasing trend in both seawater and sediments over the past 20 years. Higher levels were consistently observed in the nearshore area, particularly in the northwest, which may be related to the rapid industrial development in coastal areas. Correlation and principal component analyses suggested that both terrestrial inputs and biological processes influenced the distribution of metals. In addition, the higher risk observed for Hg and Cu may be largely influenced by the increasing trend in these metals in the Beibu Gulf.
Collapse
Affiliation(s)
- Qibin Lao
- Marine Environmental Monitoring Centre of Beihai, State Oceanic Administration, Beihai 536000, China
| | - Qizhong Su
- Marine Environmental Monitoring Centre of Beihai, State Oceanic Administration, Beihai 536000, China
| | - Guoqiang Liu
- Marine Environmental Monitoring Centre of Beihai, State Oceanic Administration, Beihai 536000, China.
| | - Youli Shen
- Marine Environmental Monitoring Centre of Beihai, State Oceanic Administration, Beihai 536000, China
| | - Fajin Chen
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Province Key Laboratory for Coastal Ocean Variation and Disaster Prediction, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xuetie Lei
- Marine Environmental Monitoring Centre of Beihai, State Oceanic Administration, Beihai 536000, China
| | - Shangmin Qing
- Marine Environmental Monitoring Centre of Beihai, State Oceanic Administration, Beihai 536000, China
| | - Chunlei Wei
- Marine Environmental Monitoring Centre of Beihai, State Oceanic Administration, Beihai 536000, China
| | - Chunhua Zhang
- Marine Environmental Monitoring Centre of Beihai, State Oceanic Administration, Beihai 536000, China
| | - Jingsong Gao
- Nanning Normal University, Key Laboratory of Environmental Change and Resource Use in Beibu Gulf, Ministry of Education, Nanning 530001, China.
| |
Collapse
|
44
|
Wang Z, Xu J, Liu Y, Li Z, Xue Y, Wang Y, Xue C. Arsenic Speciation of Edible Shrimp by High-Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry (HPLC-ICP-MS): Method Development and Health Assessment. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1608224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Zhipeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Yanjun Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Yong Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, China
| |
Collapse
|
45
|
Gu YG, Ning JJ, Ke CL, Huang HH. Bioaccessibility and human health implications of heavy metals in different trophic level marine organisms: A case study of the South China Sea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:551-557. [PMID: 30077152 DOI: 10.1016/j.ecoenv.2018.07.114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the total concentrations and bioaccessibility of heavy metals in edible tissues and trophic levels of 12 marine organism species in the South China Sea. The results were used to estimate health risks to humans. Of the heavy metals detected, nickel (Ni) was present at the highest concentrations, followed in descending, order by iron (Fe), zinc (Zn), manganese (Mn), chromium (Cr), copper (Cu), cadmium (Cd) and lead (Pb). Cd had the highest percentage bioaccessibility (61.91%). There were no correlations between log-transformed total metal concentrations and trophic level values, nor between log-transformed bioaccessibility metal concentrations and trophic level values. This indicates there is no biomagnification among these trace metals. The carcinogenic risk probabilities for Pb and Cr to urban and rural residents were below the acceptable level (< 1 × 10-4). The target hazard quotient (THQ) value for each metal and the total THQ values for all metals studied indicated no significant risk of non-carcinogenic effects to urban and rural residents from consuming marine organisms from the South China Sea.
Collapse
Affiliation(s)
- Yang-Guang Gu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China; Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, Guangzhou 510300, China.
| | - Jia-Jia Ning
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou 510300, China
| | - Chang-Liang Ke
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, Guangzhou 510300, China
| | - Hong-Hui Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China; Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, Guangzhou 510300, China
| |
Collapse
|
46
|
Varotsos CA, Krapivin VF. Pollution of Arctic Waters Has Reached a Critical Point: an Innovative Approach to This Problem. WATER, AIR, & SOIL POLLUTION 2018; 229:343. [DOI: 10.1007/s11270-018-4004-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/01/2018] [Indexed: 06/16/2023]
|