1
|
Hassan M, Wang B, Wu P, Wang S. Engineered biochar for in-situ and ex-situ remediation of contaminants from soil and water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177384. [PMID: 39510289 DOI: 10.1016/j.scitotenv.2024.177384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
Tailoring physical and chemical properties of biochar enhances its selectivity, treatability, and efficiency in contaminant remediation. Thus, engineered biochar has emerged as a promising remedy for both in-situ and ex-situ remediation of polluted soil and water. Several factors influence the effectiveness of engineered biochar, including feedstock sources, pyrolysis conditions, surface functionalization, mode of application, and site characteristics. The advantages and disadvantages of different modification approaches to engineered biochar and their specific treatability for in-situ and ex-situ remediation are obscure and must be adequately addressed. This review critically evaluates the application of engineered biochar for on/off-spot contamination management, taking into account the long-term stability and biocompatibility prospects. The properties of engineered biochar resulting from modification with clay minerals, nanoparticles, polymers, surfactants, and oxidants/reductants were critically reviewed. Recent progress and advances in remediation mechanisms and modes of application were elaborated for the effective removal of organic and inorganic contaminants, including heavy metals, pesticides, dyes, polycyclic aromatic hydrocarbons, per- and poly-fluoroalkyl substances, and agrochemicals. Several crucial parameters influence in-situ remediation, including the distribution of contaminants, background electrolytes, hydraulic conductivity, as well as dispersion and stability of adsorbents. Ex-situ remediation of pollutants relies heavily on adsorption or degradation kinetics, background electrolytes, adsorbent dose, and pollutant concentrations. In addition, factors restricting the application of engineered biochar were highlighted for long-term sustainable contaminant management and maintaining low environmental impact. Finally, the challenges and future perspectives of utilizing engineered biochar for field-scale demonstration of contaminated sites are proposed.
Collapse
Affiliation(s)
- Masud Hassan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
2
|
Shao X, Liang W, Gong K, Qiao Z, Zhang W, Shen G, Peng C. Effect of biodegradable microplastics and Cd co-pollution on Cd bioavailability and plastisphere in soil-plant system. CHEMOSPHERE 2024; 369:143822. [PMID: 39608653 DOI: 10.1016/j.chemosphere.2024.143822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Biodegradable plastics (BPs) are regarded as ecomaterials and are emerging as a substitute for traditional non-degradable plastics. However, the information on the interaction between biodegradable microplastics (BMPs) and cadmium (Cd) in agricultural soil is still limited. Here, lettuce plants were cultured in BMPs (polylactic acid (PLA) MPs and poly(butylene-adipate-co-terephthalate) (PBAT) MPs) and Cd co-polluted soil for 35 days. The results show that diffusive gradient in thin films technique (DGT) but not diethylenetriaminepentaacetic acid (DTPA) extraction method greatly improved the prediction reliability of Cd bioavailability in non-rhizosphere soil treated with BMPs (R2 = 0.902). BMPs increased the Cd bioavailability in non-rhizosphere soil indirectly by decreasing soil pH, cation exchange capacity (CEC), and dissolved organic carbon (DOC), rather than by directly adsorbing Cd on their surface. PLA MPs incubated in rhizosphere soil showed more considerable degradation with extremely obvious cavities and the fracture of ester functional groups on their surface than PBAT MPs. BMPs could provide ecological niches to colonize and induce microorganisms associated with BMPs' degradation to occupy a more dominant position. In addition, Cd only affected the composition and function of microbial communities in soil but not on BMPs. However, co-exposure to BMPs and Cd significantly reduced the degrees of co-occurrence network of fungal communities on PLA MPs and PBAT MPs by 37.7% and 26.7%, respectively, compared to single exposure to BMPs.
Collapse
Affiliation(s)
- Xuechun Shao
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyu Liang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailin Gong
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhihua Qiao
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Genxiang Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China; School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
3
|
Hei E, He M, Zhang E, Yu H, Chen K, Qin Y, Zeng X, Zhou Z, Fan H, Shangguan Y, Wang L. Risk assessment of antimony-arsenic contaminated soil remediated using zero-valent iron at different pH values combined with freeze-thaw cycles. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:448. [PMID: 38607467 DOI: 10.1007/s10661-024-12601-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
Soil in mining wastelands is seriously polluted with heavy metals. Zero-valent iron (ZVI) is widely used for remediation of heavy metal-polluted soil because of its excellent adsorption properties; however, the remediation process is affected by complex environmental conditions, such as acid rain and freeze-thaw cycles. In this study, the effects of different pH values and freeze-thaw cycles on remediation of antimony (Sb)- and arsenic (As)-contaminated soil by ZVI were investigated in laboratory simulation experiments. The stability and potential human health risks associated with the remediated soil were evaluated. The results showed that ZVI has a significant stabilizing effect on Sb and As in both acidic and alkaline soils contaminated with dual levels of Sb and As, and the freeze-thaw process in different pH value solution systems further enhances the ability of ZVI to stabilize Sb and As, especially in acidic soils. However, it should be noted that apart from the pH=1.0 solution environment, ZVI's ability to stabilize As is attenuated under other circumstances, potentially leading to leaching of its unstable form and thereby increasing contamination risks. This indicates that the F1 (2% ZVI+pH=1 solution+freeze-thaw cycle) processing exhibits superior effectiveness. After F1 treatment, the bioavailability of Sb and As in both soils also significantly decreased during the gastric and intestinal stages (about 60.00%), the non-carcinogenic and carcinogenic risks of Sb and As in alkaline soils are eliminated for children and adults, with a decrease ranging from 60.00% to 70.00%, while in acidic soil, the non-carcinogenic and carcinogenic risks of As to adults and children is acceptable, but Sb still poses non-carcinogenic risks to children, despite reductions of about 65.00%. These findings demonstrate that soil pH is a crucial factor influencing the efficacy of ZVI in stabilizing Sb and As contaminants during freeze-thaw cycles. This provides a solid theoretical foundation for utilizing ZVI in the remediation of Sb- and As-contaminated soils, emphasizing the significance of considering both pH levels and freeze-thaw conditions to ensure effective and safe treatment.
Collapse
Affiliation(s)
- Erping Hei
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingjiang He
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Enze Zhang
- College of Environment, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Hua Yu
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Kun Chen
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Yusheng Qin
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Xiangzhong Zeng
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Zijun Zhou
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Hongzhu Fan
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Yuxian Shangguan
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China.
| | - Luying Wang
- Chengdu Jiaji Agricultural Technology Co., Ltd., Chengdu, 610095, Sichuan, China
| |
Collapse
|
4
|
Ghouri F, Shahid MJ, Zhong M, Zia MA, Alomrani SO, Liu J, Sun L, Ali S, Liu X, Shahid MQ. Alleviated lead toxicity in rice plant by co-augmented action of genome doubling and TiO 2 nanoparticles on gene expression, cytological and physiological changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168709. [PMID: 37992838 DOI: 10.1016/j.scitotenv.2023.168709] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Lead is a very toxic and futile heavy metal for rice plants because of its injurious effects on plant growth and metabolic processes. Polyploidy or whole genome doubling increases the ability of plants to withstand biotic and abiotic stress. Considering the beneficial effects of nanoparticles and tetraploid rice, this research was conducted to examine the effectiveness of tetraploid and titanium dioxide nanoparticles (TiO2 NPs) in mitigating the toxic effects of lead. A diploid (E22-2x) and it's tetraploid (T-42) rice line were treated with Pb (200 μM) and TiO2 NPs (15 mg L-1). Lead toxicity dramatically reduced shoot length (16 % and 4 %) and root length (17 % and 9 %), biological yield (55 % and 36 %), and photosynthetic activity, as evidenced by lower levels of chlorophyll a and b (30 % and 9 %) in E-22 and T-42 rice cultivars compared to the control rice plants, respectively. Furthermore, lead toxicity amplified the levels of reactive oxygen species (ROS), such as malondialdehyde and H2O2, while decreasing activities of all antioxidant enzymes, such as superoxidase, peroxidase, and glutathione predominately in the diploid cultivar. Transmission electron microscopy and semi-thin section observations revealed that Pb-treated cells in E22-2x had more cell abnormalities than T-42, such as irregularly shaped mitochondria, cell wall, and reduced root cell size. Polyploidy and TiO2 reduced Pb uptake in rice cultivars and expression levels of metal transporter genes such as OsHMA9 and OsNRAMP5. According to the findings, genome doubling alleviates Pb toxicity by reducing Pb accumulation, ROS, and cell damage. Tetraploid rice can withstand the toxic effect of Pb better than diploid rice, and TiO2 NPs can alleviate the toxic impact of Pb. Our study findings act as a roadmap for future research endeavours, directing the focus toward risk management and assessing long-term impacts to balance environmental sustainability and agricultural growth.
Collapse
Affiliation(s)
- Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Munazzam Jawad Shahid
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Minghui Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Azam Zia
- Department of Computer Science, University of Agriculture, Faisalabad 38800, Pakistan
| | - Sarah Owdah Alomrani
- Department of Biology, College of Science and Arts, Najran University, Najran 66252, Saudi Arabia
| | - Jingwen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Algethami JS, Irshad MK, Javed W, Alhamami MAM, Ibrahim M. Iron-modified biochar improves plant physiology, soil nutritional status and mitigates Pb and Cd-hazard in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1221434. [PMID: 37662164 PMCID: PMC10470012 DOI: 10.3389/fpls.2023.1221434] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/11/2023] [Indexed: 09/05/2023]
Abstract
Environmental quality and food safety is threatened by contamination of lead (Pb) and cadmium (Cd) heavy metals in agricultural soils. Therefore, it is necessary to develop effective techniques for remediation of such soils. In this study, we prepared iron-modified biochar (Fe-BC) which combines the unique characteristics of pristine biochar (BC) and iron. The current study investigated the effect of pristine and iron modified biochar (Fe-BC) on the nutritional values of soil and on the reduction of Pb and Cd toxicity in wheat plants (Triticum aestivum L.). The findings of present study exhibited that 2% Fe-BC treatments significantly increased the dry weights of roots, shoots, husk and grains by 148.2, 53.2, 64.2 and 148%, respectively compared to control plants. The 2% Fe-BC treatment also enhanced photosynthesis rate, transpiration rate, stomatal conductance, intercellular CO2, chlorophyll a and b contents, by 43.2, 88.4, 24.9, 32.5, 21.4, and 26.7%, respectively. Moreover, 2% Fe-BC treatment suppressed the oxidative stress in wheat plants by increasing superoxide dismutase (SOD) and catalase (CAT) by 62.4 and 69.2%, respectively. The results showed that 2% Fe-BC treatment significantly lowered Cd levels in wheat roots, shoots, husk, and grains by 23.7, 44.5, 33.2, and 76.3%. Whereas, Pb concentrations in wheat roots, shoots, husk, and grains decreased by 46.4, 49.4, 53.6, and 68.3%, respectively. Post-harvest soil analysis showed that soil treatment with 2% Fe-BC increased soil urease, CAT and acid phosphatase enzyme activities by 48.4, 74.4 and 117.3%, respectively. Similarly, 2% Fe-BC treatment significantly improved nutrients availability in the soil as the available N, P, K, and Fe contents increased by 22, 25, 7.3, and 13.3%, respectively. Fe-BC is a viable solution for the remediation of hazardous Cd and Pb contaminated soils, and improvement of soil fertility status.
Collapse
Affiliation(s)
- Jari S. Algethami
- Department of Chemistry, College of Science and Arts, Najran University, Najran, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, Saudi Arabia
| | - Muhammad Kashif Irshad
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Wasim Javed
- Punjab Bioenergy Institute (PBI), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mohsen A. M. Alhamami
- Department of Chemistry, College of Science and Arts, Najran University, Najran, Saudi Arabia
| | - Muhammad Ibrahim
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
6
|
Wang Y, Zhou Y, Guan Y, Zou Z, Qiu Z, Dai Z, Yi L, Zhou W, Li J. Effects of α-Fe 2O 3 nanoparticles and biochar on plant growth and fruit quality of muskmelon under cadmium stress. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01569-w. [PMID: 37071265 DOI: 10.1007/s10653-023-01569-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Cadmium pollution in farmland has become a global environmental problem, threatening ecological security and human health. Biochar is effective in remediation of soil pollution. However, high concentrations of biochar can inhibit plant growth, and low concentrations of biochar have limited mitigation effect on cadmium toxicity. Therefore, the combination of low-concentration biochar and other amendments is a promising approach to alleviate cadmium toxicity in plants and improve the safety of edible parts. In this study, muskmelon was selected as the research object, and different concentrations of α-Fe2O3 nanoparticles were used alone or combined with biochar to explore the effects of different treatments on muskmelon plants in cadmium-contaminated soil. The results showed that the combined application of 250 mg/kg α-Fe2O3 nanoparticles and biochar had a good effect on the repair of cadmium toxicity in muskmelon plants. Compared with cadmium treatment, its application increased plant height by 32.53%, cadmium transport factor from root to stem decreased by 32.95%, chlorophyll content of muskmelon plants increased by 14.27%, and cadmium content in muskmelon flesh decreased by 18.83%. Moreover, after plant harvest, soil available cadmium content in 250 mg/kg α-Fe2O3 nanoparticles and biochar combined treatment decreased by 31.18% compared with cadmium treatment. The results of this study provide an effective reference for the composite application of different exogenous amendments and a feasible idea for soil heavy metal remediation and mitigation of cadmium pollution in farmland.
Collapse
Affiliation(s)
- Yunqiang Wang
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
| | - Ying Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Yan Guan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Zhengkang Zou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Zhengming Qiu
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
| | - Zhaoyi Dai
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
| | - Licong Yi
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
| | - Wei Zhou
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan, 430064, People's Republic of China
| | - Junli Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
7
|
González-Feijoo R, Rodríguez-Seijo A, Fernández-Calviño D, Arias-Estévez M, Arenas-Lago D. Use of Three Different Nanoparticles to Reduce Cd Availability in Soils: Effects on Germination and Early Growth of Sinapis alba L. PLANTS (BASEL, SWITZERLAND) 2023; 12:801. [PMID: 36840149 PMCID: PMC9966225 DOI: 10.3390/plants12040801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Globally, cadmium (Cd) is one of the metals that causes the most significant problems of contamination in agricultural soils and toxicity in living organisms. In this study, the ability of three different nanoparticles (dose 3% w/w) (hydroxyapatite (HANPs), maghemite (MNPs), or zero-valent iron (FeNPs)) to decrease the availability of Cd in artificially contaminated agricultural soil was investigated. The effect of Cd and nanoparticles on germination and early growth of Sinapis alba L. was also assessed by tolerance/toxicity bioassays. The available Cd contents in the contaminated soil decreased after treatment with the nanoparticles (available Cd decreased with HANPs: >96.9%, MNPs: >91.9%, FeNPs: >94%), indicating that these nanoparticles are highly efficient for the fixation of available Cd. The toxicity/tolerance bioassays showed different behavior for each nanoparticle. The HANPs negatively affected germination (G(%): 20% worsening compared to control soil), early root growth (Gindex: -27.7% compared to control soil), and aerial parts (Apindex: -12%) of S. alba, but showed positive effects compared to Cd-contaminated soils (Gindex: +8-11%; Apindex: +26-47%). MNP treatment in Cd-contaminated soils had a positive effect on germination (G(%): 6-10% improvement) and early growth of roots (Gindex: +16%) and aerial parts (Apindex: +16-19%). The FeNPs had a positive influence on germination (G(%): +10%) and growth of aerial parts (Apindex: +12-16%) but not on early growth of roots (Gindex: 0%). These nanoparticles can be used to reduce highly available Cd contents in contaminated soils, but MNPs and FeNPs showed the most favorable effects on the early growth and germination of S. alba.
Collapse
|
8
|
Zheng X, Zhang B, Lai W, Wang M, Tao X, Zou M, Zhou J, Lu G. Application of bovine bone meal and oyster shell meal to heavy metals polluted soil: Vegetable safety and bacterial community. CHEMOSPHERE 2023; 313:137501. [PMID: 36502914 DOI: 10.1016/j.chemosphere.2022.137501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The development of efficient, environmentally friendly soil amendments is necessary in order to minimize the risk of metal contaminants (Cd, Pb, Cu, and Zn) to the soil ecosystem. As soil amendments, bovine bone meal (BM) and oyster shell meal (OS) reduced the mobility and bioavailability of metals primarily by increasing soil pH. Soil geochemical properties (pH, EC, CEC, Ca, P, and K) after amendment supplementation were more likely to affect metal migration than enzyme activity. Furthermore, BM and OS were found to suppress the Cd and Pb uptake by water spinach, keeping them below international standards for safe utilization. The protein and sugar content and peroxidase (POD) activity showed a significant negative correlation with the amount of metal in water spinach, whereas superoxide dismutase (SOD), ascorbate peroxidase (APX) activities and malondialdehyde (MDA) content exhibited a positive correlation with metal content in water spinach. We also found that BM and OS had less perturbation to phylum-level and genus-level bacterial composition during the remediation of heavy metals contaminated soil. Based on the above, we assume that BM and OS are eco-friendly soil amendments, which could improve soil nutrients contents, stabilize heavy metals and regulate bacterial community structure. Our research contributes to resource utilization of waste and holds promise for widespread application in current agricultural systems.
Collapse
Affiliation(s)
- Xiongkai Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Bowen Zhang
- Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou, 510060, China
| | - Weibin Lai
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Mengting Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Mengyao Zou
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiangmin Zhou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Zuo W, Song B, Shi Y, Zupanic A, Guo S, Huang H, Jiang L, Yu Y. Using Bacillus thuringiensis HM-311@hydroxyapatite@biochar beads to remediate Pb and Cd contaminated farmland soil. CHEMOSPHERE 2022; 307:135797. [PMID: 35930931 DOI: 10.1016/j.chemosphere.2022.135797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) and lead (Pb) have become serious soil contaminants in China. In this work, we immobilized B. thuringiensis HM-311 (a heavy metal resistant strain) using vinegar residue biochar and hydroxyapatite (HAP) to form BtHM-311@HAP@biochar calcium alginate beads. In aqueous solution, the beads respectively reduced 1000 mg/L Pb2+ to 14.59 mg/L and 200 mg/L Cd2+ to 5.40 mg/L within 20 h. Furthermore, the results of pot experiment showed that the BtHM-311@HAP@biochar beads reduced the bioavailability of Pb and Cd in soil. The accumulation of Pb2+ in rice decreased by 39.97% in shoots and 46.40% in roots, while that of Cd2+ decreased by 34.59 and 44.9%, respectively. Similarly, the accumulation of Pb2+ in corn decreased by 40.86% in shoots and 51.34% in roots, while that of Cd2+ decreased by 41.28 and 42.91%, respectively. The beads also increased the microbial community diversity in the rhizosphere soil. These findings indicate that BtHM-311@HAP@biochar beads may be applicable for the bioremediation of Cd- and Pb-contaminated farmland soil.
Collapse
Affiliation(s)
- Wenlu Zuo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Boyi Song
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Yuxin Shi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Anze Zupanic
- Department of Biotechnology and Systems Biology, National Institute of Biology, Vecna pot 111, Ljubljana, SI-1000, Slovenia
| | - Shuxian Guo
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, 473004, People's Republic of China
| | - He Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Yadong Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| |
Collapse
|
10
|
Rahman SU, Wang X, Shahzad M, Bashir O, Li Y, Cheng H. A review of the influence of nanoparticles on the physiological and biochemical attributes of plants with a focus on the absorption and translocation of toxic trace elements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119916. [PMID: 35944778 DOI: 10.1016/j.envpol.2022.119916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/11/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Trace elements (TEs) from various natural and anthropogenic activities contaminate the agricultural water and soil environments. The use of nanoparticles (NPs) as nano-fertilizers or nano-pesticides is gaining popularity worldwide. The NPs-mediated fertilizers encourage the balanced availability of essential nutrients to plants compared to traditional fertilizers, especially in the presence of excessive amounts of TEs. Moreover, NPs could reduce and/or restrict the bioavailability of TEs to plants due to their high sorption ability. In this review, we summarize the potential influence of NPs on plant physiological attributes, mineral absorption, and TEs sorption, accumulation, and translocation. It also unveils the NPs-mediated TE scavenging-mechanisms at plant and soil interface. NPs immobilized TEs in soil solution effectively by altering the speciation of TEs and modifying the physiological, biochemical, and biological properties of soil. In plants, NPs inhibit the transfer of TEs from roots to shoots by inducing structural modifications, altering gene transcription, and strengthening antioxidant defense mechanisms. On the other hand, the mechanisms underpinning NPs-mediated TEs absorption and cytotoxicity mitigation differ depending on the NPs type, distribution strategy, duration of NP exposure, and plants (e.g., types, varieties, and growth rate). The review highlights that NPs may bring new possibilities for resolving the issue of TE cytotoxicity in crops, which may also assist in reducing the threats to the human dietary system. Although the potential ability of NPs in decontaminating soils is just beginning to be understood, further research is needed to uncover the sub-cellular-based mechanisms of NPs-induced TE scavenging in soils and absorption in plants.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xiaojie Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Muhammad Shahzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Owais Bashir
- Division of Soil Science and Agricultural Chemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, 190025, Kashmir, India
| | - Yanliang Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China.
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
11
|
Baragaño D, Forján R, Álvarez N, Gallego JR, González A. Zero valent iron nanoparticles and organic fertilizer assisted phytoremediation in a mining soil: Arsenic and mercury accumulation and effects on the antioxidative system of Medicago sativa L. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128748. [PMID: 35405586 DOI: 10.1016/j.jhazmat.2022.128748] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Zero valent iron nanoparticles (nZVI) attract interest given their effectiveness in soil remediation. However, little attention has been given to their impacts on plants. Likewise, although fertilizers are commonly used to enhance phytoremediation, their effects on As mobilization, resulting in potential toxic effects, require further study. In this context, we examined the impact of As and Hg accumulation on the antioxidative system of Medicago sativa grown in a soil amended with organic fertilizer and/or nZVI. The experiment consisted of 60 pots. Plants were pre-grown and transferred to pots, which were withdrawn along time for monitoring purposes. As and Hg were monitored in the soil-plant system, and parameters related to oxidative stress, photosynthetic pigments, and non-protein thiol compounds (NPTs) were measured. In general, the application of nZVI immobilized As in soil and increased Hg accumulation in the plant, although it surprisingly decreased oxidative stress. Plants in nZVI-treated soil also showed an increase in NPT content in roots. In contrast, the application of the fertilizer mobilized As, thereby improving bioaccumulation factors. However, when combining fertilizer with nZVI, the As accumulation is mitigated. This observation reveals that simultaneous amendments are a promising approach for soil stabilization and the phytomanagement of As/Hg-polluted soils.
Collapse
Affiliation(s)
- D Baragaño
- INDUROT and Environmental Biogeochemistry & Raw Materials Group, Campus of Mieres, University of Oviedo, 33600 Mieres, Spain.
| | - R Forján
- INDUROT and Environmental Biogeochemistry & Raw Materials Group, Campus of Mieres, University of Oviedo, 33600 Mieres, Spain
| | - N Álvarez
- Department of Organisms and Systems Biology, Area of Plant Physiology-IUBA, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Spain
| | - J R Gallego
- INDUROT and Environmental Biogeochemistry & Raw Materials Group, Campus of Mieres, University of Oviedo, 33600 Mieres, Spain
| | - A González
- Department of Organisms and Systems Biology, Area of Plant Physiology-IUBA, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Spain
| |
Collapse
|
12
|
Lin Q, Tan X, Almatrafi E, Yang Y, Wang W, Luo H, Qin F, Zhou C, Zeng G, Zhang C. Effects of biochar-based materials on the bioavailability of soil organic pollutants and their biological impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:153956. [PMID: 35189211 DOI: 10.1016/j.scitotenv.2022.153956] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/13/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Motivated by the unique structure and superior properties, biochar-based materials, including pristine biochar and composites of biochar with other functional materials, are considered as new generation materials for diverse multi-functional applications, which may be intentionally or unintentionally released to soil. The influencing mechanism of biochar-based material on soil organisms is a key aspect for quantifying and predicting its benefits and trade-offs. This work focuses on the effects of biochar-based materials on soil organisms within the past ten years. 206 sources are reviewed and available knowledge on biochar-based materials' impacts on soil organisms is summarized from a diverse perspective, including the pollutant bioavailability changes in soil, and potential effects of biochar-based materials on soil organisms. Herein, effects of biochar-based materials on the bioavailability of soil organic pollutants are detailed, from the perspective of plant, microorganism, and soil fauna. Potential biological effects of pristine biochar (PBC), metal/metal compounds-biochar composites (MBC), clay minerals-biochar composites (CMBC), and carbonaceous materials-biochar composites (CBC) on soil organisms are highlighted for the first time. And possible mechanisms are presented based on the different characters of biochar-based materials as well as various environmental interactions. Finally, the bottleneck and challenges of risk assessment of biochar-based materials as well as future prospects are proposed. This work not only promotes the development of risk assessment system of biochar-based materials, but broadens the strategy for the design and optimization of environmental-friendly biochar materials.
Collapse
Affiliation(s)
- Qing Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eydhah Almatrafi
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yang Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wenjun Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hanzhuo Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Fanzhi Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
13
|
Hamid Y, Liu L, Usman M, Tang L, Lin Q, Saqib Rashid M, Ulhassan Z, Hussain MI, Yang X. Organic/inorganic amendments for the remediation of a red paddy soil artificially contaminated with different cadmium levels: Leaching, speciation, and phytoavailability tests. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114148. [PMID: 34838377 DOI: 10.1016/j.jenvman.2021.114148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
In the present study, the viability of using manure (M), lime (L), and sepiolite (S) alone and in combinations (M/L, M/S, and M/L/S) was evaluated for the remediation of a red paddy soil artificially contaminated with three levels of cadmium (Cd- 0.6, 1, and 2 mg kg-1 soil). Experiments were performed in columns (to evaluate Cd leaching) and pots by growing rice plants (to study Cd accumulation in plants). Before their application, the tested amendments were thoroughly characterized using SEM, EDS and FT-IR spectroscopy. The leaching experiment indicates that the application of L or M/L significantly improved the pH of soil leachate collected at different time intervals. However, the use of M/L/S was found better in decreasing the Cd contents in collected leachate. The use of M/L efficiently decreased the DTPA metal extraction (0.19, 0.41, and 0.55 mg kg-1) as compared to the CK (0.35, 0.63, and 1.13 mg kg-1, respectively). The Cd speciation results depicted a 33% decrease in exchangeable Cd with M/L/S treatment when compared with control (55%). Moreover, the M/L/S treatment was more efficient in lowering the Cd phytoavailability and subsequent accumulation in rice grains (0.05, 0.09, and 0.08 mg kg-1). These findings demonstrate that the use of composite amendments is categorically effective as an in-situ remediation tool to decrease Cd leaching and availability in diverse contaminations.
Collapse
Affiliation(s)
- Yasir Hamid
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Lei Liu
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Lin Tang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiang Lin
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Saqib Rashid
- AS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Zaid Ulhassan
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - M Iftikhar Hussain
- Department of Plant Biology & Soil Science, Universidade de Vigo, Campus Lagoas Marcosende, 36310, Vigo, Spain
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Zheng X, Zou M, Zhang B, Lai W, Zeng X, Chen S, Wang M, Yi X, Tao X, Lu G. Remediation of Cd-, Pb-, Cu-, and Zn-contaminated soil using cow bone meal and oyster shell meal. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113073. [PMID: 34923330 DOI: 10.1016/j.ecoenv.2021.113073] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
To understand the environmental friendliness and high efficiency of organic materials during remediating soil polluted by heavy metals by assessing the feedback of soil ecosystems after organic materials were put into polluted soil. Incubation research was undertaken to examine the impact of amendments ranging from 0.1% to 3.0% (w/w), including single cow bone meal (BM), single oyster shell meal (OS), and a composite of 50% BM mixed with 50% OS (BO) on soil biochemical properties. The findings revealed that the implementation of BM and OS increased soil pH, the content of certain nutrients, and the activities of catalase (S-CAT), and urease (S-UE) while decreasing the availability of Cd, Pb, Cu, and Zn. Overall, the immobilization effect on Cd and Zn after a 108-day incubation was ranked as follows: BM group > OS group ≥ BO group, and the order of the immobilization effect of Pb and Cu was OS group > BO group > BM group. In addition, the dominant bacterial community flora shifted toward alleviating the re-dissolution of metal ions from the soil and promoting nutrient recycling in soil within 108 days of cultivation. RNA analyses showed that the strongest determinants for microbial communities between BM application and OS application at the genus level were soil pH, CEC, and heavy metal (Cd, Pb). These results increase our understanding of the leaching performance of Cd, Pb, Cu and Zn and the evolution trend of microorganisms when organic amendments remediate heavy metal contaminated soil.
Collapse
Affiliation(s)
- Xiongkai Zheng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China; Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Mengyao Zou
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China; Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Bowen Zhang
- Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou 510060, PR China
| | - Weibin Lai
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China; Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Xianming Zeng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Siyuan Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Mengting Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaoyun Yi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China; Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China.
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
15
|
Gujre N, Mitra S, Agnihotri R, Sharma MP, Gupta D. Novel agrotechnological intervention for soil amendment through areca nut husk biochar in conjunction with vetiver grass. CHEMOSPHERE 2022; 287:132443. [PMID: 34606895 DOI: 10.1016/j.chemosphere.2021.132443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/19/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Soil quality management through effective utilization of agricultural residue is the cynosure of intense global research. Therefore, we have explored the pyrolytic conversion of a locally available agricultural residue, the areca nut husk (AH), into biochar (BC) as a sustainable option towards residue management. The AH was carbonized at 250-400 °C, and residence times of 30-90 min. Subsequent detailed analysis revealed areca nut husk biochar (AHBC) formed at 250 °C with 60 min residence time, had the highest soil organic matter yield index (SOMYI), the lowest H/C and O/C ratio, and an average particle size of 1191.6 nm. Further characterization exposed the highly porous structure of prepared AHBC with oxygenated functional groups attached to its surface. The application of AHBC in conjunction with vetiver (Chrysopogon zizanioides L.) was used as a novel agrotechnological approach to assess soil quality improvement. Various doses of AHBC (5 t ha-1, 10 t ha-1, and 15 t ha-1) were applied in the experimental soils, and the principal component analysis (PCA) revealed that the 15 t ha-1 dose was optimum for the growth of the vetiver. AHBC amendment in soil resulted in increase of plant height and relative water content. This could be attributed to the increase in organic carbon, cation exchange capacity, and nutrients in the soil. Application of AHBC along with vetiver could be a simple, yet effective option, for sustainable agricultural residue and soil management.
Collapse
Affiliation(s)
- Nihal Gujre
- Agro-ecotechnology Lab, School of Agro and Rural Technology, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Sudip Mitra
- Agro-ecotechnology Lab, School of Agro and Rural Technology, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India.
| | - Richa Agnihotri
- ICAR- Indian Institute of Soybean Research, Khandwa Road, Indore, Madhya Pradesh, 452001, India
| | - Mahaveer P Sharma
- ICAR- Indian Institute of Soybean Research, Khandwa Road, Indore, Madhya Pradesh, 452001, India
| | - Debaditya Gupta
- Agro-ecotechnology Lab, School of Agro and Rural Technology, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| |
Collapse
|
16
|
Zhao M, Ma D, Ye Y. Adsorption, separation and recovery properties of blocky zeolite-biochar composites for remediation of cadmium contaminated soil. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Rizwan M, Ali S, Rehman MZU, Riaz M, Adrees M, Hussain A, Zahir ZA, Rinklebe J. Effects of nanoparticles on trace element uptake and toxicity in plants: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112437. [PMID: 34153540 DOI: 10.1016/j.ecoenv.2021.112437] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 05/04/2023]
Abstract
Agricultural soils are receiving higher inputs of trace elements (TEs) from anthropogenic activities. Application of nanoparticles (NPs) in agriculture as nano-pesticides and nano-fertilizers has gained rapid momentum worldwide. The NPs-based fertilizers can facilitate controlled-release of nutrients which may be absorbed by plants more efficiently than conventional fertilizers. Due to their large surface area with high sorption capacity, NPs can be used to reduce excess TEs uptake by plants. The present review summarizes the effects of NPs on plant growth, photosynthesis, mineral nutrients uptake and TEs concentrations. It also highlights the possible mechanisms underlying NPs-mediated reduction of TEs toxicity at the soil and plant interphase. Nanoparticles are effective in immobilization of TEs in soil through alteration of their speciation and improving soil physical, chemical, and biological properties. At the plant level, NPs reduce TEs translocation from roots to shoots by promoting structural alterations, modifying gene expression, and improving antioxidant defense systems. However, the mechanisms underlying NPs-mediated TEs uptake and toxicity reduction vary with NPs type, mode of application, time of NPs exposure, and plant conditions (e.g., species, cultivars, and growth rate). The review emphasizes that NPs may provide new perspectives to resolve the problem of TEs toxicity in crop plants which may also reduce the food security risks. However, the potential of NPs in metal-contaminated soils is only just starting to be realized, and additional studies are required to explore the mechanisms of NPs-mediated TEs immobilization in soil and uptake by plants. Such future knowledge gap has been highlighted and discussed.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Adrees
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Afzal Hussain
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan; Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| |
Collapse
|
18
|
Effects of Long-Term Freeze-Thaw Cycles on the Properties of Stabilized/Solidified Lead-Zinc-Cadmium Composite-Contaminated Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18116114. [PMID: 34204028 PMCID: PMC8201390 DOI: 10.3390/ijerph18116114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/01/2022]
Abstract
Lead, zinc, and cadmium were used to prepare a composite-contaminated soil to replicate common situations, in which soil is usually simultaneously contaminated by multiple metals. To examine the long-term durability of stabilized/solidified (S/S) contaminated soil, specimens were subjected to a series of freeze–thaw (F-T) cycles, up to ninety times (one day per cycle), prior to testing. Triaxial compression tests, soil column leaching tests, and X-ray diffraction analysis were then employed to study the mechanical properties, environmental influences, and micro-mechanisms of the S/S lead-zinc-cadmium composite-contaminated soils after long-term F-T. The results showed that triaxial compressive strength increases within three F-T cycles, then decreases before slightly increasing or stabilizing after thirty F-T cycles. The stage of decreased cohesion thus occurs between three and fourteen F-T cycles, with variation in other factors similar to that of the triaxial compressive strength. The cohesion mainly increases between three and seven cycles. The soil column leaching test showed that the permeability of soil is more than four times higher than that of soil not subject to freeze–thaw cycles after ninety F-T cycles. XRD tests further revealed that the chemical composition of S/S contaminated soil and the occurrence of each heavy metal (HM) remained unchanged under F-T treatment.
Collapse
|
19
|
Wu P, Li L, Wang J. Effects of Fe-loaded biochar on the bioavailability of Arsenic and cadmium to lettuce growing in a mining contaminated soil. ENVIRONMENTAL TECHNOLOGY 2021; 42:2145-2153. [PMID: 31726951 DOI: 10.1080/09593330.2019.1694081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/31/2019] [Indexed: 05/15/2023]
Abstract
Arsenic (As) and cadmium (Cd) are two prominent metal contaminants in mining soil, threatening food and environmental safety. The effects of Fe-loaded biochar on the accumulation and translocation of As and Cd in a soil-lettuce system were investigated to evaluate the efficiency of Fe-loaded biochar in reducing As and Cd bioavailability. Application of Fe-loaded biochar at a rate of 0.5-1.5% decreased the concentrations of porewater As and Cd by 4.2-53.0% and -0.6-21.7%, respectively. The results of sequential extraction showed that Fe-loaded biochar can promote the transfer of As and Cd in soils from the available fraction to a relatively stable fraction, thus reducing the mobility and availability of As and Cd. The concentrations of As and Cd in lettuce shoots in the Fe-loaded biochar treatment were significantly decreased by 11.4-26.0% and 4.4-12.9% compared with those in the untreated soil, respectively. Fe-loaded biochar applied at a rate of 0.5-1.0% had no obvious effect on plant biomass, and the lowest weight of lettuce shoots and roots was observed in the treatment with Fe-loaded biochar applied at a rate of 1.5%, in which they were reduced by 12.9% and 18.0%, respectively. Overall, Fe-loaded biochar as a soil amendment was effective in simultaneously reducing As and Cd bioavailability in As and Cd co-contaminated soils, and an application rate lower than 1.5% is recommended to avoid significant decreases in plant growth.
Collapse
Affiliation(s)
- Pingping Wu
- Institute of Research for Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei, People's Republic of China
- Anhui Key Laboratory of Nutrient Cycling, Resources and Environment, Hefei, People's Republic of China
| | - Lujiu Li
- Institute of Research for Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei, People's Republic of China
- Anhui Key Laboratory of Nutrient Cycling, Resources and Environment, Hefei, People's Republic of China
| | - Jing Wang
- Institute of Research for Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei, People's Republic of China
- Anhui Key Laboratory of Nutrient Cycling, Resources and Environment, Hefei, People's Republic of China
| |
Collapse
|
20
|
Wang F, Zhang W, Miao L, Ji T, Wang Y, Zhang H, Ding Y, Zhu W. The effects of vermicompost and shell powder addition on Cd bioavailability, enzyme activity and bacterial community in Cd-contaminated soil: A field study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112163. [PMID: 33756288 DOI: 10.1016/j.ecoenv.2021.112163] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) contamination has become serious in soil and in situ stabilization technology has been widely used for heavy metal remediation. A field study was conducted to determine the effect of amendments with the doses of 3 kg/m2, including single vermicompost (A1), a 95% vermicompost mixed with 5% shell powder composite (A2) and a 95% vermicompost mixed with 5% modified shell powder composite (A3), on the Cd bioavailability, enzyme activity and bacterial community in soil, and the experiment was conducted with lettuce (Lactuca sativa L.) grown in a Cd-contaminated farmland soil. The results showed that the application of amendments increased the pH, cation exchange capacity (CEC), organic matter (OM), available nutrients, catalase (S-CAT), invertase (S-SC) and urease (S-UE) activities in soil, while significantly reduced the Cd bioavailability with the lowest Cd bioavailability being observed in the soil with A3 application. The soil bacterial richness and diversity increased after amendments application, and the bacterial community was characterized by an increase in metal-tolerant bacteria but a decrease in Proteobacteria, Acidobacteria and Gemmatimonadetes. In addition, the application of amendments significantly improved the growth of lettuce (Lactuca sativa L.) and inhibited Cd accumulation in its edible parts, especially, the Cd content in lettuce (Lactuca sativa L.) grown in soil with A3 application was below the limit of the National Food Safety Standard of China (maximum level ≤ 0.2 mg/kg). Thus, composite amendment obtained from vermicompost mixed with modified shell powder can be used as potential remediation material in Cd-contaminated soil. CAPSULE: Composite amendment obtained from vermicompost and modified shell powder had good effects on remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 311121, China
| | - Weiwen Zhang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 311121, China
| | - Lijuan Miao
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 311121, China
| | - Tianwei Ji
- General Station of Cultivated Land Quality and Fertilizer Management in Zhejiang Province, Hangzhou 310020, China
| | - Yifan Wang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 311121, China
| | - Hangjun Zhang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 311121, China
| | - Ying Ding
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 311121, China
| | - Weiqin Zhu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
21
|
Liu S, Miao C, Yao S, Ding H, Zhang K. Soil stabilization/solidification (S/S) agent---water-soluble thiourea formaldehyde (WTF) resin: Mechanism and performance with cadmium (Ⅱ). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116025. [PMID: 33277061 DOI: 10.1016/j.envpol.2020.116025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/13/2020] [Accepted: 10/06/2020] [Indexed: 06/12/2023]
Abstract
It is vital for the development and application of heavy metal stabilization/solidification (S/S) agents to reveal the mechanism of the reaction between water-soluble thiourea formaldehyde (WTF) resin and heavy metal and evaluate its repairing effect. Based on the density functional theory analysis of the WTF resin structure, the mechanism analysis and scanning electron microscope (SEM) showed that the three-dimensional network structure with thiocarbonyl and hydroxyl groups is very conducive to the capture of Cd2+. The reduction rate of Cd2+ in soil added WTF resin could reach 70.6%-86.0%. The result of BCR's sequential extraction also proved that the 86.4%-94.1% of Cd in the soil repaired by WTF resin changed from acid-soluble state to residue state. Enzyme activity analysis and 16sRNA sequencing experiments showed that such a structure does not harm soil health. The urease and phosphatase tests showed the nitrogen and phosphorus cycle of the soil added WTF resin was repaired. Even compared with the remediation agents Na2S and hydroxyapatite, WTF resin still performed better in repairing soil health. These findings provide valuable insights into the efficient causes of WTF resin and its harmless effects on soil. The results obtained provide a critical reference for the future application of practical and gentle heavy metal S/S agents.
Collapse
Affiliation(s)
- Shejiang Liu
- School of Environmental Science & Engineering, Tianjin University, No.135, Yaguan Rd., Jinnan District, Tianjin, 300350, China
| | - Chen Miao
- School of Environmental Science & Engineering, Tianjin University, No.135, Yaguan Rd., Jinnan District, Tianjin, 300350, China
| | - Shanshan Yao
- School of Environmental Science & Engineering, Tianjin University, No.135, Yaguan Rd., Jinnan District, Tianjin, 300350, China
| | - Hui Ding
- School of Environmental Science & Engineering, Tianjin University, No.135, Yaguan Rd., Jinnan District, Tianjin, 300350, China.
| | - Kai Zhang
- Tianjin TEDA Greening Group Co., Ltd., China
| |
Collapse
|
22
|
Rathnayake D, Rego F, Van Poucke R, Bridgwater AV, Mašek O, Meers E, Wang J, Yang Y, Ronsse F. Chemical stabilization of Cd-contaminated soil using fresh and aged wheat straw biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10155-10166. [PMID: 33169282 DOI: 10.1007/s11356-020-11574-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Metal mining and smelting activities can introduce a substantial amount of potentially toxic elements (PTE) into the environment that can persist for an extended period. That can limit the productivity of the land and creates dangerous effects on ecosystem services. The effectiveness of wheat straw biochar to immobilize Cd in contaminated soil due to metal smelting activities was investigated in this study. The biochar carbon stability and long-term provisioning of services depend on the biochar production conditions, nature of the feedstock, and the biotic and abiotic environmental conditions in which the biochar is being used. Within this context, three types of wheat straw biochar were produced using a screw reactor at 400 °C, 500 °C, and 600 °C and tested in a laboratory incubation study. Soil was amended with 2 wt% of biochar. Both fresh and aged forms of biochar were used. Biochars produced at lower temperatures were characterized by lower pH, a lower amount of stable C, and higher amounts of acidic surface functional groups than the freshly produced biochars at higher production temperatures. At the end of the 6 months of incubation time, compared to the soil only treatment, fresh and aged forms of wheat straw biochar produced at 600 °C reduced the Cd concentration in soil pore water by 22% and 15%, respectively. Our results showed that the aged forms of biochar produced at higher production temperatures (500 °C and 600 °C) immobilized Cd more efficiently than the aged forms of lower temperature biochar (400 °C). The findings of this study provide insights to choose the production parameters in wheat straw biochar production while considering their aging effect to achieve successful stabilization of Cd in contaminated soils.
Collapse
Affiliation(s)
- Dilani Rathnayake
- Thermochemical Conversion of Biomass Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 653, Coupure Links, 9000, Ghent, Belgium.
| | - Filipe Rego
- Bioenergy Research Group, EBRI, Aston University, Birmingham, B4 7ET, UK
| | - Reinhart Van Poucke
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 653, Coupure Links, 9000, Ghent, Belgium
| | | | - Ondřej Mašek
- UK Biochar Research Centre, School of Geosciences, Crew Building, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FF, UK
| | - Erik Meers
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 653, Coupure Links, 9000, Ghent, Belgium
| | - Jiawei Wang
- Bioenergy Research Group, EBRI, Aston University, Birmingham, B4 7ET, UK
| | - Yang Yang
- Bioenergy Research Group, EBRI, Aston University, Birmingham, B4 7ET, UK
| | - Frederik Ronsse
- Thermochemical Conversion of Biomass Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 653, Coupure Links, 9000, Ghent, Belgium
| |
Collapse
|
23
|
Zhong Y, Igalavithana AD, Zhang M, Li X, Rinklebe J, Hou D, Tack FMG, Alessi DS, Tsang DCW, Ok YS. Effects of aging and weathering on immobilization of trace metals/metalloids in soils amended with biochar. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1790-1808. [PMID: 32789328 DOI: 10.1039/d0em00057d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biochar is an effective amendment for trace metal/metalloid (TMs) immobilization in soils. The capacity of biochar to immobilize TMs in soil can be positively or negatively altered due to the changes in the surface and structural chemistry of biochar after soil application. Biochar surfaces are oxidized in soils and induce structural changes through physical and biochemical weathering processes. These changes in the biochar surface and structural chemistry generally increase its ability to immobilize TMs, although the generation of dissolved black carbon during weathering may increase TM mobility. Moreover, biochar modification can improve its capacity to immobilize TMs in soils. Over the short-term, engineered/modified biochar exhibited increased TM immobilization capacity compared with unmodified biochar. In the long-term, no large distinctions in such capacities were seen between modified and unmodified biochars due to weathering. In addition, artificial weathering at laboratories also revealed increased TM immobilization in soils. Continued collection of mechanistic evidence will help evaluate the effect of natural and artificial weathering, and biochar modification on the long-term TM immobilization capacity of biochar with respect to feedstock and synthesis conditions in contaminated soils.
Collapse
Affiliation(s)
- Yuchi Zhong
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Avanthi Deshani Igalavithana
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Korea.
| | - Ming Zhang
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Korea. and Department of Environmental Engineering, China Jiliang University, No. 258 Xueyuan Street, Hangzhou, Zhejiang 310018, P. R. China
| | - Xiaodian Li
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Korea. and Department of Environmental Engineering, China Jiliang University, No. 258 Xueyuan Street, Hangzhou, Zhejiang 310018, P. R. China
| | - Jörg Rinklebe
- School of Architecture and Civil Engineering, University of Wuppertal, Pauluskirchstraße 7, 42285, Wuppertal, Germany and Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Korea
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Korea. and Department of Environmental Engineering, China Jiliang University, No. 258 Xueyuan Street, Hangzhou, Zhejiang 310018, P. R. China
| |
Collapse
|
24
|
Hamid Y, Tang L, Hussain B, Usman M, Liu L, Sher A, Yang X. Adsorption of Cd and Pb in contaminated gleysol by composite treatment of sepiolite, organic manure and lime in field and batch experiments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110539. [PMID: 32247959 DOI: 10.1016/j.ecoenv.2020.110539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/19/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Contamination of arable land with trace metals is a global environmental issue which has serious consequences on human health and food security. Present study evaluates the adsorption of cadmium (Cd) and lead (Pb) by using different quantities of composite of sepiolite, organic manure and lime (SOL) at field and laboratory scale (batch experiments). Characterization of SOL by SEM, EDS and FTIR spectroscopy revealed the presence of elemental and functional groups (hydroxyl, C⋯H and -COOH groups) on its surface. The field experiment was performed in a paddy field of gleysol having moderate contamination of Cd and Pb (0.64 mg kg-1 and 53.44 mg kg-1). Here, different rates of SOL (0.25, 0.5, 1, 1.5 and 2% w/w) were applied by growing low and high Cd accumulator rice cultivars. Application of SOL at 2% w/w showed considerable efficiency to increase soil pH (up to 19%) and to reduce available Cd (42-66%) and Pb (22-55%) as compared to the control. Moreover, its application reduced metal contents in roots, shoots and grains of rice by 31%, 36% and 72% (for Cd) and 41%, 81% and 84% (for Pb), respectively in low accumulator cultivar. Further, the batch sorption experiment was performed to evaluate the adsorption capacity of SOL in a wide range of contamination. Obtained sorption data was better fitted to the Langmuir equation. Our results highlight the strong efficiency of composite treatment for an enhanced in-situ metal immobilization under field and lab conditions. Further, applied treatments greatly reduced the metal contents in rice grains. In a nut shell, application of SOL in a contaminated gleysol should be considered for soil remediation and safe food production.
Collapse
Affiliation(s)
- Yasir Hamid
- Ministry of Education (MOE) Key Lab of Environ Remediation and Ecol Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, China
| | - Lin Tang
- Ministry of Education (MOE) Key Lab of Environ Remediation and Ecol Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, China
| | - Bilal Hussain
- Ministry of Education (MOE) Key Lab of Environ Remediation and Ecol Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Lei Liu
- Ministry of Education (MOE) Key Lab of Environ Remediation and Ecol Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, China
| | - Alam Sher
- Agronomy, Key Laboratory of Crop Chemical Regulation and Chemical Weed Control, College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi, China, Taigu, Taiyuan, China
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Lab of Environ Remediation and Ecol Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
25
|
Zhang H, Shao J, Zhang S, Zhang X, Chen H. Effect of phosphorus-modified biochars on immobilization of Cu (II), Cd (II), and As (V) in paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:121349. [PMID: 31624000 DOI: 10.1016/j.jhazmat.2019.121349] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/13/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Novel phosphorus-modified biochars were produced by pyrolyzing biomass feedstocks (wood, bamboo, cornstalk and rice husk) pre-impregnated with potassium phosphate (K3PO4). The soil heavy metal immobilization performance and mechanisms of modified biochars were investigated. Incubation experiments showed that impregnation with phosphorous can decrease the extraction of Cu (II) and Cd (II) by 2 to 3 times. Phosphorus-modified biochars enhanced the transformation of Cu (II) and Cd (II) ions from acid soluble to more stable forms. Characterization results showed that phosphorus (P) compounds in modified biochar played a vital role to immobilize Cu (II) and Cd (II) by forming precipitates or complexes with them. Additionally, the modified rice husk and cornstalk biochars have in the average 14-24% and 19-33% higher immobilization efficiency for Cd (II) and Cu (II) than the other two P-assisted biochars. However, regardless of the feedstock, both the extraction and mobility of As (V) were increased by phosphorous. This study indicates that the P-modified biochar can serve as a novel remediation agent for heavy metal polluted soils.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jingai Shao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shihong Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xiong Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hanping Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
26
|
Kashif Irshad M, Chen C, Noman A, Ibrahim M, Adeel M, Shang J. Goethite-modified biochar restricts the mobility and transfer of cadmium in soil-rice system. CHEMOSPHERE 2020; 242:125152. [PMID: 31669984 DOI: 10.1016/j.chemosphere.2019.125152] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/10/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) contamination of paddy soils has raised serious concerns for food safety and security. Remediation and management of Cd contaminated soil with biochar (BC) and modified biochar is a cost-effective method and has gained due attention in recent years. Goethite-modified biochar (GB) can combine the beneficial effects of BC and iron (Fe) for remediation of Cd contaminated soil. We probed the impact of different BC and GB amendments on Cd mobility and transfer in the soil-rice system. Both BC and GB effectively reduced Cd mobility and availability in the rhizosphere and improved the key growth attributes of rice. Although BC supply to rice plants enhanced their performance in contaminated soil but application of 1.5% GB to the soil resulted in prominent improvements in physiological and biochemical attributes of rice plants grown in Cd contaminated soil. Sequential extraction results depicted that BC and GB differentially enhanced the conversion of exchangeable Cd fractions to non-exchangeable Cd fractions thus restricted the Cd mobility and transfer in soil. Furthermore, supplementing the soil with 1.5% GB incremented the formation of iron plaque (Fe plaque) and boosted the Cd sequestration by Fe plaque. Increase in shoot and root biomass of rice plants after GB treatments positively correlates with incremented chlorophyll contents and gas exchange attributes. Additionally, the oxidative stress damage in rice plants was comparatively reduced under GB application. These findings demonstrate that amending the soil with 1.5% GB can be a potential remediation method to minimize Cd accumulation in paddy rice and thereby can protect human beings from Cd exposure.
Collapse
Affiliation(s)
- Muhammad Kashif Irshad
- College of Resource and Environmental Science, China Agricultural University Beijing, PR China; Department of Environmental Sciences and Engineering, Government College University Faisalabad, Pakistan
| | - Chong Chen
- College of Resource and Environmental Science, China Agricultural University Beijing, PR China
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Pakistan
| | - Muhammad Ibrahim
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Pakistan
| | - Muhammad Adeel
- College of Resource and Environmental Science, China Agricultural University Beijing, PR China
| | - Jianying Shang
- College of Resource and Environmental Science, China Agricultural University Beijing, PR China.
| |
Collapse
|
27
|
Tan H, Wang C, Li H, Peng D, Zeng C, Xu H. Remediation of hexavalent chromium contaminated soil by nano-FeS coated humic acid complex in combination with Cr-resistant microflora. CHEMOSPHERE 2020; 242:125251. [PMID: 31896185 DOI: 10.1016/j.chemosphere.2019.125251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
A novel nano-composite material (CMC-FeS@HA) combining the advantages of humic acid (HA) and FeS was synthesized to remediate hexavalent chromium (Cr(VI)) contaminated soil along with chromium (Cr) resistant microflora. The characteristic analysis confirmed the successful synthesis of the nano-composite, which provided further mechanism evidence of its detoxification effect on polluted soil. Energy Dispersive System analysis proved the adsorption of the microbe consortium (MC) for Cr. After remediation, Cr(VI) in all treatments was dramatically reduced and the leachable Cr in soil treated by CMC-FeS@HA and MC decreased 89.14% compared with control. The result of BCR sequential extraction showed that Cr was stabilized, whose form changed to oxidizable and residual from HOAC-extractable. Besides, CMC-FeS@HA, as a sustained-release acid with high biocompatibility, could continuously decrease the pH of strongly alkaline soil and created a suitable micro-ecological environment for soil microorganisms. Moreover, CMC-FeS@HA dramatically improved soil physicochemical property, soil microbial activity (dehydrogenase, hydrolase, urease, and invertase activities), and soil microecological diversity. In total, this study provided a useful technology for soil remediation, which innovatively combined chemical remediation and microbial-remediation with a positive effect on soil quality, providing a good approach for the multiple technology combination in the environmental cause.
Collapse
Affiliation(s)
- Hang Tan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Can Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Hao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Dinghua Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Chunteng Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
28
|
Teng Z, Shao W, Zhang K, Yu F, Huo Y, Li M. Enhanced passivation of lead with immobilized phosphate solubilizing bacteria beads loaded with biochar/ nanoscale zero valent iron composite. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121505. [PMID: 31776085 DOI: 10.1016/j.jhazmat.2019.121505] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/03/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Phosphate solubilizing bacteria (PSBs) can effectively enhance the stability of lead via the formation of insoluble Pb-phosphate compounds. This research presents a bio-beads, which was implemented with the help of a self-designed porous spheres carrier, by immobilized PSBs strains Leclercia adecarboxylata (hereafter referred as L1-5). In addition, the passivation efficiency of lead via bio-beads under different conditions and its mechanism were also investigated in this study. The results indicated that phosphate solubilized by bio-beads could reach 30 mg/L in Ca3(PO4)2 medium containing 1 mM Pb2+, and the highest removal rate of Pb2+ in beef peptone liquid medium could reach 93%, which is better than that of free bacteria. Furthermore, it was also concluded that the lead could be transformed into stable crystal texture, such as Pb5(PO4)3Cl and Pb5(PO4)3OH. Both hydrophobic and hydrophilic groups in the bio-beads could capture Pb2+, which indicated that electrostatic attraction and ion-exchange were also the mechanism of Pb2+ adsorption. All the experimental findings demonstrated that this bio-bead could be consider as an efficient way for the lead immobilization in contaminated soil in the future.
Collapse
Affiliation(s)
- Zedong Teng
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Lab for Source Control Technology of Water Pollution. Beijing Forestry University, Beijing 100083, China
| | - Wen Shao
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Department of Geoscience, Eberhard Karls Universität Tübingen, Tübingen 72074, Germany
| | - Keyao Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Lab for Source Control Technology of Water Pollution. Beijing Forestry University, Beijing 100083, China
| | - Fulu Yu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; School of Chemical Science and Engineering, Tongji University, Shanghai 200940, China
| | - Yaoqiang Huo
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Min Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Lab for Source Control Technology of Water Pollution. Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
29
|
The Immobilization of Soil Cadmium by the Combined Amendment of Bacteria and Hydroxyapatite. Sci Rep 2020; 10:2189. [PMID: 32041971 PMCID: PMC7010816 DOI: 10.1038/s41598-020-58259-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/13/2020] [Indexed: 11/25/2022] Open
Abstract
The remediation of heavy metal-contaminated soils has attracted increased attention worldwide. The immobilization of metals to prevent their uptake by plants is an efficient way to remediate contaminated soils. This work aimed to seek the immobilization of cadmium in contaminated soils via a combination method. Flask experiments were performed to investigate the effects of hydroxyapatite (HAP) and the Cupriavidus sp. strain ZSK on soil pH and DTPA-extractable cadmium. Pot experiments were carried out to study the effects of the combined amendment on three plant species. The results showed that HAP has no obvious influence on the growth of the strain. With increasing concentrations of HAP, the soil pH increased, and the DTPA-extractable Cd decreased. Via the combined amendment of the strain and HAP (SH), the DTPA-extractable Cd in the soil decreased by 58.2%. With the combined amendment of the SH, the cadmium accumulation in ramie, dandelion, and daisy decreased by 44.9%, 51.0%, and 38.7%, respectively. Moreover, the combined amendment somewhat benefitted the growth of the three plant species and significantly decreased the biosorption of cadmium. These results suggest that the immobilization by the SH combination is a potential method to decrease the available cadmium in the soil and the cadmium accumulation in plants.
Collapse
|
30
|
Mujtaba Munir MA, Liu G, Yousaf B, Ali MU, Abbas Q, Ullah H. Synergistic effects of biochar and processed fly ash on bioavailability, transformation and accumulation of heavy metals by maize (Zea mays L.) in coal-mining contaminated soil. CHEMOSPHERE 2020; 240:124845. [PMID: 31561162 DOI: 10.1016/j.chemosphere.2019.124845] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
In the paper, hydrothermally (HT) treated, sulfuric acid (H2SO4), and hydrochloric acid (HCl) washed fly ashes (FA) were used to examine the applied effects with and without biochar (BC) on the bioavailability of heavy metals (HMs) and growth of maize (Zea mays L.) plants in coal-mining contaminated soil. Addition of BC in combination with these processed fly ashes (PFA) significantly increased the soil pH, EC, and soil organic carbon (SOC). Individual application of BC and PFA increased the available contents of Mg, Mn, and Fe, while the combination of BC and PFA significantly decreased the bioavailability of HMs in soil compared to control. The BC + HT-FA and BC + H2SO4-FA were most efficient treatments followed by BC + HCl-FA in promoting plant growth parameters (i.e., fresh and dry biomass, root and shoot lengths), reduction in the uptake of HMs and increase in the uptake of macronutrients. The results established that the combined application of BC and PFA synergistically increased HMs immobilization and maize biomass yields. The lowest transfer rate (TR), bioconcentration factor (BCF), and translocation factor (TF) for Cr, Co, Ni, Cu, Zn, Cd, and Pb were detected in BC + HT-FA, followed by BC + H2SO4-FA and BC + HCl-FA treatments after 60 days of maize crop harvesting. It could be suggested that using BC along with PFA as a soil stabilizer may be a promising source to immobilize HMs in a coal-mining contaminated soil.
Collapse
Affiliation(s)
- Mehr Ahmed Mujtaba Munir
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Balal Yousaf
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Muhammad Ubaid Ali
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Qumber Abbas
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Habib Ullah
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
31
|
Janus A, Waterlot C, Douay F, Pelfrêne A. Ex situ evaluation of the effects of biochars on environmental and toxicological availabilities of metals and polycyclic aromatic hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1852-1869. [PMID: 31760614 DOI: 10.1007/s11356-019-06764-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
The present study experimented five biochars, one made from wood (400 °C, 12 h) and four made from miscanthus cultivated on contaminated soils (temperature 400/600 °C, duration 45/90 min). They were used as amendments at a 2% application rate on soil, cultivated or not cultivated with ryegrass, contaminated with (i) metals (Cd, Pb, and Zn), (ii) eight polycyclic aromatic hydrocarbons (PAHs), and (iii) a mix of metals and PAHs. The objectives were (i) to compare the effectiveness of the five biochars on soil parameters and pollutant availability and (ii) to determine the influence of soil multicontamination and ryegrass cultivation on biochar effectiveness. The results showed that biochar application did not necessarily lead to lower pollutant extractability and metal bioaccessibility. However, differences were highlighted between the biochars. The miscanthus biochars produced at 600 °C (BM600) showed higher effectiveness at decreasing metal extractability than the miscanthus biochars produced at 400 °C (BM400) due to its better sorption characteristics. In addition, ryegrass cultivation did not impact pollutant availability but modified metal bioaccessibility, especially for the soil amended with the BM600 and the woody biochar. Moreover, the presence of PAHs also negatively impacted the metal bioaccessibility in the soil amended with the BM600, and, on the contrary, positively impacted it in the soil amended with the BM400. Complementary studies are therefore necessary to understand the mechanisms involved, particularly in a context where soils requiring remediation operations are often multicontaminated and vegetated.
Collapse
Affiliation(s)
- Adeline Janus
- Laboratoire Génie Civil et géoEnvironnement (LGCgE), Yncréa Hauts-de-France, 48 boulevard Vauban, BP 41290, 59014, Lille cedex, France.
| | - Christophe Waterlot
- Laboratoire Génie Civil et géoEnvironnement (LGCgE), Yncréa Hauts-de-France, 48 boulevard Vauban, BP 41290, 59014, Lille cedex, France
| | - Francis Douay
- Laboratoire Génie Civil et géoEnvironnement (LGCgE), Yncréa Hauts-de-France, 48 boulevard Vauban, BP 41290, 59014, Lille cedex, France
| | - Aurélie Pelfrêne
- Laboratoire Génie Civil et géoEnvironnement (LGCgE), Yncréa Hauts-de-France, 48 boulevard Vauban, BP 41290, 59014, Lille cedex, France
| |
Collapse
|
32
|
Peng D, Wu B, Tan H, Hou S, Liu M, Tang H, Yu J, Xu H. Effect of multiple iron-based nanoparticles on availability of lead and iron, and micro-ecology in lead contaminated soil. CHEMOSPHERE 2019; 228:44-53. [PMID: 31022619 DOI: 10.1016/j.chemosphere.2019.04.106] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/08/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
Although iron nanoparticles (NPs) have been used for environmental remediation of heavy metal, their potential to remediate lead (Pb) contaminated soil and effect on soil micro-ecology is unclear. The purpose of this study was to investigate the potential of nanoscale zerovalent iron (nZVI), nanoscale zerovalent iron supported by biochar (nZVI@BC), ferrous sulfide (FeS-NPs), ferrous sulfide supported by biochar (FeS-NPs@BC), ferriferrous oxide (Fe3O4-NPs) and ferriferrous oxide supported by biochar (Fe3O4-NPs@BC) to remediate Pb contaminated soil and the influences for soil micro-ecology. The results showed that biochar (BC) could improve the crystal shape and superficial area of iron-based nanoparticles. Soil pH values was significantly decreased by FeS-NPs and FeS-NPs@BC, but increased by other iron-nanoparticles. The ability to reduce available Pb concentration showed significant difference among these iron-nanoparticles, that is, the immobilized rate were nZVI by 45.80%, nZVI@BC by 54.68%, FeS-NPs by 2.70%, FeS-NPs@BC by 5.13%, Fe3O4-NPs by 47.47%, Fe3O4-NPs@BC by 30.51% at day 90. Almost all soil enzyme activities in Fe3O4-NPs and Fe3O4-NPs@BC groups were increased, but the majority of the enzyme activities were inhibited in other iron-based nanoparticles groups, while the maximum bacterial number was determined in FeS-NPs group. Furthermore, microbial diversity analysis showed that FeS-NPs has significantly changed microbial community richness and diversity, followed by nZVI and Fe3O4-NPs. Accordingly, our results suggested that nZVI@BC had the best immobilization effect on Pb in high-concentration Pb-contaminated alkaline soil, but the toxic effect of Fe3O4-NPs on soil micro-ecology was relatively minimal.
Collapse
Affiliation(s)
- Dinghua Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Bin Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Hang Tan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Siyu Hou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Min Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Hao Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Jiang Yu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China.
| |
Collapse
|
33
|
Awad YM, Vithanage M, Niazi NK, Rizwan M, Rinklebe J, Yang JE, Ok YS, Lee SS. Potential toxicity of trace elements and nanomaterials to Chinese cabbage in arsenic- and lead-contaminated soil amended with biochars. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1777-1791. [PMID: 28550601 DOI: 10.1007/s10653-017-9989-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
To our knowledge, this is the first report on exploring the interactive effects of various biochars (BCs) and nanomaterials (NMs) on plant growth and bioavailability of trace elements in soil. This study evaluated the bioavailability and toxicity of arsenic (As), lead (Pb), and NMs to cabbage plants. The BCs were produced from rice husk (RB), sewage sludge, and bamboo wood (WB). The BCs at 2.5 and 5% (w w-1), NMs for removing As (NMs-As) and heavy metals (NMs-HM) at 3000 mg kg-1, and multi-walled carbon nanotubes (CNT) at 1000 mg kg-1 were applied in bioassay and incubation experiments (40 days), along with the unamended soil as the control. Results showed that the NMs-As and NMs-HM decreased seed germination at 3 days after sowing; however, their toxicity was eliminated by BCs. Growth parameters of cabbage revealed that the CNT was the most toxic NMs, as it was translocated in root and leaf cells, which was confirmed by transmission electron microscopic images. Bioavailable Pb was reduced by 1.2-3.8-folds in all amended rhizosphere and bulk soils. Amendments of 2.5% WB + NMs-As and 2.5% RB + NMs-As significantly decreased both bioavailable As and Pb.
Collapse
Affiliation(s)
- Yasser Mahmoud Awad
- Korea Biochar Research Center and School of Natural Resource and Environmental Sciences, Kangwon National University, Chuncheon, 24341, South Korea
- Department of Agricultural Botany, Faculty of Agriculture, Suez Canal University, Ismailia, 41522, Egypt
| | - Meththika Vithanage
- Korea Biochar Research Center and School of Natural Resource and Environmental Sciences, Kangwon National University, Chuncheon, 24341, South Korea
- Chemical and Environmental Systems Modeling Research Group, National Institute of Fundamental Studies, Kandy, 20000, Sri Lanka
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- MARUM and Department of Geosciences, University of Bremen, 28359, Bremen, Germany
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Jörg Rinklebe
- Laboratory of Soil- and Groundwater-Management, Institute of Foundation Engineering, Water- and Waste Management, School of Architecture and Civil Engineering, University of Wuppertal, Pauluskirchstraße 7, 42285, Wuppertal, Germany
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Jae E Yang
- School of Natural Resource and Environmental Sciences, Kangwon National University, Chuncheon, 24341, South Korea
| | - Yong Sik Ok
- Korea Biochar Research Center and School of Natural Resource and Environmental Sciences, Kangwon National University, Chuncheon, 24341, South Korea.
| | - Sang Soo Lee
- Korea Biochar Research Center and School of Natural Resource and Environmental Sciences, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
34
|
Deng Y, Chen N, Feng C, Chen F, Wang H, Feng Z, Zheng Y, Kuang P, Hu W. Research on complexation ability, aromaticity, mobility and cytotoxicity of humic-like substances during degradation process by electrochemical oxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:811-820. [PMID: 31125811 DOI: 10.1016/j.envpol.2019.05.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
The humic-like substances were the main organic components in most wastewater (e.g. domestic sewage, toilet wastewater and landfill leachate). Two types of actual humic-like substances (fulvic acid (FA) and biologically treated landfill leachate (BTLL)) were selected to describe the changes in the properties of humic-like substances (complexation ability, aromaticity and mobility) during electrochemical oxidation. Meanwhile, the acute cytotoxicity of FA and BTLL was also tested by acute toxicological test of luminescent bacteria. The results showed that the consumption of coordinating groups such as phenolic groups and hydrogen bonds reduced the complexation ability of FA and BTLL. The functional groups were degraded with the removal order of quinone group, phenolic group and aromatic group, and finally realized the molecular saturation and aromaticity decrease for humic-like substances. The mobility of FA and BTLL was decreased because of the enhancement of hydrophobicity during electrolysis process. Furthermore, the available chlorine produced during electrochemical oxidation was the main acute cytotoxicity substance, therefore, it is necessary to remove it before discharge in order to reduce ecological risks. This study provides a basis for understanding and evaluating the electrochemical degradation process of humic-like substances in detail.
Collapse
Affiliation(s)
- Yang Deng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Fangxin Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Haishuang Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Zhengyuan Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Yuhan Zheng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Peijing Kuang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Weiwu Hu
- China University of Geosciences (Beijing), Journal Center, Beijing, 100083, PR China
| |
Collapse
|
35
|
Rajendran M, Shi L, Wu C, Li W, An W, Liu Z, Xue S. Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil-rice system. CHEMOSPHERE 2019; 222:314-322. [PMID: 30708165 DOI: 10.1016/j.chemosphere.2019.01.149] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/02/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Cadmium (Cd) contamination in paddy soils has aroused global concern. Sulfur modified biochar (BC) could combine the benefits of BC and S for Cd remediation. However, no information is available on the impact of sulfur modified biochar on Cd phytoavailability in paddy soils. In this study, a pot experiment was conducted to investigate the effect of sulfur modified biochar (S-BC) and sulfur and iron (Fe) modified biochar (S-Fe BC) on Cd mobility and Cd transfer in the soil-rice system. The application of S-BC and S-Fe BC effectively reduced pore water Cd in the rhizosphere and non-rhizosphere pore water throughout the rice growth stages. S-BC and S-Fe BC addition increased the total chlorophyll content, as well as the root, shoot and grain biomasses of rice. Furthermore, S-BC and S-Fe BC amendments greatly increase the formation of Fe plaque on rice root surface, thus decreasing Cd accumulation in different rice tissues. In particular, S-Fe BC supplementation significantly reduced the Cd concentration in rice grains to 0.018 mg kg-1 in Cd-contaminated soil, which was lower than the China National standard for food contamination limit (0.2 mg kg-1 Cd). Sequential extraction results showed that S-BC and S-Fe BC can promote the transfer of exchangeable Cd to Fe-Mn oxide, organic and residual bound forms which reduce Cd in paddy soils. Thus, the amendment of S-Fe BC to Cd-contaminated paddy soil is an effective strategy to decrease Cd accumulation in rice grains and thereby protect public health.
Collapse
Affiliation(s)
- Manikandan Rajendran
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Lizheng Shi
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510530, PR China
| | - Chuan Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| | - Waichin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Wenhui An
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Ziyu Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| |
Collapse
|
36
|
Rizwan M, Ali S, Zia Ur Rehman M, Adrees M, Arshad M, Qayyum MF, Ali L, Hussain A, Chatha SAS, Imran M. Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:358-367. [PMID: 30818115 DOI: 10.1016/j.envpol.2019.02.031] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/09/2019] [Accepted: 02/10/2019] [Indexed: 05/22/2023]
Abstract
Due to the increase in area of cadmium (Cd)-contaminated soils worldwide, effective measures are necessary to minimize the Cd accumulation in cereals including maize (Zea mays L.) plant. A study was therefore performed to explore the effectiveness of foliar spray of zinc oxide (ZnO) nanoparticle (NPs) alone (0, 50, 75, 100 mg/L) or combined with soil application of biochar (1.0% w/w) on biomass, antioxidant enzyme activity and Cd concentrations in maize plants grown on a Cd-contaminated soil. The results depicted that ZnO NPs alone or in combination with biochar improved the height of maize plants, number of leaves, shoot and roots dry biomass, chlorophyll concentrations and gas exchange attributes. All the amendments reduced the electrolyte leakage, malondialdehyde, and hydrogen peroxide contents while improved the activities of antioxidant enzymes in leaf and roots of maize over the control. The application of 50, 75 and 100 mg/L ZnO NPs reduced the Cd contents in shoots by about 12%, 23, and 61%, and in roots by 18%, 33%, and 53%, respectively, over the control. The Cd concentrations in shoot decreased by 15%, 28%, and 68% and in roots by 14%, 35, and 55% after biochar combined with foliar spray of 50, 75 and 100 mg/L ZnO NPs, respectively. All the amendments improved the Zn concentrations in maize shoots and roots whereas reduced the soil bioavailable Cd. Overall, biochar combined with foliar spray of ZnO NPs could be recommended for safely growing the crops on Cd-contaminated soils.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Adrees
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Muhammad Arshad
- Institute of Environmental Sciences & Engineering (IESE), National University of Sciences & Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Muhammad Farooq Qayyum
- Department of Soil Science, Faculty of Agricultural Sciences & Technology Bahauddin Zakariya University Multan, Pakistan
| | - Liaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Afzal Hussain
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Shahzad Ali Shahid Chatha
- Department of Chemistry, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Pakistan
| |
Collapse
|
37
|
Zhou Q, Liao B, Lin L, Song Z, Khan ZH, Lei M. Characteristic of adsorption cadmium of red soil amended with a ferromanganese oxide-biochar composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5155-5163. [PMID: 30607841 DOI: 10.1007/s11356-018-3942-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
The increasing scarcity of arable land necessitates the development of effective decontamination techniques to re-gain contaminated areas and make them suitable for agricultural and other activities. Herein, we prepare a ferromanganese binary oxide-biochar composite (FMBC) and compare its potential for remediating Cd-contaminated red soil with that of biochar (BC), showing that (i) the obtained adsorption data are well described by the Langmuir model and (ii) Cd adsorption capacity increases with increasing adsorbent dosage. Specifically, the Cd adsorption capacity of FMBC-amended soil (6.72 mg g-1) is demonstrated to significantly exceed that of BC-amended red soil (4.85 mg g-1) and that of the control (2.28 mg g-1) and increases with increasing temperature and pH, while the results of instrumental analyses indicate that Cd sorption on the soil surface occurs via the formation of CdO and Cd(OH)2. Thus, FMBCs are concluded to play an important role in the adsorption of Cd, having the potential to prevent red soil acidification and improve soil quality, and are found to be promising remediation materials for mitigating the risks posed by Cd-contaminated red soil.
Collapse
Affiliation(s)
- Qiwen Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
- Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin, 300191, China
| | - Bohan Liao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Lina Lin
- Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin, 300191, China
| | - Zhengguo Song
- Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin, 300191, China.
| | - Zulqarnain Haider Khan
- Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin, 300191, China
| | - Ming Lei
- Hunan Agricultural University, Changsha, China
| |
Collapse
|
38
|
Wu C, Shi L, Xue S, Li W, Jiang X, Rajendran M, Qian Z. Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1158-1168. [PMID: 30180324 DOI: 10.1016/j.scitotenv.2018.08.087] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/24/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Cadmium contamination in paddy soils has aroused increasing concern around the world, and biochar has many positive properties, such as large specific surface areas, micro porous structure for the heavy metal immobilization in soils. However there are few studies on sulfur-iron modified biochar as well as its microbiology effects. The purpose of this study was to evaluate the Cd immobilization effects of sulfur or sulfur-iron modified biochar and its related microbial community changes in Cd-contaminated soils. SEM-EDX analysis confirmed that sulfur and iron were loaded on the raw biochar successfully. Sulfur-modified biochar (S-BC) and sulfur-iron modified biochar (SF-BC) addition increased pH value and the content of soil organic matter, and also decreased DTPA-extractable Cd. There was a negative significant correlation between organic matter content and the available Cd (P < 0.05). During a 45-d incubation period, the fractions of Cd are mainly with the exchangeable (25.16-35.79%) and carbonate (22.01-25.10%) fractions. Compared with the control, the concentrations of exchangeable Cd in soil were significantly (P < 0.05) decreased by 12.54%, 29.71%, 18.53% under the treatments of BC, S-BC, SF-BC respectively. The S-BC and SF-BC treatments significantly (P < 0.05) increased Chao1, observed, Shannon and Simpson diversity indices compared with the control and biochar treatments. Meanwhile, the relative abundance of Proteobacteria, Bacteroidetes, and Actinobacteria increased, whereas the abundance of Acidobacteria and Germmatimonadetes decreased. Capsule: Sulfur-modified and sulfur-iron modified biochar applications decreased the available Cd and changed the microbial community.
Collapse
Affiliation(s)
- Chuan Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Lizheng Shi
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| | - Waichin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong Special Administrative Region, PR China.
| | - Xingxing Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Manikandan Rajendran
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Ziyan Qian
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| |
Collapse
|
39
|
Bashir S, Hussain Q, Shaaban M, Hu H. Efficiency and surface characterization of different plant derived biochar for cadmium (Cd) mobility, bioaccessibility and bioavailability to Chinese cabbage in highly contaminated soil. CHEMOSPHERE 2018; 211:632-639. [PMID: 30098558 DOI: 10.1016/j.chemosphere.2018.07.168] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/15/2018] [Accepted: 07/27/2018] [Indexed: 05/10/2023]
Abstract
Cadmium (Cd) contamination in red soil has become a serious environmental concern due to its toxic effects on organisms and the food chain. Possible eco-friendly solutions for Cd immobilization were required to reduce its mobility through biochar. This study evaluated the comparative efficiency of rice straw (RSB), rice hull (RHB) and maize stover (MSB) derived biochar (BC) on Cd mobility and its accumulation in Chinese cabbage (Brassica chinensis L.), which is highly Cd accumulating crop. Results showed that the soil chemical properties (pH, organic carbon and nutrients) significantly increased with increasing the biochar application rate from 1.5% to 3%. Concentration of Cd decreased in CaCl2 extract by 58.6, 39.7 and 46.49% and in toxicity characteristics leaching test (TCLP) by 42.9, 32.7 and 36.7% for RSB, RHB and MSB, respectively at 3% application rate. The simple bioaccessibility extraction test (SBET) techniques showed a significant decrease in Cd by 30.5, 20.6 and 27.5% for RSB, RHB and MSB, respectively at the 3% application rate. Moreover, the Cd contents in the cabbage shoots decreased by 25, 21.3 and 23.1% for RSB, RHB and MSB at a 3% application rate and in the roots by 31.3, 23.9 and 26.5% for RSB, RHB and MSB at a 3% application rate, respectively. Bioaccumulation (BCF) and translocation factors (TF) were significantly decreased upto 26.5% and 11%, respectively among all biochar types. Overall, RSB demonstrated positive results as soil amendments for Cd immobilization and thereby, reducing its bioavailability in the Cd contaminated soil to mitigate food security risks.
Collapse
Affiliation(s)
- Saqib Bashir
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qaiser Hussain
- Department of Soil Science & SWC, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Shaaban
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
40
|
Li Y, Zhang Y, Zhang Y, Wang G, Li S, Han R, Wei W. Reed biochar supported hydroxyapatite nanocomposite: Characterization and reactivity for methylene blue removal from aqueous media. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.04.132] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Bashir S, Salam A, Chhajro MA, Fu Q, Khan MJ, Zhu J, Shaaban M, Kubar KA, Ali U, Hu H. Comparative efficiency of rice husk-derived biochar (RHB) and steel slag (SS) on cadmium (Cd) mobility and its uptake by Chinese cabbage in highly contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:1221-1228. [PMID: 31274024 DOI: 10.1080/15226514.2018.1448364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cadmium (Cd) contamination in red soil has been considered as a severe threat due to its toxic effects on plants and food security. This study aims to evaluate the comparative efficiency of rice husk-derived biochar (RHB) and steel slag (SS) metal stabilizer on decreasing Cd mobility and bioavailability to Chinese cabbage grown on acidic contaminated red soil. Several extraction techniques: a sequential extraction procedure, the European Community Bureau of Reference, toxicity characteristics leaching procedure, ammonium nitrate, and simple bioaccessibility extraction test were used to measure Cd mobility after amelioration of the investigated soil. The results indicated that application of stabilizer significantly increased soil chemical properties including soil pH, cation exchange capacity, nutrients, and organic matter. The soluble portion of Cd in soil was significantly decreased by 17.6-31.2% and 7.8-11.7% for RHB and SS at 1.5% and 3% application rate, respectively. Moreover, Cd bioaccessibility was significantly declined by 37.08% with RHB and 11.3% with SS at 3% rate. Inlcorporation of RHB at 3% can effectively immobilize Cd and thereby, reduce its phytoavailability to cabbage in Cd-contaminated soil to mitigate food security risks.
Collapse
Affiliation(s)
- Saqib Bashir
- a Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) , Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University , Wuhan , China
| | - Abdus Salam
- a Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) , Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University , Wuhan , China
| | | | - Qingling Fu
- a Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) , Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University , Wuhan , China
| | - Muhammad Jamal Khan
- c School of Agriculture and Food Science , Faculty of Veterinary and Agricultural Sciences, Dookie Campus, The University of Melbourne , Victoria , Australia
| | - Jun Zhu
- a Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) , Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University , Wuhan , China
| | - Muhammad Shaaban
- a Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) , Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University , Wuhan , China
| | - Kashif Ali Kubar
- a Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) , Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University , Wuhan , China
| | - Umeed Ali
- a Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) , Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University , Wuhan , China
| | - Hongqing Hu
- a Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) , Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University , Wuhan , China
| |
Collapse
|