1
|
Esposito E, Indolfi C, Bello I, Smimmo M, Vellecco V, Schettino A, Montanaro R, Morroni F, Sita G, Graziosi A, Panza E, Sorrentino R, d'Emmanuele di Villa Bianca R, Mitidieri E. The endocrine disruptor vinclozolin causes endothelial injury via eNOS/Nox4/IRE1α signaling. Eur J Pharmacol 2024; 977:176758. [PMID: 38901528 DOI: 10.1016/j.ejphar.2024.176758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Vinclozolin (VCZ) is a common dicarboximide fungicide used to protect crops from diseases. It is also an endocrine disruptor, and its effects on various organs have been described but its influence on vasculature has not yet been addressed. This study focuses on the potential mechanism of VCZ-induced vascular injury. The effect of VCZ on vascular function in terms of relaxing and contracting response was evaluated in mice aorta. A short exposure to VCZ affected the endothelial but not the smooth muscle component. Specifically, it caused a disruption of the eNOS/NO signaling. In line, a short exposure to VCZ in bovine aortic endothelial cells promoted eNOS uncoupling resulting in a reduction of NO bioavailability and eNOS dimer/monomer ratio, and in turn an increase of nitro-tyrosine levels and ROS formation. Prolonging the exposure to VCZ (3 and 6h) an up-regulation of Nox4, enzyme-generating ROS constitutively expressed in endothelial cells, and an increase in ROS and malondialdehyde content coupled with a reduction in NO levels were found. These events were strictly linked to endoplasmic reticulum stress as demonstrated by the phosphorylation of inositol-requiring transmembrane kinase endoribonuclease 1α (IRE1α), a stress sensor and its reversion by using a selective inhibitor. Collectively, these results demonstrated that VCZ provokes endothelial dysfunction by oxidative stress involving eNOS/Nox4/IRE1α axis. The rapid exposure affected the endothelial function promoting eNOS uncoupling while a post-transcriptional modification, involving Nox4/IRE1α signaling, occurred following prolonged exposure. Thus, exposure to VCZ could contribute to the onset and/or progression of cardiovascular diseases associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Erika Esposito
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Chiara Indolfi
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy.
| | - Ivana Bello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Martina Smimmo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Valentina Vellecco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Anna Schettino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Rosangela Montanaro
- Department of Science, University of Basilicata, Macchia Romana Campus 10, Viale dell'Ateneo Lucano, 85100, Potenza, Italy.
| | - Fabiana Morroni
- Department of Pharmacy and BioTechnology-FaBiT, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126, Bologna, Italy.
| | - Giulia Sita
- Department of Pharmacy and BioTechnology-FaBiT, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126, Bologna, Italy.
| | - Agnese Graziosi
- Department of Pharmacy and BioTechnology-FaBiT, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126, Bologna, Italy.
| | - Elisabetta Panza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Raffaella Sorrentino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | | | - Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| |
Collapse
|
2
|
Park YT, Chung EY, Chae CH, Lee YH. Association between serum perfluoroalkyl substances concentrations and non-alcoholic fatty liver disease among Korean adults: a cross-sectional study using the National Environmental Health Survey cycle 4. Ann Occup Environ Med 2024; 36:e10. [PMID: 38872635 PMCID: PMC11168940 DOI: 10.35371/aoem.2024.36.e10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 03/28/2024] [Indexed: 06/15/2024] Open
Abstract
Background Perfluoroalkyl substances (PFAS) are widely used in industry and daily life due to their useful properties. They have a long half-life, accumulate in the body, and there is evidence that they are associated with biomarkers of lipid metabolism and liver damage. This may suggest non-alcoholic fatty liver disease (NAFLD) caused by PFAS. However, since there has been no study analyzing the relationship between PFAS and NAFLD in the entire population in Korea. We sought to confirm the relationship between serum PFAS concentration and NAFLD prevalence in Korean adults using the Korean National Environmental Health Survey (KoNEHS) cycle 4. Methods The study was conducted on 2,529 subjects in 2018-2019 among KoNEHS participants. For the diagnosis of NAFLD, the hepatic steatosis index (HSI) was used, and the geometric mean and concentration distribution of serum PFAS were presented. Logistic regression was performed to confirm the increase in the risk of NAFLD due to changes in PFAS concentration, and the odds ratio and 95% confidence interval (CI) were calculated. Results In both adjusted and unadjusted models, an increased odds ratio was observed with increasing serum concentrations of total PFAS and perfluorooctane sulfonate (PFOS) in the non-obese group. In the adjusted model, the odds ratios for serum total PFAS and PFOS were 6.401 (95% CI: 1.883-21.758) and 7.018 (95% CI: 2.688-18.319). Conclusions In this study, a higher risk of NAFLD based on HSI was associated with serum total PFAS, PFOS in non-obese group. Further research based on radiological or histological evidence for NAFLD diagnosis and long-term prospective studies are necessary. Accordingly, it is necessary to find ways to reduce exposure to PFAS in industry and daily life.
Collapse
Affiliation(s)
- Yong Tae Park
- Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Eui Yup Chung
- Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Chang Ho Chae
- Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Young Hoon Lee
- Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| |
Collapse
|
3
|
Kabekkodu SP, Gladwell LR, Choudhury M. The mitochondrial link: Phthalate exposure and cardiovascular disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119708. [PMID: 38508420 DOI: 10.1016/j.bbamcr.2024.119708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/17/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Phthalates' pervasive presence in everyday life poses concern as they have been revealed to induce perturbing health defects. Utilized as a plasticizer, phthalates are riddled throughout many common consumer products including personal care products, food packaging, home furnishings, and medical supplies. Phthalates permeate into the environment by leaching out of these products which can subsequently be taken up by the human body. It is previously established that a connection exists between phthalate exposure and cardiovascular disease (CVD) development; however, the specific mitochondrial link in this scenario has not yet been described. Prior studies have indicated that one possible mechanism for how phthalates exert their effects is through mitochondrial dysfunction. By disturbing mitochondrial structure, function, and signaling, phthalates can contribute to the development of the foremost cause of death worldwide, CVD. This review will examine the potential link among phthalates and their effects on the mitochondria, permissive of CVD development.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lauren Rae Gladwell
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
4
|
Lemini C, Silveyra P, Segovia-Mendoza M. Cardiovascular disrupting effects of bisphenols, phthalates, and parabens related to endothelial dysfunction: Review of toxicological and pharmacological mechanisms. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104407. [PMID: 38428705 DOI: 10.1016/j.etap.2024.104407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. CVDs are promoted by the accumulation of lipids and immune cells in the endothelial space resulting in endothelial dysfunction. Endothelial cells are important components of the vascular endothelium, that regulate the vascular flow. The imbalance in the production of vasoactive substances results in the loss of vascular homeostasis, leading the endothelial dysfunction. Thus, endothelial dysfunction plays an essential role in the development of atherosclerosis and can be triggered by different cardiovascular risk factors. On the other hand, the 17β-estradiol (E2) hormone has been related to the regulation of vascular tone through different mechanisms. Several compounds can elicit estrogenic actions similar to those of E2. For these reasons, they have been called endocrine-disrupting compounds (EDCs). This review aims to provide up-to-date information about how different EDCs affect endothelial function and their mechanistic roles in the context of CVDs.
Collapse
Affiliation(s)
- Cristina Lemini
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, Indiana University Bloomington, School of Public Health, Bloomington, IN, USA
| | - Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
5
|
D’Archivio M, Coppola L, Masella R, Tammaro A, La Rocca C. Sex and Gender Differences on the Impact of Metabolism-Disrupting Chemicals on Obesity: A Systematic Review. Nutrients 2024; 16:181. [PMID: 38257074 PMCID: PMC10818535 DOI: 10.3390/nu16020181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Obesity represents an important public health concern, being one of the leading causes of death worldwide. It is a multifactorial disease with many underlying intertwined causes, including genetic, environmental and behavioral factors. Notably, metabolism-disrupting chemicals (MDCs) can alter the set point control of metabolism, affecting the development and function of the adipose tissue. Epidemiological studies have reported associations between human exposure to MDCs and several altered metabolic endpoints. It is also noteworthy that sex and gender represent important risk factors in the development of obesity. Different sex-related biological and physiological characteristics influence individual susceptibility, whereas gender represents a critical component in determining the different exposure scenarios. Although some advancements in the treatment of obesity have been achieved in preclinical and clinical studies, the obesity pandemic continues to increase worldwide. The present study performed a systematic review of recent studies considering the effects of MDCs on obesity, with a specific focus on sex- and gender-related responses. This review highlighted that MDCs could differently affect men and women at different stages of life even though the number of studies evaluating the association between obesity and MDC exposure in relation to sex and gender is still limited. This evidence should urge researchers to carry out studies considering sex and gender differences. This is essential for developing sex-/gender-tailored prevention strategies to improve public health policies and reduce exposure.
Collapse
Affiliation(s)
| | - Lucia Coppola
- Correspondence: (L.C.); (R.M.); Tel.: +39-0649903686 (L.C.); +39-0649902544 (R.M.)
| | - Roberta Masella
- Gender-Specific Prevention and Health Unit, Centre for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.D.); (A.T.); (C.L.R.)
| | | | | |
Collapse
|
6
|
Liang Y, Gong Y, Jiang Q, Yu Y, Zhang J. Environmental endocrine disruptors and pregnane X receptor action: A review. Food Chem Toxicol 2023; 179:113976. [PMID: 37532173 DOI: 10.1016/j.fct.2023.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
The pregnane X receptor (PXR) is a kind of orphan nuclear receptor activated by a series of ligands. Environmental endocrine disruptors (EEDs) are a wide class of molecules present in the environment that are suspected to have adverse effects on the endocrine system by interfering with the synthesis, transport, degradation, or action of endogenous hormones. Since EEDs may modulate human/rodent PXR, this review aims to summarize EEDs as PXR modulators, including agonists and antagonists. The modular structure of PXR is also described, interestingly, the pharmacology of PXR have been confirmed to vary among different species. Furthermore, PXR play a key role in the regulation of endocrine function. Endocrine disruption of EEDs via PXR and its related pathways are systematically summarized. In brief, this review may provide a way to understand the roles of EEDs in interaction with the nuclear receptors (such as PXR) and the related pathways.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yifan Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
7
|
Akash MSH, Fatima M, Rehman K, Rehman Q, Chauhdary Z, Nadeem A, Mir TM. Resveratrol Mitigates Bisphenol A-Induced Metabolic Disruptions: Insights from Experimental Studies. Molecules 2023; 28:5865. [PMID: 37570835 PMCID: PMC10421514 DOI: 10.3390/molecules28155865] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The aim of this study was to investigate the disruptions of metabolic pathways induced by bisphenol A (BPA) and explore the potential therapeutic intervention provided by resveratrol (RSV) in mitigating these disruptions through the modulation of biochemical pathways. Wistar albino rats were divided into three groups: group 1 served as the control, group 2 received 70 mg/Kg of BPA, and group 3 received 70 mg/kg of BPA along with 100 mg/Kg of RSV. After the treatment period, various biomarkers and gene expressions were measured to assess the effects of BPA and the potential protective effects of RSV. The results revealed that BPA exposure significantly increased the serum levels of α-amylase, α-glucosidase, G6PC, insulin, HbA1c, HMG-CoA reductase, FFAs, TGs, DPP-4, MDA, and proinflammatory cytokines such as TNF-α and IL-6. Concurrently, BPA exposure led to a reduction in the levels of antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD), as well as GLUT4 and HDL cholesterol. However, the administration of RSV along with BPA significantly ameliorated these alterations in the biomarker levels induced through BPA exposure. RSV treatment effectively reduced the elevated levels of α-amylase, α-glucosidase, G6PC, insulin, HbA1c, HMG-CoA reductase, FFAs, TGs, DPP-4, MDA, and proinflammatory cytokines, while increasing the levels of antioxidant enzymes, GLUT4, and HDL cholesterol. Furthermore, BPA exposure suppressed the mRNA expression of glucokinase (GCK), insulin-like growth factor 1 (IGF-1), and glucose transporter 2 (GLUT2) and up-regulated the mRNA expression of uncoupling protein 2 (UCP2), which are all critical biomarkers involved in glucose metabolism and insulin regulation. In contrast, RSV treatment effectively restored the altered mRNA expressions of these biomarkers, indicating its potential to modulate transcriptional pathways and restore normal metabolic function. In conclusion, the findings of this study strongly suggest that RSV holds promise as a therapeutic intervention for BPA-induced metabolic disorders. By mitigating the disruptions in various metabolic pathways and modulating gene expressions related to glucose metabolism and insulin regulation, RSV shows potential in restoring normal metabolic function and counteracting the adverse effects induced by BPA exposure. However, further research is necessary to fully understand the underlying mechanisms and optimize the dosage and duration of RSV treatment for maximum therapeutic benefits.
Collapse
Affiliation(s)
| | - Mutayyba Fatima
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Qudsia Rehman
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Zunera Chauhdary
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tahir Maqbool Mir
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
8
|
Zhu L, Hajeb P, Fauser P, Vorkamp K. Endocrine disrupting chemicals in indoor dust: A review of temporal and spatial trends, and human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162374. [PMID: 36828075 DOI: 10.1016/j.scitotenv.2023.162374] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/19/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Several chemicals with widespread consumer uses have been identified as endocrine-disrupting chemicals (EDCs), with a potential risk to humans. The occurrence in indoor dust and resulting human exposure have been reviewed for six groups of known and suspected EDCs, including phthalates and non-phthalate plasticizers, flame retardants, bisphenols, per- and polyfluoroalkyl substances (PFAS), biocides and personal care product additives (PCPs). Some banned or restricted EDCs, such as polybrominated diphenyl ethers (PBDEs), di-(2-ethylhexyl) phthalate (DEHP), bisphenol A (BPA), perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), are still widely detected in indoor dust in most countries, even as the predominating compounds of their group, but generally with decreasing trends. Meanwhile, alternatives that are also potential EDCs, such as bisphenol S (BPS), bisphenol F (BPF), decabromodiphenyl ethane (DBDPE) and organophosphate flame retardants (OPFRs), and PFAS precursors, such as fluorotelomer alcohols, have been detected in indoor dust with increasing frequencies and concentrations. Associations between some known and suspected EDCs, such as phthalate and non-phthalate plasticizers, FRs and BPs, in indoor dust and paired human samples indicate indoor dust as an important human exposure pathway. Although the estimated daily intake (EDI) of most of the investigated compounds was mostly below reference values, the co-exposure to a multitude of known or suspected EDCs requires a better understanding of mixture effects.
Collapse
Affiliation(s)
- Linyan Zhu
- Aarhus University, Department of Environmental Science, Roskilde, Denmark.
| | - Parvaneh Hajeb
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Patrik Fauser
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| |
Collapse
|
9
|
Lin CY, Lee HL, Chen CW, Wang C, Sung FC, Su TC. The role of angiotensin I-converting enzyme gene polymorphism and global DNA methylation in the negative associations between urine di-(2-ethylhexyl) phthalate metabolites and serum adiponectin in a young Taiwanese population. Clin Epigenetics 2023; 15:87. [PMID: 37198693 DOI: 10.1186/s13148-023-01502-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Adiponectin is a key protein produced in adipose tissue, with crucial involvement in multiple metabolic processes. Di-(2-ethylhexyl) phthalate (DEHP), one of the phthalate compounds used as a plasticizer, has been shown to decrease adiponectin levels in vitro and in vivo studies. However, the role of angiotensin I-converting enzyme (ACE) gene polymorphism and epigenetic changes in the relationship between DEHP exposure and adiponectin levels is not well understood. METHODS This study examined the correlation between urine levels of DEHP metabolite, epigenetic marker 5mdC/dG, ACE gene phenotypes, and adiponectin levels in a sample of 699 individuals aged 12-30 from Taiwan. RESULTS Results showed a positive relationship between mono-2-ethylhexyl phthalate (MEHP) and 5mdC/dG, and a negative association between both MEHP and 5mdC/dG with adiponectin. The study found that the inverse relationship between MEHP and adiponectin was stronger when levels of 5mdC/dG were above the median. This was supported by differential unstandardized regression coefficients (- 0.095 vs. - 0.049, P value for interaction = 0.038)). Subgroup analysis also showed a negative correlation between MEHP and adiponectin in individuals with the I/I ACE genotype, but not in those with other genotypes, although the P value for interaction was borderline significant (0.06). The structural equation model analysis indicated that MEHP has a direct inverse effect on adiponectin and an indirect effect via 5mdC/dG. CONCLUSIONS In this young Taiwanese population, our findings suggest that urine MEHP levels are negatively correlated with serum adiponectin levels, and epigenetic modifications may play a role in this association. Further study is needed to validate these results and determine causality.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, 237, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Ching-Way Chen
- Department of Cardiology, National Taiwan University Hospital Yunlin Branch, Yunlin, 640, Taiwan
| | - Chikang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Fung-Chang Sung
- Department of Health Services Administration, College of Public Health, China Medical University, Taichung, 404, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, 10002, Taiwan.
- Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, 100, Taiwan.
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan.
- The Experimental Forest, National Taiwan University, Nantou, 558, Taiwan.
| |
Collapse
|
10
|
James AS, Eteng OE, Dosumu OA, Moses CA, Ogbonna CU, Adeleye OA, Ugwor EI, Omilo BC, Fabunmi RF, Olakitan AM, Ugbaja RN. Morin Augmented Myocardial eNOS/cGMP/PKG Signaling Pathway and Abated Oxidative and Inflammo-apoptotic Responses in Diethyl Phthalate and Bisphenol-S Co-Exposed Male Albino Rats. Inflammation 2023; 46:175-189. [PMID: 35900689 DOI: 10.1007/s10753-022-01720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022]
Abstract
Cardiac failure accounts for many deaths worldwide. Increasing experimental evidence suggests that exposure to chemicals such as bisphenol-S (BPS) and diethyl phthalate (DEP) exacerbate cardiac injuries. Morin is a flavonoid with reported cardioprotective activity. This study evaluated the modulation of pathways relevant to cardiac endothelial function in rats exposed to BPS and DEP mixture (Mix). Thirty male albino rats were distributed across five groups (n = 6): control received dimethyl sulfoxide (DMSO) as vehicle, Mix dissolved in DMSO, Mix + morin (25 mg/kg), Mix + morin (50 mg/kg), and morin (50 mg/kg). After 21 days of oral exposure at 1 ml/kg bodyweight of the Mix and treatment with morin, the animals were sacrificed, and their hearts were excised for biochemical, histological, immunohistochemical, and gene expression analyses. Exposure to the Mix caused a significant increase in oxidative stress indices (H2O2, malondialdehyde, DNA fragmentation, and advanced oxidation protein products). Also, arginase, phosphodiesterase 5', and the relative expression of TNF-α, interleukin-1β, Bax, androgen receptor, and vascular endothelial growth factor were markedly increased. In contrast, nitric oxide, reduced glutathione, interleukin-10 levels, superoxide dismutase, catalase, and glutathione peroxidase activities decreased significantly. Furthermore, p-NF-kB-p65 expression increased markedly in the Mix-exposed group. Morin treatment significantly reversed these perturbations in a dose-dependent manner in most instances. This study concludes that morin might offer a cardioprotective effect by enhancing the cardiac endothelial system and attenuating oxidative stress, inflammation, and apoptosis elicited by BPS and DEP co-exposure in male Wistar rats.
Collapse
Affiliation(s)
- Adewale Segun James
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Ogun State, Abeokuta, 2240, PMB, Nigeria.
- Department of Chemical Sciences (Biochemistry Program), Faculty of Science, Augustine University, Ilara-Epe, PMB 1010, Lagos State, Nigeria.
| | - Ofem Effiom Eteng
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Ogun State, Abeokuta, 2240, PMB, Nigeria
| | - Oluwatosin Adebisi Dosumu
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Ogun State, Abeokuta, 2240, PMB, Nigeria
| | - Ceasar Antiya Moses
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Ogun State, Abeokuta, 2240, PMB, Nigeria
| | - Chukwuka Uzoamaka Ogbonna
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Ogun State, Abeokuta, 2240, PMB, Nigeria
| | - Oladokun Abdulwasiu Adeleye
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Ogun State, Abeokuta, 2240, PMB, Nigeria
| | - Emmanuel Ifeanyichukwu Ugwor
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Ogun State, Abeokuta, 2240, PMB, Nigeria
| | - Blessing Chukwueku Omilo
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Ogun State, Abeokuta, 2240, PMB, Nigeria
| | - Risikat Funmilayo Fabunmi
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Ogun State, Abeokuta, 2240, PMB, Nigeria
| | - Aduragbemi Moses Olakitan
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Ogun State, Abeokuta, 2240, PMB, Nigeria
| | - Regina Ngozi Ugbaja
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Ogun State, Abeokuta, 2240, PMB, Nigeria
| |
Collapse
|
11
|
Land KL, Miller FG, Fugate AC, Hannon PR. The effects of endocrine-disrupting chemicals on ovarian- and ovulation-related fertility outcomes. Mol Reprod Dev 2022; 89:608-631. [PMID: 36580349 PMCID: PMC10100123 DOI: 10.1002/mrd.23652] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) is unavoidable, which represents a public health concern given the ability of EDCs to target the ovary. However, there is a large gap in the knowledge about the impact of EDCs on ovarian function, including the process of ovulation. Defects in ovulation are the leading cause of infertility in women, and EDC exposures are contributing to the prevalence of infertility. Thus, investigating the effects of EDCs on the ovary and ovulation is an emerging area for research and is the focus of this review. The effects of EDCs on gametogenesis, uterine function, embryonic development, and other aspects of fertility are not addressed to focus on ovarian- and ovulation-related fertility issues. Herein, findings from epidemiological and basic science studies are summarized for several EDCs, including phthalates, bisphenols, per- and poly-fluoroalkyl substances, flame retardants, parabens, and triclosan. Epidemiological literature suggests that exposure is associated with impaired fecundity and in vitro fertilization outcomes (decreased egg yield, pregnancies, and births), while basic science literature reports altered ovarian follicle and corpora lutea numbers, altered hormone levels, and impaired ovulatory processes. Future directions include identification of the mechanisms by which EDCs disrupt ovulation leading to infertility, especially in women.
Collapse
Affiliation(s)
- Katie L. Land
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Frances G. Miller
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Ava C. Fugate
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Patrick R. Hannon
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
12
|
Liu Z, Wang M, Fan Y, Wang J, Jiang S, Abudureman H. Bidirectional regulation of BDE-47 on 3T3-L1 cell differentiation based on a restricted cubic spline model. Toxicol Ind Health 2022; 38:481-492. [PMID: 35921494 DOI: 10.1177/07482337221100488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BDE-47 (2,2,4,4-tetrabromodiphenyl ether) is a polybrominated diphenyl ether (PBDE) congener, which has the characteristics of high biological detection rate, the highest content and strong biological toxicity, and is widely distributed in organisms. Many studies have found that BDE-47 may also be an environmental risk factor for metabolic diseases such as obesity, insulin resistance, type 2 diabetes, and hypertension. However, the way that PBDEs influence adipocyte differentiation remains unclear. The methylisobutylxanthine, dexamethasone, and insulin method was used to study the effect of BDE-47 on the differentiation of 3T3-L1 cells. The 3T3-L1 cells were exposed by different concentrations of BDE-47, and the effect of cell viability was detected at different stages. In addition, the lipid droplet aggregation of adipocytes was observed and the triglyceride (TG) levels in the cytoplasm were detected after differentiation. The relative mRNA expression levels of leptin, adiponectin, and PPARγ in cells were determined by RT-PCR, and differentially expressed genes were preliminarily screened by digital gene expression profile. Our study found that BDE-47 promoted the differentiation of 3T3-L1 cells. Restriction cubic spline analysis showed that BDE-47 bidirectionally. regulated the mRNA synthesis of TG, PPARγ, and leptin genes and the aggregation of lipid droplets. BDE-47 may induce adipocyte differentiation by activating PPARγ, resulting in the differential expression of genes related to the AMPK signaling pathway, insulin resistance, and other metabolic pathways. The highest and lowest-dose BDE-47 exposure groups had the greatest impact on adipocyte differentiation.
Collapse
Affiliation(s)
- Zaoling Liu
- School of Public Health, Xinjiang Medical University, Urumq, China
| | - Menglin Wang
- School of Public Health, Xinjiang Medical University, Urumq, China
| | - Yong Fan
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jiasui Wang
- School of Public Health, Xinjiang Medical University, Urumq, China
| | - Shurui Jiang
- School of Public Health, Xinjiang Medical University, Urumq, China
| | | |
Collapse
|
13
|
Wang WJ, Wang CS, Wang CK, Yang AM, Lin CY. Urine Di-(2-ethylhexyl) Phthalate Metabolites Are Independently Related to Body Fluid Status in Adults: Results from a U.S. Nationally Representative Survey. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19126964. [PMID: 35742214 PMCID: PMC9222572 DOI: 10.3390/ijerph19126964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
Purpose: Di-(2-ethylhexyl) phthalate (DEHP) has been utilized in many daily products for decades. Previous studies have reported that DEHP exposure could induce renin–angiotensin–aldosterone system activation and increase epithelial sodium channel (ENaC) activity, which contributes to extracellular fluid (ECF) volume expansion. However, there is also no previous study to evaluate the association between DEHP exposure and body fluid status. Methods: We selected 1678 subjects (aged ≥18 years) from a National Health and Nutrition Examination Survey (NHANES) in 2003–2004 to determine the relationship between urine DEHP metabolites and body composition (body measures, bioelectrical impedance analysis (BIA)). Results: After weighing the sampling strategy in multiple linear regression analysis, we report that higher levels of DEHP metabolites are correlated with increases in body measures (body weight, body mass index (BMI), waist circumference), BIA parameters (estimated fat mass, percent body fat, ECF, and ECF/intracellular fluid (ICF) ratio) in multiple linear regression analysis. The relationship between DEHP metabolites and the ECF/ICF ratio was more evident in subjects of younger age (20–39 years old), women, non-Hispanic white ethnicity, and subjects who were not active smokers. Conclusion: In addition to being positively correlated with body measures and body fat, we found that urine DEHP metabolites were positively correlated with ECF and the ECF/ICF ratio in the US general adult population. The finding implies that DEHP exposures might increase ECF volume and the ECF/ICF ratio, which may have adverse health outcomes on the cardiovascular system. Further research is needed to clarify the causal relationship.
Collapse
Affiliation(s)
- Wei-Jie Wang
- Division of Nephrology, Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan;
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 300, Taiwan
| | - Chia-Sung Wang
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan; (C.-S.W.); (A.-M.Y.)
| | - Chi-Kang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan;
| | - An-Ming Yang
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan; (C.-S.W.); (A.-M.Y.)
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan; (C.-S.W.); (A.-M.Y.)
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Correspondence:
| |
Collapse
|
14
|
Gaio V, Roquette R, Monteiro A, Ferreira J, Lopes D, Dias CM, Nunes B. PM10 exposure interacts with abdominal obesity to increase blood triglycerides: a cross-sectional linkage study. Eur J Public Health 2021; 32:281-288. [PMID: 34788428 PMCID: PMC9090274 DOI: 10.1093/eurpub/ckab190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Blood lipids and glucose levels dysregulation represent potential mechanisms intermediating the adverse cardiovascular effects of ambient particulate matter (PM) exposure. This study aims to estimate the effect of long-term PM10 exposure on blood lipids and glucose levels and to assess the potential mediation and/or modification action of abdominal obesity (AO) (waist-to-height ratio). Methods Our study was based on 2,390 participants of the first Portuguese Health Examination Survey (INSEF, 2015) with available data on blood lipids and glucose parameters and living within a 30-km radius of an air quality monitoring station with available PM10 measurements. PM10 concentrations were acquired from the air quality monitoring network of the Portuguese Environment Agency. Generalized linear models were used to assess the effect of 1-year PM10 exposure on blood lipids and glucose levels. An interaction term was introduced in the models to test the modification action of AO. Results We found an association between PM10 and non-fasting blood triglycerides (TG) after adjustment for age, sex, education, occupation, lifestyles-related variables and temperature but only in participants with AO. Per each 1 µg/m3 PM10 increment, there was a 1.84% (95% confidence interval: 0.02–3.69) increase in TG. For the remaining blood lipid and glucose parameters, no associations were found. Conclusions Our study demonstrates that even at low levels of exposure, long-term PM10 exposure interacts with AO to increase blood TG. Our findings suggest that reducing both AO prevalence and PM10 below current standards would result in additional health benefits for the population.
Collapse
Affiliation(s)
- Vânia Gaio
- Department of Epidemiology, Instituto Nacional de Saúde Doutor Ricardo Jorge IP (INSA, IP), Lisboa, Portugal.,NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Rita Roquette
- Department of Epidemiology, Instituto Nacional de Saúde Doutor Ricardo Jorge IP (INSA, IP), Lisboa, Portugal.,Nova IMS Information Management School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Alexandra Monteiro
- CESAM and Department of Environment and Planning, Universidade de Aveiro, Aveiro, Portugal
| | - Joana Ferreira
- CESAM and Department of Environment and Planning, Universidade de Aveiro, Aveiro, Portugal
| | - Diogo Lopes
- CESAM and Department of Environment and Planning, Universidade de Aveiro, Aveiro, Portugal
| | - Carlos Matias Dias
- Department of Epidemiology, Instituto Nacional de Saúde Doutor Ricardo Jorge IP (INSA, IP), Lisboa, Portugal.,NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Baltazar Nunes
- Department of Epidemiology, Instituto Nacional de Saúde Doutor Ricardo Jorge IP (INSA, IP), Lisboa, Portugal.,NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
15
|
Hsu CN, Hou CY, Hsu WH, Tain YL. Early-Life Origins of Metabolic Syndrome: Mechanisms and Preventive Aspects. Int J Mol Sci 2021; 22:11872. [PMID: 34769303 PMCID: PMC8584419 DOI: 10.3390/ijms222111872] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 10/31/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023] Open
Abstract
One of the leading global public-health burdens is metabolic syndrome (MetS), despite the many advances in pharmacotherapies. MetS, now known as "developmental origins of health and disease" (DOHaD), can have its origins in early life. Offspring MetS can be programmed by various adverse early-life conditions, such as nutrition imbalance, maternal conditions or diseases, maternal chemical exposure, and medication use. Conversely, early interventions have shown potential to revoke programming processes to prevent MetS of developmental origins, namely reprogramming. In this review, we summarize what is currently known about adverse environmental insults implicated in MetS of developmental origins, including the fundamental underlying mechanisms. We also describe animal models that have been developed to study the developmental programming of MetS. This review extends previous research reviews by addressing implementation of reprogramming strategies to prevent the programming of MetS. These mechanism-targeted strategies include antioxidants, melatonin, resveratrol, probiotics/prebiotics, and amino acids. Much work remains to be accomplished to determine the insults that could induce MetS, to identify the mechanisms behind MetS programming, and to develop potential reprogramming strategies for clinical translation.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Wei-Hsuan Hsu
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Chen Kung University, Tainan 701, Taiwan;
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
16
|
Al Sharabati M, Abokwiek R, Al-Othman A, Tawalbeh M, Karaman C, Orooji Y, Karimi F. Biodegradable polymers and their nano-composites for the removal of endocrine-disrupting chemicals (EDCs) from wastewater: A review. ENVIRONMENTAL RESEARCH 2021; 202:111694. [PMID: 34274334 DOI: 10.1016/j.envres.2021.111694] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) target the endocrine system by interfering with the natural hormones in the body leading to adverse effects on human and animal health. These chemicals have been identified as major polluting agents in wastewater effluents. Pharmaceuticals, personal care products, industrial compounds, pesticides, dyes, and heavy metals are examples of substances that could be considered endocrine active chemicals. In humans, these chemicals could cause obesity, cancer, Alzheimer's disease, autism, reproductive abnormalities, and thyroid problems. While in wildlife, dysfunctional gene expression could lead to the feminization of some aquatic organisms, metabolic diseases, cardiovascular risk, and problems in the reproductive system as well as its levels of hatchability and vitellogenin. EDCs could be effectively removed from wastewater using advanced technologies such as reverse osmosis, membrane treatment, ozonation, advanced oxidation, filtration, and biodegradation. However, adsorption has been proposed as a more promising and sustainable method for water treatment than any other reported technique. Increased attention has been paid to biodegradable polymers and their nano-composites as promising adsorbents for the removal of EDCs from wastewater. These polymers could be either natural, synthetic, or a combination of both. This review presents a summary of the most relevant cases where natural and synthetic biodegradable polymers have been used for the successful removal of EDCs from wastewater. It demonstrates the effectiveness of these polymers as favorable adsorbents for novel wastewater treatment technologies. Hitherto, very limited work has been published on the use of both natural and synthetic biodegradable polymers to remove EDCs from wastewater, as most of the studies focused on the utilization of only one type, either natural or synthetic. Therefore, this review could pave the way for future exploration of biodegradable polymers as promising and sustainable adsorbents for the removal of various types of pollutants from wastewater.
Collapse
Affiliation(s)
- Miral Al Sharabati
- Materials Science and Engineering PhD Program, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Raed Abokwiek
- Materials Science and Engineering PhD Program, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Muhammad Tawalbeh
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey.
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, PR China
| | - Fatemeh Karimi
- Deparment of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
17
|
Hyun SA, Lee CY, Ko MY, Chon SH, Kim YJ, Seo JW, Kim KK, Ka M. Cardiac toxicity from bisphenol A exposure in human-induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol 2021; 428:115696. [PMID: 34419494 DOI: 10.1016/j.taap.2021.115696] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 11/28/2022]
Abstract
Bisphenol A (BPA) is a well-known endocrine-disrupting chemical that is widely used in a variety of products, including plastics, medical equipment and receipts. Hence, most people are exposed to BPA through the skin, via inhalation and via the digestive system, and such exposure has been linked to cardiovascular diseases including coronary artery disease, hypertension, atherosclerosis, and myocardial infarction. However, the underlying mechanisms of cardiac dysfunction caused by BPA remain poorly understood. In this study, we found that BPA exposure altered cardiac function in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Acute BPA exposure in hiPSC-CMs resulted in reduced field potential, as measured by multielectrode array (MEA). Furthermore, we observed that BPA dose-dependently inhibited ICa, INa or IKr channels. In addition, BPA exposure dose-dependently inhibited calcium transients and contraction in hiPSC-CMs. Our findings suggest that BPA exposure leads to cardiac dysfunction and cardiac risk factors such as arrhythmia.
Collapse
Affiliation(s)
- Sung-Ae Hyun
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea; Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chang Youn Lee
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Moon Yi Ko
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Sun-Hwa Chon
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Ye-Ji Kim
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Jeong-Wook Seo
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Minhan Ka
- Substance Abuse Pharmacology Group, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| |
Collapse
|
18
|
Tonini C, Segatto M, Bertoli S, Leone A, Mazzoli A, Cigliano L, Barberio L, Mandalà M, Pallottini V. Prenatal Exposure to BPA: The Effects on Hepatic Lipid Metabolism in Male and Female Rat Fetuses. Nutrients 2021; 13:1970. [PMID: 34201166 PMCID: PMC8227982 DOI: 10.3390/nu13061970] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/16/2022] Open
Abstract
Bisphenol A (BPA) is an organic chemical compound widely used for manufacturing plastics. BPA exposure originates principally from the diet, but it can also originate from dermal contact. In over 90% of individuals, including pregnant women, BPA is detectable in several body fluids. The effects of this exposure on the fetus are under active investigation in several research laboratories. The aim of our work was to study the impact of prenatal exposure to BPA in the liver of rat fetuses from a sex-dependent point of view. We particularly investigated the effects of prenatal BPA exposure on hepatic lipids because of their crucial role, not only for the liver, but also for the whole-body functions. Our results demonstrate that the liver of rat fetuses, in utero exposed to a very low dose of BPA (2.5 µg/kg/day), displays significant modulations with regard to proteins involved in cholesterol and fatty acid biosynthesis and trafficking. Moreover, an impact on inflammatory process has been observed. All these effects are dependent on sex, being observable only in female rat fetuses. In conclusion, this work demonstrates that maternal exposure to BPA compromises hepatic lipid metabolism in female offspring, and it also reveals the perspective impact of BPA on human health at doses currently considered safe.
Collapse
Affiliation(s)
- Claudia Tonini
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy;
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy;
| | - Simona Bertoli
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (S.B.); (A.L.)
- Lab of Nutrition and Obesity Research, Istituto Auxologico Italiano, IRCCS, 20100 Milan, Italy
| | - Alessandro Leone
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (S.B.); (A.L.)
| | - Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, Via Cinthia—Edificio 7, 80126 Naples, Italy; (A.M.); (L.C.)
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, Via Cinthia—Edificio 7, 80126 Naples, Italy; (A.M.); (L.C.)
| | - Laura Barberio
- Department of Biology, Ecology and Earth Science, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (L.B.); (M.M.)
| | - Maurizio Mandalà
- Department of Biology, Ecology and Earth Science, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (L.B.); (M.M.)
| | - Valentina Pallottini
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy;
- Neuroendocrinology Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Via del Fosso Fiorano 64, 00143 Rome, Italy
| |
Collapse
|
19
|
Animal Models for DOHaD Research: Focus on Hypertension of Developmental Origins. Biomedicines 2021; 9:biomedicines9060623. [PMID: 34072634 PMCID: PMC8227380 DOI: 10.3390/biomedicines9060623] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence suggests that fetal programming through environmental exposure during a critical window of early life leads to long-term detrimental outcomes, by so-called developmental origins of health and disease (DOHaD). Hypertension can originate in early life. Animal models are essential for providing convincing evidence of a causal relationship between diverse early-life insults and the developmental programming of hypertension in later life. These insults include nutritional imbalances, maternal illnesses, exposure to environmental chemicals, and medication use. In addition to reviewing the various insults that contribute to hypertension of developmental origins, this review focuses on the benefits of animal models in addressing the underlying mechanisms by which early-life interventions can reprogram disease processes and prevent the development of hypertension. Our understanding of hypertension of developmental origins has been enhanced by each of these animal models, narrowing the knowledge gap between animal models and future clinical translation.
Collapse
|
20
|
Preventive Aspects of Early Resveratrol Supplementation in Cardiovascular and Kidney Disease of Developmental Origins. Int J Mol Sci 2021; 22:ijms22084210. [PMID: 33921641 PMCID: PMC8072983 DOI: 10.3390/ijms22084210] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
The increase in the incidence of cardiovascular diseases (CVDs) and kidney disease has stimulated research for strategies that could prevent, rather than just treat, both interconnected disorders. Resveratrol, a polyphenolic compound with pleiotropic biofunctions, has shown health benefits. Emerging epidemiological data supports that early life environmental insults are regarded as increased risks of developing CVDs and kidney disease in adulthood. Conversely, both disorders could be reversed or postponed by shifting interventions from adulthood to earlier stage by so-called reprogramming. The purpose of this review is first to highlight current epidemiological studies linking cardiovascular and renal programming to resulting CVD and kidney disease of developmental origins. This will be followed by a summary of how resveratrol could exert a positive influence on CVDs and kidney disease. This review also presents an overview of the evidence documenting resveratrol as a reprogramming agent to protect against CVD and kidney disease of developmental origins from animal studies and to outline the advances in understanding the underlying molecular mechanisms. Overall, this review reveals the need for future research to further clarify the reprogramming effects of resveratrol before clinical translation.
Collapse
|
21
|
The Confounder-Mediator Dilemma: Should We Control for Obesity to Estimate the Effect of Perfluoroalkyl Substances on Health Outcomes? TOXICS 2020; 8:toxics8040125. [PMID: 33419269 PMCID: PMC7766757 DOI: 10.3390/toxics8040125] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 01/09/2023]
Abstract
Confounding adjustment is important for observational studies to derive valid effect estimates for inference. Despite the theoretical advancement of confounding selection procedure, it is often challenging to distinguish between confounders and mediators due to the lack of information about the time-ordering and latency of each variable in the data. This is also the case for the studies of perfluoroalkyl substances (PFAS), a group of synthetic chemicals used in industry and consumer products that are persistent and have endocrine-disrupting properties on health outcomes. In this article, we used directed acyclic graphs to describe potential biases introduced by adjusting for or stratifying by the measure of obesity as an intermediate variable in PFAS exposure analyses. We compared results with or without adjusting for body mass index in two cross-sectional data analyses: (1) PFAS levels and maternal thyroid function during early pregnancy using the Danish National Birth Cohort and (2) PFAS levels and cardiovascular disease in adults using the National Health and Nutrition Examination Survey. In these examples, we showed that the potential heterogeneity observed in stratified analyses by overweight or obese status needs to be interpreted cautiously considering collider stratification bias. This article highlights the complexity of seemingly simple adjustment or stratification analyses, and the need for careful consideration of the confounding and/or mediating role of obesity in PFAS studies.
Collapse
|
22
|
Zhang J, Zhou Q, Su R, Sun Z, Zhang W, Jin X, Zheng Y. Cardiac dysfunction and metabolic remodeling due to seasonally ambient fine particles exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137792. [PMID: 32182466 DOI: 10.1016/j.scitotenv.2020.137792] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Increasing epidemiological evidences have revealed the association between ambient fine particulate matter (PM2.5) pollution and cardiovascular disease's morbidity and mortality. However, how seasonal PM2.5 exposure influence cardiac function and the underlying mechanism converged in energy metabolic remodeling remain to be elucidated. This study focused on seasonal PM2.5-induced cardiac dysfunction and metabolic remodeling, and the toxicity differences of PM2.5 samples from different sampling seasons and different exposure dosages were discussed. The results showed that seasonal haze caused cardiac dysfunctions, including decreases in heart rate (HR) and heart rate variability (HRV), abnormal changes in hemodynamic and echocardiographic parameters. Concurrently, the energy production in myocardial tissues was evidently disturbed. In particular, low dose of PM2.5 exposure notably induced the elevation of beta oxidation (β-oxidation) and tricarboxylic acid cycle (TCA cycle) as the compensation for the disturbed energy metabolism in animals, whereas high dose of PM2.5 exposure attenuated this process and the glycolysis levels were strikingly promoted, thus causing the reduced energy production and cardiac dysfunction. Comparatively, winter PM2.5 exposure caused more severe cardiac toxicity than did summer haze samples, possibly due to the existence of different components and pollutant levels in seasonal hazes. The findings on seasonal PM2.5 induced cardiac dysfunction and myocardial metabolic remodeling provided new insights into cardiovascular disease risks from haze exposure.
Collapse
Affiliation(s)
- Jingxu Zhang
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruijun Su
- Institute of Biomedical Science, Shanxi University, Taiyuan 030006, China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weifang Zhang
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoting Jin
- School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
23
|
Elgawish RA, El-Beltagy MA, El-Sayed RM, Gaber AA, Abdelrazek HMA. Protective role of lycopene against metabolic disorders induced by chronic bisphenol A exposure in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9192-9201. [PMID: 31916151 DOI: 10.1007/s11356-019-07509-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
This study was conducted to elucidate the ameliorative potential of lycopene (LYC) against the metabolic toxicity induced by bisphenol A (BPA) in rats. Male rats (n = 28) were divided into 4 equal groups: control group, LYC group was given lycopene (10 mg/kg BW), BPA group was given 10 mg/kg BW of BPA, and the last group was administered BPA and LYC at 10 mg/kg via gavage for 90 consecutive days. Body weight (BW) gain, lipid profile, and total antioxidant capacity (TAC) were assessed. Oral glucose tolerance test (OGTT), homeostasis model assessment-estimated insulin resistance (HOMA-IR), thyroid hormones, interleukin-1 beta (IL-1β), leptin, and resistin were assayed. Moreover, immunohistochemistry of TNF-α was performed in adipose tissue. BPA-treated rats showed significant reduction in BW gain and deteriorations in lipid profile, TAC, OGTT, and thyroid hormones as well as significant increases in HOMA-IR, IL-1β, leptin, and resistin. While, improvement of metabolic parameters was observed when LYC was administrated with BPA. Intense TNF-α immunostaining was detected in the fat of BPA-treated rats but the intensity decreased when LYC was administrated with BPA. In conclusion, LYC ameliorated the adverse effects of BPA on metabolism through its antioxidant potential and its reduction of TNF-α expression in adipose tissue.
Collapse
Affiliation(s)
- Rania Abdelrahman Elgawish
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Marwa A El-Beltagy
- Department of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Rehab M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El-, Arish, Egypt
| | - Aya A Gaber
- Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
24
|
Warner M, Rauch S, Ames J, Mocarelli P, Brambilla P, Signorini S, Eskenazi B. In utero dioxin exposure and cardiometabolic risk in the Seveso Second Generation Study. Int J Obes (Lond) 2019; 43:2233-2243. [PMID: 30659254 PMCID: PMC6639155 DOI: 10.1038/s41366-018-0306-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/08/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND/OBJECTIVES In utero exposure to endocrine-disrupting compounds such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) may alter risk of obesity and related metabolic disease later in life. We examined the relationship of prenatal exposure to TCDD with obesity and metabolic syndrome (MetS) in children born to a unique cohort of TCDD-exposed women resulting from a 1976 explosion in Seveso, Italy. SUBJECTS/METHODS In 2014, nearly 40 years after the explosion, we enrolled 611 post-explosion offspring, 2 to 39 years of age, in the Seveso Second Generation Study. In utero TCDD exposure was defined primarily as TCDD concentration measured in maternal serum collected soon after the explosion and alternately as TCDD estimated at pregnancy. We measured height, weight, waist circumference, body fat, blood pressure, and fasting blood levels of lipids and glucose, which were combined to assess body mass index (BMI) and MetS. RESULTS Children (314 female, 297 male) averaged 23.6 (±6.0) years of age. Among the 431 children ≥18 years, a 10-fold increase in initial maternal TCDD concentration was inversely associated with BMI in daughters (adj-β = -0.99 kg/m2; 95% CI -1.86, -0.12), but not sons (adj-β = 0.41 kg/m2; 95% CI -0.35, 1.18) (p-int = 0.02). A similar relationship was found in the younger children (2-17 years); a 10-fold increase in initial maternal TCDD was inversely associated with BMI z-score (adj-β = -0.59 kg/m2; 95% CI -1.12, -0.06) among daughters, but not sons (adj-β = 0.04 kg/m2; 95% CI -0.34, 0.41) (p-int = 0.03). In contrast, in sons only, initial maternal TCDD was associated with increased risk for MetS (adj-RR = 2.09, 95% CI 1.09, 4.02). Results for TCDD estimated at pregnancy were comparable. CONCLUSIONS These results suggest prenatal TCDD exposure alters cardiometabolic endpoints in a sex-specific manner. In daughters, in utero TCDD is inversely associated with adiposity measures. In sons, in utero TCDD is associated with increased risk for MetS.
Collapse
Affiliation(s)
- Marcella Warner
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA.
| | - Stephen Rauch
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Jennifer Ames
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Paolo Mocarelli
- Department of Laboratory Medicine, School of Medicine, Hospital of Desio, University of Milano-Bicocca, Desio-Milano, Italy
| | - Paolo Brambilla
- Department of Laboratory Medicine, School of Medicine, Hospital of Desio, University of Milano-Bicocca, Desio-Milano, Italy
| | - Stefano Signorini
- Department of Laboratory Medicine, School of Medicine, Hospital of Desio, University of Milano-Bicocca, Desio-Milano, Italy
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| |
Collapse
|
25
|
Liu Y, Liu W, Xu Y, Zhao Y, Wang P, Yu S, Zhang J, Tang Y, Xiong G, Tao S, Liu W. Characteristics and human inhalation exposure of ionic per- and polyfluoroalkyl substances (PFASs) in PM 10 of cities around the Bohai Sea: Diurnal variation and effects of heating activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:177-187. [PMID: 31207508 DOI: 10.1016/j.scitotenv.2019.06.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
Atmospheric PM10 (particulate matter with aerodynamic diameter <10 μm) samples were collected in the cities along the Bohai Sea Rim during heating and non-heating periods, and ionic per- and polyfluoroalkyl species (PFASs) in the PM10 were measured. The total concentration of ionic PFASs ranged from 21.8 to 87.0 pg/m3, and the mean concentration of ionic PFASs during the day (42.6 pg/m3) was slightly higher than that at night (35.1 pg/m3). Generally, diurnal variations in the levels of ionic PFASs were consistent with those in the PM10 concentrations. Perfluorooctanoic acid (PFOA, 23.5-33.7%), perfluoropentanoic acid (PFPeA, 28.3-39.9%) and perfluorobutyric acid (PFBA, 17.1-20.1%) accounted for the dominant compositional contributions. Significant positive correlations (p < 0.05) between the main components of PFASs and O3 implied that oxidative degradation (O3 served as the main oxidant) in the period of non-heating may affect the short-chain PFASs. The clustering analysis of a 72-h backward trajectory indicated that cross-provincial transport contributed to ionic PFASs at the sampling sites. Compared with ingestion via daily diet, the inhalation of PM10 exhibited an insignificant contribution to the estimated average daily intakes (ADIs) of PFASs by different age groups. In addition, the calculated hazard ratios (HRs) for the non-cancer respiratory risk, based on the air concentrations of PFOA and perfluorooctane sulfonate (PFOS), also manifested lower non-cancer risk through inhalation exposure. CAPSULE: The effects of heating and non-heating activity and diurnal variation on the concentrations of PFASs, dominated by PFOA, PFPeA, and PFBA in PM10, were determined, and atmospheric trans-provincial input served as an important source.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - WeiJian Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - YunSong Xu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - YongZhi Zhao
- Center for Environmental Engineering Assessment, Qiqihar, Heilongjiang Province 161005, China
| | - Pei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - ShuangYu Yu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - JiaoDi Zhang
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Tang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - GuanNan Xiong
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - WenXin Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
26
|
Dallio M, Diano N, Masarone M, Gravina AG, Patanè V, Romeo M, Di Sarno R, Errico S, Nicolucci C, Abenavoli L, Scarpellini E, Boccuto L, Persico M, Loguercio C, Federico A. Chemical Effect of Bisphenol A on Non-Alcoholic Fatty Liver Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173134. [PMID: 31466361 PMCID: PMC6747307 DOI: 10.3390/ijerph16173134] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered a predominant chronic liver disease worldwide and a component of metabolic syndrome. Due to its relationship with multiple organs, it is extremely complex to precisely define its pathogenesis as well as to set appropriate therapeutic and preventive strategies. Endocrine disruptors (EDCs) in general, and bisphenol A (BPA) in particular, are a heterogeneous group of substances, largely distributed in daily use items, able to interfere with the normal signaling of several hormones that seem to be related to type 2 diabetes mellitus (T2DM), obesity, and other metabolic disorders. It is reasonable to hypothesize a BPA involvement in the pathogenesis and evolution of NAFLD. However, its mechanisms of action as well as its burden in the vicious circle that connects obesity, T2DM, metabolic syndrome, and NAFLD still remain to be completely defined. In this review we analyzed the scientific evidence on this promising research area, in order to provide an overview of the harmful effects linked to the exposure to EDCs as well as to frame the role that BPA would have in all phases of NAFLD evolution.
Collapse
Affiliation(s)
- Marcello Dallio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy.
| | - Nadia Diano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Mario Masarone
- Department of Medicine and Surgery, University of Salerno, via Salvador Allende, 84081 Salerno, Italy
| | - Antonietta Gerarda Gravina
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Vittorio Patanè
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Mario Romeo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Rosa Di Sarno
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Sonia Errico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Carla Nicolucci
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, University "Magna Graecia", Viale Europa-Germaneto, 88110 Catanzaro, Italy
| | - Emidio Scarpellini
- Division of Gastroenterology, Department of Internal Medicine, TARGID, University Hospital Gasthuisberg, 3000 Leuven, Belgium
| | - Luigi Boccuto
- Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Marcello Persico
- Department of Medicine and Surgery, University of Salerno, via Salvador Allende, 84081 Salerno, Italy
| | - Carmelina Loguercio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
27
|
Quagliariello V, Coppola C, Mita DG, Piscopo G, Iaffaioli RV, Botti G, Maurea N. Low doses of Bisphenol A have pro-inflammatory and pro-oxidant effects, stimulate lipid peroxidation and increase the cardiotoxicity of Doxorubicin in cardiomyoblasts. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 69:1-8. [PMID: 30903913 DOI: 10.1016/j.etap.2019.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/12/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Endocrine disrupters are strictly associated to cancer and several cardiovascular risk factors. Bisphenol A (BPA) is an endocrine disrupter commonly used in the manufacturing of plastics based on polycarbonate, polyvinyl chloride and resins. Our study aims to investigate whether BPA may cause pro-oxidative and pro-inflammatory effects on cardiomyoblasts, thus exacerbating the Doxorubicin (DOXO)-induced cardiotoxicity phenomena. We tested the metabolic effects of BPA at low doses analyzing its affections on the intracellular calcium uptake, oxidative stress, lipid peroxidation and production of nitric oxide and interleukins. Co-incubation of BPA and DOXO significantly reduced the cardiomyoblast viability, compared to only DOXO exposure cells. The mechanisms underlying these effects are based on the stimulation of the intracellular calcium accumulation and lipid peroxidation. Notably, BPA increase the production of pro-inflammatory interleukins involved in cardiovascular diseases as well as in DOXO-Induced cardiotoxicity phenomena. This study provides a rationale for translational studies in the field of cardio-oncology.
Collapse
Affiliation(s)
- V Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori- IRCCS- Fondazione Pascale, Napoli, Italy.
| | - C Coppola
- Division of Cardiology, Istituto Nazionale Tumori- IRCCS- Fondazione Pascale, Napoli, Italy
| | - D G Mita
- Institute of Genetics and Biophysics of CNR and National Laboratory on Endocrine Disruptors of INBB Naples, Italy
| | - G Piscopo
- Division of Cardiology, Istituto Nazionale Tumori- IRCCS- Fondazione Pascale, Napoli, Italy
| | - R V Iaffaioli
- Association for Multidisciplinary Studies in Oncology and Mediterranean Diet, Piazza Nicola Amore, Naples, Italy
| | - G Botti
- Scientific Direction, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - N Maurea
- Division of Cardiology, Istituto Nazionale Tumori- IRCCS- Fondazione Pascale, Napoli, Italy
| |
Collapse
|
28
|
Shen X, Chen Y, Zhang J, Yan X, Liu W, Guo Y, Shan Q, Liu S. Low-dose PCB126 compromises circadian rhythms associated with disordered glucose and lipid metabolism in mice. ENVIRONMENT INTERNATIONAL 2019; 128:146-157. [PMID: 31055201 DOI: 10.1016/j.envint.2019.04.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
It has been documented that 3, 3', 4, 4', 5-pentachlorobiphenyl (PCB126) elicits diverse detrimental effects on human health including metabolic syndrome and non-alcoholic fatty-liver disease (NAFLD), through a wide array of non-carcinogenic mechanisms, which require further detailed investigations. The circadian clock system consists of central clock machinery (located in the suprachiasmatic nucleus in the hypothalamus) and the peripheral clocks (located in nearly all peripheral tissues). Peripheral clocks in the liver play fundamental roles in maintaining liver homeostasis, including the regulation of energy metabolism and the expression of enzymes that fine-tune the absorption and metabolism of xenobiotics. However, the molecular basis of whether PCB126 disrupts liver homeostasis (e.g., glucose and lipid metabolism) by dysregulating the circadian clock system is still unknown. Thus, we performed a set of comprehensive analyses of glucose and lipid metabolism in the liver tissues from low-dose PCB126-treated mice. Our results demonstrated that PCB126 diminished glucose and cholesterol levels in serum and elevated glucose and cholesterol levels in the liver. Moreover, PCB126 compromised PGC1α and PDHE1α, which are the driving force for mitochondrial biogenesis and entry of pyruvate into the tricarboxylic acid (TCA) cycle, respectively, and resulted in the accumulation of glucose, glycogen and pyruvate in the liver after PCB126 exposure. Additionally, PCB126 blocked hepatic cholesterol metabolism and export pathways, leading to an elevated localization of hepatic cholesterol. Mechanistic investigations illustrated that PCB126 greatly altered the expression profile of core clock genes and their target rhythm genes involved in orchestrating glucose and cholesterol metabolism. Together, our results demonstrated that a close correlation between PCB126-disturbed glucose and lipid metabolism and disordered physiological oscillation of circadian genes.
Collapse
Affiliation(s)
- Xinming Shen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yongjiu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xu Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiuli Shan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
29
|
Chang FW, Hsu RJ, Liu SH. Characteristics of patients with endometrial hyperplasia under different air quality index conditions. Taiwan J Obstet Gynecol 2019; 58:282-287. [PMID: 30910154 DOI: 10.1016/j.tjog.2019.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2018] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVE Air pollution has been widely recognized to pose a threat to health. Urban outdoor air pollution was listed as the 14th biggest risk factor for global deaths in 2004 in the Global Health Risks report published by the World Health Organization in 2009. Many past studies have indicated that exposure to environmental contaminants promotes changes in the internal mechanisms of diseases, including the infection of various systems in the body, hormonal changes, and vascular proliferation. These changes may be related to the severity of endometrial hyperplasia. Therefore, this study used the air quality monitoring data of the Environmental Protection Administration (EPA) to examine the effects of air pollutant concentration on patients with endometrial hyperplasia. MATERIALS AND METHODS This population-based nationwide study used data for 2002-2013 from the National Health Insurance Research Database of Taiwan. Patients who developed endometrial hyperplasia before 2002 were excluded. In total, 14,883 patients with endometrial hyperplasia were tracked. The exposure levels and air quality index (AQI) values in this study were based on the taiwan air quality monitoring network data collected by the EPA from 2000 to 2013. The data were further divided into the good air quality group (AQI ≤ 50) and poor air quality group (AQI > 50). The study used linear regression model to estimate the correlation linking air pollutant concentration with endometrial hyperplasia. RESULTS The results indicated that, in comparison to endometrial hyperplasia patients who were exposed to air with good quality, those exposed to air with poor quality had a higher average age (p < 0.001) and higher proportion of living in southern Taiwan (p < 0.001), as well as higher rates of diabetes (p < 0.001), hyperlipidemia (p < 0.001), hypertension, cerebrovascular diseases (p = 0.024), cerebral vascular accidents (p = 0.024), and chronic kidney disease (p < 0.001). CONCLUSION The patients with endometrial hyperplasia in poor AQI area had severe comorbidity. Thus, attention must be paid to the improvement of air quality and the implementation of preventive measures against contaminants.
Collapse
Affiliation(s)
- Fung-Wei Chang
- Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Superintendent, Tri-Service General Hospital Penghu Branch, National, Defense Medical Center, Penghu Branch, Taiwan; Defence Medical Center, Penghu Branch, Taiwan
| | - Ren-Jun Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Cancer Medicine Center of Buddhist Hualien Tzu Chi Hospital, Tzu Chi University, Hualien, Taiwan; Department of Pathology and Graduate Institute of Pathology and Parasitology, The Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Hui Liu
- Department of Health Care and Social Work, Yu Da University of Science and Technology, Miaoli, Taiwan; Department of Leisure Management, Yu Da University of Science and Technology, Miaoli, Taiwan.
| |
Collapse
|
30
|
Tian YP, Zeng XW, Bloom MS, Lin S, Wang SQ, Yim SHL, Yang M, Chu C, Gurram N, Hu LW, Liu KK, Yang BY, Feng D, Liu RQ, Nian M, Dong GH. Isomers of perfluoroalkyl substances and overweight status among Chinese by sex status: Isomers of C8 Health Project in China. ENVIRONMENT INTERNATIONAL 2019; 124:130-138. [PMID: 30641256 DOI: 10.1016/j.envint.2019.01.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/22/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Previous investigations on the associations of polyfluoroalkyl substances (PFASs) with overweight/obesity are mixed. Moreover, little information has been reported about the association between isomers of PFASs with body mass index (BMI), waist circumference (WC) or overweight. To address this shortcoming in the literature, we conducted a study involving 1612 Chinese adults (1204 men and 408 women), ages 22-96 years old, from Shenyang, China, to analyze serum isomers of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and other PFASs. Height, weight and WC were measured by a standardized protocol of WHO. Results indicated that increased serum concentrations of all (both branched and linear) isomers of PFASs were associated with a higher prevalence of overweight, and these associations were more pronounced in women. The adjusted odds ratios (ORs) from logistic regression analyses among women were 1.45 (95% confidence interval [CI]: 1.06, 1.99) for linear PFOS isomers, 1.33 (95% CI: 1.00, 1.77) for branched PFOS isomers, 1.39 (95% CI: 1.06, 1.81) for 3 + 4 + 5m PFOS, 1.54 (95% CI: 1.08, 2.21) for linear PFOA isomers, and 1.62 (95% CI: 1.05, 2.51) for branched PFOA isomers, respectively. Associations with increased WC were yielded a similar pattern. Linear regression models also showed positive associations between PFASs and BMI or WC. In conclusion, this study suggests that PFASs and their isomers are positively associated with overweight or increased WC, and the associations are stronger in women. Furthermore, PFOA and its isomers displayed the most robust obesogenic associations.
Collapse
Affiliation(s)
- Yan-Peng Tian
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Michael S Bloom
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Departments of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Shao Lin
- Departments of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Si-Quan Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Steve Hung Lam Yim
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Mo Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Namratha Gurram
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Departments of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Kang-Kang Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dan Feng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Min Nian
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
31
|
Liu H, Li J, Xia W, Zhang B, Peng Y, Li Y, Zhou Y, Fang J, Zhao H, Jiang Y, Liu W, Sun X, Hu C, Cai Z, Xu S. Blood pressure changes during pregnancy in relation to urinary paraben, triclosan and benzophenone concentrations: A repeated measures study. ENVIRONMENT INTERNATIONAL 2019; 122:185-192. [PMID: 30503318 DOI: 10.1016/j.envint.2018.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Previous studies have proven the endocrine-disrupting properties and health hazards of parabens, triclosan, and benzophenones, but their relationship with blood pressure during pregnancy remains unknown. Therefore, we investigated the associations of repeated measures of urinary parabens, triclosan, and benzophenones with blood pressure during pregnancy and evaluated whether the associations were modified by fetal sex. From a prospective birth cohort in Wuhan, China, we collected urine samples from 644 pregnant women in the first, second, and third trimesters between 2014 and 2015. Five parabens, triclosan, and three benzophenones were quantified in all urine samples. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured in each trimester after urine sampling. Mixed linear models were used to estimate the associations between urinary chemical levels and blood pressure during pregnancy among all pregnant women and subgroups stratified by fetal sex. In the women carrying male fetuses, urinary triclosan and selected benzophenone concentrations were associated with a slight change of SBP during pregnancy. In the women carrying female fetuses, no chemical was associated with SBP, while urinary concentration of triclosan was inversely associated with DBP, though the magnitude was small. Urinary paraben levels weren't associated with blood pressure during pregnancy. Our results suggest that triclosan and selected benzophenone exposure might be associated with blood pressure during pregnancy in a potential fetal sex-different manner. Replicated research studies in pregnant women with higher triclosan and benzophenone exposure levels are needed in the future.
Collapse
Affiliation(s)
- Hongxiu Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
| | - Jiufeng Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
| | - Bin Zhang
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan 430000, Hubei, China
| | - Yang Peng
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
| | - Yanqiu Zhou
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Jing Fang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hongzhi Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yangqian Jiang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
| | - Wenyu Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
| | - Cheng Hu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China.
| |
Collapse
|
32
|
Sá C, Pestana D, Calhau C, Faria A. Unravelling the Effect of p,p'-Dichlorodiphenyldichloroethylene (DDE) in Hypertension of Wistar Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12847-12854. [PMID: 30415545 DOI: 10.1021/acs.jafc.8b05001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hypertension is a multifactorial disease with limited knowledge of the involved mechanisms. p,p'-DDE ( p,p'-dichlorodiphenyldichloroethylene) is a pollutant commonly found in tissues that interferes with endocrine signaling. This study aimed to evaluate the mechanism of hypertension triggered by p,p'-DDE exposure in the presence or absence of a HF (high-fat) diet in rats. The renin-angiotensin system (RAS) was evaluated by qPCR in liver and adipose tissue (AT), and a transcriptome analysis comparing visceral AT of HF diet and HF/DDE groups was performed. HF diet influenced RAS, but the p,p'-DDE effect was more evident in liver than in AT (interaction between the diet and p,p'-DDE treatment affected aldosterone receptor and angiotensin converting enzyme 2 expression in liver, p < 0.05, two-way ANOVA). p,p'-DDE induced a decrease in the expression of genes involved in the retinoid acid biosynthesis pathway (Crabp1; -2.07-fold; p = 0.018), eNOS activation (Nos1; -1.64-fold; p = 0.012), and regulation and urea cycle (Ass1; -2.07-fold; p = 0.02). This study suggested that p,p'-DDE may play a fundamental role in the pathogenesis of hypertension, not exclusively in RAS but also by induction of hyperuricemia and increased oxidative stress, which may lead to endoplasmic reticulum stress and vascular injury.
Collapse
Affiliation(s)
- Carla Sá
- CINTESIS , Center for Health Technology and Services Research , Al. Prof. Hernâni Monteiro , 4200-369 Porto , Portugal
- Department of Biochemistry, Faculty of Medicine , University of Porto , Al. Prof. Hernâni Monteiro , 4200-369 Porto , Portugal
| | - Diogo Pestana
- CINTESIS , Center for Health Technology and Services Research , Al. Prof. Hernâni Monteiro , 4200-369 Porto , Portugal
- Nutrition & Metabolism , NOVA Medical School - FCM Universidade Nova de Lisboa , Campo Mártires da Pátria, 130 1169-056 Lisboa , Portugal
| | - Conceição Calhau
- CINTESIS , Center for Health Technology and Services Research , Al. Prof. Hernâni Monteiro , 4200-369 Porto , Portugal
- Nutrition & Metabolism , NOVA Medical School - FCM Universidade Nova de Lisboa , Campo Mártires da Pátria, 130 1169-056 Lisboa , Portugal
| | - Ana Faria
- CINTESIS , Center for Health Technology and Services Research , Al. Prof. Hernâni Monteiro , 4200-369 Porto , Portugal
- Nutrition & Metabolism , NOVA Medical School - FCM Universidade Nova de Lisboa , Campo Mártires da Pátria, 130 1169-056 Lisboa , Portugal
- Comprehensive Health Research Centre NOVA Medical School - FCM Universidade Nova de Lisboa , Campo Mártires da Pátria, 130 1169-056 Lisboa , Portugal
| |
Collapse
|
33
|
Yu S, Liu W, Xu Y, Zhao Y, Wang P, Wang X, Li X, Cai C, Liu Y, Xiong G, Tao S, Liu W. Characteristics of perfluoroalkyl acids in atmospheric PM 10 from the coastal cities of the Bohai and Yellow Seas, Northern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1894-1903. [PMID: 30408878 DOI: 10.1016/j.envpol.2018.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/09/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
The concentration distributions, compositional profiles and seasonal variations of 17 perfluoroalkyl acids (PFAAs) in PM10 (particles with aerodynamic diameters < 10 μm) were determined in seven coastal cities of the Bohai and Yellow Seas. The detection rates of perfluorooctanoic acid (PFOA) and short-chain components (perfluoroalkyl carboxylic acids (PFCAs) with ≤7 carbon atoms and perfluoroalkane sulfonic acids (PFSAs) with ≤5 carbon atoms) were much higher than those of other long-chain PFAA species. The annual average concentration of total PFAAs in PM10 ranged from 23.6 pg/m3 to 94.5 pg/m3 for the sampling cities. The monthly mean concentrations of PFAAs in PM10 in some sampling cities reached a peak value in winter, while no significant seasonal differences presented in other cities. High concentrations of PFAAs in the northern cities generally occurred during the local heating period (from November to March). Generally, the dominant components of PFAAs were PFOA and perfluorobutyric acid (PFBA). Some significantly positive correlations (p < 0.01) between the 10 dominant components were revealed in the sampling cities, which implied similar sources and fate behaviors. Based on the simulated 72-hr backward trajectory tracking of air masses, the clustering results demonstrated the sampling cities were affected mainly by the atmospheric transport in sequence from the northwest, the southwest and the open seas, and many transport trajectories of air masses passed by the local fluorine chemical manufacturers in Liaoning, Shandong, Jiangsu, and Hubei Provinces. The estimated average daily intake (ADI) corresponding to the residents in different age groups indicated insignificant contributions to PFOA and perfluorooctane sulfonate (PFOS) exposures by inhalation of PM10 compared to ingestion by daily diet, while the higher ADI of PFOA than the reported levels for adults should be a concern. The calculated hazard ratios (HR) exhibited low noncancer risks by inhalation exposure to PFOA and PFOS in PM10.
Collapse
Affiliation(s)
- ShuangYu Yu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - WeiJian Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - YunSong Xu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - YongZhi Zhao
- Center for Environmental Engineering Assessment, Qiqihar, Heilongjiang Province, 161005, China
| | - Pei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xin Wang
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - XinYue Li
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - ChuanYang Cai
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yang Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - GuanNan Xiong
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Shu Tao
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - WenXin Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
34
|
Hsu CN, Lin YJ, Lu PC, Tain YL. Maternal Resveratrol Therapy Protects Male Rat Offspring against Programmed Hypertension Induced by TCDD and Dexamethasone Exposures: Is It Relevant to Aryl Hydrocarbon Receptor? Int J Mol Sci 2018; 19:ijms19082459. [PMID: 30127255 PMCID: PMC6121911 DOI: 10.3390/ijms19082459] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Hypertension can originate from early-life adverse environmental in utero exposure to dexamethasone (DEX) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Since DEX and TCDD are related to the aryl hydrocarbon receptor (AHR) signaling pathway, we examined whether resveratrol, an AHR modulator and antioxidant, could prevent programmed hypertension via regulating AHR signaling and oxidative stress. Groups of four-month-old male rat offspring were studied (n = 7⁻8 per group): control, DEX (0.1 mg/kg i.p. from a gestational age of 16 to 22 days), TCDD (200 ng/kg in four once-weekly oral doses), DEX + TCDD, and DEX + TCDD + R (resveratrol 0.05% in drinking water throughout pregnancy and lactation). Maternal TCDD exposure aggravated prenatal DEX-induced hypertension in adult male offspring, which maternal resveratrol therapy prevented. Maternal TCDD exposure aggravated DEX-induced oxidative damage in offspring kidneys, which was prevented by resveratrol therapy. Maternal resveratrol therapy decreased asymmetric and symmetric dimethylarginine (ADMA and SDMA) levels, thereby preventing combined DEX and TCDD exposure-induced programmed hypertension. Increases in renal Ahrr and Cyp1a1 expression induced by DEX + TCDD exposure were restored by resveratrol therapy. The beneficial effects of resveratrol on DEX + TCDD-induced hypertension relate to reduced renal mRNA expression of Ren, Ace, and Agtr1a expression. Thus, the beneficial effects of resveratrol on DEX + TCDD-induced hypertension include reduction of oxidative stress, restoration of nitric oxide (NO) bioavailability, blockade of the renin⁻angiotensin system (RAS), and antagonizing AHR signaling pathway.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Pei-Chen Lu
- Departments of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - You-Lin Tain
- Departments of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
35
|
Nunes HC, Scarano WR, Deffune E, Felisbino SL, Porreca I, Delella FK. Bisphenol a and mesenchymal stem cells: Recent insights. Life Sci 2018; 206:22-28. [DOI: 10.1016/j.lfs.2018.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 02/08/2023]
|
36
|
Mudumbi JBN, Ntwampe SKO, Mekuto L, Matsha T, Itoba-Tombo EF. The role of pollutants in type 2 diabetes mellitus (T2DM) and their prospective impact on phytomedicinal treatment strategies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:262. [PMID: 29610974 DOI: 10.1007/s10661-018-6634-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is the most common form of diabetes and it is characterized by high blood sugar and abnormal sera lipid levels. Although the specific reasons for the development of these abnormalities are still not well understood, traditionally, genetic and lifestyle behavior have been reported as the leading causes of this disease. In the last three decades, the number of diabetic patients has drastically increased worldwide, with current statistics suggesting the number is to double in the next two decades. To combat this incurable ailment, orthodox medicines, to which economically disadvantaged patients have minimal access to, have been used. Thus, a considerable amalgamation of medicinal plants has recently been proven to possess therapeutic capabilities to manage T2DM, and this has prompted studies primarily focusing on the healing aspect of these plants, and ultimately, their commercialization. Hence, this review aims to highlight the potential threat of pollutants, i.e., polyfluoroalkyl compounds (PFCs), endocrine disrupting chemicals (EDCs) and heavy metals, to medicinal plants, and their prospective impact on the phytomedicinal therapy strategies for T2DM. It is further suggested that auxiliary research be undertaken to better comprehend the factors that influence the uptake of these compounds by these plants. This should include a comprehensive risk assessment of phytomedicinal products destined for the treatment of T2DM. Regulations that control the use of PFC-precursors in certain developing countries are also long overdue.
Collapse
Affiliation(s)
- John Baptist Nzukizi Mudumbi
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa.
| | - Seteno Karabo Obed Ntwampe
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| | - Lukhanyo Mekuto
- Department of Chemical Engineering, University of Johannesburg, PO Box 17011, Johannesburg, Gauteng, 2028, South Africa
| | - Tandi Matsha
- Department of Bio-Medical sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa
| | - Elie Fereche Itoba-Tombo
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| |
Collapse
|
37
|
Liu G, Dhana K, Furtado JD, Rood J, Zong G, Liang L, Qi L, Bray GA, DeJonge L, Coull B, Grandjean P, Sun Q. Perfluoroalkyl substances and changes in body weight and resting metabolic rate in response to weight-loss diets: A prospective study. PLoS Med 2018; 15:e1002502. [PMID: 29438414 PMCID: PMC5810983 DOI: 10.1371/journal.pmed.1002502] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/09/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The potential endocrine-disrupting effects of perfluoroalkyl substances (PFASs) have been demonstrated in animal studies, but whether PFASs may interfere with body weight regulation in humans is largely unknown. This study aimed to examine the associations of PFAS exposure with changes in body weight and resting metabolic rate (RMR) in a diet-induced weight-loss setting. METHODS AND FINDINGS In the 2-year POUNDS Lost randomized clinical trial based in Boston, Massachusetts, and Baton Rouge, Louisiana, that examined the effects of energy-restricted diets on weight changes, baseline plasma concentrations of major PFASs were measured among 621 overweight and obese participants aged 30-70 years. Body weight was measured at baseline and 6, 12, 18, and 24 months. RMR and other metabolic parameters, including glucose, lipids, thyroid hormones, and leptin, were measured at baseline and 6 and 24 months. Participants lost an average of 6.4 kg of body weight during the first 6 months (weight-loss period) and subsequently regained an average of 2.7 kg of body weight during the period of 6-24 months (weight regain period). After multivariate adjustment, baseline PFAS concentrations were not significantly associated with concurrent body weight or weight loss during the first 6 months. In contrast, higher baseline levels of PFASs were significantly associated with a greater weight regain, primarily in women. In women, comparing the highest to the lowest tertiles of PFAS concentrations, the multivariate-adjusted mean weight regain (SE) was 4.0 (0.8) versus 2.1 (0.9) kg for perfluorooctanesulfonic acid (PFOS) (Ptrend = 0.01); 4.3 (0.9) versus 2.2 (0.8) kg for perfluorooctanoic acid (PFOA) (Ptrend = 0.007); 4.7 (0.9) versus 2.5 (0.9) kg for perfluorononanoic acid (PFNA) (Ptrend = 0.006); 4.9 (0.9) versus 2.7 (0.8) kg for perfluorohexanesulfonic acid (PFHxS) (Ptrend = 0.009); and 4.2 (0.8) versus 2.5 (0.9) kg for perfluorodecanoic acid (PFDA) (Ptrend = 0.03). When further adjusted for changes in body weight or thyroid hormones during the first 6 months, results remained similar. Moreover, higher baseline plasma PFAS concentrations, especially for PFOS and PFNA, were significantly associated with greater decline in RMR during the weight-loss period and less increase in RMR during the weight regain period in both men and women. Limitations of the study include the possibility of unmeasured or residual confounding by socioeconomic and psychosocial factors, as well as possible relapse to the usual diet prior to randomization, which could have been rich in foods contaminated by PFASs through food packaging and also dense in energy. CONCLUSIONS In this diet-induced weight-loss trial, higher baseline plasma PFAS concentrations were associated with a greater weight regain, especially in women, possibly explained by a slower regression of RMR levels. These data illustrate a potential novel pathway through which PFASs interfere with human body weight regulation and metabolism. The possible impact of environmental chemicals on the obesity epidemic therefore deserves attention. TRIAL REGISTRATION ClinicalTrials.gov NCT00072995.
Collapse
Affiliation(s)
- Gang Liu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Klodian Dhana
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Jeremy D. Furtado
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Jennifer Rood
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Geng Zong
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - George A. Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Lilian DeJonge
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Brent Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Philippe Grandjean
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
38
|
Petrakis D, Vassilopoulou L, Mamoulakis C, Psycharakis C, Anifantaki A, Sifakis S, Docea AO, Tsiaoussis J, Makrigiannakis A, Tsatsakis AM. Endocrine Disruptors Leading to Obesity and Related Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E1282. [PMID: 29064461 PMCID: PMC5664782 DOI: 10.3390/ijerph14101282] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 12/15/2022]
Abstract
The review aims to comprehensively present the impact of exposure to endocrine disruptors (EDs) in relation to the clinical manifestation of obesity and related diseases, including diabetes mellitus, metabolic syndrome, cardiovascular diseases, carcinogenesis and infertility. EDs are strong participants in the obesity epidemic scenery by interfering with cellular morphological and biochemical processes; by inducing inflammatory responses; and by presenting transcriptional and oncogenic activity. Obesity and lipotoxicity enhancement occur through reprogramming and/or remodeling of germline epigenome by exposure to EDs. Specific population groups are vulnerable to ED exposure due to current dietary and environmental conditions. Obesity, morbidity and carcinogenicity induced by ED exposure are an evolving reality. Therefore, a new collective strategic approach is deemed essential, for the reappraisal of current global conditions pertaining to energy management.
Collapse
Affiliation(s)
- Demetrios Petrakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Loukia Vassilopoulou
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Christos Psycharakis
- Department of Obstetrics and Gynecology, Venizeleio-Pananio General Hospital of Heraklion, 71409 Heraklion, Crete, Greece.
| | - Aliki Anifantaki
- Crete Fertility Center, 56, Arch. Makariou & Sof. Venizelou Str., 71202 Heraklion, Crete, Greece.
| | | | - Anca Oana Docea
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy, Petru Rares, 200349 Craiova, Romania.
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Antonios Makrigiannakis
- Department of Obstetrics and Gynecology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Aristides M Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece.
| |
Collapse
|
39
|
Contribution of Inhibitor of DNA Binding/Differentiation-3 and Endocrine Disrupting Chemicals to Pathophysiological Aspects of Chronic Disease. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6307109. [PMID: 28785583 PMCID: PMC5530454 DOI: 10.1155/2017/6307109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/15/2017] [Accepted: 05/29/2017] [Indexed: 12/12/2022]
Abstract
The overwhelming increase in the global incidence of obesity and its associated complications such as insulin resistance, atherosclerosis, pulmonary disease, and degenerative disorders including dementia constitutes a serious public health problem. The Inhibitor of DNA Binding/Differentiation-3 (ID3), a member of the ID family of transcriptional regulators, has been shown to play a role in adipogenesis and therefore ID3 may influence obesity and metabolic health in response to environmental factors. This review will highlight the current understanding of how ID3 may contribute to complex chronic diseases via metabolic perturbations. Based on the increasing number of reports that suggest chronic exposure to and accumulation of endocrine disrupting chemicals (EDCs) within the human body are associated with metabolic disorders, we will also consider the impact of these chemicals on ID3. Improved understanding of the ID3 pathways by which exposure to EDCs can potentiate complex chronic diseases in populations with metabolic disorders (obesity, metabolic syndrome, and glucose intolerance) will likely provide useful knowledge in the prevention and control of complex chronic diseases associated with exposure to environmental pollutants.
Collapse
|
40
|
Pestana D, Teixeira D, Meireles M, Marques C, Norberto S, Sá C, Fernandes VC, Correia-Sá L, Faria A, Guardão L, Guimarães JT, Cooper WN, Sandovici I, Domingues VF, Delerue-Matos C, Monteiro R, Constância M, Calhau C. Adipose tissue dysfunction as a central mechanism leading to dysmetabolic obesity triggered by chronic exposure to p,p'-DDE. Sci Rep 2017; 7:2738. [PMID: 28572628 PMCID: PMC5453948 DOI: 10.1038/s41598-017-02885-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
Endocrine-disrupting chemicals such as p,p’-dichlorodiphenyldichloroethylene (p,p’-DDE), are bioaccumulated in the adipose tissue (AT) and have been implicated in the obesity and diabetes epidemic. Thus, it is hypothesized that p,p’-DDE exposure could aggravate the harm of an obesogenic context. We explored the effects of 12 weeks exposure in male Wistar rats’ metabolism and AT biology, assessing a range of metabolic, biochemical and histological parameters. p,p’-DDE -treatment exacerbated several of the metabolic syndrome-accompanying features induced by high-fat diet (HF), such as dyslipidaemia, glucose intolerance and hypertension. A transcriptome analysis comparing mesenteric visceral AT (vAT) of HF and HF/DDE groups revealed a decrease in expression of nervous system and tissue development-related genes, with special relevance for the neuropeptide galanin that also revealed DNA methylation changes at its promoter region. Additionally, we observed an increase in transcription of dipeptidylpeptidase 4, as well as a plasmatic increase of the pro-inflammatory cytokine IL-1β. Our results suggest that p,p’-DDE impairs vAT normal function and effectively decreases the dynamic response to energy surplus. We conclude that p,p’-DDE does not merely accumulate in fat, but may contribute significantly to the development of metabolic dysfunction and inflammation. Our findings reinforce their recognition as metabolism disrupting chemicals, even in non-obesogenic contexts.
Collapse
Affiliation(s)
- Diogo Pestana
- CINTESIS - Center for Health Technology and Services Research, Porto, Portugal. .,Nutrition & Metabolism, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal. .,Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Diana Teixeira
- CINTESIS - Center for Health Technology and Services Research, Porto, Portugal.,Nutrition & Metabolism, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Manuela Meireles
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Cláudia Marques
- CINTESIS - Center for Health Technology and Services Research, Porto, Portugal.,Nutrition & Metabolism, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Sónia Norberto
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carla Sá
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Virgínia C Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Porto, Portugal
| | - Luísa Correia-Sá
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Porto, Portugal
| | - Ana Faria
- CINTESIS - Center for Health Technology and Services Research, Porto, Portugal.,Nutrition & Metabolism, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.,REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Luísa Guardão
- Animal House Department, Faculty of Medicine, University of Porto, Porto, Portugal
| | - João T Guimarães
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Clinical Pathology, Hospital S. João, Porto, Portugal
| | - Wendy N Cooper
- University of Cambridge, Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics & Gynaecology and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, UK
| | - Ionel Sandovici
- University of Cambridge, Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics & Gynaecology and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, UK
| | - Valentina F Domingues
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Porto, Portugal
| | - Rosário Monteiro
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Miguel Constância
- University of Cambridge, Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics & Gynaecology and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, UK
| | - Conceição Calhau
- CINTESIS - Center for Health Technology and Services Research, Porto, Portugal.,Nutrition & Metabolism, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
41
|
Gwinn MR, Axelrad DA, Bahadori T, Bussard D, Cascio WE, Deener K, Dix D, Thomas RS, Kavlock RJ, Burke TA. Chemical Risk Assessment: Traditional vs Public Health Perspectives. Am J Public Health 2017; 107:1032-1039. [PMID: 28520487 DOI: 10.2105/ajph.2017.303771] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Preventing adverse health effects of environmental chemical exposure is fundamental to protecting individual and public health. When done efficiently and properly, chemical risk assessment enables risk management actions that minimize the incidence and effects of environmentally induced diseases related to chemical exposure. However, traditional chemical risk assessment is faced with multiple challenges with respect to predicting and preventing disease in human populations, and epidemiological studies increasingly report observations of adverse health effects at exposure levels predicted from animal studies to be safe for humans. This discordance reinforces concerns about the adequacy of contemporary risk assessment practices for protecting public health. It is becoming clear that to protect public health more effectively, future risk assessments will need to use the full range of available data, draw on innovative methods to integrate diverse data streams, and consider health endpoints that also reflect the range of subtle effects and morbidities observed in human populations. Considering these factors, there is a need to reframe chemical risk assessment to be more clearly aligned with the public health goal of minimizing environmental exposures associated with disease.
Collapse
Affiliation(s)
- Maureen R Gwinn
- At the time of the writing of this article, all of the authors were with the US Environmental Protection Agency, Washington, DC
| | - Daniel A Axelrad
- At the time of the writing of this article, all of the authors were with the US Environmental Protection Agency, Washington, DC
| | - Tina Bahadori
- At the time of the writing of this article, all of the authors were with the US Environmental Protection Agency, Washington, DC
| | - David Bussard
- At the time of the writing of this article, all of the authors were with the US Environmental Protection Agency, Washington, DC
| | - Wayne E Cascio
- At the time of the writing of this article, all of the authors were with the US Environmental Protection Agency, Washington, DC
| | - Kacee Deener
- At the time of the writing of this article, all of the authors were with the US Environmental Protection Agency, Washington, DC
| | - David Dix
- At the time of the writing of this article, all of the authors were with the US Environmental Protection Agency, Washington, DC
| | - Russell S Thomas
- At the time of the writing of this article, all of the authors were with the US Environmental Protection Agency, Washington, DC
| | - Robert J Kavlock
- At the time of the writing of this article, all of the authors were with the US Environmental Protection Agency, Washington, DC
| | - Thomas A Burke
- At the time of the writing of this article, all of the authors were with the US Environmental Protection Agency, Washington, DC
| |
Collapse
|
42
|
Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, Nadal A, Palanza P, Panzica G, Sargis R, Vandenberg LN, Vom Saal F. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol 2017; 68:3-33. [PMID: 27760374 PMCID: PMC5365353 DOI: 10.1016/j.reprotox.2016.10.001] [Citation(s) in RCA: 646] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/04/2016] [Accepted: 10/13/2016] [Indexed: 01/09/2023]
Abstract
The recent epidemics of metabolic diseases, obesity, type 2 diabetes(T2D), liver lipid disorders and metabolic syndrome have largely been attributed to genetic background and changes in diet, exercise and aging. However, there is now considerable evidence that other environmental factors may contribute to the rapid increase in the incidence of these metabolic diseases. This review will examine changes to the incidence of obesity, T2D and non-alcoholic fatty liver disease (NAFLD), the contribution of genetics to these disorders and describe the role of the endocrine system in these metabolic disorders. It will then specifically focus on the role of endocrine disrupting chemicals (EDCs) in the etiology of obesity, T2D and NAFLD while finally integrating the information on EDCs on multiple metabolic disorders that could lead to metabolic syndrome. We will specifically examine evidence linking EDC exposures during critical periods of development with metabolic diseases that manifest later in life and across generations.
Collapse
Affiliation(s)
- Jerrold J Heindel
- National Institute of Environmental Health Sciences, Division of Extramural Research and Training Research Triangle Park, NC, USA.
| | - Bruce Blumberg
- University of California, Department of Developmental and Cell Biology, Irvine CA, USA
| | - Mathew Cave
- University of Louisville, Division of Gastroenterology, Hepatology and Nutrition, Louisville KY, USA
| | | | | | - Michelle A Mendez
- University of North Carolina at Chapel Hill, School of Public Health, Chapel Hill NC, USA
| | - Angel Nadal
- Institute of Bioengineering and CIBERDEM, Miguel Hernandez University of Elche, Elche, Alicante, Spain
| | - Paola Palanza
- University of Parma, Department of Neurosciences, Parma, Italy
| | - Giancarlo Panzica
- University of Turin, Department of Neuroscience and Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy
| | - Robert Sargis
- University of Chicago, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine Chicago, IL, USA
| | - Laura N Vandenberg
- University of Massachusetts, Department of Environmental Health Sciences, School of Public Health & Health Sciences, Amherst, MA, USA
| | - Frederick Vom Saal
- University of Missouri, Department of Biological Sciences, Columbia, MO, USA
| |
Collapse
|
43
|
Gassman NR. Induction of oxidative stress by bisphenol A and its pleiotropic effects. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:60-71. [PMID: 28181297 PMCID: PMC5458620 DOI: 10.1002/em.22072] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/18/2016] [Accepted: 12/19/2016] [Indexed: 05/23/2023]
Abstract
Bisphenol A (BPA) has become a target of intense public scrutiny since concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer have emerged. BPA is a highly prevalent chemical in consumer products, and human exposure is thought to be ubiquitous. Numerous studies have demonstrated its endocrine disrupting properties and attributed exposure with cytotoxic, genotoxic, and carcinogenic effects; however, the results of these studies are still highly debated and a consensus about BPA's safety and its role in human disease has not been reached. One of the contributing factors is a lack of molecular mechanisms or modes of action that explain the diverse and pleiotropic effects observed after BPA exposure. The increase in BPA research seen over the last ten years has resulted in more studies that examine molecular mechanisms and revealed links between BPA-induced oxidative stress and human disease. Here, a review of the current literature examining BPA exposure and the induction of reactive oxygen species (ROS) or oxidative stress will be provided to examine the landscape of the current BPA literature and provide a framework for understanding how induction of oxidative stress by BPA may contribute to the pleiotropic effects observed after exposure. Environ. Mol. Mutagen. 58:60-71, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Natalie R Gassman
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, 36604-1405
| |
Collapse
|
44
|
Bonaventura MM, Bourguignon NS, Bizzozzero M, Rodriguez D, Ventura C, Cocca C, Libertun C, Lux-Lantos VA. Arsenite in drinking water produces glucose intolerance in pregnant rats and their female offspring. Food Chem Toxicol 2017; 100:207-216. [DOI: 10.1016/j.fct.2016.12.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 10/20/2022]
|
45
|
Traditional Chinese Medicine for Metabolic Syndrome via TCM Pattern Differentiation: Tongue Diagnosis for Predictor. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1971295. [PMID: 27313640 PMCID: PMC4897669 DOI: 10.1155/2016/1971295] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/05/2016] [Indexed: 02/06/2023]
Abstract
Metabolic syndrome is a morbid condition, which is manifested by central obesity, abnormal glucose tolerance, lipodystrophy, and hypertension. Traditional Chinese medicine (TCM) clarifies that obesity is classified as phlegm-dampness. It is often accompanied with qi stagnation and blood stasis. One hundred and two overweight adults, who did not receive lipid-lowering drugs, were enrolled for analysis. The exclusion criteria were adults having malignancy disease, DM, and renal disease or who were pregnant or lactating. The study was divided into two groups: metabolic syndrome group (MetS) and nonmetabolic syndrome group (nMetS). The modern tongue analysis and heart rate variability devices for data analysis and Council on Nutrition Appetite Questionnaire (CNAQ) for appetite evaluation were used. Obesity patients with metabolic syndrome obviously have lower CNAQ score. The 6 items of CNAQ between two groups have significant difference in variation (P < 0.001). The nMetS average was above 28 scores (96%) and the MetS was all in 17–28 scores. The tongue appearance showed that MetS group have white coating different from the nMetS group with white and yellow coating (P < 0.05). However the HRV is not different from nMetS group significantly. Our results try to explore the relationship between the TCM pattern, nutrition appetite, and heart rate variability in metabolic syndrome patients.
Collapse
|
46
|
Prenatal Exposure to Perfluoroalkyl Substances and Behavioral Development in Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13050511. [PMID: 27213416 PMCID: PMC4881136 DOI: 10.3390/ijerph13050511] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/28/2016] [Accepted: 05/09/2016] [Indexed: 01/09/2023]
Abstract
Background: In recent years, prevalence rates of behavioral disorders in children have increased. One factor possibly implied in the etiology of behavioral disorders is exposure to perfluoroalkyl substances (PFASs). The use of PFASs is highly integrated into everyday life, and exposure is ubiquitous. Exposure to PFASs during early life may be particularly harmful, as it represents a critical time window for brain development. However, research in the area is limited, especially among preschool children. The objective of the current study was to explore the relationship between prenatal exposure to several PFASs and behavioral development at the age of 18 months. Methods: Data from the Dutch cohort LINC (Linking Maternal Nutrition to Child Health) were used. Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) were measured in cord plasma. The total exposure of PFASs was also calculated (ΣPFASs). Behavioral development was assessed with the Child Behavior Checklist 1.5–5 (CBCL 1.5–5). The CBCL scales “Attention Deficit Hyperactivity Disorder” (ADHD) and “Externalizing problems” were used for further analysis. Separate regression models were composed for each combination, in which exposure levels were classified in tertiles. Both whole population and sex-stratified analyses were performed. A family history of ADHD, the educational level, smoking or using alcohol or illicit drugs during pregnancy were considered as confounders. In total, data from 76 mother-child pairs was included. Results: No significant associations were found between prenatal PFAS exposure and ADHD scores in the whole population and in the sex-stratified analyses. With regard to externalizing behavior, a significant negative association was found between the highest levels of ΣPFAS exposure and externalizing problem behavior in the whole population, but only in the crude model. After stratifying for sex, boys in the second and third tertile of exposure to PFOA presented significantly lower scores on the Externalizing Problem Scale than boys with the lowest exposure levels in the adjusted model. Girls exposed to higher levels of ΣPFAS exposure (T2) showed significantly lower scores on the Externalizing Problem Scale, in both crude and adjusted models. No significant associations with PFOS were found. Conclusions: Results from the current study show that prenatal exposure to PFOA was negatively related to externalizing behavior in boys. Results were different for boys and girls, emphasizing that mechanisms at work might be sex-dependent. However, results should be interpreted with caution as the sample size was small.
Collapse
|
47
|
Campesi I, Capobianco G, Dessole S, Occhioni S, Montella A, Franconi F. Estrogenic Compounds Have Divergent Effects on Human Endothelial Progenitor Cell Migration according to Sex of the Donor. J Vasc Res 2016; 52:273-8. [DOI: 10.1159/000443403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/12/2015] [Indexed: 11/19/2022] Open
|
48
|
Wang X, Mu X, Zhang J, Huang Q, Alamdar A, Tian M, Liu L, Shen H. Serum metabolomics reveals that arsenic exposure disrupted lipid and amino acid metabolism in rats: a step forward in understanding chronic arsenic toxicity. Metallomics 2015; 7:544-52. [PMID: 25697676 DOI: 10.1039/c5mt00002e] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic arsenic exposure through drinking water threatens public health worldwide. Although its multiorgan toxicity has been reported, the impact of chronic arsenic exposure on the metabolic network remains obscure. In this study, male Sprague Dawley rats were exposed to 0.5, 2 or 10 ppm sodium arsenite for three months. An ultra-high performance liquid chromatography/mass spectrometry based metabolomics approach was utilized to unveil the global metabolic response to chronic arsenic exposure in rats. Distinct serum metabolome profiles were found to be associated with the doses. Eighteen differential metabolites were identified, and most of them showed dose-dependent responses to arsenic exposure. Metabolic abnormalities mainly involved lipid metabolism and amino acid metabolism. The metabolic alterations were further confirmed by hepatic gene expression. Expressions of cpt2, lcat, cact, crot and mtr were significantly elevated in high dose groups. This study provides novel evidence to support the association between arsenic exposure and metabolic disruption, and it contributes to understanding the mechanism of chronic arsenic toxicity.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Metabolomic study on the faecal extracts of atherosclerosis mice and its application in a Traditional Chinese Medicine. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1007:140-8. [PMID: 26596842 DOI: 10.1016/j.jchromb.2015.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 02/05/2023]
Abstract
The intestinal microbiota and their metabolites are closely related to the formation of atherosclerosis (AS). In this study, a metabolomic approach based on the reversed-phase liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) platform was established to analyze the metabolic profiling of fecal extracts from AS mice model. The established metabolomic platform was also used for clearing the effective mechanism of a Traditional Chinese Medicine (TCM) named Sishen granule (SSKL). Totally, sixteen potential biomarkers in faeces of AS mice were identified and 5 of them could be reversed by SSKL. Through functional analysis of these biomarkers and the established network, lipid metabolism, cholesterol metabolism, energy cycle, and inflammation reaction were considered as the most relevant pathological changes in gastrointestinal tract of AS mice. The metabolomic study not only revealed the potential biomarkers in AS mice' faeces but also supplied a systematic view of the pathological changes in gastrointestinal metabolite in AS mice. This metabolomic study also demonstrated that SSKL had the therapeutic effectiveness on AS through partly reversing the lipid metabolism, inflammation and energy metabolism.
Collapse
|
50
|
Evaluation of low doses BPA-induced perturbation of glycemia by toxicogenomics points to a primary role of pancreatic islets and to the mechanism of toxicity. Cell Death Dis 2015; 6:e1959. [PMID: 26512966 PMCID: PMC5399181 DOI: 10.1038/cddis.2015.319] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/22/2015] [Accepted: 09/24/2015] [Indexed: 01/15/2023]
Abstract
Epidemiologic and experimental studies have associated changes of blood glucose homeostasis to Bisphenol A (BPA) exposure. We took a toxicogenomic approach to investigate the mechanisms of low-dose (1 × 10−9 M) BPA toxicity in ex vivo cultures of primary murine pancreatic islets and hepatocytes. Twenty-nine inhibited genes were identified in islets and none in exposed hepatocytes. Although their expression was slightly altered, their impaired cellular level, as a whole, resulted in specific phenotypic changes. Damage of mitochondrial function and metabolism, as predicted by bioinformatics analyses, was observed: BPA exposure led to a time-dependent decrease in mitochondrial membrane potential, to an increase of ROS cellular levels and, finally, to an induction of apoptosis, attributable to the bigger Bax/Bcl-2 ratio owing to activation of NF-κB pathway. Our data suggest a multifactorial mechanism for BPA toxicity in pancreatic islets with emphasis to mitochondria dysfunction and NF-κB activation. Finally, we assessed in vitro the viability of BPA-treated islets in stressing condition, as exposure to high glucose, evidencing a reduced ability of the exposed islets to respond to further damages. The result was confirmed in vivo evaluating the reduction of glycemia in hyperglycemic mice transplanted with control and BPA-treated pancreatic islets. The reported findings identify the pancreatic islet as the main target of BPA toxicity in impairing the glycemia. They suggest that the BPA exposure can weaken the response of the pancreatic islets to damages. The last observation could represent a broader concept whose consideration should lead to the development of experimental plans better reproducing the multiple exposure conditions.
Collapse
|