1
|
Ali MA, Zeng M, Alkuhali AA, Zeng Z, Yuan M, Wang X, Liu X, Issotina Zibrila A, Liu J, Wang Z. Toll-like receptor 4 inhibition by pyridostigmine is associated with a reduction in hypertension and inflammation in rat models of preeclampsia. J Hypertens 2025; 43:336-350. [PMID: 39748739 DOI: 10.1097/hjh.0000000000003911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/14/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Preeclampsia (PE) is marked by hypertension and detrimental sterile inflammatory response. Despite the reported anti-inflammatory effect of pyridostigmine bromide (PYR) in different models, its anti-inflammatory mechanism in PE is unclear. This study assessed whether such an anti-inflammatory effect involves inhibition of placental Toll-like receptor 4 (TLR4) signaling. METHODS Placental TLR4 expression and its signaling were assessed respectively in PE women and Sprague-Dawley rats with reduced uterine perfusion pressure (RUPP) induced on gestational day14 (GD14). RUPP and lipopolysaccharides (LPS, 5 μg/kg)-induced PE rats were treated with a selective TLR4 signaling inhibitor (TAK-242, 2.5 mg/kg/day). The effect of PYR (20 mg/kg/day) on TLR4 expression and signaling was also assessed in RUPP or LPS-infused rats. On GD19, rats' mean arterial pressure (MAP) and samples were collected and processed. At the cellular level, the effect of acetylcholine (ACh), the indirect by-product of PYR activity, on LPS-stimulated HTR-8/SVneo cells was assessed. RESULTS Both PE women and RUPP rats had increased (P < 0.05) placental TLR4 expression and elevated (P < 0.05) MAP. Selective inhibition of TLR4 signaling with TAK-242 blunted (P < 0.05) RUPP-elevated MAP. Activation of TLR4 induced PE-like symptoms in dams, which were prevented by TAK-242. PYR reduced (P < 0.05) MAP and downregulated placental TLR4 expression and TLR4/TRAF6/NF-κB signaling-mediated inflammation in RUPP and in response to TLR4 selective activation. ACh inhibited the same signaling pathway in LPS-stimulated HTR-8 in vitro. CONCLUSION Our data support that PYR attenuates placental TLR4 expression and inhibits TLR4/TRAF6/NF-κB signaling pathway-mediated inflammation in RUPP, clarifying the anti-inflammatory mechanisms of PYR in the PE rat model.
Collapse
Affiliation(s)
- Md Ahasan Ali
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Ming Zeng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases
| | - Asma A Alkuhali
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases
| | - Zhaoshu Zeng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases
| | - Meng Yuan
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases
| | - Xiaomin Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases
| | - Xiaoxu Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases
| | - Abdoulaye Issotina Zibrila
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases
| | - Jinjun Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases
| | - Zheng Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
2
|
El Hasbani G, Uthman I. An update on the endocrine manifestations of antiphospholipid syndrome. Int J Rheum Dis 2024; 27:e15253. [PMID: 38967004 DOI: 10.1111/1756-185x.15253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Antiphospholipid Syndrome (APS), characterized by hypercoagulability and pregnancy morbidity, poses a significant clinical challenge when involving organ systems, such as the endocrine system. APS can directly and indirectly influence the anterior and posterior lobes of the pituitary gland. The thyroid gland exhibits involvement, especially in patients with positive anticardiolipin antibodies, yet the clinical significance of the relationship with APS remains elusive. The pancreas, often overlooked, manifests in diverse ways, from pancreatitis to implications in diabetes. Adrenal insufficiency emerges as a common endocrine manifestation of APS, with adrenal hemorrhage or infarction being a presenting manifestation. Adrenal gland involvement has also been reported in the context of catastrophic APS. Pregnancy complications and infertility might be effects of APS on the female ovaries, while testicular torsion and decreased sperm concentration and total sperm count have been reported as rare effects of APS on male testes.
Collapse
Affiliation(s)
- Georges El Hasbani
- Department of Medicine, Hartford HealthCare St. Vincent's Medical Center, Bridgeport, Connecticut, USA
| | - Imad Uthman
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
3
|
Maxwell A, Adzibolosu N, Hu A, You Y, Stemmer PM, Ruden DM, Petriello MC, Sadagurski M, Debarba LK, Koshko L, Ramadoss J, Nguyen AT, Richards D, Liao A, Mor G, Ding J. Intrinsic sexual dimorphism in the placenta determines the differential response to benzene exposure. iScience 2023; 26:106287. [PMID: 37153445 PMCID: PMC10156617 DOI: 10.1016/j.isci.2023.106287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/09/2022] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Maternal immune activation (MIA) by environmental challenges is linked to severe developmental complications, such as neurocognitive disorders, autism, and even fetal/maternal death. Benzene is a major toxic compound in air pollution that affects the mother as well as the fetus and has been associated with reproductive complications. Our objective was to elucidate whether benzene exposure during gestation triggers MIA and its impact on fetal development. We report that benzene exposure during pregnancy leads MIA associated with increased fetal resorptions, fetal growth, and abnormal placenta development. Furthermore, we demonstrate the existence of a sexual dimorphic response to benzene exposure in male and female placentas. The sexual dimorphic response is a consequence of inherent differences between male and female placenta. These data provide crucial information on the origins or sexual dimorphism and how exposure to environmental factors can have a differential impact on the development of male and female offspring.
Collapse
Affiliation(s)
- Anthony Maxwell
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Nicholas Adzibolosu
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Anna Hu
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Yuan You
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Paul M. Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Douglas M. Ruden
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Michael C. Petriello
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Marianna Sadagurski
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Lucas K. Debarba
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Lisa Koshko
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Jayanth Ramadoss
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | | | - Darby Richards
- School of Medicine, Wayne State University, Detroit, MI, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Gil Mor
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Jiahui Ding
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
4
|
Musa E, Salazar-Petres E, Arowolo A, Levitt N, Matjila M, Sferruzzi-Perri AN. Obesity and gestational diabetes independently and collectively induce specific effects on placental structure, inflammation and endocrine function in a cohort of South African women. J Physiol 2023; 601:1287-1306. [PMID: 36849131 DOI: 10.1113/jp284139] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/19/2023] [Indexed: 03/01/2023] Open
Abstract
Maternal obesity and gestational diabetes mellitus (GDM) are associated with insulin resistance and health risks for mother and offspring. Obesity is also characterized by low-grade inflammation, which in turn, impacts insulin sensitivity. The placenta secretes inflammatory cytokines and hormones that influence maternal glucose and insulin handling. However, little is known about the effect of maternal obesity, GDM and their interaction, on placental morphology, hormones and inflammatory cytokines. In a South African cohort of non-obese and obese pregnant women with and without GDM, this study examined placental morphology using stereology, placental hormone and cytokine expression using real-time PCR, western blotting and immunohistochemistry, and circulating TNFα and IL-6 concentrations using ELISA. Placental expression of endocrine and growth factor genes was not altered by obesity or GDM. However, LEPTIN gene expression was diminished, syncytiotrophoblast TNFα immunostaining elevated and stromal and fetal vessel IL-6 staining reduced in the placenta of obese women in a manner that was partly influenced by GDM status. Placental TNFα protein abundance and maternal circulating TNFα concentrations were reduced in GDM. Both maternal obesity and, to a lesser extent, GDM were accompanied by specific changes in placental morphometry. Maternal blood pressure and weight gain and infant ponderal index were also modified by obesity and/or GDM. Thus, obesity and GDM have specific impacts on placental morphology and endocrine and inflammatory states that may relate to pregnancy outcomes. These findings may contribute to developing placenta-targeted treatments that improve mother and offspring outcomes, which is particularly relevant given increasing rates of obesity and GDM worldwide. KEY POINTS: Rates of maternal obesity and gestational diabetes (GDM) are increasing worldwide, including in low-middle income countries (LMIC). Despite this, much of the work in the field is conducted in higher-income countries. In a well-characterised cohort of South African women, this study shows that obesity and GDM have specific impacts on placental structure, hormone production and inflammatory profile. Moreover, such placental changes were associated with pregnancy and neonatal outcomes in women who were obese and/or with GDM. The identification of specific changes in the placenta may help in the design of diagnostic and therapeutic approaches to improve pregnancy and neonatal outcomes with particular significant benefit in LMICs.
Collapse
Affiliation(s)
- Ezekiel Musa
- Division of Endocrinology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Department of Internal Medicine, Kaduna State University, Kaduna, Nigeria
| | - Esteban Salazar-Petres
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Afolake Arowolo
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Naomi Levitt
- Division of Endocrinology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Mushi Matjila
- Department of Obstetrics and Gynaecology, University of Cape Town, Cape Town, South Africa
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Lv LJ, Li SH, Wen JY, Wang GY, Li H, He TW, Lv QB, Xiao MC, Duan HL, Chen MC, Yi ZT, Yan QL, Yin AH. Deep metagenomic characterization of gut microbial community and function in preeclampsia. Front Cell Infect Microbiol 2022; 12:933523. [PMID: 36189343 PMCID: PMC9515455 DOI: 10.3389/fcimb.2022.933523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Preeclampsia (PE) is a pregnancy complication characterized by severe hypertension and multiple organ damage. Gut microbiota has been linked to PE by previous amplicon sequencing studies. To resolve the PE gut microbiota in a higher taxonomy resolution, we performed shotgun metagenomic sequencing on the fecal samples from 40 early-onset PE and 37 healthy pregnant women. We recovered 1,750 metagenome-assembled genomes (representing 406 species) from the metagenomic dataset and profiled their abundances. We found that PE gut microbiota had enriched in some species belonging to Blautia, Pauljensenia, Ruminococcus, and Collinsella and microbial functions such as the bacitracin/lantibiotics transport system, maltooligosaccharide transport system, multidrug efflux pump, and rhamnose transport system. Conversely, the gut microbiome of healthy pregnant women was enriched in species of Bacteroides and Phocaeicola and microbial functions including the porphyrin and chlorophyll metabolism, pyridoxal-P biosynthesis, riboflavin metabolism, and folate biosynthesis pathway. PE diagnostic potential of gut microbial biomarkers was developed using both species and function profile data. These results will help to explore the relationships between gut bacteria and PE and provide new insights into PE early warning.
Collapse
Affiliation(s)
- Li-Juan Lv
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | | | - Ji-Ying Wen
- Department of Obstetric, Guangdong Women and Children Hospital, Guangzhou, China
| | - Guang-Yang Wang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hui Li
- Department of Obstetric, Guangdong Women and Children Hospital, Guangzhou, China
| | - Tian-Wen He
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Qing-Bo Lv
- Puensum Genetech Institute, Wuhan, China
| | - Man-Chun Xiao
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hong-Li Duan
- Department of Obstetric, Guangdong Women and Children Hospital, Guangzhou, China
| | - Min-Chai Chen
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Zhou-Ting Yi
- Department of Obstetric, Guangdong Women and Children Hospital, Guangzhou, China
| | - Qiu-Long Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- *Correspondence: Ai-Hua Yin, ; Qiu-Long Yan,
| | - Ai-Hua Yin
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
- *Correspondence: Ai-Hua Yin, ; Qiu-Long Yan,
| |
Collapse
|
6
|
Expression of cathelicidin, ERK, MyD88, and TLR-9 in the blood of women in the pre-pregnancy, pregnancy, and their infant cord blood. Hum Immunol 2022; 83:826-831. [PMID: 36058765 DOI: 10.1016/j.humimm.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/22/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022]
Abstract
During pregnancy, the immune responses are modulated to protect mothers and infants from different pathogens. Cathelicidin as an antimicrobial peptide has a defending role against many pathogens. In this study, to better understand the role of cathelicidin peptide and three of its related proteins in immune pathways (ERK, MyD88, and TLR-9) in the immune system during pregnancy, we examined their expression in the blood of non-pregnant and pregnant mothers and their infant's cord blood. Blood samples were taken, and their peripheral blood mononuclear cells (PBMCs) were obtained. The expression level of cathelicidin was determined by quantitative PCR. Also, the expression of cathelicidin, ERK, MyD88, and TLR-9 was assessed by Western blotting. Higher level of cathelicidin mRNA was detected in the cord blood samples compared to other samples. The Western blotting results showed higher levels of cathelicidin, ERK, MyD88, and TLR-9 in the cord blood samples than in the blood of both pregnant and non-pregnant samples. Also, the level of all molecules was higher in pregnant than non-pregnant women. These high levels of the mentioned molecules are necessary to protect the mother and fetus against various pathogens, although understanding their mechanism of action needs more studies.
Collapse
|
7
|
Russo C, Morello G, Mannino G, Russo A, Malaguarnera L. Immunoregulation of Ghrelin in neurocognitive sequelae associated with COVID-19: an in silico investigation. Gene 2022; 834:146647. [PMID: 35680023 PMCID: PMC9169425 DOI: 10.1016/j.gene.2022.146647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/16/2022] [Accepted: 06/02/2022] [Indexed: 01/08/2023]
Abstract
Some patients suffering from the new Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) develop an exaggerated inflammatory response triggered by a “cytokine storm” resulting in acute respiratory distress syndrome (ARDS) with the concomitant activation of non-specific inflammatory reactivity in the circulatory system and other organs, leading to multiorgan failure, leaky vasculature, coagulopathies and stroke. Impairment of brain functions may also occur as dysregulations in immune function resulting from neuroendocrine interactions. In this study, we explored, by bioinformatics approaches, the interaction between the multiple inflammatory agents involved in SARS-CoV-2 and Ghrelin (Ghre) together with its receptor GHSR-1A, which are described as anti-inflammatory mediators, in order to investigate what could trigger the hyper-inflammatory response in some SARS-CoV-2 patients. In our analysis, we found several interactions of Ghre and GHSR-1A with SARS-CoV-2 interacting human genes. We observed a correlation between Ghre, angiotensin-converting enzyme 2 ACE2, toll-like receptors 9 (TLR9), and Acidic chitinase (CHIA), whereas its receptor GHSR-1A interacts with chemokine receptor 3 (CXCR3), CCR3, CCR5, CCR7, coagulation factor II (thrombin) receptor-like 1 (F2RL1), vitamin D receptor (VDR), Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and DDP4 in receptor dipeptidyl peptidase-4. To our knowledge, our findings show, for the first time, that Ghre and GHSR-1A may exert an immunomodulatory function in the course of SARS-Cov-2 infection.
Collapse
Affiliation(s)
- Cristina Russo
- Pathology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanna Morello
- Department of Biomedical Science, Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Catania, Italy
| | - Giuliana Mannino
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; Physiology section, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonella Russo
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Malaguarnera
- Pathology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
8
|
Understanding the Immune System in Fetal Protection and Maternal Infections during Pregnancy. J Immunol Res 2022; 2022:7567708. [PMID: 35785037 PMCID: PMC9249541 DOI: 10.1155/2022/7567708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
The fetal-maternal immune system determines the fate of pregnancy. The trophoblast cells not only give an active response against external stimuli but are also involved in secreting most of the cytokines. These cells have an essential function in fetal acceptance or fetal rejection. Other immune cells also play a pivotal role in carrying out a successful pregnancy. The disruption in this mechanism may lead to harmful effects on pregnancy. The placenta serves as an immune barrier in fetus protection against invading pathogens. Once the infections prevail, they may localize in placental and fetal tissues, and the presence of inflammation due to cytokines may have detrimental effects on pregnancy. Moreover, some pathogens are responsible for congenital fetal anomalies and affect almost all organs of the developing fetus. This review article is designed to address the bacterial and viral infections that threaten pregnancy and their possible outcomes. Moreover, training of the fetal immune system against the exposure of infections and the role of CD49a + NK cells in embryonic development will also be highlighted.
Collapse
|
9
|
Arreola-Diaz R, Majluf-Cruz A, Sanchez-Torres LE, Hernandez-Juarez J. The Pathophysiology of The Antiphospholipid Syndrome: A Perspective From The Blood Coagulation System. Clin Appl Thromb Hemost 2022; 28:10760296221088576. [PMID: 35317658 PMCID: PMC8950029 DOI: 10.1177/10760296221088576] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The antiphospholipid syndrome (APS), a systemic autoimmune disease characterized by a hypercoagulability associated to vascular thrombosis and/or obstetric morbidity, is caused by the presence of antiphospholipid antibodies such as lupus anticoagulant, anti-β-2-glycoprotein 1, and/or anticardiolipin antibodies. In the obstetrical APS, antiphospholipid antibodies induce the production of proinflammatory cytokines and tissue factor by placental tissues and recruited neutrophils. Moreover, antiphospholipid antibodies activate the complement system which, in turn, induces a positive feedback leading to recruitment of neutrophils as well as activation of the placenta. Activation of these cells triggers myometrial contractions and cervical ripening provoking the induction of labor. In thrombotic and obstetrical APS, antiphospholipid antibodies activate endothelial cells, platelets, and neutrophils and they may alter the multimeric pattern and concentration of von Willebrand factor, increase the concentration of thrombospondin 1, reduce the inactivation of factor XI by antithrombin, increase the activation of factor XII, and reduce the activity of tissue plasminogen activator with the subsequent production of plasmin. All these effects result in less permeable clots, denser, thinner, and with more branched fibrin fibers which are more difficult to lysate. As a consequence, thrombosis, the defining clinical criterion of APS, complicates the clinical course of the patient.
Collapse
Affiliation(s)
- R Arreola-Diaz
- Departamento de Inmunologia, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| | - A Majluf-Cruz
- Unidad de Investigacion Medica en Trombosis, Hemostasia y Aterogenesis, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - L E Sanchez-Torres
- Departamento de Inmunologia, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| | - J Hernandez-Juarez
- CONACyT-Facultad de Odontologia, Universidad Autonoma Benito Juarez de Oaxaca, Oaxaca de Juarez, Mexico
| |
Collapse
|
10
|
Lee S, Shin J, Kim JS, Shin J, Lee SK, Park HW. Targeting TBK1 Attenuates LPS-Induced NLRP3 Inflammasome Activation by Regulating of mTORC1 Pathways in Trophoblasts. Front Immunol 2021; 12:743700. [PMID: 34858401 PMCID: PMC8630692 DOI: 10.3389/fimmu.2021.743700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/22/2021] [Indexed: 01/28/2023] Open
Abstract
Pathological maternal inflammation and abnormal placentation contribute to several pregnancy-related disorders, including preterm birth, intrauterine growth restriction, and preeclampsia. TANK-binding kinase 1 (TBK1), a serine/threonine kinase, has been implicated in the regulation of various physiological processes, including innate immune response, autophagy, and cell growth. However, the relevance of TBK1 in the placental pro-inflammatory environment has not been investigated. In this study, we assessed the effect of TBK1 inhibition on lipopolysaccharide (LPS)-induced NLRP3 inflammasome activation and its underlying mechanisms in human trophoblast cell lines and mouse placenta. TBK1 phosphorylation was upregulated in the trophoblasts and placenta in response to LPS. Pharmacological and genetic inhibition of TBK1 in trophoblasts ameliorated LPS-induced NLRP3 inflammasome activation, placental inflammation, and subsequent interleukin (IL)-1 production. Moreover, maternal administration of amlexanox, a TBK1 inhibitor, reversed LPS-induced adverse pregnancy outcomes. Notably, TBK1 inhibition prevented LPS-induced NLRP3 inflammasome activation by targeting the mammalian target of rapamycin complex 1 (mTORC1). Thus, this study provides evidence for the biological significance of TBK1 in placental inflammation, suggesting that amlexanox may be a potential therapeutic candidate for treating inflammation-associated pregnancy-related complications.
Collapse
Affiliation(s)
- Sohee Lee
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, South Korea
| | - Jiha Shin
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, South Korea
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, South Korea
| | - Jongdae Shin
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, South Korea.,Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, South Korea
| | - Sung Ki Lee
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, South Korea.,Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon, South Korea
| | - Hwan-Woo Park
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, South Korea
| |
Collapse
|
11
|
Kurban Y, Alan Y, Uyar İ, Atak Z, Aydemir Ö, Öktem A. Investigation of neutrophil/lymphocyte ratio and mean platelet volume in patients diagnosed with preterm labor. Paediatr Respir Rev 2021; 40:39-43. [PMID: 33342727 DOI: 10.1016/j.prrv.2020.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/22/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND To investigate the level of neutrophil/lymphocyte ratio (NLO) and mean platelet volume (MPV) in preterm birth in patients who gave birth before 37 weeks. METHOD This study was conducted by a retrospective examination of the patients who gave birth with preterm labor diagnosis from January 2017 to May 2018 at Ankara Keçiören Training and Research Hospital, Obstetrics and Gynecology Clinic. The study included 138 patients. Patients were divided into three groups: Early Preterm (delivery before 34 weeks, Group I = 39), Late Preterm (delivery between 34 and 37 weeks, Group II = 59) and the Control Group (delivery after 37 weeks, Group III = 40). All three groups were compared with respect to demographic, obstetric and laboratory results, MPV and NLO parameters. RESULTS The difference between the groups was not significant when the patients were compared in terms of age, gravida, parity, fetal sex and smoking. When the three groups were compared in terms of leukocyte, neutrophil, lymphocyte, hemoglobin, MPV and NLO, NLO was higher and MPV rate was lower in the preterm birth group, which was significant (p < 0.05). When the preterm delivery group was further divided as early preterm (<34 weeks) and late (34-37 weeks) preterm delivery group, the NLO rate was higher in the former group, while MPV was lower and the difference was significant (p < 0.05). When the patients were compared in terms of caesarean and vaginal delivery, 58.6% (81) of the total patients were delivered vaginally and 41.4% (57) were delivered by caesarean section. The most common cesarean indication was a previous caesarean section history. Subsequent indications included breech presentation, fetal distress, oligohydramnios, cephalo-pelvic disproportion (CPD), and placenta previa, respectively. The C-section rate was higher in the preterm group when the groups were compared in terms of the mode of delivery, and the difference between them was significant (p < 0.05). CONCLUSION NLO and MPV may be decisive as a proinflammatory process marker in patients who give birth before 37 weeks. Preterm births and fetuses of pregnant women with high NLO and low MPV may be considered to be likely to go to the neonatal care unit.
Collapse
Affiliation(s)
- Yüksel Kurban
- Keçiören Training and Research Hospital, Obstetrics and Gynecology Clinic, Ankara, Turkey
| | - Yasemin Alan
- İzmir Metropolitan Municipality Eşrefpaşa Hospital, İzmir,Turkey.
| | - İbrahim Uyar
- Tepecik Training and Research Hospital, Obstetrics and Gynecology Clinic, Department of Obstetrics and Gynecology, İzmir,Turkey
| | - Zeliha Atak
- Keçiören Training and Research Hospital, Obstetrics and Gynecology Clinic, Ankara, Turkey
| | - Önder Aydemir
- Konya Provincial Directorate of Health, Public Health Center, Konya ,Turkey
| | - Abdulmecit Öktem
- Tepecik Training and Research Hospital, Obstetrics and Gynecology Clinic, Department of Obstetrics and Gynecology, İzmir,Turkey
| |
Collapse
|
12
|
Ikeda R, Ushio N, Abdou AM, Furuoka H, Nishikawa Y. Toll-Like Receptor 2 is Involved in Abnormal Pregnancy in Mice Infected with Toxoplasma gondii During Late Pregnancy. Front Microbiol 2021; 12:741104. [PMID: 34675905 PMCID: PMC8524087 DOI: 10.3389/fmicb.2021.741104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/09/2021] [Indexed: 11/27/2022] Open
Abstract
Infection with Toxoplasma gondii during pregnancy causes failure of pregnancy maintenance, resulting in fetal death, abortion, stillbirth, or premature birth, but the mechanism of disease onset remains unclear. Although Toll-like receptor 2 (TLR2) is expressed on antigen-presenting cells and trophoblasts, the role of TLR2 in T. gondii infection during pregnancy is unknown. In this study, we investigated the role of TLR2 in congenital toxoplasmosis using TLR2-deficient (TLR2−/−) mice. T. gondii infection on gestational day 12.5 (Gd12.5) induced more abnormal pregnancy, including premature birth and stillbirth, in wild-type mice than in TLR2−/− mice. Multiple calcifications were observed in the placentas of the infected wild-type mice. At Gd18.5 (6days postinfection), the parasite numbers in the placenta and uterus and the histological changes did not differ significantly between the wild-type and TLR2−/− mice. However, T. gondii infection reduced the mRNA expression of interleukin-12p40 (IL-12p40) and increased IL-4 and IL-10 mRNAs in the placentas of the wild-type mice. In contrast, the placentas of the TLR2−/− mice showed no changes in the expression of these cytokines, including IL-6 and tumor necrosis factor α, in response to T. gondii infection. Serum interferon-γ levels were significantly lower in the infected TLR2−/− mice than in the infected wild-type mice on Gd18.5. Thus, the TLR2−/− mice were less susceptible to the induction of immune responses by T. gondii infection during late pregnancy. Therefore, TLR2 signaling may play a role in the development of disease states during pregnancy, specifically placental hypofunction.
Collapse
Affiliation(s)
- Rina Ikeda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Nanako Ushio
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ahmed M Abdou
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Hidefumi Furuoka
- Division of Pathobiological Science, Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
13
|
Gao M, Cai C, Han X, Wang L, Zhang W, Zhang L, Yang L. The early stage of pregnancy modulates toll-like receptor signaling in the ovine liver. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1990935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Meihong Gao
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, People’s Republic of China
| | - Chunjiang Cai
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, People’s Republic of China
| | - Xu Han
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, People’s Republic of China
| | - Luyu Wang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, People’s Republic of China
| | - Weifeng Zhang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, People’s Republic of China
| | - Leying Zhang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, People’s Republic of China
| | - Ling Yang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, People’s Republic of China
| |
Collapse
|
14
|
Aboussahoud WS, Smith H, Stevens A, Wangsaputra I, Hunter HR, Kimber SJ, Seif MW, Brison DR. The expression and activity of Toll-like receptors in the preimplantation human embryo suggest a new role for innate immunity. Hum Reprod 2021; 36:2661-2675. [PMID: 34517414 PMCID: PMC8450873 DOI: 10.1093/humrep/deab188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
STUDY QUESTION Is the innate immunity system active in early human embryo development? SUMMARY ANSWER The pattern recognition receptors and innate immunity Toll-like receptor (TLR) genes are widely expressed in preimplantation human embryos and the pathway appears to be active in response to TLR ligands. WHAT IS KNOWN ALREADY Early human embryos are highly sensitive to their local environment, however relatively little is known about how embryos detect and respond to specific environmental cues. While the maternal immune response is known to be key to the establishment of pregnancy at implantation, the ability of human embryos to detect and signal the presence of pathogens is unknown. STUDY DESIGN, SIZE, DURATION Expression of TLR family and related genes in human embryos was assessed by analysis of published transcriptome data (n = 40). Day 5 (D-5) human embryos (n = 25) were cultured in the presence of known TLR ligands and gene expression and cytokine production measured compared to controls. PARTICIPANTS/MATERIALS, SETTING, METHODS Human embryos surplus to treatment requirements were donated with informed consent from several ART centres. Embryos were cultured to Day 6 (D-6) in the presence of the TLR3 and TLR5 ligands Poly (I: C) and flagellin, with gene expression measured by quantitative PCR and cytokine release into medium measured using cytometric bead arrays. MAIN RESULTS AND THE ROLE OF CHANCE TLR and related genes, including downstream signalling molecules, were expressed variably at all human embryo developmental stages. Results showed the strongest expression in the blastocyst for TLRs 9 and 5, and throughout development for TLRs 9, 5, 2, 6 and 7. Stimulation of Day 5 blastocysts with TLR3 and TLR5 ligands Poly (I: C) and flagellin produced changes in mRNA expression levels of TLR genes, including the hyaluronan-mediated motility receptor (HMMR), TLR5, TLR7, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and monocyte chemoattractant Protein-1 (MCP-1) (P < 0.05, P < 0.001 compared to unstimulated controls), and release into culture medium of cytokines and chemokines, notably IL8 (P = 0.00005 and 0.01277 for flagellin and Poly (I: C), respectively). LIMITATIONS, REASONS FOR CAUTION This was a descriptive and experimental study which suggests that the TLR system is active in human embryos and capable of function, but does not confirm any particular role. Although we identified embryonic transcripts for a range of TLR genes, the expression patterns were not always consistent across published studies and expression levels of some genes were low, leaving open the possibility that these were expressed from the maternal rather than embryonic genome. WIDER IMPLICATIONS OF THE FINDINGS This is the first report of the expression and activity of a number of components of the innate immunity TLR system in human embryos. Understanding the role of TLRs during preimplantation human development may be important to reveal immunological mechanisms and potential clinical markers of embryo quality and pregnancy initiation during natural conception and in ART. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by the Ministry of Higher Education, The State of Libya, the UK Medical Research Council, and the NIHR Local Comprehensive Research Network and NIHR Manchester Clinical Research Facility and the European Union's Horizon 2020 Research and Innovation Programmes under the Marie Skłodowska-Curie Grant Agreement No. 812660 (DohART-NET). In accordance with H2020 rules, no new human embryos were sacrificed for research activities performed from the EU funding, which concerned only in silico analyses of recorded time-lapse and transcriptomics datasets. None of the authors has any conflict of interest to declare. TRIAL REGISTRATION NUMBER n/a.
Collapse
Affiliation(s)
- Wedad S Aboussahoud
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Maternal and Fetal Health Research Centre, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Helen Smith
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Adam Stevens
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Maternal and Fetal Health Research Centre, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Ivan Wangsaputra
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Maternal and Fetal Health Research Centre, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Helen R Hunter
- Department of Reproductive Medicine, Old St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Mourad W Seif
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Department of Reproductive Medicine, Old St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Daniel R Brison
- Department of Reproductive Medicine, Old St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| |
Collapse
|
15
|
Wu J, Zhang Q, Zhang L, Feng P, Gao M, Zhao Z, Yang L. Toll-like receptor signaling is changed in ovine lymph node during early pregnancy. Anim Sci J 2021; 92:e13541. [PMID: 33728713 DOI: 10.1111/asj.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 01/24/2023]
Abstract
Toll-like receptors (TLRs) participate in regulation of adaptive immune responses, and lymph nodes play key roles in the initiation of immune responses. There is a tolerance to the allogenic fetus during pregnancy, but it is unclear that expression of TLR signaling is in ovine lymph node during early pregnancy. In this study, lymph nodes were sampled from day 16 of nonpregnant ewes and days 13, 16, and 25 of pregnant ewes, and the expressions of TLR family (TLR2, TLR3, TLR4, TLR5 and TLR9), adaptor proteins, including myeloid differentiation primary-response protein 88 (MyD88), tumor necrosis factor receptor associated factor 6 (TRAF6), and interleukin-1-receptor-associated kinase 1 (IRAK1), were analyzed through real-time quantitative polymerase chain reaction, Western blot, and immunohistochemistry analysis. The results showed that mRNA and protein levels of TLR2, TLR3, TLR4, TRAF6, and MyD88 were upregulated in the maternal lymph node, but TLR5, TLR9, and IRAK1 were downregulated during early pregnancy. In addition, MyD88 protein was located in the subcapsular sinus and lymph sinuses. Therefore, it is suggested that early pregnancy induces changes in TLR signaling in maternal lymph node, which may be involved in regulation of maternal immune responses in sheep.
Collapse
Affiliation(s)
- Jiaxuan Wu
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Qiongao Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Pengfei Feng
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Meihong Gao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Zhenyang Zhao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
16
|
Wedn AM, El-Bassossy HM, Eid AH, El-Mas MM. Modulation of preeclampsia by the cholinergic anti-inflammatory pathway: Therapeutic perspectives. Biochem Pharmacol 2021; 192:114703. [PMID: 34324867 DOI: 10.1016/j.bcp.2021.114703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
The cholinergic anti-inflammatory pathway (CAP) is vital for the orchestration of the immune and inflammatory responses under normal and challenged conditions. Over the past two decades, peripheral and central circuits of CAP have been shown to be critically involved in dampening the inflammatory reaction in a wide array of inflammatory disorders. Additionally, emerging evidence supports a key role for CAP in the regulation of the female reproductive system during gestation as well as in the advent of serious pregnancy-related inflammatory insults such as preeclampsia (PE). Within this framework, the modulatory action of CAP encompasses the perinatal maternal and fetal adverse consequences that surface due to antenatal PE programming. Albeit, a considerable gap still exists in our knowledge of the precise cellular and molecular underpinnings of PE/CAP interaction, which hampered global efforts in safeguarding effective preventive or therapeutic measures against PE complications. Here, we summarize reports in the literature regarding the roles of peripheral and reflex cholinergic neuroinflammatory pathways of nicotinic acetylcholine receptors (nAChRs) in reprogramming PE complications in mothers and their progenies. The possible contributions of α7-nAChRs, cholinesterases, immune cells, adhesion molecules, angiogenesis, and endothelial dysfunction to the interaction have also been reviewed.
Collapse
Affiliation(s)
- Abdalla M Wedn
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hany M El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait.
| |
Collapse
|
17
|
Sánchez-Luquez K, Schadock IC, Gonçalves CV, Tornatore M, Finger-Jardim F, Avila EC, Soares MA, de Martínez AMB, Ellwanger JH, Chies JAB, da Hora VP. Impact of TLR7 and TLR9 polymorphisms on susceptibility to placental infections and pregnancy complications. J Reprod Immunol 2021; 146:103342. [PMID: 34102513 DOI: 10.1016/j.jri.2021.103342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/10/2021] [Accepted: 05/31/2021] [Indexed: 12/26/2022]
Abstract
This study evaluated the impact of the TLR7 Gln11Leu (rs179008) and TLR9 -1237 T/C (rs5743836) single nucleotide polymorphisms (SNPs) on susceptibility to placental infections and pregnancy complications in 455 Brazilian women. Demographic, socioeconomic, gynecological, and clinical characteristics of the women were collected. Placental tissues were sampled from pregnant women and human and viral DNA was extracted. Human alphaherpesvirus 1 (Herpes simplex virus type 1, HSV-1), Human alphaherpesvirus 2 (Herpes simplex virus type 2, HSV-2) and Human betaherpesvirus 5 (Human cytomegalovirus, HCMV) were detected by nested PCR. TLR9 and TLR7 SNPs were genotyped by PCR amplification of bi-directional specific alleles (Bi-PASA) and restriction fragment length polymorphism (RFLP), respectively. Infections at the time of birth were detected in 45.71 % of women. The presence of the TT genotype (recessive model) of the TLR7 SNP was associated with increased susceptibility to HSV-1 infection (O.R. = 2.23, p = 0.05). The presence of the C allele of the TLR9 SNP, in heterozygosis or homozygosis (dominant model), decreased the infection risk by HCMV (O.R. = 0.31, p-mod<0.05). The TT genotype (recessive model) of the TLR7 SNP was significantly associated (p < 0.05) with increased occurrence of pre-treated hypertension. The codominant model of the TLR9 SNP was significantly associated (p < 0.05) with reduced risk of hospitalization during pregnancy. In combination, the AA/CT (TLR7-TLR9) genotypes significantly decreased the risk of placental infection by HSV-1 and/or HSV-2 (O.R. = 0.47, p = 0.02), the susceptibility to all infectious agents considered in combination (O.R. = 0.4, p = 0.00), and the need of hospitalization (O.R. = 0.48, p = 0.02). In conclusion, TLR7 and TLR9 SNPs are potential modulating factors for the risk of placental infections and pregnancy complications.
Collapse
Affiliation(s)
- Karen Sánchez-Luquez
- Laboratory of Molecular Biology, School of Medicine, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil.
| | - Ines Claudia Schadock
- Laboratory of Molecular Biology, School of Medicine, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Carla Vitola Gonçalves
- Center for Obstetrics and Gynecology, School of Medicine, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Michele Tornatore
- Laboratory of Molecular Biology, School of Medicine, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Fabiana Finger-Jardim
- Laboratory of Molecular Biology, School of Medicine, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Emiliana Claro Avila
- Laboratory of Molecular Biology, School of Medicine, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Marcelo Alves Soares
- Oncovirology Program, National Cancer Institute (INCA), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Maria Barral de Martínez
- Laboratory of Molecular Biology, School of Medicine, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Vanusa Pousada da Hora
- Laboratory of Molecular Biology, School of Medicine, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
18
|
Cappelletti M, Doll JR, Stankiewicz TE, Lawson MJ, Sauer V, Wen B, Kalinichenko VV, Sun X, Tilburgs T, Divanovic S. Maternal regulation of inflammatory cues is required for induction of preterm birth. JCI Insight 2020; 5:138812. [PMID: 33208552 PMCID: PMC7710297 DOI: 10.1172/jci.insight.138812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Infection-driven inflammation in pregnancy is a major cause of spontaneous preterm birth (PTB). Both systemic infection and bacterial ascension through the vagina/cervix to the amniotic cavity are strongly associated with PTB. However, the contribution of maternal or fetal inflammatory responses in the context of systemic or localized models of infection-driven PTB is not well defined. Here, using intraperitoneal or intraamniotic LPS challenge, we examined the necessity and sufficiency of maternal and fetal Toll-like receptor (TLR) 4 signaling in induction of inflammatory vigor and PTB. Both systemic and local LPS challenge promoted induction of inflammatory pathways in uteroplacental tissues and induced PTB. Restriction of TLR4 expression to the maternal compartment was sufficient for induction of LPS-driven PTB in either systemic or intraamniotic challenge models. In contrast, restriction of TLR4 expression to the fetal compartment failed to induce LPS-driven PTB. Vav1-Cre-mediated genetic deletion of TLR4 suggested a critical role for maternal immune cells in inflammation-driven PTB. Further, passive transfer of WT in vitro-derived macrophages and dendritic cells to TLR4-null gravid females was sufficient to induce an inflammatory response and drive PTB. Cumulatively, these findings highlight the critical role for maternal regulation of inflammatory cues in induction of inflammation-driven parturition.
Collapse
Affiliation(s)
- Monica Cappelletti
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jessica R. Doll
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Traci E. Stankiewicz
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Matthew J. Lawson
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Vivien Sauer
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Bingqiang Wen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Lung Regenerative Medicine
| | - Vladimir V. Kalinichenko
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Lung Regenerative Medicine
| | | | - Tamara Tilburgs
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
19
|
Van Goor A, Pasternak A, Walker K, Hong L, Malgarin C, MacPhee DJ, Harding JCS, Lunney JK. Differential responses in placenta and fetal thymus at 12 days post infection elucidate mechanisms of viral level and fetal compromise following PRRSV2 infection. BMC Genomics 2020; 21:763. [PMID: 33148169 PMCID: PMC7640517 DOI: 10.1186/s12864-020-07154-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A pregnant gilt infected with porcine reproductive and respiratory syndrome virus (PRRSV) can transmit the virus to her fetuses across the maternal-fetal-interface resulting in varying disease outcomes. However, the mechanisms leading to variation in fetal outcome in response to PRRSV infection are not fully understood. Our objective was to assess targeted immune-related gene expression patterns and pathways in the placenta and fetal thymus to elucidate the molecular mechanisms involved in the resistance/tolerance and susceptibility of fetuses to PRRSV2 infection. Fetuses were grouped by preservation status and PRRS viral load (VL): mock infected control (CTRL), no virus detected (UNINF), virus detected in the placenta only with viable (PLCO-VIA) or meconium-stained fetus (PLCO-MEC), low VL with viable (LVL-VIA) or meconium-stained fetus (LVL-MEC), and high VL with viable (HVL-VIA) or meconium-stained fetus (HVL-MEC). RESULTS The host immune response was initiated only in fetuses with detectable levels of PRRSV. No differentially expressed genes (DEG) in either the placenta or thymus were identified in UNINF, PLCO-VIA, and PLCO-MEC when compared to CTRL fetuses. Upon fetal infection, a set of core responsive IFN-inducible genes (CXCL10, IFIH1, IFIT1, IFIT3, ISG15, and MX1) were strongly upregulated in both tissues. Gene expression in the thymus is a better differentiator of fetal VL; the strong downregulation of several innate and adaptive immune pathways (e.g., B Cell Development) are indicative of HVL. Gene expression in the placenta may be a better differentiator of fetal demise than the thymus, based-on principle component analysis clustering, gene expression patterns, and dysregulation of the Apoptosis and Ubiquitination pathways. CONCLUSION Our data supports the concept that fetal outcome in response to PRRSV2 infection is determined by fetal, and more significantly placental response, which is initiated only after fetal infection. This conceptual model represents a significant step forward in understanding the mechanisms underpinning fetal susceptibility to the virus.
Collapse
Affiliation(s)
- Angelica Van Goor
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, ARS, USDA, Beltsville, MD, USA
| | - Alex Pasternak
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kristen Walker
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, ARS, USDA, Beltsville, MD, USA
| | - Linjun Hong
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Carolina Malgarin
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel J MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joan K Lunney
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, ARS, USDA, Beltsville, MD, USA.
| |
Collapse
|
20
|
Ghaneifar Z, Yousefi Z, Tajik F, Nikfar B, Ghalibafan F, Abdollahi E, Momtazi-Borojeni AA. The potential therapeutic effects of curcumin on pregnancy complications: Novel insights into reproductive medicine. IUBMB Life 2020; 72:2572-2583. [PMID: 33107698 DOI: 10.1002/iub.2399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 01/13/2023]
Abstract
Pregnancy complications including preeclampsia, preterm birth, intrauterine growth restriction, and gestational diabetes are the main adverse reproductive outcomes. Excessive inflammation and oxidative stress play crucial roles in the pathogenesis of pregnancy disorders. Curcumin, the main polyphenolic compound derived from Curcuma longa, is mainly known by its anti-inflammatory and antioxidant properties. There are in vitro and in vivo reports revealing the preventive and ameliorating effects of curcumin against pregnancy complications. Here, we aimed to seek mechanisms underlying the modulatory effects of curcumin on dysregulated inflammatory and oxidative responses in various pregnancy complications.
Collapse
Affiliation(s)
- Zahra Ghaneifar
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Yousefi
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Tajik
- Faculty of medicine, Azad University of Tehran, Tehran, Iran
| | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghalibafan
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Abdollahi
- Department of Medical Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Singh R, Dubey V, Wolfson D, Ahmad A, Butola A, Acharya G, Mehta DS, Basnet P, Ahluwalia BS. Quantitative assessment of morphology and sub-cellular changes in macrophages and trophoblasts during inflammation. BIOMEDICAL OPTICS EXPRESS 2020; 11:3733-3752. [PMID: 33014563 PMCID: PMC7510918 DOI: 10.1364/boe.389350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 05/06/2023]
Abstract
In pregnancy during an inflammatory condition, macrophages present at the feto-maternal junction release an increased amount of nitric oxide (NO) and pro-inflammatory cytokines such as TNF-α and INF-γ, which can disturb the trophoblast functions and pregnancy outcome. Measurement of the cellular and sub-cellular morphological modifications associated with inflammatory responses are important in order to quantify the extent of trophoblast dysfunction for clinical implication. With this motivation, we investigated morphological, cellular and sub-cellular changes in externally inflamed RAW264.7 (macrophage) and HTR-8/SVneo (trophoblast) using structured illumination microscopy (SIM) and quantitative phase microscopy (QPM). We monitored the production of NO, changes in cell membrane and mitochondrial structure of macrophages and trophoblasts when exposed to different concentrations of pro-inflammatory agents (LPS and TNF-α). In vitro NO production by LPS-induced macrophages increased 22-fold as compared to controls, whereas no significant NO production was seen after the TNF-α challenge. Under similar conditions as with macrophages, trophoblasts did not produce NO following either LPS or the TNF-α challenge. Super-resolution SIM imaging showed changes in the morphology of mitochondria and the plasma membrane in macrophages following the LPS challenge and in trophoblasts following the TNF-α challenge. Label-free QPM showed a decrease in the optical thickness of the LPS-challenged macrophages while TNF-α having no effect. The vice-versa is observed for the trophoblasts. We further exploited machine learning approaches on a QPM dataset to detect and to classify the inflammation with an accuracy of 99.9% for LPS-challenged macrophages and 98.3% for TNF-α-challenged trophoblasts. We believe that the multi-modal advanced microscopy methodologies coupled with machine learning approach could be a potential way for early detection of inflammation.
Collapse
Affiliation(s)
- Rajwinder Singh
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø 9037, Norway
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Author with equal contribution
| | - Vishesh Dubey
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø 9037, Norway
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Author with equal contribution
| | - Deanna Wolfson
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Azeem Ahmad
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Ankit Butola
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ganesh Acharya
- Department of Clinical Science, Intervention and Technology Karolinska Univ. Hospital, Sweden
| | - Dalip Singh Mehta
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Purusotam Basnet
- Womeńs Health and Perinatology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway and Department of Obstetrics and Gynecology, University Hospital of North Norway, Tromsø, Norway
| | - Balpreet Singh Ahluwalia
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø 9037, Norway
- Department of Clinical Science, Intervention and Technology Karolinska Univ. Hospital, Sweden
| |
Collapse
|
22
|
Firmal P, Shah VK, Chattopadhyay S. Insight Into TLR4-Mediated Immunomodulation in Normal Pregnancy and Related Disorders. Front Immunol 2020; 11:807. [PMID: 32508811 PMCID: PMC7248557 DOI: 10.3389/fimmu.2020.00807] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Unlike organ transplants where an immunosuppressive environment is required, a successful pregnancy involves an extremely robust, dynamic, and responsive maternal immune system to maintain the development of the fetus. A specific set of hormones and cytokines are associated with a particular stage of pregnancy. Any disturbance that alters this fine balance could compromise the development and function of the placenta. Although there are numerous underlying causes of pregnancy-related complications, untimely activation of Toll-like receptors (TLR), primarily TLR4, by intrauterine microbes poses the greatest risk. TLR4 is an important Pattern Recognition Receptor (PRR), which activates both innate and adaptive immune cells. TLR4 activation by LPS or DAMPs leads to the production of pro-inflammatory cytokines via the MyD88 dependent or independent pathway. Immune cells modulate the materno–fetal interface by TLR4-mediated cytokine production, which changes at different stages of pregnancy. In most pregnancy disorders, such as PTB, PE, or placental malaria, the TLR4 expression is upregulated in immune cells or in maternal derived cells, leading to the aberrant production of pro-inflammatory cytokines at the materno–fetal interface. Lack of functional TLR4 in mice has reduced the pro-inflammatory responses, leading to an improved pregnancy, which further strengthens the fact that abnormal TLR4 activation creates a hostile environment for the developing fetus. A recent study proposed that endothelial and perivascular stromal cells should interact with each other in order to maintain a homeostatic balance during TLR4-mediated inflammation. It has been reported that depleting immune cells or supplying anti-inflammatory cytokines can prevent PTB, PE, or fetal death. Blocking TLR4 signaling or its downstream molecule by inhibitors or antagonists has proven to improve pregnancy-related complications to some extent in clinical and animal models. To date, there has been a lack of knowledge regarding whether TLR4 accessories such as CD14 and MD-2 are important in pregnancy and whether these accessory molecules could be promising drug targets for combinatorial treatment of various pregnancy disorders. This review mainly focuses on the activation of TLR4 during pregnancy, its immunomodulatory functions, and the upcoming advancement in this field regarding the improvement of pregnancy-related issues by various therapeutic approaches.
Collapse
Affiliation(s)
- Priyanka Firmal
- National Centre for Cell Science, S. P. Pune University Campus, Pune, India
| | - Vibhuti Kumar Shah
- National Centre for Cell Science, S. P. Pune University Campus, Pune, India
| | - Samit Chattopadhyay
- National Centre for Cell Science, S. P. Pune University Campus, Pune, India.,Department of Biological Sciences, BITS Pilani, K. K. Birla Goa Campus, Goa, India.,Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
23
|
Mei C, Yang W, Wei X, Wu K, Huang D. The Unique Microbiome and Innate Immunity During Pregnancy. Front Immunol 2019; 10:2886. [PMID: 31921149 PMCID: PMC6929482 DOI: 10.3389/fimmu.2019.02886] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022] Open
Abstract
A successful pregnancy depends on not only the tolerance of the fetal immune system by the mother but also resistance against the threat of hazardous microorganisms. Infection with pathogenic microorganisms during pregnancy may lead to premature delivery, miscarriage, growth restriction, neonatal morbidity, and other adverse outcomes. Moreover, the host also has an intact immune system to avoid these adverse outcomes. It is important to note the presence of normal bacteria in the maternal reproductive tract and the principal role of the maternal-placental-fetal interaction in antimicrobial immunity. Previous studies mainly focused on maternal infection during pregnancy. However, this review summarizes the new views on the study of the maternal microbiome and expounds the innate immune defense mechanism of the maternal vagina and decidua as well as how cytotrophoblasts and syncytiotrophoblasts recognize and kill bacteria in the placenta. Fetal immune systems, thought to be weak, also exhibit an immune defense function that is indispensable for maintaining the safety of the fetus. The skin, lungs, and intestines of the fetus during pregnancy constitute the main immune barriers. These findings will provide a new understanding of the effects of normal microbial flora and how the host resists harmful microbes during pregnancy. We believe that it may also contribute to the reference on the clinical prevention and treatment of gestational infection to avoid adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Chunlei Mei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weina Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Wei
- Second Affiliated Hospital of Jinlin University, Changchun, China
| | - Kejia Wu
- Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Donghui Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Borba VV, Zandman-Goddard G, Shoenfeld Y. Exacerbations of autoimmune diseases during pregnancy and postpartum. Best Pract Res Clin Endocrinol Metab 2019; 33:101321. [PMID: 31564626 DOI: 10.1016/j.beem.2019.101321] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Autoimmune diseases represent a complex heterogeneous group of disorders that occur as a results of immune homeostasis dysregulation and loss of self-tolerance. Interestingly, more than 80% of the cases are found among women at reproductive age. Normal pregnancy is associated with remarkable changes in the immune and endocrine signaling required to tolerate and support the development and survival of the placenta and the semi-allogenic fetus in the hostile maternal immune system environment. Gravidity and postpartum represent an extremely challenge period, and likewise the general population, women suffering from autoimmune disorders attempt pregnancy. Effective preconception counseling and subsequent gestation and postpartum follow-up are crucial for improving mother and child outcomes. This comprehensive review provides information about the different pathways modulating autoimmune diseases activity and severity, such as the influence hormones, microbiome, infections, vaccines, among others, as well as updated recommendations were needed, in order to offer those women better medical care and life quality.
Collapse
Affiliation(s)
- Vânia Vieira Borba
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - Gisele Zandman-Goddard
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Department of Medicine C, Wolfson Medical Center, Tel Aviv, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Russia.
| |
Collapse
|
25
|
The role of innate immunity in spontaneous preterm labor: A systematic review. J Reprod Immunol 2019; 136:102616. [PMID: 31581042 DOI: 10.1016/j.jri.2019.102616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/24/2019] [Accepted: 09/20/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Immunoinflammatory response by innate immunity components is a field with increasing interest in understanding the mechanisms behind preterm labor (PTL). OBJECTIVES Systematic review of the role of innate immunity in spontaneous PTL. STUDY DESIGN PubMed, Scopus, ClinicalTrials.gov and Web of Science were searched using pregnancy AND innate OR toll-like OR natural-killer OR dendritic AND delivery OR premature OR rupture of membranes. MAIN OUTCOME MEASURES All article titles and abstracts were evaluated by two individuals, based in strict predefined inclusion criteria. For relevant studies, title, abstract, and full text were assessed to identify PTL and innate immunity studies, excluding multiple pregnancies, cervical insufficiency and indicated PTL. RESULTS From 894 articles evaluated, 101 full texts articles were assessed independently. For this systematic review 44 studies were finally included. Toll-like receptors 2 and 4 mediated immune dysfunction and inflammation can result in PTL. Moreover, PTL is linked to high levels of CD14+ monocytes; neutrophils seem important in inflammation-associated PTL and in pathological preterm premature rupture of membranes. Besides, decidual natural-killer cells and premature activation of dendritic cells may also participate in the etiology of PTL. Finally, dysregulation of maternal complement might increase the risk of PTL, characterized by high levels of innate lymphoid cells 2 and 3. CONCLUSIONS Further research is warranted to ascertain the precise role of innate immunity in PTL. Nonetheless, our results indicate that Toll-like receptors, monocytes, natural-killer cells, dendritic cells and complement have significant roles in PTL.
Collapse
|
26
|
Maeda KJ, Showmaker KC, Johnson AC, Garrett MR, Sasser JM. Spontaneous superimposed preeclampsia: chronology and expression unveiled by temporal transcriptomic analysis. Physiol Genomics 2019; 51:342-355. [PMID: 31125289 DOI: 10.1152/physiolgenomics.00020.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Preeclampsia (PE), a multifactorial pregnancy-specific syndrome accounting for up to 8% of pregnancy complications, is a leading cause of maternal and fetal morbidity and mortality. PE is also associated with long-term risk of hypertension and stroke for both mother and fetus. Currently, the only "cure" is delivery of the baby and placenta, largely because the pathogenesis of PE is not yet fully understood. PE is associated with impaired vascular remodeling at the maternal-fetal interface and placental insufficiency; however, specific factors contributing to this impairment have not been identified. To identify molecular pathways involved in PE, we examined temporal transcriptomic changes occurring within the uterus, uterine implantation sites, and placentae from the Dahl salt-sensitive (Dahl S) rat model of superimposed PE compared with Sprague Dawley (SD) rats. We hypothesized that targeted gene analysis and whole transcriptome analysis would identify genetic factors that contribute to development of the preeclamptic phenotype in the Dahl S rat and unveil novel biomarkers, therapeutic targets, and mechanistic pathways in PE. Quantitative real-time PCR (qRT-PCR) and whole genome microarray analysis were performed on isolated total RNA from uterus (day 0), uterine implantation sites (days 7 and 10), and placenta (days 14 and 20). We found 624, 332, 185, and 366 genes to be differentially expressed between Dahl S (PE) and SD (normal pregnancy) on days 0, 7, 10, and 14, respectively. Our data revealed numerous pathways that may play a role in the pathophysiology of spontaneous superimposed PE and allow for further investigation of novel therapeutic targets and biomarker development.
Collapse
Affiliation(s)
- Kenji J Maeda
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kurt C Showmaker
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi.,Molecular and Genomics Core, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ashley C Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi.,Molecular and Genomics Core, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael R Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi.,Molecular and Genomics Core, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Medicine (Nephrology), University of Mississippi Medical Center, Jackson, Mississippi
| | - Jennifer M Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
27
|
Wanhong W, Changchang Y, Ping H. [Research progress on the relationship and mechanisms between periodontal disease and preterm birth and low-birth-weight infants]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 35:527-532. [PMID: 29188651 DOI: 10.7518/hxkq.2017.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Preterm birth (PB) is defined as the birth of a baby less than 37 weeks of gestational age. Low birth weight (LBW) is defined as a newborn baby's weight of less than 2 500 g. PB is often accompanied by LBW. Preterm low birth weight (PLBW) is the leading cause of newborn deaths. Periodontal disease (PD) is a chronic oral infectious disease, and it is closely related with general health. Epidemiological data show that PD is a risk factor for PLBW and other adverse pregnancy outcomes. The possible mechanisms include the direct effects of periodontal bacteria, inflammatory reactions, and immune response; however, the exact pathogenetic mechanism involved remains controversial. This article aims to review the research progress on the relationship between PD and PLBW and their underlying mechanisms, as well as the effects of periodontal treatment on PLBW incidence.
Collapse
Affiliation(s)
- Wu Wanhong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ye Changchang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Huang Ping
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Afkham A, Eghbal-Fard S, Heydarlou H, Azizi R, Aghebati-Maleki L, Yousefi M. Toll-like receptors signaling network in pre-eclampsia: An updated review. J Cell Physiol 2018; 234:2229-2240. [PMID: 30221394 DOI: 10.1002/jcp.27189] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/17/2018] [Indexed: 01/07/2023]
Abstract
Toll-like receptors (TLRs) are innate immune cells receptors. They are expressed on leukocytes, epithelial cells, and more particularly on placental immune cells and chorion trophoblast. Upregulation of innate immune response occurs during normal pregnancy, but its excessive activity is involved in the pathology of pregnancy complications including pregnancy-induced hypertension and pre-eclampsia (PE). The recent studies about the overmuch inflammatory responses and aberrant placentation are associated with increased expression of TLRs in PE patients. This review has tried to focus on the relationship between some activities of TLRs and the risk of preeclampsia development.
Collapse
Affiliation(s)
- Amir Afkham
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shadi Eghbal-Fard
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Heydarlou
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramyar Azizi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Xu Q, Du F, Zhang Y, Teng Y, Tao M, Chen AF, Jiang R. Preeclampsia serum induces human glomerular vascular endothelial cell hyperpermeability via the HMGB1-Caveolin-1 pathway. J Reprod Immunol 2018; 129:1-8. [PMID: 30007203 DOI: 10.1016/j.jri.2018.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/13/2018] [Accepted: 07/03/2018] [Indexed: 01/01/2023]
Abstract
To explore new ideas about the pathogeny of preeclampsia (PE) proteinuria, this study focused on whether severe PE serum (PES) could induce high-molecular-weight protein (HMWP) hyperpermeability in glomerular endothelial cells (GEC) via the HMGB1-Caveolin-1 (CAV-1) pathway. Normal pregnancy serum (NPS) and severe PES were used to treat primary human GEC monolayer for 24 h. The CAV-1 inhibitor methyl-beta-cyclodextrin (MBCD), the HMGB1 inhibitor glycyrrhizicacid (GA), recombinant HMGB1 (rHMGB1) were also used to treat GEC monolayer that were stimulated by NPS or severe PES. The dynamic permeability of GEC to HMWP was detected by Evans blue-labeled BSA and CAV-1 expression in GEC was analyzed by immunofluorescence staining and Western blotting. We detected HMGB1 expression in placenta and serum in normal pregnancy and severe PE. The results showed that severe PES significantly promoted GEC hyperpermeability and CAV-1 expression. By inhibiting CAV-1 expression, MBCD reversed severe PES-induced GEC monolayer permeability. HMGB1 expression in PE placenta and serum was significantly increased. Compared with that in normal placenta, HMGB1expression was increased in the cytoplasm of syncytiotrophoblast cells in PE placenta. GA decreased the severe PES-induced hyperpermeability and CAV-1 expression in GEC. rHMGB1 induced high expression levels of CAV-1 and HMWP hyperpermeability in GEC. In conclusion, HMGB1 is increased in severe PE patients and induces the expression of CAV-1 in GEC. High expression of CAV-1 in GEC can promote HMWP hyperpermeability, which may contribute to the development of PE proteinuria.
Collapse
Affiliation(s)
- Qinyang Xu
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Du
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ye Zhang
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yincheng Teng
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Minfang Tao
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Alex F Chen
- Department of Surgery, McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rongzhen Jiang
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
30
|
Kenny LC, Kell DB. Immunological Tolerance, Pregnancy, and Preeclampsia: The Roles of Semen Microbes and the Father. Front Med (Lausanne) 2018; 4:239. [PMID: 29354635 PMCID: PMC5758600 DOI: 10.3389/fmed.2017.00239] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022] Open
Abstract
Although it is widely considered, in many cases, to involve two separable stages (poor placentation followed by oxidative stress/inflammation), the precise originating causes of preeclampsia (PE) remain elusive. We have previously brought together some of the considerable evidence that a (dormant) microbial component is commonly a significant part of its etiology. However, apart from recognizing, consistent with this view, that the many inflammatory markers of PE are also increased in infection, we had little to say about immunity, whether innate or adaptive. In addition, we focused on the gut, oral and female urinary tract microbiomes as the main sources of the infection. We here marshall further evidence for an infectious component in PE, focusing on the immunological tolerance characteristic of pregnancy, and the well-established fact that increased exposure to the father's semen assists this immunological tolerance. As well as these benefits, however, semen is not sterile, microbial tolerance mechanisms may exist, and we also review the evidence that semen may be responsible for inoculating the developing conceptus (and maybe the placenta) with microbes, not all of which are benign. It is suggested that when they are not, this may be a significant cause of PE. A variety of epidemiological and other evidence is entirely consistent with this, not least correlations between semen infection, infertility and PE. Our view also leads to a series of other, testable predictions. Overall, we argue for a significant paternal role in the development of PE through microbial infection of the mother via insemination.
Collapse
Affiliation(s)
- Louise C. Kenny
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
- Department of Obstetrics and Gynecology, University College Cork, Cork, Ireland
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Douglas B. Kell
- School of Chemistry, The University of Manchester, Manchester, United Kingdom
- The Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
31
|
Cappelletti M, Lawson MJ, Chan CC, Wilburn AN, Divanovic S. Differential outcomes of TLR2 engagement in inflammation-induced preterm birth. J Leukoc Biol 2017; 103:535-543. [PMID: 29345344 PMCID: PMC6084304 DOI: 10.1002/jlb.3ma0717-274rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 01/06/2023] Open
Abstract
Preterm birth (PTB) is the leading cause of neonatal mortality worldwide. Infection and inflammation are considered main causes of PTB. Among multiple pathogens, Gram‐positive bacteria are commonly linked with induction of PTB. Although activation of innate immune responses, via TLR2 engagement, by Gram‐positive bacteria is a likely cause, whether induction of PTB depends on the potency of specific microbial components to induce Toll‐like receptor (TLR)2‐driven inflammation has not been elucidated. Here, we show that TLR2 activation by synthetic lipopeptides, Pam2Cys, and Pam3Cys specifically, variably influenced inflammation and subsequent induction of PTB. Pam2Cys challenge, compared to Pam3Cys, induced PTB and promoted significantly higher expression of inflammatory cytokines, specifically IL‐6 and IFN‐β, both in vivo and in vitro. Notably, antibody‐mediated neutralization of IL‐6 or genetic deletion of type I IFN receptor (IFNAR) was sufficient to protect from Pam2Cys‐driven PTB and to temper excessive proinflammatory cytokine production. Conversely, IFN‐β or IL‐6 was not sufficient to promote induction of PTB by Pam3Cys. In summary, our data implies a divergent function of TLR2‐activating lipopeptides in the magnitude and type of ligand‐driven inflammatory vigor in induction of PTB.
Collapse
Affiliation(s)
- Monica Cappelletti
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Matthew J Lawson
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Calvin C Chan
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Adrienne N Wilburn
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Senad Divanovic
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
32
|
Tamura K, Ishikawa G, Yoshie M, Ohneda W, Nakai A, Takeshita T, Tachikawa E. Glibenclamide inhibits NLRP3 inflammasome-mediated IL-1β secretion in human trophoblasts. J Pharmacol Sci 2017; 135:89-95. [PMID: 29056256 DOI: 10.1016/j.jphs.2017.09.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/26/2017] [Accepted: 09/19/2017] [Indexed: 01/04/2023] Open
Abstract
Infection-associated pregnancy complications cause premature delivery. Caspase-1 is involved in the maturation of interleukin (IL)-1β, which is activated by the NLRP3 inflammasome. To characterize the significance of the NLRP3 inflammasome pathway in the placenta, the effects of activators and inhibitors on NLRP3-related molecules were examined using isolated primary trophoblasts. Caspase-1 and IL-1β mRNA expression was markedly increased in response to lipopolysaccharide (LPS), a toll-like receptor (TLR)4 ligand. Treatment with the potassium ionophore nigericin significantly increased the level of activated caspase-1. Treatment with either LPS or nigericin stimulated IL-1β secretion, whereas pretreatment with the ATP-sensitive K+ channel inhibitor glibenclamide, the Rho-associated coiled-coil kinase inhibitor Y-27632, or a caspase-1 inhibitor significantly decreased nigericin-induced IL-1β secretion. In addition, dibutyryl-cAMP, which induces trophoblast differentiation, decreased expression of NLRP3, caspase-1, and IL-1β. These findings suggest that trophoblasts can secrete IL-1β through the NLRP3/caspase-1 pathway, which is suppressed by glibenclamide, and that the TLR4-mediated NLRP3 inflammasome pathway is more likely to be stimulated in undifferentiated than differentiated trophoblasts. Our data support the hypothesis that inhibition of the NLRP3 inflammasome can suppress placental inflammation-associated disorders.
Collapse
Affiliation(s)
- Kazuhiro Tamura
- Department of Endocrine & Neural Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Gen Ishikawa
- Department of Obstetrics and Gynecology, Nippon Medical School, 1-7-1, Nagayama, Tokyo 160-0023, Japan
| | - Mikihiro Yoshie
- Department of Endocrine & Neural Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Wakana Ohneda
- Department of Endocrine & Neural Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihito Nakai
- Department of Obstetrics and Gynecology, Nippon Medical School, 1-7-1, Nagayama, Tokyo 160-0023, Japan
| | - Toshiyuki Takeshita
- Department of Obstetrics and Gynecology, Nippon Medical School, 1-1-5, Bunkyo, Tokyo 113-8603, Japan
| | - Eiichi Tachikawa
- Department of Endocrine & Neural Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
33
|
Bouças AP, de Souza BM, Bauer AC, Crispim D. Role of Innate Immunity in Preeclampsia: A Systematic Review. Reprod Sci 2017; 24:1362-1370. [PMID: 28891416 DOI: 10.1177/1933719117691144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Innate immune system dysfunction has been known to be a key player in preeclampsia (PE). Activation of the maternal innate immunity may be triggered by invading microorganisms or endogenous ligands, which are detected by different pattern recognition receptors (PRRs). Although some studies have linked PRR activation to PE, it is still unclear if dysregulated PRR expression is associated with the development of this complication. Therefore, we conducted a systematic review of the literature, searching articles that evaluated associations of PRRs with PE. Twenty-six studies met the inclusion criteria: 20 of them analyzed PRR expressions and 6 studies investigated the association between PRR polymorphisms and PE. Among the PRRs, only few studies analyzed retinoic acid-inducible gene I-like helicase (RLH) and/or toll-like receptor (TLR)-1, 5, 6, 7, 8, and 9 expressions in immune cells or placentas from women with PE and controls; thus, it is inconclusive if these PRRs are involved in PE. Results from the 10 studies that analyzed TLR-2 expressions in women with PE and controls are also contradictory. The majority of the studies that investigated TLR-3 and -4 expressions indicate that these PRRs are increased in placenta or immune cells from women with PE compared to pregnant control woman. To date, polymorphisms in TLR-2, - 3, and - 4 and nucleotide-binding oligomerization domain-like receptor 2 genes do not seem to be associated with PE development. No study has evaluated the association between polymorphisms in genes codifying other TLRs or RLHs genes. In conclusion, available data in literature support a role for TLR-3 and TLR-4 in the pathogenesis of PE.
Collapse
Affiliation(s)
- Ana P Bouças
- 1 Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- 2 Postgraduation Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bianca M de Souza
- 1 Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- 2 Postgraduation Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andrea C Bauer
- 1 Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- 1 Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- 2 Postgraduation Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
34
|
Cappelletti M, Presicce P, Lawson MJ, Chaturvedi V, Stankiewicz TE, Vanoni S, Harley IT, McAlees JW, Giles DA, Moreno-Fernandez ME, Rueda CM, Senthamaraikannan P, Sun X, Karns R, Hoebe K, Janssen EM, Karp CL, Hildeman DA, Hogan SP, Kallapur SG, Chougnet CA, Way SS, Divanovic S. Type I interferons regulate susceptibility to inflammation-induced preterm birth. JCI Insight 2017; 2:e91288. [PMID: 28289719 DOI: 10.1172/jci.insight.91288] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Preterm birth (PTB) is a leading worldwide cause of morbidity and mortality in infants. Maternal inflammation induced by microbial infection is a critical predisposing factor for PTB. However, biological processes associated with competency of pathogens, including viruses, to induce PTB or sensitize for secondary bacterial infection-driven PTB are unknown. We show that pathogen/pathogen-associated molecular pattern-driven activation of type I IFN/IFN receptor (IFNAR) was sufficient to prime for systemic and uterine proinflammatory chemokine and cytokine production and induction of PTB. Similarly, treatment with recombinant type I IFNs recapitulated such effects by exacerbating proinflammatory cytokine production and reducing the dose of secondary inflammatory challenge required for induction of PTB. Inflammatory challenge-driven induction of PTB was eliminated by defects in type I IFN, TLR, or IL-6 responsiveness, whereas the sequence of type I IFN sensing by IFNAR on hematopoietic cells was essential for regulation of proinflammatory cytokine production. Importantly, we also show that type I IFN priming effects are conserved from mice to nonhuman primates and humans, and expression of both type I IFNs and proinflammatory cytokines is upregulated in human PTB. Thus, activation of the type I IFN/IFNAR axis in pregnancy primes for inflammation-driven PTB and provides an actionable biomarker and therapeutic target for mitigating PTB risk.
Collapse
Affiliation(s)
| | - Pietro Presicce
- Division of Neonatology/Pulmonary Biology, Cincinnati Children's Hospital Research Foundation
| | - Matthew J Lawson
- Division of Immunobiology.,Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | - Simone Vanoni
- Division of Allergy and Immunology, Cincinnati Children's Hospital Research Foundation, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | - Daniel A Giles
- Division of Immunobiology.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | | - Rebekah Karns
- Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Research Foundation, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | | - Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Research Foundation, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Suhas G Kallapur
- Division of Neonatology/Pulmonary Biology, Cincinnati Children's Hospital Research Foundation
| | | | | | | |
Collapse
|
35
|
Anders AP, Gaddy JA, Doster RS, Aronoff DM. Current concepts in maternal-fetal immunology: Recognition and response to microbial pathogens by decidual stromal cells. Am J Reprod Immunol 2017; 77. [PMID: 28044385 DOI: 10.1111/aji.12623] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/21/2016] [Indexed: 12/29/2022] Open
Abstract
Chorioamnionitis is an acute inflammation of the gestational (extraplacental) membranes, most commonly caused by ascending microbial infection. It is associated with adverse neonatal outcomes including preterm birth, neonatal sepsis, and cerebral palsy. The decidua is the outermost layer of the gestational membranes and is likely an important initial site of contact with microbes during ascending infection. However, little is known about how decidual stromal cells (DSCs) respond to microbial threat. Defining the contributions of individual cell types to the complex medley of inflammatory signals during chorioamnionitis could lead to improved interventions aimed at halting this disease. We review available published data supporting the role for DSCs in responding to microbial infection, with a special focus on their expression of pattern recognition receptors and evidence of their responsiveness to pathogen sensing. While DSCs likely play an important role in sensing and responding to infection during the pathogenesis of chorioamnionitis, important knowledge gaps and areas for future research are highlighted.
Collapse
Affiliation(s)
- Anjali P Anders
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer A Gaddy
- Tennessee Valley Healthcare Systems, Department of Veterans Affairs, Nashville, TN, USA.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ryan S Doster
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David M Aronoff
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
36
|
Nizyaeva NV, Kulikova GV, Shchyogolev AI, Zemskov VM. The role of microRNA in regulation of the body’s immune responses. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s2079086416060050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Gong P, Liu M, Hong G, Li Y, Xue P, Zheng M, Wu M, Shen L, Yang M, Diao Z, Hu Y. Curcumin improves LPS-induced preeclampsia-like phenotype in rat by inhibiting the TLR4 signaling pathway. Placenta 2016; 41:45-52. [PMID: 27208407 DOI: 10.1016/j.placenta.2016.03.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/06/2016] [Accepted: 03/01/2016] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Abnormal inflammation mediated by Toll-like receptor 4 (TLR4) signaling pathway contributes to preeclampsia (PE). Because curcumin can inhibit TLR4 signaling pathway, we investigated its effects on a PE rat model. METHODS Twenty-one pregnant rats were randomly divided into three groups: 1) seven rats were injected 0.5 μg/kg lipopolysaccharide (LPS) on gestational day (GD) 5 to create a PE model (LPS-treated group), 2) seven rats were injected with a similar dosage of LPS and further treated with curcumin (0.36 mg/kg) (LPS-curcumin-treated group), 3) seven rats received saline (control group). Blood pressure and urinary protein level were observed. Immunostaining and periodic acid-Schiff staining of placenta were conducted. TLR4 and downstream Nuclear Factor-κB (NF-κB) expressions of placenta were analyzed by Western blot and immunohistochemistry. IL-6 and MCP-1 in rat serum and placenta were determined by ELISA and qRT-PCR. RESULTS Compared to LPS-treated group, LPS-curcumin-treated group had decreased blood pressure and urinary protein level, similar to control group. Furthermore, deficient trophoblast invasion and spiral artery remodeling induced by LPS were improved by curcumin. Increased TLR4, NF-κB and IL-6, MCP-1 protein expressions in LPS-treated group were significantly decreased after curcumin administration. DISCUSSION Curcumin improves the PE-like phenotype in rat model by reducing abnormal inflammation related to TLR4 signaling pathway.
Collapse
Affiliation(s)
- Ping Gong
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mo Liu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Guomin Hong
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yujing Li
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Pingping Xue
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Mingming Zheng
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Mengfei Wu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Li Shen
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Muyi Yang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Zhenyu Diao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
38
|
Bao J, Liu Y, Yang J, Gao Q, Shi SQ, Garfield RE, Liu H. Nicotine inhibits LPS-induced cytokine production and leukocyte infiltration in rat placenta. Placenta 2016; 39:77-83. [DOI: 10.1016/j.placenta.2016.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/07/2016] [Accepted: 01/15/2016] [Indexed: 11/17/2022]
|
39
|
Cappelletti M, Della Bella S, Ferrazzi E, Mavilio D, Divanovic S. Inflammation and preterm birth. J Leukoc Biol 2016; 99:67-78. [DOI: 10.1189/jlb.3mr0615-272rr] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Preterm birth is the leading cause of neonatal morbidity and mortality. Although the underlying causes of pregnancy-associated complication are numerous, it is well established that infection and inflammation represent a highly significant risk factor in preterm birth. However, despite the clinical and public health significance, infectious agents, molecular trigger(s), and immune pathways underlying the pathogenesis of preterm birth remain underdefined and represent a major gap in knowledge. Here, we provide an overview of recent clinical and animal model data focused on the interplay between infection-driven inflammation and induction of preterm birth. Furthermore, here, we highlight the critical gaps in knowledge that warrant future investigations into the interplay between immune responses and induction of preterm birth.
Collapse
Affiliation(s)
- Monica Cappelletti
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, and the University of Cincinnati College of Medicine , Cincinnati, Ohio , USA
| | - Silvia Della Bella
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Rozzano , Italy
| | - Enrico Ferrazzi
- Department of Woman, Mother and Neonate, Buzzi Childrenˈs Hospital, Biomedical and Clinical Sciences School of Medicine, University of Milan , Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Rozzano , Italy
| | - Senad Divanovic
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, and the University of Cincinnati College of Medicine , Cincinnati, Ohio , USA
| |
Collapse
|
40
|
Li L, Tu J, Jiang Y, Zhou J, Yabe S, Schust DJ. Effects of Lipopolysaccharide on Human First Trimester Villous Cytotrophoblast Cell Function In Vitro. Biol Reprod 2015; 94:33. [PMID: 26700943 PMCID: PMC6366481 DOI: 10.1095/biolreprod.115.134627] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/23/2015] [Indexed: 11/01/2022] Open
Abstract
It has been shown that adverse obstetrical outcomes such as pre-eclampsia and intrauterine growth retardation correlate with maternal infection. In this study, we investigated mechanisms involved in infection-associated abnormalities in cytotrophoblast function. Primary human first trimester cytotrophoblast cells were isolated and treated with lipopolysaccharide (LPS). Levels of the cytokines and chemokines were measured and cytotrophoblast invasion was investigated. In addition, first trimester decidual macrophages were isolated and treated with the conditioned medium from LPS-treated cytotrophoblast cells, and macrophage migration was assessed. Coculturing decidual macrophages with cytotrophoblast cells was conducted to investigate macrophage costimulatory molecule and receptor expression and intracellular cytokine production. We found that LPS exposure increased cytotrophoblast production of pro-inflammatory cytokines tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6, and chemokines IL-8, macrophage inflammatory protein (MIP)-1alpha, and CXCL12 in a dose-dependent manner. In addition, LPS decreased cytotrophoblast invasion, and its effect was Toll-like receptor 4 (TLR4)-dependent and partly TNF-alpha-dependent. Conditioned medium from LPS-stimulated cytotrophoblast cells increased decidual macrophage migration and this effect was partly TLR4-dependent. Furthermore, coculturing decidual macrophages with LPS-exposed cytotrophoblast cells up-regulated macrophage CD80 and CD86 expression and intracellular TNF-alpha and IL-12p40 production, while down-regulating macrophage CD206 and CD209 expression and intracellular IL-10 secretion. LPS-stimulated macrophages also inhibited cytotrophoblast invasion. In conclusion, our results indicate that LPS increases the production of a subset of proinflammatory cytokines and chemokines by human first trimester cytotrophoblast cells, decreases cytotrophoblast invasion, and alters the cross talk between cytotrophoblast cells and decidual macrophages.
Collapse
Affiliation(s)
- Liping Li
- Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiaoqin Tu
- Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yao Jiang
- Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jie Zhou
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shinichiro Yabe
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, Missouri
| | - Danny J Schust
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
41
|
Wang Z, Liu M, Nie X, Zhang Y, Chen Y, Zhu L, Chen X, Chen L, Chen H, Zhang J. NOD1 and NOD2 control the invasiveness of trophoblast cells via the MAPK/p38 signaling pathway in human first-trimester pregnancy. Placenta 2015; 36:652-60. [DOI: 10.1016/j.placenta.2015.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/15/2015] [Accepted: 03/04/2015] [Indexed: 01/01/2023]
|
42
|
Xue P, Zheng M, Gong P, Lin C, Zhou J, Li Y, Shen L, Diao Z, Yan G, Sun H, Hu Y. Single administration of ultra-low-dose lipopolysaccharide in rat early pregnancy induces TLR4 activation in the placenta contributing to preeclampsia. PLoS One 2015; 10:e0124001. [PMID: 25853857 PMCID: PMC4390151 DOI: 10.1371/journal.pone.0124001] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/25/2015] [Indexed: 01/09/2023] Open
Abstract
Balanced immune responses are essential for the maintenance of successful pregnancy. Aberrant responses of immune system during pregnancy increase the risk of preeclampsia. Toll-like receptor 4 (TLR4) plays a crucial role in the activation of immune system at the maternal-fetal interface. This study aimed to generate a rat model of preeclampsia by lipopolysaccharide (LPS, a TLR4 agonist) administration on gestational day (GD) 5 as rats are subjected to placentation immediately after implantation between GDs 4 and 5, and to assess the contribution of TLR4 signaling to the development of preeclampsia. Single administration of 0.5 μg/kg LPS significantly increased blood pressure of pregnant rats since GD 6 (systolic blood pressure, 124.89 ± 1.79 mmHg versus 119.02 ± 1.80 mmHg, P < 0.05) and urinary protein level since GD 9 (2.02 ± 0.29 mg versus 1.11 ± 0.18 mg, P < 0.01), but barely affected blood pressure or proteinuria of virgin rats compared with those of saline-treated pregnant rats. This was accompanied with adverse pregnancy outcomes including fetal growth restriction. The expression of TLR4 and NF-κB p65 were both increased in the placenta but not the kidney from LPS-treated pregnant rats, with deficient trophoblast invasion and spiral artery remodeling. Furthermore, the levels of inflammatory cytokines were elevated systemically and locally in the placenta from pregnant rats treated with LPS. TLR4 signaling in the placenta was activated, to which that in the placenta of humans with preeclampsia changed similarly. In conclusion, LPS administration to pregnant rats in early pregnancy could elicit TLR4-mediated immune response at the maternal-fetal interface contributing to poor early placentation that may culminate in the preeclampsia-like syndrome.
Collapse
Affiliation(s)
- Pingping Xue
- Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Mingming Zheng
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Ping Gong
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Caimei Lin
- Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Jianjun Zhou
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yujing Li
- Southeast University Medical School, Nanjing, China
| | - Li Shen
- Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Zhenyu Diao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Guijun Yan
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Haixiang Sun
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- * E-mail: (HS); (YH)
| | - Yali Hu
- Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
- * E-mail: (HS); (YH)
| |
Collapse
|
43
|
Lashkari BS, Shahana S, Anumba DO. Toll-like receptor 2 and 4 expression in the pregnant and non-pregnant human uterine cervix. J Reprod Immunol 2014; 107:43-51. [PMID: 25467401 DOI: 10.1016/j.jri.2014.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 09/05/2014] [Accepted: 10/07/2014] [Indexed: 12/27/2022]
Abstract
Pelvic infections and sexually transmitted diseases place a burden on health resources and may be associated with premature birth. The mechanisms by which the female reproductive tract (FRT) combats these infections remain ill understood, but are likely to involve the pattern recognition Toll-like receptors (TLR). We sought to compare the expression of TLR-2 and -4 by human pregnant and non-pregnant ectocervical epithelium as a prelude to the investigation of the function of these receptors in this tissue during pregnancy. Using the techniques of reverse-transcriptase polymer chain reaction (RT-PCR) and immunohistochemistry, the gene and protein expression of TLR-2 and -4 were studied in the biopsies of ectocervix obtained from non-pregnant premenopausal women (n=21) undergoing hysterectomy, women in the first trimester of pregnancy undergoing non-medically indicated suction pregnancy termination (n=6), and women at term undergoing elective caesarean section (n=11). The expression of TLR2 and TLR4 genes and proteins were upregulated in early and late pregnant ectocervical epithelium, compared with non-pregnant tissue. These findings suggest that the upregulation of TLR2 and TLR4 in the lower FRT may play a key role in the modulation of the innate immune and inflammatory mechanisms of the ectocervix during pregnancy, interacting with other neuroendocrine factors.
Collapse
Affiliation(s)
- Behnia S Lashkari
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, University of Sheffield, Level 4, Jessop Wing, Tree Root Walk, Sheffield S10 2SF, UK.
| | - Shahida Shahana
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, University of Sheffield, Level 4, Jessop Wing, Tree Root Walk, Sheffield S10 2SF, UK.
| | - Dilly O Anumba
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, University of Sheffield, Level 4, Jessop Wing, Tree Root Walk, Sheffield S10 2SF, UK.
| |
Collapse
|
44
|
Yang J, Shi SQ, Shi L, Fang D, Liu H, Garfield RE. Nicotine, an α7 nAChR agonist, reduces lipopolysaccharide-induced inflammatory responses and protects fetuses in pregnant rats. Am J Obstet Gynecol 2014; 211:538.e1-7. [PMID: 24769008 DOI: 10.1016/j.ajog.2014.04.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/24/2014] [Accepted: 04/17/2014] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The objective of the study was to examine the effects of nicotine, an α7 nicotinic acetylcholine receptor agonist, on lipopolysaccharide (LPS)-induced inflammatory responses in rats during pregnancy. STUDY DESIGN Pregnant Sprague Dawley rats were randomly divided into groups (n = 6 rats/group): group 1 rats each received a single intraperitoneal injection of LPS (25 μg/kg) on gestation day 16; group 2 rats were first pretreated with nicotine (1 mg/kg per day, subcutaneously) on gestation days 14 and 15 and then were treated with single injections of LPS on gestational day 16; group 3 rats were treated with the vehicle (saline) used for groups 2 and 3 (controls). Maternal blood was collected at 6 hours and 24 hours after LPS and vehicle treatments and assayed for tumor necrosis factor (TNF)-α, interleukin-6 (IL-6), and interleukin-10 (IL-10). In addition, the number of live pups and pup weights were obtained at the time of delivery. RESULTS LPS treatment significantly (P < .001) elevates maternal blood levels of TNF-α and IL-6 but not IL-10 (P > .05). Nicotine treatment significantly reduces LPS-induced TNF-α and IL-6 concentrations (P < .001) but does not change (P > .05) IL-10 levels. The number of live pups in the LPS group are significantly lower (P < .001) than the vehicle treated controls, and nicotine treatment significantly (P < .011) reverses this change. Similarly, fetal weights are lower following LPS (P < .016) and higher (P < .024) in the group treated with nicotine plus LPS. CONCLUSION Nicotine reduces the LPS-induced inflammatory responses and rescues the fetus in rats during pregnancy. Thus, nicotine exerts dramatic antiinflammatory effects. These observations have important implications for control of inflammatory responses during pregnancy.
Collapse
|
45
|
High mobility group box 1 protein (HMGB-1): A pathogenic role in preeclampsia? Placenta 2014; 35:784-6. [DOI: 10.1016/j.placenta.2014.06.370] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 11/18/2022]
|
46
|
Schwartzenburg CJ, Gilmandyar D, Thornburg LL, Hackney DN. Pregnancy outcomes of women with failure to retain rubella immunity. J Matern Fetal Neonatal Med 2014; 27:1845-8. [PMID: 24646339 DOI: 10.3109/14767058.2014.905768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE We sought to explore the clinical variables associated with the loss of rubella immunity during pregnancy and to determine if these changes are linked to obstetrical complications. METHODS This is a case-control study in which women were identified whose rubella antibody titers were equivocal or non-immune and compared to those who had retained immunity. Two hundred and eighty-five cases were identified and compared to the same number of controls using Student's t test, Mann-Whitney U-test or Fisher's exact test. Univariate and multivariate logistic regressions were employed. RESULTS Subjects with diminished immunity were more likely to have public insurance and higher gravidity with a trend toward increased tobacco use. Diminished rubella immunity was not associated with adverse obstetrical outcomes, including preterm birth and pre-eclampsia and is likely not a risk factor for these pregnancy outcomes. CONCLUSION While no adverse pregnancy outcomes were associated with a loss of rubella immunity, women with greater number of pregnancies appear to lose their immunity to rubella. This relationship needs to be explored further and if proven, revaccination prior to pregnancy may need to be addressed.
Collapse
Affiliation(s)
- Christopher J Schwartzenburg
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Rochester Medical Center , Rochester, NY , USA
| | | | | | | |
Collapse
|
47
|
Allam AB, von Chamier M, Brown MB, Reyes L. Immune profiling of BALB/C and C57BL/6 mice reveals a correlation between Ureaplasma parvum-Induced fetal inflammatory response syndrome-like pathology and increased placental expression of TLR2 and CD14. Am J Reprod Immunol 2014; 71:241-51. [PMID: 24372928 PMCID: PMC3927638 DOI: 10.1111/aji.12192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/01/2013] [Indexed: 12/24/2022] Open
Abstract
PROBLEM Both BALB/c and C57BL/6 mice are susceptible to intrauterine infection with Ureaplasma parvum, but only protypical TH2/M2 BALB/c mice develop severe chorioamnionitis, fetal infection, and fetal inflammatory response syndrome-like (FIRS) pathology. METHOD OF STUDY Microscopy, gene expression analysis, and ELISA were used to identify placental innate immune responses relevant to macrophage polarity, severe chorioamnionitis, and fetal infection. RESULTS Both mouse strains exhibited a pro-M2 cytokine profile at the maternal/fetal interface. In BALB/c mice, expression of CD14 and TLRs 1, 2, 6 was increased in infected placentas; TLR2 and CD14 were localized to neutrophils. Increased TLR2/CD14 was also observed in BALB/c syncytiotrophoblasts in tissues with pathological evidence of FIRS. In contrast, expression in C57BL/6 placentas was either unchanged or down-regulated. CONCLUSION Our findings show a link between increased syncytiotrophoblast expression of CD14/TLR2 and FIRS-like pathology in BALB/c mice. Functional studies are required to determine if CD14 is contributing to fetal morbidity during chorioamnionitis.
Collapse
Affiliation(s)
- Ayman B. Allam
- Department of Infectious Diseases and Pathology and the D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| | - Maria von Chamier
- Department of Infectious Diseases and Pathology and the D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| | - Mary B. Brown
- Department of Infectious Diseases and Pathology and the D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| | - Leticia Reyes
- Department of Infectious Diseases and Pathology and the D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| |
Collapse
|
48
|
Petrušiū V, Živkoviū I, Muhandes L, Dimitrijeviū R, Stojanoviū M, Dimitrijeviū L. Infection-induced autoantibodies and pregnancy related pathology: an animal model. Reprod Fertil Dev 2014; 26:578-86. [DOI: 10.1071/rd13057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/28/2013] [Indexed: 01/26/2023] Open
Abstract
In addition to being the main cause of mortality worldwide, bacterial and viral infections can be the cause of autoimmune and pregnancy disorders as well. The production of autoantibodies during infection can be explained by various mechanisms, including molecular mimicry, bystander cell activation and epitope spreading. Conversely, bacterial and viral infections during pregnancy are especially dangerous for the fetus. It is documented that infection-induced inflammatory processes mediated by Toll-like receptors (TLR) represent the main cause of preterm labour. We used two crucial bacterial components and TLR ligands, namely peptidoglycan and lipopolysaccharide, to stimulate BALB/c mice before immunisation with tetanus toxoid. Tetanus toxoid is an inactive form of the toxin produced by bacterium Clostridium tetani and shares structural similarity with plasma protein β2-glycoprotein I. Treatment with peptidoglycan and lipopolysaccharide in combination with tetanus toxoid induced the production of pathological autoantibodies, different fluctuations in natural autoantibodies and different types of reproductive pathology in treated animals, with peptidoglycan treatment being more deleterious. We propose that the production of pathological autoantibodies, TLR activation and changes in natural autoantibodies play crucial roles in infection-induced reproductive pathology in our animal model.
Collapse
|
49
|
Wujcicka W, Wilczyński J, Nowakowska D. Alterations in TLRs as new molecular markers of congenital infections with Human cytomegalovirus? Pathog Dis 2013; 70:3-16. [PMID: 23929630 DOI: 10.1111/2049-632x.12083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 07/28/2013] [Accepted: 07/31/2013] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptors (TLRs) play a crucial role in non-specific immunity against various infections. The most common intrauterine infection, caused by Human cytomegalovirus (HCMV), results in perinatal morbidity and mortality of primary infected fetuses. The induction of immune response by TLRs was observed in HCMV infections in murine models and cell lines cultured in vitro. Studies reported an immunological response in pregnant women with primary HCMV infection and TLR2 activity in collecting of HCMV particles in placental syncytiotrophoblasts (STs) in vivo and cultured ST, and in stimulation of tumor necrosis factor (TNF)-α expression and damage of villous trophoblast. Expression levels of TLRs are associated with cell type, stage of pregnancy and response to microorganisms. We show the effect of HCMV infection on the development of pregnancy as well as the effect of TLR single-nucleotide polymorphisms on the occurrence and course of infectious diseases, immune response and diseases of pregnancy. We report the impact of TLRs on the function of miRNAs and the altered expression levels of these molecules, as observed in HCMV infections. We suggest that the methylation status of TLR gene promoter regions as epigenetic modifications may be significant in the immune response to HCMV infections. We conclude that it is important to study in detail the molecular mechanisms of TLR function in the immune response to HCMV infections in pregnancy.
Collapse
Affiliation(s)
- Wioletta Wujcicka
- Department of Fetal-Maternal Medicine and Gynecology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | | | | |
Collapse
|
50
|
Sonoda Y, Abdel Mageed AM, Isobe N, Yoshimura Y. Induction of avian β-defensins by CpG oligodeoxynucleotides and proinflammatory cytokines in hen vaginal cells in vitro. Reproduction 2013; 145:621-31. [PMID: 23625580 DOI: 10.1530/rep-12-0518] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Immune function in the vagina of hen oviduct is essential to prevent infection by microorganisms colonizing in the cloaca. The aim of this study was to determine whether CpG oligodeoxynucleotides (CpG-ODN) stimulate the expression of avian β-defensins (AvBDs) in hen vaginal cells. Specific questions were whether CpG-ODN affects the expression of AvBDs and proinflammatory cytokines and whether the cytokines affect AvBDs expression in vaginal cells. The dispersed vaginal cells of White Leghorn laying hens were cultured and stimulated by different doses of lipopolysaccharide (LPS), CpG-ODN, interleukin 1β (IL1B), or IL6. The cultured cell population contained epithelial cells, fibroblast-like cells, and CD45-positive leukocytes. The immunoreactive AvBD3, -10, and -12 were localized in the mucosal epithelium in the section of the vagina. The expression of AvBDs, IL1B, and IL6 was analyzed by quantitative RT-PCR. RT-PCR analysis showed the expression of AvBD1, -3, -4, -5, -10, and -12 in the cultured vaginal cells without stimulation. Toll-like receptors (TLRs) 4 and 21, which recognize LPS and CpG-ODN respectively and IL1 and IL6 receptors (IL1R1 and IL6R) were also expressed in them. The expression of IL1B, IL6, and AvBD10 and -12 was upregulated by LPS, whereas only IL1B and IL6 were upregulated by CpG-ODN. IL1B stimulation upregulated AvBD1 and -3 expression, whereas IL6 stimulation did not cause changes in AvBDs expression. These results suggest that CpG-ODN derived from microbes upregulates the expression of IL1B and IL6 by interaction with TLR21 and then IL1B induces AvBD1 and -3 to prevent infection in the vagina.
Collapse
Affiliation(s)
- Yuka Sonoda
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | | | | | | |
Collapse
|