1
|
Ye L, Gao Y, Li X, Liang X, Yang Y, Zhang R. Celastrol attenuates HFD-induced obesity and improves metabolic function independent of adiponectin signaling. Arch Physiol Biochem 2024; 130:642-648. [PMID: 37642392 DOI: 10.1080/13813455.2023.2250929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
BACKGOUND Celastrol, a leptin sensitiser, has been shown to inhibit food intake and reduce body weight in diet-induced obese mice, making it a potential treatment for obesity and metabolic diseases. Adiponectin signalling has been reported to play an important role in the treatment of obesity, inflammation, and non-alcoholic fatty liver disease. MATERIALS AND METHODS Wild-type (WT) and AdipoR1 knockout (AdipoR1-/-) mice were placed on a chow diet or a high-fat diet (HFD) and several metabolic parameters were measured. Celastrol was then administered to the HFD-induced mice and the response of WT and AdipoR1-/- mice to celastrol in terms of body weight, blood glucose, and food intake was also recorded. RESULTS AdipoR1 knockout caused elevated blood glucose and lipids, impaired glucose tolerance and insulin resistance in mice, as well as increased susceptibility to HFD-induced obesity. After 14 days of treatment, WT and AdipoR1-/- mice showed significant reductions in body weight and blood glucose and improvements in glucose tolerance. CONCLUSION The present study demonstrated that AdipoR1 plays a critical role in metabolic regulation and that the improvement of weight and metabolic function by celastrol is independent of the AdipoR1-mediated signalling pathway.
Collapse
Affiliation(s)
- Ling Ye
- Department of Postgraduate, Anhui University of Traditional Chinese Medicine, Hefei, People's Republic of China
- Department of Pharmacology, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, People's Republic of China
- Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong, People's Republic of China
| | - Yan Gao
- Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong, People's Republic of China
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, People's Republic of China
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, People's Republic of China
| | - Xuecheng Li
- Department of Pharmacology, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, People's Republic of China
| | - Xiaoshuang Liang
- Department of Pharmacology, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, People's Republic of China
| | - Yi Yang
- Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong, People's Republic of China
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, People's Republic of China
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, People's Republic of China
| | - Rufeng Zhang
- Department of Pharmacology, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, People's Republic of China
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, People's Republic of China
| |
Collapse
|
2
|
Fu X, Wang Y, Lu Y, Liu J, Li H. Association between metabolic syndrome and benign prostatic hyperplasia: The underlying molecular connection. Life Sci 2024; 358:123192. [PMID: 39488266 DOI: 10.1016/j.lfs.2024.123192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/08/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Benign prostatic hyperplasia (BPH), a common cause of lower urinary tract symptoms (LUTS), has been recently regarded as a metabolic disease. Metabolic syndrome (MetS) is a constellation of metabolic disarrangements, including insulin resistance, obesity, hypertension, and dyslipidemia, and it has been established that these components of MetS are important contributing factors exacerbating the degree of prostatic enlargement and bladder outlet obstruction among patients with BPH. Clinical and experimental studies demonstrated that many molecules, such as insulin, insulin-like growth factor 1 (IGF-1), androgen and estrogen, and adipokines, are involved in the overlapping pathogenesis of BPH and MetS, indicating that clinicians might be able to simultaneously alleviate or cure two diseases by choosing appropriate medications. This article aims to systematically review the pathophysiological aspect and traditional etiology and pathogenesis of BPH and discuss the intricate association between MetS and BPH from the molecular point of view, in an attempt to provide stronger evidence for better treatment of two diseases.
Collapse
Affiliation(s)
- Xun Fu
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| | - Yutao Wang
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| | - Yi Lu
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| | - Jiang Liu
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| | - Hongjun Li
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China.
| |
Collapse
|
3
|
Wu X, Tian Y, Zhang N, Ren Y, Zhang Z, Zhao Y, Guo Y, Gong Y, Zhang Y, Li D, Li H, Jiang R, Li G, Liu X, Kang X, Tian Y. The role of AdipoQ on proliferation, apoptosis, and hormone Secretion in chicken primary adenohypophysis cells. Poult Sci 2024; 103:104137. [PMID: 39142032 PMCID: PMC11379664 DOI: 10.1016/j.psj.2024.104137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024] Open
Abstract
Adiponectin (AdipoQ), an adipokine secreted by adipocytes, has been reported to exist widely in various cell types and tissues, including the adenohypophysis of chickens. However, the molecular mechanism by which AdipoQ regulates the function of chicken adenohypophysis remains elusive. In this study, we investigated the effects of AdipoQ on proliferation, apoptosis, secretion of related hormones (FSH, LH, TSH, GH, PRL and ACTH) and expression of related genes (FSHβ, LHβ, GnRHR, TSHβ, GH, PRL and ACTH) in primary adenohypophysis cells of chickens by using real-time fluorescent quantitative PCR (RT-qPCR), cell counting kit-8 (CCK-8), flow cytometry, enzyme-linked immunosorbent assay (ELISA) and Western blot (WB) assays. Our results showed that AdipoQ promoted the proliferation of chicken primary adenohypophysis cells, up-regulated the mRNA expression of proliferation-related genes CDK1, PCNA, CCND1 and P21 (P < 0.05), as well as the increased protein expression of CDK1 and PCNA (P < 0.05). Furthermore, AdipoQ inhibited apoptosis of chicken primary adenohypophysis cells, resulting in down-regulation of pro-apoptotic genes Caspase3, Fas, and FasL mRNA expression, and decreased Caspase3 protein expression (P < 0.05). Moreover, there was an up-regulation of anti-apoptotic gene Bcl2 mRNA and protein expression (P < 0.05). Additionally, AdipoQ suppressed the secretion of FSH, LH, TSH, GH, PRL, and ACTH (P < 0.05), as well as the mRNA expression levels of related genes (P < 0.05). Treatment with AdipoRon (a synthetic substitute for AdipoQ) and co-treatment with RNA interference targeting AdipoQ receptors 1/2 (AdipoR1/2) had no effect on the secretion of FSH, LH, TSH, GH, PRL, and ACTH, as well as the mRNA expression levels of the related genes. This suggests that AdipoQ's regulation of hormone secretion and related gene expression is mediated by the AdipoR1/2 signaling axis. Importantly, we further demonstrated that the mechanism of AdipoQ on FSH, LH, TSH and GH secretion is realized through AMPK signaling pathway. In conclusion, we have revealed, for the first time the molecular mechanism by which AdipoQ regulates hormone secretion in chicken primary adenohypophysis cells.
Collapse
Affiliation(s)
- Xing Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yixiang Tian
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Na Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yangguang Ren
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zihao Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yudian Zhao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yujie Gong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| |
Collapse
|
4
|
Baldelli S, Aiello G, Mansilla Di Martino E, Campaci D, Muthanna FMS, Lombardo M. The Role of Adipose Tissue and Nutrition in the Regulation of Adiponectin. Nutrients 2024; 16:2436. [PMID: 39125318 PMCID: PMC11313710 DOI: 10.3390/nu16152436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue (AT), composed mainly of adipocytes, plays a critical role in lipid control, metabolism, and energy storage. Once considered metabolically inert, AT is now recognized as a dynamic endocrine organ that regulates food intake, energy homeostasis, insulin sensitivity, thermoregulation, and immune responses. This review examines the multifaceted role of adiponectin, a predominant adipokine released by AT, in glucose and fatty acid metabolism. We explore the regulatory mechanisms of adiponectin, its physiological effects and its potential as a therapeutic target for metabolic diseases such as type 2 diabetes, cardiovascular disease and fatty liver disease. Furthermore, we analyze the impact of various dietary patterns, specific nutrients, and physical activities on adiponectin levels, highlighting strategies to improve metabolic health. Our comprehensive review provides insights into the critical functions of adiponectin and its importance in maintaining systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Sara Baldelli
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Gilda Aiello
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Eliana Mansilla Di Martino
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Diego Campaci
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Fares M. S. Muthanna
- Pharmacy Department, Faculty of Medicine and Health Sciences, University of Science and Technology-Aden, Alshaab Street, Enmaa City 22003, Yemen
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| |
Collapse
|
5
|
Saucedo R, Ferreira-Hermosillo A, Robledo-Clemente M, Díaz-Velázquez MF, Valencia-Ortega J. Association of DNA Methylation with Infant Birth Weight in Women with Gestational Diabetes. Metabolites 2024; 14:361. [PMID: 39057684 PMCID: PMC11278577 DOI: 10.3390/metabo14070361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Offspring exposed to gestational diabetes mellitus (GDM) exhibit greater adiposity at birth. This early-life phenotype may increase offspring risk of developing obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease later in life. Infants born to women with GDM have a dysregulation of several hormones, cytokines, and growth factors related to fetal fat mass growth. One of the molecular mechanisms of GDM influencing these factors is epigenetic alterations, such as DNA methylation (DNAm). This review will examine the role of DNAm as a potential biomarker for monitoring fetal growth during pregnancy in women with GDM. This information is relevant since it may provide useful new biomarkers for the diagnosis, prognosis, and treatment of fetal growth and its later-life health consequences.
Collapse
Affiliation(s)
- Renata Saucedo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.S.); (A.F.-H.)
| | - Aldo Ferreira-Hermosillo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.S.); (A.F.-H.)
| | - Magalhi Robledo-Clemente
- Hospital de Gineco Obstetricia 3, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico; (M.R.-C.); (M.F.D.-V.)
| | - Mary Flor Díaz-Velázquez
- Hospital de Gineco Obstetricia 3, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico; (M.R.-C.); (M.F.D.-V.)
| | - Jorge Valencia-Ortega
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico
| |
Collapse
|
6
|
Dawid M, Pich K, Mlyczyńska E, Respekta-Długosz N, Wachowska D, Greggio A, Szkraba O, Kurowska P, Rak A. Adipokines in pregnancy. Adv Clin Chem 2024; 121:172-269. [PMID: 38797542 DOI: 10.1016/bs.acc.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Reproductive success consists of a sequential events chronology, starting with the ovum fertilization, implantation of the embryo, placentation, and cellular processes like proliferation, apoptosis, angiogenesis, endocrinology, or metabolic changes, which taken together finally conduct the birth of healthy offspring. Currently, many factors are known that affect the regulation and proper maintenance of pregnancy in humans, domestic animals, or rodents. Among the determinants of reproductive success should be distinguished: the maternal microenvironment, genes, and proteins as well as numerous pregnancy hormones that regulate the most important processes and ensure organism homeostasis. It is well known that white adipose tissue, as the largest endocrine gland in our body, participates in the synthesis and secretion of numerous hormones belonging to the adipokine family, which also may regulate the course of pregnancy. Unfortunately, overweight and obesity lead to the expansion of adipose tissue in the body, and its excess in both women and animals contributes to changes in the synthesis and release of adipokines, which in turn translates into dramatic changes during pregnancy, including those taking place in the organ that is crucial for the proper progress of pregnancy, i.e. the placenta. In this chapter, we are summarizing the current knowledge about levels of adipokines and their role in the placenta, taking into account the physiological and pathological conditions of pregnancy, e.g. gestational diabetes mellitus, preeclampsia, or intrauterine growth restriction in humans, domestic animals, and rodents.
Collapse
Affiliation(s)
- Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Natalia Respekta-Długosz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Dominka Wachowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Aleksandra Greggio
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Oliwia Szkraba
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
7
|
El-Deeb W, Abdelghani MA, Alhaider A, Al-Hammadi M, Gomaa N, Venugopala K, Fayez M. Exploring oxidative stress, immunological and metabolic biomarkers in dairy cows with postpartum pyometra. Reprod Domest Anim 2024; 59:e14559. [PMID: 38591742 DOI: 10.1111/rda.14559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/17/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024]
Abstract
Pyometra is a prevalent and severe infectious disease that affects the reproductive systems of cattle worldwide. This study's main goal was to investigate the biomarkers for oxidative stress (OS), adiponectin, leptin and neopterin (NPT) in cows suffering from postpartum pyometra. The study also aimed to determine which bacteria were most commonly implicated in the development of the disease. A total of 74 cows with pyometra were examined and compared to a control group of healthy cows (n = 20). In comparison to the healthy control and post-treatment groups, the pyometra group showed higher mean values of leptin, adiponectin and malondialdehyde (MDA). In contrast, the glutathione (GSH) and superoxide dismutase (SOD) mean values were lower in the pyometra group as compared to the post-treatment and control groups. NPT levels in the post-treatment groups were lower than those in cows with pyometra but comparable to the healthy control group (p > .05). When compared to the other biomarkers, NPT, leptin and adiponectin showed higher sensitivity and specificity in identifying pyometra cases (AUC ≥0.99). The predominant bacterial isolates from the ptomtra-affected cows consisted of Escherichia coli (N = 29; 39.2%), Arcanobacterium pyogenes (N = 27; 36.5%) and Fusobacterium necrophorum (N = 13; 17.6%). Mixed infection was determined in nine samples (12.2%). Conclusively, OS, adiponectin, leptin and NPT play crucial roles in comprehending the development of postpartum pyometra in cows and have the potential to serve as biomarkers for the disease.
Collapse
Affiliation(s)
- Wael El-Deeb
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohammed A Abdelghani
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Assuit University, Assuit, Egypt
| | - Abdulrahman Alhaider
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohammed Al-Hammadi
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hasa, Saudi Arabia
| | - Naglaa Gomaa
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Katharigatta Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Mahmoud Fayez
- Department of Bacteriology, Veterinary Serum and Vaccine Research Institute, Ministry of Agriculture, Cairo, Egypt
| |
Collapse
|
8
|
Higashi T, Saigo C, Chikaishi W, Hayashi H, Hanamatsu Y, Futamura M, Matsuhashi N, Takeuchi T. Implication of IZUMO2 in the cell-in-cell phenomenon: A potential therapeutic target for triple-negative breast cancer. Thorac Cancer 2024; 15:513-518. [PMID: 38258402 PMCID: PMC10912533 DOI: 10.1111/1759-7714.15189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is characterized by the loss of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. The aggressive clinicopathological features and resistance to currently available therapeutics of the disease warrant an urgent need for the development of novel alternate therapeutic options. We have previously reported adiponectin-expressing regulatory T cells (A-Tregs), which can induce apoptosis in TNBC through the cell-in-cell phenomenon. In this study, we aimed to elucidate the molecule that allows TNBC cells to engulf A-Tregs. METHODS A monoclonal antibody, which repressed the engulfment of A-Tregs by TNBC cells, was developed. Immunoprecipitation followed by mass spectrometry and small interfering RNAs-mediated gene silencing was performed to characterize the antigen. RESULTS We successfully generated a monoclonal antibody, designated G1D7, which abrogated the engulfment of A-Tregs by TNBC and subsequent A-Treg-mediated apoptosis. G1D7 detected the immunoglobulin-like type I membrane protein IZUMO2, a molecule related to IZUMO1 that is essential for cell-cell membrane binding and fusion of sperm to oocyte. CONCLUSION The findings highlight the importance of IZUMO2 on TNBC cells in facilitating the cell-in-cell phenomenon by A-Tregs.
Collapse
Affiliation(s)
- Toshiya Higashi
- Department of Gastroenterological Surgery and Pediatric SurgeryGifu University Graduate School of MedicineGifuJapan
| | - Chiemi Saigo
- Department of Pathology and Translational ResearchGifu University Graduate School of MedicineGifuJapan
- The United Graduate School of Drug Discovery and Medical Information SciencesGifu UniversityGifuJapan
- Center for One Medicine Innovative Translational Research; COMITGifu UniversityGifuJapan
| | - Wakana Chikaishi
- Department of Gastroenterological Surgery and Pediatric SurgeryGifu University Graduate School of MedicineGifuJapan
| | - Hirokatsu Hayashi
- Department of Gastroenterological Surgery and Pediatric SurgeryGifu University Graduate School of MedicineGifuJapan
| | - Yuki Hanamatsu
- Department of Pathology and Translational ResearchGifu University Graduate School of MedicineGifuJapan
- Center for One Medicine Innovative Translational Research; COMITGifu UniversityGifuJapan
| | - Manabu Futamura
- Department of Breast SurgeryGifu University HospitalGifuJapan
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological Surgery and Pediatric SurgeryGifu University Graduate School of MedicineGifuJapan
| | - Tamotsu Takeuchi
- Department of Pathology and Translational ResearchGifu University Graduate School of MedicineGifuJapan
- Center for One Medicine Innovative Translational Research; COMITGifu UniversityGifuJapan
| |
Collapse
|
9
|
Ali M, Kamran M, Talha M, Shad MU. Adiponectin blood levels and autism spectrum disorders: a systematic review. BMC Psychiatry 2024; 24:88. [PMID: 38297246 PMCID: PMC10832114 DOI: 10.1186/s12888-024-05529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
OBJECTIVE To review the relationship between adiponectin levels and autism spectrum disorders (ASDs) in children. BACKGROUND ASDs are associated with pervasive social interaction and communication abnormalities. Researchers have studied various pathophysiological mechanisms underlying ASDs to identify predictors for an early diagnosis to optimize treatment outcomes. Immune dysfunction, perhaps mediated by a decrease in anti-inflammatory adipokine, adiponectin, along with changes in other adipokines, may play a central role in increasing the risk for ASDs. However, other factors, such as low maternal vitamin D levels, atherosclerosis, diabetes, obesity, cardio-metabolic diseases, preterm delivery, and oxytocin gene polymorphism may also contribute to increased risk for ASDs. METHODS Searches on the database; PubMed, Google Scholar, and Cochrane using keywords; adiponectin, adipokines, ASD, autism, autistic disorder, included English-language studies published till September 2022. Data were extracted on mean differences between adiponectin levels in children with and without ASDs. RESULTS The search yielded six studies providing data on adiponectin levels in young patients with ASDs. As can be seen from Table 1, four of the six studies were positive for an inverse correlation between ASD and adiponectin levels. In addition, two of the four positive and one negative studies found low adiponectin levels associated with and the severity of autistic symptoms. However, results from one reviewed study were insignificant. CONCLUSION Most studies reviewed yielded lower adiponectin levels in children with ASDs as well as the severity of autistic symptoms.
Collapse
Affiliation(s)
- Mohsan Ali
- King Edward Medical University, Lahore, Pakistan.
| | - Maha Kamran
- King Edward Medical University, Lahore, Pakistan
| | - Muhammad Talha
- Combined Military Hospital Lahore Medical college and institute of Dentistry, Lahore, Pakistan
| | - Mujeeb U Shad
- University of Nevada, Las Vegas, NV, USA
- Touro University Nevada College of Osteopathic Medicine, Las Vegas, NV, USA
- The Valley Health System, Las Vegas, NV, USA
| |
Collapse
|
10
|
Barbalho SM, Méndez-Sánchez N, Fornari Laurindo L. AdipoRon and ADP355, adiponectin receptor agonists, in Metabolic-associated Fatty Liver Disease (MAFLD) and Nonalcoholic Steatohepatitis (NASH): A systematic review. Biochem Pharmacol 2023; 218:115871. [PMID: 37866803 DOI: 10.1016/j.bcp.2023.115871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Adiponectin replacement therapy holds the potential to benefit numerous human diseases, and ongoing research applies particular interest in how adiponectin acts against Metabolic-associated Fatty Liver Disease (MAFLD) and Nonalcoholic Steatohepatitis (NASH). However, the pharmacological limitations of the intact protein have prompted a focus on alternative options, specifically peptidic and small molecule agonists targeting the adiponectin receptor. AdipoRon is an extensively researched non-peptidic drug candidate in adiponectin replacement therapy. In turn, ADP355 is an adiponectin-based active short peptide. They have garnered significant attention due to their potential as substitutes for adiponectin. Researchers have studied AdipoRon's and ADP355's efficacy and therapeutic applications in various disease conditions. However, the effects of AdipoRon and ADP355 against NAFLD and NASH models advanced more, and no systematic review explored this area before. This systematic review was conceived to address the deficiency mentioned above and consider the lack of clinical evidence. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were utilized. To assess the risk of bias in systematic review, The Joanna Briggs Institute (JBI) Critical Appraisal Checklist was employed. Results from pre-clinical evidence show that AdipoRon and ADP355 represent promising effects in NAFLD and NASH-related models, including reducing hepatic steatosis, modulating inflammation, improving insulin sensitivity, enhancing mitochondrial function, and protecting against liver fibrosis. While AdipoRon and ADP355 exhibit promise in pre-clinical studies and experimental models, additional clinical trials are necessary to assess their effectiveness, safety, and potential translational therapeutic potential uses in NAFLD and NASH human cases.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), São Paulo, Brazil.
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico; Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
| |
Collapse
|
11
|
Kim D, Min Y, Suminda GGD, Hur CG, Lee SC, Lee HK, Song KD, Heo J, Son YO, Lee DS. Bacillus-supplemented diet improves growth performance in Jeju native pigs by modulating myogenesis and adipogenesis. Anim Biotechnol 2023; 34:1763-1775. [PMID: 35311492 DOI: 10.1080/10495398.2022.2047996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Probiotics are used in pigs as nutritional supplements to improve health and induce the development of muscle and adipose tissue for enhancing growth performance and harvesting quality meat. In this study, we investigated the effects of Bacillus-based probiotic supplementation on the physiological and biochemical changes in Jeju native pigs (JNPs), including growth performance, backfat layers, blood parameters, serum IgG levels, myogenic and adipogenic markers, and expression of inflammatory markers. Average daily gain and feed efficiency were higher in the Bacillus diet group than in the basal diet group, while backfat thickness was lower in the Bacillus diet group than in the basal diet group. Blood biochemical parameters and hematological profiles were not altered significantly by Bacillus-based probiotic supplementation. Serum IgG concentration increased in the Bacillus diet group compared to the basal diet group. The Bacillus diet group showed increased adipogenic and myogenic markers expression in the longissimus dorsi muscle and adipose tissues. Overall, the data suggest that the Bacillus-based probiotics-supplemented diet regulates myogenesis and adipogenesis in JNPs and improves growth performance. We postulate that this may be due to the changes in the gut microbiota of pigs due to probiotic supplementation.
Collapse
Affiliation(s)
- Dahye Kim
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Jeju Special Self-Governing Province, Republic of Korea
- Division of Animal Genetics and Bioinformatics, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Yunhui Min
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, Jeju Special Self-Governing Province, Republic of Korea
| | - Godagama Gamaarachchige Dinesh Suminda
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, Jeju Special Self-Governing Province, Republic of Korea
| | - Chang-Gi Hur
- Cronex Co, Jeju-si, Jeju Special Self-Governing Province, Republic of Korea
| | - Sang-Chul Lee
- Cronex Co, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, Republic of Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, Republic of Korea
| | - Jaeyoung Heo
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, Republic of Korea
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Jeju Special Self-Governing Province, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, Jeju Special Self-Governing Province, Republic of Korea
- Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si, Jeju Special Self-Governing Province, Republic of Korea
- Practical Translational Research Center, Jeju National University, Jeju-si, Jeju Special Self-Governing Province, Republic of Korea
| | - Dong-Sun Lee
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, Jeju Special Self-Governing Province, Republic of Korea
- Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si, Jeju Special Self-Governing Province, Republic of Korea
- Practical Translational Research Center, Jeju National University, Jeju-si, Jeju Special Self-Governing Province, Republic of Korea
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
12
|
Wu X, Tao Y, Ren Y, Zhang Z, Zhao Y, Tian Y, Li Y, Hou M, Guo Y, Gong Y, Zhang Y, Li D, Li H, Jiang R, Li G, Liu X, Kang X, Tian Y. Adiponectin inhibits GnRH secretion via activating AMPK and PI3K signaling pathways in chicken hypothalamic neuron cells. Poult Sci 2023; 102:103028. [PMID: 37660449 PMCID: PMC10491727 DOI: 10.1016/j.psj.2023.103028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
It has been reported that adiponectin (AdipoQ), an adipokine secreted by white adipose tissue, plays an important role in the control of animal reproduction in addition to its function in energy homeostasis by binding to its receptors AdipoR1/2. However, the molecular mechanisms of AdipoQ in the regulation of animal reproduction remain elusive. In this study, we investigated the effects of AdipoQ on hypothalamic reproductive hormone (GnRH) secretion and reproduction-related receptor gene (estrogen receptor [ER] and progesterone receptor [PR]) expression in hypothalamic neuronal cells (HNCs) of chickens by using real-time fluorescent quantitative PCR (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), Western blot (WB) and cell counting kit-8 (CCK-8) assays and found that overexpression of AdipoQ could increase the expression levels of AdipoR1/2 and reproduction-related receptor genes (P < 0.05) while decreasing the expression level of GnRH. In contrast, interference with AdipoQ mRNA showed the opposite results in HNCs. Furthermore, we demonstrated that AdipoQ exerts its functions through the AMPK and PI3K signaling pathways. Finally, our in vitro experiments found that AdipoRon (a synthetic substitute for AdipoQ) treatment and AdipoR1/2 RNAi interference co-treatment resulted in no effect on GnRH secretion, suggesting that the inhibition of GnRH secretion by AdipoQ is mediated by the AdipoR1/2 signaling axis. In summary, we uncovered, for the first time, the molecular mechanism of AdipoQ in the regulation of reproductive hormone secretion in hypothalamic neurons in chickens.
Collapse
Affiliation(s)
- Xing Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yiqing Tao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yangguang Ren
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zihao Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yudian Zhao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yixiang Tian
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yijie Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Meng Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yujie Gong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| |
Collapse
|
13
|
Dzięgelewska-Sokołowska Ż, Majewska A, Prostek A, Gajewska M. Adipocyte-Derived Paracrine Factors Regulate the In Vitro Development of Bovine Mammary Epithelial Cells. Int J Mol Sci 2023; 24:13348. [PMID: 37686154 PMCID: PMC10487751 DOI: 10.3390/ijms241713348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
The mammary gland is composed of epithelial tissue forming ducts and lobules, and the stroma, composed of adipocytes, connective tissue, and other cell types. The stromal microenvironment regulates mammary gland development by paracrine and cell-cell interactions. In the present study, primary cultures of bovine mammary epithelial cells (bMEC) and bovine adipose-derived stem cells (bASC) subjected to adipogenic differentiation were used to investigate the influence of paracrine factors secreted by preadipocytes and adipocytes on bMEC development. Four types of conditioned media (CM) were collected from undifferentiated preadipocytes (preA) and adipocytes on days: 8, 12, 14 of differentiation. Next, bMEC were cultured for 24 h in CM and cell viability, apoptosis, migratory activity, ability to form spheroids on Matrigel, and secretory activity (alpha S1-casein concentration) were evaluated. CM derived from fully differentiated adipocytes (12 d and 14 d) significantly decreased the number of apoptotic cells in bMEC population and increased the size of spheroids formed by bMEC on Matrigel. CM collected from preadipocytes significantly enhanced bMEC's migration, and stimulated bMEC to produce alpha S1-casein, but only in the presence of prolactin. These results confirm that preadipocytes and adipocytes are important components of the stroma, providing paracrine factors that actively regulate the development of bovine mammary epithelium.
Collapse
Affiliation(s)
| | | | | | - Małgorzata Gajewska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159b, 02-776 Warsaw, Poland; (Ż.D.-S.); (A.M.); (A.P.)
| |
Collapse
|
14
|
Wang G, Radovick S, Buckley JP, Hauser R, Williams PL, Hong X, Pearson C, Adams WG, Wang X. Plasma Insulin Concentration in Newborns and Children and Age at Menarche. Diabetes Care 2023; 46:1231-1238. [PMID: 37018448 PMCID: PMC10234748 DOI: 10.2337/dc22-2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023]
Abstract
OBJECTIVE To investigate the association of plasma insulin levels and their trajectories from birth to childhood with the timing of menarche. RESEARCH DESIGN AND METHODS This prospective study included 458 girls recruited at birth between 1998 and 2011 and followed prospectively at the Boston Medical Center. Plasma nonfasting insulin concentrations were measured at two time points: at birth (cord blood) and in childhood (age 0.5-5 years). Age at menarche was obtained from a pubertal developmental questionnaire or abstracted from electronic medical records. RESULTS Three hundred six (67%) of the girls had reached menarche. The median (range) age at menarche was 12.4 (9-15) years. Elevated plasma insulin concentrations at birth (n = 391) and in childhood (n = 335) were each associated with an earlier mean age at menarche: approximately 2 months earlier per doubling of insulin concentration (mean shift, -1.95 months, 95% CI, -0.33 to -3.53, and -2.07 months, 95% CI, -0.48 to -3.65, respectively). Girls with overweight or obesity in addition to elevated insulin attained menarche about 11-17 months earlier, on average, than those with normal weight and low insulin. Considering longitudinal trajectories (n = 268), having high insulin levels both at birth and in childhood was associated with a roughly 6 months earlier mean age at menarche (mean shift, -6.25 months, 95% CI, -0.38 to -11.88), compared with having consistently low insulin levels at both time points. CONCLUSIONS Our data showed that elevated insulin concentrations in early life, especially in conjunction with overweight or obesity, contribute to the earlier onset of menarche, suggesting the need for early screening and intervention.
Collapse
Affiliation(s)
- Guoying Wang
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Sally Radovick
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Jessie P. Buckley
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Paige L. Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Xiumei Hong
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Colleen Pearson
- Department of Pediatrics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
- Department of Pediatrics, Boston Medical Center, Boston, MA
| | - William G. Adams
- Department of Pediatrics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
- Department of Pediatrics, Boston Medical Center, Boston, MA
| | - Xiaobin Wang
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
15
|
Zhao H, Zhang J, Cheng X, Nie X, He B. Insulin resistance in polycystic ovary syndrome across various tissues: an updated review of pathogenesis, evaluation, and treatment. J Ovarian Res 2023; 16:9. [PMID: 36631836 PMCID: PMC9832677 DOI: 10.1186/s13048-022-01091-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by chronic ovulation dysfunction and overabundance of androgens; it affects 6-20% of women of reproductive age. PCOS involves various pathophysiological factors, and affected women usually have significant insulin resistance (IR), which is a major cause of PCOS. IR and compensatory hyperinsulinaemia have differing pathogeneses in various tissues, and IR varies among different PCOS phenotypes. Genetic and epigenetic changes, hyperandrogenaemia, and obesity aggravate IR. Insulin sensitization drugs are a new treatment modality for PCOS. We searched PubMed, Google Scholar, Elsevier, and UpToDate databases in this review, and focused on the pathogenesis of IR in women with PCOS and the pathophysiology of IR in various tissues. In addition, the review provides a comprehensive overview of the current progress in the efficacy of insulin sensitization therapy in the management of PCOS, providing the latest evidence for the clinical treatment of women with PCOS and IR.
Collapse
Affiliation(s)
- Han Zhao
- grid.412467.20000 0004 1806 3501Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000 People’s Republic of China
| | - Jiaqi Zhang
- grid.412467.20000 0004 1806 3501Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000 People’s Republic of China
| | - Xiangyi Cheng
- grid.412467.20000 0004 1806 3501Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000 People’s Republic of China
| | - Xiaozhao Nie
- grid.412467.20000 0004 1806 3501Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000 People’s Republic of China
| | - Bing He
- Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning, 110000, People's Republic of China.
| |
Collapse
|
16
|
de Steenwinkel FDO, Dolhain RJEM, Hazes JMW, Hokken-Koelega ACS. Does prednisone use in pregnant women with rheumatoid arthritis induce insulin resistance in the offspring? Clin Rheumatol 2023; 42:47-54. [PMID: 36040672 PMCID: PMC9823030 DOI: 10.1007/s10067-022-06347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/08/2022] [Accepted: 08/20/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVES The use of long-term corticosteroids during pregnancy has been growing over the past decades. Corticosteroids can be given when an auto-inflammatory disease like rheumatoid arthritis (RA) is too active. Several studies have shown that long-term corticosteroids use in pregnancy is associated with maternal and fetal adverse outcomes, like preeclampsia, shorter gestational age, lower birth weight, and rapid catch-up growth. These last two outcomes could influence the insulin resistance later in life. Our objective was to investigate whether prednisone use in pregnant women with RA induces insulin resistance in offspring. METHODS One hundred three children were included after their mother had participated in a prospective cohort study on RA and pregnancy. Forty-two children were in utero exposed to prednisone and 61 were non-exposed. To assess insulin resistance, we measured homeostasis model of assessment insulin resistance (HOMA-IR) and serum adiponectin and lipid levels, corrected for body fat distribution. RESULTS An average of 6 mg prednisone on a daily use gave no difference in mean HOMA-IR (SD) between the children who were prednisone-exposed in utero (1.10 (0.84)) and those non-exposed (1.09 (0.49)). No difference was found in mean adiponectin level, body fat distribution, or lipid levels such as total cholesterol, fasting triglyceride, or high-density lipoprotein. CONCLUSION Children who are prednisone-exposed in utero (low dose) have no increased risk for insulin resistance at the age of approximately 7 years. These findings are reassuring because the prednisone use during pregnancy is increasing worldwide. Further research has to be performed to evaluate if the insulin resistance remains absent in the future. Key Points • What is already known on this topic-long-term corticosteroids use in pregnancy is associated with fetal adverse outcomes, like lower birth weight and rapid catch-up growth which can influence the insulin resistance later in life. • What this study adds-long-term corticosteroids use in pregnant women with rheumatoid arthritis has no increased risk for insulin resistance in the offspring. • How this study might affect research, practice, or policy-findings are reassuring because prednisone use during pregnancy is increasing worldwide. Further research should evaluate if the insulin resistance remains absent in the future.
Collapse
Affiliation(s)
| | - Radboud J E M Dolhain
- Department of Rheumatology, Erasmus MC, Postbus 2040, 3000 CA, Rotterdam, The Netherlands
| | - Johanna M W Hazes
- Department of Rheumatology, Erasmus MC, Postbus 2040, 3000 CA, Rotterdam, The Netherlands
| | - Anita C S Hokken-Koelega
- Department of Paediatrics, Subdivision of Endocrinology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Xu P, Dong S, Wu L, Bai Y, Bi X, Li Y, Shu C. Maternal and Placental DNA Methylation Changes Associated with the Pathogenesis of Gestational Diabetes Mellitus. Nutrients 2022; 15:nu15010070. [PMID: 36615730 PMCID: PMC9823627 DOI: 10.3390/nu15010070] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is an important metabolic complication of pregnancy, which affects the future health of both the mother and the newborn. The pathogenesis of GDM is not completely clear, but what is clear is that with the development and growth of the placenta, GDM onset and blood glucose is difficult to control, while gestational diabetes patients' blood glucose drops and reaches normal after placenta delivery. This may be associated with placental secretion of insulin-like growth factor, adipokines, tumor necrosis factor-α, cytokines and insulin resistance. Therefore, endocrine secretion of placenta plays a key role in the pathogenesis of GDM. The influence of DNA methylation of these molecules and pathway-related genes on gene expression is also closely related to the pathogenesis of GDM. Here, this review attempts to clarify the pathogenesis of GDM and the related maternal and placental DNA methylation changes and how they affect metabolic pathways.
Collapse
|
18
|
Kirichenko TV, Markina YV, Bogatyreva AI, Tolstik TV, Varaeva YR, Starodubova AV. The Role of Adipokines in Inflammatory Mechanisms of Obesity. Int J Mol Sci 2022; 23:ijms232314982. [PMID: 36499312 PMCID: PMC9740598 DOI: 10.3390/ijms232314982] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Adipokines are currently widely studied cellular signaling proteins produced by adipose tissue and involved in various processes, including inflammation; energy and appetite modulation; lipid and glucose metabolism; insulin sensitivity; endothelial cell functioning; angiogenesis; the regulation of blood pressure; and hemostasis. The current review attempted to highlight the key functions of adipokines in the inflammatory mechanisms of obesity, its complications, and its associated diseases. An extensive search for materials on the role of adipokines in the pathogenesis of obesity was conducted online using the PubMed and Scopus databases until October 2022.
Collapse
Affiliation(s)
- Tatiana V. Kirichenko
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
- Chazov National Medical Research Center of Cardiology, 121552 Moscow, Russia
| | - Yuliya V. Markina
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
- Correspondence:
| | | | | | - Yurgita R. Varaeva
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
- Medical Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
19
|
Comim FV, Premaor MO. Understanding Epigenetic Factors on Adiponectin. J Clin Endocrinol Metab 2022; 107:e4379. [PMID: 36259568 DOI: 10.1210/clinem/dgac593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Fabio Vasconcellos Comim
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG 30130-100, Brazil
| | - Melissa Orlandin Premaor
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG 30130-100, Brazil
| |
Collapse
|
20
|
Lu X, Jin Y, Li D, Zhang J, Han J, Li Y. Multidisciplinary Progress in Obesity Research. Genes (Basel) 2022; 13:1772. [PMID: 36292657 PMCID: PMC9601416 DOI: 10.3390/genes13101772] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022] Open
Abstract
Obesity is a chronic disease that endangers human health. In recent years, the phenomenon of obesity has become more and more common, and it has become a global epidemic. Obesity is closely associated with many adverse metabolic changes and diseases, such as insulin resistance, type 2 diabetes mellitus, coronary heart disease, nervous system diseases and some malignant tumors, which have caused a huge burden on the country's medical finance. In most countries of the world, the incidence of cancer caused by obesity is increasing year on year. Diabetes associated with obesity can lead to secondary neuropathy. How to treat obesity and its secondary diseases has become an urgent problem for patients, doctors and society. This article will summarize the multidisciplinary research on obesity and its complications.
Collapse
Affiliation(s)
- Xiaoqing Lu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing 100191, China
- Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China
| | - Yuxin Jin
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing 100191, China
- Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China
| | - Dexin Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing 100191, China
- Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China
| | - Jingxin Zhang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing 100191, China
- Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China
| | - Jingyan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing 100191, China
- Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China
| | - Yin Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing 100191, China
- Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China
| |
Collapse
|
21
|
Liu Z, Ding S, Jiang H, Fang J. Egg Protein Transferrin-Derived Peptides Irw (Lle-Arg-Trp) and Iqw (Lle-Gln-Trp) Prevent Obesity Mouse Model Induced by a High-Fat Diet via Reducing Lipid Deposition and Reprogramming Gut Microbiota. Int J Mol Sci 2022; 23:ijms231911227. [PMID: 36232527 PMCID: PMC9569728 DOI: 10.3390/ijms231911227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Egg-derived peptides play important roles in insulin secretion and sensitivity, oxidative stress, and inflammation, suggesting their possible involvement in obesity management. Hence, the aim of this study is to explore the alleviating effects of IRW (lle-Arg-Trp) and IQW (lle-Gln-Trp) on obesity via the mouse model induced by a high-fat diet. The entire experimental period lasted eight weeks. The results demonstrated that IQW prevented weight gain (6.52%), decreased the glucose, low-density lipoprotein (LDL), malonaldehyde, triglycerides, total cholesterol (TC), and leptin levels, and increased the concentration of adiponectin (p < 0.05, n = 8). Although IRW failed to prevent weight gain, it reduced the concentration of glucose, high-density lipoprotein (HDL), LDL, and leptin, and increased the concentration of adiponectin (p < 0.05, n = 8). Moreover, IRW and IQW increased glucose tolerance and insulin resistance based on the results of the intraperitoneal glucose test and insulin tolerance test (p < 0.05, n = 8). The quantitative polymerase chain reaction results revealed that IRW and IQW downregulated the mRNA expression of DGAT1 (Diacylglycerol O-Acyltransferase 1), DGAT2 (Diacylglycerol O-Acyltransferase 2), TNF-α, IL-6, and IL-1β of liver tissue (p < 0.05, n = 8). The results of the 16S ribosomal RNA amplicon sequencing showed that IQW and IRW tended to reduce the relative abundance of Firmicutes and Parabacteroides, and that IRW enhanced the abundance of Bacteroides (p < 0.05, n = 8). Collectively, IRW and IQW supplementation could alleviate the progression of obesity due to the fact that the supplementation reduced lipid deposition, maintained energy balance, and reprogrammed gut microbiota.
Collapse
Affiliation(s)
- Zhuangzhuang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Sujuan Ding
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Correspondence: ; Tel.: +86-731-8461-3600
| |
Collapse
|
22
|
Dias S, Willmer T, Adam S, Pheiffer C. The role of maternal DNA methylation in pregnancies complicated by gestational diabetes. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2022; 3:982665. [PMID: 36992770 PMCID: PMC10012132 DOI: 10.3389/fcdhc.2022.982665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022]
Abstract
Diabetes in pregnancy is associated with adverse pregnancy outcomes and poses a serious threat to the health of mother and child. Although the pathophysiological mechanisms that underlie the association between maternal diabetes and pregnancy complications have not yet been elucidated, it has been suggested that the frequency and severity of pregnancy complications are linked to the degree of hyperglycemia. Epigenetic mechanisms reflect gene-environment interactions and have emerged as key players in metabolic adaptation to pregnancy and the development of complications. DNA methylation, the best characterized epigenetic mechanism, has been reported to be dysregulated during various pregnancy complications, including pre-eclampsia, hypertension, diabetes, early pregnancy loss and preterm birth. The identification of altered DNA methylation patterns may serve to elucidate the pathophysiological mechanisms that underlie the different types of maternal diabetes during pregnancy. This review aims to provide a summary of existing knowledge on DNA methylation patterns in pregnancies complicated by pregestational type 1 (T1DM) and type 2 diabetes mellitus (T2DM), and gestational diabetes mellitus (GDM). Four databases, CINAHL, Scopus, PubMed and Google Scholar, were searched for studies on DNA methylation profiling in pregnancies complicated with diabetes. A total of 1985 articles were identified, of which 32 met the inclusion criteria and are included in this review. All studies profiled DNA methylation during GDM or impaired glucose tolerance (IGT), while no studies investigated T1DM or T2DM. We highlight the increased methylation of two genes, Hypoxia‐inducible Factor‐3α (HIF3α) and Peroxisome Proliferator-activated Receptor Gamma-coactivator-Alpha (PGC1-α), and the decreased methylation of one gene, Peroxisome Proliferator Activated Receptor Alpha (PPARα), in women with GDM compared to pregnant women with normoglycemia that were consistently methylated across diverse populations with varying pregnancy durations, and using different diagnostic criteria, methodologies and biological sources. These findings support the candidacy of these three differentially methylated genes as biomarkers for GDM. Furthermore, these genes may provide insight into the pathways that are epigenetically influenced during maternal diabetes and which should be prioritized and replicated in longitudinal studies and in larger populations to ensure their clinical applicability. Finally, we discuss the challenges and limitations of DNA methylation analysis, and the need for DNA methylation profiling to be conducted in different types of maternal diabetes in pregnancy.
Collapse
Affiliation(s)
- Stephanie Dias
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
| | - Tarryn Willmer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sumaiya Adam
- Department of Obstetrics and Gynecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Diabetes Research Center, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Obstetrics and Gynecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
23
|
Wu Y, Li X, Li Q, Cheng C, Zheng L. Adipose tissue-to-breast cancer crosstalk: Comprehensive insights. Biochim Biophys Acta Rev Cancer 2022; 1877:188800. [PMID: 36103907 DOI: 10.1016/j.bbcan.2022.188800] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
The review focuses on mechanistic evidence for the link between obesity and breast cancer. According to the IARC study, there is sufficient evidence that obesity is closely related to a variety of cancers. Among them, breast cancer is particularly disturbed by adipose tissue due to the unique histological structure of the breast. The review introduces the relationship between obesity and breast cancer from two aspects, including factors that promote tumorigenesis or metastasis. We summarize alterations in adipokines and metabolic pathways that contribute to breast cancer development. Breast cancer metastasis is closely related to obesity-induced pro-inflammatory microenvironment, adipose stem cells, and miRNAs. Based on the mechanism by which obesity causes breast cancer, we list possible therapeutic directions, including reducing the risk of breast cancer and inhibiting the progression of breast cancer. We also discussed the risk of autologous breast remodeling and fat transplantation. Finally, the causes of the obesity paradox and the function of enhancing immunity are discussed. Evaluating the balance between obesity-induced inflammation and enhanced immunity warrants further study.
Collapse
Affiliation(s)
- Yuan Wu
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Xu Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Qiong Li
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Chienshan Cheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China.
| |
Collapse
|
24
|
Harris BHL, Macaulay VM, Harris DA, Klenerman P, Karpe F, Lord SR, Harris AL, Buffa FM. Obesity: a perfect storm for carcinogenesis. Cancer Metastasis Rev 2022; 41:491-515. [PMID: 36038791 PMCID: PMC9470699 DOI: 10.1007/s10555-022-10046-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022]
Abstract
Obesity-related cancers account for 40% of the cancer cases observed in the USA and obesity is overtaking smoking as the most widespread modifiable risk factor for carcinogenesis. Here, we use the hallmarks of cancer framework to delineate how obesity might influence the carcinogenic hallmarks in somatic cells. We discuss the effects of obesity on (a) sustaining proliferative signaling; (b) evading growth suppressors; (c) resisting cell death; (d) enabling replicative immortality; (e) inducing angiogenesis; (f) activating invasion and metastasis; (g) reprogramming energy metabolism; and (h) avoiding immune destruction, together with its effects on genome instability and tumour-promoting inflammation. We present the current understanding and controversies in this evolving field, and highlight some areas in need of further cross-disciplinary focus. For instance, the relative importance of the many potentially causative obesity-related factors is unclear for each type of malignancy. Even within a single tumour type, it is currently unknown whether one obesity-related factor consistently plays a predominant role, or if this varies between patients or, even in a single patient with time. Clarifying how the hallmarks are affected by obesity may lead to novel prevention and treatment strategies for the increasingly obese population.
Collapse
Affiliation(s)
- Benjamin H L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
- St Anne's College, 56 Woodstock Rd, Oxford, OX2 6HS, UK.
| | - Valentine M Macaulay
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX3 9DU, UK
| | | | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Simon R Lord
- Early Phase Clinical Trials Unit, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Adrian L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | |
Collapse
|
25
|
Linoleate-Rich Safflower Oil Diet Increases Linoleate-Derived Bioactive Lipid Mediators in Plasma, and Brown and White Adipose Depots of Healthy Mice. Metabolites 2022; 12:metabo12080743. [PMID: 36005615 PMCID: PMC9412644 DOI: 10.3390/metabo12080743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Polyunsaturated fats are energy substrates and precursors to the biosynthesis of lipid mediators of cellular processes. Adipose tissue not only provides energy storage, but influences whole-body energy metabolism through endocrine functions. How diet influences adipose-lipid mediator balance may have broad impacts on energy metabolism. To determine how dietary lipid sources modulate brown and white adipose tissue and plasma lipid mediators, mice were fed low-fat (15% kcal fat) isocaloric diets, containing either palm oil (POLF) or linoleate-rich safflower oil (SOLF). Baseline and post body weight, adiposity, and 2-week and post fasting blood glucose were measured and lipid mediators were profiled in plasma, and inguinal white and interscapular brown adipose tissues. We identified over 30 species of altered lipid mediators between diets and found that these changes were unique to each tissue. We identified changes to lipid mediators with known functional roles in the regulation of adipose tissue expansion and function, and found that there was a relationship between the average fold difference in lipid mediators between brown adipose tissue and plasma in mice consuming the SOLF diet. Our findings emphasize that even with a low-fat diet, dietary fat quality has a profound effect on lipid mediator profiles in adipose tissues and plasma.
Collapse
|
26
|
Formolo DA, Cheng T, Yu J, Kranz GS, Yau SY. Central Adiponectin Signaling – A Metabolic Regulator in Support of Brain Plasticity. Brain Plast 2022; 8:79-96. [DOI: 10.3233/bpl-220138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
Brain plasticity and metabolism are tightly connected by a constant influx of peripheral glucose to the central nervous system in order to meet the high metabolic demands imposed by neuronal activity. Metabolic disturbances highly affect neuronal plasticity, which underlies the prevalent comorbidity between metabolic disorders, cognitive impairment, and mood dysfunction. Effective pro-cognitive and neuropsychiatric interventions, therefore, should consider the metabolic aspect of brain plasticity to achieve high effectiveness. The adipocyte-secreted hormone, adiponectin, is a metabolic regulator that crosses the blood-brain barrier and modulates neuronal activity in several brain regions, where it exerts neurotrophic and neuroprotective properties. Moreover, adiponectin has been shown to improve neuronal metabolism in different animal models, including obesity, diabetes, and Alzheimer’s disease. Here, we aim at linking the adiponectin’s neurotrophic and neuroprotective properties with its main role as a metabolic regulator and to summarize the possible mechanisms of action on improving brain plasticity via its role in regulating the intracellular energetic activity. Such properties suggest adiponectin signaling as a potential target to counteract the central metabolic disturbances and impaired neuronal plasticity underlying many neuropsychiatric disorders.
Collapse
Affiliation(s)
- Douglas A. Formolo
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Tong Cheng
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Jiasui Yu
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Georg S. Kranz
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| |
Collapse
|
27
|
Li Q, Jiang F, Guan Y, Jiang X, Wu J, Huang M, Zhong G. Development, validation, and application of an UHPLC-MS/MS method for quantification of the adiponectin-derived active peptide ADP355 in rat plasma. Biomed Chromatogr 2022; 36:e5358. [PMID: 35187696 DOI: 10.1002/bmc.5358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/12/2022]
Abstract
An UHPLC-MS/MS method for quantification of ADP355, an adiponectin-derived active peptide, was developed and validated. The extraction method employed simple protein precipitation using methanol and the chromatographic separation was achieved on the Accucore™ RP-MS C18 column (100 × 2.1mm, 2.6 μm, 80 Å), using 0.1% formic acid in both water and acetonitrile with gradient elution at the flow rate of 400 μL/min within 4.0 min. Detections were performed under positive ion mode with MRM ion transitions m/z 1109.2→309.8 and 871.4→310.1 for ADP355 and Jt003 respectively at unit resolution. The linearity range of the calibration curve was 2-1000 ng/mL with lower limit detection of 0.5 ng/mL. Selectivity, linearity, precision, accuracy, recovery, matrix effect, and stability were validated, and all items met the requirement of FDA guidance. This method has been successfully applied to an intravenous pharmacokinetic study of ADP355 in rats and the in-vitro stability in rat serum, plasma, and whole blood was also assessed.
Collapse
Affiliation(s)
- Qiaoxi Li
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangdong Province, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Fulin Jiang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangdong Province, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yanping Guan
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Junyan Wu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Min Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangdong Province, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Guoping Zhong
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou City, Guangdong Province, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
28
|
Saranjam N, Farhoodi Moghaddam M, Akbari G, Mohammadsadegh M, Farzaneh N. Effect of different dry period duration on milk components and serum metabolites, and their associations with the first conception rate in multiparous Holstein dairy cows. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2022. [DOI: 10.15547/bjvm.2020-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aims of the present study were to evaluate the effects of different dry period (DP) lengths on milk fat to protein ratio (FPR) and metabolic status – blood leptin, adiponectin and non-esterified fatty acids (NEFA) concentrations in dairy cows, and their associations with the result of the first timed artificial insemination (TAI). Cows were blocked either to short DP (SDP; 30±2 days; n=72) or conventional DP (CDP; 60±2 days; n=76). Milk FPR was calculated at 30 and 60 days in milk (DIM). Body condition score (BCS) was recorded at –60, –30, calving, and 60 DIM. Blood samples were obtained at –60, –30, –7, calving, +7, +30, and +60 DIM for serum metabolites measurement. TAI was implemented between 65–75 DIM for all cows. Milk FPR and its changes were statistically analysed using an independent sample t test. To assess the impact of time, the pattern of BCS, and serum metabolites on the result of the first AI, repeated measure ANOVA was used. Only FPR-30 DIM revealed significant difference between pregnant and non-pregnant cows in SDP group (P<0.01). Reduced BCS loss was observed in the SDP group and followed by slightly higher probability of pregnancy at first AI (P=0.19). Leptin was not altered by shortening the DP (P≥0.1). Significant differences were observed in blood adiponectin prepartum (P<0.001) and at +7 DIM (P<0.01), as well as in NEFA at +7 and +30 DIM between the two groups (P<0.05). Pregnant cows following the first AI had significantly high postpartum leptin concentrations (P<0.05), high prepartum adiponectin (P≤0.001), and lower NEFA at +7 DIM (P<0.01) in the SDP group. In conclusion, shortening the dry period caused reduced BCS loss postpartum and variations in serum metabolits that favoured the possibility of pregnancy at first AI.
Collapse
Affiliation(s)
- N. Saranjam
- Department of Clinical Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - M. Farhoodi Moghaddam
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Gh. Akbari
- Department of Clinical Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - M. Mohammadsadegh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| | - N. Farzaneh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
29
|
Pathophysiologic Mechanisms of Insulin Secretion and Signaling-Related Genes in Etiology of Polycystic Ovary Syndrome. Genet Res (Camb) 2021; 2021:7781823. [PMID: 34949963 PMCID: PMC8668318 DOI: 10.1155/2021/7781823] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/06/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinopathy in women. PCOS is characterized by anovulation, hyperandrogenism, polycystic ovaries, insulin resistance, and obesity. Despite the finding that the genetic origin of PCOS is well demonstrated in previous twin and familial clustering studies, genes and factors that can exactly explain the PCOS pathophysiology are not known. Objective(s). In this review, we attempted to identify genes related to secretion and signaling of insulin aspects of PCOS and their physiological functions in order to explain the pathways that are regulated by these genes which can be a prominent function in PCOS predisposition. Materials and Methods. For this purpose, published articles and reviews dealing with genetic evaluation of PCOS in women from peer-reviewed journals in PubMed and Google Scholar databases were included in this review. Results. The genomic investigations in women of different populations identified many candidate genes and loci that are associated with PCOS. The most important of them are INSR, IRS1-2, MTNR1A, MTNR1B, THADA, PPAR-γ2, ADIPOQ, and CAPN10. These are mainly associated with metabolic aspects of PCOS. Conclusions. In this review, we proposed that each of these genes may interrupt specific physiological pathways by affecting them and contribute to PCOS initiation. It is clear that the role of genes involved in insulin secretion and signaling is more critical than other pathways.
Collapse
|
30
|
Snoke DB, Nishikawa Y, Cole RM, Ni A, Angelotti A, Vodovotz Y, Belury MA. Dietary Naringenin Preserves Insulin Sensitivity and Grip Strength and Attenuates Inflammation but Accelerates Weight Loss in a Mouse Model of Cancer Cachexia. Mol Nutr Food Res 2021; 65:e2100268. [PMID: 34499400 PMCID: PMC8612985 DOI: 10.1002/mnfr.202100268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/02/2021] [Indexed: 12/15/2022]
Abstract
SCOPE Cancer cachexia is characterized by the loss of skeletal muscle resulting in functional impairment, reduced quality of life and mortality. Naringenin, a flavonoid found in citrus fruits, improves insulin sensitivity and reduces inflammation and tumor growth in preclinical models. Therefore, the study hypothesizes that dietary supplementation of naringenin will improve insulin sensitivity, decrease inflammation, slow body weight loss, and delay tumor growth in a mouse model of cancer cachexia. METHODS AND RESULTS Mice are fed 2 wt% dietary naringenin before and during initiation of cancer cachexia using inoculated adenocarcinoma-26 cells (C-26). Food intake, body weight, body composition, muscle function, insulin tolerance, and inflammatory status are assessed. Although naringenin-fed tumor-bearing mice exhibit reductions in body weight and food intake earlier than control diet-fed tumor-bearing mice, dietary naringenin is protective against loss of muscle strength, and attenuates the onset of insulin resistance and markers of inflammation. CONCLUSIONS Dietary supplementation of naringenin improves multiple aspects of metabolic disturbance and inflammation during cancer cachexia progression in [C-26 tumor-bearing] mice. However, the acceleration of anorexia and weight loss is also observed. These findings emphasize the link between inflammation and insulin resistance as a basis for understanding their roles in the pathogenesis of cancer cachexia.
Collapse
Affiliation(s)
- Deena B. Snoke
- Interdisciplinary PhD Program in Nutrition, The Graduate School, The Ohio State University, Columbus, OH, USA
| | - Yuko Nishikawa
- Department of Food Science and Technology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, USA
| | - Rachel M. Cole
- Interdisciplinary PhD Program in Nutrition, The Graduate School, The Ohio State University, Columbus, OH, USA
| | - Ai Ni
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Austin Angelotti
- Interdisciplinary PhD Program in Nutrition, The Graduate School, The Ohio State University, Columbus, OH, USA
| | - Yael Vodovotz
- Interdisciplinary PhD Program in Nutrition, The Graduate School, The Ohio State University, Columbus, OH, USA
| | - Martha A. Belury
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
31
|
Kim H, Jun S, Kim BS, Kim IJ. Serum Adiponectin in Alzheimer's Disease (AD): Association with AD Biomarkers and Cognitive Outcome. J Alzheimers Dis 2021; 84:1163-1172. [PMID: 34633322 DOI: 10.3233/jad-210722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND The association between dementia and serum adiponectin has been evaluated in many studies; however, conclusions remain mixed. OBJECTIVE We investigated the cross-sectional associations of adiponectin with cognitive function and Alzheimer's disease (AD) biomarkers and whether serum adiponectin levels can predict cognitive outcomes. METHODS This study included 496 participants from the Alzheimer's Disease Neuroimaging Initiative 1 (ADNI1) with available serum adiponectin levels at baseline and ≥65 years of age. Subjects were stratified based on sex and apolipoprotein ɛ4 (APOE4) carrier status to determine associations between adiponectin and cognitive function. The linear mixed model was used to analyze associations between adiponectin level and cognitive outcome in amnestic mild cognitive impairment (aMCI) patients. RESULTS Serum adiponectin levels were higher in aMCI and AD than in CN subjects among APOE4 non-carrier males (adiponectin in CN, aMCI, and AD: 0.54±0.24, 0.74±0.25, and 0.85±0.25, respectively, p < 0.001). In this group, serum adiponectin levels were associated with age (p = 0.001), ADAS13 (p < 0.001), memory function (p < 0.001), executive function (p < 0.001), total tau (p < 0.001), and phosphorylated tau (p < 0.001) measures in cerebrospinal fluid (CSF). Higher adiponectin level was not associated with cognitive outcome in aMCI patients in the linear mixed model analysis over 5.3±2.6 years of mean follow-up. CONCLUSION Serum adiponectin level was associated with cognitive function and CSF AD biomarkers among APOE4 non-carrier males. However, serum adiponectin level was not associated with longitudinal cognitive function outcome in aMCI.
Collapse
Affiliation(s)
- Heeyoung Kim
- Departement of Nuclear Medicine, Kosin University Gospel Hospital, University of Kosin College of Medicine, Busan, Republic of Korea
| | - Sungmin Jun
- Departement of Nuclear Medicine, Kosin University Gospel Hospital, University of Kosin College of Medicine, Busan, Republic of Korea
| | - Bum Soo Kim
- Departement of Nuclear Medicine, Kosin University Gospel Hospital, University of Kosin College of Medicine, Busan, Republic of Korea
| | - In-Joo Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University School of Medicine, Busan, Republic of Korea
| | | |
Collapse
|
32
|
Ohn J, Been KW, Kim JY, Kim EJ, Park T, Yoon H, Ji JS, Okada‐Iwabu M, Iwabu M, Yamauchi T, Kim YK, Seok C, Kwon O, Kim KH, Lee HH, Chung JH. Discovery of a transdermally deliverable pentapeptide for activating AdipoR1 to promote hair growth. EMBO Mol Med 2021; 13:e13790. [PMID: 34486824 PMCID: PMC8495455 DOI: 10.15252/emmm.202013790] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022] Open
Abstract
Alopecia induced by aging or side effects of medications affects millions of people worldwide and impairs the quality of life; however, there is a limit to the current medications. Here, we identify a small transdermally deliverable 5-mer peptide (GLYYF; P5) that activates adiponectin receptor 1 (AdipoR1) and promotes hair growth. P5 sufficiently reproduces the biological effect of adiponectin protein via AMPK signaling pathway, increasing the expression of hair growth factors in the dermal papilla cells of human hair follicle. P5 accelerates hair growth ex vivo and induces anagen hair cycle in mice in vivo. Furthermore, we elucidate a key spot for the binding between AdipoR1 and adiponectin protein using docking simulation and mutagenesis studies. This study suggests that P5 could be used as a topical peptide drug for alleviating pathological conditions, which can be improved by adiponectin protein, such as alopecia.
Collapse
Affiliation(s)
- Jungyoon Ohn
- Department of Translational MedicineSeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| | - Kyung Wook Been
- Department of ChemistryCollege of Natural SciencesSeoul National UniversitySeoulKorea
| | - Jin Yong Kim
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| | - Eun Ju Kim
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| | - Taeyong Park
- Department of ChemistryCollege of Natural SciencesSeoul National UniversitySeoulKorea
| | - Hye‐Jin Yoon
- Department of ChemistryCollege of Natural SciencesSeoul National UniversitySeoulKorea
| | - Jeong Seok Ji
- Department of ChemistryCollege of Natural SciencesSeoul National UniversitySeoulKorea
| | - Miki Okada‐Iwabu
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Masato Iwabu
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Yeon Kyung Kim
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| | - Chaok Seok
- Department of ChemistryCollege of Natural SciencesSeoul National UniversitySeoulKorea
| | - Ohsang Kwon
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| | - Kyu Han Kim
- Department of Translational MedicineSeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| | - Hyung Ho Lee
- Department of ChemistryCollege of Natural SciencesSeoul National UniversitySeoulKorea
| | - Jin Ho Chung
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| |
Collapse
|
33
|
Sharma A, Mah M, Ritchie RH, De Blasio MJ. The adiponectin signalling pathway - A therapeutic target for the cardiac complications of type 2 diabetes? Pharmacol Ther 2021; 232:108008. [PMID: 34610378 DOI: 10.1016/j.pharmthera.2021.108008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Diabetes is associated with an increased risk of heart failure (HF). This is commonly termed diabetic cardiomyopathy and is often characterised by increased cardiac fibrosis, pathological hypertrophy, increased oxidative and endoplasmic reticulum stress as well as diastolic dysfunction. Adiponectin is a cardioprotective adipokine that is downregulated in settings of type 2 diabetes (T2D) and obesity. Furthermore, both adiponectin receptors (AdipoR1 and R2) are also downregulated in these settings which further results in impaired cardiac adiponectin signalling and reduced cardioprotection. In many cardiac pathologies, adiponectin signalling has been shown to protect against cardiac remodelling and lipotoxicity, however its cardioprotective actions in T2D-induced cardiomyopathy remain unresolved. Diabetic cardiomyopathy has historically lacked effective treatment options. In this review, we summarise the current evidence for links between the suppressed adiponectin signalling pathway and cardiac dysfunction, in diabetes. We describe adiponectin receptor-mediated signalling pathways that are normally associated with cardioprotection, as well as current and potential future therapeutic approaches that could target this pathway as possible interventions for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Abhipree Sharma
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Michael Mah
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia; Department of Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Miles J De Blasio
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
34
|
Kazemi M, Pierson RA, Parry SA, Kaviani M, Chilibeck PD. Obesity, but not hyperandrogenism or insulin resistance, predicts skeletal muscle mass in reproductive-aged women with polycystic ovary syndrome: A systematic review and meta-analysis of 45 observational studies. Obes Rev 2021; 22:e13255. [PMID: 33855800 DOI: 10.1111/obr.13255] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/01/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022]
Abstract
Women with polycystic ovary syndrome (PCOS) exhibit reduced muscle insulin-mediated glucose uptake, potentially attributed to altered muscle mass; however, this is inconclusive. Altered muscle mass may aggravate PCOS complications. Our systematic review and meta-analysis evaluated whether PCOS alters muscle mass and function. Databases (MEDLINE, Web of Science, Scopus) were searched through September 2, 2020, for studies documenting skeletal muscle mass (lean tissue mass) and function (strength) in PCOS and control groups. The primary outcome was total lean body mass (LBM) or fat-free mass (FFM). Data were pooled by random-effects models and expressed as mean differences and 95% confidence intervals. Forty-five studies (n = 3676 participants) were eligible. Women with PCOS had increased total (0.83 [0.08,1.58] kg; p = 0.03; I2 = 72.0%) yet comparable trunk (0.84 [-0.37,2.05] kg; p = 0.15; I2 = 73.0%) LBM or FFM versus controls. Results of meta-regression analyses showed no associations between mean differences between groups in total testosterone or homeostatic model assessment of insulin resistance and total or trunk LBM or FFM (All: p ≥ 0.75). Mean differences in body mass index (BMI) were associated with total (0.65 [0.23,1.06] kg; p < 0.01; I2 = 56.9%) and trunk (0.56 [0.11,1.01] kg; p = 0.02; I2 = 42.8%) LBM or FFM. The PCOS subgroup with BMI ≥ 25 kg/m2 had greater total LBM or FFM versus controls (1.58 [0.82,2.34] kg; p < 0.01; I2 = 64.0%) unlike the PCOS subgroup with BMI < 25 kg/m2 (-0.45 [-1.94,1.05] kg; p = 0.53; I2 = 69.5%). Appendicular lean mass and muscle strength data were contradictory and described narratively, as meta-analyses were impossible. Women with PCOS have higher total and trunk lean tissue mass attributed to overweight/obesity, unlike hyperandrogenism or insulin resistance.
Collapse
Affiliation(s)
- Maryam Kazemi
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, Ithaca, New York, USA
| | - Roger A Pierson
- Obstetrics and Gynecology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Stephen A Parry
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, New York, USA
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Philip D Chilibeck
- College of Kinesiology, Physical Activity Complex, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
35
|
Elevated Levels of CTRP1 in Obesity Contribute to Tumor Progression in a p53-Dependent Manner. Cancers (Basel) 2021; 13:cancers13143619. [PMID: 34298831 PMCID: PMC8306638 DOI: 10.3390/cancers13143619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Obesity is regarded as a risk factor for various cancers. However, the molecular mechanisms linking obesity with cancer remain primarily uncharacterized. In this study, we demonstrate that CTRP1, an adiponectin paralogue, promotes tumor growth in a p53-dependent manner. Obese mice on a high-fat diet showed a higher level of CTRP1 protein in serum. It is also known that CTRP1 treatment contributes to tumor growth and cell migration. These results indicate that an elevated level of CTRP1 in obesity promotes tumor progression. Abstract Mounting evidence supports the relationship between obesity and cancer. However, the molecular mechanisms linking obesity with cancer remain largely uninvestigated. In this study, we demonstrate that the expression of C1q/TNF-related protein 1 (CTRP1), an adiponectin paralogue, contributes to tumor growth by regulating the tumor suppressor p53. In our study, obese mice on a high-fat diet showed higher serum CTRP1 levels. Through in vitro experiments, we showed that the secreted form of CTRP1 in the culture medium decreased p53 expression and p53-dependent transcription in the cells. Moreover, CTRP1 treatment enhanced colony formation and cell migration. These results collectively suggest that elevated levels of CTRP1 in obesity significantly contribute to tumor progression.
Collapse
|
36
|
Para I, Albu A, Porojan MD. Adipokines and Arterial Stiffness in Obesity. ACTA ACUST UNITED AC 2021; 57:medicina57070653. [PMID: 34202323 PMCID: PMC8305474 DOI: 10.3390/medicina57070653] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022]
Abstract
Adipokines are active molecules with pleiotropic effects produced by adipose tissue and involved in obesity-related metabolic and cardiovascular diseases. Arterial stiffness, which is a consequence of arteriosclerosis, has been shown to be an independent predictor of cardiovascular morbidity and mortality. The pathogenesis of arterial stiffness is complex but incompletely understood. Adipokines dysregulation may induce, by various mechanisms, vascular inflammation, endothelial dysfunction, and vascular remodeling, leading to increased arterial stiffness. This article summarizes literature data regarding adipokine-related pathogenetic mechanisms involved in the development of arterial stiffness, particularly in obesity, as well as the results of clinical and epidemiological studies which investigated the relationship between adipokines and arterial stiffness.
Collapse
Affiliation(s)
- Ioana Para
- 4th Department of Internal Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania;
| | - Adriana Albu
- 2nd Department of Internal Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania;
- Correspondence:
| | - Mihai D. Porojan
- 2nd Department of Internal Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
37
|
Cândido APC, Geloneze B, Calixto A, Vasques ACJ, Freitas RN, Freitas SN, Machado-Coelho GLL. Adiponectin, HOMA-Adiponectin, HOMA-IR in Children and Adolescents: Ouro Preto Study. Indian J Pediatr 2021; 88:336-344. [PMID: 32945992 DOI: 10.1007/s12098-020-03444-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/30/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To examine the association and predictive capacity of adiponectin levels, HOMA-AD and HOMA-IR indexes with metabolic risk markers in children and adolescents. METHODS A cross-sectional study was conducted with 691 children and adolescents (7-14 y), of both sexes. Demographic (sex, age), anthropometric (weight, height, body mass index, waist circumference, body fat), biochemical [total cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), triglycerides, fasting glycemia, insulin and adiponectin] and clinical parameters (arterial blood pressure) were analyzed. RESULTS In multiple linear regression models, metabolic risk were analyzed in relation to adiponectin levels, HOMA-AD and HOMA-IR. ROC curve analysis was used to define the cut-off for metabolic syndrome for each method studied. Adiponectin level was inversely correlated with weight (r = -0.12; p = 0.01), waist circumference (WC) (r = -0.12; p = 0.01), and triglycerides (r = -0.11; p = 0.02); it was directly correlated with HDL (r = 0.10; p = 0.03) only in the adolescents. In the final linear regression model, after adjustment, only triglycerides (p = 0.03) and HDL (p = 0.04) remained significant. However, HOMA-AD and HOMA-IR were associated with metabolic risk and were the most suitable methods for metabolic syndrome screening in both age groups. For children, independent variables explained 16.0% and 14.5% of HOMA-AD and HOMA-IR, respectively. For adolescents, R2 was higher in HOMA-AD and HOMA-IR models (R2adjusted = 31.9% and R2adjusted = 29.6%, respectively). CONCLUSIONS HOMA-AD and HOMA-IR are better explained by metabolic markers than adiponectin levels.
Collapse
Affiliation(s)
- A P C Cândido
- Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n - Campus Universitário, Bairro São Pedro, Juiz de Fora, MG, CEP: 36036-900, Brazil.
| | - B Geloneze
- Laboratory of Investigation on Metabolism and Diabetes (LIMED), Gastrocentro, State University of Campinas, Campinas, Brazil
| | - A Calixto
- Laboratory of Investigation on Metabolism and Diabetes (LIMED), Gastrocentro, State University of Campinas, Campinas, Brazil
| | - A C J Vasques
- Laboratory of Investigation on Metabolism and Diabetes (LIMED), Gastrocentro, State University of Campinas, Campinas, Brazil
| | - R N Freitas
- Department of Social and Clinical Nutrition, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - S N Freitas
- Department of Social and Clinical Nutrition, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - G L L Machado-Coelho
- Laboratory of Epidemiology, Medical School, Federal University de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
38
|
Adiponectin DNA methylation in South African women with gestational diabetes mellitus: Effects of HIV infection. PLoS One 2021; 16:e0248694. [PMID: 33750967 PMCID: PMC7984613 DOI: 10.1371/journal.pone.0248694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
DNA methylation is increasingly recognized as a potential biomarker of metabolic disease. However, there is limited information on the impact of human immunodeficiency virus (HIV) infection on the candidacy of DNA methylation to serve as molecular biomarkers. This study investigated the effect of HIV infection on DNA methylation patterns in the peripheral blood of South African women with (n = 95) or without (n = 191) gestational diabetes mellitus (GDM). DNA methylation levels at eight CpG sites in the adiponectin gene (ADIPOQ) promoter were measured using bisulfite conversion and pyrosequencing. Differences between HIV negative (-) and positive (+) women were observed. In HIV- women, methylation at CpG -3400 was lower in GDM+ women compared to those with normoglycemia (8.5-fold; p = 0.004), and was associated with higher fasting glucose (β-co-efficient = 0.973; p = 0.006) and lower adiponectin (β-co-efficient = -0.057; p = 0.014) concentrations. These associations were not observed in HIV+ women. In silico analysis showed that Transcription Factor AP2-alpha is able to bind to the altered CpG site, suggesting that CpG -3400 may play a functional role in the regulation of ADIPOQ expression. Our findings show that DNA methylation differs by HIV status, suggesting that HIV infection needs to be taken into consideration in studies exploring DNA methylation as a biomarker of GDM in high HIV prevalence settings.
Collapse
|
39
|
Luo L, Li J, Wu Y, Qiao J, Fang H. Adiponectin, but Not TGF-β1, CTGF, IL-6 or TNF-α, May Be a Potential Anti-Inflammation and Anti-Fibrosis Factor in Keloid. J Inflamm Res 2021; 14:907-916. [PMID: 33758530 PMCID: PMC7981148 DOI: 10.2147/jir.s301971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Numerous studies have elucidated adiponectin as a negative impact on inflammation and tissue fibrosis. However, little is known about the relevance between adiponectin and inflammatory factors in keloid. METHODS To clarify whether adiponectin plays a role in the inflammation and fibrosis of keloid, 50 patients with keloid and 50 healthy subjects were enrolled, We examined the serum and mRNA expression levels of adiponectin, TGF-β1, CTGF, IL-6 and TNF-α in normal skin tissues and keloid tissues by ELISA and qPCR, respectively. Correlation analysis between serum concentration of adiponectin with Vancouver Scar Scale (VSS) scores and the age of patients with keloid was evaluated, and the adiponectin concentrations in patients with keloid between different genders were measured. We further examined the effects of adiponectin on TGF-β1 mediated expression of collagen I, FN and MMP-1 in normal fibroblasts (NFs) and keloid fibroblasts (KFs). RESULTS We discovered that lower serum concentration and mRNA expression of adiponectin, but higher TGF-β1, CTGF, IL-6 and TNF-α levels were measured in patients with keloid compared with those in normal controls. Furthermore, there was a strong inverse correlation between the serum adiponectin levels and VSS scores in patients with keloid, but not in ages, and there was no statistically difference between different genders. Moreover, adiponectin attenuated TGF-β1 mediated expression of collagen I and FN, and upregulated the expression level of MMP-1 in KFs, but not in NFs. In addition, the inhibitory effect of adiponectin on TGF-β1 was attenuated by AMPK inhibitor Compound C, but not PI3K/Akt inhibitor LY294002. DISCUSSION Adiponectin may exert an anti-inflammation and anti-fibrosis role in the development of keloid. One of the underlying mechanisms may be the activation of the AMPK signaling pathway.
Collapse
Affiliation(s)
- Limin Luo
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Jun Li
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, People’s Republic of China
| | - Yuran Wu
- Department of Dermatology, Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442000, People’s Republic of China
| | - Jianjun Qiao
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Hong Fang
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| |
Collapse
|
40
|
Bagias C, Sukumar N, Weldeselassie Y, Oyebode O, Saravanan P. Cord Blood Adipocytokines and Body Composition in Early Childhood: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041897. [PMID: 33669328 PMCID: PMC7920289 DOI: 10.3390/ijerph18041897] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 01/02/2023]
Abstract
Childhood obesity is a growing epidemic. Early identification of high-risk groups will allow for the development of prevention strategies. Cord blood adipocytokines have been previously examined as biomarkers predicting future obesity. We conducted a systematic review looking at the association between cord blood leptin and adiponectin with adiposity up to 5 years of age. A literature review was performed between January 1994 and August 2020 using two bibliographic databases (Medline/Pubmed and EMBASE) and was registered on PROSPERO (CRD42017069024). Studies using skinfold thickness and direct methods of assessing body composition in full term neonates were considered. Partial correlation and multiple regression models were used to present the results. Meta-analysis was performed, were possible, using a random effects model. Cochran’s Q test was used to assess heterogeneity and I2 statistics to calculate the percentage of variation across studies. The potential for publication bias was assessed using funnel plots. Data from 22 studies were retrieved and reviewed by two independent reviewers. Cord blood leptin was positively associated with adiposity at birth (r = 0.487; 95% CI: 0.444, 0.531) but was inversely related to adiposity up to 3 years of age. The association was not sustained at 5 years. There was a weak positive association between adiponectin in cord blood and adiposity at birth (r = 0.201; 95% CI: 0.125, 0.277). No correlation was found between cord blood adiponectin in young children, but data were limited. This review supports that cord blood leptin and adiponectin are associated with adiposity at birth. The results of this study provide insight into the role of adipocytokines at birth on future metabolic health and their potential use as risk stratification tools.
Collapse
Affiliation(s)
- Christos Bagias
- Division of Health Sciences, Department of Population Evidence and Technologies, Warwick Medical School, University of Warwick, Coventry CV7 7HL, UK; (C.B.); (N.S.); (Y.W.); (O.O.)
- Department of Endocrinology and Diabetes, University Hospital of Ioannina, 45500 Ioannina, Greece
| | - Nithya Sukumar
- Division of Health Sciences, Department of Population Evidence and Technologies, Warwick Medical School, University of Warwick, Coventry CV7 7HL, UK; (C.B.); (N.S.); (Y.W.); (O.O.)
- Academic Department of Diabetes, Endocrinology and Metabolism, George Eliot Hospital NHS Trust, Nuneaton CV10 7DJ, UK
| | - Yonas Weldeselassie
- Division of Health Sciences, Department of Population Evidence and Technologies, Warwick Medical School, University of Warwick, Coventry CV7 7HL, UK; (C.B.); (N.S.); (Y.W.); (O.O.)
| | - Oyinlola Oyebode
- Division of Health Sciences, Department of Population Evidence and Technologies, Warwick Medical School, University of Warwick, Coventry CV7 7HL, UK; (C.B.); (N.S.); (Y.W.); (O.O.)
| | - Ponnusamy Saravanan
- Division of Health Sciences, Department of Population Evidence and Technologies, Warwick Medical School, University of Warwick, Coventry CV7 7HL, UK; (C.B.); (N.S.); (Y.W.); (O.O.)
- Academic Department of Diabetes, Endocrinology and Metabolism, George Eliot Hospital NHS Trust, Nuneaton CV10 7DJ, UK
- Correspondence:
| |
Collapse
|
41
|
Boltze J, Aronowski JA, Badaut J, Buckwalter MS, Caleo M, Chopp M, Dave KR, Didwischus N, Dijkhuizen RM, Doeppner TR, Dreier JP, Fouad K, Gelderblom M, Gertz K, Golubczyk D, Gregson BA, Hamel E, Hanley DF, Härtig W, Hummel FC, Ikhsan M, Janowski M, Jolkkonen J, Karuppagounder SS, Keep RF, Koerte IK, Kokaia Z, Li P, Liu F, Lizasoain I, Ludewig P, Metz GAS, Montagne A, Obenaus A, Palumbo A, Pearl M, Perez-Pinzon M, Planas AM, Plesnila N, Raval AP, Rueger MA, Sansing LH, Sohrabji F, Stagg CJ, Stetler RA, Stowe AM, Sun D, Taguchi A, Tanter M, Vay SU, Vemuganti R, Vivien D, Walczak P, Wang J, Xiong Y, Zille M. New Mechanistic Insights, Novel Treatment Paradigms, and Clinical Progress in Cerebrovascular Diseases. Front Aging Neurosci 2021; 13:623751. [PMID: 33584250 PMCID: PMC7876251 DOI: 10.3389/fnagi.2021.623751] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
The past decade has brought tremendous progress in diagnostic and therapeutic options for cerebrovascular diseases as exemplified by the advent of thrombectomy in ischemic stroke, benefitting a steeply increasing number of stroke patients and potentially paving the way for a renaissance of neuroprotectants. Progress in basic science has been equally impressive. Based on a deeper understanding of pathomechanisms underlying cerebrovascular diseases, new therapeutic targets have been identified and novel treatment strategies such as pre- and post-conditioning methods were developed. Moreover, translationally relevant aspects are increasingly recognized in basic science studies, which is believed to increase their predictive value and the relevance of obtained findings for clinical application.This review reports key results from some of the most remarkable and encouraging achievements in neurovascular research that have been reported at the 10th International Symposium on Neuroprotection and Neurorepair. Basic science topics discussed herein focus on aspects such as neuroinflammation, extracellular vesicles, and the role of sex and age on stroke recovery. Translational reports highlighted endovascular techniques and targeted delivery methods, neurorehabilitation, advanced functional testing approaches for experimental studies, pre-and post-conditioning approaches as well as novel imaging and treatment strategies. Beyond ischemic stroke, particular emphasis was given on activities in the fields of traumatic brain injury and cerebral hemorrhage in which promising preclinical and clinical results have been reported. Although the number of neutral outcomes in clinical trials is still remarkably high when targeting cerebrovascular diseases, we begin to evidence stepwise but continuous progress towards novel treatment options. Advances in preclinical and translational research as reported herein are believed to have formed a solid foundation for this progress.
Collapse
Affiliation(s)
- Johannes Boltze
- School of Life Sciences, University of Warwick, Warwick, United Kingdom
| | - Jaroslaw A. Aronowski
- Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jerome Badaut
- NRS UMR 5287, INCIA, Brain Molecular Imaging Team, University of Bordeaux, Bordeaux cedex, France
| | - Marion S. Buckwalter
- Departments of Neurology and Neurological Sciences, and Neurosurgery, Wu Tsai Neurosciences Institute, Stanford School of Medicine, Stanford, CA, United States
| | - Mateo Caleo
- Neuroscience Institute, National Research Council, Pisa, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Kunjan R. Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nadine Didwischus
- School of Life Sciences, University of Warwick, Warwick, United Kingdom
| | - Rick M. Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Thorsten R. Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jens P. Dreier
- Department of Neurology, Center for Stroke Research Berlin, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Karim Fouad
- Faculty of Rehabilitation Medicine and Institute for Neuroscience and Mental Health, University of Alberta, Edmonton, AB, Canada
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karen Gertz
- Department of Neurology, Center for Stroke Research Berlin, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Dominika Golubczyk
- Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Barbara A. Gregson
- Neurosurgical Trials Group, Institute of Neuroscience, The University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Daniel F. Hanley
- Division of Brain Injury Outcomes, Johns Hopkins University, Baltimore, MD, United States
| | - Wolfgang Härtig
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Friedhelm C. Hummel
- Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology Valais, Clinique Romande de Réadaptation, Sion, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Maulana Ikhsan
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, United States
| | - Jukka Jolkkonen
- Department of Neurology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Saravanan S. Karuppagounder
- Burke Neurological Institute, White Plains, NY, United States
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Inga K. Koerte
- Psychiatric Neuroimaging Laboratory, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig Maximilians University, Munich, Germany
| | - Zaal Kokaia
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fudong Liu
- Department of Neurology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, United States
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerlinde A. S. Metz
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Axel Montagne
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Andre Obenaus
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
| | - Alex Palumbo
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
| | - Monica Pearl
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Miguel Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anna M. Planas
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Àrea de Neurociències, Barcelona, Spain
- Department d’Isquèmia Cerebral I Neurodegeneració, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Munich University Hospital, Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
| | - Ami P. Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Maria A. Rueger
- Faculty of Medicine and University Hospital, Department of Neurology, University of Cologne, Cologne, Germany
| | - Lauren H. Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Farida Sohrabji
- Women’s Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX, United States
| | - Charlotte J. Stagg
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - R. Anne Stetler
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ann M. Stowe
- Department of Neurology and Neurotherapeutics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, United States
| | - Dandan Sun
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, PA, United States
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan
| | - Mickael Tanter
- Institute of Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL University, Paris, France
| | - Sabine U. Vay
- Faculty of Medicine and University Hospital, Department of Neurology, University of Cologne, Cologne, Germany
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, United States
| | - Denis Vivien
- UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging for Neurological Disorders (PhIND), Normandy University, Caen, France
- CHU Caen, Clinical Research Department, CHU de Caen Côte de Nacre, Caen, France
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, United States
| | - Jian Wang
- Department of Human Anatomy, College of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ye Xiong
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, United States
| | - Marietta Zille
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
42
|
Qiu W, Wu H, Hu Z, Wu X, Tu M, Fang F, Zhu X, Liu Y, Lian J, Valverde P, Van Dyke T, Steffensen B, Dong LQ, Tu Q, Zhou X, Chen J. Identification and characterization of a novel adiponectin receptor agonist adipo anti-inflammation agonist and its anti-inflammatory effects in vitro and in vivo. Br J Pharmacol 2020; 178:280-297. [PMID: 32986862 DOI: 10.1111/bph.15277] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/11/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Adiponectin (APN) is an adipokine secreted from adipocytes that binds to APN receptors AdipoR1 and AdipoR2 and exerts an anti-inflammatory response through mechanisms not fully understood. There is a need to develop small molecules that activate AdipoR1 and AdipoR2 and to be used to inhibit the inflammatory response in lipopolysaccharide (LPS)-induced endotoxemia and other inflammatory disorders. EXPERIMENTAL APPROACH We designed 10 new structural analogues of an AdipoR agonist, AdipoRon (APR), and assessed their anti-inflammatory properties. Bone marrow-derived macrophages (BMMs) and peritoneal macrophages (PEMs) were isolated from mice. Levels of pro-inflammatory cytokines were measured by reverse transcription and real-time quantitative polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) and microarray in LPS-induced endotoxemia mice and diet-induced obesity (DIO) mice in which systemic inflammation prevails. Western blotting, immunohistochemistry (IHC), siRNA interference and immunoprecipitation were used to detect signalling pathways. KEY RESULTS A novel APN receptor agonist named adipo anti-inflammation agonist (AdipoAI) strongly suppresses inflammation in DIO and endotoxemia mice, as well as in cultured macrophages. We also found that AdipoAI attenuated the association of AdipoR1 and APPL1 via myeloid differentiation marker 88 (MyD88) signalling, thus inhibiting activation of nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK) and c-Maf pathways and limiting the production of pro-inflammatory cytokines in LPS-induced macrophages. CONCLUSION AND IMPLICATIONS AdipoAI is a promising alternative therapeutic approach to APN and APR to suppress inflammation in LPS-induced endotoxemia and other inflammatory disorders via distinct signalling pathways.
Collapse
Affiliation(s)
- Wei Qiu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA.,Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongle Wu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhekai Hu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Xingwen Wu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Maxwell Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Fuchun Fang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA.,Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaofang Zhu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Yao Liu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Junxiang Lian
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Paloma Valverde
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Thomas Van Dyke
- Clinical and Translational Research, Forsyth Institute, Cambridge, Massachusetts, USA.,Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Bjorn Steffensen
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Lily Q Dong
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Qisheng Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jake Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Ren Y, Song S, Liu X, Yang M. Phenotypic changes in the metabolic profile and adiponectin activity during seasonal fattening and hibernation in female Daurian ground squirrels (Spermophilus dauricus). Integr Zool 2020; 17:297-310. [PMID: 33190391 DOI: 10.1111/1749-4877.12504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Seasonal hibernation has provided an opportunity to study animals' phenotypic plasticity in adaptation to changing environment. In the present study focusing on the female Daurian ground squirrel (Spermophilus dauricus)-a well demonstrated seasonal hibernator-we examined their behavioral, morphological, and metabolic changes during fattening, hibernation, and emergence. Our data indicated high levels of food intake, fat deposition, and body mass increases during fattening compared to hibernation. The levels of serum glucose and triglycerides were also higher during fattening than during hibernation and emergence. Interestingly, although squirrels showed signs of obesity and elevated triglycerides in serum during fattening, triglyceride levels in the liver and skeletal muscles remained unchanged. Our data also indicated that adiponectin levels in serum and cerebrospinal fluid were different between fattening and hibernation. Levels of adiponectin receptor 1 in the skeletal muscle remained low during fattening but peaked in late hibernation. In contrast, adiponectin receptor 2 in the liver showed a steady increase during fattening, which was followed by a significant decrease at early hibernation. Our data indicate that adiponectin may play an important role in preventing heterotopic fat accumulation in a receptor- and organ-specific manner, as well as in facilitating the switch from glucose metabolism to lipid metabolism during fattening and hibernation in female Daurian ground squirrels.
Collapse
Affiliation(s)
- Yue Ren
- College of life Sciences, Shenyang Normal University, Shenyang, China
| | - Shiyi Song
- College of life Sciences, Shenyang Normal University, Shenyang, China
| | - Xinyu Liu
- College of life Sciences, Shenyang Normal University, Shenyang, China
| | - Ming Yang
- College of life Sciences, Shenyang Normal University, Shenyang, China
| |
Collapse
|
44
|
Re-evaluation of serum leptin and adiponectin concentrations normalized by body fat mass in patients with rheumatoid arthritis. Sci Rep 2020; 10:15932. [PMID: 32985609 PMCID: PMC7522978 DOI: 10.1038/s41598-020-73068-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 01/04/2023] Open
Abstract
Leptin and adiponectin are produced mainly in adipocytes and classified as adipocytokines because of their possible involvement in inflammation and immunity. The aim of this study was to elucidate the relationships of these adipocytokines with the disease activities of RA. We examined leptin and adiponectin concentrations and inflammatory markers such as metalloproteinase-3 (MMP-3) in 136 patients with rheumatoid arthritis (RA) (26 males and 110 females, 69.6 ± 9.3 years) and 78 controls (36 males and 42 females, 66.7 ± 15.0 years). Serum leptin and adiponectin concentrations correlated positively (r = 0.565, P < 0.001) and negatively (r = –0.331, P < 0.001) to the amount of body fat, respectively. Serum leptin and adiponectin concentrations normalized by body fat mass were significantly higher in RA than those in controls [leptin, 1.24 (median) ng/mL/kg fat in RA vs. 0.76 ng/mL/kg fat in controls; adiponectin, 0.74 μg/mL/kg fat in RA vs. 0.44 μg/mL/kg fat in controls]. Normalized adiponectin concentrations correlated positively not only to the degree of bone destruction in Steinbrocker classification but also to serum MMP-3 concentrations. Normalized leptin concentrations did not correlate to the degree of bone destruction. We conclude that adiponectin but not leptin may be involved in joint damage in RA.
Collapse
|
45
|
Kazemi M, Jarrett BY, Parry SA, Thalacker-Mercer AE, Hoeger KM, Spandorfer SD, Lujan ME. Osteosarcopenia in Reproductive-Aged Women with Polycystic Ovary Syndrome: A Multicenter Case-Control Study. J Clin Endocrinol Metab 2020; 105:5866600. [PMID: 32614948 PMCID: PMC7418445 DOI: 10.1210/clinem/dgaa426] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
CONTEXT Osteosarcopenia (loss of skeletal muscle and bone mass and/or function usually associated with aging) shares pathophysiological mechanisms with polycystic ovary syndrome (PCOS). However, the relationship between osteosarcopenia and PCOS remains unclear. OBJECTIVE We evaluated skeletal muscle index% (SMI% = [appendicular muscle mass/weight (kg)] × 100) and bone mineral density (BMD) in PCOS (hyperandrogenism + oligoamenorrhea), and contrasted these musculoskeletal markers against 3 reproductive phenotypes (i): HA (hyperandrogenism + eumenorrhea) (ii); OA (normoandrogenic + oligoamenorrhea) and (iii), controls (normoandrogenic + eumenorrhea). Endocrine predictors of SMI% and BMD were evaluated across the groups. DESIGN, SETTING, AND PARTICIPANTS Multicenter case-control study of 203 women (18-48 years old) in New York State. RESULTS PCOS group exhibited reduced SMI% (mean [95% confidence interval (CI)]; 26.2% [25.1,27.3] vs 28.8% [27.7,29.8]), lower-extremity SMI% (57.6% [56.7,60.0] vs 62.5% [60.3,64.6]), and BMD (1.11 [1.08,1.14] vs 1.17 [1.14,1.20] g/cm2) compared to controls. PCOS group also had decreased upper (0.72 [0.70,0.74] vs 0.77 [0.75,0.79] g/cm2) and lower (1.13 [1.10,1.16] vs 1.19 [1.16,1.22] g/cm2) limb BMD compared to HA. Matsuda index was lower in PCOS vs controls and positively associated with SMI% in all groups (all Ps ≤ 0.05). Only controls showed associations between insulin-like growth factor (IGF) 1 and upper (r = 0.84) and lower (r = 0.72) limb BMD (all Ps < 0.01). Unlike in PCOS, IGF-binding protein 2 was associated with SMI% in controls (r = 0.45) and HA (r = 0.67), and with upper limb BMD (r = 0.98) in HA (all Ps < 0.05). CONCLUSIONS Women with PCOS exhibit early signs of osteosarcopenia when compared to controls likely attributed to disrupted insulin function. Understanding the degree of musculoskeletal deterioration in PCOS is critical for implementing targeted interventions that prevent and delay osteosarcopenia in this clinical population.
Collapse
Affiliation(s)
- Maryam Kazemi
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, Ithaca, NY, US
| | - Brittany Y Jarrett
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, Ithaca, NY, US
| | - Stephen A Parry
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, NY, US
| | - Anna E Thalacker-Mercer
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, Ithaca, NY, US
| | - Kathleen M Hoeger
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Steven D Spandorfer
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, US
| | - Marla E Lujan
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, Ithaca, NY, US
| |
Collapse
|
46
|
Andò S, Naimo GD, Gelsomino L, Catalano S, Mauro L. Novel insights into adiponectin action in breast cancer: Evidence of its mechanistic effects mediated by ERα expression. Obes Rev 2020; 21:e13004. [PMID: 32067339 DOI: 10.1111/obr.13004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/11/2022]
Abstract
This review describes the multifaceted effects of adiponectin on breast cancer cell signalling, tumour metabolism, and microenvironment. It is largely documented that low adiponectin levels are associated with an increased risk of breast cancer. However, it needs to be still clarified what are the extents of the decrease of local/intra-tumoural adiponectin concentrations, which promote breast tumour malignancy. Most of the anti-proliferative and pro-apoptotic effects induced by adiponectin have been obtained in breast cancer cells not expressing estrogen receptor alpha (ERα). Here, we will highlight recent findings demonstrating the mechanistic effects through which adiponectin is able to fuel genomic and non-genomic estrogen signalling, inhibiting LKB1/AMPK/mTOR/S6K pathway and switching energy balance. Therefore, it emerges that the reduced adiponectin levels in patients with obesity work to sustain tumour growth and progression in ERα-positive breast cancer cells. All this may contribute to remove the misleading paradigm that adiponectin univocally inhibits breast cancer cell growth and progression independently on ERα status. The latter concept, here clearly provided by pre-clinical studies, may have translational relevance adopting adiponectin as a potential therapeutic tool. Indeed, the interfering role of ERα on adiponectin action addresses how a separate assessment of adiponectin treatment needs to be considered in novel therapeutic strategies for ERα-positive and ERα-negative breast cancer.
Collapse
Affiliation(s)
- Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy.,Centro Sanitario, University of Calabria, Arcavacata di Rende, Italy
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
47
|
Circulating levels of Meteorin-like protein in polycystic ovary syndrome: A case-control study. PLoS One 2020; 15:e0231943. [PMID: 32330176 PMCID: PMC7182262 DOI: 10.1371/journal.pone.0231943] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/04/2020] [Indexed: 02/06/2023] Open
Abstract
Patients diagnosed with polycystic ovary syndrome (PCOS) are at high risk of developing a myriad of endocrinologic and metabolic derailments. Moreover, PCOS is a leading cause of habitual abortion, also known as recurrent pregnancy loss (RPL). Meteorin-like protein (Metrnl) is a newly discovered adipokine with the potential to counteract the metaflammation. This study aimed at determining the associations of serum Metrnl levels with homocysteine, hs-CRP, and some components of metabolic syndrome in PCOS-RPL and infertile PCOS patients.This case-control study was conducted in 120 PCOS patients (60 PCOS-RPL and 60 infertile) and 60 control. Serum hs-CRP and homocysteine were assessed using commercial kits, while adiponectin, Metrnl, FSH, LH, free testosterone and insulin levels were analyzed using ELISA technique. Serum Metrnl levels were found to be lower in PCOS patients when compared to controls (67.98 ± 26.66 vs. 96.47 ± 28.72 pg/mL, P <0.001)). Furthermore, serum adiponectin levels were lower, while free testosterone, fasting insulin, HOMA-IR, homocysteine, and hs-CRP were significantly higher in PCOS group compared to controls. Moreover, serum Metrnl correlated with BMI, adiponectin, and homocysteine in controls, and inversely correlated with FBG, fasting insulin, and HOMA-IR in PCOS group and subgroups. Besides, it inversely correlated with hs-CRP in control, and PCOS group and subgroups. These findings revealed a possible role of Metrnl in the pathogenesis of PCOS and RPL. Nevertheless, there is a necessity for future studies to prove this concept.
Collapse
|
48
|
Darmawan CC, Montenegro SE, Jo G, Kusumaningrum N, Lee SH, Chung JH, Mun JH. Adiponectin-Based Peptide (ADP355) Inhibits Transforming Growth Factor-β1-Induced Fibrosis in Keloids. Int J Mol Sci 2020; 21:E2833. [PMID: 32325772 PMCID: PMC7215791 DOI: 10.3390/ijms21082833] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/30/2022] Open
Abstract
Keloids, benign cutaneous overgrowths of dermal fibroblasts, are caused by pathologic scarring of wounds during healing. Current surgical and therapeutic modalities are unsatisfactory. Although adiponectin has shown an antifibrotic effect, its large size and insolubility limit its potential use in keloid treatment. We investigated the effect of a smaller and more stable adiponectin-based peptide (ADP355) on transforming growth factor β1 (TGF-β1)-induced fibrosis in a primary culture of keloid fibroblasts prepared from clinically obtained keloid samples. Xenograft of keloid tissues on athymic nude mice was used to investigate the effect of intralesional injection of ADP355. ADP355 significantly attenuated the TGF-β1-induced expression of procollagen type 1 in keloid fibroblasts (p < 0.05). Moreover, it inhibited the TGF-β1-induced phosphorylation of SMAD3 and ERK, while amplifying the phosphorylation of AMP-activated protein kinase (p < 0.05). Knockdown of adiponectin receptor 1 reversed the attenuation of procollagen expression in ADP355-treated TGF-β1-induced fibrosis (p < 0.05). ADP355 also significantly reduced the gross weight and procollagen expression of keloid tissues in xenograft mice compared to control animals. These results demonstrate the therapeutic potential of the adiponectin peptide ADP355 for keloids.
Collapse
Affiliation(s)
- Claudia C Darmawan
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Korea
| | - Sara E Montenegro
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Korea
| | - Gwanghyun Jo
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Korea
| | - Novi Kusumaningrum
- Department of Dermatology and Venereology, Diponegoro University, Semarang 50275, Indonesia
| | - Si-Hyung Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Korea
| | - Jin-Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Korea
| | - Je-Ho Mun
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
49
|
Benavente KSK, Palmer RF, Royall DR. Serum Adiponectin is Related to Dementia. J Gerontol A Biol Sci Med Sci 2020; 75:779-783. [PMID: 31112230 PMCID: PMC11491736 DOI: 10.1093/gerona/glz102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The adipokine adiponectin (APN)'s role in Alzheimer's disease (AD) is controversial. Some studies suggest APN is neuroprotective while others propose it has harmful effects. We have used Multiple Indicators Multiple Causes (MIMIC) models to evaluate the effects of serum protein biomarkers on cognitive performance in the Texas Alzheimer's Research and Care Consortium (TARCC) (Royall DR, Bishnoi RJ, Palmer RF. Serum IGF-BP2 strongly moderates age's effect on cognition: a MIMIC analysis. Neurobiol Aging. 2015;36:2232-2240; Bishnoi RJ, Palmer RF, Royall DR. Vitamin D binding protein as a serum biomarker of Alzheimer's disease. J Alzheimers Dis. 2015;43:37-45; Bishnoi RJ, Palmer RF, Royall DR. Serum interleukin (IL)-15 as a biomarker of Alzheimer's disease. PLoS One. 2015;10:e0117282). METHODS MIMIC models were constructed and replicated in randomly selected 50% splits of TARCC's data (Group 1 N = 1,691; Group 2 N = 1,690) and used to evaluate the relationship between serum APN levels and cognition. Our approach has been to divide general intelligence (Spearman's g) (Spearman C. The Abilities of Man: Their Nature and Measurement. 1932) into two latent variables, δ (ie, a dementia-specific phenotype representing the disabling fraction of cognitive variance) and g prime (g') (ie, the residual non-disabling fraction). Only effects on δ are likely to be dementing. RESULTS Serum APN was significantly related to δ scores (r = .10, p = .015). APN had no significant effect on g' (r = -.25, p = .66), nor did it have any independent direct effects on cognitive performance. These results were replicated across random subsets (ΔCHISQ = 2.8(7), p > .90). CONCLUSIONS APN's effect on cognition is mediated through intelligence (ie, δ), likely to be disabling, and therefore to mediate one or more dementing processes. We have previously shown APN to partially mediate age's-specific effect on δ (Royall DR, Al-Rubaye S, Bishnoi R, Palmer RF. Serum protein mediators of dementia and aging proper. Aging (Albany NY). 2016;8:3241-3254). However, because the current model is age adjusted, APN must mediate one or more additional age-independent dementing process(es), possibly AD.
Collapse
Affiliation(s)
| | - Raymond F Palmer
- Family and Community Medicine, UT Health San Antonio, San Antonio, Texas
| | - Donald R Royall
- Department of Psychiatry, UT Health San Antonio, San Antonio, Texas
- Family and Community Medicine, UT Health San Antonio, San Antonio, Texas
- Audie L. Murphy Division GRECC, The South Texas Veterans’ Health System, San Antonio, Texas
| |
Collapse
|
50
|
Chen R, Shu Y, Zeng Y. Links Between Adiponectin and Dementia: From Risk Factors to Pathophysiology. Front Aging Neurosci 2020; 11:356. [PMID: 31969813 PMCID: PMC6960116 DOI: 10.3389/fnagi.2019.00356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
With the aging population, dementia is becoming one of the most serious and troublesome global public health issues. Numerous studies have been seeking for effective strategies to delay or block its progression, but with little success. In recent years, adiponectin (APN) as one of the most abundant and multifunctional adipocytokines related to anti-inflammation, regulating glycogen metabolism and inhibiting insulin resistance (IR) and anti-atherosclerosis, has attracted widespread attention. In this article, we summarize recent studies that have contributed to a better understanding of the extent to which APN influences the risks of developing dementia as well as its pathophysiological progression. In addition, some controversial results interlinked with its effects on cognitive dysfunction diseases will be critically discussed. Ultimately, we aim to gain a novel insight into the pleiotropic effects of APN levels in circulation and suggest potential therapeutic target and future research strategies.
Collapse
Affiliation(s)
- RuiJuan Chen
- Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Shu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zeng
- Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|