1
|
Smail MA, Lenz KM. Developmental functions of microglia: Impact of psychosocial and physiological early life stress. Neuropharmacology 2024; 258:110084. [PMID: 39025401 DOI: 10.1016/j.neuropharm.2024.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Microglia play numerous important roles in brain development. From early embryonic stages through adolescence, these immune cells influence neuronal genesis and maturation, guide connectivity, and shape brain circuits. They also interact with other glial cells and structures, influencing the brain's supportive microenvironment. While this central role makes microglia essential, it means that early life perturbations to microglia can have widespread effects on brain development, potentially resulting in long-lasting behavioral impairments. Here, we will focus on the effects of early life psychosocial versus physiological stressors in rodent models. Psychosocial stress refers to perceived threats that lead to stress axes activation, including prenatal stress, or chronic postnatal stress, including maternal separation and resource scarcity. Physiological stress refers to physical threats, including maternal immune activation, postnatal infection, and traumatic brain injury. Differing sources of early life stress have varied impacts on microglia, and these effects are moderated by factors such as developmental age, brain region, and sex. Overall, these stressors appear to either 1) upregulate basal microglia numbers and activity throughout the lifespan, while possibly blunting their responsivity to subsequent stressors, or 2) shift the developmental curve of microglia, resulting in differential timing and function, impacting the critical periods they govern. Either could contribute to behavioral dysfunctions that occur after the resolution of early life stress. Exploring how different stressors impact microglia, as well as how multiple stressors interact to alter microglia's developmental functions, could deepen our understanding of how early life stress changes the brain's developmental trajectory. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Marissa A Smail
- Department of Psychology, Ohio State University, Columbus, OH, USA.
| | - Kathryn M Lenz
- Department of Psychology, Ohio State University, Columbus, OH, USA; Department of Neuroscience, Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Theoharides TC, Twahir A, Kempuraj D. Mast cells in the autonomic nervous system and potential role in disorders with dysautonomia and neuroinflammation. Ann Allergy Asthma Immunol 2024; 132:440-454. [PMID: 37951572 DOI: 10.1016/j.anai.2023.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/16/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Mast cells (MC) are ubiquitous in the body, and they are critical for not only in allergic diseases but also in immunity and inflammation, including having potential involvement in the pathophysiology of dysautonomias and neuroinflammatory disorders. MC are located perivascularly close to nerve endings and sites such as the carotid bodies, heart, hypothalamus, the pineal gland, and the adrenal gland that would allow them not only to regulate but also to be affected by the autonomic nervous system (ANS). MC are stimulated not only by allergens but also many other triggers including some from the ANS that can affect MC release of neurosensitizing, proinflammatory, and vasoactive mediators. Hence, MC may be able to regulate homeostatic functions that seem to be dysfunctional in many conditions, such as postural orthostatic tachycardia syndrome, autism spectrum disorder, myalgic encephalomyelitis/chronic fatigue syndrome, and Long-COVID syndrome. The evidence indicates that there is a possible association between these conditions and diseases associated with MC activation. There is no effective treatment for any form of these conditions other than minimizing symptoms. Given the many ways MC could be activated and the numerous mediators released, it would be important to develop ways to inhibit stimulation of MC and the release of ANS-relevant mediators.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida; Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts.
| | - Assma Twahir
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida
| |
Collapse
|
3
|
Zhou Y, Pang M, Ma Y, Lu L, Zhang J, Wang P, Li Q, Yang F. Cellular and Molecular Roles of Immune Cells in the Gut-Brain Axis in Migraine. Mol Neurobiol 2024; 61:1202-1220. [PMID: 37695471 DOI: 10.1007/s12035-023-03623-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Migraine is a complex and multi-system dysfunction. The realization of its pathophysiology and diagnosis is developing rapidly. Migraine has been linked to gastrointestinal disorders such as irritable bowel syndrome and celiac disease. There is also direct and indirect evidence for a relationship between migraine and the gut-brain axis, but the exact mechanism is not yet explained. Studies have shown that this interaction appears to be influenced by a variety of factors, such as inflammatory mediators, gut microbiota, neuropeptides, and serotonin pathways. Recent studies suggest that immune cells can be the potential tertiary structure between migraine and gut-brain axis. As the hot interdisciplinary subject, the relationship between immunology and gastrointestinal tract is now gradually clear. Inflammatory signals are involved in cellular and molecular responses that link central and peripheral systems. The gastrointestinal symptoms associated with migraine and experiments associated with antibiotics have shown that the intestinal microbiota is abnormal during the attacks. In this review, we focus on the mechanism of migraine and gut-brain axis, and summarize the tertiary structure between immune cells, neural network, and gastrointestinal tract.
Collapse
Affiliation(s)
- Yichen Zhou
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Miaoyi Pang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yiran Ma
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lingling Lu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jiannan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Peipei Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Zheng Y, Fan L, Fang Z, Liu Z, Chen J, Zhang X, Wang Y, Zhang Y, Jiang L, Chen Z, Hu W. Postsynaptic histamine H 3 receptors in ventral basal forebrain cholinergic neurons modulate contextual fear memory. Cell Rep 2023; 42:113073. [PMID: 37676764 DOI: 10.1016/j.celrep.2023.113073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/16/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
Overly strong fear memories can cause pathological conditions. Histamine H3 receptor (H3R) has been viewed as an optimal drug target for CNS disorders, but its role in fear memory remains elusive. We find that a selective deficit of H3R in cholinergic neurons, but not in glutamatergic neurons, enhances freezing level during contextual fear memory retrieval without affecting cued memory. Consistently, genetically knocking down H3R or chemogenetically activating cholinergic neurons in the ventral basal forebrain (vBF) mimics this enhanced fear memory, whereas the freezing augmentation is rescued by re-expressing H3R or chemogenetic inhibition of vBF cholinergic neurons. Spatiotemporal regulation of H3R by a light-sensitive rhodopsin-H3R fusion protein suggests that postsynaptic H3Rs in vBF cholinergic neurons, but not presynaptic H3Rs of cholinergic projections in the dorsal hippocampus, are responsible for modulating contextual fear memory. Therefore, precise modulation of H3R in a cell-type- and subcellular-location-specific manner should be explored for pathological fear memory.
Collapse
Affiliation(s)
- Yanrong Zheng
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lishi Fan
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhuowen Fang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zonghan Liu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahui Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiangnan Zhang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Wang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yan Zhang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lei Jiang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Weiwei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Lin CCJ, Herisson F, Le H, Jaafar N, Chetal K, Oram MK, Flynn KL, Gavrilles EP, Sadreyev RI, Schiffino FL, Tanzi RE. Mast cell deficiency improves cognition and enhances disease-associated microglia in 5XFAD mice. Cell Rep 2023; 42:113141. [PMID: 37713312 PMCID: PMC10634538 DOI: 10.1016/j.celrep.2023.113141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 06/20/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023] Open
Abstract
Emerging evidence suggests that peripheral immune cells contribute to Alzheimer's disease (AD) neuropathogenesis. Among these, mast cells are known for their functions in allergic reactions and neuroinflammation; however, little is known about their role in AD. Here, we crossed 5XFAD mice with mast cell-deficient strains and observed the effects on AD-related neuropathology and cognitive impairment. We found that mast cell depletion improved contextual fear conditioning in 5XFAD mice without affecting cued fear conditioning, anxiety-like behavior, or amyloid burden. Furthermore, mast cell depletion led to an upregulation of transcriptomic signatures for putatively protective disease-associated microglia and resulted in reduced markers indicative of reactive astrocytes. We hypothesize a system of bidirectional communication between dural mast cells and the brain, where mast cells respond to signals from the brain environment by expressing immune-regulatory mediators, impacting cognition and glial cell function. These findings highlight mast cells as potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Chih-Chung Jerry Lin
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Fanny Herisson
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Hoang Le
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Nader Jaafar
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Kashish Chetal
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mary K Oram
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Kelly L Flynn
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Evan P Gavrilles
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Felipe L Schiffino
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| |
Collapse
|
6
|
Lin L, Liang Y, Cao T, Huang Y, Li W, Li J, Wang J, Peng X, Ge Y, Li Y, Li L. Transcriptome profiling and ceRNA network of small extracellular vesicles from resting and degranulated mast cells. Epigenomics 2023; 15:845-862. [PMID: 37846550 DOI: 10.2217/epi-2023-0175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Aim: This study aimed to investigate the transcriptomic characteristics and interactions between competitive endogenous RNAs (ceRNAs) within small extracellular vesicles (sEVs) derived from mast cells (MCs). Methods: Transcriptome sequencing analyzed lncRNA, circRNA and mRNA expression in resting and degranulated MC-derived sEVs. Constructed ceRNA regulatory network through correlation analysis and target gene prediction. Results: Differentially expressed 1673 mRNAs, 173 lncRNAs and 531 circRNAs were observed between resting and degranulated MCs-derived sEVs. Enrichment analysis revealed involvement of neurodegeneration, infection and tumor pathways. CeRNA networks included interactions between lncRNA-miRNA, circRNA-miRNA and miRNA-mRNA, targeting genes in the hippo and wnt signaling pathways linked to tumor immune regulation. Conclusion: This study provides valuable insights into MC-sEV molecular mechanisms, offering significant data resources for further investigations.
Collapse
Affiliation(s)
- Lihui Lin
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Yuting Liang
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University Suzhou, Jiangsu, 215006, P.R. China
| | - Tianyu Cao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Yuji Huang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Weize Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Jia Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Juan Wang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Xia Peng
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Yiqin Ge
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P.R. China
| | - Yanning Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Li Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| |
Collapse
|
7
|
Theoharides TC, Kempuraj D. Role of SARS-CoV-2 Spike-Protein-Induced Activation of Microglia and Mast Cells in the Pathogenesis of Neuro-COVID. Cells 2023; 12:688. [PMID: 36899824 PMCID: PMC10001285 DOI: 10.3390/cells12050688] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). About 45% of COVID-19 patients experience several symptoms a few months after the initial infection and develop post-acute sequelae of SARS-CoV-2 (PASC), referred to as "Long-COVID," characterized by persistent physical and mental fatigue. However, the exact pathogenetic mechanisms affecting the brain are still not well-understood. There is increasing evidence of neurovascular inflammation in the brain. However, the precise role of the neuroinflammatory response that contributes to the disease severity of COVID-19 and long COVID pathogenesis is not clearly understood. Here, we review the reports that the SARS-CoV-2 spike protein can cause blood-brain barrier (BBB) dysfunction and damage neurons either directly, or via activation of brain mast cells and microglia and the release of various neuroinflammatory molecules. Moreover, we provide recent evidence that the novel flavanol eriodictyol is particularly suited for development as an effective treatment alone or together with oleuropein and sulforaphane (ViralProtek®), all of which have potent anti-viral and anti-inflammatory actions.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
8
|
Zhu J, Ma R, Li G. Drug repurposing: Clemastine fumarate and neurodegeneration. Biomed Pharmacother 2023; 157:113904. [PMID: 36370521 DOI: 10.1016/j.biopha.2022.113904] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
Neurodegenerative diseases have been a weighty problem in elder people who might be stricken with motor or/and cognition defects with lower life quality urging for effective treatment. Drugs are costly from development to market, so that drug repurposing, exploration of existing drugs for novel therapeutic purposes, becomes a wise and popular strategy to raise new treatment options. Clemastine fumarate, different from anti-allergic effect as H1 histamine antagonist, was screened and identified as promising drug for remyelination and autophagy enhancement. Surprisingly, fumarate salt also has similar effect. Hence, whether clemastine fumarate would make a protective impact on neurodegenerative diseases and what contribution fumarate probably makes are intriguing to us. In this review, we summarize the potential mechanism surrounding clemastine fumarate in current literature, and try to distinguish independent or synergistic effect between clemastine and fumarate, aiming to find worthwhile research direction for neurodegeneration diseases.
Collapse
Affiliation(s)
- Jiahui Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
9
|
Matisz C, Gruber A. Neuroinflammatory remodeling of the anterior cingulate cortex as a key driver of mood disorders in gastrointestinal disease and disorders. Neurosci Biobehav Rev 2022; 133:104497. [DOI: 10.1016/j.neubiorev.2021.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
|
10
|
Luan M, Wang H, Wang J, Zhang X, Zhao F, Liu Z, Meng Q. Advances in Anti-inflammatory Activity, Mechanism and Therapeutic Application of Ursolic Acid. Mini Rev Med Chem 2022; 22:422-436. [PMID: 34517797 DOI: 10.2174/1389557521666210913113522] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 06/08/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
In vivo and in vitro studies reveal that Ursolic Acid (UA) is able to counteract endogenous and exogenous inflammatory stimuli and has favorable anti-inflammatory effects. The antiinflammatory mechanisms mainly include decreasing the release of histamine in mast cells, suppressing the activities of lipoxygenase, cyclooxygenase and phospholipase, and reducing the production of nitric oxide and reactive oxygen species, blocking the activation of the signal pathway, downregulating the expression of inflammatory factors, and inhibiting the activities of elastase and complement. These mechanisms can open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle inflammatory diseases, such as arthritis, atherosclerosis, neuroinflammation, liver diseases, kidney diseases, diabetes, dermatitis, bowel diseases, cancer. The anti-inflammatory activity, the anti-inflammatory mechanism of ursolic acid and its therapeutic applications are reviewed in this paper.
Collapse
Affiliation(s)
- Mingzhu Luan
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Huiyun Wang
- College of Pharmacy, Jining Medical University, Shandong Province, 276826, P.R. China
| | - Jiazhen Wang
- The Second Hospital of Anhui Medical University, Anhui Province, 230601, P.R. China
| | - Xiaofan Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Fenglan Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Zongliang Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Qingguo Meng
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| |
Collapse
|
11
|
Abstract
Microglia, a category of glial cells in the central nervous system (CNS), have attracted much attention because of their important role in neuroinflammation. Many translational studies are currently ongoing to discover novel drugs targeting microglia for the treatment of various CNS disorders, such as Alzheimer's disease, Parkinson's disease (PD), and depression. Recent studies have shown that brain histamine, a neurotransmitter essential for the regulation of diverse brain functions, controls glial cells and neurons. In vitro studies using primary microglia and microglial cell lines have reported that histamine receptors are expressed in microglia and control microglial functions, including chemotaxis, migration, cytokine secretion, and autophagy. In vivo studies have demonstrated that histamine-related reagents could ameliorate abnormal symptoms in animal models of human diseases, such as amyotrophic lateral sclerosis (ALS), PD, and brain ischemia. Several human studies have revealed alterations in histamine receptor levels in ALS and PD, emphasizing the importance of the CNS histamine system, including histamine-dependent microglial modulation, as a therapeutic target for these disorders. In this review article, we summarize histamine-related research focusing on microglial functions.
Collapse
Affiliation(s)
- Tomomitsu Iida
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
12
|
Research Progress on the Role of Inflammatory Mechanisms in the Development of Postoperative Cognitive Dysfunction. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3883204. [PMID: 34869762 PMCID: PMC8642009 DOI: 10.1155/2021/3883204] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/19/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
Postoperative cognitive dysfunction (POCD), as one of the common postoperative complications, mainly occurs after surgery and anesthesia, especially in the elderly. It refers to cognitive function changes such as decreased learning and memory ability and inability to concentrate. In severe cases, there could be personality changes and a decline in social behavior. At present, a great deal of research had been carried out on POCD, but its specific mechanism remains unclear. The release of peripheral inflammation-related factors, the degradation and destruction of the blood-brain barrier, the occurrence of central inflammation, and the neuronal apoptosis and synaptic loss could be promoted by neuroinflammation indicating that inflammatory mechanisms may play key roles in the occurrence of POCD.
Collapse
|
13
|
The 3-iodothyronamine (T1AM) and the 3-iodothyroacetic acid (TA1) indicate a novel connection with the histamine system for neuroprotection. Eur J Pharmacol 2021; 912:174606. [PMID: 34717926 DOI: 10.1016/j.ejphar.2021.174606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
The 3-iodothyronamine (T1AM) and 3-iodothryoacetic acid (TA1), are endogenous occurring compounds structurally related with thyroid hormones (THs, the pro-hormone T4 and the active hormone T3) initially proposed as possible mediators of the rapid effects of T3. However, after years from their identification, the physio-pathological meaning of T1AM and TA1 tissue levels remains an unsolved issue while pharmacological evidence indicates both compounds promote in rodents central and peripheral effects with mechanisms which remain mostly elusive. Pharmacodynamics of T1AM includes the recognition of G-coupled receptors, ion channels but also biotransformation into an active metabolite, i.e. the TA1. Furthermore, long term T1AM treatment associates with post-translational modifications of cell proteins. Such array of signaling may represent an added value, rather than a limit, equipping T1AM to play different functions depending on local expression of targets and enzymes involved in its biotransformation. Up to date, no information regarding TA1 mechanistic is available. We here review some of the main findings describing effects of T1AM (and TA1) which suggest these compounds interplay with the histaminergic system. These data reveal T1AM and TA1 are part of a network of signals involved in neuronal plasticity including neuroprotection and suggest T1AM and TA1 as lead compounds for a novel class of atypical psychoactive drugs.
Collapse
|
14
|
Mendoza RP, Anderson CC, Fudge DH, Roede JR, Brown JM. Metabolic Consequences of IgE- and Non-IgE-Mediated Mast Cell Degranulation. THE JOURNAL OF IMMUNOLOGY 2021; 207:2637-2648. [PMID: 34732470 DOI: 10.4049/jimmunol.2001278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/27/2021] [Indexed: 12/27/2022]
Abstract
Mast cells are important effector cells in the immune system and undergo activation (i.e., degranulation) by two major mechanisms: IgE-mediated and non-IgE-mediated mechanisms. Although IgE-mediated degranulation is well researched, the cellular mechanisms of non-IgE-mediated mast cell activation are poorly understood despite the potential to induce similar pathophysiological effects. To better understand non-IgE mast cell degranulation, we characterized and compared cellular metabolic shifts across several mechanisms of degranulation (allergen-induced [IgE-mediated], 20 nm of silver nanoparticle-mediated [non-IgE], and compound 48/80-mediated [non-IgE]) in murine bone marrow-derived mast cells. All treatments differentially impacted mitochondrial activity and glucose uptake, suggesting diverging metabolic pathways between IgE- and non-IgE-mediated degranulation. Non-IgE treatments depleted mast cells' glycolytic reserve, and compound 48/80 further inhibited the ability to maximize mitochondrial respiration. This cellular reprogramming may be indicative of a stress response with non-IgE treatments. Neither of these outcomes occurred with IgE-mediated degranulation, hinting at a separate programmed response. Fuel flexibility between the three primary mitochondrial nutrient sources was also eliminated in activated cells and this was most significant in non-IgE-mediated degranulation. Lastly, metabolomics analysis of bone marrow-derived mast cells following degranulation was used to compare general metabolite profiles related to energetic pathways. IgE-mediated degranulation upregulated metabolite concentrations for the TCA cycle and glycolysis compared with other treatments. In conclusion, mast cell metabolism varies significantly between IgE- and non-IgE-mediated degranulation suggesting novel cell regulatory mechanisms are potentially driving unexplored pathways of mast cell degranulation.
Collapse
Affiliation(s)
- Ryan P Mendoza
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Colin C Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Dylan H Fudge
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - James R Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
15
|
Wang YJ, Downey MA, Choi S, Shoup TM, Elmaleh DR. Cromolyn platform suppresses fibrosis and inflammation, promotes microglial phagocytosis and neurite outgrowth. Sci Rep 2021; 11:22161. [PMID: 34772945 PMCID: PMC8589953 DOI: 10.1038/s41598-021-00465-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative diseases are characterized by chronic neuroinflammation and may perpetuate ongoing fibrotic reactions within the central nervous system. Unfortunately, there is no therapeutic available that treats neurodegenerative inflammation and its sequelae. Here we utilize cromolyn, a mast cell inhibitor with anti-inflammatory capabilities, and its fluorinated analogue F-cromolyn to study fibrosis-related protein regulation and secretion downstream of neuroinflammation and their ability to promote microglial phagocytosis and neurite outgrowth. In this report, RNA-seq analysis shows that administration of the pro-inflammatory cytokine TNF-α to HMC3 human microglia results in a robust upregulation of fibrosis-associated genes. Subsequent treatment with cromolyn and F-cromolyn resulted in reduced secretion of collagen XVIII, fibronectin, and tenascin-c. Additionally, we show that cromolyn and F-cromolyn reduce pro-inflammatory proteins PLP1, PELP1, HSP90, IL-2, GRO-α, Eotaxin, and VEGF-Α, while promoting secretion of anti-inflammatory IL-4 in HMC3 microglia. Furthermore, cromolyn and F-cromolyn augment neurite outgrowth in PC12 neuronal cells in concert with nerve growth factor. Treatment also differentially altered secretion of neurogenesis-related proteins TTL, PROX1, Rab35, and CSDE1 in HMC3 microglia. Finally, iPSC-derived human microglia more readily phagocytose Aβ42 with cromolyn and F-cromolyn relative to controls. We propose the cromolyn platform targets multiple proteins upstream of PI3K/Akt/mTOR, NF-κB, and GSK-3β signaling pathways to affect cytokine, chemokine, and fibrosis-related protein expression.
Collapse
Affiliation(s)
| | | | - Sungwoon Choi
- Department of New Drug Discovery, Chungnam National University, Daejeon, South Korea
| | - Timothy M Shoup
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129-2060, USA
| | - David R Elmaleh
- AZTherapies, Inc., Boston, MA, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129-2060, USA.
| |
Collapse
|
16
|
Traumatic Brain Injury: An Age-Dependent View of Post-Traumatic Neuroinflammation and Its Treatment. Pharmaceutics 2021; 13:pharmaceutics13101624. [PMID: 34683918 PMCID: PMC8537402 DOI: 10.3390/pharmaceutics13101624] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability all over the world. TBI leads to (1) an inflammatory response, (2) white matter injuries and (3) neurodegenerative pathologies in the long term. In humans, TBI occurs most often in children and adolescents or in the elderly, and it is well known that immune responses and the neuroregenerative capacities of the brain, among other factors, vary over a lifetime. Thus, age-at-injury can influence the consequences of TBI. Furthermore, age-at-injury also influences the pharmacological effects of drugs. However, the post-TBI inflammatory, neuronal and functional consequences have been mostly studied in experimental young adult animal models. The specificity and the mechanisms underlying the consequences of TBI and pharmacological responses are poorly understood in extreme ages. In this review, we detail the variations of these age-dependent inflammatory responses and consequences after TBI, from an experimental point of view. We investigate the evolution of microglial, astrocyte and other immune cells responses, and the consequences in terms of neuronal death and functional deficits in neonates, juvenile, adolescent and aged male animals, following a single TBI. We also describe the pharmacological responses to anti-inflammatory or neuroprotective agents, highlighting the need for an age-specific approach to the development of therapies of TBI.
Collapse
|
17
|
Successful and Unsuccessful Brain Aging in Pets: Pathophysiological Mechanisms behind Clinical Signs and Potential Benefits from Palmitoylethanolamide Nutritional Intervention. Animals (Basel) 2021; 11:ani11092584. [PMID: 34573549 PMCID: PMC8470385 DOI: 10.3390/ani11092584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Cognitive dysfunction syndrome is a common yet underreported neurodegenerative disorder of elderly dogs and cats and a natural model of human Alzheimer’s disease. The increasingly expanding life expectancy means a larger proportion of affected animals in the coming decades. Although far from being curative, available treatments are more effective the sooner they are started. Educating veterinary practitioners and owners in the early recognition of age-related cognitive dysfunction is thus mandatory. By shedding light on the mechanism underlying the disease, novel and more effective approaches might be developed. Emerging evidence shows that successful and unsuccessful brain aging share a common underlying mechanism that is neuroinflammation. This process involves astrocytes, microglia, and mast cells and has a restorative homeostatic intent. However, for reasons not fully elucidated yet, neuroinflammation can also exert detrimental consequences substantially contributing to neurodegeneration. Here we summarize the evidence accumulated so far on the pathogenic role of neuroinflammation in the onset and progression of age-related neurodegenerative disorders, such as Alzheimer’s disease. The potential benefit of palmitoylethanolamide dietary intervention in rebalancing neuroinflammation and exerting neuroprotection is also discussed. Abstract Canine and feline cognitive dysfunction syndrome is a common neurodegenerative disorder of old age and a natural model of human Alzheimer’s disease. With the unavoidable expanding life expectancy, an increasing number of small animals will be affected. Although there is no cure, early detection and intervention are vitally important to delay cognitive decline. Knowledge of cellular and molecular mechanisms underlying disease onset and progression is an equally decisive factor for developing effective approaches. Uncontrolled neuroinflammation, orchestrated in the central nervous system mainly by astrocytes, microglia, and resident mast cells, is currently acknowledged as a hallmark of neurodegeneration. This has prompted scientists to find a way to rebalance the altered crosstalk between these cells. In this context, great emphasis has been given to the role played by the expanded endocannabinoid system, i.e., endocannabinoidome, because of its prominent role in physiological and pathological neuroinflammation. Within the endocannabinoidome, great attention has been paid to palmitoylethanolamide due to its safe and pro-homeostatic effects. The availability of new ultramicronized formulations highly improved the oral bioavailability of palmitoylethanolamide, paving the way to its dietary use. Ultramicronized palmitoylethanolamide has been repeatedly tested in animal models of age-related neurodegeneration with promising results. Data accumulated so far suggest that supplementation with ultramicronized palmitoylethanolamide helps to accomplish successful brain aging.
Collapse
|
18
|
Salcman B, Affleck K, Bulfone-Paus S. P2X Receptor-Dependent Modulation of Mast Cell and Glial Cell Activities in Neuroinflammation. Cells 2021; 10:cells10092282. [PMID: 34571930 PMCID: PMC8471135 DOI: 10.3390/cells10092282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 11/27/2022] Open
Abstract
Localisation of mast cells (MCs) at the abluminal side of blood vessels in the brain favours their interaction with glial cells, neurons, and endothelial cells, resulting in the activation of these cells and the release of pro-inflammatory mediators. In turn, stimulation of glial cells, such as microglia, astrocytes, and oligodendrocytes may result in the modulation of MC activities. MCs, microglia, astrocytes, and oligodendrocytes all express P2X receptors (P2XRs) family members that are selectively engaged by ATP. As increased concentrations of extracellular adenosine 5′-triphosphate (ATP) are present in the brain in neuropathological conditions, P2XR activation in MCs and glial cells contributes to the control of their communication and amplification of the inflammatory response. In this review we discuss P2XR-mediated MC activation, its bi-directional effect on microglia, astrocytes and oligodendrocytes and role in neuroinflammation.
Collapse
Affiliation(s)
- Barbora Salcman
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK;
| | - Karen Affleck
- GlaxoSmithKline, Immunology Research Unit, Stevenage SG1 2NY, UK;
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK;
- Correspondence:
| |
Collapse
|
19
|
Theoharides TC. Ways to Address Perinatal Mast Cell Activation and Focal Brain Inflammation, including Response to SARS-CoV-2, in Autism Spectrum Disorder. J Pers Med 2021; 11:860. [PMID: 34575637 PMCID: PMC8465360 DOI: 10.3390/jpm11090860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023] Open
Abstract
The prevalence of autism spectrum disorder (ASD) continues to increase, but no distinct pathogenesis or effective treatment are known yet. The presence of many comorbidities further complicates matters, making a personalized approach necessary. An increasing number of reports indicate that inflammation of the brain leads to neurodegenerative changes, especially during perinatal life, "short-circuiting the electrical system" in the amygdala that is essential for our ability to feel emotions, but also regulates fear. Inflammation of the brain can result from the stimulation of mast cells-found in all tissues including the brain-by neuropeptides, stress, toxins, and viruses such as SARS-CoV-2, leading to the activation of microglia. These resident brain defenders then release even more inflammatory molecules and stop "pruning" nerve connections, disrupting neuronal connectivity, lowering the fear threshold, and derailing the expression of emotions, as seen in ASD. Many epidemiological studies have reported a strong association between ASD and atopic dermatitis (eczema), asthma, and food allergies/intolerance, all of which involve activated mast cells. Mast cells can be triggered by allergens, neuropeptides, stress, and toxins, leading to disruption of the blood-brain barrier (BBB) and activation of microglia. Moreover, many epidemiological studies have reported a strong association between stress and atopic dermatitis (eczema) during gestation, which involves activated mast cells. Both mast cells and microglia can also be activated by SARS-CoV-2 in affected mothers during pregnancy. We showed increased expression of the proinflammatory cytokine IL-18 and its receptor, but decreased expression of the anti-inflammatory cytokine IL-38 and its receptor IL-36R, only in the amygdala of deceased children with ASD. We further showed that the natural flavonoid luteolin is a potent inhibitor of the activation of both mast cells and microglia, but also blocks SARS-CoV-2 binding to its receptor angiotensin-converting enzyme 2 (ACE2). A treatment approach should be tailored to each individual patient and should address hyperactivity/stress, allergies, or food intolerance, with the introduction of natural molecules or drugs to inhibit mast cells and microglia, such as liposomal luteolin.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Suite 304, Boston, MA 02111, USA
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
| |
Collapse
|
20
|
Carthy E, Ellender T. Histamine, Neuroinflammation and Neurodevelopment: A Review. Front Neurosci 2021; 15:680214. [PMID: 34335160 PMCID: PMC8317266 DOI: 10.3389/fnins.2021.680214] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
The biogenic amine, histamine, has been shown to critically modulate inflammatory processes as well as the properties of neurons and synapses in the brain, and is also implicated in the emergence of neurodevelopmental disorders. Indeed, a reduction in the synthesis of this neuromodulator has been associated with the disorders Tourette's syndrome and obsessive-compulsive disorder, with evidence that this may be through the disruption of the corticostriatal circuitry during development. Furthermore, neuroinflammation has been associated with alterations in brain development, e.g., impacting synaptic plasticity and synaptogenesis, and there are suggestions that histamine deficiency may leave the developing brain more vulnerable to proinflammatory insults. While most studies have focused on neuronal sources of histamine it remains unclear to what extent other (non-neuronal) sources of histamine, e.g., from mast cells and other sources, can impact brain development. The few studies that have started exploring this in vitro, and more limited in vivo, would indicate that non-neuronal released histamine and other preformed mediators can influence microglial-mediated neuroinflammation which can impact brain development. In this Review we will summarize the state of the field with regard to non-neuronal sources of histamine and its impact on both neuroinflammation and brain development in key neural circuits that underpin neurodevelopmental disorders. We will also discuss whether histamine receptor modulators have been efficacious in the treatment of neurodevelopmental disorders in both preclinical and clinical studies. This could represent an important area of future research as early modulation of histamine from neuronal as well as non-neuronal sources may provide novel therapeutic targets in these disorders.
Collapse
Affiliation(s)
- Elliott Carthy
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Tommas Ellender
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
21
|
Resveratrol, Metabolic Dysregulation, and Alzheimer's Disease: Considerations for Neurogenerative Disease. Int J Mol Sci 2021; 22:ijms22094628. [PMID: 33924876 PMCID: PMC8125227 DOI: 10.3390/ijms22094628] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) has traditionally been discussed as a disease where serious cognitive decline is a result of Aβ-plaque accumulation, tau tangle formation, and neurodegeneration. Recently, it has been shown that metabolic dysregulation observed with insulin resistance and type-2 diabetes actively contributes to the progression of AD. One of the pathologies linking metabolic disease to AD is the release of inflammatory cytokines that contribute to the development of brain neuroinflammation and mitochondrial dysfunction, ultimately resulting in amyloid-beta peptide production and accumulation. Improving these metabolic impairments has been shown to be effective at reducing AD progression and improving cognitive function. The polyphenol resveratrol (RSV) improves peripheral metabolic disorders and may provide similar benefits centrally in the brain. RSV reduces inflammatory cytokine release, improves mitochondrial energetic function, and improves Aβ-peptide clearance by activating SIRT1 and AMPK. RSV has also been linked to improved cognitive function; however, the mechanisms of action are less defined. However, there is evidence to suggest that chronic RSV-driven AMPK activation may be detrimental to synaptic function and growth, which would directly impact cognition. This review will discuss the benefits and adverse effects of RSV on the brain, highlighting the major signaling pathways and some of the gaps surrounding the use of RSV as a treatment for AD.
Collapse
|
22
|
Yu Z, Liu Y, Tian M, Zhang L, Cheng H, Zhu S, Li W. Inhibitory effect of desflurane on degranulation of mast cells induced by lateral ventricular injection of stimulator-C48/80 in C57BL/6 male mice. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211000891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inhalation of anesthetic agents have been observed to confer neuroprotection for decades. The present study was intended to determine whether desflurane (DES) prohibits mast cells (MCs) from degranulation induced by lateral ventricular injection (LVC) with Compound 48/80 (C48/80) in C57BL/6. Total 100 mice were recruited to this study, but only 88 male mice (20–24 weeks) were survived from the procedure, and randomized and allocated into four groups: (A) the saline group; (B) the C48/80 group; (C) the sodium cromoglycate (CRO + C48/80) group; (D) 7.5% DES preconditioning for 2 h + C48/80 lateral ventricular injection (DES + C48/80) group. The slices of mice brain thalamus were performed for toluidine blue staining (MCs) and immunochemistry (fluorescence of Iba1 and GFAP, respectively), and brain tissues were extracted to probe IL-6, TNF-α, NF-κB (p65), and TLR4 against GAPDH by western blotting. Our results demonstrated that administration of C48/80 provoked degranulation of mast cells at thalamus, increasing the fluorescence intensities of Iba1 and GFAP, and over-expressing IL-6, TNF-α, NF-κB(p65), and TLR4. However, pre-conditioning inhalation of DES prohibited MCs from degranulation, diminishing the fluorescent intensities of Iba1 and GFAP, decreasing expressed levels of IL-6, TNF-α, NF-κB(p65), as well as TLR4. It suggests inhalation DES could inhibit the neuroinflammation and deactivate glial and astrocytes via direct prohibiting degranulation of MCs at thalamus in the central nervous system (CNS).
Collapse
Affiliation(s)
- ZhiYang Yu
- Department of Anesthesiology of Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Yang Liu
- Department of Anesthesiology of Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Mi Tian
- Department of Anesthesiology of Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - LiDong Zhang
- Department of Anesthesiology of Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hao Cheng
- Department of Anesthesiology of Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - SiHai Zhu
- Department of Anesthesiology of Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - WeiYan Li
- Department of Anesthesiology of Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
23
|
Tarazona S, Carmona H, Conesa A, Llansola M, Felipo V. A multi-omic study for uncovering molecular mechanisms associated with hyperammonemia-induced cerebellar function impairment in rats. Cell Biol Toxicol 2021; 37:129-149. [PMID: 33404927 DOI: 10.1007/s10565-020-09572-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/12/2020] [Indexed: 12/01/2022]
Abstract
Patients with liver cirrhosis may develop covert or minimal hepatic encephalopathy (MHE). Hyperammonemia (HA) and peripheral inflammation play synergistic roles in inducing the cognitive and motor alterations in MHE. The cerebellum is one of the main cerebral regions affected in MHE. Rats with chronic HA show some motor and cognitive alterations reproducing neurological impairment in cirrhotic patients with MHE. Neuroinflammation and altered neurotransmission and signal transduction in the cerebellum from hyperammonemic (HA) rats are associated with motor and cognitive dysfunction, but underlying mechanisms are not completely known. The aim of this work was to use a multi-omic approach to study molecular alterations in the cerebellum from hyperammonemic rats to uncover new molecular mechanisms associated with hyperammonemia-induced cerebellar function impairment. We analyzed metabolomic, transcriptomic, and proteomic data from the same cerebellums from control and HA rats and performed a multi-omic integrative analysis of signaling pathway enrichment with the PaintOmics tool. The histaminergic system, corticotropin-releasing hormone, cyclic GMP-protein kinase G pathway, and intercellular communication in the cerebellar immune system were some of the most relevant enriched pathways in HA rats. In summary, this is a good approach to find altered pathways, which helps to describe the molecular mechanisms involved in the alteration of brain function in rats with chronic HA and to propose possible therapeutic targets to improve MHE symptoms.
Collapse
Affiliation(s)
- Sonia Tarazona
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain
| | - Héctor Carmona
- Department of Microbiology and Ecology, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universidad de Valencia, Valencia, Spain
| | - Ana Conesa
- Microbiology and Cell Science Department, Institute for Food and Agricultural Research, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Marta Llansola
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| |
Collapse
|
24
|
Li J, Yu S, Lu X, Cui K, Tang X, Xu Y, Liang X. The phase changes of M1/M2 phenotype of microglia/macrophage following oxygen-induced retinopathy in mice. Inflamm Res 2021; 70:183-192. [PMID: 33386422 DOI: 10.1007/s00011-020-01427-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 10/27/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Microglia/macrophage activation is previously reported to be involved in various ocular diseases. However, the separate role of M1/M2 phenotype microglia/macrophage in the pathological process of oxygen-induced retinopathy (OIR) remains unknown. In this research, we explored the role and regulatory mechanism of M1/M2 microglia/macrophage in OIR in C57BL/6J mice. Furthermore, we demonstrated the time phase of M1/M2 shifting of microglia/macrophage during the natural process of OIR, which is very essential for further investigations. MATERIALS AND METHODS C57BL/6j pups were exposed to hyperoxia environment from postnatal 7(P7) to P12 then returned to normoxia. The mice were then euthanized, and the eyes were harvested at a series of time points for further investigation. The M1/M2 phenotype microglia/macrophage activity was presented by immunofluorescent staining and real-time quantitative polymerase chain reaction (qPCR). The NF-κb-STAT3 signaling and IL-4-STAT6-PPAR-γ signaling pathway activity was examined by western blot analysis. RESULTS The microglia/macrophage were activated when the OIR model was set up after P12. The M1 microglia/macrophage activation was found in neovascularization (NV) tufts in both central and peripheral retina, which started from P12 when the mice were returned to normoxia environment and peaked at P17. During this period of time, the NF-κb-STAT3 signaling pathway was activated, resulting in the upregulated M1 phenotype microglia/macrophage polarization, along with the enhanced inflammatory cytokine expression including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β. Consequently, the NV tufts were observed from P12 and the volume continued to increase until P17. However, the M2 phenotype microglia/macrophage activity took over during the late phase of OIR started from P17. The IL-4-STAT6-PPAR-γ signaling activity was upregulated from P17 and peaked at P20, inducing M2 phenotype microglia polarization, which consequently led to the inhibition of inflammatory cytokines and spontaneous regression of NV tufts. CONCLUSIONS Microglia/macrophage participate actively in the natural process of OIR in mice, and two phenotypes exert different functions. Treatment modulating microglia/macrophage polarize toward M2 phenotype might be a novel and promising method for ocular neovascular diseases such as retinopathy of prematurity (ROP), wet age-related macular degeneration (wAMD), and diabetic retinopathy (DR).
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510030, Guangdong, China
| | - Shanshan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510030, Guangdong, China
| | - Xi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510030, Guangdong, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510030, Guangdong, China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510030, Guangdong, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510030, Guangdong, China.
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510030, Guangdong, China.
| |
Collapse
|
25
|
Tanioka D, Chikahisa S, Shimizu N, Shiuchi T, Sakai N, Nishino S, Séi H. Intracranial mast cells contribute to the control of social behavior in male mice. Behav Brain Res 2021; 403:113143. [PMID: 33516739 DOI: 10.1016/j.bbr.2021.113143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 12/16/2022]
Abstract
Mast cells (MCs) exist intracranially and have been reported to affect higher brain functions in rodents. However, the role of MCs in the regulation of emotionality and social behavior is unclear. In the present study, using male mice, we examined the relationship between MCs and social behavior and investigated the underlying mechanisms. Wild-type male mice intraventricularly injected with a degranulator of MCs exhibited a marked increase in a three-chamber sociability test. In addition, removal of MCs in Mast cell-specific Toxin Receptor-mediated Conditional cell Knock out (Mas-TRECK) male mice showed reduced social preference levels in a three-chamber sociability test without other behavioral changes, such as anxiety-like and depression-like behavior. Mas-TRECK male mice also had reduced serotonin content and serotonin receptor expression and increased oxytocin receptor expression in the brain. These results suggested that MCs may contribute to the regulation of social behavior in male mice. This effect may be partially mediated by serotonin derived from MCs in the brain.
Collapse
Affiliation(s)
- Daisuke Tanioka
- Department of Integrative Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Sachiko Chikahisa
- Department of Integrative Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Noriyuki Shimizu
- Department of Integrative Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tetsuya Shiuchi
- Department of Integrative Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Noriaki Sakai
- Sleep & Circadian Neurobiology Laboratory, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Seiji Nishino
- Sleep & Circadian Neurobiology Laboratory, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Hiroyoshi Séi
- Department of Integrative Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
26
|
Grigorev IP, Korzhevskii DE. Mast Cells in the Vertebrate Brain:
Localization and Functions. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021010026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Innate Immunity in Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:121-141. [PMID: 33848000 DOI: 10.1007/978-3-030-66014-7_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple lines of investigation have demonstrated that inflammation plays significant roles in etiology of age-related macular degeneration (AMD). Although interventional trials in AMD therapy targeting inflammatory pathways have been conducted, they have not yet been successful and a detailed understanding as to why some have failed is still elusive. One limitation is the relative dearth of information on how immune cells interact with retinal cells to generate AMD phenotypes at each disease stage. Here, we summarize current research evidence and hypotheses regarding potential pathogenic roles of innate immune cells in the eye, which include resident retinal microglia, macrophages derived from infiltrating systemic monocytes, and macrophages resident in the choroid. We relate recent findings regarding the physiology, function, and cellular interactions involving innate immune cells in the retina and choroid to AMD-related processes, including: (1) drusen formation and regression, (2) the onset and spread of degeneration in late atrophic AMD, and (3) the initiation, growth, and exudation of neovascular vessels in late "wet" AMD. Understanding how innate immune cells contribute to specific AMD phenotypes can assist in generating a comprehensive view on the inflammatory etiology of AMD and aid in identifying anti-inflammatory therapeutic strategies and selecting appropriate clinical outcomes for the planned interventions.
Collapse
|
28
|
Ren H, Han R, Chen X, Liu X, Wan J, Wang L, Yang X, Wang J. Potential therapeutic targets for intracerebral hemorrhage-associated inflammation: An update. J Cereb Blood Flow Metab 2020; 40:1752-1768. [PMID: 32423330 PMCID: PMC7446569 DOI: 10.1177/0271678x20923551] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke with high mortality and disability but no specific or effective treatment. In the last two decades, much has been learned about the pathologic mechanisms of ICH. It is now known that after ICH onset, immune and inflammatory responses contribute to blood-brain barrier disruption, edema development, and cell death processes, jointly resulting in secondary brain injury. However, the translation of potential therapies from preclinical to clinical success has been disappointing. With the development of new laboratory technology, recent progress has been made in the understanding of ICH pathomechanisms, and promising therapeutic targets have been identified. This review provides an update of recent progress on ICH and describes the prospects for further preclinical studies in this field. Our goal is to discuss new therapeutic targets and directions for the treatment of ICH and promote the effective transformation from preclinical to clinical trials.
Collapse
Affiliation(s)
- Honglei Ren
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ranran Han
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xuemei Chen
- Department of Human Anatomy, Basic Medical College of Zhengzhou University, Zhengzhou, China
| | - Xi Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jieru Wan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Limin Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiuli Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jian Wang
- Department of Human Anatomy, Basic Medical College of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Chen YN, Sha HH, Wang YW, Zhou Q, Bhuiyan P, Li NN, Qian YN, Dong HQ. Histamine 2/3 receptor agonists alleviate perioperative neurocognitive disorders by inhibiting microglia activation through the PI3K/AKT/FoxO1 pathway in aged rats. J Neuroinflammation 2020; 17:217. [PMID: 32698899 PMCID: PMC7374916 DOI: 10.1186/s12974-020-01886-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/03/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Microglia, the principal sentinel immune cells of the central nervous system (CNS), play an extensively vital role in neuroinflammation and perioperative neurocognitive disorders (PND). Histamine, a potent mediator of inflammation, can both promote and prevent microglia-related neuroinflammation by activating different histamine receptors. Rat microglia express four histamine receptors (H1R, H2R, H3R, and H4R), among which the histamine 1 and 4 receptors can promote microglia activation, whereas the role and cellular mechanism of the histamine 2 and 3 receptors have not been elucidated. Therefore, we evaluated the effects and potential cellular mechanisms of histamine 2/3 receptors in microglia-mediated inflammation and PND. METHODS This study investigated the role of histamine 2/3 receptors in microglia-induced inflammation and PND both in vivo and in vitro. In the in vivo experiments, rats were injected with histamine 2/3 receptor agonists in the right lateral ventricle and were then subjected to exploratory laparotomy. In the in vitro experiments, primary microglia were pretreated with histamine 2/3 receptor agonists before stimulation with lipopolysaccharide (LPS). Cognitive function, microglia activation, proinflammatory cytokine production, NF-κb expression, M1/M2 phenotypes, cell migration, and Toll-like receptor-4 (TLR4) expression were assessed. RESULTS In our study, the histamine 2/3 receptor agonists inhibited exploratory laparotomy- or LPS-induced cognitive decline, microglia activation, proinflammatory cytokine production, NF-κb expression, M1/M2 phenotype transformation, cell migration, and TLR4 expression through the PI3K/AKT/FoxO1 pathway. CONCLUSION Based on our findings, we conclude that histamine 2/3 receptors ameliorate PND by inhibiting microglia activation through the PI3K/AKT/FoxO1 pathway. Our results highlight histamine 2/3 receptors as potential therapeutic targets to treat neurological conditions associated with PND.
Collapse
Affiliation(s)
- Yi-Nan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Huan-Huan Sha
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Yi-Wei Wang
- Department of Anesthesiology, Wuxi People's Hospital, Wuxi, 214001, Jiangsu, People's Republic of China
| | - Qin Zhou
- Department of Anesthesiology, Jiangsu Cancer Hospital, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Na-Na Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Yan-Ning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Hong-Quan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
30
|
Song Y, Lu M, Yuan H, Chen T, Han X. Mast cell-mediated neuroinflammation may have a role in attention deficit hyperactivity disorder (Review). Exp Ther Med 2020; 20:714-726. [PMID: 32742317 PMCID: PMC7388140 DOI: 10.3892/etm.2020.8789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental and behavioral disorder with a serious negative impact on the quality of life from childhood until adulthood, which may cause academic failure, family disharmony and even social unrest. The pathogenesis of ADHD has remained to be fully elucidated, leading to difficulties in the treatment of this disease. Genetic and environmental factors contribute to the risk of ADHD development. Certain studies indicated that ADHD has high comorbidity with allergic and autoimmune diseases, with various patients with ADHD having a high inflammatory status. Increasing evidence indicated that mast cells (MCs) are involved in the pathogenesis of brain inflammation and neuropsychiatric disorders. MCs may cause or aggravate neuroinflammation via the selective release of inflammatory factors, interaction with glial cells and neurons, activation of the hypothalamic-pituitary adrenal axis or disruption of the blood-brain barrier integrity. In the present review, the notion that MC activation may be involved in the occurrence and development of ADHD through a number of ways is discussed based on previously published studies. The association between MCs and ADHD appears to lack sufficient evidence at present and this hypothesis is considered to be worthy of further study, providing a novel perspective for the treatment of ADHD.
Collapse
Affiliation(s)
- Yuchen Song
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Manqi Lu
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Haixia Yuan
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Tianyi Chen
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xinmin Han
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
31
|
Theoharides TC. Effect of Stress on Neuroimmune Processes. Clin Ther 2020; 42:1007-1014. [PMID: 32451121 DOI: 10.1016/j.clinthera.2020.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/12/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Psychological stress worsens many diseases, especially those with inflammatory components, such as atopic dermatitis (AD) and autism spectrum disorder (ASD), conditions that are significantly correlated in large epidemiologic studies. However, how stress contributes to these conditions is still poorly understood. This narrative review of the relevant literature advances the premise that stress affects inflammatory processes in AD and ASD via stimulation of mast cells (MCs). METHODS MEDLINE was searched between 1980 and 2019 using the terms allergies, atopic dermatitis, autism spectrum disorder, brain, corticotropin-releasing hormone, inflammation, hypothalamic-pituitary-adrenal axis, mast cells, neuropeptides, stress, neurotensin, and substance P. FINDINGS Exposure to psychological stress is associated with onset and/or exacerbation of AD and ASD. This association could be attributable to activation of MCs, which are ubiquitous in the body, including the brain, and could contribute to inflammation. IMPLICATIONS Understanding and addressing the connection between stress and MCs is important in clarifying the pathogenesis and developing effective treatments for diseases that worsen with stress and involve inflammation, such as AD and ASD.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA; Sackler School of Graduate Biomedical Sciences, Program in Pharmacology and Experimental Therapeutics, Tufts University, Boston, MA, USA; Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
32
|
Abstract
Many studies highlighted that a bidirectional communication between the gut and the central nervous system (CNS) exists. A vigorous immune response to antigens must be avoided, and pathogenic organisms crossing the gut barrier must be detected and killed. For this reason, the immune system developed fine mechanisms able to maintain this delicate balance. The microbiota is beneficial to its host, providing protection against pathogenic bacteria. It is intimately involved in numerous aspects of host physiology, from nutritional status to behavior and stress response. In the last few years, the implication of the gut microbiota and its bioactive microbiota-derived molecules in the progression of multiple diseases, as well as in the development of neurodegenerative disorders, gained increasing attention. The purpose of this review is to provide an overview of the gut microbiota with particular attention toward neurological disorders and mast cells. Relevant roles are played by the mast cells in neuroimmune communication, such as sensors and effectors of cytokines and neurotransmitters. In this context, the intake of beneficial bacterial strains as probiotics could represent a valuable therapeutic approach to adopt in combination with classical therapies. Further studies need to be performed to understand if the gut bacteria are responsible for neurological disorders or if neurological disorders influence the bacterial profile.
Collapse
|
33
|
The Mast Cell Is an Early Activator of Lipopolysaccharide-Induced Neuroinflammation and Blood-Brain Barrier Dysfunction in the Hippocampus. Mediators Inflamm 2020; 2020:8098439. [PMID: 32184702 PMCID: PMC7060448 DOI: 10.1155/2020/8098439] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/28/2019] [Accepted: 01/28/2020] [Indexed: 11/18/2022] Open
Abstract
Neuroinflammation contributes to or even causes central nervous system (CNS) diseases, and its regulation is thus crucial for brain disorders. Mast cells (MCs) and microglia, two resident immune cells in the brain, together with astrocytes, play critical roles in the progression of neuroinflammation-related diseases. MCs have been demonstrated as one of the fastest responders, and they release prestored and newly synthesized mediators including histamine, β-tryptase, and heparin. However, temporal changes in MC activation in this inflammation process remain unclear. This study demonstrated that MC activation began at 2 h and peaked at 4 h after lipopolysaccharide (LPS) administration. The number of activated MCs remained elevated until 24 h after LPS administration. In addition, the levels of histamine and β-tryptase in the hippocampus markedly and rapidly increased within 6 h and remained higher than the baseline level within 24 h after LPS challenge. Furthermore, mast cell-deficient KitW-sh/W-sh mice were used to investigate the effects of MCs on microglial and astrocytic activation and blood-brain barrier (BBB) permeability at 4 h after LPS stimulation. Notably, LPS-induced proinflammatory cytokine secretion, microglial activation, and BBB damage were inhibited in KitW-sh/W-sh mice. However, no detectable astrocytic changes were found in WT and KitW-sh/W-sh mice at 4 h after LPS stimulation. Our findings indicate that MC activation precedes CNS inflammation and suggest that MCs are among the earliest participants in the neuroinflammation-initiating events.
Collapse
|
34
|
Banfi G, Diani M, Pigatto PD, Reali E. T Cell Subpopulations in the Physiopathology of Fibromyalgia: Evidence and Perspectives. Int J Mol Sci 2020; 21:ijms21041186. [PMID: 32054062 PMCID: PMC7072736 DOI: 10.3390/ijms21041186] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
Fibromyalgia is one of the most important “rheumatic” disorders, after osteoarthritis. The etiology of the disease is still not clear. At the moment, the most defined pathological mechanism is the alteration of central pain pathways, and emotional conditions can trigger or worsen symptoms. Increasing evidence supports the role of mast cells in maintaining pain conditions such as musculoskeletal pain and central sensitization. Importantly, mast cells can mediate microglia activation through the production of proinflammatory cytokines such as IL-1β, IL-6, and TNFα. In addition, levels of chemokines and proinflammatory cytokines are enhanced in serum and could contribute to inflammation at systemic level. Despite the well-characterized relationship between the nervous system and inflammation, the mechanism that links the different pathological features of fibromyalgia, including stress-related manifestations, central sensitization, and dysregulation of the innate and adaptive immune responses is largely unknown. This review aims to provide an overview of the current understanding of the role of adaptive immune cells, in particular T cells, in the physiopathology of fibromyalgia. It also aims at linking the latest advances emerging from basic science to envisage new perspectives to explain the role of T cells in interconnecting the psychological, neurological, and inflammatory symptoms of fibromyalgia.
Collapse
Affiliation(s)
- Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, 20161Milan, Italy; (G.B.); (M.D.); (P.D.P.)
- School of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Marco Diani
- IRCCS Istituto Ortopedico Galeazzi, 20161Milan, Italy; (G.B.); (M.D.); (P.D.P.)
| | - Paolo D. Pigatto
- IRCCS Istituto Ortopedico Galeazzi, 20161Milan, Italy; (G.B.); (M.D.); (P.D.P.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Eva Reali
- IRCCS Istituto Ortopedico Galeazzi, 20161Milan, Italy; (G.B.); (M.D.); (P.D.P.)
- Correspondence:
| |
Collapse
|
35
|
Zwickl H, Zwickl-Traxler E, Pecherstorfer M. Is Neuronal Histamine Signaling Involved in Cancer Cachexia? Implications and Perspectives. Front Oncol 2019; 9:1409. [PMID: 31921666 PMCID: PMC6933599 DOI: 10.3389/fonc.2019.01409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
In this paper, we present evidence in support of our hypothesis that the neuronal histaminergic system might be involved in cancer cachexia1. To build our premise, we present the research and the reasonable inferences that can be drawn from it in a section by section approach starting from one of the key issues related to cachexia, increased resting energy expenditure (REE), and progressing to the other, anorexia. Based on an extensive survey of the literature and our own deliberations on the abovementioned topics, we investigate whether histamine signaling might be the mechanism used by a tumor to hijack the body's thermogenic machinery. Our hypothesis in short is that hypothalamic histaminergic neurons are stimulated by inputs from the parasympathetic nervous system (PSNS), which senses tumor traits early in cancer development. Histamine release in the preoptic area of the hypothalamus primarily activates brown adipose tissue (BAT), triggering a highly energy demanding mechanism. Chronic activation of BAT, which, in this context, refers to intermittent and/or low grade activation by the sympathetic nervous system, leads to browning of white adipose tissue and further enhances thermogenic potential. Aberrant histamine signaling not only triggers energy-consuming processes, but also anorexia. Moreover, since functions such as taste, smell, and sleep are governed by discrete structures of the brain, which are targeted by distinct histaminergic neuron populations even relatively minor symptoms of cachexia, such as sleep disturbances and taste and smell distortions, also might be ascribed to aberrant histamine signaling. In late stage cachexia, the sympathetic tone in skeletal muscle breaks down, which we hypothesize might be caused by a reduction in histamine signaling or by the interference of other cachexia related mechanisms. Histamine signaling thus might delineate distinct stages of cachexia progression, with the early phase marked by a PSNS-mediated increase in histamine signaling, increased sympathetic tone and symptomatic adipose tissue depletion, and the late phase characterized by reduced histamine signaling, decreased sympathetic tone and symptomatic muscle wasting. To support our hypothesis, we review the literature from across disciplines and highlight the many commonalities between the mechanisms underlying cancer cachexia and current research findings on the regulation of energy homeostasis (particularly as it relates to hypothalamic histamine signaling). Extrapolating from the current body of knowledge, we develop our hypothetical framework (based on experimentally falsifiable assumptions) about the role of a distinct neuron population in the pathophysiology of cancer cachexia. Our hope is that presenting our ideas will spark discussion about the pathophysiology of cachexia, cancer's devastating and intractable syndrome.
Collapse
Affiliation(s)
- Hannes Zwickl
- Department of Internal Medicine 2, University Hospital Krems, Karl Landsteiner Private University of Health Sciences, Krems, Austria
| | - Elisabeth Zwickl-Traxler
- Department of Internal Medicine 2, University Hospital Krems, Karl Landsteiner Private University of Health Sciences, Krems, Austria
| | - Martin Pecherstorfer
- Department of Internal Medicine 2, University Hospital Krems, Karl Landsteiner Private University of Health Sciences, Krems, Austria
| |
Collapse
|
36
|
Zhang W, Zhang X, Zhang Y, Qu C, Zhou X, Zhang S. Histamine Induces Microglia Activation and the Release of Proinflammatory Mediators in Rat Brain Via H 1R or H 4R. J Neuroimmune Pharmacol 2019; 15:280-291. [PMID: 31863333 DOI: 10.1007/s11481-019-09887-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022]
Abstract
Histamine is a major peripheral inflammatory mediator and a neurotransmitter in the central nervous system. We have reported that histamine induces microglia activation and releases proinflammatory factors in primary cultured microglia. Whether histamine has similar effects in vivo is unknown. In the present study, we aimed to investigate the role of histamine and its receptors in the release of inflammatory mediators and activation of microglia in rat brain. We site-directed injected histamine, histamine receptor agonists or histamine receptor antagonists in the rat lateral ventricle using stereotaxic techniques. Flow cytometry was employed to determine histamine receptor expression in rat microglia. Microglia activation was assessed by Iba1 immunohistochemistry. The levels of tumour necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β) and interleukin-10 (IL-10) were measured with commercial enzyme-linked immunosorbent assay (ELISA) kits, TNF-α, IL-1β and IL-10 mRNA expressions were determined with Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). We found that all four types of histamine receptors were expressed in rat brain microglia. Histamine was able to induce microglia activation and subsequent production of the inflammatory factors TNF-α, IL-1β and IL-10, and these effects were partially abolished by H1R and H4R antagonists. However, H2R and H3R antagonists significantly increased production of TNF-α and IL-1β, and decreased IL-10 levels. The H1R or H4R agonists stimulated the production of TNF-α and IL-1β, while the H2R or H3R agonists increased IL-10 release. Our results demonstrate that histamine induces microglia activation and the release of both proinflammatory and anti-inflammatory factors in rat brain, thus contributing to the development of inflammation in the brain. Graphical Abstract Histamine induces microglia activation and the release of both proinflammatory (TNF-α and IL-1β) and anti-inflammatory factors (IL-10) in rat brain, thus contributing to the development of inflammation in the brain.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaojun Zhang
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yan Zhang
- Department of Anesthesiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chen Qu
- Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xiqiao Zhou
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China.
| | - Shu Zhang
- Clinical Research Center, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China.
| |
Collapse
|
37
|
Fraunberger E, Esser MJ. Neuro-Inflammation in Pediatric Traumatic Brain Injury-from Mechanisms to Inflammatory Networks. Brain Sci 2019; 9:E319. [PMID: 31717597 PMCID: PMC6895990 DOI: 10.3390/brainsci9110319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Compared to traumatic brain injury (TBI) in the adult population, pediatric TBI has received less research attention, despite its potential long-term impact on the lives of many children around the world. After numerous clinical trials and preclinical research studies examining various secondary mechanisms of injury, no definitive treatment has been found for pediatric TBIs of any severity. With the advent of high-throughput and high-resolution molecular biology and imaging techniques, inflammation has become an appealing target, due to its mixed effects on outcome, depending on the time point examined. In this review, we outline key mechanisms of inflammation, the contribution and interactions of the peripheral and CNS-based immune cells, and highlight knowledge gaps pertaining to inflammation in pediatric TBI. We also introduce the application of network analysis to leverage growing multivariate and non-linear inflammation data sets with the goal to gain a more comprehensive view of inflammation and develop prognostic and treatment tools in pediatric TBI.
Collapse
Affiliation(s)
- Erik Fraunberger
- Alberta Children’s Hospital Research Institute, Calgary, AB T3B 6A8, Canada;
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Michael J. Esser
- Alberta Children’s Hospital Research Institute, Calgary, AB T3B 6A8, Canada;
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Pediatrics, Cumming School Of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
38
|
Li CL, Chu CH, Lee HC, Chou MC, Liu CK, Chen CH, Ke LY, Chen SL. Immunoregulatory effects of very low density lipoprotein from healthy individuals and metabolic syndrome patients on glial cells. Immunobiology 2019; 224:632-637. [PMID: 31402151 DOI: 10.1016/j.imbio.2019.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/08/2019] [Accepted: 07/30/2019] [Indexed: 01/07/2023]
Abstract
Epidemiological studies have reported that elderly patients with metabolic syndrome (MetS) are significantly more likely to develop neuronal degenerative diseases than those without MetS. Our previous study showed that patients with MetS had significantly higher levels of negatively charged very low density lipoproteins (VLDLs) in the plasma than healthy controls. Highly electronegative VLDL is a key risk factor for endothelial dysfunction and atrial fibrillation. However, the impact of negatively charged VLDL in brain immunity remains unclear. In this study, VLDLs were isolated from normal healthy (nVLDL) individuals or patients with MetS (metVLDL). Primary astroglia and microglia mixed cell cultures as well as microglial-enriched cultures were used to test the effects of VLDLs. Microglia/astroglia activation as evidenced by their morphological changes and production of pro-inflammatory factors, such as tumor necrosis factor-α (TNF-α) and prostaglandin E2 (PGE2), were assessed by immunofluorescence staining and ELISA, respectively. Our results showed that metVLDLs mainly act on the microglia, and not the astroglia, with low concentration (0.05-0.5 μg/mL) inducing cell morphological changes and decreased cellular processes in the microglia. However, nVLDL treatment at these concentrations had no effects on microglia and astroglia. Most importantly, TNF-α and PGE2 levels significantly increased in the microglia treated with metVLDL via a dose-dependent manner. Together, our data indicate that metVLDLs can contribute to MetS-associated brain disorders through microglia activation and neuroinflammation.
Collapse
Affiliation(s)
- Chia-Ling Li
- Graduate Institute of Medicine & M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan, ROC
| | - Chun-Hsien Chu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hsiang-Chun Lee
- Division of Cardiology, Department of Internal Medicine, KMU Hospital, Kaohsiung, Taiwan, ROC; Center for Lipid Bioscience, Lipid Science and Aging Research Center, College of Medicine, KMU, Kaohsiung, Taiwan, ROC
| | - Mei-Chuan Chou
- Graduate Institute of Clinical Medicine, College of Medicine, KMU, Kaohsiung, Taiwan, ROC; Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, KMU, Kaohsiung, Taiwan, ROC; Division of Neurology, Department of Internal Medicine, KMU Hospital, Kaohsiung, Taiwan, ROC
| | - Ching-Kuan Liu
- Division of Neurology, Department of Internal Medicine, KMU Hospital, Kaohsiung, Taiwan, ROC; Department of Neurology, Faculty of Medicine, College of Medicine, KMU, Kaohsiung, Taiwan, ROC
| | - Chu-Huang Chen
- Center for Lipid Bioscience, Lipid Science and Aging Research Center, College of Medicine, KMU, Kaohsiung, Taiwan, ROC; Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, USA
| | - Liang-Yin Ke
- Center for Lipid Bioscience, Lipid Science and Aging Research Center, College of Medicine, KMU, Kaohsiung, Taiwan, ROC
| | - Shiou-Lan Chen
- Graduate Institute of Medicine & M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan, ROC; Department of Medical Research, KMU Hospital, Kaohsiung, Taiwan, ROC; Department of Psychiatry, College of Medicine, NCKU, Tainan, Taiwan, ROC.
| |
Collapse
|
39
|
Theoharides TC, Tsilioni I, Bawazeer M. Mast Cells, Neuroinflammation and Pain in Fibromyalgia Syndrome. Front Cell Neurosci 2019; 13:353. [PMID: 31427928 PMCID: PMC6687840 DOI: 10.3389/fncel.2019.00353] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/16/2019] [Indexed: 02/04/2023] Open
Abstract
Fibromyalgia Syndrome (FMS) is a disorder of chronic, generalized muscular pain, accompanied by sleep disturbances, fatigue and cognitive dysfunction. There is no definitive pathogenesis except for altered central pain pathways. We previously reported increased serum levels of the neuropeptides substance P (SP) and its structural analogue hemokinin-1 (HK-1) together with the pro-inflammatory cytokines IL-6 and TNF in FMS patients as compared to sedentary controls. We hypothesize that thalamic mast cells contribute to inflammation and pain, by releasing neuro-sensitizing molecules that include histamine, IL-1β, IL-6 and TNF, as well as calcitonin-gene related peptide (CGRP), HK-1 and SP. These molecules could either stimulate thalamic nociceptive neurons directly, or via stimulation of microglia in the diencephalon. As a result, inhibiting mast cell stimulation could be used as a novel approach for reducing pain and the symptoms of FMS.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, United States.,Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States.,Department of Internal Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Psychiatry, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Irene Tsilioni
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Mona Bawazeer
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, United States.,Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States.,Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
40
|
Traina G. Mast Cells in Gut and Brain and Their Potential Role as an Emerging Therapeutic Target for Neural Diseases. Front Cell Neurosci 2019; 13:345. [PMID: 31417365 PMCID: PMC6682652 DOI: 10.3389/fncel.2019.00345] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
The mast cells (MCs) are the leader cells of inflammation. They are well known for their involvement on allergic reactions through degranulation and release of vasoactive, inflammatory, and nociceptive mediators. Upon encountering potential danger signal, MCs are true sensors of the environment, the first to respond in rapid and selective manner. The MC activates the algic response and modulates the evolution of nociceptive pain, typical of acute inflammation, to neuropathic pain, typical not only of chronic inflammation but also of the dysregulation of the pain system. Yet, MC may contribute to modulate intensity of the associated depressive and anxiogenic component on the neuronal and microglial biological front. Chronic inflammation is a common mediator of these co-morbidities. In parallel to the removal of the etiological factors of tissue damage, the modulation of MC hyperactivity and the reduction of the release of inflammatory factors may constitute a new frontier of pharmacological intervention aimed at preventing the chronicity of inflammation, the evolution of pain, and also the worsening of the depression and anxiogenic state associated with it. So, identifying specific molecules able to modify MC activity may be an important therapeutic tool. Various preclinical evidences suggest that the intestinal microbiota contributes substantially to mood and behavioral disorders. In humans, conditions of the microbiota have been linked to stress, anxiety, depression, and pain. MC is likely the crucial neuroimmune connecting between these components. In this review, the involvement of MCs in pain, stress, and depression is reviewed. We focus on the MC as target that may be mediating stress and mood disorders via microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
41
|
Theoharides TC, Kavalioti M, Tsilioni I. Mast Cells, Stress, Fear and Autism Spectrum Disorder. Int J Mol Sci 2019; 20:E3611. [PMID: 31344805 PMCID: PMC6696098 DOI: 10.3390/ijms20153611] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 02/07/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a developmental condition characterized by impaired communication and obsessive behavior that affects 1 in 59 children. ASD is expected to affect 1 in about 40 children by 2020, but there is still no distinct pathogenesis or effective treatments. Prenatal stress has been associated with higher risk of developing ASD in the offspring. Moreover, children with ASD cannot handle anxiety and respond disproportionately even to otherwise benign triggers. Stress and environmental stimuli trigger the unique immune cells, mast cells, which could then trigger microglia leading to abnormal synaptic pruning and dysfunctional neuronal connectivity. This process could alter the "fear threshold" in the amygdala and lead to an exaggerated "fight-or-flight" reaction. The combination of corticotropin-releasing hormone (CRH), secreted under stress, together with environmental stimuli could be major contributors to the pathogenesis of ASD. Recognizing these associations and preventing stimulation of mast cells and/or microglia could greatly benefit ASD patients.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
- Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA.
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA.
| | - Maria Kavalioti
- Graduate Program in Education, Lesley University, Cambridge, MA 02138, USA
| | - Irene Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
42
|
Laurino A, Landucci E, Cinci L, Gencarelli M, De Siena G, Bellusci L, Chiellini G, Raimondi L. Brain Histamine Modulates the Antidepressant-Like Effect of the 3-Iodothyroacetic Acid (TA1). Front Cell Neurosci 2019; 13:176. [PMID: 31133807 PMCID: PMC6517548 DOI: 10.3389/fncel.2019.00176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/12/2019] [Indexed: 11/13/2022] Open
Abstract
3-iodothyroacetic acid (TA1), an end metabolite of thyroid hormone, has been shown to produce behavioral effects in mice that are dependent on brain histamine. We now aim to verify whether pharmacologically administered TA1 has brain bioavailability and is able to induce histamine-dependent antidepressant-like behaviors. TA1 brain, liver and plasma levels were measured by LC/MS-MS in male CD1 mice, sacrificed 15 min after receiving a high TA1 dose (330 μgkg-1). The hypothalamic mTOR/AKT/GSK-β cascade activation was evaluated in mice treated with 0.4, 1.32, 4 μgkg-1 TA1 by Western-blot. Mast cells were visualized by immuno-histochemistry in brain slices obtained from mice treated with 4 μgkg-1 TA1. Histamine release triggered by TA1 (20-1000 nM) was also evaluated in mouse peritoneal mast cells. After receiving TA1 (1.32, 4 or 11 μgkg-1; i.p.) CD1 male mice were subjected to the forced swim (FST) and the tail suspension tests (TST). Spontaneous locomotor and exploratory activities, motor incoordination, and anxiolytic or anxiogenic effects, were evaluated. Parallel behavioral tests were also carried out in mice that, prior to receiving TA1, were pre-treated with pyrilamine (10 mgkg-1; PYR) or zolantidine (5 mgkg-1; ZOL), histamine type 1 and type 2 receptor antagonists, respectively, or with p-chloro-phenylalanine (100 mgkg-1; PCPA), an inhibitor of serotonin synthesis. TA1 given i.p. to mice rapidly distributes in the brain, activates the hypothalamic mTOR/AKT and GSK-3β cascade and triggers mast cells degranulation. Furthermore, TA1 induces antidepressant effects and stimulates locomotion with a mechanism that appears to depend on the histaminergic system. TA1 antidepressant effect depends on brain histamine, thus highlighting a relationship between the immune system, brain inflammation and the thyroid.
Collapse
Affiliation(s)
- Annunziatina Laurino
- Departments of Neurology, Psychology, Drug Sciences and Child Health, Section of Pharmacology, University of Florence, Florence, Italy
| | - Elisa Landucci
- Department of Health Sciences, Section of Pharmacology, University of Florence, Florence, Italy
| | - Lorenzo Cinci
- Departments of Neurology, Psychology, Drug Sciences and Child Health, Section of Pharmacology, University of Florence, Florence, Italy
| | - Manuela Gencarelli
- Departments of Neurology, Psychology, Drug Sciences and Child Health, Section of Pharmacology, University of Florence, Florence, Italy
| | - Gaetano De Siena
- Department of Health Sciences, Section of Pharmacology, University of Florence, Florence, Italy
| | | | | | - Laura Raimondi
- Departments of Neurology, Psychology, Drug Sciences and Child Health, Section of Pharmacology, University of Florence, Florence, Italy
| |
Collapse
|
43
|
Dong H, Wang Y, Zhang X, Zhang X, Qian Y, Ding H, Zhang S. Stabilization of Brain Mast Cells Alleviates LPS-Induced Neuroinflammation by Inhibiting Microglia Activation. Front Cell Neurosci 2019; 13:191. [PMID: 31130850 PMCID: PMC6509474 DOI: 10.3389/fncel.2019.00191] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/16/2019] [Indexed: 01/03/2023] Open
Abstract
Background The functional aspects of mast cell-microglia interactions are important in neuroinflammation. Our previous studies have demonstrated that mast cell degranulation can directly induce microglia activation. However, the role of mast cells in Lipopolysaccharide (LPS)-induced microglia activation, neuroinflammation and cognitive impairment has not been clarified. Methods This study investigated the interaction between brain microglia and mast cells in vivo through site-directed injection of cromolyn into rat right hypothalamus using stereotaxic techniques. Cognitive function was subsequently assessed using trace fear conditioning and Y maze tests. Mast cells in rat brain were stained with toluidine blue and counted using Cell D software. Microglia activation was assessed by Iba1 immunohistochemistry both in rat brain and in mast cell-deficient KitW-sh/W-sh mice. Receptor expression in rat microglia was determined using flow cytometry analysis. Cytokine levels in rat brain tissue and cell supernatant were measured using high-throughput ELISA. Western blotting was used to analyze Cell signaling proteins. Results In this study, intraperitoneal injection of 1 mg/kg LPS induced mast cell activation in hypothalamus and cognitive dysfunction in rats, and that this process can be repressed by the mast cell stabilizer cromolyn (200 μg). Meanwhile, in mice, LPS IP injection induced significant microglia activation 24 h later in the hypothalamus of wild-type (WT) mice, but had little effect in KitW-sh/W-sh mice. The stabilization of mast cells in rats inhibited LPS-induced microglia activation, inflammatory factors release, and the activation of MAPK, AKT, and NF-κB signaling pathways. We also found that LPS selectively provokes upregulation of H1R, H4R, PAR2, and TLR4, but downregulation of H2R and H3R, in ipsilateral hypothalamus microglia; these effects were partially inhibited by cromolyn. In addition, LPS was also found to induce activation of P815 cells in vitro, consistent with findings from in vivo experiments. These activated P815 cells also induced cytokine release from microglia, which was mediated by the MAPK signaling pathway. Conclusion Taken together, our results demonstrate that stabilization of mast cells can inhibit LPS-induced neuroinflammation and memory impairment, suggesting a novel treatment strategy for neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Hongquan Dong
- Clinical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yiming Wang
- Infection and Immunity Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,School of Medicine, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Xiaojun Zhang
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Zhang
- Department of Anesthesiology, Shanghai First People's Hospital, Shanghai, China
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haixia Ding
- Department of Geriatric, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shu Zhang
- Clinical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
44
|
Dudkiewicz M, Pawłowski K. A novel conserved family of Macro-like domains-putative new players in ADP-ribosylation signaling. PeerJ 2019; 7:e6863. [PMID: 31106069 PMCID: PMC6500376 DOI: 10.7717/peerj.6863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/28/2019] [Indexed: 12/30/2022] Open
Abstract
The presence of many completely uncharacterized proteins, even in well-studied organisms such as humans, seriously hampers a full understanding of the functioning of living cells. One such example is the human protein C12ORF4, which belongs to the DUF2362 family, present in many eukaryotic lineages and conserved in metazoans. The only functional information available on C12ORF4 (Chromosome 12 Open Reading Frame 4) is its involvement in mast cell degranulation and its being a genetic cause of autosomal intellectual disability. Bioinformatics analysis of the DUF2362 family provides strong evidence that it is a novel member of the Macro clan/superfamily. Sequence similarity analysis versus other representatives of the Macro superfamily of ADP-ribose-binding proteins and mapping sequence conservation on predicted three-dimensional structure provides hypotheses regarding the molecular function for members of the DUF2362 family. For example, the available functional data suggest a possible role for C12ORF4 in ADP-ribosylation signaling in asthma and related inflammatory diseases. This novel family appears to be a likely novel ADP-ribosylation “reader” and “eraser,” a previously unnoticed putative new player in cell signaling by this emerging post-translational modification.
Collapse
Affiliation(s)
- Małgorzata Dudkiewicz
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warszawa, Poland
| | - Krzysztof Pawłowski
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warszawa, Poland.,Department of Translational Mecicine, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
45
|
Nelson LH, Saulsbery AI, Lenz KM. Small cells with big implications: Microglia and sex differences in brain development, plasticity and behavioral health. Prog Neurobiol 2019; 176:103-119. [PMID: 30193820 PMCID: PMC8008579 DOI: 10.1016/j.pneurobio.2018.09.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/17/2018] [Accepted: 09/01/2018] [Indexed: 12/20/2022]
Abstract
Brain sex differences are programmed largely by sex hormone secretions and direct sex chromosome effects in early life, and are subsequently modulated by early life experiences. The brain's resident immune cells, called microglia, actively contribute to brain development. Recent research has shown that microglia are sexually dimorphic, especially during early life, and may participate in sex-specific organization of the brain and behavior. Likewise, sex differences in immune cells and their signaling in the adult brain have been found, although in most cases their function remains unclear. Additionally, immune cells and their signaling have been implicated in many disorders in which brain development or plasticity is altered, including autism, schizophrenia, pain disorders, major depression, and postpartum depression. This review summarizes what is currently known about sex differences in neuroimmune function in development and during other major phases of brain plasticity, as well as the current state of knowledge regarding sex-specific neuroimmune function in psychiatric disorders.
Collapse
Affiliation(s)
- Lars H Nelson
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Angela I Saulsbery
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | - Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
46
|
Food allergy induces alteration in brain inflammatory status and cognitive impairments. Behav Brain Res 2019; 364:374-382. [DOI: 10.1016/j.bbr.2018.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 01/31/2023]
|
47
|
Wu S, FitzGerald KT, Giordano J. On the Viability and Potential Value of Stem Cells for Repair and Treatment of Central Neurotrauma: Overview and Speculations. Front Neurol 2018; 9:602. [PMID: 30150968 PMCID: PMC6099099 DOI: 10.3389/fneur.2018.00602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022] Open
Abstract
Central neurotrauma, such as spinal cord injury or traumatic brain injury, can damage critical axonal pathways and neurons and lead to partial to complete loss of neural function that is difficult to address in the mature central nervous system. Improvement and innovation in the development, manufacture, and delivery of stem-cell based therapies, as well as the continued exploration of newer forms of stem cells, have allowed the professional and public spheres to resolve technical and ethical questions that previously hindered stem cell research for central nervous system injury. Recent in vitro and in vivo models have demonstrated the potential that reprogrammed autologous stem cells, in particular, have to restore functionality and induce regeneration-while potentially mitigating technical issues of immunogenicity, rejection, and ethical issues of embryonic derivation. These newer stem-cell based approaches are not, however, without concerns and problems of safety, efficacy, use and distribution. This review is an assessment of the current state of the science, the potential solutions that have been and are currently being explored, and the problems and questions that arise from what appears to be a promising way forward (i.e., autologous stem cell-based therapies)-for the purpose of advancing the research for much-needed therapeutic interventions for central neurotrauma.
Collapse
Affiliation(s)
- Samantha Wu
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
| | - Kevin T. FitzGerald
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States
| | - James Giordano
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
- Departments of Neurology and Biochemistry, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
48
|
Putatunda R, Bethea JR, Hu WH. Potential immunotherapies for traumatic brain and spinal cord injury. Chin J Traumatol 2018; 21:125-136. [PMID: 29759918 PMCID: PMC6033730 DOI: 10.1016/j.cjtee.2018.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 02/08/2018] [Indexed: 02/04/2023] Open
Abstract
Traumatic injury of the central nervous system (CNS) including brain and spinal cord remains a leading cause of morbidity and disability in the world. Delineating the mechanisms underlying the secondary and persistent injury versus the primary and transient injury has been drawing extensive attention for study during the past few decades. The sterile neuroinflammation during the secondary phase of injury has been frequently identified substrate underlying CNS injury, but as of now, no conclusive studies have determined whether this is a beneficial or detrimental role in the context of repair. Recent pioneering studies have demonstrated the key roles for the innate and adaptive immune responses in regulating sterile neuroinflammation and CNS repair. Some promising immunotherapeutic strategies have been recently developed for the treatment of CNS injury. This review updates the recent progress on elucidating the roles of the innate and adaptive immune responses in the context of CNS injury, the development and characterization of potential immunotherapeutics, as well as outstanding questions in this field.
Collapse
Affiliation(s)
- Raj Putatunda
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA
| | - John R. Bethea
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Wen-Hui Hu
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA,Corresponding author.
| |
Collapse
|
49
|
Skaper SD, Facci L, Zusso M, Giusti P. An Inflammation-Centric View of Neurological Disease: Beyond the Neuron. Front Cell Neurosci 2018; 12:72. [PMID: 29618972 PMCID: PMC5871676 DOI: 10.3389/fncel.2018.00072] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/27/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a complex biological response fundamental to how the body deals with injury and infection to eliminate the initial cause of cell injury and effect repair. Unlike a normally beneficial acute inflammatory response, chronic inflammation can lead to tissue damage and ultimately its destruction, and often results from an inappropriate immune response. Inflammation in the nervous system (“neuroinflammation”), especially when prolonged, can be particularly injurious. While inflammation per se may not cause disease, it contributes importantly to disease pathogenesis across both the peripheral (neuropathic pain, fibromyalgia) and central [e.g., Alzheimer disease, Parkinson disease, multiple sclerosis, motor neuron disease, ischemia and traumatic brain injury, depression, and autism spectrum disorder] nervous systems. The existence of extensive lines of communication between the nervous system and immune system represents a fundamental principle underlying neuroinflammation. Immune cell-derived inflammatory molecules are critical for regulation of host responses to inflammation. Although these mediators can originate from various non-neuronal cells, important sources in the above neuropathologies appear to be microglia and mast cells, together with astrocytes and possibly also oligodendrocytes. Understanding neuroinflammation also requires an appreciation that non-neuronal cell—cell interactions, between both glia and mast cells and glia themselves, are an integral part of the inflammation process. Within this context the mast cell occupies a key niche in orchestrating the inflammatory process, from initiation to prolongation. This review will describe the current state of knowledge concerning the biology of neuroinflammation, emphasizing mast cell-glia and glia-glia interactions, then conclude with a consideration of how a cell's endogenous mechanisms might be leveraged to provide a therapeutic strategy to target neuroinflammation.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
50
|
Decrease of cocaine, but not heroin, self-administration and relapse by the tyrosine kinase inhibitor masitinib in male Sprague Dawley rats. Psychopharmacology (Berl) 2018; 235. [PMID: 29520592 PMCID: PMC5920000 DOI: 10.1007/s00213-018-4865-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RATIONALE Accumulating evidence shows that cocaine, and also heroin, influence several tyrosine kinases, expressed in neurons and in non-neuronal populations such as microglia, astrocytes and mast-cells. Drug-induced activation of mast cells both triggers inflammatory processes in the brain mediated by the glial cells they activate, and facilitates histamine release which may directly influence the dopamine system. Thus, by triggering the activation and degranulation of mast cells dependent on the tyrosine kinase c-kit and Fyn, the latter being also involved in NMDA-dependent synaptic plasticity, cocaine and heroin may indirectly influence the neural mechanisms that mediate their reinforcing properties. Masitinib, a novel tyrosine kinase inhibitor with high selectivity for c-Kit, Fyn and Lyn, may alter the aberrant consequences of the activation of these tyrosine kinases by cocaine and heroin. OBJECTIVE We investigated in rats the effect of a chronic oral treatment with masitinib (20 mg/kg) on the reinforcing and motivational properties of self-administered cocaine (250 μg/infusion) and heroin (40 μg/infusion). METHODS Three different cohorts of rats were trained instrumentally to respond for cocaine, heroin or food under continuous reinforcement. In each group, we assessed the influence of chronic daily treatment with masitinib on the maintenance of instrumental responding and intake and the motivation for the reinforcer. Thus, masitinib and vehicle-treated rats were challenged to adapt to high behavioural demand, to respond under a progressive ratio schedule of reinforcement and to reinstate instrumental responding after extinction and/or abstinence. RESULTS Masitinib selectively decreased cocaine intake, the motivation for cocaine and the subsequent propensity to respond for cocaine under extinction, while having no effect on instrumental responding for heroin or food. CONCLUSION The present findings suggest masitinib, a drug with proven efficacy in CNS disorders, could represent a novel treatment for cocaine addiction provided its influence on the reinforcing and incentive properties of the drug is confirmed.
Collapse
|