1
|
Huang J, Xu Z, Yu C, Liu L, Ji L, Qiu P, Li C, Zhou X. The volatile oil of Acorus tatarinowii Schott ameliorates Alzheimer's disease through improving insulin resistance via activating the PI3K/AKT pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156168. [PMID: 39486109 DOI: 10.1016/j.phymed.2024.156168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/18/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) presently stands as the most prevalent neurodegenerative disease. Existing research underscores the pivotal role of insulin signaling in the progression of AD. Acorus tatarinowii Schott (SCP), a traditional Chinese herbal, is employed for AD treatment in China. The volatile oil of Acorus tatarinowii Schott (SCP-oil) is the active component. However, its impact on AD-associated insulin resistance (AD-IR) remains inadequately investigated. PURPOSE This study used network pharmacology and experimental to investigate the effects and mechanisms of SCP-oil on cognitive improvement in AD by inhibiting IR. MATERIALS AND METHODS GC-Q/TOF-MS was employed to analyze the chemical composition of SCP-oil, while network pharmacology predicted the targets associated with SCP-oil in treating AD-IR to identify its regulatory mechanism. IR in the brain was simulated by intracerebroventricular streptozotocin administration (ICV-STZ). The neuroprotective and cognitive improvement effects of SCP-oil were assessed using the Morris water maze and hematoxylin and eosin, as well as Nissl staining. The expression levels of Neun and proteins related to p-tau, tau, amyloid-beta (Aβ), apoptosis, and the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway were measured using immunohistochemistry and Western blotting, respectively. Dexamethasone (DXM)-induced HT22 cells were used for IR modeling. Chemical analysis determined the glucose consumption rate, and periodic acid Schiff staining was employed to detect glycogen deposition. Western Blots were utilized to investigate the expression of characteristic AD proteins, apoptosis-related proteins, and PI3K/AKT pathway-related proteins. The apoptosis rate was detected by flow cytometry. Reverse validation was further performed using LY294002 to evaluate the pharmacodynamic effects of SCP-oil after PI3K/AKT pathway inhibition. RESULTS A total of 25 chemical constituents were identified in SCP-oil. The network pharmacology findings indicated that SCP-oil holds the potential to ameliorate IR in the brain by activating the PI3K/AKT pathway, thereby improving AD. SCP-oil significantly improved ICV-STZ-induced cognitive dysfunction and pathological damage, reduced neuronal loss, Aβ deposition, and tau protein hyperphosphorylation, inhibited cell apoptosis, and activated the PI3K/AKT signaling pathway. Neuron loss, Aβ deposition, and tau protein hyperphosphorylation and cell apoptosis were further enhanced following treatment with LY294002, while the PI3K/AKT signaling pathway was further inhibited, and the protective effect of SCP-oil was weakened. CONCLUSION SCP-oil exhibited the potential to ameliorate brain IR, inhibiting cell apoptosis by activating the PI3K/AKT signaling pathway, thereby improving learning and memory ability.
Collapse
Affiliation(s)
- Junhao Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhiwei Xu
- Jinhua Academy, Zhejiang Chinese Medical University, Jinhua, 321000, China; Second Clinical Medical School, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chenshi Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liu Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liting Ji
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ping Qiu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Xiaojie Zhou
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Baranykova S, Gupta RK, Kajdasz A, Wasilewska I, Macias M, Szybinska A, Węgierski T, Nahia KA, Mondal SS, Winata CL, Kuźnicki J, Majewski L. Loss of Stim2 in zebrafish induces glaucoma-like phenotype. Sci Rep 2024; 14:24442. [PMID: 39424970 PMCID: PMC11489432 DOI: 10.1038/s41598-024-74909-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
Calcium is involved in vision processes in the retina and implicated in various pathologies, including glaucoma. Rod cells rely on store-operated calcium entry (SOCE) to safeguard against the prolonged lowering of intracellular calcium ion concentrations. Zebrafish that lacked the endoplasmic reticulum Ca2+ sensor Stim2 (stim2 knockout [KO]) exhibited impaired vision and lower light perception-related gene expression. We sought to understand mechanisms that are responsible for vision impairment in stim2 KO zebrafish. The single-cell RNA (scRNA) sequencing of neuronal cells from brains of 5 days postfertilization larvae distinguished 27 cell clusters, 10 of which exhibited distinct gene expression patterns, including amacrine and γ-aminobutyric acid (GABA)ergic retinal interneurons and GABAergic optic tectum cells. Five clusters exhibited significant changes in cell proportions between stim2 KO and controls, including GABAergic diencephalon and optic tectum cells. Transmission electron microscopy of stim2 KO zebrafish revealed decreases in width of the inner plexiform layer, ganglion cells, and their dendrites numbers (a hallmark of glaucoma). GABAergic neuron densities in the inner nuclear layer, including amacrine cells, as well as photoreceptors significantly decreased in stim2 KO zebrafish. Our study suggests a novel role for Stim2 in the regulation of neuronal insulin expression and GABAergic-dependent vision causing glaucoma-like retinal pathology.
Collapse
Affiliation(s)
- Sofiia Baranykova
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Rishikesh Kumar Gupta
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, 201313, India
| | - Arkadiusz Kajdasz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, 61-704, Poznan, Poland
- Xenstats sp. z o.o., Otwarta 1, 60-008, Poznan, Poland
| | - Iga Wasilewska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Adolfa Pawińskiego 5, 02-106, Warsaw, Poland
| | - Matylda Macias
- Microscopy and Cytometry Facility, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109, WarsawWarsaw, Poland
| | - Aleksandra Szybinska
- Microscopy and Cytometry Facility, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109, WarsawWarsaw, Poland
| | - Tomasz Węgierski
- Microscopy and Cytometry Facility, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109, WarsawWarsaw, Poland
| | - Karim Abu Nahia
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Shamba S Mondal
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Cecilia L Winata
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Jacek Kuźnicki
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Lukasz Majewski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland.
| |
Collapse
|
3
|
Stec DE. On the Therapeutic Potential of Heme Oxygenase-1 and Its Metabolites. Antioxidants (Basel) 2024; 13:1243. [PMID: 39456496 PMCID: PMC11504057 DOI: 10.3390/antiox13101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Over the past 55 years, the heme oxygenase (HO) system has emerged as a pivotal player in a myriad of cellular, tissue, and integrative physiological processes [...].
Collapse
Affiliation(s)
- David E Stec
- Cardiorenal and Metabolic Diseases Research Center, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
4
|
Hari Gupta G, Mohan K, Ghosh S, Sarath Babu S, Velyutham R, Kapusetti G. Label-Free detection of Poly-Cystic Ovarian Syndrome using a highly conductive 2-D rGO/MoS 2/PANI nanocomposite based immunosensor. Bioelectrochemistry 2024; 158:108681. [PMID: 38493574 DOI: 10.1016/j.bioelechem.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Polycystic ovarian syndrome (PCOS) is an endocrinal disorder characterized by multiple tiny cysts, amenorrhea, dysmenorrhea, hirsutism, and infertility. The current diagnostic tools comprise of expensive, time-consuming ultrasonography to serological test, which have low patient compliance. To address these limitations, we have developed a highly sensitive, cost effective and ultrafast immunosensor for the diagnosis of PCOS. Herein, we have fabricated a 2-D electro conductive composites of reduced Graphene oxide (rGO), Molybdenum disulfide (MoS2), and Polyaniline (PANI) as electrode material. Furthermore, for detecting an early and non-cyclic biomarker of PCOS, i.e. anti-Mullerian hormone (AMH). We utilize the specific antigen-antibody mechanism, in which monoclonal Anti-AMH antibodies were covalently immobilized using EDC-NHS chemistry on electrode. The developed biosensor was physicochemical and electrochemically characterized to demonstrate its efficiency. Further we have investigated the biosensor's performance with Cyclic Voltammetry, Differential Pulse Voltammetry, and Electrochemical Impedance Spectroscopy. We have validated that under the optimized condition the immunosensor exhibits higher sensitivity with a LOD of ∼ 2.0 ng/mL with a linear range up to 100 ng/mL. Furthermore, this immunosensor works efficiently with a lower sample volume (>5 μL), which provides a sensitive, reproducible, low-cost, rapid analysis to detect AMH level in PCOS diagnosis.
Collapse
Affiliation(s)
- Gourang Hari Gupta
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER)- Ahmedabad, India
| | - Keerthana Mohan
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER)- Ahmedabad, India
| | - Sumanta Ghosh
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER)- Ahmedabad, India
| | | | | | - Govinda Kapusetti
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India; Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER)- Ahmedabad, India.
| |
Collapse
|
5
|
Lanzillotta C, Tramutola A, Lanzillotta S, Greco V, Pagnotta S, Sanchini C, Di Angelantonio S, Forte E, Rinaldo S, Paone A, Cutruzzolà F, Cimini FA, Barchetta I, Cavallo MG, Urbani A, Butterfield DA, Di Domenico F, Paul BD, Perluigi M, Duarte JMN, Barone E. Biliverdin Reductase-A integrates insulin signaling with mitochondrial metabolism through phosphorylation of GSK3β. Redox Biol 2024; 73:103221. [PMID: 38843768 PMCID: PMC11190564 DOI: 10.1016/j.redox.2024.103221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Brain insulin resistance links the failure of energy metabolism with cognitive decline in both type 2 Diabetes Mellitus (T2D) and Alzheimer's disease (AD), although the molecular changes preceding overt brain insulin resistance remain unexplored. Abnormal biliverdin reductase-A (BVR-A) levels were observed in both T2D and AD and were associated with insulin resistance. Here, we demonstrate that reduced BVR-A levels alter insulin signaling and mitochondrial bioenergetics in the brain. Loss of BVR-A leads to IRS1 hyper-activation but dysregulates Akt-GSK3β complex in response to insulin, hindering the accumulation of pGSK3βS9 into the mitochondria. This event impairs oxidative phosphorylation and fosters the activation of the mitochondrial Unfolded Protein Response (UPRmt). Remarkably, we unveil that BVR-A is required to shuttle pGSK3βS9 into the mitochondria. Our data sheds light on the intricate interplay between insulin signaling and mitochondrial metabolism in the brain unraveling potential targets for mitigating the development of brain insulin resistance and neurodegeneration.
Collapse
Affiliation(s)
- Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Simona Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Viviana Greco
- Department of Basic Biotechnology, Perioperative and Intensive Clinics, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, L.go F.Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A.Gemelli 8, 00168, Rome, Italy
| | - Sara Pagnotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Caterina Sanchini
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - Silvia Di Angelantonio
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - Elena Forte
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | | | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | | | - Andrea Urbani
- Department of Basic Biotechnology, Perioperative and Intensive Clinics, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, L.go F.Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A.Gemelli 8, 00168, Rome, Italy
| | - D Allan Butterfield
- Sanders-Brown Center on Aging, Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Bindu D Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Joao M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy.
| |
Collapse
|
6
|
Sultana R, Butterfield DA. Protein Oxidation in Aging and Alzheimer's Disease Brain. Antioxidants (Basel) 2024; 13:574. [PMID: 38790679 PMCID: PMC11117785 DOI: 10.3390/antiox13050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Proteins are essential molecules that play crucial roles in maintaining cellular homeostasis and carrying out biological functions such as catalyzing biochemical reactions, structural proteins, immune response, etc. However, proteins also are highly susceptible to damage by reactive oxygen species (ROS) and reactive nitrogen species (RNS). In this review, we summarize the role of protein oxidation in normal aging and Alzheimer's disease (AD). The major emphasis of this review article is on the carbonylation and nitration of proteins in AD and mild cognitive impairment (MCI). The oxidatively modified proteins showed a strong correlation with the reported changes in brain structure, carbohydrate metabolism, synaptic transmission, cellular energetics, etc., of both MCI and AD brains compared to the controls. Some proteins were found to be common targets of oxidation and were observed during the early stages of AD, suggesting that those changes might be critical in the onset of symptoms and/or formation of the pathological hallmarks of AD. Further studies are required to fully elucidate the role of protein oxidation and nitration in the progression and pathogenesis of AD.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080, USA;
| | - D. Allan Butterfield
- Department of Chemistry, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
7
|
Albar NY, Hassaballa H, Shikh H, Albar Y, Ibrahim AS, Mousa AH, Alshanberi AM, Elgebaly A, Bahbah EI. The interaction between insulin resistance and Alzheimer's disease: a review article. Postgrad Med 2024; 136:377-395. [PMID: 38804907 DOI: 10.1080/00325481.2024.2360887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Insulin serves multiple functions as a growth-promoting hormone in peripheral tissues. It manages glucose metabolism by promoting glucose uptake into cells and curbing the production of glucose in the liver. Beyond this, insulin fosters cell growth, drives differentiation, aids protein synthesis, and deters degradative processes like glycolysis, lipolysis, and proteolysis. Receptors for insulin and insulin-like growth factor-1 are widely expressed in the central nervous system. Their widespread presence in the brain underscores the varied and critical functions of insulin signaling there. Insulin aids in bolstering cognition, promoting neuron extension, adjusting the release and absorption of catecholamines, and controlling the expression and positioning of gamma-aminobutyric acid (GABA). Importantly, insulin can effortlessly traverse the blood-brain barrier. Furthermore, insulin resistance (IR)-induced alterations in insulin signaling might hasten brain aging, impacting its plasticity and potentially leading to neurodegeneration. Two primary pathways are responsible for insulin signal transmission: the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway, which oversees metabolic responses, and the mitogen-activated protein kinase (MAPK) pathway, which guides cell growth, survival, and gene transcription. This review aimed to explore the potential shared metabolic traits between Alzheimer's disease (AD) and IR disorders. It delves into the relationship between AD and IR disorders, their overlapping genetic markers, and shared metabolic indicators. Additionally, it addresses existing therapeutic interventions targeting these intersecting pathways.
Collapse
Affiliation(s)
- Nezar Y Albar
- Internal Medicine Department, Dr. Samir Abbas Hospital, Jeddah, Saudi Arabia
| | | | - Hamza Shikh
- Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Yassin Albar
- Fakeeh College of Medical Sciences, Jeddah, Saudi Arabia
| | | | - Ahmed Hafez Mousa
- Department of Neurosurgery, Postgraduate Medical Education, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Department of Neurosurgery, Rashid Hospital, Dubai Academic Health Cooperation, Dubai, United Arab Emirates
| | - Asim Muhammed Alshanberi
- Department of Community Medicine and Pilgrims Health Care, Umm Alqura University, Makkah, Saudi Arabia
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Ahmed Elgebaly
- Smart Health Academic Unit, University of East London, London, UK
| | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| |
Collapse
|
8
|
Spanos F, Gerenu G, Goikolea J, Latorre-Leal M, Balleza-Tapia H, Gomez K, Álvarez-Jiménez L, Piras A, Gómez-Galán M, Fisahn A, Cedazo-Minguez A, Maioli S, Loera-Valencia R. Impaired astrocytic synaptic function by peripheral cholesterol metabolite 27-hydroxycholesterol. Front Cell Neurosci 2024; 18:1347535. [PMID: 38650656 PMCID: PMC11034371 DOI: 10.3389/fncel.2024.1347535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/19/2024] [Indexed: 04/25/2024] Open
Abstract
Astrocytes represent the most abundant cell type in the brain, where they play critical roles in synaptic transmission, cognition, and behavior. Recent discoveries show astrocytes are involved in synaptic dysfunction during Alzheimer's disease (AD). AD patients have imbalanced cholesterol metabolism, demonstrated by high levels of side-chain oxidized cholesterol known as 27-hydroxycholesterol (27-OH). Evidence from our laboratory has shown that elevated 27-OH can abolish synaptic connectivity during neuromaturation, but its effect on astrocyte function is currently unclear. Our results suggest that elevated 27-OH decreases the astrocyte function in vivo in Cyp27Tg, a mouse model of brain oxysterol imbalance. Here, we report a downregulation of glutamate transporters in the hippocampus of CYP27Tg mice together with increased GFAP. GLT-1 downregulation was also observed when WT mice were fed with high-cholesterol diets. To study the relationship between astrocytes and neurons, we have developed a 3D co-culture system that allows all the cell types from mice embryos to differentiate in vitro. We report that our 3D co-cultures reproduce the effects of 27-OH observed in 2D neurons and in vivo. Moreover, we found novel degenerative effects in astrocytes that do not appear in 2D cultures, together with the downregulation of glutamate transporters GLT-1 and GLAST. We propose that this transporter dysregulation leads to neuronal hyperexcitability and synaptic dysfunction based on the effects of 27-OH on astrocytes. Taken together, these results report a new mechanism linking oxysterol imbalance in the brain and synaptic dysfunction through effects on astrocyte function.
Collapse
Affiliation(s)
- Fokion Spanos
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Center for Alzheimer Research, Stockholm, Sweden
| | - Gorka Gerenu
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Center for Alzheimer Research, Stockholm, Sweden
- Department of Physiology, Biogipuzkoa Health Research Institute - Ikerbasque Basque foundation for Science and University of Basque Country, San Sebastian, Spain
- CIBERNED (Ministry of Economy and Competitiveness, Institute Carlos III), Madrid, Spain
| | - Julen Goikolea
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Center for Alzheimer Research, Stockholm, Sweden
| | - María Latorre-Leal
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Center for Alzheimer Research, Stockholm, Sweden
| | - Hugo Balleza-Tapia
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Center for Alzheimer Research, Stockholm, Sweden
| | - Karen Gomez
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Center for Alzheimer Research, Stockholm, Sweden
| | - Laura Álvarez-Jiménez
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Center for Alzheimer Research, Stockholm, Sweden
| | - Antonio Piras
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Center for Alzheimer Research, Stockholm, Sweden
| | - Marta Gómez-Galán
- Anestesiologi Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - André Fisahn
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Center for Alzheimer Research, Stockholm, Sweden
| | - Angel Cedazo-Minguez
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Center for Alzheimer Research, Stockholm, Sweden
| | - Silvia Maioli
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Center for Alzheimer Research, Stockholm, Sweden
| | - Raúl Loera-Valencia
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Center for Alzheimer Research, Stockholm, Sweden
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Chihuahua, Mexico
| |
Collapse
|
9
|
Medina-Vera D, López-Gambero AJ, Navarro JA, Sanjuan C, Baixeras E, Decara J, de Fonseca FR. Novel insights into D-Pinitol based therapies: a link between tau hyperphosphorylation and insulin resistance. Neural Regen Res 2024; 19:289-295. [PMID: 37488880 PMCID: PMC10503604 DOI: 10.4103/1673-5374.379015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/21/2023] [Accepted: 05/18/2023] [Indexed: 07/26/2023] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer's disease. The pathogenesis of Alzheimer's disease is mainly mediated by the phosphorylation and aggregation of tau protein. Among the multiple causes of tau hyperphosphorylation, brain insulin resistance has generated much attention, and inositols as insulin sensitizers, are currently considered candidates for drug development. The present narrative review revises the interactions between these three elements: Alzheimer's disease-tau-inositols, which can eventually identify targets for new disease modifiers capable of bringing hope to the millions of people affected by this devastating disease.
Collapse
Affiliation(s)
- Dina Medina-Vera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
- Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER Enfermedades Cardiovasculares (CIBERCV), Hospital Universitario Virgen de la Victoria, UGC del Corazón, Málaga, Spain
| | - Antonio Jesús López-Gambero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
- Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - Juan Antonio Navarro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
| | | | - Elena Baixeras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Juan Decara
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
| |
Collapse
|
10
|
Paul BD, Pieper AA. Neuroprotective Roles of the Biliverdin Reductase-A/Bilirubin Axis in the Brain. Biomolecules 2024; 14:155. [PMID: 38397392 PMCID: PMC10887292 DOI: 10.3390/biom14020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Biliverdin reductase-A (BVRA) is a multi-functional enzyme with a multitude of important roles in physiologic redox homeostasis. Classically, BVRA is well known for converting the heme metabolite biliverdin to bilirubin, which is a potent antioxidant in both the periphery and the brain. However, BVRA additionally participates in many neuroprotective signaling cascades in the brain that preserve cognition. Here, we review the neuroprotective roles of BVRA and bilirubin in the brain, which together constitute a BVRA/bilirubin axis that influences healthy aging and cognitive function.
Collapse
Affiliation(s)
- Bindu D. Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Andrew A. Pieper
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
11
|
Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev 2024; 104:103-197. [PMID: 37843394 PMCID: PMC11281823 DOI: 10.1152/physrev.00030.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
12
|
Ripoli C, Dagliyan O, Renna P, Pastore F, Paciello F, Sollazzo R, Rinaudo M, Battistoni M, Martini S, Tramutola A, Sattin A, Barone E, Saneyoshi T, Fellin T, Hayashi Y, Grassi C. Engineering memory with an extrinsically disordered kinase. SCIENCE ADVANCES 2023; 9:eadh1110. [PMID: 37967196 PMCID: PMC10651130 DOI: 10.1126/sciadv.adh1110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
Synaptic plasticity plays a crucial role in memory formation by regulating the communication between neurons. Although actin polymerization has been linked to synaptic plasticity and dendritic spine stability, the causal link between actin polymerization and memory encoding has not been identified yet. It is not clear whether actin polymerization and structural changes in dendritic spines are a driver or a consequence of learning and memory. Using an extrinsically disordered form of the protein kinase LIMK1, which rapidly and precisely acts on ADF/cofilin, a direct modifier of actin, we induced long-term enlargement of dendritic spines and enhancement of synaptic transmission in the hippocampus on command. The activation of extrinsically disordered LIMK1 in vivo improved memory encoding and slowed cognitive decline in aged mice exhibiting reduced cofilin phosphorylation. The engineered memory by an extrinsically disordered LIMK1 supports a direct causal link between actin-mediated synaptic transmission and memory.
Collapse
Affiliation(s)
- Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Onur Dagliyan
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17165 Stockholm, Sweden
| | - Pietro Renna
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Pastore
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Raimondo Sollazzo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marco Rinaudo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Martina Battistoni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sara Martini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Andrea Sattin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Takeo Saneyoshi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
13
|
Goodarzi G, Tehrani SS, Fana SE, Moradi-Sardareh H, Panahi G, Maniati M, Meshkani R. Crosstalk between Alzheimer's disease and diabetes: a focus on anti-diabetic drugs. Metab Brain Dis 2023; 38:1769-1800. [PMID: 37335453 DOI: 10.1007/s11011-023-01225-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/26/2023] [Indexed: 06/21/2023]
Abstract
Alzheimer's disease (AD) and Type 2 diabetes mellitus (T2DM) are two of the most common age-related diseases. There is accumulating evidence of an overlap in the pathophysiological mechanisms of these two diseases. Studies have demonstrated insulin pathway alternation may interact with amyloid-β protein deposition and tau protein phosphorylation, two essential factors in AD. So attention to the use of anti-diabetic drugs in AD treatment has increased in recent years. In vitro, in vivo, and clinical studies have evaluated possible neuroprotective effects of anti-diabetic different medicines in AD, with some promising results. Here we review the evidence on the therapeutic potential of insulin, metformin, Glucagon-like peptide-1 receptor agonist (GLP1R), thiazolidinediones (TZDs), Dipeptidyl Peptidase IV (DPP IV) Inhibitors, Sulfonylureas, Sodium-glucose Cotransporter-2 (SGLT2) Inhibitors, Alpha-glucosidase inhibitors, and Amylin analog against AD. Given that many questions remain unanswered, further studies are required to confirm the positive effects of anti-diabetic drugs in AD treatment. So to date, no particular anti-diabetic drugs can be recommended to treat AD.
Collapse
Affiliation(s)
- Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Ebrahimi Fana
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ghodratollah Panahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Cimini FA, Tramutola A, Barchetta I, Ceccarelli V, Gangitano E, Lanzillotta S, Lanzillotta C, Cavallo MG, Barone E. Dynamic Changes of BVRA Protein Levels Occur in Response to Insulin: A Pilot Study in Humans. Int J Mol Sci 2023; 24:ijms24087282. [PMID: 37108445 PMCID: PMC10138944 DOI: 10.3390/ijms24087282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Biliverdin reductase-A (BVRA) is involved in the regulation of insulin signaling and the maintenance of glucose homeostasis. Previous research showed that BVRA alterations are associated with the aberrant activation of insulin signaling in dysmetabolic conditions. However, whether BVRA protein levels change dynamically within the cells in response to insulin and/or glucose remains an open question. To this aim, we evaluated changes of intracellular BVRA levels in peripheral blood mononuclear cells (PBMC) collected during the oral glucose tolerance test (OGTT) in a group of subjects with different levels of insulin sensitivity. Furthermore, we looked for significant correlations with clinical measures. Our data show that BVRA levels change dynamically during the OGTT in response to insulin, and greater BVRA variations occur in those subjects with lower insulin sensitivity. Changes of BVRA significantly correlate with indexes of increased insulin resistance and insulin secretion (HOMA-IR, HOMA-β, and insulinogenic index). At the multivariate regression analysis, the insulinogenic index independently predicted increased BVRA area under curve (AUC) during the OGTT. This pilot study showed, for the first time, that intracellular BVRA protein levels change in response to insulin during OGTT and are greater in subjects with lower insulin sensitivity, supporting the role of BVR-A in the dynamic regulation of the insulin signaling pathway.
Collapse
Affiliation(s)
- Flavia Agata Cimini
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy
| | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Valentina Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Elena Gangitano
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Simona Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy
| | | | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
15
|
Bates EA, Kipp ZA, Martinez GJ, Badmus OO, Soundarapandian MM, Foster D, Xu M, Creeden JF, Greer JR, Morris AJ, Stec DE, Hinds TD. Suppressing Hepatic UGT1A1 Increases Plasma Bilirubin, Lowers Plasma Urobilin, Reorganizes Kinase Signaling Pathways and Lipid Species and Improves Fatty Liver Disease. Biomolecules 2023; 13:252. [PMID: 36830621 PMCID: PMC9953728 DOI: 10.3390/biom13020252] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Several population studies have observed lower serum bilirubin levels in patients with non-alcoholic fatty liver disease (NAFLD). Yet, treatments to target this metabolic phenotype have not been explored. Therefore, we designed an N-Acetylgalactosamine (GalNAc) labeled RNAi to target the enzyme that clears bilirubin from the blood, the UGT1A1 glucuronyl enzyme (GNUR). In this study, male C57BL/6J mice were fed a high-fat diet (HFD, 60%) for 30 weeks to induce NAFLD and were treated subcutaneously with GNUR or sham (CTRL) once weekly for six weeks while continuing the HFD. The results show that GNUR treatments significantly raised plasma bilirubin levels and reduced plasma levels of the bilirubin catabolized product, urobilin. We show that GNUR decreased liver fat content and ceramide production via lipidomics and lowered fasting blood glucose and insulin levels. We performed extensive kinase activity analyses using our PamGene PamStation kinome technology and found a reorganization of the kinase pathways and a significant decrease in inflammatory mediators with GNUR versus CTRL treatments. These results demonstrate that GNUR increases plasma bilirubin and reduces plasma urobilin, reducing NAFLD and inflammation and improving overall liver health. These data indicate that UGT1A1 antagonism might serve as a treatment for NAFLD and may improve obesity-associated comorbidities.
Collapse
Affiliation(s)
- Evelyn A. Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Zachary A. Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Genesee J. Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Olufunto O. Badmus
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Justin F. Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Jennifer R. Greer
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Andrew J. Morris
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - David E. Stec
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| |
Collapse
|
16
|
Intranasal Administration of KYCCSRK Peptide Rescues Brain Insulin Signaling Activation and Reduces Alzheimer's Disease-like Neuropathology in a Mouse Model for Down Syndrome. Antioxidants (Basel) 2023; 12:antiox12010111. [PMID: 36670973 PMCID: PMC9854894 DOI: 10.3390/antiox12010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Down syndrome (DS) is the most frequent genetic cause of intellectual disability and is strongly associated with Alzheimer's disease (AD). Brain insulin resistance greatly contributes to AD development in the general population and previous studies from our group showed an early accumulation of insulin resistance markers in DS brain, already in childhood, and even before AD onset. Here we tested the effects promoted in Ts2Cje mice by the intranasal administration of the KYCCSRK peptide known to foster insulin signaling activation by directly interacting and activating the insulin receptor (IR) and the AKT protein. Therefore, the KYCCSRK peptide might represent a promising molecule to overcome insulin resistance. Our results show that KYCCSRK rescued insulin signaling activation, increased mitochondrial complexes levels (OXPHOS) and reduced oxidative stress levels in the brain of Ts2Cje mice. Moreover, we uncovered novel characteristics of the KYCCSRK peptide, including its efficacy in reducing DYRK1A (triplicated in DS) and BACE1 protein levels, which resulted in reduced AD-like neuropathology in Ts2Cje mice. Finally, the peptide elicited neuroprotective effects by ameliorating synaptic plasticity mechanisms that are altered in DS due to the imbalance between inhibitory vs. excitatory currents. Overall, our results represent a step forward in searching for new molecules useful to reduce intellectual disability and counteract AD development in DS.
Collapse
|
17
|
He DL, Fan YG, Wang ZY. Energy Crisis Links to Autophagy and Ferroptosis in Alzheimer's Disease: Current Evidence and Future Avenues. Curr Neuropharmacol 2023; 21:67-86. [PMID: 35980072 PMCID: PMC10193753 DOI: 10.2174/1570159x20666220817140737] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/14/2022] [Accepted: 08/11/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases worldwide. The occult nature of the onset and the uncertainty of the etiology largely impede the development of therapeutic strategies for AD. Previous studies revealed that the disorder of energy metabolism in the brains of AD patients appears far earlier than the typical pathological features of AD, suggesting a tight association between energy crisis and the onset of AD. Energy crisis in the brain is known to be induced by the reductions in glucose uptake and utilization, which may be ascribed to the diminished expressions of cerebral glucose transporters (GLUTs), insulin resistance, mitochondrial dysfunctions, and lactate dysmetabolism. Notably, the energy sensors such as peroxisome proliferators-activated receptor (PPAR), transcription factor EB (TFEB), and AMP-activated protein kinase (AMPK) were shown to be the critical regulators of autophagy, which play important roles in regulating beta-amyloid (Aβ) metabolism, tau phosphorylation, neuroinflammation, iron dynamics, as well as ferroptosis. In this study, we summarized the current knowledge on the molecular mechanisms involved in the energy dysmetabolism of AD and discussed the interplays existing between energy crisis, autophagy, and ferroptosis. In addition, we highlighted the potential network in which autophagy may serve as a bridge between energy crisis and ferroptosis in the progression of AD. A deeper understanding of the relationship between energy dysmetabolism and AD may provide new insight into developing strategies for treating AD; meanwhile, the energy crisis in the progression of AD should gain more attention.
Collapse
Affiliation(s)
- Da-Long He
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
- Key Laboratory of Medical Cell Biology of Ministry of Education, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| | - Yong-Gang Fan
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
- Key Laboratory of Medical Cell Biology of Ministry of Education, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| | - Zhan-You Wang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
- Key Laboratory of Medical Cell Biology of Ministry of Education, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| |
Collapse
|
18
|
Cummings J, Ortiz A, Castellino J, Kinney J. Diabetes: Risk factor and translational therapeutic implications for Alzheimer's disease. Eur J Neurosci 2022; 56:5727-5757. [PMID: 35128745 PMCID: PMC9393901 DOI: 10.1111/ejn.15619] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) commonly co-occur. T2DM increases the risk for AD by approximately twofold. Animal models provide one means of interrogating the relationship of T2DM to AD and investigating brain insulin resistance in the pathophysiology of AD. Animal models show that persistent hyperglycaemia results in chronic low-grade inflammation that may contribute to the development of neuroinflammation and accelerate the pathobiology of AD. Epidemiological studies suggest that patients with T2DM who received treatment with specific anti-diabetic agents have a decreased risk for the occurrence of AD and all-cause dementia. Agents such as metformin ameliorate T2DM and may have other important systemic effects that lower the risk of AD. Glucagon-like peptide 1 (GLP-1) agonists have been associated with a decreased risk for AD in patients with T2DM. Both insulin and non-insulin anti-diabetic treatments have been evaluated for the treatment of AD in clinical trials. In most cases, patients included in the trials have clinical features of AD but do not have T2DM. Many of the trials were conducted prior to the use of diagnostic biomarkers for AD. Trials have had a wide range of durations and population sizes. Many of the agents used to treat T2DM do not cross the blood brain barrier, and the effects are posited to occur via lowering of peripheral hyperglycaemia and reduction of peripheral and central inflammation. Clinical trials of anti-diabetic agents to treat AD are ongoing and will provide insight into the therapeutic utility of these agents.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | - Andrew Ortiz
- Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | | | - Jefferson Kinney
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA,Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| |
Collapse
|
19
|
Falling Short: The Contribution of Central Insulin Receptors to Gait Dysregulation in Brain Aging. Biomedicines 2022; 10:biomedicines10081923. [PMID: 36009470 PMCID: PMC9405648 DOI: 10.3390/biomedicines10081923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Insulin resistance, which manifests as a reduction of insulin receptor signaling, is known to correlate with pathological changes in peripheral tissues as well as in the brain. Central insulin resistance has been associated with impaired cognitive performance, decreased neuronal health, and reduced brain metabolism; however, the mechanisms underlying central insulin resistance and its impact on brain regions outside of those associated with cognition remain unclear. Falls are a leading cause of both fatal and non-fatal injuries in the older population. Despite this, there is a paucity of work focused on age-dependent alterations in brain regions associated with ambulatory control or potential therapeutic approaches to target these processes. Here, we discuss age-dependent alterations in central modalities that may contribute to gait dysregulation, summarize current data supporting the role of insulin signaling in the brain, and highlight key findings that suggest insulin receptor sensitivity may be preserved in the aged brain. Finally, we present novel results showing that administration of insulin to the somatosensory cortex of aged animals can alter neuronal communication, cerebral blood flow, and the motivation to ambulate, emphasizing the need for further investigations of intranasal insulin as a clinical management strategy in the older population.
Collapse
|
20
|
Guo M, Jia J, Zhang J, Zhou M, Wang A, Chen S, Zhao X. Association of β-cell function and cognitive impairment in patients with abnormal glucose metabolism. BMC Neurol 2022; 22:232. [PMID: 35739484 PMCID: PMC9219116 DOI: 10.1186/s12883-022-02755-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/16/2022] [Indexed: 12/23/2022] Open
Abstract
Background Insulin has been demonstrated to play an important role in the occurrence and development of Alzheimer’s disease, especially in those with diabetes. β cells are important insulin-producing cells in human pancreas. This study aimed to investigate the association between β-cell dysfunction and cognitive impairment among patients over 40-year-old with abnormal glucose metabolism in Chinese rural communities. Methods A sample of 592 participants aged 40 years or older from the China National Stroke Prevention Project (CSPP) between 2015 and 2017 were enrolled in this study. Abnormal glucose metabolism was defined when hemoglobin Alc ≥ 5.7%. Cognitive function was assessed by the Beijing edition of the Montreal Cognitive Assessment scale. Homeostasis assessment of β-cell function was performed and classified into 4 groups according to the quartiles. A lower value of HOMA-β indicated a worse condition of β-cell function. Multivariate logistic regression was used to analyze the association between β-cell function and cognitive impairment. Results In a total of 592 patients with abnormal glucose metabolism, the average age was 60.20 ± 7.63 years and 60.1% patients had cognitive impairment. After adjusting for all potential risk factors, we found the first quartile of β-cell function was significantly associated with cognitive impairment (OR: 2.27, 95%CI: 1.32–3.92), especially at the domains of language (OR: 1.64, 95%CI: 1.01–2.65) and abstraction (OR: 2.29, 95%CI: 1.46–3.58). Conclusions Our study showed that worse β-cell function is associated with cognitive impairment of people over 40-year-old with abnormal glucose metabolism in Chinese rural communities, especially in the cognitive domains of abstraction and language.
Collapse
Affiliation(s)
- Mengyi Guo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jiaokun Jia
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jia Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingyue Zhou
- Department of Neurology, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shengyun Chen
- Department of Neurology, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, China. .,Department of Neurology of Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China.
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. .,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. .,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
21
|
Bellanti F, Bukke VN, Moola A, Villani R, Scuderi C, Steardo L, Palombelli G, Canese R, Beggiato S, Altamura M, Vendemiale G, Serviddio G, Cassano T. Effects of Ultramicronized Palmitoylethanolamide on Mitochondrial Bioenergetics, Cerebral Metabolism, and Glutamatergic Transmission: An Integrated Approach in a Triple Transgenic Mouse Model of Alzheimer's Disease. Front Aging Neurosci 2022; 14:890855. [PMID: 35686025 PMCID: PMC9170916 DOI: 10.3389/fnagi.2022.890855] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/19/2022] [Indexed: 01/26/2023] Open
Abstract
The therapeutic potential of ultramicronized palmitoylethanolamide (um-PEA) was investigated in young (6-month-old) and adult (12-month-old) 3 × Tg-AD mice, which received um-PEA for 3 months via a subcutaneous delivery system. Mitochondrial bioenergetics, ATP homeostasis, and magnetic resonance imaging/magnetic resonance spectroscopy were evaluated in the frontal cortex (FC) and hippocampus (HIPP) at the end of um-PEA treatment. Glutamate release was investigated by in vivo microdialysis in the ventral HIPP (vHIPP). We demonstrated that chronic um-PEA treatment ameliorates the decrease in the complex-I respiration rate and the FoF1-ATPase (complex V) activity, as well as ATP content depletion in the cortical mitochondria. Otherwise, the impairment in mitochondrial bioenergetics and the release of glutamate after depolarization was not ameliorated by um-PEA treatment in the HIPP of both young and adult 3 × Tg-AD mice. Moreover, progressive age- and pathology-related changes were observed in the cortical and hippocampal metabolism that closely mimic the alterations observed in the human AD brain; these metabolic alterations were not affected by chronic um-PEA treatment. These findings confirm that the HIPP is the most affected area by AD-like pathology and demonstrate that um-PEA counteracts mitochondrial dysfunctions and helps rescue brain energy metabolism in the FC, but not in the HIPP.
Collapse
Affiliation(s)
- Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Archana Moola
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | | | - Rossella Canese
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mario Altamura
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Tommaso Cassano
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- *Correspondence: Tommaso Cassano
| |
Collapse
|
22
|
Cimini FA, Perluigi M, Barchetta I, Cavallo MG, Barone E. Role of Biliverdin Reductase A in the Regulation of Insulin Signaling in Metabolic and Neurodegenerative Diseases: An Update. Int J Mol Sci 2022; 23:5574. [PMID: 35628384 PMCID: PMC9141761 DOI: 10.3390/ijms23105574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/16/2022] Open
Abstract
Insulin signaling is a conserved pathway that orchestrates glucose and lipid metabolism, energy balance, and inflammation, and its dysregulation compromises the homeostasis of multiple systems. Insulin resistance is a shared hallmark of several metabolic diseases, including obesity, metabolic syndrome, and type 2 diabetes, and has been associated with cognitive decline during aging and dementia. Numerous mechanisms promoting the development of peripheral and central insulin resistance have been described, although most of them were not completely clarified. In the last decades, several studies have highlighted that biliverdin reductase-A (BVR-A), over its canonical role in the degradation of heme, acts as a regulator of insulin signaling. Evidence from human and animal studies show that BVR-A alterations are associated with the aberrant activation of insulin signaling, metabolic syndrome, liver steatosis, and visceral adipose tissue inflammation in obese and diabetic individuals. In addition, recent findings demonstrated that reduced BVR-A levels or impaired BVR-A activation contribute to the development of brain insulin resistance and metabolic alterations in Alzheimer's disease. In this narrative review, we will provide an overview on the literature by focusing on the role of BVR-A in the regulation of insulin signaling and how BVR-A alterations impact on cell dysfunctions in both metabolic and neurodegenerative disorders.
Collapse
Affiliation(s)
- Flavia Agata Cimini
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (F.A.C.); (I.B.)
| | - Marzia Perluigi
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.P.); (E.B.)
| | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (F.A.C.); (I.B.)
| | - Maria Gisella Cavallo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (F.A.C.); (I.B.)
| | - Eugenio Barone
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.P.); (E.B.)
| |
Collapse
|
23
|
Vasavda C, Semenza ER, Liew J, Kothari R, Dhindsa RS, Shanmukha S, Lin A, Tokhunts R, Ricco C, Snowman AM, Albacarys L, Pastore F, Ripoli C, Grassi C, Barone E, Kornberg MD, Dong X, Paul BD, Snyder SH. Biliverdin reductase bridges focal adhesion kinase to Src to modulate synaptic signaling. Sci Signal 2022; 15:eabh3066. [PMID: 35536885 PMCID: PMC9281001 DOI: 10.1126/scisignal.abh3066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Synapses connect discrete neurons into vast networks that send, receive, and encode diverse forms of information. Synaptic function and plasticity, the neuronal process of adapting to diverse and variable inputs, depend on the dynamic nature of synaptic molecular components, which is mediated in part by cell adhesion signaling pathways. Here, we found that the enzyme biliverdin reductase (BVR) physically links together key focal adhesion signaling molecules at the synapse. BVR-null (BVR-/-) mice exhibited substantial deficits in learning and memory on neurocognitive tests, and hippocampal slices in which BVR was postsynaptically depleted showed deficits in electrophysiological responses to stimuli. RNA sequencing, biochemistry, and pathway analyses suggested that these deficits were mediated through the loss of focal adhesion signaling at both the transcriptional and biochemical level in the hippocampus. Independently of its catalytic function, BVR acted as a bridge between the primary focal adhesion signaling kinases FAK and Pyk2 and the effector kinase Src. Without BVR, FAK and Pyk2 did not bind to and stimulate Src, which then did not phosphorylate the N-methyl-d-aspartate (NMDA) receptor, a critical posttranslational modification for synaptic plasticity. Src itself is a molecular hub on which many signaling pathways converge to stimulate NMDAR-mediated neurotransmission, thus positioning BVR at a prominent intersection of synaptic signaling.
Collapse
Affiliation(s)
- Chirag Vasavda
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Evan R. Semenza
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Jason Liew
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ruchita Kothari
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ryan S. Dhindsa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Shruthi Shanmukha
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anthony Lin
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Robert Tokhunts
- Department of Anesthesiology, Dartmouth–Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Cristina Ricco
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Adele M. Snowman
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren Albacarys
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Francesco Pastore
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Preclinical Neuroscience Lab, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Preclinical Neuroscience Lab, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
| | - Michael D. Kornberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
24
|
Maffei M, Giordano A. Leptin, the brain and energy homeostasis: From an apparently simple to a highly complex neuronal system. Rev Endocr Metab Disord 2022; 23:87-101. [PMID: 33822303 DOI: 10.1007/s11154-021-09636-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Leptin, produced and secreted by white adipose tissue in tight relationship with adipose mass, informs the brain about the status of the energy stores serving as the main peripheral signal for energy balance regulation through interaction with a multitude of highly interconnected neuronal populations. Most obese patients display resistance to the anorectic effect of the hormone. The present review unravels the multiple levels of complexity that trigger hypothalamic response to leptin with the objective of highlighting those critical hubs that, mainly in the hypothalamic arcuate nucleus, may undergo obesity-induced alterations and create an obstacle to leptin action. Several mechanisms underlying leptin resistance have been proposed, possibly representing useful targets to empower leptin effects. Among these, a special focus is herein dedicated to detail how leptin gains access into the brain and how neuronal plasticity may interfere with leptin function.
Collapse
Affiliation(s)
- Margherita Maffei
- Institute of Clinical Physiology, CNR, Via Moruzzi 1, 56124, Pisa, Italy.
- Obesity and Lipodystrophy Center, University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020, Ancona, Italy.
| |
Collapse
|
25
|
Reactive Oxygen Species (ROS) and Antioxidants as Immunomodulators in Exercise: Implications for Heme Oxygenase and Bilirubin. Antioxidants (Basel) 2022; 11:antiox11020179. [PMID: 35204062 PMCID: PMC8868548 DOI: 10.3390/antiox11020179] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Exercise is commonly prescribed as a lifestyle treatment for chronic metabolic diseases as it functions as an insulin sensitizer, cardio-protectant, and essential lifestyle tool for effective weight maintenance. Exercise boosts the production of reactive oxygen species (ROS) and subsequent transient oxidative damage, which also upregulates counterbalancing endogenous antioxidants to protect from ROS-induced damage and inflammation. Exercise elevates heme oxygenase-1 (HO-1) and biliverdin reductase A (BVRA) expression as built-in protective mechanisms, which produce the most potent antioxidant, bilirubin. Together, these mitigate inflammation and adiposity. Moderately raising plasma bilirubin protects in two ways: (1) via its antioxidant capacity to reduce ROS and inflammation, and (2) its newly defined function as a hormone that activates the nuclear receptor transcription factor PPARα. It is now understood that increasing plasma bilirubin can also drive metabolic adaptions, which improve deleterious outcomes of weight gain and obesity, such as inflammation, type II diabetes, and cardiovascular diseases. The main objective of this review is to describe the function of bilirubin as an antioxidant and metabolic hormone and how the HO-1-BVRA-bilirubin-PPARα axis influences inflammation, metabolic function and interacts with exercise to improve outcomes of weight management.
Collapse
|
26
|
Beard E, Lengacher S, Dias S, Magistretti PJ, Finsterwald C. Astrocytes as Key Regulators of Brain Energy Metabolism: New Therapeutic Perspectives. Front Physiol 2022; 12:825816. [PMID: 35087428 PMCID: PMC8787066 DOI: 10.3389/fphys.2021.825816] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes play key roles in the regulation of brain energy metabolism, which has a major impact on brain functions, including memory, neuroprotection, resistance to oxidative stress and homeostatic tone. Energy demands of the brain are very large, as they continuously account for 20–25% of the whole body’s energy consumption. Energy supply of the brain is tightly linked to neuronal activity, providing the origin of the signals detected by the widely used functional brain imaging techniques such as functional magnetic resonance imaging and positron emission tomography. In particular, neuroenergetic coupling is regulated by astrocytes through glutamate uptake that triggers astrocytic aerobic glycolysis and leads to glucose uptake and lactate release, a mechanism known as the Astrocyte Neuron Lactate Shuttle. Other neurotransmitters such as noradrenaline and Vasoactive Intestinal Peptide mobilize glycogen, the reserve for glucose exclusively localized in astrocytes, also resulting in lactate release. Lactate is then transferred to neurons where it is used, after conversion to pyruvate, as a rapid energy substrate, and also as a signal that modulates neuronal excitability, homeostasis, and the expression of survival and plasticity genes. Importantly, glycolysis in astrocytes and more generally cerebral glucose metabolism progressively deteriorate in aging and age-associated neurodegenerative diseases such as Alzheimer’s disease. This decreased glycolysis actually represents a common feature of several neurological pathologies. Here, we review the critical role of astrocytes in the regulation of brain energy metabolism, and how dysregulation of astrocyte-mediated metabolic pathways is involved in brain hypometabolism. Further, we summarize recent efforts at preclinical and clinical stages to target brain hypometabolism for the development of new therapeutic interventions in age-related neurodegenerative diseases.
Collapse
|
27
|
Barone E. Brain insulin resistance: an early risk factor for Alzheimer's disease development in Down syndrome. Neural Regen Res 2022; 17:333-335. [PMID: 34269205 PMCID: PMC8463986 DOI: 10.4103/1673-5374.317979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro, Roma, Italy
| |
Collapse
|
28
|
Barone E, Di Domenico F, Perluigi M, Butterfield DA. The interplay among oxidative stress, brain insulin resistance and AMPK dysfunction contribute to neurodegeneration in type 2 diabetes and Alzheimer disease. Free Radic Biol Med 2021; 176:16-33. [PMID: 34530075 PMCID: PMC8595768 DOI: 10.1016/j.freeradbiomed.2021.09.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly followed by vascular dementia. In addition to clinically diagnosed dementia, cognitive dysfunction has been reported in diabetic patients. Recent studies are now beginning to recognize type 2 diabetes mellitus (T2DM), characterized by chronic hyperglycemia and insulin resistance, as a risk factor for AD and other cognitive disorders. While studies on insulin action have remained traditionally in the domain of peripheral tissues, the detrimental effects of insulin resistance in the central nervous system on cognitive dysfunction are increasingly being reported in recent clinical and preclinical studies. Brain functions require continuous supply of glucose and oxygen and a tight regulation of metabolic processes. Loss of this metabolic regulation has been proposed to be a contributor to memory dysfunction associated with neurodegeneration. Within the above scenario, this review will focus on the interplay among oxidative stress (OS), insulin resistance and AMPK dysfunctions in the brain by highlighting how these neurotoxic events contribute to neurodegeneration. We provide an overview on the detrimental effects of OS on proteins regulating insulin signaling and how these alterations impact cell metabolic dysfunctions through AMPK dysregulation. Such processes, we assert, are critically involved in the molecular pathways that underlie AD.
Collapse
Affiliation(s)
- Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40506-0055, USA.
| |
Collapse
|
29
|
Cimini FA, Barchetta I, Zuliani I, Pagnotta S, Bertoccini L, Dule S, Zampieri M, Reale A, Baroni MG, Cavallo MG, Barone E. Biliverdin reductase-A protein levels are reduced in type 2 diabetes and are associated with poor glycometabolic control. Life Sci 2021; 284:119913. [PMID: 34453944 DOI: 10.1016/j.lfs.2021.119913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
AIM Biliverdin reductase-A (BVR-A) other than its canonical role in the degradation pathway of heme as partner of heme oxygenase-1 (HO1), has recently drawn attention as a protein with pleiotropic functions involved in insulin-glucose homeostasis. However, whether BVR-A expression is altered in type 2 diabetes (T2D) has never been evaluated. MAIN METHODS BVR-A protein levels were evaluated in T2D (n = 44) and non-T2D (n = 29) subjects, who underwent complete clinical workup and routine biochemistry. In parallel, levels HO1, whose expression is regulated by BVR-A as well as levels of tumor necrosis factor α (TNFα), which is a known repressor for BVR-A with pro-inflammatory properties, were also assessed. KEY FINDINGS BVR-A levels were significantly lower in T2D subjects than in non-T2D subjects. Reduced BVR-A levels were associated with greater body mass, systolic blood pressure, fasting blood glucose (FBG), glycated hemoglobin (HbA1c), triglycerides, transaminases and TNFα, and with lower high-density lipoprotein (HDL) levels. Lower BVR-A levels are associated with reduced HO1 protein levels and the multivariate analysis showed that BVR-A represented the main determinant of HO1 levels in T2D after adjustment. In addition, reduced BVR-A levels were able to predict the presence of T2D with AUROC = 0.69. for potential confounders. SIGNIFICANCE Our results demonstrate for the first time that BVR-A protein levels are reduced in T2D individuals, and that this alteration strictly correlates with poor glycometabolic control and a pro-inflammatory state. Hence, these observations reinforce the hypothesis that reduced BVR-A protein levels may represent a key event in the dysregulation of intracellular pathways finally leading to metabolic disorders.
Collapse
Affiliation(s)
| | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Ilaria Zuliani
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Sara Pagnotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Laura Bertoccini
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Sara Dule
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Michele Zampieri
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Anna Reale
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Marco Giorgio Baroni
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L'Aquila, Italy; Neuroendocrinology and Metabolic Diseases, IRCCS Neuromed, Pozzilli, Is, Italy
| | | | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy.
| |
Collapse
|
30
|
Gadhave K, Kumar D, Uversky VN, Giri R. A multitude of signaling pathways associated with Alzheimer's disease and their roles in AD pathogenesis and therapy. Med Res Rev 2021; 41:2689-2745. [PMID: 32783388 PMCID: PMC7876169 DOI: 10.1002/med.21719] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
The exact molecular mechanisms associated with Alzheimer's disease (AD) pathology continue to represent a mystery. In the past decades, comprehensive data were generated on the involvement of different signaling pathways in the AD pathogenesis. However, the utilization of signaling pathways as potential targets for the development of drugs against AD is rather limited due to the immense complexity of the brain and intricate molecular links between these pathways. Therefore, finding a correlation and cross-talk between these signaling pathways and establishing different therapeutic targets within and between those pathways are needed for better understanding of the biological events responsible for the AD-related neurodegeneration. For example, autophagy is a conservative cellular process that shows link with many other AD-related pathways and is crucial for maintenance of the correct cellular balance by degrading AD-associated pathogenic proteins. Considering the central role of autophagy in AD and its interplay with many other pathways, the finest therapeutic strategy to fight against AD is the use of autophagy as a target. As an essential step in this direction, this comprehensive review represents recent findings on the individual AD-related signaling pathways, describes key features of these pathways and their cross-talk with autophagy, represents current drug development, and introduces some of the multitarget beneficial approaches and strategies for the therapeutic intervention of AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Deepak Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| |
Collapse
|
31
|
Dierssen M, Barone E. Editorial: Brain Insulin Resistance in Neurodevelopmental and Neurodegenerative Disorders: Mind the Gap! Front Neurosci 2021; 15:730378. [PMID: 34447295 PMCID: PMC8382942 DOI: 10.3389/fnins.2021.730378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
32
|
Mancuso C. Biliverdin reductase as a target in drug research and development: Facts and hypotheses. Free Radic Biol Med 2021; 172:521-529. [PMID: 34224815 DOI: 10.1016/j.freeradbiomed.2021.06.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/14/2021] [Accepted: 06/30/2021] [Indexed: 12/26/2022]
Abstract
Biliverdin reductase-A (BVR) catalyzes the reduction of heme-derived biliverdin into bilirubin, this latter being a powerful endogenous free radical scavenger. Furthermore, BVR is also endowed with both serine/threonine/tyrosine kinase and scaffold activities, through which it interacts with the insulin receptor kinase, conventional and atypical protein kinase C isoforms, mitogen-activated protein kinases as well as the phosphatidylinositol-3 kinase/Akt system. By regulating this complex array of signal transduction pathways, BVR is involved in the pathogenesis of neurodegenerative, metabolic, cardiovascular and immune-inflammatory diseases as well as in cancer. In addition, both BVR and BVR-B, this latter being an alternate isozyme predominant during fetal development but sometimes detectable through adulthood, have been studied as peripheral biomarkers for an early detection of Alzheimer's disease, atherosclerosis and some types of cancer. However, despite these interesting lines of evidence, to date BVR has not been considered as an appealing drug target. Only limited evidence supports the neuroprotective effects of atorvastatin and ferulic acid through BVR regulation in the aged canine brain and human neuroblastoma cells, whereas interesting results have been reported regarding the use of BVR-based peptides in preclinical models of cardiac diseases and cancer.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Largo F. Vito, 1, 00168, Rome, Italy.
| |
Collapse
|
33
|
Perluigi M, Di Domenico F, Barone E, Butterfield DA. mTOR in Alzheimer disease and its earlier stages: Links to oxidative damage in the progression of this dementing disorder. Free Radic Biol Med 2021; 169:382-396. [PMID: 33933601 PMCID: PMC8145782 DOI: 10.1016/j.freeradbiomed.2021.04.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly population and has worldwide impact. The etiology of the disease is complex and results from the confluence of multiple mechanisms ultimately leading to neuronal loss and cognitive decline. Among risk factors, aging is the most relevant and accounts for several pathogenic events that contribute to disease-specific toxic mechanisms. Accumulating evidence linked the alterations of the mammalian target of rapamycin (mTOR), a serine/threonine protein kinase playing a key role in the regulation of protein synthesis and degradation, to age-dependent cognitive decline and pathogenesis of AD. To date, growing studies demonstrated that aberrant mTOR signaling in the brain affects several pathways involved in energy metabolism, cell growth, mitochondrial function and proteostasis. Recent advances associated alterations of the mTOR pathway with the increased oxidative stress. Disruption of all these events strongly contribute to age-related cognitive decline including AD. The current review discusses the main regulatory roles of mTOR signaling network in the brain, focusing on its role in autophagy, oxidative stress and energy metabolism. Collectively, experimental data suggest that targeting mTOR in the CNS can be a valuable strategy to prevent/slow the progression of AD.
Collapse
Affiliation(s)
- M Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - F Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - E Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - D A Butterfield
- Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy; Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40506-0055, USA.
| |
Collapse
|
34
|
Nakai T, Yamada K, Mizoguchi H. Alzheimer's Disease Animal Models: Elucidation of Biomarkers and Therapeutic Approaches for Cognitive Impairment. Int J Mol Sci 2021; 22:5549. [PMID: 34074018 PMCID: PMC8197360 DOI: 10.3390/ijms22115549] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related and progressive neurodegenerative disorder. It is widely accepted that AD is mainly caused by the accumulation of extracellular amyloid β (Aβ) and intracellular neurofibrillary tau tangles. Aβ begins to accumulate years before the onset of cognitive impairment, suggesting that the benefit of currently available interventions would be greater if they were initiated in the early phases of AD. To understand the mechanisms of AD pathogenesis, various transgenic mouse models with an accelerated accumulation of Aβ and tau tangles have been developed. However, none of these models exhibit all pathologies present in human AD. To overcome these undesirable phenotypes, APP knock-in mice, which were presented with touchscreen-based tasks, were developed to better evaluate the efficacy of candidate therapeutics in mouse models of early-stage AD. This review assesses several AD mouse models from the aspect of biomarkers and cognitive impairment and discusses their potential as tools to provide novel AD therapeutic approaches.
Collapse
Affiliation(s)
- Tsuyoshi Nakai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.N.); (K.Y.)
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.N.); (K.Y.)
| | - Hiroyuki Mizoguchi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.N.); (K.Y.)
- Medical Interactive Research and Academia Industry Collaboration Center, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
35
|
Zuliani I, Lanzillotta C, Tramutola A, Barone E, Perluigi M, Rinaldo S, Paone A, Cutruzzolà F, Bellanti F, Spinelli M, Natale F, Fusco S, Grassi C, Di Domenico F. High-Fat Diet Leads to Reduced Protein O-GlcNAcylation and Mitochondrial Defects Promoting the Development of Alzheimer's Disease Signatures. Int J Mol Sci 2021; 22:ijms22073746. [PMID: 33916835 PMCID: PMC8038495 DOI: 10.3390/ijms22073746] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/20/2021] [Accepted: 04/01/2021] [Indexed: 02/05/2023] Open
Abstract
The disturbance of protein O-GlcNAcylation is emerging as a possible link between altered brain metabolism and the progression of neurodegeneration. As observed in brains with Alzheimer's disease (AD), flaws of the cerebral glucose uptake translate into reduced protein O-GlcNAcylation, which promote the formation of pathological hallmarks. A high-fat diet (HFD) is known to foster metabolic dysregulation and insulin resistance in the brain and such effects have been associated with the reduction of cognitive performances. Remarkably, a significant role in HFD-related cognitive decline might be played by aberrant protein O-GlcNAcylation by triggering the development of AD signature and mitochondrial impairment. Our data support the impairment of total protein O-GlcNAcylation profile both in the brain of mice subjected to a 6-week high-fat-diet (HFD) and in our in vitro transposition on SH-SY5Y cells. The reduction of protein O-GlcNAcylation was associated with the development of insulin resistance, induced by overfeeding (i.e., defective insulin signaling and reduced mitochondrial activity), which promoted the dysregulation of the hexosamine biosynthetic pathway (HBP) flux, through the AMPK-driven reduction of GFAT1 activation. Further, we observed that a HFD induced the selective impairment of O-GlcNAcylated-tau and of O-GlcNAcylated-Complex I subunit NDUFB8, thus resulting in tau toxicity and reduced respiratory chain functionality respectively, highlighting the involvement of this posttranslational modification in the neurodegenerative process.
Collapse
Affiliation(s)
- Ilaria Zuliani
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| | - Chiara Lanzillotta
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| | - Antonella Tramutola
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| | - Eugenio Barone
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| | - Marzia Perluigi
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| | - Serena Rinaldo
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| | - Alessio Paone
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| | - Francesca Cutruzzolà
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| | - Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Matteo Spinelli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.S.); (F.N.); (S.F.); (C.G.)
| | - Francesca Natale
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.S.); (F.N.); (S.F.); (C.G.)
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.S.); (F.N.); (S.F.); (C.G.)
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.S.); (F.N.); (S.F.); (C.G.)
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Fabio Di Domenico
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
- Correspondence:
| |
Collapse
|
36
|
Liu J, Ting JP, Al-Azzam S, Ding Y, Afshar S. Therapeutic Advances in Diabetes, Autoimmune, and Neurological Diseases. Int J Mol Sci 2021; 22:ijms22062805. [PMID: 33802091 PMCID: PMC8001105 DOI: 10.3390/ijms22062805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023] Open
Abstract
Since 2015, 170 small molecules, 60 antibody-based entities, 12 peptides, and 15 gene- or cell-therapies have been approved by FDA for diverse disease indications. Recent advancement in medicine is facilitated by identification of new targets and mechanisms of actions, advancement in discovery and development platforms, and the emergence of novel technologies. Early disease detection, precision intervention, and personalized treatments have revolutionized patient care in the last decade. In this review, we provide a comprehensive overview of current and emerging therapeutic modalities developed in the recent years. We focus on nine diseases in three major therapeutics areas, diabetes, autoimmune, and neurological disorders. The pathogenesis of each disease at physiological and molecular levels is discussed and recently approved drugs as well as drugs in the clinic are presented.
Collapse
Affiliation(s)
- Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA 17605, USA;
| | - Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
- Correspondence:
| |
Collapse
|
37
|
Domingues R, Pereira C, Cruz MT, Silva A. Therapies for Alzheimer's disease: a metabolic perspective. Mol Genet Metab 2021; 132:162-172. [PMID: 33549409 DOI: 10.1016/j.ymgme.2021.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia in the elderly. Currently, there are over 50 million cases of dementia worldwide and it is expected that it will reach 136 million by 2050. AD is described as a neurodegenerative disease that gradually compromises memory and learning capacity. Patients often exhibit brain glucose hypometabolism and are more susceptible to develop type 2 diabetes or insulin resistance in comparison with age-matched controls. This suggests that there is a link between both pathologies. Glucose metabolism and the tricarboxylic acid cycle are tightly related to mitochondrial performance and energy production. Impairment of both these pathways can evoke oxidative damage on mitochondria and key proteins linked to several hallmarks of AD. Glycation is also another type of post-translational modification often reported in AD, which might impair the function of proteins that participate in metabolic pathways thought to be involved in this illness. Despite needing further research, therapies based on insulin treatment, usage of anti-diabetes drugs or some form of dietary intervention, have shown to be promising therapeutic approaches for AD in its early stages of progression and will be unveiled in this paper.
Collapse
Affiliation(s)
- Raquel Domingues
- Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal
| | - Claúdia Pereira
- Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3000-548, Portugal
| | - Maria Teresa Cruz
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3000-548, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Silva
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3000-548, Portugal.
| |
Collapse
|
38
|
Lanzillotta C, Tramutola A, Di Giacomo G, Marini F, Butterfield DA, Di Domenico F, Perluigi M, Barone E. Insulin resistance, oxidative stress and mitochondrial defects in Ts65dn mice brain: A harmful synergistic path in down syndrome. Free Radic Biol Med 2021; 165:152-170. [PMID: 33516914 DOI: 10.1016/j.freeradbiomed.2021.01.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
Dysregulation of brain insulin signaling with reduced downstream neuronal survival and plasticity mechanisms are fundamental abnormalities observed in Alzheimer disease (AD). This phenomenon, known as brain insulin resistance, is associated with poor cognitive performance and is driven by the inhibition of IRS1. Since Down syndrome (DS) and AD neuropathology share many common features, we investigated metabolic aspects of neurodegeneration in DS and whether they contribute to early onset AD in DS. We evaluated levels and activation of proteins belonging to the insulin signaling pathway (IR, IRS1, BVR-A, MAPK, PTEN, Akt, GSK3β, PKCζ, AS160, GLUT4) in the frontal cortex of Ts65dn (DS model) (n = 5-6/group) and euploid mice (n = 6/group) at different ages (1, 3, 9 and 18 months). Furthermore, we analyzed whether changes of brain insulin signaling were associated with alterations of: (i) proteins regulating brain energy metabolism (mitochondrial complexes, hexokinase-II, Sirt1); (ii) oxidative stress (OS) markers (iii) APP cleavage; and (iv) proteins mediating synaptic plasticity mechanisms (PSD95, syntaxin-1 and BDNF). Ts65dn mice showed an overall impairment of the above-mentioned pathways, mainly characterized by defects of proteins activation state. Such alterations start early in life (at 1 month, during brain maturation). In particular, accumulation of inhibited IRS1, together with the uncoupling among the proteins downstream from IRS1 (brain insulin resistance), characterize Ts65dn mice. Furthermore, reduced levels of mitochondrial complexes and Sirt1, as well as increased indices of OS also were observed. These alterations precede the accumulation of APP-C99 in Ts65dn mice. Tellingly, oxidative stress levels were negatively associated with IR, IRS1 and AS160 activation as well as mitochondrial complexes levels in Ts65dn mice, suggesting a role for oxidative stress in the observed alterations. We propose that a close link exists among brain insulin resistance, mitochondrial defects and OS that contributes to brain dysfunctions observed in DS, likely favoring the development of AD in DS.
Collapse
Affiliation(s)
- Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Graziella Di Giacomo
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40506-0055, USA
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy.
| |
Collapse
|
39
|
Lanzillotta C, Di Domenico F. Stress Responses in Down Syndrome Neurodegeneration: State of the Art and Therapeutic Molecules. Biomolecules 2021; 11:biom11020266. [PMID: 33670211 PMCID: PMC7916967 DOI: 10.3390/biom11020266] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Down syndrome (DS) is the most common genomic disorder characterized by the increased incidence of developing early Alzheimer’s disease (AD). In DS, the triplication of genes on chromosome 21 is intimately associated with the increase of AD pathological hallmarks and with the development of brain redox imbalance and aberrant proteostasis. Increasing evidence has recently shown that oxidative stress (OS), associated with mitochondrial dysfunction and with the failure of antioxidant responses (e.g., SOD1 and Nrf2), is an early signature of DS, promoting protein oxidation and the formation of toxic protein aggregates. In turn, systems involved in the surveillance of protein synthesis/folding/degradation mechanisms, such as the integrated stress response (ISR), the unfolded stress response (UPR), and autophagy, are impaired in DS, thus exacerbating brain damage. A number of pre-clinical and clinical studies have been applied to the context of DS with the aim of rescuing redox balance and proteostasis by boosting the antioxidant response and/or inducing the mechanisms of protein re-folding and clearance, and at final of reducing cognitive decline. So far, such therapeutic approaches demonstrated their efficacy in reverting several aspects of DS phenotype in murine models, however, additional studies aimed to translate these approaches in clinical practice are still needed.
Collapse
|
40
|
Abstract
Brain insulin signaling contributes to memory function and might be a viable target in the prevention and treatment of memory impairments including Alzheimer's disease. This short narrative review explores the potential of central nervous system (CNS) insulin administration via the intranasal pathway to improve memory performance in health and disease, with a focus on the most recent results. Proof-of-concept studies and (pilot) clinical trials in individuals with mild cognitive impairment or Alzheimer's disease indicate that acute and prolonged intranasal insulin administration enhances memory performance, and suggest that brain insulin resistance is a pathophysiological factor in Alzheimer's disease with or without concomitant metabolic dysfunction. Intranasally administered insulin is assumed to trigger improvements in synaptic plasticity and regional glucose uptake as well as alleviations of Alzheimer's disease neuropathology; additional contributions of changes in hypothalamus-pituitary-adrenocortical axis activity and sleep-related mechanisms are discussed. While intranasal insulin delivery has been conclusively demonstrated to be effective and safe, the recent outcomes of large-scale clinical studies underline the need for further investigations, which might also yield new insights into sex differences in the response to intranasal insulin and contribute to the optimization of delivery devices to grasp the full potential of intranasal insulin for Alzheimer's disease.
Collapse
Affiliation(s)
- Manfred Hallschmid
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Otfried-Müller-Str. 25, 72076, Tübingen, Germany.
- German Center for Diabetes Research (DZD), Tübingen, Germany.
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
| |
Collapse
|
41
|
Rhea EM, Logsdon AF, Banks WA, Erickson ME. Intranasal Delivery: Effects on the Neuroimmune Axes and Treatment of Neuroinflammation. Pharmaceutics 2020; 12:pharmaceutics12111120. [PMID: 33233734 PMCID: PMC7699866 DOI: 10.3390/pharmaceutics12111120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/02/2023] Open
Abstract
This review highlights the pre-clinical and clinical work performed to use intranasal delivery of various compounds from growth factors to stem cells to reduce neuroimmune interactions. We introduce the concept of intranasal (IN) delivery and the variations of this delivery method based on the model used (i.e., rodents, non-human primates, and humans). We summarize the literature available on IN delivery of growth factors, vitamins and metabolites, cytokines, immunosuppressants, exosomes, and lastly stem cells. We focus on the improvement of neuroimmune interactions, such as the activation of resident central nervous system (CNS) immune cells, expression or release of cytokines, and detrimental effects of signaling processes. We highlight common diseases that are linked to dysregulations in neuroimmune interactions, such as Alzheimer's disease, Parkinson's disease, stroke, multiple sclerosis, and traumatic brain injury.
Collapse
Affiliation(s)
- Elizabeth M. Rhea
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Correspondence: ; Tel.: +1-206-764-2938
| | - Aric F. Logsdon
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - William A. Banks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Michelle E. Erickson
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
42
|
Bukke VN, Villani R, Archana M, Wawrzyniak A, Balawender K, Orkisz S, Ferraro L, Serviddio G, Cassano T. The Glucose Metabolic Pathway as A Potential Target for Therapeutics: Crucial Role of Glycosylation in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21207739. [PMID: 33086751 PMCID: PMC7589651 DOI: 10.3390/ijms21207739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 01/17/2023] Open
Abstract
Glucose uptake in the brain decreases because of normal aging but this decline is accelerated in Alzheimer’s disease (AD) patients. In fact, positron emission tomography (PET) studies have shown that metabolic reductions in AD patients occur decades before the onset of symptoms, suggesting that metabolic deficits may be an upstream event in at least some late-onset cases. A decrease in availability of glucose content induces a considerable impairment/downregulation of glycosylation, which is an important post-translational modification. Glycosylation is an important and highly regulated mechanism of secondary protein processing within cells and it plays a crucial role in modulating stability of proteins, as carbohydrates are important in achieving the proper three-dimensional conformation of glycoproteins. Moreover, glycosylation acts as a metabolic sensor that links glucose metabolism to normal neuronal functioning. All the proteins involved in β-amyloid (Aβ) precursor protein metabolism have been identified as candidates of glycosylation highlighting the possibility that Aβ metabolism could be regulated by their glycosylation. Within this framework, the present review aims to summarize the current understanding on the role of glycosylation in the etiopathology of AD, emphasizing the idea that glucose metabolic pathway may represent an alternative therapeutic option for targeting AD. From this perspective, the pharmacological modulation of glycosylation levels may represent a ‘sweet approach’ to treat AD targeting new mechanisms independent of the amyloid cascade and with comparable impacts in familial and sporadic AD.
Collapse
Affiliation(s)
- Vidyasagar Naik Bukke
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (R.V.); (M.A.); (G.S.)
| | - Moola Archana
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (R.V.); (M.A.); (G.S.)
| | - Agata Wawrzyniak
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-036 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Krzysztof Balawender
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-036 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Stanislaw Orkisz
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-036 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, 44100 Ferrara, Italy;
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (R.V.); (M.A.); (G.S.)
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
- Correspondence:
| |
Collapse
|
43
|
Bukke VN, Archana M, Villani R, Romano AD, Wawrzyniak A, Balawender K, Orkisz S, Beggiato S, Serviddio G, Cassano T. The Dual Role of Glutamatergic Neurotransmission in Alzheimer's Disease: From Pathophysiology to Pharmacotherapy. Int J Mol Sci 2020; 21:ijms21207452. [PMID: 33050345 PMCID: PMC7589203 DOI: 10.3390/ijms21207452] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related dementia and neurodegenerative disorder, characterized by Aβ and tau protein deposition impairing learning, memory and suppressing synaptic plasticity of neurons. Increasing evidence suggests that there is a link between the glucose and glutamate alterations with age that down-regulates glucose utilization reducing glutamate levels in AD patients. Deviations in brain energy metabolism reinforce the development of AD by hampering glutamate levels in the brain. Glutamate is a nonessential amino acid and the major excitatory neurotransmitter synthesized from glucose. Alterations in cerebral glucose and glutamate levels precede the deposition of Aβ plaques. In the brain, over 40% of neuronal synapses are glutamatergic and disturbances in glutamatergic function have been implicated in pathophysiology of AD. Nevertheless, targeting the glutamatergic system seems to be a promising strategy to develop novel, improved therapeutics for AD. Here, we review data supporting the involvement of the glutamatergic system in AD pathophysiology as well as the efficacy of glutamatergic agents in this neurodegenerative disorder. We also discuss exciting new prospects for the development of improved therapeutics for this devastating disorder.
Collapse
Affiliation(s)
- Vidyasagar Naik Bukke
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Moola Archana
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Antonino Davide Romano
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Agata Wawrzyniak
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-310 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Krzysztof Balawender
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-310 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Stanislaw Orkisz
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-310 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Sarah Beggiato
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
- Correspondence:
| |
Collapse
|
44
|
Frazier HN, Anderson KL, Ghoweri AO, Lin RL, Hawkinson TR, Popa GJ, Sompol P, Mendenhall MD, Norris CM, Thibault O. Molecular elevation of insulin receptor signaling improves memory recall in aged Fischer 344 rats. Aging Cell 2020; 19:e13220. [PMID: 32852134 PMCID: PMC7576226 DOI: 10.1111/acel.13220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
As demonstrated by increased hippocampal insulin receptor density following learning in animal models and decreased insulin signaling, receptor density, and memory decline in aging and Alzheimer's diseases, numerous studies have emphasized the importance of insulin in learning and memory processes. This has been further supported by work showing that intranasal delivery of insulin can enhance insulin receptor signaling, alter cerebral blood flow, and improve memory recall. Additionally, inhibition of insulin receptor function or expression using molecular techniques has been associated with reduced learning. Here, we sought a different approach to increase insulin receptor activity without the need for administering the ligand. A constitutively active, modified human insulin receptor (IRβ) was delivered to the hippocampus of young (2 months) and aged (18 months) male Fischer 344 rats in vivo. The impact of increasing hippocampal insulin receptor expression was investigated using several outcome measures, including Morris water maze and ambulatory gait performance, immunofluorescence, immunohistochemistry, and Western immunoblotting. In aged animals, the IRβ construct was associated with enhanced performance on the Morris water maze task, suggesting that this receptor was able to improve memory recall. Additionally, in both age-groups, a reduced stride length was noted in IRβ-treated animals along with elevated hippocampal insulin receptor levels. These results provide new insights into the potential impact of increasing neuronal insulin signaling in the hippocampus of aged animals and support the efficacy of molecularly elevating insulin receptor activity in vivo in the absence of the ligand to directly study this process.
Collapse
Affiliation(s)
| | - Katie L. Anderson
- Department of Pharmacology and Nutritional SciencesLexingtonKentuckyUSA
| | - Adam O. Ghoweri
- Department of Pharmacology and Nutritional SciencesLexingtonKentuckyUSA
| | - Ruei-Lung Lin
- Department of Pharmacology and Nutritional SciencesLexingtonKentuckyUSA
| | - Tara R. Hawkinson
- Department of Pharmacology and Nutritional SciencesLexingtonKentuckyUSA
| | - Gabriel J. Popa
- Department of Molecular and Cellular BiochemistryLexingtonKentuckyUSA
| | - Pradoldej Sompol
- Sanders-Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | | | | | - Olivier Thibault
- Department of Pharmacology and Nutritional SciencesLexingtonKentuckyUSA
| |
Collapse
|
45
|
Jayanti S, Vítek L, Tiribelli C, Gazzin S. The Role of Bilirubin and the Other "Yellow Players" in Neurodegenerative Diseases. Antioxidants (Basel) 2020; 9:E900. [PMID: 32971784 PMCID: PMC7555389 DOI: 10.3390/antiox9090900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023] Open
Abstract
Bilirubin is a yellow endogenous derivate of the heme catabolism. Since the 1980s, it has been recognized as one of the most potent antioxidants in nature, able to counteract 10,000× higher intracellular concentrations of H2O2. In the recent years, not only bilirubin, but also its precursor biliverdin, and the enzymes involved in their productions (namely heme oxygenase and biliverdin reductase; altogether the "yellow players"-YPs) have been recognized playing a protective role in diseases characterized by a chronic prooxidant status. Based on that, there is an ongoing effort in inducing their activity as a therapeutic option. Nevertheless, the understanding of their specific contributions to pathological conditions of the central nervous system (CNS) and their role in these diseases are limited. In this review, we will focus on the most recent evidence linking the role of the YPs specifically to neurodegenerative and neurological conditions. Both the protective, as well as potentially worsening effects of the YP's activity will be discussed.
Collapse
Affiliation(s)
- Sri Jayanti
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (S.J.); (C.T.)
- Faculty of Medicine, Universitas Hasanuddin, Makassar 90245, Indonesia
- Molecular Biomedicine Ph.D. Program, University of Trieste, 34127 Trieste, Italy
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, and 4th Department of Internal Medicine, Faculty General Hospital and 1st Faculty of Medicine, Charles University, 12000 Prague, Czech Republic;
| | - Claudio Tiribelli
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (S.J.); (C.T.)
| | - Silvia Gazzin
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (S.J.); (C.T.)
| |
Collapse
|
46
|
Sharma VK, Singh TG. Insulin resistance and bioenergetic manifestations: Targets and approaches in Alzheimer's disease. Life Sci 2020; 262:118401. [PMID: 32926928 DOI: 10.1016/j.lfs.2020.118401] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/15/2022]
Abstract
AIM Insulin has a well-established role in cognition, neuronal detoxification and synaptic plasticity. Insulin transduction affect neurotransmitter functions, influence bioenergetics and regulate neuronal survival through regulating glucose energy metabolism and downward pathways. METHODS A systematic literature review of PubMed, Medline, Bentham, Scopus and EMBASE (Elsevier) databases was carried out with the help of the keywords like "Alzheimer's disease; Hypometabolism; Oxidative stress; energy failure in AD, Insulin; Insulin resistance; Bioenergetics" till June 2020. The review was conducted using the above keywords to collect the latest articles and to understand the nature of the extensive work carried out on insulin resistance and bioenergetic manifestations in Alzheimer's disease. KEY FINDINGS The article sheds light on insulin resistance mediated hypometabolic state on pathological progression of AD. The disrupted insulin signaling has pathological outcome in form of disturbed glucose homeostasis, altered bioenergetic state which increases build-up of senile plaques (Aβ), neurofibrillary tangles (τ), decline in transportation of glucose and activation of inflammatory pathways. The mechanistic link of insulin resistant state with therapeutically explorable potential transduction pathways is the focus of the reviewed work. SIGNIFICANCE The present work opines that the mechanism by which the insulin resistance mediates dysregulation of bioenergetics and progresses to neurodegenerative state holds the tangible potential to succeed in the development of novel dementia therapies. Further, hypometabolic complications and altered insulin signaling may be explored as a mechanistic relation between bioenergetic deficits and AD.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Govt. College of Pharmacy, Rohru, District Shimla, Himachal Pradesh 171207, India
| | | |
Collapse
|
47
|
Kellar D, Craft S. Brain insulin resistance in Alzheimer's disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol 2020; 19:758-766. [DOI: 10.1016/s1474-4422(20)30231-3] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/30/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
|
48
|
López-Gambero AJ, Sanjuan C, Serrano-Castro PJ, Suárez J, Rodríguez de Fonseca F. The Biomedical Uses of Inositols: A Nutraceutical Approach to Metabolic Dysfunction in Aging and Neurodegenerative Diseases. Biomedicines 2020; 8:biomedicines8090295. [PMID: 32825356 PMCID: PMC7554709 DOI: 10.3390/biomedicines8090295] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/05/2023] Open
Abstract
Inositols are sugar-like compounds that are widely distributed in nature and are a part of membrane molecules, participating as second messengers in several cell-signaling processes. Isolation and characterization of inositol phosphoglycans containing myo- or d-chiro-inositol have been milestones for understanding the physiological regulation of insulin signaling. Other functions of inositols have been derived from the existence of multiple stereoisomers, which may confer antioxidant properties. In the brain, fluctuation of inositols in extracellular and intracellular compartments regulates neuronal and glial activity. Myo-inositol imbalance is observed in psychiatric diseases and its use shows efficacy for treatment of depression, anxiety, and compulsive disorders. Epi- and scyllo-inositol isomers are capable of stabilizing non-toxic forms of β-amyloid proteins, which are characteristic of Alzheimer’s disease and cognitive dementia in Down’s syndrome, both associated with brain insulin resistance. However, uncertainties of the intrinsic mechanisms of inositols regarding their biology are still unsolved. This work presents a critical review of inositol actions on insulin signaling, oxidative stress, and endothelial dysfunction, and its potential for either preventing or delaying cognitive impairment in aging and neurodegenerative diseases. The biomedical uses of inositols may represent a paradigm in the industrial approach perspective, which has generated growing interest for two decades, accompanied by clinical trials for Alzheimer’s disease.
Collapse
Affiliation(s)
- Antonio J. López-Gambero
- Departamento de Biología Celular, Genética y Fisiología, Campus de Teatinos s/n, Universidad de Málaga, Andalucia Tech, 29071 Málaga, Spain;
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010 Málaga, Spain
| | | | - Pedro Jesús Serrano-Castro
- UGC Neurología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010 Málaga, Spain;
| | - Juan Suárez
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010 Málaga, Spain
- Correspondence: (J.S.); (F.R.d.F.); Tel.: +34-952614012 (J.S.)
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010 Málaga, Spain
- Correspondence: (J.S.); (F.R.d.F.); Tel.: +34-952614012 (J.S.)
| |
Collapse
|
49
|
Varnamkhasti BS, Jafari S, Taghavi F, Alaei L, Izadi Z, Lotfabadi A, Dehghanian M, Jaymand M, Derakhshankhah H, Saboury AA. Cell-Penetrating Peptides: As a Promising Theranostics Strategy to Circumvent the Blood-Brain Barrier for CNS Diseases. Curr Drug Deliv 2020; 17:375-386. [DOI: 10.2174/1567201817666200415111755] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/09/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
The passage of therapeutic molecules across the Blood-Brain Barrier (BBB) is a profound challenge for the management of the Central Nervous System (CNS)-related diseases. The ineffectual nature of traditional treatments for CNS disorders led to the abundant endeavor of researchers for the design the effective approaches in order to bypass BBB during recent decades. Cell-Penetrating Peptides (CPPs) were found to be one of the promising strategies to manage CNS disorders. CPPs are short peptide sequences with translocation capacity across the biomembrane. With special regard to their two key advantages like superior permeability as well as low cytotoxicity, these peptide sequences represent an appropriate solution to promote therapeutic/theranostic delivery into the CNS. This scenario highlights CPPs with specific emphasis on their applicability as a novel theranostic delivery system into the brain.
Collapse
Affiliation(s)
- Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Fereshteh Taghavi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Loghman Alaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Alireza Lotfabadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Mojtaba Dehghanian
- Department of Biotechnology, Shahr-e Kord Branch, Islamic Azad University, Shahr-e Kord, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
50
|
Lanzillotta C, Zuliani I, Vasavda C, Snyder SH, Paul BD, Perluigi M, Di Domenico F, Barone E. BVR-A Deficiency Leads to Autophagy Impairment through the Dysregulation of AMPK/mTOR Axis in the Brain-Implications for Neurodegeneration. Antioxidants (Basel) 2020; 9:antiox9080671. [PMID: 32727065 PMCID: PMC7466043 DOI: 10.3390/antiox9080671] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Biliverdin reductase-A (BVR-A) impairment is associated with increased accumulation of oxidatively-damaged proteins along with the impairment of autophagy in the brain during neurodegenerative disorders. Reduced autophagy inhibits the clearance of misfolded proteins, which then form neurotoxic aggregates promoting neuronal death. The aim of our study was to clarify the role for BVR-A in the regulation of the mTOR/autophagy axis by evaluating age-associated changes (2, 6 and 11 months) in cerebral cortex samples collected from BVR-A knock-out (BVR-A−/−) and wild-type (WT) mice. Our results show that BVR-A deficiency leads to the accumulation of oxidatively-damaged proteins along with mTOR hyper-activation in the cortex. This process starts in juvenile mice and persists with aging. mTOR hyper-activation is associated with the impairment of autophagy as highlighted by reduced levels of Beclin-1, LC3β, LC3II/I ratio, Atg5–Atg12 complex and Atg7 in the cortex of BVR-A−/− mice. Furthermore, we have identified the dysregulation of AMP-activated protein kinase (AMPK) as a critical event driving mTOR hyper-activation in the absence of BVR-A. Overall, our results suggest that BVR-A is a new player in the regulation of autophagy, which may be targeted to arrive at novel therapeutics for diseases involving impaired autophagy.
Collapse
Affiliation(s)
- Chiara Lanzillotta
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (C.L.); (I.Z.); (M.P.)
| | - Ilaria Zuliani
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (C.L.); (I.Z.); (M.P.)
| | - Chirag Vasavda
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.V.); (S.H.S.); (B.D.P.)
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.V.); (S.H.S.); (B.D.P.)
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.V.); (S.H.S.); (B.D.P.)
| | - Marzia Perluigi
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (C.L.); (I.Z.); (M.P.)
| | - Fabio Di Domenico
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (C.L.); (I.Z.); (M.P.)
- Correspondence: (F.D.D.); (E.B.)
| | - Eugenio Barone
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (C.L.); (I.Z.); (M.P.)
- Correspondence: (F.D.D.); (E.B.)
| |
Collapse
|