1
|
Overstreet AMC, Burge M, Bellar A, McMullen M, Czarnecki D, Huang E, Pathak V, Finney C, Vij R, Dasarathy S, Dasarathy J, Streem D, Welch N, Rotroff D, Schmitt AM, Nagy LE, Messer JS. Evidence that extracellular HSPB1 contributes to inflammation in alcohol-associated hepatitis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.06.24313193. [PMID: 39281760 PMCID: PMC11398598 DOI: 10.1101/2024.09.06.24313193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Background and aims Alcohol-associated hepatitis (AH) is the most life-threatening form of alcohol-associated liver disease (ALD). AH is characterized by severe inflammation attributed to increased levels of ethanol, microbes or microbial components, and damage-associated molecular pattern (DAMP) molecules in the liver. HSPB1 (Heat Shock Protein Family B (Small) Member 1; also known as Hsp25/27) is a DAMP that is rapidly increased in and released from cells experiencing stress, including hepatocytes. The goal of this study was to define the role of HSPB1 in AH pathophysiology. Methods Serum HSPB1 was measured in a retrospective study of 184 heathy controls (HC), heavy alcohol consumers (HA), patients with alcohol-associated cirrhosis (AC), and patients with AH recruited from major hospital centers. HSPB1 was also retrospectively evaluated in liver tissue from 10 HC and AH patients and an existing liver RNA-seq dataset. Finally, HSPB1 was investigated in a murine Lieber-DeCarli diet model of early ALD as well as cellular models of ethanol stress in hepatocytes and hepatocyte-macrophage communication during ethanol stress. Results Circulating HSPB1 was significantly increased in AH patients and levels positively correlated with disease-severity scores. Likewise, HSPB1 was increased in the liver of patients with severe AH and in the liver of ethanol-fed mice. In vitro , ethanol-stressed hepatocytes released HSPB1, which then triggered TNFα-mediated inflammation in macrophages. Anti-HSPB1 antibody prevented TNFα release from macrophages exposed to media conditioned by ethanol-stressed hepatocytes. Conclusions Our findings support investigation of HSPB1 as both a biomarker and therapeutic target in ALD. Furthermore, this work demonstrates that anti-HSPB1 antibody is a rational approach to targeting HSPB1 with the potential to block inflammation and protect hepatocytes, without inactivating host defense. GRAPHICAL ABSTRACT HIGHLIGHTS HSPB1 is significantly increased in serum and liver of patients with alcohol-associated hepatitis.Ethanol consumption leads to early increases in HSPB1 in the mouse liver.Hepatocytes subjected to ethanol stress release HSPB1 into the extracellular environment where it activates TNFα-mediated inflammation in macrophages.Anti-HSPB1 antibody blocks hepatocyte-triggered TNFα in a model of hepatocyte-macrophage communication during ethanol stress.
Collapse
|
2
|
Romero G, Martin B, Gabris B, Salama G. Relaxin suppresses atrial fibrillation, reverses fibrosis and reduces inflammation in aged hearts. Biochem Pharmacol 2024; 227:116407. [PMID: 38969298 DOI: 10.1016/j.bcp.2024.116407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Healthy aging results in cardiac structural and electrical remodeling that increase susceptibility to cardiovascular diseases. Relaxin has shown broad cardioprotective effects including anti-fibrotic, anti-arrhythmic and anti-inflammatory outcomes in multiple models. This paper focuses on the cardioprotective effects of Relaxin in a rat model of aging. Sustained atrial or ventricular fibrillation are readily induced in the hearts of aged but not young control animals. Treatment with Relaxin suppressed this arrhythmogenic response by increasing conduction velocity, decreasing fibrosis and promoting substantial cardiac remodeling. Relaxin treatment resulted in a significant increase in the levels of: Nav1.5, Cx43, βcatenin and Wnt1 in rat hearts. In isolated cardiomyocytes, Relaxin increased Nav1.5 expression. These effects were mimicked by CHIR 99021, a pharmacological activator of canonical Wnt signaling, but blocked by the canonical Wnt inhibitor Dickkopf1. Relaxin prevented TGF-β-dependent differentiation of cardiac fibroblasts into myofibroblasts while increasing the expression of Wnt1; the effects of Relaxin on cardiac fibroblast differentiation were blocked by Dickkopf1. RNASeq studies demonstrated reduced expression of pro-inflammatory cytokines and an increase in the expression of α- and β-globin in Relaxin-treated aged males. Relaxin reduces arrhythmogenicity in the hearts of aged rats by reduction of fibrosis and increased conduction velocity. These changes are accompanied by substantial remodeling of the cardiac tissue and appear to be mediated by increased canonical Wnt signaling. Relaxin also exerts significant anti-inflammatory and anti-oxidant effects in the hearts of aged rodents. The mechanisms by which Relaxin increases the expression of Wnt ligands, promotes Wnt signaling and reprograms gene expression remain to be determined.
Collapse
Affiliation(s)
- Guillermo Romero
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Brian Martin
- Departments of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Beth Gabris
- Departments of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Guy Salama
- Departments of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Orsatti FL, de Queiroz Freitas AC, Borges AVBE, Santato AS, de Oliveira Assumpção C, Souza MVC, da Silva MV, Orsatti CL. Unveiling the role of exercise in modulating plasma heat shock protein 27 levels: insights for exercise immunology and cardiovascular health. Mol Cell Biochem 2024:10.1007/s11010-024-05089-8. [PMID: 39172352 DOI: 10.1007/s11010-024-05089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Cardiovascular disease is one of the leading causes of mortality worldwide, primarily driven by atherosclerosis, a chronic inflammatory condition contributing significantly to fatalities. Various biological determinants affecting cardiovascular health across different age and sex groups have been identified. In this context, recent attention has focused on the potential therapeutic and preventive role of increasing circulating levels of heat shock protein 27 (plasma HSP27) in combating atherosclerosis. Plasma HSP27 is recognized for its protective function in inflammatory atherogenesis, offering promising avenues for intervention and management strategies against this prevalent cardiovascular ailment. Exercise has emerged as a pivotal strategy in preventing and managing cardiovascular disease, with literature indicating an increase in plasma HSP27 levels post-exercise. However, there is limited understanding of the impact of exercise on the release of HSP27 into circulation. Clarifying these aspects is crucial for understanding the role of exercise in modulating plasma HSP27 levels and its potential implications for cardiovascular health across diverse populations. Therefore, this review aims to establish a more comprehensive understanding of the relationship between plasma HSP27 and exercise.
Collapse
Affiliation(s)
- Fábio Lera Orsatti
- Exercise Biology Laboratory (BioEx), Department of Sport Science, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Av. Frei Paulino, 30, Uberaba, MG, 38025-180, Brazil.
| | - Augusto Corrêa de Queiroz Freitas
- Exercise Biology Laboratory (BioEx), Department of Sport Science, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Av. Frei Paulino, 30, Uberaba, MG, 38025-180, Brazil
| | - Anna Victória Bernardes E Borges
- Department of Microbiology, Immunology, And Parasitology, Institute of Biological and Natural Sciences of Federal University of Triangulo Mineiro, Uberaba, MG, 38025-350, Brazil
| | - Alexia Souza Santato
- Exercise Biology Laboratory (BioEx), Department of Sport Science, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Av. Frei Paulino, 30, Uberaba, MG, 38025-180, Brazil
| | - Claudio de Oliveira Assumpção
- Exercise Biology Laboratory (BioEx), Department of Sport Science, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Av. Frei Paulino, 30, Uberaba, MG, 38025-180, Brazil
| | - Markus Vinicius Campos Souza
- Exercise Biology Laboratory (BioEx), Department of Sport Science, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Av. Frei Paulino, 30, Uberaba, MG, 38025-180, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology, And Parasitology, Institute of Biological and Natural Sciences of Federal University of Triangulo Mineiro, Uberaba, MG, 38025-350, Brazil
| | | |
Collapse
|
4
|
Tan XR, Low ICC, Soong TW, Lee JKW. Pre-exercise hot water immersion increased circulatory heat shock proteins but did not alter muscle damage markers or endurance capacity after eccentric exercise. Temperature (Austin) 2024; 11:157-169. [PMID: 38846523 PMCID: PMC11152112 DOI: 10.1080/23328940.2024.2313954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/31/2024] [Indexed: 06/09/2024] Open
Abstract
Pre-exercise passive heating attenuates muscle damage caused by eccentric exercise in rats where the induction of heat shock proteins (HSPs) confers a myoprotective effect. We investigated whether pre-exercise hot water immersion (HWI) confers similar benefits in humans. Eleven recreational male athletes were immersed in 41°C water up to 60 min or until rectal temperatures reached 39.5°C. After a 6 h rest, the participants performed an eccentric downhill run for 1 h at -4% gradient to induce muscle damage. An endurance capacity test at 75% VO2max was conducted 18 h later. The control trial was similar except that participants were immersed at 34°C. Blood samples were collected to assess HSPs levels, creatine kinase, and lactate dehydrogenase activities. Plasma eHSP70 was higher post-immersion in HWI trials (1.3 ± 0.4 vs 1.1 ± 0.4; p = 0.005). Plasma eHSP27 was higher before (p = 0.049) and after (p = 0.015) endurance test in HWI. Leukocytic p-HSP27 was increased 18 h after HWI (0.97 ± 0.14 vs 0.67 ± 0.11; p = 0.04). Creatine kinase and lactate dehydrogenase activities were increased by 3-fold and 1.5-fold, respectively, after endurance test in HWI but did not differ across trials (p > 0.05). Mean heart rates were higher during eccentric run and endurance test in HWI as compared to control (p < 0.05). Endurance capacity was similar between trials (57.3 ± 11.5 min vs 55.0 ± 13.5 min; p = 0.564). Pre-exercise heating increased the expression of plasma eHSPs and leukocytic p-HSP27 but did not reduce muscle damage nor enhance endurance capacity.
Collapse
Affiliation(s)
- Xiang Ren Tan
- Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ivan C. C. Low
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jason K. W. Lee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| |
Collapse
|
5
|
Schuermans A, Truong B, Ardissino M, Bhukar R, Slob EAW, Nakao T, Dron JS, Small AM, Cho SMJ, Yu Z, Hornsby W, Antoine T, Lannery K, Postupaka D, Gray KJ, Yan Q, Butterworth AS, Burgess S, Wood MJ, Scott NS, Harrington CM, Sarma AA, Lau ES, Roh JD, Januzzi JL, Natarajan P, Honigberg MC. Genetic Associations of Circulating Cardiovascular Proteins With Gestational Hypertension and Preeclampsia. JAMA Cardiol 2024; 9:209-220. [PMID: 38170504 PMCID: PMC10765315 DOI: 10.1001/jamacardio.2023.4994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/01/2023] [Indexed: 01/05/2024]
Abstract
Importance Hypertensive disorders of pregnancy (HDPs), including gestational hypertension and preeclampsia, are important contributors to maternal morbidity and mortality worldwide. In addition, women with HDPs face an elevated long-term risk of cardiovascular disease. Objective To identify proteins in the circulation associated with HDPs. Design, Setting, and Participants Two-sample mendelian randomization (MR) tested the associations of genetic instruments for cardiovascular disease-related proteins with gestational hypertension and preeclampsia. In downstream analyses, a systematic review of observational data was conducted to evaluate the identified proteins' dynamics across gestation in hypertensive vs normotensive pregnancies, and phenome-wide MR analyses were performed to identify potential non-HDP-related effects associated with the prioritized proteins. Genetic association data for cardiovascular disease-related proteins were obtained from the Systematic and Combined Analysis of Olink Proteins (SCALLOP) consortium. Genetic association data for the HDPs were obtained from recent European-ancestry genome-wide association study meta-analyses for gestational hypertension and preeclampsia. Study data were analyzed October 2022 to October 2023. Exposures Genetic instruments for 90 candidate proteins implicated in cardiovascular diseases, constructed using cis-protein quantitative trait loci (cis-pQTLs). Main Outcomes and Measures Gestational hypertension and preeclampsia. Results Genetic association data for cardiovascular disease-related proteins were obtained from 21 758 participants from the SCALLOP consortium. Genetic association data for the HDPs were obtained from 393 238 female individuals (8636 cases and 384 602 controls) for gestational hypertension and 606 903 female individuals (16 032 cases and 590 871 controls) for preeclampsia. Seventy-five of 90 proteins (83.3%) had at least 1 valid cis-pQTL. Of those, 10 proteins (13.3%) were significantly associated with HDPs. Four were robust to sensitivity analyses for gestational hypertension (cluster of differentiation 40, eosinophil cationic protein [ECP], galectin 3, N-terminal pro-brain natriuretic peptide [NT-proBNP]), and 2 were robust for preeclampsia (cystatin B, heat shock protein 27 [HSP27]). Consistent with the MR findings, observational data revealed that lower NT-proBNP (0.76- to 0.88-fold difference vs no HDPs) and higher HSP27 (2.40-fold difference vs no HDPs) levels during the first trimester of pregnancy were associated with increased risk of HDPs, as were higher levels of ECP (1.60-fold difference vs no HDPs). Phenome-wide MR analyses identified 37 unique non-HDP-related protein-disease associations, suggesting potential on-target effects associated with interventions lowering HDP risk through the identified proteins. Conclusions and Relevance Study findings suggest genetic associations of 4 cardiovascular disease-related proteins with gestational hypertension and 2 associated with preeclampsia. Future studies are required to test the efficacy of targeting the corresponding pathways to reduce HDP risk.
Collapse
Affiliation(s)
- Art Schuermans
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Buu Truong
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Maddalena Ardissino
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Rohan Bhukar
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Eric A. W. Slob
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, the Netherlands
- Erasmus University Rotterdam Institute for Behavior and Biology, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Tetsushi Nakao
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Jacqueline S. Dron
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Aeron M. Small
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - So Mi Jemma Cho
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Zhi Yu
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Whitney Hornsby
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Tajmara Antoine
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Kim Lannery
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Darina Postupaka
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Kathryn J. Gray
- Division of Maternal-Fetal Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Qi Yan
- Department of Obstetrics and Gynecology, Columbia University, New York, New York
| | - Adam S. Butterworth
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- BHF Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| | - Malissa J. Wood
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
- Lee Health, Fort Myers, Florida
| | - Nandita S. Scott
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Colleen M. Harrington
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Amy A. Sarma
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Emily S. Lau
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Jason D. Roh
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - James L. Januzzi
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
- Baim Institute for Clinical Research, Boston, Massachusetts
| | - Pradeep Natarajan
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Michael C. Honigberg
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| |
Collapse
|
6
|
Milani A, Akbari E, Pordanjani PM, Jamshidi F, Ghayoumi S, Sadeghi SA, Bolhassani A. Immunostimulatory effects of Hsp70 fragments and Hsp27 in design of novel HIV-1 vaccine formulations. HIV Med 2024; 25:276-290. [PMID: 37936563 DOI: 10.1111/hiv.13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Heat shock proteins (HSPs) as an adjuvant induce antigen-specific immunity through facilitating antigen presentation and stimulating T cells. In this study, the immunostimulatory properties of two major fragments of Hsp70 (N-Hsp70(aa 1-387) with ATPase property and C-Hsp70 (aa 508-641) with peptide-binding capacity) and the full length of Hsp27 as vaccine adjuvants were evaluated to boost HIV-1 Nef antigen-specific immunity in both in vitro and in vivo experiments. METHODS At first, the nanoparticles harbouring DNA fusion constructs (i.e. N-Hsp70-Nef, C-Hsp70-Nef and Hsp27-Nef) complexed with HIV Rev (34-50) cell-penetrating peptide were generated to deliver DNA into the cells. Then, the recombinant Nef, Hsp27-Nef, N-Hsp70-Nef and C-Hsp70-Nef proteins were generated in E.coli expression system. Next, the immunostimulatory properties of these fusion constructs were evaluated in both in vitro and in vivo studies. Finally, the secretion of main cytokines from single-cycle replicable (SCR) HIV-1 virion-exposed splenocytes was investigated. RESULTS Our data showed that the stable and non-toxic DNA/Rev nanoparticles could successfully deliver the genes of interest into the cells. Moreover, higher secretion of antibodies and cytokines was detected in mice receiving the Hsp-Nef constructs than in mice receiving Nef antigen. The C-Hsp70 was also superior for inducing Nef-specific Th1 and CTL immunity compared with N-Hsp70 and Hsp27. The T-cell activity was maintained in the SCR-exposed splenocytes, especially the splenocytes of mice receiving the C-Hsp70-Nef regimen. CONCLUSION Altogether, these findings demonstrate the significance of Hsps as enhancers of antigen-specific immunity. Notably, the C-Hsp70 region showed better adjuvant properties for inducing cellular immunity in the improvement of HIV-1 therapeutic vaccines.
Collapse
Affiliation(s)
- Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Elahe Akbari
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fateme Jamshidi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Shahrzad Ghayoumi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Seyed Amir Sadeghi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Kim YJ, Khaleel ZH, Jin M, Lee JWY, Park S, Ga S, Kim NH, Sa DH, Kang ES, Han SH, Lee JY, Ku HJ, Kim SW, Kim KY, Park JE, Kim YH, Lee BS. Mechanistic insights into the anti-restenotic effects of HSP27 and HO1 modulated by reconstituted HDL on neointimal hyperplasia. Sci Rep 2023; 13:22078. [PMID: 38087008 PMCID: PMC10716395 DOI: 10.1038/s41598-023-49367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
High-density lipoprotein (HDL) therapy has demonstrated beneficial effects in acute stroke and acute myocardial infarction models by reducing infarct size. In this study, we investigated the inhibitory effects of reconstituted HDL (rHDL) on neointimal hyperplasia and elucidated its underlying mechanism using a balloon injury rat model. Our finding revealed a significant 37% reduction in the intima to media ratio in the arteries treated with 80 mg/kg rHDL compared to those subjected to injury alone (p < 0.05), indicating a specific inhibition of neointimal hyperplasia. In vivo analysis further supported the positive effects of rHDL by demonstrating a reduction in smooth muscle cell (SMC) proliferation and an increase in endothelial cell (EC) proliferation. Additionally, rHDL treatment led to decreased infiltration of leukocytes and downregulated the expression of matrix metallopeptidase 9 (MMP9) in the neointimal area. Notably, rHDL administration resulted in decreased expression of VCAM1 and HIF1α, alongside increased expression of heme oxygenase 1 (HO1) and heat shock protein 27 (HSP27). Overexpression of HSP27 and HO1 effectively inhibited SMC proliferation. Moreover, rHDL-mediated suppression of injury-induced HIF1α coincided with upregulation of HSP27. Interestingly, HSP27 and HO1 had varying effects on the expression of chemokine receptors and rHDL did not exert significant effect on chemokine receptor expression in THP1 cells. These findings underscore the distinct roles of HSP27 and HO1 as potential regulatory factors in the progression of restenosis. Collectively, our study demonstrates that rHDL exerts a potent anti-neointimal hyperplasia effect by reducing leukocytes infiltration and SMC proliferation while promoting EC proliferation.
Collapse
Affiliation(s)
- Ye Ji Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-Ro, Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Zinah Hilal Khaleel
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-Ro, Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Myeongji Jin
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-Ro, Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jo Woon Yi Lee
- Division of Cardiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seongchan Park
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-Ro, Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seongmin Ga
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-Ro, Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Nam Hyeong Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-Ro, Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Deok Hyang Sa
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-Ro, Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eun Sung Kang
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-Ro, Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seul Hee Han
- Division of Cardiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji Yeun Lee
- Division of Cardiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyo Jung Ku
- Division of Cardiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang-Wook Kim
- Protein Research Lab, CRC, GC Biopharma R&D Center, Green Cross Co., Yongin, 16924, Republic of Korea
- Samsung Bioepis PD Team, 76 Songdogyoyuk-Ro, Yeonsu-Gu, Incheon, 21987, Republic of Korea
| | - Ki Yong Kim
- Protein Research Lab, CRC, GC Biopharma R&D Center, Green Cross Co., Yongin, 16924, Republic of Korea
- Genexine, BioResearch Institute, 172 Magocjungang-Ro, BioInnovationPark, Bldg. Gangseo-Gu, Seoul, 07789, Republic of Korea
| | - Jeong Euy Park
- Division of Cardiology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
| | - Yong Ho Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-Ro, Suwon, 16419, Republic of Korea.
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.
| | - Bok-Soo Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-Ro, Suwon, 16419, Republic of Korea.
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Division of Cardiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Chiu MH, Gershkovich B, Yu IL, O'Brien ER, Deng J, McDonald B. Heat shock protein 27 in the pathogenesis of COVID-19 and non-COVID acute respiratory distress syndrome. Cell Stress Chaperones 2023; 28:877-887. [PMID: 37966617 PMCID: PMC10746647 DOI: 10.1007/s12192-023-01381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 11/16/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common cause of hypoxemic respiratory failure in intensive care units that has increased dramatically as a result of the COVID-19 pandemic. In both COVID-19 and non-COVID ARDS, the pathogenesis of lung injury involves local (pulmonary) and systemic inflammation, leading to impaired gas exchange, requirement for mechanical ventilation, and a high risk of mortality. Heat shock protein 27 (HSP27) is a chaperone protein expressed in times of cell stress with roles in modulation of systemic inflammation via the NF-κB pathway. Given its important role as a modulator of inflammation, we sought to investigate the role of HSP27 and its associated auto-antibodies in ARDS caused by both SARS-CoV-2 and non-COVID etiologies. A total of 68 patients admitted to the intensive care unit with ARDS requiring mechanical ventilation were enrolled in a prospective, observational study that included 22 non-COVID-19 and 46 COVID-19 patients. Blood plasma levels of HSP27, anti-HSP27 auto-antibody (AAB), and cytokine profiles were measured on days 1 and 3 of ICU admission along with clinical outcome measures. Patients with COVID-19 ARDS displayed significantly higher levels of HSP27 in plasma, and a higher ratio of HSP27:AAB on both day 1 and day 3 of ICU admission. In patients with COVID-19, higher levels of circulating HSP27 and HSP27:AAB ratio were associated with a more severe systemic inflammatory response and adverse clinical outcomes including more severe hypoxemic respiratory failure. These findings implicate HSP27 as a marker of advanced pathogenesis of disease contributing to the dysregulated systemic inflammation and worse clinical outcomes in COVID-19 ARDS, and therefore may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Michael H Chiu
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, University of Calgary, Calgary, Canada.
- Department of Critical Care Medicine, University of Calgary, Calgary, Canada.
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | | | - Ian-Ling Yu
- Department of Critical Care Medicine, University of Calgary, Calgary, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Edward R O'Brien
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, University of Calgary, Calgary, Canada
| | - Jingti Deng
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, University of Calgary, Calgary, Canada
| | - Braedon McDonald
- Department of Critical Care Medicine, University of Calgary, Calgary, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
9
|
Ogbodo E, Michelangeli F, Williams JHH. Exogenous heat shock proteins HSPA1A and HSPB1 regulate TNF-α, IL-1β and IL-10 secretion from monocytic cells. FEBS Open Bio 2023; 13:1922-1940. [PMID: 37583307 PMCID: PMC10549225 DOI: 10.1002/2211-5463.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/17/2023] Open
Abstract
Endogenous molecules, such as heat shock proteins (HSP), can function as danger signals when released into the extracellular environment in response to cell stress, where they elicit an immune response such as cytokine secretion. There has also been some suggestion that contamination of exogenous HSPs with lipopolysaccharide (LPS) may be responsible for these effects. This study investigates the effects of exogenous HSPA1A and HSPB1 on the activation of immune cells and the resulting secretion of cytokines, which are involved in inflammatory responses. To address whether exogenous HSPs can directly activate cytokine secretion, naïve U937 cells, differentiated U937 cells and peripheral blood mononuclear cells (PBMCs) were treated with either exogenously applied HSPA1A or HSPB1 and then secreted IL-1β, TNF-α and IL-10 were measured by ELISA. Both HSPs were able to induce a dose-dependent increase in IL-10 secretion from naïve U937 cells and dose-dependent IL-1β, TNF-α and IL-10 secretion were also observed in differentiated U937 cells and PBMCs. We also observed that CD14 affects the secretion levels of IL-1β, TNF-α and IL-10 from cells in response to exogenous HSP treatment. In addition, HSPA1A and HSPB1 were shown to interact with CD14, CD36 and CD11b extracellular receptor proteins. Several approaches used in this study indicate that HSP-induced cytokine secretion is largely independent of any contaminating LPS in the samples.
Collapse
|
10
|
Gu C, Fan X, Yu W. Functional Diversity of Mammalian Small Heat Shock Proteins: A Review. Cells 2023; 12:1947. [PMID: 37566026 PMCID: PMC10417760 DOI: 10.3390/cells12151947] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
The small heat shock proteins (sHSPs), whose molecular weight ranges from 12∼43 kDa, are members of the heat shock protein (HSP) family that are widely found in all organisms. As intracellular stress resistance molecules, sHSPs play an important role in maintaining the homeostasis of the intracellular environment under various stressful conditions. A total of 10 sHSPs have been identified in mammals, sharing conserved α-crystal domains combined with variable N-terminal and C-terminal regions. Unlike large-molecular-weight HSP, sHSPs prevent substrate protein aggregation through an ATP-independent mechanism. In addition to chaperone activity, sHSPs were also shown to suppress apoptosis, ferroptosis, and senescence, promote autophagy, regulate cytoskeletal dynamics, maintain membrane stability, control the direction of cellular differentiation, modulate angiogenesis, and spermatogenesis, as well as attenuate the inflammatory response and reduce oxidative damage. Phosphorylation is the most significant post-translational modification of sHSPs and is usually an indicator of their activation. Furthermore, abnormalities in sHSPs often lead to aggregation of substrate proteins and dysfunction of client proteins, resulting in disease. This paper reviews the various biological functions of sHSPs in mammals, emphasizing the roles of different sHSPs in specific cellular activities. In addition, we discuss the effect of phosphorylation on the function of sHSPs and the association between sHSPs and disease.
Collapse
Affiliation(s)
- Chaoguang Gu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Hangzhou 310018, China;
| | - Xinyi Fan
- Faculty of Arts and Science, University of Toronto, Toronto, ON M5S1A1, Canada;
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Hangzhou 310018, China;
| |
Collapse
|
11
|
Poznyak AV, Orekhova VA, Sukhorukov VN, Khotina VA, Popov MA, Orekhov AN. Atheroprotective Aspects of Heat Shock Proteins. Int J Mol Sci 2023; 24:11750. [PMID: 37511509 PMCID: PMC10380699 DOI: 10.3390/ijms241411750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Atherosclerosis is a major global health problem. Being a harbinger of a large number of cardiovascular diseases, it ultimately leads to morbidity and mortality. At the same time, effective measures for the prevention and treatment of atherosclerosis have not been developed, to date. All available therapeutic options have a number of limitations. To understand the mechanisms behind the triggering and development of atherosclerosis, a deeper understanding of molecular interactions is needed. Heat shock proteins are important for the normal functioning of cells, actively helping cells adapt to gradual changes in the environment and survive in deadly conditions. Moreover, multiple HSP families play various roles in the progression of cardiovascular disorders. Some heat shock proteins have been shown to have antiatherosclerotic effects, while the role of others remains unclear. In this review, we considered certain aspects of the antiatherosclerotic activity of a number of heat shock proteins.
Collapse
Affiliation(s)
- Anastasia V Poznyak
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
| | - Varvara A Orekhova
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
| | - Vasily N Sukhorukov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
| | - Victoria A Khotina
- Institute of General Pathology and Pathophysiology, 8, Baltiyskaya St., 125315 Moscow, Russia
| | - Mikhail A Popov
- Department of Cardiac Surgery, Moscow Regional Research and Clinical Institute (MONIKI), 61/2, Shchepkin St., 129110 Moscow, Russia
| | - Alexander N Orekhov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
| |
Collapse
|
12
|
Robellada‐Zárate CM, Luna‐Palacios JE, Caballero CAZ, Acuña‐González JP, Lara‐Pereyra I, González‐Azpeitia DI, Acuña‐González RJ, Moreno‐Verduzco ER, Flores‐Herrera H, Osorio‐Caballero M. First‐trimester plasma extracellular heat shock proteins levels and risk of preeclampsia. J Cell Mol Med 2023; 27:1206-1213. [PMID: 37002651 PMCID: PMC10148059 DOI: 10.1111/jcmm.17674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 04/03/2023] Open
Abstract
Preeclampsia (PE) occurs annually in 8% of pregnancies. Patients without risk factors represent 10% of these. There are currently no first-trimester biochemical markers that accurately predict PE. An increase in serum 60- and 70-KDa extracellular heat shock proteins (eHsp) has been shown in patients who developed PE at 34 weeks. We sought to determine whether there is a relationship between first-trimester eHsp and the development of PE. This was a prospective cohort study performed at a third level hospital in Mexico City from 2019 to 2020. eHsp levels were measured during the first-trimester ultrasound in singleton pregnancies with no comorbidities. First-trimester eHsp levels and biochemical parameters of organ dysfunction were compared between patients who developed preeclampsia and those who did not. All statistical analyses and model of correlation (r) between eHsp and clinical parameter were performed using bootstrapping R-software. p-values <0.05 were considered significant. The final analysis included 41 patients. PE occurred in 11 cases. eHsp-60 and eHsp-70 were significantly higher at 12 weeks in patients who developed PE (p = 0.001), while eHsp-27 was significantly lower (p = 0.004). Significant differences in first-trimester eHsp concentration suggest that these are possible early biomarkers useful for the prediction of PE.
Collapse
Affiliation(s)
- Claudia Melina Robellada‐Zárate
- Departamento de Ginecología y Obstetricia Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes” Ciudad de México Mexico
| | | | - Carlos Agustín Zapata Caballero
- Departamento de Ginecología y Obstetricia Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes” Ciudad de México Mexico
| | - Juan Pablo Acuña‐González
- Departamento de Matemáticas, Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Irlando Lara‐Pereyra
- Departamento de Ginecología, Hospital General de Zona 252 Instituto Mexicano del Seguro Social Atlacomulco Mexico
| | | | - Ricardo Josué Acuña‐González
- Departamento de Inmunobioquimica Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes” Ciudad de México Mexico
| | - Elsa Romelia Moreno‐Verduzco
- Subdirección de Servicios Auxiliares de Diagnóstico Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes” Ciudad de México Mexico
| | - Héctor Flores‐Herrera
- Departamento de Inmunobioquimica Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes” Ciudad de México Mexico
| | - Mauricio Osorio‐Caballero
- Departamento de Salud Sexual y Reproductiva Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes” Ciudad de México Mexico
| |
Collapse
|
13
|
Hazra J, Vijayakumar A, Mahapatra NR. Emerging role of heat shock proteins in cardiovascular diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:271-306. [PMID: 36858739 DOI: 10.1016/bs.apcsb.2022.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Heat Shock Proteins (HSPs) are evolutionarily conserved proteins from prokaryotes to eukaryotes. They are ubiquitous proteins involved in key physiological and cellular pathways (viz. inflammation, immunity and apoptosis). Indeed, the survivability of the cells under various stressful conditions depends on appropriate levels of HSP expression. There is a growing line of evidence for the role of HSPs in regulating cardiovascular diseases (CVDs) (viz. hypertension, atherosclerosis, atrial fibrillation, cardiomyopathy and heart failure). Furthermore, studies indicate that a higher concentration of circulatory HSP antibodies correlate to CVDs; some are even potential markers for CVDs. The multifaceted roles of HSPs in regulating cellular signaling necessitate unraveling their links to pathophysiology of CVDs. This review aims to consolidate our understanding of transcriptional (via multiple transcription factors including HSF-1, NF-κB, CREB and STAT3) and post-transcriptional (via microRNAs including miR-1, miR-21 and miR-24) regulation of HSPs. The cytoprotective nature of HSPs catapults them to the limelight as modulators of cell survival. Yet another attractive prospect is the development of new therapeutic strategies against cardiovascular diseases (from hypertension to heart failure) by targeting the regulation of HSPs. Moreover, this review provides insights into how genetic variation of HSPs can contribute to the manifestation of CVDs. It would also offer a bird's eye view of the evolving role of different HSPs in the modulation and manifestation of cardiovascular disease.
Collapse
Affiliation(s)
- Joyita Hazra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Anupama Vijayakumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
14
|
Abou-El-Naga IF, Mogahed NMFH. Potential roles of Toxocara canis larval excretory secretory molecules in immunomodulation and immune evasion. Acta Trop 2023; 238:106784. [PMID: 36502886 DOI: 10.1016/j.actatropica.2022.106784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022]
Abstract
Toxocara canis larvae invade various tissues of different vertebrate species without developing into adults in paratenic host. The long-term survival of the larvae despite exposure to the well-armed immune response is a notable achievement. The larvae modulate the immune response to help the survival of both the host and the larvae. They skew the immune response to type 2/regulatory phenotype. The outstanding ability of the larvae to modulate the host immune response and to evade the immune arms is attributed to the secretion of Toxocara excretory-secretory products (TESPs). TESPs are complex mixture of differing molecules. The present review deals with the molecular composition of the TESPs, their interaction with the host molecules, their effect on the innate immune response, the receptor recognition, the downstream signals the adaptive immunity and the repair of tissues. This review also addresses the role of TESPs molecules in the immune evasion strategy and the potential effect of the induced immunomodulation in some diseases. Identification of parasite components that influence the nematode-host interactions could enhance understanding the molecular basis of nematode pathogenicity. Furthermore, the identification of helminths molecules with immunomodulatory potential could be used in immunotherapies for some diseases.
Collapse
Affiliation(s)
- Iman F Abou-El-Naga
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, 12 Abdel Hamid El Deeb Street, Tharwat, Alexandria, Egypt.
| | - Nermine M F H Mogahed
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, 12 Abdel Hamid El Deeb Street, Tharwat, Alexandria, Egypt
| |
Collapse
|
15
|
Leiba J, Özbilgiç R, Hernández L, Demou M, Lutfalla G, Yatime L, Nguyen-Chi M. Molecular Actors of Inflammation and Their Signaling Pathways: Mechanistic Insights from Zebrafish. BIOLOGY 2023; 12:153. [PMID: 36829432 PMCID: PMC9952950 DOI: 10.3390/biology12020153] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Inflammation is a hallmark of the physiological response to aggressions. It is orchestrated by a plethora of molecules that detect the danger, signal intracellularly, and activate immune mechanisms to fight the threat. Understanding these processes at a level that allows to modulate their fate in a pathological context strongly relies on in vivo studies, as these can capture the complexity of the whole process and integrate the intricate interplay between the cellular and molecular actors of inflammation. Over the years, zebrafish has proven to be a well-recognized model to study immune responses linked to human physiopathology. We here provide a systematic review of the molecular effectors of inflammation known in this vertebrate and recapitulate their modes of action, as inferred from sterile or infection-based inflammatory models. We present a comprehensive analysis of their sequence, expression, and tissue distribution and summarize the tools that have been developed to study their function. We further highlight how these tools helped gain insights into the mechanisms of immune cell activation, induction, or resolution of inflammation, by uncovering downstream receptors and signaling pathways. These progresses pave the way for more refined models of inflammation, mimicking human diseases and enabling drug development using zebrafish models.
Collapse
|
16
|
Noori L, Filip K, Nazmara Z, Mahakizadeh S, Hassanzadeh G, Caruso Bavisotto C, Bucchieri F, Marino Gammazza A, Cappello F, Wnuk M, Scalia F. Contribution of Extracellular Vesicles and Molecular Chaperones in Age-Related Neurodegenerative Disorders of the CNS. Int J Mol Sci 2023; 24:927. [PMID: 36674442 PMCID: PMC9861359 DOI: 10.3390/ijms24020927] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Many neurodegenerative disorders are characterized by the abnormal aggregation of misfolded proteins that form amyloid deposits which possess prion-like behavior such as self-replication, intercellular transmission, and consequent induction of native forms of the same protein in surrounding cells. The distribution of the accumulated proteins and their correlated toxicity seem to be involved in the progression of nervous system degeneration. Molecular chaperones are known to maintain proteostasis, contribute to protein refolding to protect their function, and eliminate fatally misfolded proteins, prohibiting harmful effects. However, chaperone network efficiency declines during aging, prompting the onset and the development of neurological disorders. Extracellular vesicles (EVs) are tiny membranous structures produced by a wide range of cells under physiological and pathological conditions, suggesting their significant role in fundamental processes particularly in cellular communication. They modulate the behavior of nearby and distant cells through their biological cargo. In the pathological context, EVs transport disease-causing entities, including prions, α-syn, and tau, helping to spread damage to non-affected areas and accelerating the progression of neurodegeneration. However, EVs are considered effective for delivering therapeutic factors to the nervous system, since they are capable of crossing the blood-brain barrier (BBB) and are involved in the transportation of a variety of cellular entities. Here, we review the neurodegeneration process caused mainly by the inefficiency of chaperone systems as well as EV performance in neuropathies, their potential as diagnostic biomarkers and a promising EV-based therapeutic approach.
Collapse
Affiliation(s)
- Leila Noori
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Kamila Filip
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35959 Rzeszow, Poland
| | - Zohreh Nazmara
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Simin Mahakizadeh
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj 3149779453, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35959 Rzeszow, Poland
| | - Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|
17
|
Tramadol regulates the activation of human platelets via Rac but not Rho/Rho-kinase. PLoS One 2023; 18:e0279011. [PMID: 36638092 PMCID: PMC9838859 DOI: 10.1371/journal.pone.0279011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 11/29/2022] [Indexed: 01/14/2023] Open
Abstract
Tramadol is a useful analgesic which acts as a serotonin and noradrenaline reuptake inhibitor in addition to μ-opioid receptor agonist. Cytoplasmic serotonin modulates the small GTPase activity through serotonylation, which is closely related to the human platelet activation. We recently reported that the combination of subthreshold collagen and CXCL12 synergistically activates human platelets. We herein investigated the effect and the mechanism of tramadol on the synergistic effect. Tramadol attenuated the synergistically stimulated platelet aggregation (300 μM of tramadol, 64.3% decrease, p<0.05). Not morphine or reboxetine, but duloxetine, fluvoxamine and sertraline attenuated the synergistic effect of the combination on the platelet aggregation (30 μM of fluvoxamine, 67.3% decrease, p<0.05; 30 μM of sertraline, 67.8% decrease, p<0.05). The geranylgeranyltransferase inhibitor GGTI-286 attenuated the aggregation of synergistically stimulated platelet (50 μM of GGTI-286, 80.8% decrease, p<0.05), in which GTP-binding Rac was increased. The Rac1-GEF interaction inhibitor NSC23766 suppressed the platelet activation and the phosphorylation of p38 MAPK and HSP27 induced by the combination of collagen and CXCL12. Tramadol and fluvoxamine almost completely attenuated the levels of GTP-binding Rac and the phosphorylation of both p38 MAPK and HSP27 stimulated by the combination. Suppression of the platelet aggregation after the duloxetine administration was observed in 2 of 5 patients in pain clinic. These results suggest that tramadol negatively regulates the combination of subthreshold collagen and CXCL12-induced platelet activation via Rac upstream of p38 MAPK.
Collapse
|
18
|
Extracellular Heat Shock Protein 27 Is Released by Plasma-Treated Ovarian Cancer Cells and Affects THP-1 Monocyte Activity. PLASMA 2022. [DOI: 10.3390/plasma5040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Heat shock protein 27 (Hsp27) is a cytoprotective molecule and is inducible via oxidative stress. Anti-cancer therapies, such as the recently investigated gas plasma, subject tumor cells to a plethora of reactive oxygen species (ROS). In ovarian tumor microenvironments (TME), immune cells such as monocytes and macrophages can be found in large numbers and are often associated with cancer progression. Therefore, we quantified extracellular Hsp27 of OVCAR-3 and SK-OV-3 cells after gas plasma exposure in vitro. We found Hsp27 to be significantly increased. Following this, we investigated the effects of Hsp27 on THP-1 monocytes. Live cell imaging of Hsp27-treated THP-1 cells showed decelerated cell numbers and a reduction in cell cluster sizes. In addition, reduced metabolic activity and proliferation were identified using flow cytometry. Mitochondrial ROS production decreased. Using multicolor flow cytometry, the expression profile of eight out of twelve investigated cell surface markers was significantly modulated in Hsp27-treated THP-1 cells. A significantly decreased release of IL18 accommodated this. Taken together, our results suggest an immunomodulatory effect of Hsp27 on THP-1 monocytes. These data call for further investigations on Hsp27’s impact on the interplay of ovarian cancer cells and monocytes/macrophages under oxidative stress conditions.
Collapse
|
19
|
Singer D, Ressel V, Stope MB, Bekeschus S. Heat Shock Protein 27 Affects Myeloid Cell Activation and Interaction with Prostate Cancer Cells. Biomedicines 2022; 10:biomedicines10092192. [PMID: 36140293 PMCID: PMC9496253 DOI: 10.3390/biomedicines10092192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Heat shock proteins are cytoprotective molecules induced by environmental stresses. The small heat shock protein 27 (Hsp27) is highly expressed under oxidative stress conditions, mediating anti-oxidative effects and blocking apoptosis. Since medical gas plasma treatment subjects cancer cells to a multitude of reactive oxygen species (ROS), inducing apoptosis and immunomodulation, probable effects of Hsp27 should be investigated. To this end, we quantified the extracellular Hsp27 in two prostate cancer cell lines (LNCaP, PC-3) after gas plasma-induced oxidative stress, showing a significantly enhanced release. To investigate immunomodulatory effects, two myeloid cell lines (THP-1 and HL-60) were also exposed to Hsp27. Only negligible effects on viability, intracellular oxidative milieu, and secretion profiles of the myeloid cells were found when cultured alone. Interestingly, prostate cancer-myeloid cell co-cultures showed altered secretion profiles with a significant decrease in vascular endothelial growth factor (VEGF) release. Furthermore, the myeloid surface marker profiles were changed, indicating an enhanced differentiation in co-culture upon Hsp27 treatment. Finally, we investigated morphological changes, proliferation, and interaction with prostate cancer cells, and found significant alterations in the myeloid cells, supporting the tendency to differentiate. Collectively, our results suggest an ambiguous effect of Hsp27 on myeloid cells in the presence of prostate cancer cells which needs to be further investigated.
Collapse
Affiliation(s)
- Debora Singer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Verena Ressel
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Clinic and Policlinic for Urology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Matthias B. Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Correspondence:
| |
Collapse
|
20
|
Hu C, Yang J, Qi Z, Wu H, Wang B, Zou F, Mei H, Liu J, Wang W, Liu Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm (Beijing) 2022; 3:e161. [PMID: 35928554 PMCID: PMC9345296 DOI: 10.1002/mco2.161] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
The heat shock proteins (HSPs) are ubiquitous and conserved protein families in both prokaryotic and eukaryotic organisms, and they maintain cellular proteostasis and protect cells from stresses. HSP protein families are classified based on their molecular weights, mainly including large HSPs, HSP90, HSP70, HSP60, HSP40, and small HSPs. They function as molecular chaperons in cells and work as an integrated network, participating in the folding of newly synthesized polypeptides, refolding metastable proteins, protein complex assembly, dissociating protein aggregate dissociation, and the degradation of misfolded proteins. In addition to their chaperone functions, they also play important roles in cell signaling transduction, cell cycle, and apoptosis regulation. Therefore, malfunction of HSPs is related with many diseases, including cancers, neurodegeneration, and other diseases. In this review, we describe the current understandings about the molecular mechanisms of the major HSP families including HSP90/HSP70/HSP60/HSP110 and small HSPs, how the HSPs keep the protein proteostasis and response to stresses, and we also discuss their roles in diseases and the recent exploration of HSP related therapy and diagnosis to modulate diseases. These research advances offer new prospects of HSPs as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chen Hu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Jing Yang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
- Precision Medicine Research Laboratory of Anhui ProvinceHefeiAnhuiP. R. China
| |
Collapse
|
21
|
Banga R, Banga V, Eltalla A, Shahin L, Parag S, Naim M, Iyer E, Kumrah N, Zacharias B, Nathanson L, Beljanski V. Effects of autophagy modulators tamoxifen and chloroquine on the expression profiles of long non-coding RNAs in MIAMI cells exposed to IFNγ. PLoS One 2022; 17:e0266179. [PMID: 35446871 PMCID: PMC9022845 DOI: 10.1371/journal.pone.0266179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/15/2022] [Indexed: 11/18/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) can be utilized clinically for treatment of conditions that result from excessive inflammation. In a pro-inflammatory environment, MSCs adopt an anti-inflammatory phenotype resulting in immunomodulation. A sub-type of MSCs referred to as “marrow-isolated adult multilineage inducible” (MIAMI) cells, which were isolated from bone marrow, were utilized to show that the addition of autophagy modulators, tamoxifen (TX) or chloroquine (CQ), can alter how MIAMI cells respond to IFNγ exposure in vitro resulting in an increased immunoregulatory capacity of the MIAMI cells. Molecularly, it was also shown that TX and CQ each alter both the levels of immunomodulatory genes and microRNAs which target such genes. However, the role of other non-coding RNAs (ncRNAs) such as long non-coding RNAs (lncRNAs) in regulating the response of MSCs to inflammation has been poorly studied. Here, we utilized transcriptomics and data mining to analyze the putative roles of various differentially regulated lncRNAs in MIAMI cells exposed to IFNγ with (or without) TX or CQ. The aim of this study was to investigate how the addition of TX and CQ alters lncRNA levels and evaluate how such changes could alter previously observed TX- and CQ-driven changes to the immunomodulatory properties of MIAMI cells. Data analysis revealed 693 long intergenic non-coding RNAS (lincRNAs), 480 pseudogenes, and 642 antisense RNAs that were differentially regulated with IFNγ, IFNγ+TX and IFNγ+CQ treatments. Further analysis of these RNA species based on the existing literature data revealed 6 antisense RNAs, 2 pseudogenes, and 5 lincRNAs that have the potential to modulate MIAMI cell’s response to IFNγ treatment. Functional analysis of these genomic species based on current literature linking inflammatory response and ncRNAs indicated their potential for regulation of several key pro- and anti-inflammatory responses, including NFκB signaling, cytokine secretion and auto-immune responses. Overall, this work found potential involvement of multiple pro-and anti-inflammatory pathways and molecules in modulating MIAMI cells’ response to inflammation.
Collapse
Affiliation(s)
- Rajkaran Banga
- Dr Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida
| | - Veerkaran Banga
- Dr Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida
| | - Amr Eltalla
- Dr Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida
| | - Lauren Shahin
- Dr Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, Florida
| | - Sonam Parag
- Dr Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida
| | - Maha Naim
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Davie, Florida
| | - Easha Iyer
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Davie, Florida
| | - Neha Kumrah
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Davie, Florida
| | - Brian Zacharias
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Davie, Florida
| | - Lubov Nathanson
- Dr Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, Florida
- Institute for Neuroimmune Medicine, Dr Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, Florida
| | - Vladimir Beljanski
- Dr Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida
- Cell Therapy Institute, Dr Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida
- * E-mail:
| |
Collapse
|
22
|
Nikou SA, Zhou C, Griffiths JS, Kotowicz NK, Coleman BM, Green MJ, Moyes DL, Gaffen SL, Naglik JR, Parker PJ. The Candida albicans toxin candidalysin mediates distinct epithelial inflammatory responses through p38 and EGFR-ERK pathways. Sci Signal 2022; 15:eabj6915. [PMID: 35380879 PMCID: PMC7612652 DOI: 10.1126/scisignal.abj6915] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The fungal pathogen Candida albicans secretes the peptide toxin candidalysin, which damages epithelial cells and drives an innate inflammatory response mediated by the epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase (MAPK) pathways and the transcription factor c-Fos. In cultured oral epithelial cells, candidalysin activated the MAPK p38, which resulted in heat shock protein 27 (Hsp27) activation, IL-6 release, and EGFR phosphorylation without affecting the induction of c-Fos. p38 activation was not triggered by EGFR but by two nonredundant pathways involving MAPK kinases (MKKs) and the kinase Src, which differentially controlled p38 signaling outputs. Whereas MKKs mainly promoted p38-dependent release of IL-6, Src promoted p38-mediated phosphorylation of EGFR in a ligand-independent fashion. In parallel, candidalysin also activated the EGFR-ERK pathway in a ligand-dependent manner, resulting in c-Fos activation and release of the neutrophil-activating chemokines G-CSF and GM-CSF. In mice, early clearance events of oral C. albicans infection required p38 but not c-Fos. These findings delineate how candidalysin activates the pathways downstream of the MAPKs p38 and ERK that differentially contribute to immune activation during C. albicans infection.
Collapse
Affiliation(s)
- Spyridoula-Angeliki Nikou
- Protein Phosphorylation Lab, The Francis Crick Institute; London, UK
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Chunsheng Zhou
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, USA
| | - James S. Griffiths
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Natalia K. Kotowicz
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Bianca M. Coleman
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, USA
| | - Mary J. Green
- Experimental Histopathology Lab, The Francis Crick Institute; London, UK
| | - David L. Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Sarah L. Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, USA
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Peter J. Parker
- Protein Phosphorylation Lab, The Francis Crick Institute; London, UK
- School of Cancer and Pharmaceutical Sciences, New Hunt’s House, King’s College London; London, UK
| |
Collapse
|
23
|
Van den Broek B, Wuyts C, Irobi J. Extracellular vesicle-associated small heat shock proteins as therapeutic agents in neurodegenerative diseases and beyond. Adv Drug Deliv Rev 2021; 179:114009. [PMID: 34673130 DOI: 10.1016/j.addr.2021.114009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Increasing evidence points towards using extracellular vesicles (EVs) as a therapeutic strategy in neurodegenerative diseases such as multiple sclerosis, Parkinson's, and Alzheimer's disease. EVs are nanosized carriers that play an essential role in intercellular communication and cellular homeostasis by transporting an active molecular cargo, including a large variety of proteins. Recent publications demonstrate that small heat shock proteins (HSPBs) exhibit a beneficial role in neurodegenerative diseases. Moreover, it is defined that HSPBs target the autophagy and the apoptosis pathway, playing a prominent role in chaperone activity and cell survival. This review elaborates on the therapeutic potential of EVs and HSPBs, in particular HSPB1 and HSPB8, in neurodegenerative diseases. We conclude that EVs and HSPBs positively influence neuroinflammation, central nervous system (CNS) repair, and protein aggregation in CNS disorders. Moreover, we propose the use of HSPB-loaded EVs as advanced nanocarriers for the future development of neurodegenerative disease therapies.
Collapse
Affiliation(s)
- Bram Van den Broek
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Charlotte Wuyts
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Joy Irobi
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
24
|
Wendt R, Lingitz MT, Laggner M, Mildner M, Traxler D, Graf A, Krotka P, Moser B, Hoetzenecker K, Kalbitz S, Lübbert C, Beige J, Ankersmit HJ. Clinical Relevance of Elevated Soluble ST2, HSP27 and 20S Proteasome at Hospital Admission in Patients with COVID-19. BIOLOGY 2021; 10:1186. [PMID: 34827178 PMCID: PMC8615143 DOI: 10.3390/biology10111186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022]
Abstract
Although, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) represents one of the biggest challenges in the world today, the exact immunopathogenic mechanism that leads to severe or critical Coronavirus Disease 2019 (COVID-19) has remained incompletely understood. Several studies have indicated that high systemic plasma levels of inflammatory cytokines result in the so-called "cytokine storm", with subsequent development of microthrombosis, disseminated intravascular coagulation, and multiorgan-failure. Therefore, we reasoned those elevated inflammatory molecules might act as prognostic factors. Here, we analyzed 245 serum samples of patients with COVID-19, collected at hospital admission. We assessed the levels of heat shock protein 27 (HSP27), soluble suppressor of tumorigenicity-2 (sST2) and 20S proteasome at hospital admission and explored their associations with overall-, 30-, 60-, 90-day- and in-hospital mortality. Moreover, we investigated their association with the risk of ventilation. We demonstrated that increased serum sST2 was uni- and multivariably associated with all endpoints. Furthermore, we also identified 20S proteasome as independent prognostic factor for in-hospital mortality (sST2, AUC = 0.73; HSP27, AUC = 0.59; 20S proteasome = 0.67). Elevated sST2, HSP27, and 20S proteasome levels at hospital admission were univariably associated with higher risk of invasive ventilation (OR = 1.8; p < 0.001; OR = 1.1; p = 0.04; OR = 1.03, p = 0.03, respectively). These findings could help to identify high-risk patients early in the course of COVID-19.
Collapse
Affiliation(s)
- Ralph Wendt
- Department of Infectious Diseases, Tropical Medicine, Nephrology and Rheumatology, St. Georg Hospital, Delitzscher Str. 141, 04129 Leipzig, Germany; (R.W.); (S.K.); (C.L.); (J.B.)
| | - Marie-Therese Lingitz
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.-T.L.); (M.L.); (M.M.); (D.T.); (B.M.)
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Maria Laggner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.-T.L.); (M.L.); (M.M.); (D.T.); (B.M.)
| | - Michael Mildner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.-T.L.); (M.L.); (M.M.); (D.T.); (B.M.)
- Department of Dermatology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Denise Traxler
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.-T.L.); (M.L.); (M.M.); (D.T.); (B.M.)
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Alexandra Graf
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Spitalg. 23, 1090 Vienna, Austria; (A.G.); (P.K.)
| | - Pavla Krotka
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Spitalg. 23, 1090 Vienna, Austria; (A.G.); (P.K.)
| | - Bernhard Moser
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.-T.L.); (M.L.); (M.M.); (D.T.); (B.M.)
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Konrad Hoetzenecker
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Sven Kalbitz
- Department of Infectious Diseases, Tropical Medicine, Nephrology and Rheumatology, St. Georg Hospital, Delitzscher Str. 141, 04129 Leipzig, Germany; (R.W.); (S.K.); (C.L.); (J.B.)
| | - Christoph Lübbert
- Department of Infectious Diseases, Tropical Medicine, Nephrology and Rheumatology, St. Georg Hospital, Delitzscher Str. 141, 04129 Leipzig, Germany; (R.W.); (S.K.); (C.L.); (J.B.)
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine II, Leipzig University Medical Center, Liebigstr. 20, 04103 Leipzig, Germany
| | - Joachim Beige
- Department of Infectious Diseases, Tropical Medicine, Nephrology and Rheumatology, St. Georg Hospital, Delitzscher Str. 141, 04129 Leipzig, Germany; (R.W.); (S.K.); (C.L.); (J.B.)
- Department of Internal Medicine II, Martin-Luther-University Halle-Wittenberg, 06108 Halle/Saale, Germany
| | - Hendrik Jan Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Medical University of Vienna, Research Laboratories Vienna General Hospital, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.-T.L.); (M.L.); (M.M.); (D.T.); (B.M.)
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| |
Collapse
|
25
|
Caruso Bavisotto C, Marino Gammazza A, Campanella C, Bucchieri F, Cappello F. Extracellular heat shock proteins in cancer: From early diagnosis to new therapeutic approach. Semin Cancer Biol 2021; 86:36-45. [PMID: 34563652 DOI: 10.1016/j.semcancer.2021.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/10/2021] [Accepted: 09/19/2021] [Indexed: 02/08/2023]
Abstract
In cancer, human cells lose the ability to properly control the series of events that occur constantly during cell growth and division, including protein expression, stability, and dynamics. Heat shock proteins (Hsps) are key molecules in these events, constitutively expressed at high levels and could furthermore be induced by the response to cancer-induced stress. In tumor cells, Hsps have been shown to be implicated in the regulation of apoptosis, immune responses, angiogenesis and metastasis; in some cases, they can be overexpressed and dysregulated, representing important cancer hallmarks. In the past few years, it has been demonstrated that Hsps can be released by tumor cells through several secreting pathways, including the extracellular vesicles (EVs), thus modulating the tumor microenvironment as well as long-distance intercellular communication and metastatization. In this review, we discuss the role of extracellular Hsps in cancer, with a particular interest in Hsps in EVs. We would also like to highlight the importance of fully understanding of the role of extracellular Hsps released by EVs and encourage further research in this field the use of Hsps as early cancer biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Anatomy and Histology, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Claudia Campanella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Anatomy and Histology, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.
| |
Collapse
|
26
|
Madbouly N, Azmy A, Salama A, El-Amir A. The nephroprotective properties of taurine-amikacin treatment in rats are mediated through HSP25 and TLR-4 regulation. J Antibiot (Tokyo) 2021; 74:580-592. [PMID: 34253885 DOI: 10.1038/s41429-021-00441-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Amikacin (AMK) is one of the most effective aminoglycoside antibiotics. However, nephrotoxicity is a major deleterious and dose-limiting side effect associated with its clinical use especially in high dose AMK-treated patients. The present study assessed the ability of taurine (TAU) to alleviate or prevent AMK-induced nephrotoxicity if co-administrated with AMK focusing on inflammation, apoptosis, and fibrosis. Male Sprague Dawley rats were assigned to six equal groups. Group 1: rats received saline (normal control), group 2: normal rats received 50 mg kg-1 TAU intraperitoneally (i.p.). Groups 3 and 4: received AMK (25 or 50 mg kg-1; i.p.). Groups 5 and 6: received TAU (50 mg kg-1; i.p.) concurrently with AMK (25 or 50 mg kg-1; i.p.) for 3 weeks. AMK-induced nephrotoxicity is evidenced by elevated levels of serum creatinine (CRE), blood urea nitrogen (BUN), and uric acid (UA). Histopathological investigations provoked damaging changes in the renal tissues. Heat shock proteins (HSP)25 and Toll-like receptor-4 (TLR-4) elevated levels were involved in the induction of inflammatory reactions and focal fibrosis. The improved activation of TLR-4 may stimulate monocytes to upgrade Interleukin (IL)-18 production rather than IL-10. TAU proved therapeutic effectiveness against AMK-induced renal toxicity through downregulation of HSP25, TLR-4, caspase-3, and IL-18 with up-regulation of IL-10 levels.
Collapse
Affiliation(s)
- Neveen Madbouly
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt.
| | - Ayman Azmy
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Abeer Salama
- Pharmacology Department, National Research Centre, Cairo, Egypt
| | - Azza El-Amir
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
27
|
Aminian AR, Forouzanfar F. Interplay between Heat Shock Proteins, Inflammation, and Pain: A promising Therapeutic Approach. Curr Mol Pharmacol 2021; 15:170-178. [PMID: 34781874 DOI: 10.2174/1874467214666210719143150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
Heat Shock Proteins (HSPs) are important molecular chaperones that facilitate many functions of the cells. They also play a pivotal role in cell survival, especially in the presence of stressors, including nutritional deprivation, lack of oxygen, fever, alcohol, inflammation, oxidative stress, heavy metals, as well as conditions that cause injury and necrosis. In the face of a painful stimulus encounter, many factors could be associated with pain that may include nitric oxide, excitatory amino acids, reactive oxygen species (ROS) formation, prostaglandins, and inflammatory cytokines. One influential factor affecting pain reduction is the expression of HSPs that act as a ROS scavenger, regulate the inflammatory cytokines, and reduce pain responses subsequently. Hence, we assembled information on the painkilling attributes of HSPs. In this field of research, new painkillers could be developed by targetting HSPs to alleviate pain and widen our grasp of pain in pathological conditions and neurological diseases.
Collapse
Affiliation(s)
- Ahmad Reza Aminian
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad. Iran
| |
Collapse
|
28
|
Chen YX, Shi C, Deng J, Diao C, Maarouf N, Rosin M, Shrivastava V, Hu AA, Bharadwa S, Adijiang A, Ulke-Lemee A, Gwilym B, Hellmich A, Malozzi C, Batulan Z, Dean JLE, Ramirez FD, Liu J, Gerthoffer WT, O’Brien ER. HSP25 Vaccination Attenuates Atherogenesis via Upregulation of LDLR Expression, Lowering of PCSK9 Levels and Curbing of Inflammation. Arterioscler Thromb Vasc Biol 2021; 41:e338-e353. [PMID: 33792343 PMCID: PMC8159870 DOI: 10.1161/atvbaha.121.315933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Animals
- Antibodies/blood
- Aorta/drug effects
- Aorta/enzymology
- Aorta/immunology
- Aorta/pathology
- Aortic Diseases/enzymology
- Aortic Diseases/immunology
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Atherosclerosis/enzymology
- Atherosclerosis/immunology
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Case-Control Studies
- Cholesterol/metabolism
- Disease Models, Animal
- Female
- Heat-Shock Proteins/administration & dosage
- Heat-Shock Proteins/immunology
- Heat-Shock Proteins/metabolism
- Hep G2 Cells
- Humans
- Immunogenicity, Vaccine
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Middle Aged
- Molecular Chaperones/administration & dosage
- Molecular Chaperones/immunology
- Molecular Chaperones/metabolism
- Plaque, Atherosclerotic
- Proprotein Convertase 9/metabolism
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Vaccination
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
- Mice
Collapse
Affiliation(s)
- Yong-Xiang Chen
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Chunhua Shi
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Jingti Deng
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Catherine Diao
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Nadia Maarouf
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Matthew Rosin
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Vipul Shrivastava
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Angie A. Hu
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Sonya Bharadwa
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Ayinuer Adijiang
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Annegret Ulke-Lemee
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Brenig Gwilym
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Alexandria Hellmich
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Christopher Malozzi
- Department of Internal Medicine, University of South Alabama Medical Center, Mobile, AL, USA
| | - Zarah Batulan
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Jonathan L. E. Dean
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - F. Daniel Ramirez
- University of Ottawa Heart Institute, Division of Cardiology, Ottawa, Ontario, Canada
| | - Jingwen Liu
- Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - William T. Gerthoffer
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Edward R. O’Brien
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
29
|
Dukay B, Walter FR, Vigh JP, Barabási B, Hajdu P, Balassa T, Migh E, Kincses A, Hoyk Z, Szögi T, Borbély E, Csoboz B, Horváth P, Fülöp L, Penke B, Vígh L, Deli MA, Sántha M, Tóth ME. Neuroinflammatory processes are augmented in mice overexpressing human heat-shock protein B1 following ethanol-induced brain injury. J Neuroinflammation 2021; 18:22. [PMID: 33423680 PMCID: PMC7798334 DOI: 10.1186/s12974-020-02070-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022] Open
Abstract
Background Heat-shock protein B1 (HSPB1) is among the most well-known and versatile member of the evolutionarily conserved family of small heat-shock proteins. It has been implicated to serve a neuroprotective role against various neurological disorders via its modulatory activity on inflammation, yet its exact role in neuroinflammation is poorly understood. In order to shed light on the exact mechanism of inflammation modulation by HSPB1, we investigated the effect of HSPB1 on neuroinflammatory processes in an in vivo and in vitro model of acute brain injury. Methods In this study, we used a transgenic mouse strain overexpressing the human HSPB1 protein. In the in vivo experiments, 7-day-old transgenic and wild-type mice were treated with ethanol. Apoptotic cells were detected using TUNEL assay. The mRNA and protein levels of cytokines and glial cell markers were examined using RT-PCR and immunohistochemistry in the brain. We also established primary neuronal, astrocyte, and microglial cultures which were subjected to cytokine and ethanol treatments. TNFα and hHSPB1 levels were measured from the supernates by ELISA, and intracellular hHSPB1 expression was analyzed using fluorescent immunohistochemistry. Results Following ethanol treatment, the brains of hHSPB1-overexpressing mice showed a significantly higher mRNA level of pro-inflammatory cytokines (Tnf, Il1b), microglia (Cd68, Arg1), and astrocyte (Gfap) markers compared to wild-type brains. Microglial activation, and 1 week later, reactive astrogliosis was higher in certain brain areas of ethanol-treated transgenic mice compared to those of wild-types. Despite the remarkably high expression of pro-apoptotic Tnf, hHSPB1-overexpressing mice did not exhibit higher level of apoptosis. Our data suggest that intracellular hHSPB1, showing the highest level in primary astrocytes, was responsible for the inflammation-regulating effects. Microglia cells were the main source of TNFα in our model. Microglia isolated from hHSPB1-overexpressing mice showed a significantly higher release of TNFα compared to wild-type cells under inflammatory conditions. Conclusions Our work provides novel in vivo evidence that hHSPB1 overexpression has a regulating effect on acute neuroinflammation by intensifying the expression of pro-inflammatory cytokines and enhancing glial cell activation, but not increasing neuronal apoptosis. These results suggest that hHSPB1 may play a complex role in the modulation of the ethanol-induced neuroinflammatory response. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02070-2.
Collapse
Affiliation(s)
- Brigitta Dukay
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary. .,Doctoral School in Biology, University of Szeged, Szeged, Hungary.
| | - Fruzsina R Walter
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Judit P Vigh
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Beáta Barabási
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Doctoral School in Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Petra Hajdu
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary
| | - Tamás Balassa
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary.,Doctoral School of Informatics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ede Migh
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary
| | - András Kincses
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Zsófia Hoyk
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Titanilla Szögi
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Emőke Borbély
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Bálint Csoboz
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary.,Institute of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Péter Horváth
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Lívia Fülöp
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Botond Penke
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary
| | - Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary.
| |
Collapse
|
30
|
Grotegut P, Hoerdemann PJ, Reinehr S, Gupta N, Dick HB, Joachim SC. Heat Shock Protein 27 Injection Leads to Caspase Activation in the Visual Pathway and Retinal T-Cell Response. Int J Mol Sci 2021; 22:E513. [PMID: 33419223 PMCID: PMC7825587 DOI: 10.3390/ijms22020513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Heat shock protein 27 (HSP27) is one of the small molecular chaperones and is involved in many cell mechanisms. Besides the known protective and helpful functions of intracellular HSP27, very little is known about the mode of action of extracellular HSP27. In a previous study, we showed that intravitreal injection of HSP27 led to neuronal damage in the retina and optic nerve after 21 days. However, it was not clear which degenerative signaling pathways were induced by the injection. For this reason, the pathological mechanisms of intravitreal HSP27 injection after 14 days were investigated. Histological and RT-qPCR analyses revealed an increase in endogenous HSP27 in the retina and an activation of components of the intrinsic and extrinsic apoptosis pathway. In addition, an increase in nucleus factor-kappa-light-chain-enhancer of activated B cells (NFκB), as well as of microglia/macrophages and T-cells could be observed. In the optic nerve, however, only an increased apoptosis rate was detectable. Therefore, the activation of caspases and the induction of an incipient immune response seem to be the main triggers for retinal degeneration in this intravitreal HSP27 model.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (P.G.); (P.J.H.); (S.R.); (N.G.); (H.B.D.)
| |
Collapse
|
31
|
Canul-Euan AA, Zúñiga-González G, Palacios-Luna JE, Maida-Claros R, Díaz NF, Saltigeral-Tigeral P, Karina García-May P, Díaz-Ruiz O, Flores-Herrera H. Increased Levels of Plasma Extracellular Heat-Shock Proteins 60 and 70 kDa Characterized Early-Onset Neonatal Sepsis. Front Pediatr 2021; 9:740274. [PMID: 34900858 PMCID: PMC8660587 DOI: 10.3389/fped.2021.740274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/01/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Extracellular heat-shock proteins (eHsp) are highly conserved molecules that play an important role in inflammatory diseases and have been quantified in plasma from patients with infectious diseases, including sepsis. There is a constant search for dependable biochemical markers that, in combination with conventional methods, could deliver a prompt and reliable diagnosis of early-onset neonatal sepsis. Objective: We sought to assess the level of eHsp-27, eHsp-60, eHsp-70, and tumor necrosis factor-alpha (TNFα) in plasma of healthy neonates at term and infants with early-onset neonatal sepsis. Methods: This study included 34 newborns that were classified as healthy neonates at term (blood samples from the umbilical cord, n = 23) or infants with early-onset neonatal sepsis (blood samples obtained from umbilical artery by standard sterile procedures before starting a systemic antibiotic intervention, n = 11). All blood samples were centrifuged, and the plasma recovered to determine eHsp-27, eHsp-60, eHsp-70, and TNFα levels by ELISA. Results: Our results indicate that the level of eHsp-27 in healthy neonates at term was 0.045 ± 0.024 pg/ml. This value decreased 2.5-fold in infants with early-onset neonate sepsis (0.019 ± 0.006 pg/ml, p = 0.004). In contrast, the levels of eHsp-60 and eHsp-70 in healthy neonates at term were 13.69 ± 5.3 and 4.03 ± 2.6 pg/ml, respectively. These protein levels increased significantly 1.8- and 1.9-fold in the plasma of infants with early-onset neonatal sepsis (p ≤ 0.001). The level of TNFα in healthy neonates at term was 2.94 ± 0.46 pg/ml, with a 3.0-fold increase in infants with early-onset neonatal sepsis (8.96 ± 0.72 pm/ml, p ≤ 0.001). The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of eHsp compared with that of C-reactive protein were 73.3, 60.0, 47.8, and 33.3%, respectively. Conclusion: This study demonstrated a consistent increase of eHsp-60 and eHsp-70 in the plasma of infants diagnosed with early-onset neonatal sepsis. These proteins showed higher sensitivity and specificity than C-reactive protein and blood culture test.
Collapse
Affiliation(s)
| | - Gibran Zúñiga-González
- Department of Neonatología, Instituto Nacional de Perinatología (INPer), Mexico City, Mexico
| | | | - Rolando Maida-Claros
- Department of Neonatología, Instituto Nacional de Perinatología (INPer), Mexico City, Mexico
| | - Néstor Fabián Díaz
- Department of Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología (INPer), Mexico City, Mexico
| | | | - Perla Karina García-May
- Servicio Recién Nacidos, Hospital Regional Lic. Adolfo López Mateos, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Oscar Díaz-Ruiz
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, United States
| | - Héctor Flores-Herrera
- Department of Inmunobioquímica, Instituto Nacional de Perinatología (INPer), Ciudad de México, Mexico
| |
Collapse
|
32
|
Role of Protein Kinase C in Immune Cell Activation and Its Implication Chemical-Induced Immunotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:151-163. [PMID: 33539015 DOI: 10.1007/978-3-030-49844-3_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein kinase C (PKCs) isoforms play a key regulatory role in a variety of cellular functions, including cell growth and differentiation, gene expression, hormone secretion, etc. Patterns of expression for each PKC isoform differ among tissues, and it is also clear that different PKCs are often not functionally redundant, for example specific PKCs mediate specific cellular signals required for activation, proliferation, differentiation and survival of immune cells. In the last 20 years, we have been studying the role of PKCs, mainly PKCβ and its anchoring protein RACK1 (Receptor for Activated C Kinase 1), in immune cell activation, and their implication in immunosenescence and immunotoxicity. We could demonstrate that PKCβ and RACK1 are central in dendritic cell maturation and activation by chemical allergens, and their expressions can be targeted by EDCs and anti-inflammatory drugs. In this chapter, current knowledge on the role of PKC in immune cell activation and possible implication in immunotoxicity will be described.
Collapse
|
33
|
Wenzel TJ, Kwong E, Bajwa E, Klegeris A. Resolution-Associated Molecular Patterns (RAMPs) as Endogenous Regulators of Glia Functions in Neuroinflammatory Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:483-494. [DOI: 10.2174/1871527319666200702143719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/17/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023]
Abstract
Glial cells, including microglia and astrocytes, facilitate the survival and health of all cells
within the Central Nervous System (CNS) by secreting a range of growth factors and contributing to
tissue and synaptic remodeling. Microglia and astrocytes can also secrete cytotoxins in response to
specific stimuli, such as exogenous Pathogen-Associated Molecular Patterns (PAMPs), or endogenous
Damage-Associated Molecular Patterns (DAMPs). Excessive cytotoxic secretions can induce the death
of neurons and contribute to the progression of neurodegenerative disorders, such as Alzheimer’s disease
(AD). The transition between various activation states of glia, which include beneficial and detrimental
modes, is regulated by endogenous molecules that include DAMPs, cytokines, neurotransmitters,
and bioactive lipids, as well as a diverse group of mediators sometimes collectively referred to as
Resolution-Associated Molecular Patterns (RAMPs). RAMPs are released by damaged or dying CNS
cells into the extracellular space where they can induce signals in autocrine and paracrine fashions by
interacting with glial cell receptors. While the complete range of their effects on glia has not been described
yet, it is believed that their overall function is to inhibit adverse CNS inflammatory responses,
facilitate tissue remodeling and cellular debris removal. This article summarizes the available evidence
implicating the following RAMPs in CNS physiological processes and neurodegenerative diseases:
cardiolipin (CL), prothymosin α (ProTα), binding immunoglobulin protein (BiP), heat shock protein
(HSP) 10, HSP 27, and αB-crystallin. Studies on the molecular mechanisms engaged by RAMPs could
identify novel glial targets for development of therapeutic agents that effectively slow down neuroinflammatory
disorders including AD.
Collapse
Affiliation(s)
- Tyler J. Wenzel
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Evan Kwong
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Ekta Bajwa
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| |
Collapse
|
34
|
Are Heat Shock Proteins an Important Link between Type 2 Diabetes and Alzheimer Disease? Int J Mol Sci 2020; 21:ijms21218204. [PMID: 33147803 PMCID: PMC7662599 DOI: 10.3390/ijms21218204] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes (T2D) and Alzheimer’s disease (AD) are growing in prevalence worldwide. The development of T2D increases the risk of AD disease, while AD patients can show glucose imbalance due to an increased insulin resistance. T2D and AD share similar pathological features and underlying mechanisms, including the deposition of amyloidogenic peptides in pancreatic islets (i.e., islet amyloid polypeptide; IAPP) and brain (β-Amyloid; Aβ). Both IAPP and Aβ can undergo misfolding and aggregation and accumulate in the extracellular space of their respective tissues of origin. As a main response to protein misfolding, there is evidence of the role of heat shock proteins (HSPs) in moderating T2D and AD. HSPs play a pivotal role in cell homeostasis by providing cytoprotection during acute and chronic metabolic stresses. In T2D and AD, intracellular HSP (iHSP) levels are reduced, potentially due to the ability of the cell to export HSPs to the extracellular space (eHSP). The increase in eHSPs can contribute to oxidative damage and is associated with various pro-inflammatory pathways in T2D and AD. Here, we review the role of HSP in moderating T2D and AD, as well as propose that these chaperone proteins are an important link in the relationship between T2D and AD.
Collapse
|
35
|
Maarouf N, Chen YX, Shi C, Deng J, Diao C, Rosin M, Shrivastava V, Batulan Z, Liu J, O’Brien ER. Unlike estrogens that increase PCSK9 levels post-menopause HSP27 vaccination lowers cholesterol levels and atherogenesis due to divergent effects on PCSK9 and LDLR. Pharmacol Res 2020; 161:105222. [DOI: 10.1016/j.phrs.2020.105222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 01/17/2023]
|
36
|
Nakashima D, Onuma T, Tanabe K, Kito Y, Uematsu K, Mizutani D, Enomoto Y, Tsujimoto M, Doi T, Matsushima-Nishiwaki R, Tokuda H, Ogura S, Iwama T, Kozawa O, Iida H. Synergistic effect of collagen and CXCL12 in the low doses on human platelet activation. PLoS One 2020; 15:e0241139. [PMID: 33119719 PMCID: PMC7595269 DOI: 10.1371/journal.pone.0241139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 10/08/2020] [Indexed: 11/30/2022] Open
Abstract
CXCL12, also known as stromal cell-derived factor-1, is a chemokine classified into CXC families, which exerts its function by binding to specific receptors called CXCR4 and CXCR7. Human platelets express CXCR4 and CXCR7 on the plasma membrane. It has been reported that CXCL12 potentiates to induce platelet aggregation in cooperation with agonists including collagen. However, the precise roles and mechanisms of CXCL12 in human platelet activation are not fully elucidated. In the present study, we investigated the effect of simultaneous stimulation with low doses of collagen and CXCL12 on the activation of human platelets. The simultaneous stimulation with collagen and CXCL12 induced the secretion of platelet-derived growth factor (PDGF)-AB and the release of soluble CD40 ligand (sCD40L) from human platelets in addition to their aggregation, despite the fact that the simultaneous stimulation with thrombin receptor-activating peptide (TRAP) or adenosine diphosphate (ADP), and CXCL12 had little effects on the platelet aggregation. The agonist of Glycoprotein (GP) Ⅵ convulxin and CXCL12 also induced platelet aggregation synergistically. The monoclonal antibody against CXCR4 but not CXCR7 suppressed the platelet aggregation induced by simultaneous stimulation with collagen and CXCL12. The phosphorylation of p38 mitogen-activated protein kinase (MAPK), but not p44/p42 MAPK, was induced by the simultaneous stimulation. In addition, the simultaneous stimulation with collagen and CXCL12 induced the phosphorylation of HSP27 and the subsequent release of phosphorylated-HSP27 from human platelets. SB203580, a specific inhibitor of p38 MAPK, attenuated the platelet aggregation, the phosphorylation of p38 MAPK and HSP27, the PDGF-AB secretion, the sCD40L release and the phosphorylated-HSP27 release induced by the simultaneous stimulation with collagen and CXCL12. These results strongly suggest that collagen and CXCL12 in low doses synergistically act to induce PDGF-AB secretion, sCD40L release and phosphorylated-HSP27 release from activated human platelets via p38 MAPK activation.
Collapse
Affiliation(s)
- Daiki Nakashima
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takashi Onuma
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuko Kito
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kodai Uematsu
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Daisuke Mizutani
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masanori Tsujimoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomoaki Doi
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Clinical Laboratory/Medical Genome Center Biobank, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toru Iwama
- Department of Clinical Laboratory/Medical Genome Center Biobank, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- * E-mail:
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
37
|
Molecular Chaperones: Molecular Assembly Line Brings Metabolism and Immunity in Shape. Metabolites 2020; 10:metabo10100394. [PMID: 33023034 PMCID: PMC7600384 DOI: 10.3390/metabo10100394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Molecular chaperones are a set of conserved proteins that have evolved to assist the folding of many newly synthesized proteins by preventing their misfolding under conditions such as elevated temperatures, hypoxia, acidosis and nutrient deprivation. Molecular chaperones belong to the heat shock protein (HSP) family. They have been identified as important participants in immune functions including antigen presentation, immunostimulation and immunomodulation, and play crucial roles in metabolic rewiring and epigenetic circuits. Growing evidence has accumulated to indicate that metabolic pathways and their metabolites influence the function of immune cells and can alter transcriptional activity through epigenetic modification of (de)methylation and (de)acetylation. However, whether molecular chaperones can regulate metabolic programs to influence immune activity is still largely unclear. In this review, we discuss the available data on the biological function of molecular chaperones to immune responses during inflammation, with a specific focus on the interplay between molecular chaperones and metabolic pathways that drive immune cell fate and function.
Collapse
|
38
|
Shi C, Deng J, Chiu M, Chen YX, O'Brien ER. Heat shock protein 27 immune complex altered signaling and transport (ICAST): Novel mechanisms of attenuating inflammation. FASEB J 2020; 34:14287-14301. [PMID: 32888229 DOI: 10.1096/fj.202001389rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 01/04/2023]
Abstract
Blood levels of heat shock protein (HSP27) and natural IgG auto-antibodies to HSP27 (AAbs) are higher in healthy controls compared to cardiovascular disease patients. Vaccination of mice with recombinant HSP25 (rHSP25, murine ortholog of human rHSP27) increased AAb levels, attenuated atherogenesis and reduced plaque inflammation and cholesterol content. We sought to determine if the HSP27 immune complex (IC) altered MΦ inflammation signaling (Toll Like Receptor 4; TLR4), and scavenger receptors involved in cholesterol uptake (SR-AI, CD-36). Combining a validated polyclonal IgG anti-HSP27 antibody (PAb) with rHSP27 enhanced binding to THP-1 MΦ cell membranes and activation of NF-κB signaling via TLR4, competing away LPS and effecting an anti-inflammatory cytokine profile. Similarly, adding the PAb with rHSP27 enhanced binding to SR-AI and CD-36, as well as lowered oxLDL binding in HEK293 cells separately transfected with SR-AI and CD-36, or THP-1 MΦ. Finally, the PAb enhanced the uptake and internalization of rHSP27 in THP-1 MΦ. Thus, the HSP27 IC potentiates HSP27 cell membrane signaling with receptors involved in modulating inflammation and cholesterol uptake, as well as HSP27 internalization. Going forward, we are focusing on the development of HSP27 Immune Complex Altered Signaling and Transport (ICAST) as a means of modulating inflammation.
Collapse
Affiliation(s)
- Chunhua Shi
- Division of Cardiology, Department of Cardiac Sciences, University of Calgary Cumming School of Medicine, Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Jingti Deng
- Division of Cardiology, Department of Cardiac Sciences, University of Calgary Cumming School of Medicine, Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Michael Chiu
- Division of Cardiology, Department of Cardiac Sciences, University of Calgary Cumming School of Medicine, Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Yong-Xiang Chen
- Division of Cardiology, Department of Cardiac Sciences, University of Calgary Cumming School of Medicine, Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Edward R O'Brien
- Division of Cardiology, Department of Cardiac Sciences, University of Calgary Cumming School of Medicine, Libin Cardiovascular Institute, Calgary, AB, Canada
| |
Collapse
|
39
|
O'Brien ER, Sandhu JK. Sex differences in COVID-19 mortality: opportunity to develop HSP27 (HSPB1) immunotherapy to treat hyper-inflammation? Cell Stress Chaperones 2020; 25:725-729. [PMID: 32761452 PMCID: PMC7407440 DOI: 10.1007/s12192-020-01146-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Edward R O'Brien
- Division of Cardiology, Department of Cardiac Sciences, University of Calgary Cumming School of Medicine, Libin Cardiovascular Institute, HRIC GC68, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
| | - Jagdeep K Sandhu
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| |
Collapse
|
40
|
Shi C, Alvarez-Olmedo D, Zhang Y, Pattar BSB, O’Brien ER. The Heat Shock Protein 27 Immune Complex Enhances Exosomal Cholesterol Efflux. Biomedicines 2020; 8:E290. [PMID: 32824555 PMCID: PMC7460488 DOI: 10.3390/biomedicines8080290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Previously, we demonstrated that Heat Shock Protein 27 (HSP27) reduces the inflammatory stages of experimental atherogenesis, is released by macrophage (MΦ) exosomes and lowers cholesterol levels in atherosclerotic plaques. Recently, we discovered that natural autoantibodies directed against HSP27 enhance its signaling effects, as HSP27 immune complexes (IC) interact at the cell membrane to modulate signaling. We now seek to evaluate the potential role of the HSP27 IC on MΦ exosomal release and cholesterol export. First, in human blood samples, we show that healthy control subjects have 86% more exosomes compared to patients with coronary artery disease (p < 0.0001). Treating human THP-1 MΦ with rHSP27 plus a validated anti-HPS27 IgG antibody increased the abundance of exosomes in the culture media (+98%; p < 0.0001) as well as expression of Flotillin-2, a marker reflective of exosomal release. Exosome cholesterol efflux was independent of Apo-A1. THP-1 MΦ loaded with NBD-labeled cholesterol and treated with the HSP27 IC showed a 22% increase in extracellular vesicles labeled with NBD and a 95% increase in mean fluorescent intensity. In conclusion, exosomal abundance and secretion of cholesterol content increases in response to HSP27 IC treatment, which may represent an important therapeutic option for diseases characterized by cholesterol accumulation.
Collapse
Affiliation(s)
| | | | | | | | - Edward R. O’Brien
- Health Research and Innovation Center, Libin Cardiovascular Institute, University of Calgary, Cumming School of Medicine, Calgary, AB T2N4Z6, Canada; (C.S.); (D.A.-O.); (Y.Z.); (B.S.B.P.)
| |
Collapse
|
41
|
Onuma T, Iida M, Kito Y, Tanabe K, Kojima A, Nagase K, Uematsu K, Enomoto Y, Doi T, Tokuda H, Ogura S, Iwama T, Kozawa O, Iida H. Cigarette Smoking Cessation Temporarily Enhances the Release of Phosphorylated-HSP27 from Human Platelets. Intern Med 2020; 59:1841-1847. [PMID: 32350194 PMCID: PMC7474987 DOI: 10.2169/internalmedicine.4000-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Objective Cigarette smoking is a risk factor for arteriopathy, including acute coronary syndrome, stroke and peripheral vascular disease. Thus, cessation is strongly recommended in order to reduce these risks. We recently demonstrated that smoking cessation causes temporary hyper-aggregability of human platelets. We previously showed that heat shock protein 27 (HSP27) is released from human platelets stimulated by collagen, accompanied by its phosphorylation. Accumulating evidence indicates potent roles of extracellular HSP27 as a modulator of inflammation. In the present study, using the stored samples obtained in the previous study, we investigated the effect of cigarette smoking cessation on the release of phosphorylated-HSP27 from collagen-activated human platelets (n=15 patients). Methods We enrolled patients who visited smoking cessation outpatient services between January 2012 and November 2014. Platelet-rich plasma, chronologically obtained before and after the cessation, was stimulated by collagen using a PA-200 aggregometer in the previous study. The levels of phosphorylated-HSP27 released from platelets were determined by an enzyme-linked immunosorbent assay. The phosphorylation of HSP27 in platelets was evaluated by a Western blot analysis. Results Cessation of cigarette smoking significantly upregulated the levels of collagen-stimulated release of phosphorylated-HSP27 at four and eight weeks after quitting smoking compared to before cessation. However, there was no significant difference between the levels before cessation and those at 12 weeks after cessation. The levels of phosphorylated-HSP27 stimulated by collagen in the platelets at four weeks after smoking cessation were remarkably enhanced compared to before cessation. Conclusion Cigarette smoking cessation temporarily enhances the collagen-stimulated release of phosphorylated-HSP27 from human platelets in the short term.
Collapse
Affiliation(s)
- Takashi Onuma
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Japan
| | - Mami Iida
- Department of General Medicine, Gifu Prefectural General Medical Center, Japan
| | - Yuko Kito
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Japan
| | - Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Japan
| | - Akiko Kojima
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Japan
| | - Kiyoshi Nagase
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Japan
| | - Kodai Uematsu
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Japan
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Japan
| | - Tomoaki Doi
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Haruhiko Tokuda
- Department of Clinical Laboratory/Medical Genome Center Biobank, National Center for Geriatrics and Gerontology, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Japan
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Japan
| |
Collapse
|
42
|
Khodamoradi E, Hoseini-Ghahfarokhi M, Amini P, Motevaseli E, Shabeeb D, Musa AE, Najafi M, Farhood B. Targets for protection and mitigation of radiation injury. Cell Mol Life Sci 2020; 77:3129-3159. [PMID: 32072238 PMCID: PMC11104832 DOI: 10.1007/s00018-020-03479-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
Protection of normal tissues against toxic effects of ionizing radiation is a critical issue in clinical and environmental radiobiology. Investigations in recent decades have suggested potential targets that are involved in the protection against radiation-induced damages to normal tissues and can be proposed for mitigation of radiation injury. Emerging evidences have been shown to be in contrast to an old dogma in radiation biology; a major amount of reactive oxygen species (ROS) production and cell toxicity occur during some hours to years after exposure to ionizing radiation. This can be attributed to upregulation of inflammatory and fibrosis mediators, epigenetic changes and disruption of the normal metabolism of oxygen. In the current review, we explain the cellular and molecular changes following exposure of normal tissues to ionizing radiation. Furthermore, we review potential targets that can be proposed for protection and mitigation of radiation toxicity.
Collapse
Affiliation(s)
- Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Hoseini-Ghahfarokhi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
- Misan Radiotherapy Center, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
43
|
Role of Heat Shock Protein 27 in Modulating Atherosclerotic Inflammation. J Cardiovasc Transl Res 2020; 14:3-12. [PMID: 32661980 DOI: 10.1007/s12265-020-10000-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/01/2020] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is the primary cause of heart attacks, and while efforts to prevent its development or progression have historically focused largely on reducing cholesterol levels, there is now important proof-of-principle data that supports the role that inflammation plays in atherogenesis. Heat shock protein 27 (HSP27) is a novel biomarker of atherosclerosis that is also atheroprotective. Through a series of murine and in vitro experiments, an iterative narrative is emerging that demonstrates how HSP27 can act as an extracellular mediator that reduces plaque inflammation-either directly via transcriptional pathways, or indirectly via important effects on macrophage biology. While there is much more to learn about the biology of HSP27, we now review the strong foundation of knowledge that highlights the potential anti-inflammatory role of HSP27 as a novel therapeutic for not only atherosclerosis but potentially other inflammatory disorders.
Collapse
|
44
|
Qu J, Wang W, Zhang Q, Li S. Inhibition of Lipopolysaccharide-Induced Inflammation of Chicken Liver Tissue by Selenomethionine via TLR4-NF-κB-NLRP3 Signaling Pathway. Biol Trace Elem Res 2020; 195:205-214. [PMID: 31332706 DOI: 10.1007/s12011-019-01841-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/16/2019] [Indexed: 02/08/2023]
Abstract
Selenium (Se) is important in many physiological processes, such as antioxidant processes and inflammation. The aim of our experiments was to investigate the molecular mechanism that selenomethionine could reduce the lipopolysaccharide (LPS)-induced inflammation by inhibiting the TLR4-NF-κB-NLRP3 signaling pathway. Eighty broilers were randomly and evenly divided into two groups, giving normal Se content diets (Con group, 0.2 mg Se/kg diet) and Se-rich basal diets (Se group, 0.5 mg selenomethionine/kg diet) for 90 days. Se-rich basal diets were based on 0.2 mg/kg sodium selenite contained. Five hours before euthanized, 20 broilers were randomly selected from each group and given lipopolysaccharide (200 μg/kg BW) by intraperitoneal injection, Con+LPS group and Se+LPS group, respectively. The Con group and Se group were given equal saline by intraperitoneal injection. We observed the microscopic pathological changes of liver tissue detected oxidative stress by kit and detected the expression of inflammatory factors, heat shock protein (HSP), and nod-like receptor protein 3 (NLRP3)-related genes by qRT-PCR and Western blot. With the microscope, we found the Con+LPS group had obvious inflammatory lesions such as sinusoidal congestion, but the damage was significantly alleviated in the Se+LPS group. In the Con+LPS group, the activity of GSH-Px and the content of GSH were significantly decreased compared with those in the Con group; however, they are increased in the Se group and in the Se + LPS group. Inflammatory factors (MyD88, NF-κB, TNF-α, IL-1β, IL-6, IL-12, IL-18, iNOS, and COX-2), heat shock proteins (HSP27, HSP60, HSP70, and HSP90), and the expression of NLRP3 and caspase-1 increased in the Con+LPS group compared with those in the Con group, while they were lower in the Se+LPS group than in the Con+LPS group. We concluded that selenomethionine inhibits the LPS-induced inflammation of liver tissue via suppressing the TLR4-NF-κB-NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Jingrui Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qiaojian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
45
|
Ma Z, Lu Y, Yang F, Li S, He X, Gao Y, Zhang G, Ren E, Wang Y, Kang X. Rosmarinic acid exerts a neuroprotective effect on spinal cord injury by suppressing oxidative stress and inflammation via modulating the Nrf2/HO-1 and TLR4/NF-κB pathways. Toxicol Appl Pharmacol 2020; 397:115014. [PMID: 32320792 DOI: 10.1016/j.taap.2020.115014] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/08/2023]
Abstract
Spinal cord injury (SCI) is a severe central nervous system injury for which few efficacious drugs are available. Rosmarinic acid (RA), a water-soluble polyphenolic phytochemical, has antioxidant, anti-inflammatory, and anti-apoptotic properties. However, the effect of RA on SCI is unclear. We investigated the therapeutic effect and underlying mechanism of RA on SCI. Using a rat model of SCI, we showed that RA improved locomotor recovery after SCI and significantly mitigated neurological deficit, increased neuronal preservation, and reduced apoptosis. Also, RA inhibited activation of microglia and the release of TNF-α, IL-6, and IL-1β and MDA. Moreover, proteomics analyses identified the Nrf2 and NF-κB pathways as targets of RA. Pretreatment with RA increased levels of Nrf2 and HO-1 and reduced those of TLR4 and MyD88 as well as phosphorylation of IκB and subsequent nuclear translocation of NF-κB-p65. Using H2O2- and LPS-induced PC12 cells, we found that RA ameliorated the H2O2-induced decrease in viability and increase in apoptosis and oxidative injury by activating the Nrf2/HO-1 pathway. Also, LPS-induced cytotoxicity and increased apoptosis and inflammatory injury in PC-12 cells were mitigated by RA by inhibiting the TLR4/NF-κB pathway. The Nrf2 inhibitor ML385 weakened the effect of RA on oxidant stress, inflammation and apoptosis in SCI rats, and significantly increased the nuclear translocation of NF-κB. Therefore, the neuroprotective effect on SCI of RA may be due to its antioxidant and anti-inflammatory properties, which are mediated by modulation of the Nrf2/HO-1 and TLR4/NF-κB pathways. Moreover, RA activated Nrf2/HO-1, which amplified its inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Fengguang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Shaoping Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Xuegang He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Yicheng Gao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Guangzhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Enhui Ren
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Yonggang Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Gansu 730000, China.
| | - Xuewen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Gansu 730000, China.
| |
Collapse
|
46
|
Tokuda H, Kusunose M, Senda K, Kojima K, Onuma T, Kojima A, Mizutani D, Enomoto Y, Iwama T, Iida H, Kozawa O. The release of phosphorylated-HSP27 from activated platelets of obstructive sleep apnea syndrome (OSAS) patients. Respir Investig 2020; 58:117-127. [PMID: 31838041 DOI: 10.1016/j.resinv.2019.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/17/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Obstructive sleep apnea syndrome (OSAS) is a well known risk of arterial thrombosis that results in cardiovascular morbidity. It has been reported that platelet aggregability is enhanced in patients with OSAS. In the present study, we investigated whether phosphorylated-HSP27 is released from the activated platelets of OSAS patients. METHODS Patients diagnosed with OSAS (n = 21) were recruited, and platelet-rich plasma (PRP) was stimulated by ADP, ristosetin, collagen, and thrombin receptor-activating peptide. Platelet aggregation was measured using an aggregometer with a laser-scattering system. The levels of protein phosphorylation and the released levels of phosphorylated-HSP27 were determined by Western blot analysis and an ELISA, respectively. RESULTS The phosphorylation of HSP27 in the platelets was induced by the stimulators. The released levels of phosphorylated-HSP27 was correlated with the levels of phosphorylated-HSP27 stimulated by ADP or collagen. The levels of ADP-induced phosphorylated-HSP27 were correlated with those of both phosphorylated-protein kinase B (Akt) and phosphorylatd-p38 mitogen-activated protein kinase; however, the levels of phosphorylated-HSP27 stimulated by collagen were correlated with phosphorylated-Akt levels only. The ED50 value of ADP on the platelet aggregation in OSAS (1.067 ± 0.128 μM) was lower than that in healthy subjects (1.778 ± 0.122 μM) and was inversely correlated with both the value of minimum SpO2 and the released level of phosphorylated-HSP27 stimulated by ADP. CONCLUSION The results strongly suggest that phosphorylated-HSP27 is released from the activated platelets of OSAS patients.
Collapse
Affiliation(s)
- Haruhiko Tokuda
- Department of Clinical Laboratory/Biobank of Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan; Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.
| | - Masaaki Kusunose
- Department of Respiratory Medicine, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Kazuyoshi Senda
- Department of Respiratory Medicine, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Kumi Kojima
- Department of Clinical Laboratory/Biobank of Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Takashi Onuma
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Akiko Kojima
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Daisuke Mizutani
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| |
Collapse
|
47
|
Murshid A, Borges TJ, Bonorino C, Lang BJ, Calderwood SK. Immunological Outcomes Mediated Upon Binding of Heat Shock Proteins to Scavenger Receptors SCARF1 and LOX-1, and Endocytosis by Mononuclear Phagocytes. Front Immunol 2020; 10:3035. [PMID: 31998315 PMCID: PMC6968791 DOI: 10.3389/fimmu.2019.03035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/11/2019] [Indexed: 01/06/2023] Open
Abstract
Heat shock proteins (HSP) are a highly abundant class of molecular chaperones that can be released into the extracellular milieu and influence the immune response. HSP release can occur when cells undergo necrosis and exude their contents. However, HSPs are also secreted from intact cells, either in free form or in lipid vesicles including exosomes to react with receptors on adjacent cells. Target cells are able recognize extracellular HSPs through cell surface receptors. These include scavenger receptors (SR) such as class E member oxidized low-density lipoprotein receptor-1 (LOX-1, aka OLR1, Clec8A, and SR-E1) and scavenger receptor class F member 1 (SCARF1, aka SREC1). Both receptors are expressed by dendritic cells (DC) and macrophages. These receptors can bind HSPs coupled to client binding proteins and deliver the chaperone substrate to the pathways of antigen processing in cells. SR are able to facilitate the delivery of client proteins to the proteasome, leading to antigen processing and presentation, and stimulation of adaptive immunity. HSPs may also may be involved in innate immunity through activation of inflammatory signaling pathways in a mechanism dependent on SR and toll-like receptor 4 (TLR4) on DC and macrophages. We will discuss the pathways by which HSPs can facilitate uptake of protein antigens and the receptors that regulate the ensuing immune response.
Collapse
Affiliation(s)
- Ayesha Murshid
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Thiago J Borges
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States.,Renal Division, Schuster Family Transplantation Research Center, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States
| | - Cristina Bonorino
- Laboratório de Immunoterapia, Departmento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Department of Surgery, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
48
|
Milani A, Basirnejad M, Bolhassani A. Heat-shock proteins in diagnosis and treatment: an overview of different biochemical and immunological functions. Immunotherapy 2020; 11:215-239. [PMID: 30730280 DOI: 10.2217/imt-2018-0105] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heat-shock proteins (HSPs) have been involved in different functions including chaperone activity, protein folding, apoptosis, autophagy and immunity. The HSP families have powerful effects on the stimulation of innate immune responses through Toll-like receptors and scavenger receptors. Moreover, HSP-mediated phagocytosis directly enhances the processing and presentation of internalized antigens via the endocytic pathway in adaptive immune system. These properties of HSPs have been used for development of prophylactic and therapeutic vaccines against infectious and noninfectious diseases. Several studies also demonstrated the relationship between HSPs and drug resistance as well as their use as a novel biomarker for detecting tumors in patients. The present review describes different roles of HSPs in biology and medicine especially biochemical and immunological aspects.
Collapse
Affiliation(s)
- Alireza Milani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran.,Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | | | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
49
|
Lin QN, Liu YD, Guo SE, Zhou R, Huang Q, Zhang ZM, Qin X. Schisandrin B ameliorates high-glucose-induced vascular endothelial cells injury by regulating the Noxa/Hsp27/NF-κB signaling pathway. Biochem Cell Biol 2019; 97:681-692. [PMID: 30817212 DOI: 10.1139/bcb-2018-0321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: To address the molecular mechanism of the anti-inflammation effects of schisandrin B (Sch B) in atherosclerosis, we examined injured HMEC-1, HBMEC, and HUVEC-12 cells induced by high glucose (HG). Methods: Western blot was performed to detect the levels of the proteins Hsp27, Noxa, TLR5, p-IκBα, and p-p65 in HG-induced cells, while ELISA was used to analyze the inflammatory cytokines TNF-α, IL-6, MCP-1, and IL-1β in cells with Hsp27 or Noxa stable expression. Results: Overexpression of Hsp27 upregulated the inflammatory cytokines and the release of IκBα, promoted transportation of p65 into the nucleus, and lastly, affected the inflammation process, while Sch B counteracted the upregulation. In addition, the effect of Noxa overexpression, which is different from Hsp27 overexpression, was consistent with that of Sch B treatment. Conclusions: Sch B may inhibit the inflammatory cascade and alleviate the injury to HMEC-1, HBMEC, and HUEVC-12 cells caused by HG by regulating the Noxa/Hsp27/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qiu-Ning Lin
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Yong-Dong Liu
- Department of Vascular Surgery, Affiliated Liutie Central Hospital & Clinical Medical College of Guangxi Medical University, Liuzhou 545007, P.R. China
| | - Si-En Guo
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Rui Zhou
- Department of Hepatobiliary Surgery, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang 537120, P.R. China
| | - Qun Huang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Zhan-Man Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Xiao Qin
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| |
Collapse
|
50
|
Mizutani D, Onuma T, Tanabe K, Kojima A, Uematsu K, Nakashima D, Doi T, Enomoto Y, Matsushima-Nishiwaki R, Tokuda H, Ogura S, Iida H, Kozawa O, Iwama T. Olive polyphenol reduces the collagen-elicited release of phosphorylated HSP27 from human platelets. Biosci Biotechnol Biochem 2019; 84:536-543. [PMID: 31760852 DOI: 10.1080/09168451.2019.1697196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hydroxytyrosol (HT) and oleuropein (OLE) are natural polyphenols found in extra virgin olive oil. Accumulating evidence indicates that ingestion of olive oil contributes to reduce the risk of cardiovascular diseases and stroke. It has been reported that HT and OLE inhibit human platelet aggregation. We have shown that collagen induces the phosphorylation of heat shock protein 27 (HSP27) in human platelets, resulting in the release of HSP27, an extracellular pro-inflammatory agent. In this study, we investigated the effects of HT and OLE on the collagen-stimulated human platelet activation. The PDGF-AB secretion and the soluble CD40 ligand (sCD40L) release by collagen were reduced by HT or OLE. HT and OLE significantly suppressed the phosphorylation of HSP27 and the release of phosphorylated-HSP27. These findings suggest that olive polyphenol reduces the collagen-stimulated phosphorylation of HSP27 in human platelets and the release. Our results may provide a novel anti- inflammatory effect of olive polyphenol.
Collapse
Affiliation(s)
- Daisuke Mizutani
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takashi Onuma
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akiko Kojima
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kodai Uematsu
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Daiki Nakashima
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomoaki Doi
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Haruhiko Tokuda
- Department of Clinical Labolatory/Medical Genome Center Biobank, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|