1
|
Shah SK, Bhandari K, Shah A, Chaurasiya G. COVID-19: vaccination, therapeutics and a review of the science and public health. Ann Med Surg (Lond) 2024; 86:5343-5353. [PMID: 39239001 PMCID: PMC11374161 DOI: 10.1097/ms9.0000000000002374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/06/2024] [Indexed: 09/07/2024] Open
Abstract
COVID-19, stemming from the SARS-CoV-2 virus, has initiated a worldwide respiratory pandemic. Remarkable headway has been made in the realm of vaccination, as nearly every nation has initiated COVID-19 vaccine deployment. However, a mere 32.6% of individuals in low-income countries have received only a single vaccine dose. Unprecedented research and development endeavors have yielded over 170 COVID-19 vaccines, several of which are now in practical use. These vaccines have demonstrated remarkable efficacy in averting severe illness, hospitalization, and fatalities from COVID-19, even against emerging variants. Research pursuits persist, concentrating on novel vaccine technologies, oral and nasal vaccines, broader coronavirus protection, and vaccine combinations. In the realm of therapeutics, there have been significant strides in developing oral antiviral medications and monoclonal antibodies. Nonetheless, challenges in COVID-19 vaccination persist, encompassing issues of hesitancy, accessibility, financial barriers, knowledge gaps, and logistical hindrances. Robust monitoring via global agencies and reporting systems remains pivotal. Strategies for enhancing vaccination efficacy are rooted in fostering trust, countering misinformation, and expanding access. As for therapeutics, the approach involves dedicated research, clinical trials, regulatory streamlining, stockpiling, and international collaboration. Telemedicine and public awareness campaigns play integral roles in this effort, with coordination being the linchpin for preserving lives and mitigating the disease's impact. The global campaign against COVID-19 has witnessed substantial advancements, with an ongoing research focus on developing vaccines and therapeutics that are not only more accessible and affordable but also more effective, particularly for populations in low-income countries and vulnerable communities.
Collapse
Affiliation(s)
| | | | - Avish Shah
- Kist Medical College and Teaching Hospital, Imadol, Lalitpur
- Everest Hospital, New Baneshwor, Kathmandu, Nepal
| | | |
Collapse
|
2
|
Shukla N, Shamim U, Agarwal P, Pandey R, Narayan J. From bench to bedside: potential of translational research in COVID-19 and beyond. Brief Funct Genomics 2024; 23:349-362. [PMID: 37986554 DOI: 10.1093/bfgp/elad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19) have been around for more than 3 years now. However, due to constant viral evolution, novel variants are emerging, leaving old treatment protocols redundant. As treatment options dwindle, infection rates continue to rise and seasonal infection surges become progressively common across the world, rapid solutions are required. With genomic and proteomic methods generating enormous amounts of data to expand our understanding of SARS-CoV-2 biology, there is an urgent requirement for the development of novel therapeutic methods that can allow translational research to flourish. In this review, we highlight the current state of COVID-19 in the world and the effects of post-infection sequelae. We present the contribution of translational research in COVID-19, with various current and novel therapeutic approaches, including antivirals, monoclonal antibodies and vaccines, as well as alternate treatment methods such as immunomodulators, currently being studied and reiterate the importance of translational research in the development of various strategies to contain COVID-19.
Collapse
Affiliation(s)
- Nityendra Shukla
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| | - Uzma Shamim
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| | - Preeti Agarwal
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| | - Rajesh Pandey
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| | - Jitendra Narayan
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| |
Collapse
|
3
|
Abd El-Aziz E, Tahoun MM, Arafa MA, El-Banna AS. Acute Poisoning Among Children Admitted to Alexandria Poison Center, Egypt: Patterns and Predisposing Factors. Cureus 2024; 16:e63720. [PMID: 39100071 PMCID: PMC11294901 DOI: 10.7759/cureus.63720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
Acute poisoning in children is a major public health problem worldwide. Children poisoning ranks among the top unintentional injuries in children aged less than four years. This paper aimed to describe the pattern and characteristics of acute poisoning incidents, estimate the percentage of medication poisoning among those children and highlight the possible risk factors. All children aged below 10 years admitted to Alexandria Poison Centre (APC) with acute poisoning from the July 1, 2022, to December 31, 2022, were included in the study. A pre-designed structured interviewing questionnaire was used to collect data: socio-demographic data of the poisoned child and his/her caregiver, medical history of the poisoned child and family members, history of previous poisoning incidents in the family, details of the poisoning incident including causative agent, route of poisoning, scene of poisoning, time interval to reach APC and the first aid done. 350 children admitted to APC were included in our study, of which 59% (n=208) of poisoned children were males with mean age 3.14 ± 2.28 years. The types of poisoning found were 46.6% chemical compounds, 31.4% medication, 18% household and 4% food poisoning. Most of the children were poisoned orally. High education of caregiver, urban residence and the presence of chronic disease within a family member were significantly associated with medication poisoning while low education of caregiver, drug addiction, having chronic disease among a family member and the presence of previous poisoning accident in the family were significantly associated with poisoning with chemical compounds. The study found that acute poisoning is more common among young male children in Alexandria; the chemical compounds came first as the main source of poisoning followed by the medication poisoning.
Collapse
Affiliation(s)
| | | | | | - Asmaa S El-Banna
- Forensic Medicine and Toxicology, Faculty of Medicine, Alexandria University, Alexandria, EGY
| |
Collapse
|
4
|
Behera LM, Gupta PK, Ghosh M, Shadangi S, Rana S. A Rationally Designed Synthetic Antiviral Peptide Binder Targeting the Receptor-Binding Domain of SARS-CoV-2. J Phys Chem B 2024. [PMID: 38657271 DOI: 10.1021/acs.jpcb.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a novel coronavirus, is the causative agent responsible for the spread of the COVID19 pandemic across the globe. The global impact of the COVID19 pandemic, the successful approval of vaccines for controlling the pandemic, and the further resurgence of COVID19 necessitate the exploration and validation of alternative therapeutic avenues targeting SARS-CoV-2. The initial entry and further invasion by SARS-CoV-2 require strong protein-protein interactions (PPIs) between the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptors expressed on the cell surfaces of various tissues. In principle, disruption of the PPIs between the RBD of SARS-CoV-2 and the ACE2 receptor by designer peptides with optimized pharmacology appears to be an ideal choice for potentially preventing viral entry with minimal immunogenicity. In this context, the current study describes a short, synthetic designer peptide (codenamed SR16, ≤18 aa, molecular weight ≤2.5 kDa), which has a few noncoded amino acids, demonstrates a helical conformation in solution, and also engages the RBD of SARS-CoV-2 through a high-affinity interaction, as judged from a battery of biophysical studies. Further, the designer peptide demonstrates resistance to trypsin degradation, appears to be nontoxic to mammalian cells, and also does not induce hemolysis in freshly isolated human erythrocytes. In summary, SR16 appears to be an ideal peptide binder targeting the RBD of SARS-CoV-2, which has the potential for further optimization and development as an antiviral agent targeting SARS-CoV-2.
Collapse
Affiliation(s)
- Lalita Mohan Behera
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 752050, Odisha, India
| | - Pulkit Kr Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 752050, Odisha, India
| | - Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 752050, Odisha, India
| | - Sucharita Shadangi
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 752050, Odisha, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 752050, Odisha, India
| |
Collapse
|
5
|
Hemmati AA, Mojiri-Forushani H. Off-label Use of Medicines in COVID-19: A Lesson For Future. CORONAVIRUSES 2024; 5. [DOI: 10.2174/0126667975271719231107052426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 01/03/2025]
Abstract
Abstract:
The COVID-19 infection is rapidly spreading worldwide. Treating this new viral infection
is a great challenge worldwide. There is no specific and approved medication for its treatment,
so some medications are considered off-label. Antivirals, corticosteroids, antimalarial agents, and
antibiotics are proposed in different countries to treat COVID-19. This narrative review discussed the
off-label use of medications for COVID-19 and the beneficial and adverse effects of them. Evidence
was collected and sorted from the literature ranging from 2019 to 2022 on scientific databases such
as Web of Science, PubMed, and Scopus with suitable keywords. All papers, namely systematic
reviews, case studies, and clinical guidelines, were evaluated. Antimalarial agents, antivirals, antibiotics,
corticosteroids, NSAIDs, biological medicines, Ivermectin, and melatonin were reviewed in
this study. Some medications have direct antiviral effects, and many can reduce infection symptoms
and hospitalization. In some clinical trial trials, even some of them, such as corticosteroids, can lower
death rates, particularly during the cytokine storm period. However, the effectiveness of some
medications has not been understood. Besides, the side effects of off-label use of these medications
must be considered a serious concern. There are no proven medications for COVID-19 yet. Off-label
use of medications is a double-edged sword that can have advantages outweighing its disadvantages.
The COVID-19 crisis taught us many lessons about dealing with health-related crises and their
treatment management. One of the most important lessons is paying more attention to the discovery
and development of novel drugs and vaccines based on modern technology.
Collapse
Affiliation(s)
- Ali Asghar Hemmati
- Department of Pharmacology, Marine Pharmaceutical Science Research Center, School of Pharmacy, Ahvaz
Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hoda Mojiri-Forushani
- Department of Pharmacology, School of Medicine, Abadan
University of Medical Sciences, Abadan, Iran
| |
Collapse
|
6
|
Rosli NB, Kwon HJ, Jeong JS. Simultaneous quantification method for multiple antiviral drugs in serum using isotope dilution liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1231:123925. [PMID: 37992562 DOI: 10.1016/j.jchromb.2023.123925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
We describe the simultaneous quantification of six antiviral drugs in serum based on high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The target drugs-hydroxychloroquine, chloroquine, favipiravir, umifenovir, ritonavir, and lopinavir-were extracted and purified from serum with 75 % v/v methanol as the precipitant reagent. The six analytes were clearly separated within 15 min using gradient elution and mixed-mode stationary phase. The measurement accuracy and precision were assured by adopting isotopes as internal standards. The optimized measurement procedure was strictly validated in linearity, sensitivity, accuracy, and precision. To confirm the robustness of the method in matrix, the method was additionally applied to various types of serum, namely hyperlipidemic and hyperglycemic serum. The method was then applied to assess the stability of the drugs in serum in order to set sample handling and storage guides for laboratory testing. Lastly, the method was implemented in different LC-MS systems to confirm its applicability across similar equipment commonly used in clinical testing laboratories. The overall results show that the optimized protocol is suitable for the accurate, simultaneous quantification of the six antiviral drugs in serum, and it is anticipated to satisfactorily serve as a reference protocol for the analysis of a wide range of other antiviral drugs for drug monitoring with various purposes.
Collapse
Affiliation(s)
- Nordiana Binti Rosli
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Drug and Toxicology Lab, Department of Pathology, Hospital Kuala Lumpur Jalan Pahang, Kuala Lumpur 50586, Malaysia
| | - Ha-Jeong Kwon
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ji-Seon Jeong
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
7
|
Shevchuk O, Pak A, Palii S, Ivankiv Y, Kozak K, Korda M, Vari SG. Blood ACE2 Protein Level Correlates with COVID-19 Severity. Int J Mol Sci 2023; 24:13957. [PMID: 37762258 PMCID: PMC10530872 DOI: 10.3390/ijms241813957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/22/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
ACE2's impact on the severity of COVID-19 is widely discussed but still controversial. To estimate its role in aspects of the main risk factors and comorbidities, we involved post-COVID-19 patients in Ternopil region (Ukraine). The recruitment period was from July 2020 to December 2021. Medical records, treatment modalities, and outcomes were recorded and analyzed. The serum human ACE2 protein was measured with Cusabio ELISA kits (Houston, TX, USA). Statistical analysis was performed with SPSS21.0 software (SPSS Inc., Chicago, IL, USA). The level of the ACE2 serum protein was significantly higher (p < 0.001) in patients with mild symptoms compared to a more severe course of the disease, and inversely had changed from 1 to 90 days after recovery. In patients with mild COVID-19, ACE2 levels significantly decreased over time, while among critical patients, it increased by 34.1 percent. Such results could be explained by ACE2 shedding from tissues into circulation. Loss of the membrane-bound form of the enzyme decreases the virus' entry into cells. Our studies did not identify a sex-related ACE2 serum level correlation. The most common comorbidities were hypertension, cardiovascular diseases, respiratory diseases, and diabetes mellitus. All abovementioned comorbidities except respiratory diseases contribute to the severity of the disease and correlate with ACE2 blood serum levels.
Collapse
Affiliation(s)
- Oksana Shevchuk
- Department of Pharmacology and Clinical Pharmacology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine; (A.P.); (S.P.); (Y.I.); (K.K.); (M.K.)
| | - Anastasia Pak
- Department of Pharmacology and Clinical Pharmacology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine; (A.P.); (S.P.); (Y.I.); (K.K.); (M.K.)
| | - Svitlana Palii
- Department of Pharmacology and Clinical Pharmacology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine; (A.P.); (S.P.); (Y.I.); (K.K.); (M.K.)
| | - Yana Ivankiv
- Department of Pharmacology and Clinical Pharmacology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine; (A.P.); (S.P.); (Y.I.); (K.K.); (M.K.)
| | - Kateryna Kozak
- Department of Pharmacology and Clinical Pharmacology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine; (A.P.); (S.P.); (Y.I.); (K.K.); (M.K.)
| | - Mykhaylo Korda
- Department of Pharmacology and Clinical Pharmacology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine; (A.P.); (S.P.); (Y.I.); (K.K.); (M.K.)
| | - Sandor G. Vari
- International Research and Innovation in Medicine Program, Cedars–Sinai Medical Center, Los Angeles, CA 90048, USA;
| |
Collapse
|
8
|
Bamir M, Daneshi S, Farahbakhsh S. Necessary to Identify Latent Toxicants Associated with COVID-19. Int J Prev Med 2023; 14:104. [PMID: 37855010 PMCID: PMC10580180 DOI: 10.4103/ijpvm.ijpvm_82_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/07/2022] [Indexed: 10/20/2023] Open
Affiliation(s)
- Mousa Bamir
- Department of Health Services Management Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Salman Farahbakhsh
- Department of Health Professional, School of Health, Sirjan University of Medical Sciences, Sirjan, Iran
| |
Collapse
|
9
|
Sheng AY, Gottlieb M, Bautista JR, Trueger NS, Westafer LM, Gisondi MA. The role of emergency physicians in the fight against health misinformation: Implications for resident training. AEM EDUCATION AND TRAINING 2023; 7:S48-S57. [PMID: 37383831 PMCID: PMC10294217 DOI: 10.1002/aet2.10877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 06/30/2023]
Abstract
Emergency physicians on the frontlines of the COVID-19 pandemic are first-hand witnesses to the direct impact of health misinformation and disinformation on individual patients, communities, and public health at large. Therefore, emergency physicians naturally have a crucial role to play to steward factual information and combat health misinformation. Unfortunately, most physicians lack the communications and social media training needed to address health misinformation with patients and online, highlighting an obvious gap in emergency medicine training. We convened an expert panel of academic emergency physicians who have taught and conducted research about health misinformation at the Society for Academic Emergency Medicine (SAEM) Annual Meeting in New Orleans, LA, on May 13, 2022. The panelists represented geographically diverse institutions including Baystate Medical Center/Tufts University, Boston Medical Center, Northwestern University, Rush Medical College, and Stanford University. In this article, we describe the scope and impact of health misinformation, introduce methods for addressing misinformation in the clinical environment and online, acknowledge the challenges of tackling misinformation from our physician colleagues, demonstrate strategies for debunking and prebunking, and highlight implications for education and training in emergency medicine. Finally, we discuss several actionable interventions that define the role of the emergency physician in the management of health misinformation.
Collapse
Affiliation(s)
- Alexander Y. Sheng
- Department of Emergency MedicineBoston Medical CenterBostonMassachusettsUSA
- School of Medicine, Boston UniversityBostonMassachusettsUSA
- Department of Emergency MedicineAlpert Medical School at Brown UniversityRhode IslandProvidenceUSA
| | - Michael Gottlieb
- Emergency Ultrasound Division, Department of Emergency MedicineRush University Medical CenterChicagoIllinoisUSA
| | | | - N. Seth Trueger
- Department of Emergency MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Lauren M. Westafer
- Department of Emergency Medicine, Department of Healthcare Delivery and Population ScienceUniversity of Massachusetts Chan Medical School–BaystateSpringfieldMassachusettsUSA
| | - Michael A. Gisondi
- The Precision Education and Assessment Research Lab, Department of Emergency MedicineStanford UniversityPalo AltoCaliforniaUSA
| |
Collapse
|
10
|
Guerrero-Romero F, Micke O, Simental-Mendía LE, Rodríguez-Morán M, Vormann J, Iotti S, Banjanin N, Rosanoff A, Baniasadi S, Pourdowlat G, Nechifor M. Importance of Magnesium Status in COVID-19. BIOLOGY 2023; 12:735. [PMID: 37237547 PMCID: PMC10215232 DOI: 10.3390/biology12050735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
A large amount of published research points to the interesting concept (hypothesis) that magnesium (Mg) status may have relevance for the outcome of COVID-19 and that Mg could be protective during the COVID disease course. As an essential element, Mg plays basic biochemical, cellular, and physiological roles required for cardiovascular, immunological, respiratory, and neurological functions. Both low serum and dietary Mg have been associated with the severity of COVID-19 outcomes, including mortality; both are also associated with COVID-19 risk factors such as older age, obesity, type 2 diabetes, kidney disease, cardiovascular disease, hypertension, and asthma. In addition, populations with high rates of COVID-19 mortality and hospitalization tend to consume diets high in modern processed foods, which are generally low in Mg. In this review, we review the research to describe and consider the possible impact of Mg and Mg status on COVID-19 showing that (1) serum Mg between 2.19 and 2.26 mg/dL and dietary Mg intakes > 329 mg/day could be protective during the disease course and (2) inhaled Mg may improve oxygenation of hypoxic COVID-19 patients. In spite of such promise, oral Mg for COVID-19 has thus far been studied only in combination with other nutrients. Mg deficiency is involved in the occurrence and aggravation of neuropsychiatric complications of COVID-19, including memory loss, cognition, loss of taste and smell, ataxia, confusion, dizziness, and headache. Potential of zinc and/or Mg as useful for increasing drug therapy effectiveness or reducing adverse effect of anti-COVID-19 drugs is reviewed. Oral Mg trials of patients with COVID-19 are warranted.
Collapse
Affiliation(s)
- Fernando Guerrero-Romero
- Biomedical Research Unit, Mexican Social Security Institute, Durango 34067, Mexico; (F.G.-R.); (L.E.S.-M.); (M.R.-M.)
| | - Oliver Micke
- Department of Radiation Therapy and Radiation Oncology, Franziskus Hospital, 33615 Bielefeld, Germany;
| | - Luis E. Simental-Mendía
- Biomedical Research Unit, Mexican Social Security Institute, Durango 34067, Mexico; (F.G.-R.); (L.E.S.-M.); (M.R.-M.)
| | - Martha Rodríguez-Morán
- Biomedical Research Unit, Mexican Social Security Institute, Durango 34067, Mexico; (F.G.-R.); (L.E.S.-M.); (M.R.-M.)
| | - Juergen Vormann
- Institute for Prevention and Nutrition, 85737 Ismaning, Germany;
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, Universita di Bologna, 40126 Bologna, Italy;
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Nikolina Banjanin
- Institute of Hygiene and Medical Ecology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Andrea Rosanoff
- CMER Center for Magnesium Education & Research, Pahoa, HI 96778, USA
| | - Shadi Baniasadi
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran;
| | - Guitti Pourdowlat
- Chronic Respiratory Diseases Research Centre, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran;
| | - Mihai Nechifor
- Department of Pharmacology, Gr. T Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
11
|
Chary M, Barbuto AF, Izadmehr S, Tarsillo M, Fleischer E, Burns MM. COVID-19 Therapeutics: Use, Mechanism of Action, and Toxicity (Vaccines, Monoclonal Antibodies, and Immunotherapeutics). J Med Toxicol 2023; 19:205-218. [PMID: 36862334 PMCID: PMC9979891 DOI: 10.1007/s13181-023-00931-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/03/2023] Open
Abstract
SARS-CoV-2 emerged in December 2019 and led to the COVID-19 pandemic. Efforts to develop therapeutics have led to innovations such as mRNA vaccines and oral antivirals. Here we provide a narrative review of the biologic therapeutics used or proposed to treat COVID-19 during the last 3 years. This paper, along with its companion that covers xenobiotics and alternative remedies, is an update to our 2020 paper. Monoclonal antibodies prevent progression to severe disease, are not equally effective across variants, and are associated with minimal and self-limited reactions. Convalescent plasma has side effects like monoclonal antibodies, but with more infusion reactions and less efficacy. Vaccines prevent progression for a larger part of the population. DNA and mRNA vaccines are more effective than protein or inactivated virus vaccines. After mRNA vaccines, young men are more likely to have myocarditis in the subsequent 7 days. After DNA vaccines, those aged 30-50 are very slightly more likely to have thrombotic disease. To all vaccines we discuss, women are slightly more likely to have an anaphylactic reaction than men, but the absolute risk is small.
Collapse
Affiliation(s)
- Michael Chary
- Division of Medical Toxicology, Department of Emergency Medicine, Boston Children's Hospital, Boston, MA, USA.
- Regional Center for Poison Control and Prevention Serving Massachusetts and Rhode Island, Boston, MA, USA.
- Department of Emergency Medicine, Weill Cornell Medical College, New York, NY, USA.
- Department of Emergency Medicine, New York Presbyterian Queens, Flushing, NY, New York, USA.
| | - Alexander F Barbuto
- Division of Medical Toxicology, Department of Emergency Medicine, Boston Children's Hospital, Boston, MA, USA
- Regional Center for Poison Control and Prevention Serving Massachusetts and Rhode Island, Boston, MA, USA
- Department of Emergency Medicine, Carl R. Darnall Army Medical Center, Fort Hood, TX, USA
| | - Sudeh Izadmehr
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marc Tarsillo
- Department of Emergency Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Eduardo Fleischer
- Division of Medical Toxicology, Department of Emergency Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Michele M Burns
- Division of Medical Toxicology, Department of Emergency Medicine, Boston Children's Hospital, Boston, MA, USA
- Regional Center for Poison Control and Prevention Serving Massachusetts and Rhode Island, Boston, MA, USA
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
12
|
Muacevic A, Adler JR, Alageel MK, Alwatban SM, Aldusari R, Aldeeb M, Alsomali S. The Effect of the COVID-19 Lockdown on the Frequency of Acute Poisoning Presentation to Adult and Pediatric Emergency Departments. Cureus 2023; 15:e33581. [PMID: 36636518 PMCID: PMC9830523 DOI: 10.7759/cureus.33581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/11/2023] Open
Abstract
Background The coronavirus type 2 that causes severe acute respiratory syndrome (SARS-CoV-2) was detected in December 2019 in Wuhan, China. A worldwide emergency response has been initiated because of the fast rise in the number of cases and fatalities during the early stages of the pandemic when vaccinations and efficient medical care were unavailable. Misinformation spread quickly in the early phases of the pandemic, leading to the inappropriate use of medications, chemicals, and traditional remedies for their claimed preventive or therapeutic purposes. Thus, our aim is to identify the impact of the coronavirus disease 2019 (COVID-19) lockdown on the patterns of intoxicated patients presenting to King Abdulaziz Medical City's adult and pediatric emergency departments. Methods A retrospective cohort study was conducted in the adult emergency department at King Abdulaziz Medical City and the pediatric emergency department at King Abdullah Specialized Children's Hospital in Riyadh, Saudi Arabia. All patients presented with poisoning as a chief complaint between March 23 to June 21 in 2019 (pre-lockdown), 2020 (the lockdown), and 2021 (post-lockdown) were included. Cases of registered poisoning complaints were reviewed and assessed with respect to patient demographics, the causative agent/substance responsible for the poisoning, management of poisoning, and particular outcomes on the approved data collection form by the research team. The data were entered and analyzed by using SPSS v26 (IBM Corp, Armonk, NY). The descriptive statistics are presented as frequency and percentage for the categorical data variables and mean and standard deviation for the numerical data. The data were further analyzed by using cross-tabulation (chi-square test), for the data that are both the predictor and the outcome was categorical. A p-value of < 0.05 was considered significant for all statistical tests. Results Out of 318 patients identified, 164 were adults and 154 were pediatric patients. The mean age of adult and pediatric patients was 33.3±15.5 years and 4±3.6 years, respectively. The majority of patients (115; 70.1%) were males in the adult group and females (90; 58.4%) in the pediatric. The majority of self-harm cases were accidental among both adults and pediatrics, 109 (66.5%) and 144 (93.5%), respectively. The disposition from the emergency department was discharged for 113 (68.7%) adult patients and 134 (87.0%) pediatric patients. The number of cases presented to ER with poisoning cases during the lockdown decreased. This was further tested inferentially, but no significant association was seen among study variables, i.e., p > 0.05. Conclusion The lockdown and pandemic had a significant impact on the rate and patterns of ED visits. The establishment and operation of Drug and Poison Information Centers (DPIC) across the Kingdom, in addition to increasing awareness through campaigns addressing drug and substance safety, is recommended.
Collapse
|
13
|
Chary MA, Barbuto AF, Izadmehr S, Tarsillo M, Fleischer E, Burns MM. COVID-19 Therapeutics: Use, Mechanism of Action, and Toxicity (Xenobiotics). J Med Toxicol 2023; 19:26-36. [PMID: 36525217 PMCID: PMC9756926 DOI: 10.1007/s13181-022-00918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 emerged in 2019 and led to the COVID-19 pandemic. Efforts to develop therapeutics against SARS-Cov-2 led to both new treatments and attempts to repurpose existing medications. Here, we provide a narrative review of the xenobiotics and alternative remedies used or proposed to treat COVID-19. Most repositioned xenobiotics have had neither the feared toxicity nor the anticipated efficacy. Repurposed viral replication inhibitors are not efficacious and frequently associated with nausea, vomiting, and diarrhea. Antiviral medications designed specifically against SARS-CoV-2 may prevent progression to severe disease in at-risk individuals and appear to have a wide therapeutic index. Colloidal silver, zinc, and ivermectin have no demonstrated efficacy. Ivermectin has a wide therapeutic index but is not efficacious and acquiring it from veterinary sources poses additional danger. Chloroquine has a narrow therapeutic index and no efficacy. A companion review covers vaccines, monoclonal antibodies, and immunotherapies. Together, these two reviews form an update to our 2020 review.
Collapse
Affiliation(s)
- Michael A Chary
- Division of Medical Toxicology, Department of Emergency Medicine, Boston Children's Hospital, Boston, MA, USA.
- Regional Center for Poison Control and Prevention Serving Massachusetts and Rhode Island, Boston, MA, USA.
- Division of Medical Toxicology, Department of Emergency Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Alexander F Barbuto
- Division of Medical Toxicology, Department of Emergency Medicine, Boston Children's Hospital, Boston, MA, USA
- Regional Center for Poison Control and Prevention Serving Massachusetts and Rhode Island, Boston, MA, USA
- Department of Emergency Medicine, Carl R. Darnall Army Medical Center, Fort Hood, TX, USA
| | - Sudeh Izadmehr
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marc Tarsillo
- Division of Medical Toxicology, Department of Emergency Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Eduardo Fleischer
- Division of Medical Toxicology, Department of Emergency Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Michele M Burns
- Division of Medical Toxicology, Department of Emergency Medicine, Boston Children's Hospital, Boston, MA, USA
- Regional Center for Poison Control and Prevention Serving Massachusetts and Rhode Island, Boston, MA, USA
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
14
|
Georgieva E, Karamalakova Y, Arabadzhiev G, Atanasov V, Kostandieva R, Mitev M, Tsoneva V, Yovchev Y, Nikolova G. Site-Directed Spin Labeling EPR Spectroscopy for Determination of Albumin Structural Damage and Hypoalbuminemia in Critical COVID-19. Antioxidants (Basel) 2022; 11:antiox11122311. [PMID: 36552520 PMCID: PMC9774111 DOI: 10.3390/antiox11122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
The main factors in the COVID-19 pathology, which can initiate extensive structural changes at the cellular and molecular levels, are the generation of free radicals in abnormal amounts, and oxidative stress. Under "oxidative shock" conditions, the proteins undergo various modifications that affect their function and activity, and as a result distribute malfunctioning protein derivatives in the body. Human serum albumin is a small globular protein characterized by a high overall binding capacity for neutral lipophilic and acidic dosage forms. The albumin concentration is crucial for the maintenance of plasma oncotic pressure, the transport of nutrients, amino acids, and drugs, the effectiveness of drug therapy, and the prevention of drug toxicity. Hypoalbuminemia and structural defects molecule in the protein suggest a risk of changed metabolism and increased plasma concentration of unbound drugs. Therefore, the albumin structural and functional changes accompanied by low protein levels can be a serious prerequisite for ineffective therapy, frequent complications, and high mortality in patients with SARS-CoV-2 infection. The current opinion aims the research community the application of Site-Directed Spin Labeling Electron Paramagnetic Resonance spectroscopy (SDSL-EPR) and 3-Maleimido-PROXYL radical in determining abnormalities of the albumin dynamics and protein concentrations in COVID-19 critical patients.
Collapse
Affiliation(s)
- Ekaterina Georgieva
- Department of “General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology”, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
- Department of “Medical Chemistry and Biochemistry”, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Yanka Karamalakova
- Department of “Medical Chemistry and Biochemistry”, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Georgi Arabadzhiev
- Department of “Surgery and Anesthesiology”, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria
| | - Vasil Atanasov
- Forensic Toxicology Laboratory, Military Medical Academy, 3 “Sv. Georgi Sofiiski Str.”, 1606 Sofia, Bulgaria
| | - Rositsa Kostandieva
- Forensic Toxicology Laboratory, Military Medical Academy, 3 “Sv. Georgi Sofiiski Str.”, 1606 Sofia, Bulgaria
| | - Mitko Mitev
- Department of “Diagnostic Imaging”, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria
| | - Vanya Tsoneva
- Department of Propaedeutics of Internal Medicine and Clinical Laboratory, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Yovcho Yovchev
- Department of “Surgery and Anesthesiology”, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria
| | - Galina Nikolova
- Department of “Medical Chemistry and Biochemistry”, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
- Correspondence: ; Tel.: +359-897771301
| |
Collapse
|
15
|
Hardy S, Choo YM, Hamann M, Cray J. Manzamine-A Alters In Vitro Calvarial Osteoblast Function. Mar Drugs 2022; 20:647. [PMID: 36286470 PMCID: PMC9604769 DOI: 10.3390/md20100647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Manzamine-A is a marine-derived alkaloid which has anti-viral and anti-proliferative properties and is currently being investigated for its efficacy in the treatment of certain viruses (malaria, herpes, HIV-1) and cancers (breast, cervical, colorectal). Manzamine-A has been found to exert effects via modulation of SIX1 gene expression, a gene critical to craniofacial development via the WNT, NOTCH, and PI3K/AKT pathways. To date little work has focused on Manzamine-A and how its use may affect bone. We hypothesize that Manzamine-A, through SIX1, alters bone cell activity. Here, we assessed the effects of Manzamine-A on cells that are responsible for the generation of bone, pre-osteoblasts and osteoblasts. PCR, qrtPCR, MTS cell viability, Caspase 3/7, and functional assays were used to test the effects of Manzamine-A on these cells. Our data suggests Six1 is highly expressed in osteoblasts and their progenitors. Further, osteoblast progenitors and osteoblasts exhibit great sensitivity to Manzamine-A treatment exhibited by a significant decrease in cell viability, increase in cellular apoptosis, and decrease in alkaline phosphatase activity. In silico binding experiment showed that manzamine A potential as an inhibitor of cell proliferation and survival proteins, i.e., Iκb, JAK2, AKT, PKC, FAK, and Bcl-2. Overall, our data suggests Manzamine-A may have great effects on bone health overall and may disrupt skeletal development, homeostasis, and repair.
Collapse
Affiliation(s)
- Samantha Hardy
- Department of Biomedical Education and Anatomy, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Yeun-Mun Choo
- Chemistry Department, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Mark Hamann
- Departments of Drug Discovery and Biomedical Sciences and Public Health, Colleges of Pharmacy and Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - James Cray
- Department of Biomedical Education and Anatomy, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Division of Biosciences, The Ohio State College of Dentistry, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Khoshnood S, Ghanavati R, Shirani M, Ghahramanpour H, Sholeh M, Shariati A, Sadeghifard N, Heidary M. Viral vector and nucleic acid vaccines against COVID-19: A narrative review. Front Microbiol 2022; 13:984536. [PMID: 36118203 PMCID: PMC9470835 DOI: 10.3389/fmicb.2022.984536] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022] Open
Abstract
After about 2 years since the first detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in Wuhan, China, in December 2019 that resulted in a worldwide pandemic, 6.2 million deaths have been recorded. As a result, there is an urgent need for the development of a safe and effective vaccine for coronavirus disease 2019 (COVID-19). Endeavors for the production of effective vaccines inexhaustibly are continuing. At present according to the World Health Organization (WHO) COVID-19 vaccine tracker and landscape, 153 vaccine candidates are developing in the clinical phase all over the world. Some new and exciting platforms are nucleic acid-based vaccines such as Pfizer Biontech and Moderna vaccines consisting of a messenger RNA (mRNA) encoding a viral spike protein in host cells. Another novel vaccine platform is viral vector vaccine candidates that could be replicating or nonreplicating. These types of vaccines that have a harmless viral vector like adenovirus contain a genome encoding the spike protein of SARS-CoV-2, which induces significant immune responses. This technology of vaccine manufacturing has previously been used in many human clinical trials conducted for adenoviral vector-based vaccines against different infectious agents, including Ebola virus, Zika virus, HIV, and malaria. In this paper, we have a review of nucleic acid-based vaccines that are passing their phase 3 and 4 clinical trials and discuss their efficiency and adverse effects.
Collapse
Affiliation(s)
- Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | - Roya Ghanavati
- School of Paramedical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Maryam Shirani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Ghahramanpour
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Sholeh
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | - Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
- *Correspondence: Mohsen Heidary,
| |
Collapse
|
17
|
Ferreira-da-Silva R, Ribeiro-Vaz I, Morato M, Junqueira Polónia J. A comprehensive review of adverse events to drugs used in COVID-19 patients: Recent clinical evidence. Eur J Clin Invest 2022; 52:e13763. [PMID: 35224719 PMCID: PMC9111855 DOI: 10.1111/eci.13763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND Since the breakthrough of the pandemic, several drugs have been used to treat COVID-19 patients. This review aims to gather information on adverse events (AE) related to most drugs used in this context. METHODS We performed a literature search to find articles that contained information about AE in COVID-19 patients. We analysed and reviewed the most relevant studies in the Medline (via PubMed), Scopus and Web of Science. The most frequent AE identified were grouped in our qualitative analysis by System Organ Class (SOC), the highest level of the MedDRA medical terminology for each of the drugs studied. RESULTS The most frequent SOCs among the included drugs are investigations (n = 7 drugs); skin and subcutaneous tissue disorders (n = 5 drugs); and nervous system disorders, infections and infestations, gastrointestinal disorders, hepatobiliary disorders, and metabolism and nutrition disorders (n = 4 drugs). Other SOCs also emerged, such as general disorders and administration site conditions, renal and urinary disorders, vascular disorders and cardiac disorders (n = 3 drugs). Less frequent SOC were eye disorders, respiratory, thoracic and mediastinal disorders, musculoskeletal and connective tissue disorders, and immune system disorders (n = 2 drugs). Psychiatric disorders, and injury, poisoning and procedural complications were also reported (n = 1 drug). CONCLUSIONS Some SOCs seem to be more frequent than others among the COVID-19 drugs included, although neither of the studies included reported causality analysis. For that purpose, further clinical studies with robust methodologies, as randomised controlled trials, should be designed and performed.
Collapse
Affiliation(s)
- Renato Ferreira-da-Silva
- Porto Pharmacovigilance Centre, INFARMED, I.P, University of Porto, Porto, Portugal.,Department of Community Medicine, Health Information and Decision, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Porto, Portugal
| | - Inês Ribeiro-Vaz
- Porto Pharmacovigilance Centre, INFARMED, I.P, University of Porto, Porto, Portugal.,Department of Community Medicine, Health Information and Decision, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Porto, Portugal
| | - Manuela Morato
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, University of Porto, Porto, Portugal
| | - Jorge Junqueira Polónia
- Porto Pharmacovigilance Centre, INFARMED, I.P, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Porto, Portugal.,Department of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Glab-ampai K, Kaewchim K, Saenlom T, Thepsawat W, Mahasongkram K, Sookrung N, Chaicumpa W, Chulanetra M. Human Superantibodies to 3CL pro Inhibit Replication of SARS-CoV-2 across Variants. Int J Mol Sci 2022; 23:ijms23126587. [PMID: 35743031 PMCID: PMC9223907 DOI: 10.3390/ijms23126587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022] Open
Abstract
Broadly effective and safe anti-coronavirus agent is existentially needed. Major protease (3CLpro) is a highly conserved enzyme of betacoronaviruses. The enzyme plays pivotal role in the virus replication cycle. Thus, it is a good target of a broadly effective anti-Betacoronavirus agent. In this study, human single-chain antibodies (HuscFvs) of the SARS-CoV-2 3CLpro were generated using phage display technology. The 3CLpro-bound phages were used to infect Escherichia coli host for the production the 3CLpro-bound HuscFvs. Computerized simulation was used to guide the selection of the phage infected-E. coli clones that produced HuscFvs with the 3CLpro inhibitory potential. HuscFvs of three phage infected-E. coli clones were predicted to form contact interface with residues for 3CLpro catalytic activity, substrate binding, and homodimerization. These HuscFvs were linked to a cell-penetrating peptide to make them cell-penetrable, i.e., became superantibodies. The superantibodies blocked the 3CLpro activity in vitro, were not toxic to human cells, traversed across membrane of 3CLpro-expressing cells to co-localize with the intracellular 3CLpro and most of all, they inhibited replication of authentic SARS-CoV-2 Wuhan wild type and α, β, δ, and Omicron variants that were tested. The superantibodies should be investigated further towards clinical application as a safe and broadly effective anti-Betacoronavirus agent.
Collapse
Affiliation(s)
- Kittirat Glab-ampai
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.G.-a.); (K.K.); (T.S.); (W.T.); (K.M.); (N.S.); (W.C.)
| | - Kanasap Kaewchim
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.G.-a.); (K.K.); (T.S.); (W.T.); (K.M.); (N.S.); (W.C.)
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thanatsaran Saenlom
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.G.-a.); (K.K.); (T.S.); (W.T.); (K.M.); (N.S.); (W.C.)
| | - Watayagorn Thepsawat
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.G.-a.); (K.K.); (T.S.); (W.T.); (K.M.); (N.S.); (W.C.)
| | - Kodchakorn Mahasongkram
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.G.-a.); (K.K.); (T.S.); (W.T.); (K.M.); (N.S.); (W.C.)
| | - Nitat Sookrung
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.G.-a.); (K.K.); (T.S.); (W.T.); (K.M.); (N.S.); (W.C.)
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.G.-a.); (K.K.); (T.S.); (W.T.); (K.M.); (N.S.); (W.C.)
| | - Monrat Chulanetra
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.G.-a.); (K.K.); (T.S.); (W.T.); (K.M.); (N.S.); (W.C.)
- Correspondence: ; Tel.: +662-419-2934
| |
Collapse
|
19
|
Belenichev I, Kucherenko L, Pavlov S, Bukhtiyarova N, Popazova O, Derevianko N, Nimenko G. Therapy of post-COVID-19 syndrome: improving the efficiency and safety of basic metabolic drug treatment with tiazotic acid (thiotriazoline). PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e82596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
COVID-19 leads to disruption of the blood coagulation system, to thrombosis, hypercoagulability, as a result, to an increased risk of strokes and heart attacks. During COVID-19, endothelial dysfunction develops associated with NO deficiency with decrease in the level of SH compounds. Tiazotic acid (Thiotriazoline) has immunomodulatory, anti-inflammatory, antioxidant, anti-ischemic, cardio- and endothelioprotective, antiplatelet, hepatoprotective activity. Our studies conducted at the National Research Medical Center “University Clinic of ZSMU” with the participation of 57 patients (from 30 to 65 years old) with post-COVID syndrome, who received thiotriazol with basic therapy in either tablets (200 mg each) or suppositories Dalmaxin (0.2 g each) twice a day for 30 days. Inclusion criteria for the study were a positive PCR test for COVID-19; if the PCR test was negative, then the presence of IgM COVID-19 or IgG COVID-19 (with radiologically confirmed pneumonia). The following biochemical parameters were studied: C-reactive protein - by immunoturbodimetric method; D-dimer - by enzyme immunoassay; ferritin - by immunochemiluminescent method; endothelial NO-synthase (eNOS) - by ELISA method; alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), total bilirubin; international normalized ratio (INR) and determination of platelet aggregation. During treatment with thiotriazoline, significant increase in the eNOS content was recorded, which indicated the presence of endothelioprotective activity of the drug. Thiotriazoline significantly reduced the level of D-dimer in the blood of patients, and also led to the normalization of INR. The established effects testified to the presence of antiplatelet and fibrinolytic action of thiotriazoline and its ability to reduce the risks of heart attacks and strokes in post-COVID syndrome. Thiotriazoline led to an objective improvement in general clinical parameters in patients with post-COVID syndrome, complaints of palpitations disappeared, blood pressure stabilized.
Collapse
|
20
|
Griswold MK, Chai PR, Brent J, Weiss S, Askman N, Wax PM, Farrugia LA. Hydroxychloroquine and Chloroquine Toxicity as Reported by Medical Toxicologists to the Toxicology Investigators Consortium (ToxIC) Registry. J Med Toxicol 2022; 18:256-259. [PMID: 35482180 PMCID: PMC9047463 DOI: 10.1007/s13181-022-00893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Matthew K Griswold
- Division of Medical Toxicology, Department of Emergency Medicine, Hartford Hospital, Hartford, CT, USA.,Department of Traumatology and Emergency Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Peter R Chai
- Division of Medical Toxicology, Department of Emergency Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychosocial Oncology and Palliative Care, Dana Farber Cancer Institute, Boston, MA, USA.,The Koch Institute for Integrated Cancer Research, Massachusetts Institute of Technology, Boston, MA, USA.,The Fenway Institute, Boston, MA, USA
| | - Jeffrey Brent
- University of Colorado School of Medicine, Aurora, CO, USA
| | - Stephanie Weiss
- Addiction Medicine Research Program, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Noah Askman
- Division of Medical Toxicology, Department of Emergency Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul M Wax
- University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Lynn A Farrugia
- Department of Emergency Medicine, UF Health Shands Hospital, University of Florida College of Medicine, 1329 SW 16th Street, Room 5270, Gainesville, FL, 32610, USA.
| | | |
Collapse
|
21
|
Pejčić AV. Acute Hydroxychloroquine Overdose: A Review of Published Pediatric Cases With Confirmed Hydroxychloroquine Exposure. Pediatr Emerg Care 2022; 38:174-182. [PMID: 34570079 DOI: 10.1097/pec.0000000000002547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES This review aimed to explore and summarize information from available cases of pediatric acute hydroxychloroquine overdose with confirmed hydroxychloroquine exposure to give the clinicians a helpful perspective for its better recognition and management. METHODS Electronic searches were conducted in PubMed/MEDLINE, Web of Science, Scopus, EBSCO and Serbian Citation Index. The abstracts from 2 toxicology conferences were manually checked for additional relevant publications, as well as reference lists of the retrieved publications. Descriptive statistics, narrative summation, and tabulation of the extracted data were made. RESULTS Nine publications and a total of 9 patients were included in the review. Reported age of the patients varied from 2.5 to 16 years (median, 16 years). There were more female patients (77.8%). Estimated total ingested hydroxychloroquine dose was reported in 7 cases (77.8%), and it ranged from 4.0 to 20.0 g (median: 12.0 g). Four patients (44.4%) ingested hydroxychloroquine with a coingestant. Altered mental status (100.0%), cardiotoxicity (88.9%), hypotension (77.8%), and hypokalemia (55.6%) were the most commonly reported clinical manifestations. The majority of the patients were hospitalized (88.9%). More than half of the patients (55.6%) were reported to be treated in the intensive care unit. Most frequently reported therapeutic measures were the following: administration of intravenous fluids/infusions (77.8%), vasopressors (77.8%), bicarbonate therapy-sodium bicarbonate (66.7%), potassium replacement (55.6%), and intubation/ventilation (55.6%). Three patients (33.3%) died. CONCLUSIONS Management of acute hydroxychloroquine overdose in children should be symptomatic and tailored to observed clinical manifestations. There is a need for additional investigations to better understand the impact and effectiveness of various treatment options.
Collapse
Affiliation(s)
- Ana V Pejčić
- From the Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
22
|
Greinacher A, Schönborn L, Siegerist F, Steil L, Palankar R, Handtke S, Reder A, Thiele T, Aurich K, Methling K, Lalk M, Völker U, Endlich N. Pathogenesis of vaccine-induced immune thrombotic thrombocytopenia (VITT). Semin Hematol 2022; 59:97-107. [PMID: 35512907 PMCID: PMC8863951 DOI: 10.1053/j.seminhematol.2022.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023]
Abstract
Vaccine-induced immune thrombotic thrombocytopenia (VITT; synonym, thrombosis with thrombocytopenia syndrome, is associated with high-titer immunoglobulin G antibodies directed against platelet factor 4 (PF4). These antibodies activate platelets via platelet FcγIIa receptors, with platelet activation greatly enhanced by PF4. Here we summarize the current concepts in the pathogenesis of VITT. We first address parallels between heparin-induced thrombocytopenia and VITT, and provide recent findings on binding of PF4 to adenovirus particles and non-assembled adenovirus proteins in the 2 adenovirus vector-based COVID-19 vaccines, ChAdOx1 nCoV-19 and Ad26.COV2.S. Further, we discuss the potential role of vaccine constituents such as glycosaminoglycans, EDTA, polysorbate 80, human cell-line proteins and nucleotides as potential binding partners of PF4. The immune response towards PF4 in VITT is likely triggered by a proinflammatory milieu. Human cell-line proteins, non-assembled virus proteins, and potentially EDTA may contribute to the proinflammatory state. The transient nature of the immune response towards PF4 in VITT makes it likely that-as in heparin-induced thrombocytopenia -marginal zone B cells are key for antibody production. Once high-titer anti-PF4 antibodies have been formed 5 to 20 days after vaccination, they activate platelets and granulocytes. Activated granulocytes undergo NETosis and the released DNA also forms complexes with PF4, which fuels the Fcγ receptor-dependent cell activation process, ultimately leading to massive thrombin generation. Finally, we summarize our initial observations indicating that VITT-like antibodies might also be present in rare patients with recurrent venous and arterial thrombotic complications, independent of vaccination.
Collapse
Affiliation(s)
- Andreas Greinacher
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany.
| | - Linda Schönborn
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Florian Siegerist
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Leif Steil
- Interfaculty Institute of Genetics and Functional Genomics, Department Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Raghavendra Palankar
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Handtke
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Reder
- Interfaculty Institute of Genetics and Functional Genomics, Department Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Thiele
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Konstanze Aurich
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Karen Methling
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, Department Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
23
|
Azimirad M, Noori M, Raeisi H, Yadegar A, Shahrokh S, Asadzadeh Aghdaei H, Bentivegna E, Martelletti P, Petrosillo N, Zali MR. How Does COVID-19 Pandemic Impact on Incidence of Clostridioides difficile Infection and Exacerbation of Its Gastrointestinal Symptoms? Front Med (Lausanne) 2021; 8:775063. [PMID: 34966759 PMCID: PMC8710593 DOI: 10.3389/fmed.2021.775063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has rapidly spread all over the world with a very high rate of mortality. Different symptoms developed by COVID-19 infection and its impacts on various organs of the human body have highlighted the importance of both coinfections and superinfections with other pathogens. The gastrointestinal (GI) tract is vulnerable to infection with COVID-19 and can be exploited as an alternative transmission route and target for virus entry and pathogenesis. The GI manifestations of COVID-19 disease are associated with severe disease outcomes and death in all age groups, in particular, elderly patients. Empiric antibiotic treatments for microbial infections in hospitalized patients with COVID-19 in addition to experimental antiviral and immunomodulatory drugs may increase the risk of antibiotic-associated diarrhea (AAD) and Clostridioides difficile infection (CDI). Alterations of gut microbiota are associated with depletion of beneficial commensals and enrichment of opportunistic pathogens such as C. difficile. Hence, the main purpose of this review is to explain the likely risk factors contributing to higher incidence of CDI in patients with COVID-19. In addition to lung involvement, common symptoms observed in COVID-19 and CDI such as diarrhea, highlight the significance of bacterial infections in COVID-19 patients. In particular, hospitalized elderly patients who are receiving antibiotics might be more prone to CDI. Indeed, widespread use of broad-spectrum antibiotics such as clindamycin, cephalosporins, penicillin, and fluoroquinolones can affect the composition and function of the gut microbiota of patients with COVID-19, leading to reduced colonization resistance capacity against opportunistic pathogens such as C. difficile, and subsequently develop CDI. Moreover, patients with CDI possibly may have facilitated the persistence of SARS-CoV-2 viral particles in their feces for approximately one month, even though the nasopharyngeal test turned negative. This coinfection may increase the potential transmissibility of both SARS-CoV-2 and C. difficile by fecal materials. Also, CDI can complicate the outcome of COVID-19 patients, especially in the presence of comorbidities or for those patients with prior exposure to the healthcare setting. Finally, physicians should remain vigilant for possible SARS-CoV-2 and CDI coinfection during the ongoing COVID-19 pandemic and the excessive use of antimicrobials and biocides.
Collapse
Affiliation(s)
- Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Noori
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Enrico Bentivegna
- Internal Medicine and Emergency Medicine, St'Andrea Hospital, Sapienza University, Rome, Italy
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Nicola Petrosillo
- Infectious Diseases Service, University Hospital Campus Bio-Medico, Rome, Italy
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Raffee L, Daradkeh HM, Alawneh K, Al-Fwadleh AI, Darweesh M, Hammad NH, Almasarweh SA. Impact of COVID-19 lockdown on the incidence and patterns of toxic exposures and poisoning in Jordan: a retrospective descriptive study. BMJ Open 2021; 11:e053028. [PMID: 34887279 PMCID: PMC8662587 DOI: 10.1136/bmjopen-2021-053028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES To describe the effect of the COVID-19 lockdown in Jordan (21 March 2020-21 May 2020) on the incidence and patterns of toxic exposures and poisoning as compared with the same period from the previous year (21 March 2019-21 May 2019). DESIGN A retrospective descriptive study. METHODS Call data sourced from Pharmacy One Poison Center from the lockdown period (21 March 2020-21 May 2020) and the same period during 2019 (21 March 2019-21 May 2019) were revised. In addition, a database was established and analysed. RESULTS We noticed that not only did calls increased, but there was also a noticeable change in call patterns. Calls increased by 91% (544 vs 285 calls) during the lockdown period. Drugs were the most common among types of exposure, and the most prevalent route of exposure was ingestion. There was a notable increase in ocular exposure by 550% (13 vs 2 cases). The majority of exposures were at home and there were no occupational exposures. We found an increase in household cleaner exposure among males and an increase in alcohol exposure in females. Children aged below 5 years are the most affected. Even though there is an increase in the total number of cases, severe cases decreased. CONCLUSION The lockdown effect on rates of toxic exposures was prominent, whether through the increase in calls or the change in patterns. As people spent more time at home, their exposure to toxic agents increased. Furthermore, cleaning recommendations led to the misuse of cleaning and disinfectant products, increasing exposures related to abating the COVID-19 infection.
Collapse
Affiliation(s)
- Liqaa Raffee
- Accidents and Emergency, Jordan University of Science and Technology, Irbid, Jordan
| | - Hamza M Daradkeh
- Accidents and Emergency, King Abdullah University Hospital, Ramtha, Irbid, Jordan
| | - Khaled Alawneh
- Diagnostic Radiology and Nuclear Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Moath Darweesh
- Accidents and Emergency, Jordan University of Science and Technology, Irbid, Jordan
| | - Nouran H Hammad
- Accidents and Emergency, Jordan University of Science and Technology, Irbid, Jordan
| | - Sami A Almasarweh
- Accidents and Emergency, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
25
|
Chakraborty C, Sharma AR, Bhattacharya M, Agoramoorthy G, Lee SS. The Drug Repurposing for COVID-19 Clinical Trials Provide Very Effective Therapeutic Combinations: Lessons Learned From Major Clinical Studies. Front Pharmacol 2021; 12:704205. [PMID: 34867318 PMCID: PMC8636940 DOI: 10.3389/fphar.2021.704205] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 has spread across the globe in no time. In the beginning, people suffered due to the absence of efficacious drugs required to treat severely ill patients. Nevertheless, still, there are no established therapeutic molecules against the SARS-CoV-2. Therefore, repurposing of the drugs started against SARS-CoV-2, due to which several drugs were approved for the treatment of COVID-19 patients. This paper reviewed the treatment regime for COVID-19 through drug repurposing from December 8, 2019 (the day when WHO recognized COVID-19 as a pandemic) until today. We have reviewed all the clinical trials from RECOVERY trials, ACTT-1 and ACTT-2 study group, and other major clinical trial platforms published in highly reputed journals such as NEJM, Lancet, etc. In addition to single-molecule therapy, several combination therapies were also evaluated to understand the treatment of COVID-19 from these significant clinical trials. To date, several lessons have been learned on the therapeutic outcomes for COVID-19. The paper also outlines the experiences gained during the repurposing of therapeutic molecules (hydroxychloroquine, ritonavir/ lopinavir, favipiravir, remdesivir, ivermectin, dexamethasone, camostatmesylate, and heparin), immunotherapeutic molecules (tocilizumab, mavrilimumab, baricitinib, and interferons), combination therapy, and convalescent plasma therapy to treat COVID-19 patients. We summarized that anti-viral therapeutic (remdesivir) and immunotherapeutic (tocilizumab, dexamethasone, and baricitinib) therapy showed some beneficial outcomes. Until March 2021, 4952 clinical trials have been registered in ClinicalTrials.gov toward the drug and vaccine development for COVID-19. More than 100 countries have participated in contributing to these clinical trials. Other than the registered clinical trials (medium to large-size), several small-size clinical trials have also been conducted from time to time to evaluate the treatment of COVID-19. Four molecules showed beneficial therapeutic to treat COVID-19 patients. The short-term repurposing of the existing drug may provide a successful outcome for COVID-19 patients. Therefore, more clinical trials can be initiated using potential anti-viral molecules by evaluating in different phases of clinical trials.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | | | | | - Sang-Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| |
Collapse
|
26
|
Biswas M, Roy DN. Potential clinically significant drug-drug interactions of hydroxychloroquine used in the treatment of COVID-19. Int J Clin Pract 2021; 75:e14710. [PMID: 34370370 PMCID: PMC8420389 DOI: 10.1111/ijcp.14710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
AIMS Hydroxychloroquine (HCQ) is using as a repurposed drug in considerable proportion of COVID-19 patients. However, being a substrate of cytochrome P450 (CYP) enzymes of CYP3A4/5, CYP2C8 and CYP2D6, the safety and efficacy of this drug may be affected by the coadministration of respective CYP inhibitors, substrates or inducer drugs. It was aimed to identify potential clinically significant drug-drug interaction (DDI) pairs of HCQ. METHODS Inhibitors, substrates and inducer drugs lists of CYP enzymes of interest from international well-recognised evidence-based drug interaction resources were used to identify potential clinically significant pharmacokinetic DDI pairs of HCQ. RESULTS Among 329 identified interacting drugs that predicted to cause clinically significant DDIs of HCQ, 45 (13.7%), 43 (13.1%) and 123 (37.4%) unique DDI pairs were identified from the FDA, Stockley's and Flockhart lists, respectively. Of interest, 55 (16.7%) DDI pairs were recognised by all three resources. At least, 29 (8.8%) severe DDI pairs were identified predicted to cause severe toxicity of HCQ in patients with COVID-19. When comparing these interactions with Liverpool DDI lists, it was found that out of 423 total interactions, 238 (56.3%) and 94 (22.2%) unique DDI pairs were identified from all three resources and Liverpool DDI lists, respectively. Of interest, only three (0.7%) DDI pairs were recognised by both the three international resources and Liverpool DDI lists of HCQ. CONCLUSION Using HCQ has clinical debate whether it should or should not continue in COVID-19 patients, however, potential clinically significant DDIs identified in this study may optimise safety or efficacy of HCQ in considerable proportion of patients.
Collapse
Affiliation(s)
- Mohitosh Biswas
- Department of PharmacyUniversity of RajshahiRajshahiBangladesh
| | - Debendra Nath Roy
- Department of PharmacyJashore University of Science and TechnologyJashoreBangladesh
| |
Collapse
|
27
|
Kassem AB, Ghoneim AI, Nounou MI, El‐Bassiouny NA. Community pharmacists' needs, education, and readiness in facing COVID-19: Actions & recommendations in Egypt. Int J Clin Pract 2021; 75:e14762. [PMID: 34472166 PMCID: PMC8646646 DOI: 10.1111/ijcp.14762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/08/2021] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19) outbreak is considered one of the most important public health crises all over the world and in Egypt. Community pharmacists represent the third largest health care professional group after physicians and nurses. Community pharmacists are expected to be fully prepared at the frontline of defending their community needs by limiting the spread of COVID-19 via different pharmaceutical care services. AIM This study aimed to evaluate the sources of knowledge and readiness of community pharmacists in facing COVID-19 early outbreak in Egypt. METHODS A descriptive cross-sectional study was performed via a self-administered online google form questionnaire during the early period from 14 April to 3 June 2020. The questionnaire focused on; evaluating education level, sources of information, and readiness of Egyptian community pharmacists in the COVID-19 pandemic crisis. RESULTS A total of 318 community pharmacists from Egypt participated in this questionnaire. About half of the surveyed pharmacists reported that they were frequently consulted and that their patients were seeking consultation regarding COVID-19 management more than 10 times per day. More than half of the pharmacists reported using social media as a source of information and knew the right social distancing recommendations. Regarding protective measures, only a quarter of pharmacists disclosed the availability of personal protective equipment (PPE). Nevertheless, the majority of pharmacists significantly reported some initial lack of support either inform of recommendations or PPE supply. CONCLUSION The study revealed the dependence of community pharmacists on social media as the main source of information and the lack of early awareness of evidence-based practice resources. Community pharmacists were in need of more initial support to achieve better satisfaction, patient counselling and infection control. Corrective measures were promptly undertaken to support and satisfy the Egyptian community pharmacists' initial awareness and readiness facing COVID-19.
Collapse
Affiliation(s)
- Amira B. Kassem
- Department of Clinical Pharmacy and Pharmacy PracticeFaculty of PharmacyDamanhour UniversityDamanhourEgypt
| | - Asser I. Ghoneim
- Department of PharmacologyFaculty of PharmacyDamanhour UniversityDamanhourEgypt
| | - Mohamed I. Nounou
- Department of Pharmaceutical SciencesSchool of PharmacyUniversity of Saint Joseph (USJ)HartfordCTUSA
| | - Noha A. El‐Bassiouny
- Department of Clinical Pharmacy and Pharmacy PracticeFaculty of PharmacyDamanhour UniversityDamanhourEgypt
| |
Collapse
|
28
|
Arora MK, Grover P, Asdaq SMB, Mehta L, Tomar R, Imran M, Pathak A, Jangra A, Sahoo J, Alamri AS, Alsanie WF, Alhomrani M. Potential role of nicotinamide analogues against SARS-COV-2 target proteins. Saudi J Biol Sci 2021; 28:7567-7574. [PMID: 34608370 PMCID: PMC8482651 DOI: 10.1016/j.sjbs.2021.09.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 01/13/2023] Open
Abstract
Background and objective Coronavirus 2019 (COVID-19) is caused by ‘severe acute respiratory syndrome coronavirus 2′ (SARS-CoV-2), first reported in Wuhan, China in December 2019, which eventually became a global disaster. Various key mediators have been reported in the pathogenesis of COVID-19. However, no effective pharmacological intervention has been available to combat COVID-19 complications. The present study screens nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) as potential inhibitors of this present generation coronavirus infection using an in-silico approach. Materials and methods The SARS-CoV-2 proteins (nucleocapsid, proteases, post-fusion core, phosphatase, endoriboruclease) and ACE-2 protein were selected. The 2D structure of nicotinamide ribonucleoside and nicotinamide ribonucleotide was drawn using ChemDraw 14.0 and saved in .cdx format. The results were analyzed using two parameters: full fitness energy and binding free energy (ΔG). Results The full fitness energy and estimated ΔG values from docking of NM, and NMN with selected SARS-CoV-2 target proteins, ADMET prediction and Target prediction indicate the interaction of NR and NMN in the treatment of COVID-19. Conclusions Based on full fitness energy and estimated ΔG values from docking studies of NM and NAM with selected SARS-CoV-2 target proteins, ADME prediction, target prediction and toxicity prediction, we expect a possible therapeutic efficacy of NR in the treatment of COVID-19.
Collapse
Affiliation(s)
- Mandeep Kumar Arora
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad 201206, India
| | | | - Lovekesh Mehta
- Amity Institute of Pharmacy, Amity University, Noida, 201301, India
| | - Ritu Tomar
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Anuj Pathak
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad 201206, India
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Jagannath Sahoo
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Saudi Arabia
| |
Collapse
|
29
|
Nwanaji-Enwerem JC, Boyer EW, Olufadeji A. Polypharmacy Exposure, Aging Populations, and COVID-19: Considerations for Healthcare Providers and Public Health Practitioners in Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10263. [PMID: 34639561 PMCID: PMC8507838 DOI: 10.3390/ijerph181910263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022]
Abstract
Given the continent's growing aging population and expanding prevalence of multimorbidity, polypharmacy is an increasingly dire threat to the health of persons living in Africa. The COVID-19 pandemic has only exacerbated these issues. Widespread misinformation, lack of vaccine access, and attempts to avoid being infected have resulted in increases in Africans' willingness to take multiple prescription and nonprescription medications and supplements. Issues with counterfeit pharmaceuticals and the relatively new recognition of emergency medicine as a specialty across the continent also create unique challenges for addressing this urgent public health need. Experts have called for more robust pharmaceutical regulation and healthcare/public health infrastructure investments across the continent. However, these changes take time, and more near-term strategies are needed to mitigate current health needs. In this commentary, we present a nonexhaustive set of immediately implementable recommendations that can serve as local strategies to address current polypharmacy-related health needs of Africans. Importantly, our recommendations take into consideration that not all healthcare providers are emergency medicine trained and that local trends related to polypharmacy will change over time and require ever-evolving public health initiatives. Still, by bolstering training to safeguard against provider availability biases, practicing evidence-based prescribing and shared decision making, and tracking and sharing local trends related to polypharmacy, African healthcare providers and public health practitioners can better position themselves to meet population needs. Furthermore, although these recommendations are tailored to Africans, they may also prove useful to providers and practitioners in other regions facing similar challenges.
Collapse
Affiliation(s)
- Jamaji C. Nwanaji-Enwerem
- Gangarosa Department of Environmental Health, Emory Rollins School of Public Health, Atlanta, GA 30322, USA
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Edward W. Boyer
- Department of Emergency Medicine, Division of Medical Toxicology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Ayobami Olufadeji
- Beth Israel Deaconess Medical Center, Department of Emergency Medicine, Harvard Medical School, Boston, MA 02215, USA;
| |
Collapse
|
30
|
Izadmehr S, Lundon DJ, Mohamed N, Katims A, Patel V, Eilender B, Mehrazin R, Badani KK, Sfakianos JP, Tsao CK, Wiklund P, Oh WK, Cordon-Cardo C, Tewari AK, Galsky MD, Kyprianou N. The Evolving Clinical Management of Genitourinary Cancers Amid the COVID-19 Pandemic. Front Oncol 2021; 11:734963. [PMID: 34646777 PMCID: PMC8504458 DOI: 10.3389/fonc.2021.734963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
Coronavirus disease-2019 (COVID-19), a disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, has become an unprecedented global health emergency, with fatal outcomes among adults of all ages throughout the world. There is a high incidence of infection and mortality among cancer patients with evidence to support that patients diagnosed with cancer and SARS-CoV-2 have an increased likelihood of a poor outcome. Clinically relevant changes imposed as a result of the pandemic, are either primary, due to changes in timing or therapeutic modality; or secondary, due to altered cooperative effects on disease progression or therapeutic outcomes. However, studies on the clinical management of patients with genitourinary cancers during the COVID-19 pandemic are limited and do little to differentiate primary or secondary impacts of COVID-19. Here, we provide a review of the epidemiology and biological consequences of SARS-CoV-2 infection in GU cancer patients as well as the impact of COVID-19 on the diagnosis and management of these patients, and the use and development of novel and innovative diagnostic tests, therapies, and technology. This article also discusses the biomedical advances to control the virus and evolving challenges in the management of prostate, bladder, kidney, testicular, and penile cancers at all stages of the patient journey during the first year of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Sudeh Izadmehr
- Department of Medicine, Division of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Dara J. Lundon
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nihal Mohamed
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Andrew Katims
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vaibhav Patel
- Department of Medicine, Division of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Benjamin Eilender
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Reza Mehrazin
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ketan K. Badani
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - John P. Sfakianos
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Che-Kai Tsao
- Department of Medicine, Division of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peter Wiklund
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - William K. Oh
- Department of Medicine, Division of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ashutosh K. Tewari
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Matthew D. Galsky
- Department of Medicine, Division of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Natasha Kyprianou
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
31
|
Mahjoubin-Tehran M, Atkin SL, Bezsonov EE, Jamialahmadi T, Sahebkar A. Harnessing the Therapeutic Potential of Decoys in Non-Atherosclerotic Cardiovascular Diseases: State of the Art. J Cardiovasc Dev Dis 2021; 8:jcdd8090103. [PMID: 34564121 PMCID: PMC8467637 DOI: 10.3390/jcdd8090103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Accepted: 08/20/2021] [Indexed: 01/30/2023] Open
Abstract
Cardiovascular disease (CVD) is the main cause of global death, highlighting the fact that conventional therapeutic approaches for the treatment of CVD patients are insufficient, and there is a need to develop new therapeutic approaches. In recent years, decoy technology, decoy oligodeoxynucleotides (ODN), and decoy peptides show promising results for the future treatment of CVDs. Decoy ODN inhibits transcription by binding to the transcriptional factor, while decoy peptide neutralizes receptors by binding to the ligands. This review focused on studies that have investigated the effects of decoy ODN and decoy peptides on non-atherosclerotic CVD.
Collapse
Affiliation(s)
- Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran;
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Evgeny E. Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia;
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran;
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Correspondence: or
| |
Collapse
|
32
|
Bhavaniramya S, Ramar V, Vishnupriya S, Palaniappan R, Sibiya A, Baskaralingam V. Comprehensive analysis of SARS-COV-2 drug targets and pharmacological aspects in treating the COVID-19. Curr Mol Pharmacol 2021; 15:393-417. [PMID: 34382513 DOI: 10.2174/1874467214666210811120635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
Corona viruses are enveloped, single-stranded RNA (Ribonucleic acid) viruses and they cause pandemic diseases having a devastating effect on both human healthcare and the global economy. To date, six corona viruses have been identified as pathogenic organisms which are significantly responsible for the infection and also cause severe respiratory diseases. Among them, the novel SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) caused a major outbreak of corona virus diseases 2019 (COVID-19). Coronaviridae family members can affects both humans and animals. In human, corona viruses cause severe acute respiratory syndrome with mild to severe outcomes. Several structural and genomics have been investigated, and the genome encodes about 28 proteins most of them with unknown function though it shares remarkable sequence identity with other proteins. There is no potent and licensed vaccine against SARS-CoV-2 and several trials are underway to investigate the possible therapeutic agents against viral infection. However, some of the antiviral drugs that have been investigated against SARS-CoV-2 are under clinical trials. In the current review we comparatively emphasize the emergence and pathogenicity of the SARS-CoV-2 and their infection and discuss the various putative drug targets of both viral and host receptors for developing effective vaccines and therapeutic combinations to overcome the viral outbreak.
Collapse
Affiliation(s)
- Sundaresan Bhavaniramya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu. India
| | - Vanajothi Ramar
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024. India
| | - Selvaraju Vishnupriya
- College of Food and Dairy Technology, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600052. India
| | - Ramasamy Palaniappan
- Research and Development Wing, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education (BIHER), Chennai-600044, Tamilnadu. India
| | - Ashokkumar Sibiya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu. India
| | - Vaseeharan Baskaralingam
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu. India
| |
Collapse
|
33
|
Abstract
The emergence of the novel SARS coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has resulted in an unprecedented pandemic that has been accompanied by a global health crisis. Although the lungs are the main organs involved in COVID-19, systemic disease with a wide range of clinical manifestations also develops in patients infected with SARS-CoV-2. One of the major systems affected by this virus is the cardiovascular system. The presence of preexisting cardiovascular disease increases mortality in patients with COVID-19, and cardiovascular injuries, including myocarditis, cardiac rhythm abnormalities, endothelial cell injury, thrombotic events, and myocardial interstitial fibrosis, are observed in some patients with COVID-19. The underlying pathophysiology of COVID-19-associated cardiovascular complications is not fully understood, although direct viral infection of myocardium and cytokine storm have been suggested as possible mechanisms of myocarditis. In this Review, we summarize available data on SARS-CoV-2-related cardiac damage and discuss potential mechanisms of cardiovascular implications of this rapidly spreading virus.
Collapse
|
34
|
Ünlü B, Simsek R, Köse SBE, Yirün A, Erkekoglu P. Neurological Effects of Sars-Cov-2 And Neurotoxicity of Antiviral Drugs Against Covid-19. Mini Rev Med Chem 2021; 22:213-231. [PMID: 34191697 DOI: 10.2174/1389557521666210629100630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022]
Abstract
Severe Acute Respiratory Syndrome (SARS) is caused by different SARS viruses. In 2020, novel coronavirus (SARS-CoV-2) led to an ongoing pandemic, known as "Coronavirus Disease 2019 (COVID-19)". The disease can spread among individuals through direct (via saliva, respiratory secretions or secretion droplets) or indirect (through contaminated objects or surfaces) contact. The pandemic has spread rapidly from Asia to Europe and later to America. It continues to affect all parts of the world at an increasing rate. There have been over 92 million confirmed cases of COVID-19 by mid-January 2021. The similarity of homological sequences between SARS-CoV-2 and other SARS-CoVs is high. In addition, clinical symptoms of SARS-CoV-2 and other SARS viruses show similarities. However, some COVID-19 cases show neurologic signs like headache, loss of smell, hiccups and encephalopathy. The drugs used in the palliative treatment of the disease also have some neurotoxic effects. Currently, there are approved vaccines for COVID-19. However, there is a need for specific therapeutics against COVID-19. This review will describe the neurological effects of SARS-CoV-2 and the neurotoxicity of COVID-19 drugs used in clinics. Drugs used in the treatment of COVID-19 will be evaluated by their mechanism of action and their toxicological effects.
Collapse
Affiliation(s)
- Büşra Ünlü
- TOBB University, Bioengineering Department, Ankara, Turkey
| | - Rahime Simsek
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Sıhhiye 06100, Ankara, Turkey
| | - Selinay Başak Erdemli Köse
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sıhhiye 06100, Ankara, Turkey
| | - Anıl Yirün
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sıhhiye 06100, Ankara, Turkey
| | - Pinar Erkekoglu
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sıhhiye 06100, Ankara, Turkey
| |
Collapse
|
35
|
Gokada MR, Pasupuleti VR, Bollikolla HB. A Mini Review on Emerging Targets and Approaches for the Synthesis of Anti-viral Compounds: In Perspective to COVID-19. Mini Rev Med Chem 2021; 21:1173-1181. [PMID: 33397236 DOI: 10.2174/1389557521666210104165733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/16/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
The novel Coronavirus disease (COVID-19) is an epidemic disease that appeared at the end of the year 2019 with a sudden increase in number and came to be considered as a pandemic disease caused by a viral infection which has threatened most countries for an emergency search for new anti-SARS-COV drugs /vaccines. At present, the number of clinical trials is ongoing worldwide on different drugs i.e. Hydroxychloroquine, Remedisvir, Favipiravir that utilize various mechanisms of action. A few countries are currently processing clinical trials, which may result in a positive outcome. Favipiravir (FPV) represents one of the feasible treatment options for COVID-19, if the result of the trials turns out positive. Favipiravir will be one of the developed possibly authoritative drugs to warrant benefits to mankind with large-scale production to meet the demands of the current pandemic Covid-19 outbreak and future epidemic outbreaks. In this review, the authors tried to explore key molecules, which will be supportive for devising COVID-19 research.
Collapse
Affiliation(s)
- Maheswara Rao Gokada
- Department of Chemistry, Acharya Nagarjuna University, N Nagar, Guntur-522510, AP, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences & Therapeutics, Faculty of Medicine and Health Sciences, University Malaysia Sabah, 88400, Kota Kinabalu Sabah, Malaysia
| | - Hari Babu Bollikolla
- Department of Chemistry, Acharya Nagarjuna University, N Nagar, Guntur-522510, AP, India
| |
Collapse
|
36
|
Badary OA, Hamza MS, Tikamdas R. Thymoquinone: A Promising Natural Compound with Potential Benefits for COVID-19 Prevention and Cure. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1819-1833. [PMID: 33976534 PMCID: PMC8106451 DOI: 10.2147/dddt.s308863] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
COVID-19 has caused a major global health crisis, as excessive inflammation, oxidation, and exaggerated immune response in some sufferers can lead to a condition known as cytokine storm, which may progress to acute respiratory distress syndrome (ARDs), which can be fatal. So far, few effective drugs have emerged to assist in the treatment of patients with COVID-19, though some herbal medicine candidates may assist in the fight against COVID-19 deaths. Thymoquinone (TQ), the main active ingredient of black seed oil, possesses antioxidant, anti-inflammatory, antiviral, antimicrobial, immunomodulatory and anticoagulant activities. TQ also increases the activity and number of cytokine suppressors, lymphocytes, natural killer cells, and macrophages, and it has demonstrated antiviral potential against a number of viruses, including murine cytomegalovirus, Epstein-Barr virus, hepatitis C virus, human immunodeficiency virus, and other coronaviruses. Recently, TQ has demonstrated notable antiviral activity against a SARSCoV-2 strain isolated from Egyptian patients and, interestingly, molecular docking studies have also shown that TQ could potentially inhibit COVID-19 development through binding to the receptor-binding domain on the spike and envelope proteins of SARS-CoV-2, which may hinder virus entry into the host cell and inhibit its ion channel and pore forming activity. Other studies have shown that TQ may have an inhibitory effect on SARS CoV2 proteases, which could diminish viral replication, and it has also demonstrated good antagonism to angiotensin-converting enzyme 2 receptors, allowing it to interfere with virus uptake into the host cell. Several studies have also noted its potential protective capability against numerous chronic diseases and conditions, including diabetes, hypertension, dyslipidemia, asthma, renal dysfunction and malignancy. TQ has recently been tested in clinical trials for the treatment of several different diseases, and this review thus aims to highlight the potential therapeutic effects of TQ in the context of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Osama A Badary
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.,Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Marwa S Hamza
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Rajiv Tikamdas
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
37
|
Abstract
Background::
The pathological agent of Coronavirus disease 2019 (COVID-19) is a novel
coronavirus termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 has
its origin in Wuhan, China, and spread to other provinces of China and subsequently to other countries
resulting in a pandemic worldwide. The virus is extremely contagious and causes pneumonia and respiratory
failure. Since its emergence, researchers around the world are trying to develop vaccines and
find suitable drugs for the treatment of COVID-19.
Objective::
To give an overview of the various therapeutic agents for COVID-19 such as vaccines and
drugs that are in preclinical stage or under different stages of clinical trials.
Results::
As per World Health Organization (WHO), there are 137 vaccines under development to date,
out of which few vaccines have successfully completed preclinical studies and reached clinical trials.
According to the present scenario, only one coronavirus vaccine (sputnik-V) has been approved by the
Ministry of Health of the Russian Federation. Till date, there are no United States Food and Drug Administration
(USFDA) approved drugs to treat COVID-19 patients. However, depending on patient’s
condition, different drugs such as antiviral agents like Remdesivir, antimalarial drugs like Hydroxychloroquine,
antibiotics like Azithromycin and corticosteroids like Dexamethasone are being applied
and some of them have proved to be effective up to a certain extent.
Conclusion::
Although several vaccines for COVID-19 are under development and various drugs have
been tried for its treatment, an ideal drug candidate or a vaccine is still lacking. Almost all the big
pharmaceutical companies are associated with one or more research initiatives in order to develop
vaccines and drugs. Many of them are going through clinical stages, expecting a positive outcome by
the end of 2020.
Collapse
Affiliation(s)
- Sreejan Manna
- Department of Pharmaceutical Technology, Brainware University, 398 Ramkrishnapur Road, Barasat, Kolkata 700125, India
| | - Mainak Mal
- Department of Pharmaceutical Technology, Brainware University, 398 Ramkrishnapur Road, Barasat, Kolkata 700125, India
| | - Manas Bhowmik
- Department of Pharmaceutical Technology, Brainware University, 398 Ramkrishnapur Road, Barasat, Kolkata 700125, India
| | - Dipika Mandal
- Department of Pharmaceutical Technology, University of North Bengal, Siliguri, India
| |
Collapse
|
38
|
Mahjoubin-Tehran M, Rezaei S, Atkin SL, Montecucco F, Sahebkar A. Decoys as potential therapeutic tools for diabetes. Drug Discov Today 2021; 26:1669-1679. [PMID: 33862194 DOI: 10.1016/j.drudis.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/15/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Current therapeutic approaches for diabetes are focused on improving glycemic control to prevent diabetes-related complications, but such approached are not completely successful. Decoy technologies such as decoy oligodeoxynucleotides (ODNs) and decoy peptides have emerged as therapeutic tools in diabetes. Decoy ODNs carry a DNA recognition motif for the binding of transcription factors in order to trap them and block their effects, whereas decoy peptides mimic the binding structure of the receptor protein, bind to the docking site of the target ligand, and prevent the interaction of the ligand and receptor. This review summarizes the technologies that have been developed to date and the studies that have investigated the therapeutic effects of decoy ODNs and peptides in diabetes.
Collapse
Affiliation(s)
- Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Rezaei
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
39
|
Pourfridoni M, Abbasnia SM, Shafaei F, Razaviyan J, Heidari-Soureshjani R. Fluid and Electrolyte Disturbances in COVID-19 and Their Complications. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6667047. [PMID: 33937408 PMCID: PMC8060100 DOI: 10.1155/2021/6667047] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/11/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022]
Abstract
The novel coronavirus disease 2019 (COVID-19) is the cause of an acute respiratory illness which has spread around the world. The virus infects the host by binding to the angiotensin-converting enzyme 2 (ACE2) receptors. Due to the presence of ACE2 receptors in the kidneys and gastrointestinal (GI) tract, kidneys and GI tract damage arising from the virus can be seen in patients and can cause acute conditions such as acute kidney injury (AKI) and digestive problems for the patient. One of the complications of kidneys and GI involvement in COVID-19 is fluid and electrolyte disturbances. The most common ones of these disorders are hyponatremia, hypernatremia, hypokalemia, hypocalcemia, hypochloremia, hypervolemia, and hypovolemia, which if left untreated, cause many problems for patients and even increase mortality. Fluid and electrolyte disturbances are more common in hospitalized and intensive care patients. Children are also at greater risk for fluid and electrolyte disturbances complications. Therefore, clinicians should pay special attention to the fluid and electrolyte status of patients. Changes in fluid and electrolyte levels can be a good indicator of disease progression.
Collapse
Affiliation(s)
| | | | - Fateme Shafaei
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Javad Razaviyan
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Iran
| | | |
Collapse
|
40
|
Naghshtabrizi B, Bashirian S, Shirafkan N, Naghshtabrizi N, Mehri F. What Is Important in Patients with COVID-19 Associated with Myocardial Infarction? J Tehran Heart Cent 2021; 15:199-201. [PMID: 34178092 PMCID: PMC8217189 DOI: 10.18502/jthc.v15i4.5949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The article's abstract is not available.
Collapse
Affiliation(s)
- Behshad Naghshtabrizi
- Associate Professor of Cardiology, Farshchian Heart Center, Hamadan University of Medical Sciences, Hamadan, Iran. 6516838849. Tel: +98 8138380017. E-mail:
| | - Saeed Bashirian
- Associate Professor of Health Education, Social Determinants of Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran. 6517832991. Tel: +98 8138380817. E-mail:
| | - Naghmeh Shirafkan
- Department of Immunology, Hamadan University of Medical Sciences, Hamadan, Iran. 6517832991. Tel: +98 8138380123. E-mail:
| | - Nima Naghshtabrizi
- Assistant Professor of Cardiology, Department of Cardiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran. 6516838849. Tel: +021 66409774. E-mail:
| | - Fereshteh Mehri
- Assistant Professor of Toxicology, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran. 6517832991. Tel: +98 8138380016. E-mail:
| |
Collapse
|
41
|
Colombani T, Rogers ZJ, Eggermont LJ, Bencherif SA. Harnessing biomaterials for therapeutic strategies against COVID-19. EMERGENT MATERIALS 2021; 4:9-18. [PMID: 33842840 PMCID: PMC8022295 DOI: 10.1007/s42247-021-00171-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/24/2021] [Indexed: 05/16/2023]
Abstract
With the emergence of the coronavirus disease 2019 (COVID-19), the world is experiencing a profound human health crisis. The number of infections and deaths due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to increase every minute, pinpointing major shortcomings in our ability to prevent viral outbreaks. Although several COVID-19 vaccines have been recently approved for emergency use, therapeutic options remain limited, and their long-term potency has yet to be validated. Biomaterials science has a pivotal role to play in pushing the boundaries of emerging technologies for antiviral research and treatment. In this perspective, we discuss how biomaterials can be harnessed to develop accurate COVID-19 infection models, enhance antiviral drug delivery, foster new antiviral strategies, and boost vaccine efficacy. These efforts will not only contribute to stop or mitigate the current pandemic but will also provide unorthodox platforms to understand, prevent, and protect us from future viral outbreaks.
Collapse
Affiliation(s)
- Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115 USA
| | - Zachary J. Rogers
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115 USA
| | - Loek J. Eggermont
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115 USA
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115 USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115 USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
- Biomechanics and Bioengineering (BMBI), UTC CNRS UMR 7338, University of Technology of Compiègne, Sorbonne University, 60203 Compiègne, France
| |
Collapse
|
42
|
Kumar A, Singh R, Kaur J, Pandey S, Sharma V, Thakur L, Sati S, Mani S, Asthana S, Sharma TK, Chaudhuri S, Bhattacharyya S, Kumar N. Wuhan to World: The COVID-19 Pandemic. Front Cell Infect Microbiol 2021; 11:596201. [PMID: 33859951 PMCID: PMC8042280 DOI: 10.3389/fcimb.2021.596201] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
COVID-19 is a Severe Acute Respiratory Syndrome (SARS), caused by SARS-CoV-2, a novel virus which belongs to the family Coronaviridae. It was first reported in December 2019 in the Wuhan city of China and soon after, the virus and hence the disease got spread to the entire world. As of February 26, 2021, SARS-CoV-2 has infected ~112.20 million people and caused ~2.49 million deaths across the globe. Although the case fatality rate among SARS-CoV-2 patient is lower (~2.15%) than its earlier relatives, SARS-CoV (~9.5%) and MERS-CoV (~34.4%), the SARS-CoV-2 has been observed to be more infectious and caused higher morbidity and mortality worldwide. As of now, only the knowledge regarding potential transmission routes and the rapidly developed diagnostics has been guiding the world for managing the disease indicating an immediate need for a detailed understanding of the pathogen and the disease-biology. Over a very short period of time, researchers have generated a lot of information in unprecedented ways in the key areas, including viral entry into the host, dominant mutation, potential transmission routes, diagnostic targets and their detection assays, potential therapeutic targets and drug molecules for inhibiting viral entry and/or its replication in the host including cross-neutralizing antibodies and vaccine candidates that could help us to combat the ongoing COVID-19 pandemic. In the current review, we have summarized the available knowledge about the pathogen and the disease, COVID-19. We believe that this readily available knowledge base would serve as a valuable resource to the scientific and clinical community and may help in faster development of the solution to combat the disease.
Collapse
Affiliation(s)
- Ashok Kumar
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
- Manipal Academy of Higher Education, Manipal, India
| | - Rita Singh
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Jaskaran Kaur
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Sweta Pandey
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Vinita Sharma
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
- Central University of Haryana, Mahendragarh, India
| | - Lovnish Thakur
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Sangeeta Sati
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Shailendra Mani
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Tarun Kumar Sharma
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Susmita Chaudhuri
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | | | - Niraj Kumar
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| |
Collapse
|
43
|
Di Giorgio A, Hartleif S, Warner S, Kelly D. COVID-19 in Children With Liver Disease. Front Pediatr 2021; 9:616381. [PMID: 33777864 PMCID: PMC7991080 DOI: 10.3389/fped.2021.616381] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Background: The global pandemic caused by novel Coronavirus SARS-CoV-2 disease (COVID-19) is a major threat to the general population and for patients with pre-existing chronic conditions. We report data concerning SARS-CoV-2 infection in children with chronic liver disease (CLD). Methods: A literature review using the online database PubMed was performed to summarize available findings on the association between pre-existing liver disease and COVID-19 infection in children. Results: Children with COVID-19 have preserved effector and immunosuppressive components resulting in a milder disease compared to adults. The most common hepatic manifestation is an elevation of hepatic transaminases. Liver damage may be directly caused by viral infection of liver cells, by medications or by the chronic hypoxia seen in COVID-19 patients. A multicenter study reported that the majority of children with a CLD remained healthy during the outbreak. Similarly, studies reported that children on immunosuppressive treatment, including patients with autoimmune liver disease (AILD) and liver transplantation (LT), maintained good health during the outbreak without experiencing major complications even if infected with COVID-19. Conclusion: COVID-19-related liver injury presents with a mild elevation of transaminases, although its clinical significance is unclear. Children with CLD, including those with AILD and post-LT, do not have an increased risk for severe disease course of SARS-CoV-2 infection with little or no liver dysfunction. These data highlight the necessity to ensure normal standards of care while adhering to national Covid-19 guidelines, and particularly to maintain immunosuppressive medication to prevent relapse or rejection. Further research is required to evaluate the differences in clinical course between immunosuppressed adults and children and in particular whether asymptomatic infection is a concern.
Collapse
Affiliation(s)
- Angelo Di Giorgio
- Paediatric Liver, Gastroenterology and Transplantation, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Steffen Hartleif
- Paediatric Gastroenterology and Hepatology, University Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Suzan Warner
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- The Liver Unit, Birmingham Women's and Children's Hospital, University of Birmingham, Birmingham, United Kingdom
| | - Deirdre Kelly
- The Liver Unit, Birmingham Women's and Children's Hospital, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
44
|
Dash P, Mohapatra S, Ghosh S, Nayak B. A Scoping Insight on Potential Prophylactics, Vaccines and Therapeutic Weaponry for the Ongoing Novel Coronavirus (COVID-19) Pandemic- A Comprehensive Review. Front Pharmacol 2021; 11:590154. [PMID: 33815095 PMCID: PMC8015872 DOI: 10.3389/fphar.2020.590154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
The emergence of highly virulent CoVs (SARS-CoV-2), the etiologic agent of novel ongoing "COVID-19" pandemics has been marked as an alarming case of pneumonia posing a large global healthcare crisis of unprecedented magnitude. Currently, the COVID-19 outbreak has fueled an international demand in the biomedical field for the mitigation of the fast-spreading illness, all through the urgent deployment of safe, effective, and rational therapeutic strategies along with epidemiological control. Confronted with such contagious respiratory distress, the global population has taken significant steps towards a more robust strategy of containment and quarantine to halt the total number of positive cases but such a strategy can only delay the spread. A substantial number of potential vaccine candidates are undergoing multiple clinical trials to combat COVID-19 disease, includes live-attenuated, inactivated, viral-vectored based, sub-unit vaccines, DNA, mRNA, peptide, adjuvant, plant, and nanoparticle-based vaccines. However, there are no licensed anti-COVID-19 drugs/therapies or vaccines that have proven to work as more effective therapeutic candidates in open-label clinical trial studies. To counteract the infection (SARS-CoV-2), many people are under prolonged treatment of many chemical drugs that inhibit the PLpro activity (Ribavirin), viral proteases (Lopinavir/Ritonavir), RdRp activity (Favipiravir, Remdesivir), viral membrane fusion (Umifenovir, Chloroquine phosphate (CQ), Hydroxychloroquine phosphate (HCQ), IL-6 overexpression (Tocilizumab, Siltuximab, Sarilumab). Mesenchymal Stem Cell therapy and Convalescent Plasma Therapy have emerged as a promising therapeutic strategy against SARS-CoV-2 virion. On the other hand, repurposing previously designed antiviral agents with tolerable safety profile and efficacy could be the only promising approach and fast response to the novel virion. In addition, research institutions and corporations have commenced the redesign of the available therapeutic strategy to manage the global crisis. Herein, we present succinct information on selected anti-COVID-19 therapeutic medications repurposed to combat SARS-CoV-2 infection. Finally, this review will provide exhaustive detail on recent prophylactic strategies and ongoing clinical trials to curb this deadly pandemic, outlining the major therapeutic areas for researchers to step in.
Collapse
Affiliation(s)
| | | | | | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| |
Collapse
|
45
|
Dariolli R, Campana C, Gutierrez A, Sobie EA. In vitro and In silico Models to Study SARS-CoV-2 Infection: Integrating Experimental and Computational Tools to Mimic "COVID-19 Cardiomyocyte". Front Physiol 2021; 12:624185. [PMID: 33679437 PMCID: PMC7925402 DOI: 10.3389/fphys.2021.624185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
The rapid dissemination of SARS-CoV-2 has made COVID-19 a tremendous social, economic, and health burden. Despite the efforts to understand the virus and treat the disease, many questions remain unanswered about COVID-19 mechanisms of infection and progression. Severe Acute Respiratory Syndrome (SARS) infection can affect several organs in the body including the heart, which can result in thromboembolism, myocardial injury, acute coronary syndromes, and arrhythmias. Numerous cardiac adverse events, from cardiomyocyte death to secondary effects caused by exaggerated immunological response against the virus, have been clinically reported. In addition to the disease itself, repurposing of treatments by using "off label" drugs can also contribute to cardiotoxicity. Over the past several decades, animal models and more recently, stem cell-derived cardiomyocytes have been proposed for studying diseases and testing treatments in vitro. In addition, mechanistic in silico models have been widely used for disease and drug studies. In these models, several characteristics such as gender, electrolyte imbalance, and comorbidities can be implemented to study pathophysiology of cardiac diseases and to predict cardiotoxicity of drug treatments. In this Mini Review, we (1) present the state of the art of in vitro and in silico cardiomyocyte modeling currently in use to study COVID-19, (2) review in vitro and in silico models that can be adopted to mimic the effects of SARS-CoV-2 infection on cardiac function, and (3) provide a perspective on how to combine some of these models to mimic "COVID-19 cardiomyocytes environment.".
Collapse
Affiliation(s)
- Rafael Dariolli
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | | | | |
Collapse
|
46
|
Desai A, Caltagirone G, Sari S, Pocaterra D, Kogan M, Azzolini E, Savevski V, Martinelli-Boneschi F, Voza A. The Use of Antiviral Agents against SARS-CoV-2: Ineffective or Time and Age Dependent Result? A Retrospective, Observational Study among COVID-19 Older Adults. J Clin Med 2021; 10:686. [PMID: 33578922 PMCID: PMC7916694 DOI: 10.3390/jcm10040686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Our aim was to investigate the impact of therapeutics with antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on mortality of older adults affected by coronavirus disease 2019 (COVID-19), taking into consideration the time interval from symptoms onset to drugs administration. METHODS Data from 143 COVID-19 patients over 65 years of age admitted to the Humanitas Clinical and Research Center Emergency Department (Milan, Italy) and treated with Lopinavir/ritonavir (LPV/r) or Darunavir/cobicistat (DVR/c) associated to Hydroxychloroquine (HCQ) were retrospectively analyzed. Statistical analysis was performed by using a logistic regression model and survival analysis to assess the role of different predictors of in-hospital mortality, including an early (<6 days from symptoms onset) vs. late treatment onset, signs and symptoms at COVID-19 presentation, type of antiviral treatment (LPV/r or DVR/c) and patients' age (65-80 vs. >80 years old). RESULTS Multivariate analysis showed that an older age (OR: 2.54) and dyspnea as presenting symptom (OR: 2.01) were associated with higher mortality rate, whereas cough as presenting symptom (OR: 0.53) and a timely drug administration (OR: 0.44) were associated with lower mortality. Survival analysis demonstrated that the timing of drug administration had an impact on mortality in 65-80 years-old patients (p = 0.02), whereas no difference was seen in those >80 years-old. This impact was more evident in patients with dyspnea as primary symptom of COVID-19, in whom mortality decreased from 57.1% to 38.3% due to timely drug administration (OR: 0.5; p = 0.04). CONCLUSIONS There was a significant association between the use of a combined antiviral regimen and HCQ and lower mortality, when timely-administered, in COVID-19 patients aged 65-80 years. Our findings support timely treatment onset as a key component in the treatment of COVID-19.
Collapse
Affiliation(s)
- Antonio Desai
- Emergency Department, Humanitas Clinical and Research Center, IRCCS, 20089 Milan, Italy; (G.C.); (M.K.); (A.V.)
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Italy;
| | - Giuseppe Caltagirone
- Emergency Department, Humanitas Clinical and Research Center, IRCCS, 20089 Milan, Italy; (G.C.); (M.K.); (A.V.)
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Italy;
| | - Sharon Sari
- Internal Medicine Department, Geriatrics, Santa Margherita Rehabilitation and Cure Institute, ASP, 27100 Pavia, Italy;
| | - Daria Pocaterra
- Department of Infectious Diseases, Humanitas Clinical and Research Center, IRCCS, 20089 Milan, Italy;
| | - Maria Kogan
- Emergency Department, Humanitas Clinical and Research Center, IRCCS, 20089 Milan, Italy; (G.C.); (M.K.); (A.V.)
| | - Elena Azzolini
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Italy;
- Health Directorate, Humanitas Clinical and Research Center, IRCCS, 20089 Milan, Italy
| | - Victor Savevski
- Artificial Intelligence Center, Humanitas Clinical and Research Center, IRCCS, 20089 Milan, Italy;
| | - Filippo Martinelli-Boneschi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy;
- Neurology Unit and MS Centre, Fondazione IRCCS Ca’ Granda Ospedale Maggiore, Policlinico, 20122 Milan, Italy
| | - Antonio Voza
- Emergency Department, Humanitas Clinical and Research Center, IRCCS, 20089 Milan, Italy; (G.C.); (M.K.); (A.V.)
| |
Collapse
|
47
|
Little C, Cosetti MK. A Narrative Review of Pharmacologic Treatments for COVID-19: Safety Considerations and Ototoxicity. Laryngoscope 2021; 131:1626-1632. [PMID: 33491234 PMCID: PMC8014300 DOI: 10.1002/lary.29424] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE/HYPOTHESIS The purpose of this review is to summarize evidence-based data regarding the ototoxic effects of potential COVID-19 therapeutics to treat patients suffering from SARS-CoV-2. METHODS Medications under investigation as novel therapeutics to treat COVID-19 were identified using the search term coronavirus therapeutics, COVID therapeutics, and SARS-CoV-2 therapeutics on ClinicalTrials.gov and the PubMed Database. A literature review was performed using the PubMed Database for each proposed COVID-19 therapeutic to identify relevant articles. Search criteria included Medical Subject Headings (MeSH) and key word search terms for ototoxicity, vestibulotoxicity, hearing disorders, and vertigo. RESULTS Six proposed COVID-19 therapeutics were identified as possessing ototoxic side effects including chloroquine and hydroxychloroquine, azithromycin, lopinavir-ritonavir, interferon, ribavirin, and ivermectin. CONCLUSIONS Available evidence suggests that ototoxic effects may be improved or mitigated by stopping the offending agent. Recognition of hearing loss, tinnitus, or imbalance/vertigo is therefore crucial to facilitate early intervention and prevent long-term damage. Hospitals should consider the inclusion of audiologic monitoring protocols for patients receiving COVID-19 therapeutics with known ototoxicity, especially in high-risk patient groups such as the elderly and hearing impaired. Laryngoscope, 131:1626-1632, 2021.
Collapse
Affiliation(s)
- Christine Little
- Department of Otolaryngology‐Head and Neck SurgeryIcahn School of Medicine at Mount SinaiNew YorkNew YorkU.S.A.
| | - Maura K. Cosetti
- Department of Otolaryngology‐Head and Neck SurgeryIcahn School of Medicine at Mount SinaiNew YorkNew YorkU.S.A.
- Ear InstituteNew York Eye and Ear Infirmary of Mount SinaiNew YorkNew YorkU.S.A.
| |
Collapse
|
48
|
Ghasemiyeh P, Mortazavi N, Karimzadeh I, Vazin A, Mahmoudi L, Moghimi-Sarani E, MohammadSadeghi A, Shahisavandi M, Kheradmand A, Mohammadi-Samani S. Psychiatric Adverse Drug Reactions and Potential Anti-COVID-19 Drug Interactions with Psychotropic Medications. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:66-77. [PMID: 34903970 PMCID: PMC8653652 DOI: 10.22037/ijpr.2021.114717.15007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Coronavirus disease 2019 (COVID-19) management in patients with predisposing psychiatric disorders would be challenging due to potential drug-drug interactions (PDDIs) and precipitation of their disease severity. Furthermore, COVID-19 itself might precipitate or induce unpredicted psychiatry and neuropsychiatry complications in these patients. In this literature review study, the psychological impacts of COVID-19 and major psychiatric adverse drug reactions (ADRs) of COVID-19 treatment options have been discussed. A detailed Table has been provided to assess potential drug-drug interactions of COVID-19 treatment options with psychotropic medications to avoid unwanted major drug-drug interactions. Finally, potential mechanisms of these major drug-drug interactions and possible management of them have been summarized. The most common type of major PDDIs is pharmacokinetics. Hydroxychloroquine/chloroquine and lopinavir/ritonavir were the most involved anti-COVID-19 agents in these major PDDIs.
Collapse
Affiliation(s)
- Parisa Ghasemiyeh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Negar Mortazavi
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Iman Karimzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Afsaneh Vazin
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Laleh Mahmoudi
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ebrahim Moghimi-Sarani
- Department of Psychiatry, Research Center for Psychiatry and Behavioral Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ashkan MohammadSadeghi
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mina Shahisavandi
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Kheradmand
- Department of Psychiatry, Taleghani Hospital Research Development Committee, Medical School, Shahid Beheshti Medical University, Tehran, Iran.
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutics, School of Pharmacy Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
49
|
Vlachakis D, Papakonstantinou E, Mitsis T, Pierouli K, Diakou I, Chrousos G, Bacopoulou F. Molecular mechanisms of the novel coronavirus SARS-CoV-2 and potential anti-COVID19 pharmacological targets since the outbreak of the pandemic. Food Chem Toxicol 2020; 146:111805. [PMID: 33038452 PMCID: PMC7543766 DOI: 10.1016/j.fct.2020.111805] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
The novel coronavirus SARS-CoV-2 has emerged as a severe threat against public health and global economies. COVID-19, the disease caused by this virus, is highly contagious and has led to an ongoing pandemic. SARS-CoV-2 affects, mainly, the respiratory system, with most severe cases primarily showcasing acute respiratory distress syndrome. Currently, no targeted therapy exists, and since the number of infections and death toll keeps rising, it has become a necessity to study possible therapeutic targets. Antiviral drugs can target various stages of the viral infection, and in the case of SARS-CoV-2, both structural and non-structural proteins have been proposed as potential drug targets. This review focuses on the most researched SARS-CoV-2 proteins, their structure, function, and possible therapeutic approaches.
Collapse
Affiliation(s)
- Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece; University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 8 Levadias Street, Athens, 11527, Greece; Lab of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Street, Athens, 11527, Greece; Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, Strand, London WC2R 2LS, UK
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece
| | - Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece
| | - Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece
| | - George Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 8 Levadias Street, Athens, 11527, Greece; Lab of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Street, Athens, 11527, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 8 Levadias Street, Athens, 11527, Greece.
| |
Collapse
|
50
|
Rosenthal N, Cao Z, Gundrum J, Sianis J, Safo S. Risk Factors Associated With In-Hospital Mortality in a US National Sample of Patients With COVID-19. JAMA Netw Open 2020; 3:e2029058. [PMID: 33301018 PMCID: PMC7729428 DOI: 10.1001/jamanetworkopen.2020.29058] [Citation(s) in RCA: 316] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
IMPORTANCE Coronavirus disease 2019 (COVID-19) has infected more than 8.1 million US residents and killed more than 221 000. There is a dearth of research on epidemiology and clinical outcomes in US patients with COVID-19. OBJECTIVES To characterize patients with COVID-19 treated in US hospitals and to examine risk factors associated with in-hospital mortality. DESIGN, SETTING, AND PARTICIPANTS This cohort study was conducted using Premier Healthcare Database, a large geographically diverse all-payer hospital administrative database including 592 acute care hospitals in the United States. Inpatient and hospital-based outpatient visits with a principal or secondary discharge diagnosis of COVID-19 (International Classification of Diseases, Tenth Revision, Clinical Modification diagnosis code, U07.1) between April 1 and May 31, 2020, were included. EXPOSURES Characteristics of patients were reported by inpatient/outpatient and survival status. Risk factors associated with death examined included patient characteristics, acute complications, comorbidities, and medications. MAIN OUTCOMES AND MEASURES In-hospital mortality, intensive care unit (ICU) admission, use of invasive mechanical ventilation, total hospital length of stay (LOS), ICU LOS, acute complications, and treatment patterns. RESULTS Overall, 64 781 patients with COVID-19 (29 479 [45.5%] outpatients; 35 302 [54.5%] inpatients) were analyzed. The median (interquartile range [IQR]) age was 46 (33-59) years for outpatients and 65 (52-77) years for inpatients; 31 968 (49.3%) were men, 25 841 (39.9%) were White US residents, and 14 340 (22.1%) were Black US residents. In-hospital mortality was 20.3% among inpatients (7164 patients). A total of 5625 inpatients (15.9%) received invasive mechanical ventilation, and 6849 (19.4%) were admitted to the ICU. Median (IQR) inpatient LOS was 6 (3-10) days. Median (IQR) ICU LOS was 5 (2-10) days. Common acute complications among inpatients included acute respiratory failure (19 706 [55.8%]), acute kidney failure (11 971 [33.9%]), and sepsis (11 910 [33.7%]). Older age was the risk factor most strongly associated with death (eg, age ≥80 years vs 18-34 years: odds ratio [OR], 16.20; 95% CI, 11.58-22.67; P < .001). Receipt of statins (OR, 0.60; 95% CI, 0.56-0.65; P < .001), angiotensin-converting enzyme inhibitors (OR, 0.53; 95% CI, 0.46-0.60; P < .001), and calcium channel blockers (OR, 0.73; 95% CI, 0.68-0.79; P < .001) was associated with decreased odds of death. Compared with patients with no hydroxychloroquine or azithromycin, patients with both azithromycin and hydroxychloroquine had increased odds of death (OR, 1.21; 95% CI, 1.11-1.31; P < .001). CONCLUSIONS AND RELEVANCE In this cohort study of patients with COVID-19 infection in US acute care hospitals, COVID-19 was associated with high ICU admission and in-hospital mortality rates. Use of statins, angiotensin-converting enzyme inhibitors, and calcium channel blockers were associated with decreased odds of death. Understanding the potential benefits of unproven treatments will require future randomized trials.
Collapse
Affiliation(s)
- Ning Rosenthal
- Premier Applied Sciences, Premier Inc, Charlotte, North Carolina
| | - Zhun Cao
- Premier Applied Sciences, Premier Inc, Charlotte, North Carolina
| | - Jake Gundrum
- Premier Applied Sciences, Premier Inc, Charlotte, North Carolina
| | - Jim Sianis
- Premier Applied Sciences, Premier Inc, Charlotte, North Carolina
| | - Stella Safo
- Premier Applied Sciences, Premier Inc, Charlotte, North Carolina
| |
Collapse
|