1
|
Song K, Chen D, Li J, Zhang J, Tian Y, Xu X, Wang B, Huang Z, Lou S, Kang J, Zhang N, Yang X, Ma W. PAK4 is Required for Meiotic Resumption, Spindle Assembly, and Cortical Migration in Mouse Oocytes During Meiotic Maturation. Adv Biol (Weinh) 2025; 9:e2400307. [PMID: 39435597 DOI: 10.1002/adbi.202400307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/28/2024] [Indexed: 10/23/2024]
Abstract
Oocyte meiotic errors can cause infertility, miscarriage, and birth defects. Here the role and the underlying mechanism of p21 activated kinase 4 (PAK4) in mouse oocyte meiosis is evaluated. It is found that PAK4 expression and its phosphorylation are detected in high level at germinal vesicle (GV) stage, and gradually decreased after meiotic resumption in oocytes. PAK4 has direct physical interaction with both mitogen-activated protein kinases 1/2 (MEK1/2) and Paxillin, they are colocalized on the spindle structure during metaphases I and II. Phospho-PAK4 is distributed beneath the cytoplasmic membrane and on the chromosomes, and colocalized with the microtubule organizing center (MTOC) proteins, Pericentrin and γ-tubulin, as well as phosphor-MEK1/2 and phosphor-Paxillin on spindle poles. PAK4 inhibition by chemical inhibitor LCH-7749944, specific Pak4 morpholino oligo or the dominant negative mutant Pak4K350, 351 M influence the meiotic resumption, spindle assembly and its cortical migration, and associated with the downregulation in the dephosphorylation of cyclin dependent kinase 1 (CDK1) and the levels of Cyclin B1, MEK1/2, Paxillin, g-tubulin, acetylated a-tubulin, Arp3, and Cofilin phosphorylation in oocytes. In sum, PAK4 functions to sustain the rational levels of Cyclin B1, MEK1/2, Paxillin, y-tubulin, acetylated a-tubulin, Arp3, and phosphor-Cofilin in mouse oocytes, thereby promotes the meiotic resumption, spindle assembly, and migration during meiotic maturation.
Collapse
Affiliation(s)
- Ke Song
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100020, China
| | - Dandan Chen
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100020, China
| | - Jingyu Li
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100020, China
| | - Jiaqi Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ying Tian
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiangning Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Bicheng Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ziqi Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Shuo Lou
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jingyi Kang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ningning Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaokui Yang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100020, China
| | - Wei Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
2
|
Hao S, Hou L, Wang JH, Yan JH, Niu YF, Cai ZH, Li F, Meng FH. Design, synthesis and biological evaluation of novel benzimidazole-derived p21-activited kinase 4 (PAK4) inhibitors bearing a 4-(4-methylpiperazin-1-yl)phenyl scaffold as potential antitumor agents. Eur J Med Chem 2024; 280:116971. [PMID: 39427518 DOI: 10.1016/j.ejmech.2024.116971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
A series of novel 6-(4-(4-methylpiperazin-1-yl)phenyl)-1H-benzo[d]imidazole-based p21-activited kinase 4 (PAK4) inhibitors were designed and synthesized based on the structure of lead compound GNE-2861 and that of anticancer inhibitors reported in our previous studies. All target compounds so designed were preliminarily screened in vitro for anti-tumor potency through kinase inhibitory assays and MTT assays, which revealed that most compounds exhibited significant inhibitory effects on PAK4 enzyme as well as prominent antiproliferative activities against four cancer cell models (A549, NCI-H1975, MDA-MB-231 and SK-BR-3) and low damage to healthy cells. In particular, the hit compound 12i was identified as the most effective and rather selective compound both at the enzyme and cellular level. Meanwhile, molecular docking and dynamic studies disclosed that compound 12i could bind to PAK4 stably via multiple interactions applied between the compound and the enzyme. Further mechanism studies indicated that compound 12i could inhibit the proliferation and suppress the migratory potential of MDA-MB-231 cells by inhibiting the phosphorylation of PAK4 and LIMK1, arresting cell cycle in the G0/G1 phase, inducing apoptosis and promoting ROS production. Notably, compound 12i could effectively inhibit triple-negative breast cancer (TNBC) growth with little toxicity in the MDA-MB-231 cell xenograft model. Taken together, in vitro and in vivo results demonstrated that compound 12i possessed high drug potential as an inhibitor of PAK4 to inhibit the growth and metastasis of TNBC.
Collapse
Affiliation(s)
- Shuang Hao
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China
| | - Liang Hou
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China
| | - Jia-Hui Wang
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China
| | - Jing-Han Yan
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China
| | - Yi-Fan Niu
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China
| | - Zheng-Hao Cai
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, PR China.
| | - Fan-Hao Meng
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
3
|
Han C, Zhu M, Liu Y, Yang Y, Cheng J, Li P. Regulation of Vascular Injury and Repair by P21-Activated Kinase 1 and P21-Activated Kinase 2: Therapeutic Potential and Challenges. Biomolecules 2024; 14:1596. [PMID: 39766303 PMCID: PMC11674331 DOI: 10.3390/biom14121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
The PAK (p21-activated kinases) family is a class of intracellular signal transduction protein kinases that regulate various cellular functions, mainly through their interactions with small GTP enzymes. PAK1 and PAK2 in the PAK kinase family are key signal transduction molecules that play important roles in various biological processes, including morphological changes, migration, proliferation, and apoptosis, and are involved in the progression of many diseases. Abnormal expression or dysregulation of PAK1 and PAK2 may be associated with several diseases, including cancer, neurological diseases, etc. The current research mainly focuses on studying the role of PAK and PAK inhibitors in the regulation of cancer progression, but relatively few reports are available that explore their potential role in cardiovascular diseases. Vascular injury and repair are complex processes involved in many cardiovascular conditions, including atherosclerosis, restenosis, and hypertension. Emerging research suggests that PAK1 and PAK2 have pivotal roles in vascular endothelial cell functions, including migration, proliferation, and angiogenesis. These kinases also modulate vascular smooth muscle relaxation, vascular permeability, and structural alterations, which are critical in the development of atherosclerosis and vascular inflammation. By targeting these activities, PAK proteins are essential for both normal vascular physiology and the pathogenesis of vascular diseases, highlighting their potential as therapeutic targets for vascular health. This review focuses on recent studies that offer experimental insights into the mechanisms by which PAK1 and PAK2 regulate the biological processes of vascular injury and repair and the therapeutic potential of the current existing PAK inhibitors in vascular-related diseases. The limitations of treatment with some PAK inhibitors and the ways that future development can overcome these challenges are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Pengyun Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China; (C.H.); (M.Z.); (Y.L.); (Y.Y.); (J.C.)
| |
Collapse
|
4
|
Gao T, Dang W, Jiang Z, Jiang Y. Identifying the impact of ARHGAP and MAP gene families on autism spectrum disorders. PLoS One 2024; 19:e0306759. [PMID: 39514479 PMCID: PMC11548836 DOI: 10.1371/journal.pone.0306759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/22/2024] [Indexed: 11/16/2024] Open
Abstract
The rising incidence of Autism Spectrum Disorder (ASD) has become a major concern, affecting children's psychological well-being and placing a significant strain on healthcare systems. Despite its impact, the etiological mechanisms underpinning ASD remain elusive. This study leveraged dorsolateral prefrontal cortex gene data from 452 individuals of European descent, sourced from the CommonMindConsortium, and examined ASD-related gene expression data from the Gene Expression Omnibus (GEO) database (GSE18123), along with Genome-Wide Association Studies (GWAS) data from the Lundbeck Foundation Integrated Psychiatric Research and Psychiatric Genomics Consortium. Expression quantitative trait loci data were sourced from the GTExv8 database. We employed Transcriptome-Wide Association Studies (TWAS) and Weighted Gene Co-expression Network Analysis (WGCNA) to pinpoint genes within ASD-associated susceptibility gene families (ARHGAP, MAP). Four genes-ARHGAP27, MAPT, ARHGAP19, and MAP1B-were scrutinized, and their biological implications were elucidated through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Protein-Protein Interaction (PPI) analysis and conditional analysis within the TWAS framework helped identify pivotal genes (ARHGAP27, MAPT). A subsequent verification phase involving Mendelian Randomization (MR) evaluated the potential causal links between the identified genes and ASD. The findings revealed no causal association between ARHGAP19, MAP1B, and ASD. In contrast, significant causal relationships were established for ARHGAP27 and MAPT, suggesting that ARHGAP27 may elevate ASD risk as a susceptibility gene, whereas MAPT appears to reduce the risk as a protective gene.
Collapse
Affiliation(s)
- Tianci Gao
- College of Clinical Medicine, Jiamusi University, Jiamusi, HeilongJiang Province, China
| | - Wenjun Dang
- Jiamusi College, HeiLongJiang University of Chinese Medicine, Jiamusi, HeilongJiang Province, China
| | - Zhimei Jiang
- College of Rehabilitation Medicine, Jiamusi University, Jiamusi, HeilongJiang Province, China
- Child Neurological Rehabilitation Key Laboratory of Heilongjiang Province, Jiamusi, Heilongjiang Province, China
| | - Yuwei Jiang
- College of Rehabilitation Medicine, Jiamusi University, Jiamusi, HeilongJiang Province, China
- Child Neurological Rehabilitation Key Laboratory of Heilongjiang Province, Jiamusi, Heilongjiang Province, China
| |
Collapse
|
5
|
Santarriaga S, Gerlovin K, Layadi Y, Karmacharya R. Human stem cell-based models to study synaptic dysfunction and cognition in schizophrenia: A narrative review. Schizophr Res 2024; 273:78-97. [PMID: 36925354 PMCID: PMC10500041 DOI: 10.1016/j.schres.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Cognitive impairment is the strongest predictor of functional outcomes in schizophrenia and is hypothesized to result from synaptic dysfunction. However, targeting synaptic plasticity and cognitive deficits in patients remains a significant clinical challenge. A comprehensive understanding of synaptic plasticity and the molecular basis of learning and memory in a disease context can provide specific targets for the development of novel therapeutics targeting cognitive impairments in schizophrenia. Here, we describe the role of synaptic plasticity in cognition, summarize evidence for synaptic dysfunction in schizophrenia and demonstrate the use of patient derived induced-pluripotent stem cells for studying synaptic plasticity in vitro. Lastly, we discuss current advances and future technologies for bridging basic science research of synaptic dysfunction with clinical and translational research that can be used to predict treatment response and develop novel therapeutics.
Collapse
Affiliation(s)
- Stephanie Santarriaga
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kaia Gerlovin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yasmine Layadi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chimie ParisTech, Université Paris Sciences et Lettres, Paris, France
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
6
|
Hu J, Li H, Wang X, Cheng H, Zhu G, Yang S. Novel mechanisms of Anshen Dingzhi prescription against PTSD: Inhibiting DCC to modulate synaptic function and inflammatory responses. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118425. [PMID: 38848974 DOI: 10.1016/j.jep.2024.118425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anshen Dingzhi prescription (ADP), documented in "Yi Xue Xin Wu", is a famous prescription for treating panic-related mental disorders such as post-traumatic stress disorder (PTSD). However, the underlying mechanism remains unclear. AIM OF THE STUDY This study aimed to investigate the mechanisms by which ADP intervened in PTSD-like behaviors. METHODS A mouse model of single prolonged stress (SPS) was established to evaluate the ameliorative effects and mechanisms of ADP on PTSD. Behavioral tests were used to assess PTSD-like behaviors in mice; transmission electron microscopy was used to observe changes in the ultrastructure of hippocampal synapses, and western blot, immunofluorescence, and ELISA were used to detect the expression of hippocampal deleted in colorectal cancer (DCC) and downstream Ras-related C3 botulinum toxin substrate 1 (Rac1) - P21-activated kinase 1 (PAK1) signal, as well as levels of synaptic proteins and inflammatory factors. Molecular docking technology simulated the binding of potential brain-penetrating components of ADP to DCC. RESULTS SPS induced PTSD-like behaviors in mice and increased expression of hippocampal netrin-1 (NT-1) and DCC on the 14th day post-modeling, with concurrent elevation in serum NT-1 levels. Simultaneously, SPS also decreased p-Rac1 level and increased p-PAK1 level, the down-stream molecules of DCC. Lentiviral overexpression of DCC induced or exacerbated PTSD-like behaviors in control and SPS mice, respectively, whereas neutralization antibody against NT-1 reduced DCC activation and ameliorated PTSD-like behaviors in SPS mice. Interestingly, downstream Rac1-PAK1 signal was altered according to DCC expression. Moreover, DCC overexpression down-regulated N-methyl-d-aspartate (NMDA) receptor 2A (GluN2A) and postsynaptic density 95 (PSD95), up-regulated NMDA receptor 2B (GluN2B) and increased neuroinflammatory responses. Administration of ADP (36.8 mg/kg) improved PTSD-like behaviors in the SPS mice, suppressed hippocampal DCC, and downstream Rac1-PAK1 signal, upregulated GluN2A and PSD95, downregulated GluN2B, and reduced levels of inflammatory factors NOD-like receptor protein 3 (NLRP3), nuclear factor kappa-B (NF-κB) and interleukin-6 (IL-6). Importantly, DCC overexpression could also reduce the ameliorative effect of ADP on PTSD. Additionally, DCC demonstrated a favorable molecular docking pattern with the potential brain-penetrating components of ADP, further suggesting DCC as a potential target of ADP. CONCLUSION Our data indicate that DCC is a key target for the regulation of synaptic function and inflammatory response in the onset of PTSD, and ADP likely reduces DCC to prevent PTSD via modulating downstream Rac1-PAK1 pathway. This study provides a novel mechanism for the onset of PTSD and warrants the clinical application of ADP.
Collapse
Affiliation(s)
- Jiamin Hu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Haipeng Li
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Xuncui Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Hongliang Cheng
- The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230061, China.
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Shaojie Yang
- The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230061, China.
| |
Collapse
|
7
|
Vatsa N, Brynildsen JK, Goralski TM, Kurgat K, Meyerdirk L, Breton L, DeWeerd D, Brasseur L, Turner L, Becker K, Gallik KL, Bassett DS, Henderson MX. Network analysis of α-synuclein pathology progression reveals p21-activated kinases as regulators of vulnerability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619411. [PMID: 39484617 PMCID: PMC11526907 DOI: 10.1101/2024.10.22.619411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
α-Synuclein misfolding and progressive accumulation drives a pathogenic process in Parkinson's disease. To understand cellular and network vulnerability to α-synuclein pathology, we developed a framework to quantify network-level vulnerability and identify new therapeutic targets at the cellular level. Full brain α-synuclein pathology was mapped in mice over 9 months. Empirical pathology data was compared to theoretical pathology estimates from a diffusion model of pathology progression along anatomical connections. Unexplained variance in the model enabled us to derive regional vulnerability that we compared to regional gene expression. We identified gene expression patterns that relate to regional vulnerability, including 12 kinases that were enriched in vulnerable regions. Among these, an inhibitor of group II PAKs demonstrated protection from neuron death and α-synuclein pathology, even after delayed compound treatment. This study provides a framework for the derivation of cellular vulnerability from network-based studies and identifies a promising therapeutic pathway for Parkinson's disease.
Collapse
Affiliation(s)
- Naman Vatsa
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Julia K. Brynildsen
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas M. Goralski
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Kevin Kurgat
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Lindsay Meyerdirk
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Libby Breton
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Daniella DeWeerd
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Laura Brasseur
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | | | | | | | - Dani S. Bassett
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Michael X. Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Lead Contact
| |
Collapse
|
8
|
Massacci G, Venafra V, Zwiebel M, Wahle M, Cerroni R, Bissacco J, Perfetto L, Michienzi V, Stefani A, Mercuri NB, Schirinzi T, Sacco F. Stage-dependent phosphoproteome remodeling of Parkinson's disease blood cells. Neurobiol Dis 2024; 200:106622. [PMID: 39097034 DOI: 10.1016/j.nbd.2024.106622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
The complexity and heterogeneity of PD necessitate advanced diagnostic and prognostic tools to elucidate its molecular mechanisms accurately. In this study, we addressed this challenge by conducting a pilot phospho-proteomic analysis of peripheral blood mononuclear cells (PBMCs) from idiopathic PD patients at varying disease stages to delineate the functional alterations occurring in these cells throughout the disease course and identify key molecules and pathways contributing to PD progression. By integrating clinical data with phospho-proteomic profiles across various PD stages, we identify potential stage-specific molecular signatures indicative of disease progression. This integrative approach allows for the discernment of distinct disease states and enhances our understanding of PD heterogeneity.
Collapse
Affiliation(s)
- Giorgia Massacci
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Veronica Venafra
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Maximilian Zwiebel
- Department Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maria Wahle
- Department Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Rocco Cerroni
- Neurology Unit - Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Jacopo Bissacco
- Neurology Unit - Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Livia Perfetto
- Department of Biology and Biotechnologies "Charles Darwin", University of Rome La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Vito Michienzi
- Neurology Unit - Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alessandro Stefani
- Neurology Unit - Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit - Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Tommaso Schirinzi
- Neurology Unit - Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Francesca Sacco
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| |
Collapse
|
9
|
Wang Y, Minden A. Inhibition of NAMPT by PAK4 Inhibitors. Int J Mol Sci 2024; 25:10138. [PMID: 39337621 PMCID: PMC11431865 DOI: 10.3390/ijms251810138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The serine/threonine kinase PAK4 plays a crucial role in regulating cell proliferation, survival, migration, and invasion. Overexpression of PAK4 correlates with poor prognosis in some cancers. KPT-9274, a PAK4 inhibitor, significantly reduces the growth of triple-negative breast cancer cells and mammary tumors in mouse models, and it also inhibits the growth of several other types of cancer cells. Interestingly, although it was first identified as a PAK4 inhibitor, KPT-9274 was also found to inhibit the enzyme NAMPT (nicotinamide phosphoribosyltransferase), which is crucial for NAD (nicotinamide adenine dinucleotide) synthesis and vital for cellular energy and growth. These results made us question whether growth inhibition in response to KPT-9274 was due to PAK4 inhibition, NAMPT inhibition, or both. To address this, we tested several other PAK4 inhibitors that also inhibit cell growth, to determine whether they also inhibit NAMPT activity. Our findings confirm that multiple PAK4 inhibitors also inhibit NAMPT activity. This was assessed both in cell-free assays and in a breast cancer cell line. Molecular docking studies were also used to help us better understand the mechanism by which PAK4 inhibitors block PAK4 and NAMPT activity, and we identified specific residues on the PAK4 inhibitors that interact with NAMPT and PAK4. Our results suggest that PAK4 inhibitors may have a more complex mechanism of action than previously understood, necessitating further exploration of how they influence cancer cell growth.
Collapse
Affiliation(s)
- Yiling Wang
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Audrey Minden
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
10
|
Li C, Niu Y, Chen J, Geng S, Wu P, Dai L, Dong C, Liu R, Shi Y, Wang X, Gao Z, Liu X, Yang X, Gao S. Plexin D1 negatively regulates macrophage-derived foam cell migration via the focal adhesion kinase/Paxillin pathway. Biochem Biophys Res Commun 2024; 725:150236. [PMID: 38897039 DOI: 10.1016/j.bbrc.2024.150236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Macrophage-derived foam cell formation is a hallmark of atherosclerosis and is retained during plaque formation. Strategies to inhibit the accumulation of these cells hold promise as viable options for treating atherosclerosis. Plexin D1 (PLXND1), a member of the Plexin family, has elevated expression in atherosclerotic plaques and correlates with cell migration; however, its role in macrophages remains unclear. We hypothesize that the guidance receptor PLXND1 negatively regulating macrophage mobility to promote the progression of atherosclerosis. METHODS We utilized a mouse model of atherosclerosis based on a high-fat diet and an ox-LDL- induced foam cell model to assess PLXND1 levels and their impact on cell migration. Through western blotting, Transwell assays, and immunofluorescence staining, we explored the potential mechanism by which PLXND1 mediates foam cell motility in atherosclerosis. RESULTS Our study identifies a critical role for PLXND1 in atherosclerosis plaques and in a low-migration capacity foam cell model induced by ox-LDL. In the aortic sinus plaques of ApoE-/- mice, immunofluorescence staining revealed significant upregulation of PLXND1 and Sema3E, with colocalization in macrophages. In macrophages treated with ox-LDL, increased expression of PLXND1 led to reduced pseudopodia formation and decreased migratory capacity. PLXND1 is involved in regulating macrophage migration by modulating the phosphorylation levels of FAK/Paxillin and downstream CDC42/PAK. Additionally, FAK inhibitors counteract the ox-LDL-induced migration suppression by modulating the phosphorylation states of FAK, Paxillin and their downstream effectors CDC42 and PAK. CONCLUSION Our findings indicate that PLXND1 plays a role in regulating macrophage migration by modulating the phosphorylation levels of FAK/Paxillin and downstream CDC42/PAK to promoting atherosclerosis.
Collapse
Affiliation(s)
- Chenlei Li
- Graduate School of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Yan Niu
- Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Jie Chen
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Shijia Geng
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Peng Wu
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Lina Dai
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Chongyang Dong
- Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Rujin Liu
- Graduate School of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Yuanjia Shi
- Graduate School of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Xiaomeng Wang
- Graduate School of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Zhanfeng Gao
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Xiaoyu Liu
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Xi Yang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Shang Gao
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| |
Collapse
|
11
|
Viou L, Atkins M, Rousseau V, Launay P, Masson J, Pace C, Murakami F, Barnier JV, Métin C. PAK3 activation promotes the tangential to radial migration switch of cortical interneurons by increasing leading process dynamics and disrupting cell polarity. Mol Psychiatry 2024; 29:2296-2307. [PMID: 38454080 PMCID: PMC11412908 DOI: 10.1038/s41380-024-02483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Mutations of PAK3, a p21-activated kinase, are associated in humans with cognitive deficits suggestive of defective cortical circuits and with frequent brain structural abnormalities. Most human variants no longer exhibit kinase activity. Since GABAergic interneurons express PAK3 as they migrate within the cortex, we here examined the role of PAK3 kinase activity in the regulation of cortical interneuron migration. During the embryonic development, cortical interneurons migrate a long distance tangentially and then re-orient radially to settle in the cortical plate, where they contribute to cortical circuits. We showed that interneurons expressing a constitutively kinase active PAK3 variant (PAK3-ca) extended shorter leading processes and exhibited unstable polarity. In the upper cortical layers, they entered the cortical plate and extended radially oriented processes. In the deep cortical layers, they exhibited erratic non-processive migration movements and accumulated in the deep pathway. Pharmacological inhibition of PAK3 kinase inhibited the radial migration switch of interneurons to the cortical plate and reduced their accumulation in the deep cortical layers. Interneurons expressing a kinase dead PAK3 variant (PAK3-kd) developed branched leading processes, maintained the same polarity during migration and exhibited processive and tangentially oriented movements in the cortex. These results reveal that PAK3 kinase activity, by promoting leading process shortening and cell polarity changes, inhibits the tangential processive migration of interneurons and favors their radial re- orientation and targeting to the cortical plate. They suggest that patients expressing PAK3 variants with impaired kinase activity likely present alterations in the cortical targeting of their GABAergic interneurons.
Collapse
Affiliation(s)
- Lucie Viou
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France
| | - Melody Atkins
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France
| | - Véronique Rousseau
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Pierre Launay
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France
| | - Justine Masson
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France
| | - Clarisse Pace
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France
| | - Fujio Murakami
- Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Suita, Osaka, 565-0871, Japan
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Christine Métin
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France.
| |
Collapse
|
12
|
Baudouin L, Adès N, Kanté K, Bachelin C, Hmidan H, Deboux C, Panic R, Ben Messaoud R, Velut Y, Hamada S, Pionneau C, Duarte K, Poëa-Guyon S, Barnier JV, Nait Oumesmar B, Bouslama-Oueghlani L. Antagonistic actions of PAK1 and NF2/Merlin drive myelin membrane expansion in oligodendrocytes. Glia 2024; 72:1518-1540. [PMID: 38794866 DOI: 10.1002/glia.24570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
In the central nervous system, the formation of myelin by oligodendrocytes (OLs) relies on the switch from the polymerization of the actin cytoskeleton to its depolymerization. The molecular mechanisms that trigger this switch have yet to be elucidated. Here, we identified P21-activated kinase 1 (PAK1) as a major regulator of actin depolymerization in OLs. Our results demonstrate that PAK1 accumulates in OLs in a kinase-inhibited form, triggering actin disassembly and, consequently, myelin membrane expansion. Remarkably, proteomic analysis of PAK1 binding partners enabled the identification of NF2/Merlin as its endogenous inhibitor. Our findings indicate that Nf2 knockdown in OLs results in PAK1 activation, actin polymerization, and a reduction in OL myelin membrane expansion. This effect is rescued by treatment with a PAK1 inhibitor. We also provide evidence that the specific Pak1 loss-of-function in oligodendroglia stimulates the thickening of myelin sheaths in vivo. Overall, our data indicate that the antagonistic actions of PAK1 and NF2/Merlin on the actin cytoskeleton of the OLs are critical for proper myelin formation. These findings have broad mechanistic and therapeutic implications in demyelinating diseases and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lucas Baudouin
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Noémie Adès
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Kadia Kanté
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Corinne Bachelin
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Hatem Hmidan
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Al-Quds University, Faculty of Medicine, Jerusalem, Palestine
| | - Cyrille Deboux
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Radmila Panic
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Rémy Ben Messaoud
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Yoan Velut
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Soumia Hamada
- Sorbonne Université, Inserm, UMS Production et Analyse des Données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Cédric Pionneau
- Sorbonne Université, Inserm, UMS Production et Analyse des Données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Kévin Duarte
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Sandrine Poëa-Guyon
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Brahim Nait Oumesmar
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Lamia Bouslama-Oueghlani
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
13
|
Abedini SS, Akhavantabasi S, Liang Y, Heng JIT, Alizadehsani R, Dehzangi I, Bauer DC, Alinejad-Rokny H. A critical review of the impact of candidate copy number variants on autism spectrum disorder. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108509. [PMID: 38977176 DOI: 10.1016/j.mrrev.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/14/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder (NDD) influenced by genetic, epigenetic, and environmental factors. Recent advancements in genomic analysis have shed light on numerous genes associated with ASD, highlighting the significant role of both common and rare genetic mutations, as well as copy number variations (CNVs), single nucleotide polymorphisms (SNPs) and unique de novo variants. These genetic variations disrupt neurodevelopmental pathways, contributing to the disorder's complexity. Notably, CNVs are present in 10 %-20 % of individuals with autism, with 3 %-7 % detectable through cytogenetic methods. While the role of submicroscopic CNVs in ASD has been recently studied, their association with genomic loci and genes has not been thoroughly explored. In this review, we focus on 47 CNV regions linked to ASD, encompassing 1632 genes, including protein-coding genes and long non-coding RNAs (lncRNAs), of which 659 show significant brain expression. Using a list of ASD-associated genes from SFARI, we detect 17 regions harboring at least one known ASD-related protein-coding gene. Of the remaining 30 regions, we identify 24 regions containing at least one protein-coding gene with brain-enriched expression and a nervous system phenotype in mouse mutants, and one lncRNA with both brain-enriched expression and upregulation in iPSC to neuron differentiation. This review not only expands our understanding of the genetic diversity associated with ASD but also underscores the potential of lncRNAs in contributing to its etiology. Additionally, the discovered CNVs will be a valuable resource for future diagnostic, therapeutic, and research endeavors aimed at prioritizing genetic variations in ASD.
Collapse
Affiliation(s)
- Seyedeh Sedigheh Abedini
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; School of Biotechnology & Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Shiva Akhavantabasi
- Department of Molecular Biology and Genetics, Yeni Yuzyil University, Istanbul, Turkey; Ghiaseddin Jamshid Kashani University, Andisheh University Town, Danesh Blvd, 3441356611, Abyek, Qazvin, Iran
| | - Yuheng Liang
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Julian Ik-Tsen Heng
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6845, Australia
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Victoria, Australia
| | - Iman Dehzangi
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA; Department of Computer Science, Rutgers University, Camden, NJ 08102, USA
| | - Denis C Bauer
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney, Australia; Applied BioSciences, Faculty of Science and Engineering, Macquarie University, Macquarie Park, Australia
| | - Hamid Alinejad-Rokny
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
14
|
Wu X, Zhang Z, Qiu Z, Wu X, Chen J, Liu L, Liu X, Zhao S, Yang Y, Zhao Y. TNIK in disease: from molecular insights to therapeutic prospects. Apoptosis 2024:10.1007/s10495-024-01987-w. [PMID: 38853204 DOI: 10.1007/s10495-024-01987-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
TRAF2 and NCK interacting kinase (TNIK), a critical interacting protein kinase, is currently receiving wide attention. TNIK is found in various human body organs and tissues and participates in cell motility, proliferation, and differentiation. On the one hand, its aberrant expression is related to the onset and progression of numerous malignant tumors. On the other hand, TNIK is important in neuronal growth, proliferation, differentiation, and synaptic formation. Thus, the novel therapeutic strategies for targeting TNIK offer a promising direction for cancer, neurological or psychotic disorders. Here, we briefly summarized the biological information of TNIK, reviewed the role and regulatory mechanism in cancer and neuropsychiatric diseases, and introduced the research progress of inhibitors targeting TNIK. Taken together, this review hopes to contribute to the in-depth understanding of the function and regulatory mechanism of TNIK, which is of great significance for revealing the role of TNIK in the occurrence and treatment of diseases.
Collapse
Affiliation(s)
- Xue Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Zhe Zhang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Zhenye Qiu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Xiaopeng Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Junmin Chen
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Lu Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Xiaoyi Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Shiyan Zhao
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China.
| | - Ye Zhao
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
15
|
KIRIŞ İ, KARAYEL BAŞAR M, GÜREL B, MROCZEK T, BAYKAL AT. O-demethyl galantamine alters protein expression in cerebellum of 5xFAD mice. Turk J Biol 2024; 48:163-173. [PMID: 39050707 PMCID: PMC11265889 DOI: 10.55730/1300-0152.2692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/26/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Background/aim Alzheimer's disease (AD), one of the most common health issues, is characterized by memory loss, severe behavioral disorders, and eventually death. Despite many studies, there are still no drugs that can treat AD or stop it from progressing. Previous in vitro tests showed that O-demethyl galantamine (ODG) might have therapeutic potential owing to its 10 times higher acetylcholinesterase inhibitory activity than galantamine (GAL). Materials and methods We aimed to assess the effect of ODG at the molecular level in a 12-month-old 5xFAD Alzheimer's mouse model. To this end, following the administrations of ODG and GAL (used as a positive control), protein alterations were investigated in the cortex, hippocampus, and cerebellum regions of the brain. Surprisingly, GAL altered proteins prominently in the cortex, while ODG exclusively exerted its effect on the cerebellum. Results GNB1, GNB2, NDUFS6, PAK2, and RhoA proteins were identified as the top 5 hub proteins in the cerebellum of ODG-treated mice. Reregulation of these proteins through Ras signaling and retrograde endocannabinoid signaling pathways, which were found to be enriched, might contribute to reversing AD-induced molecular changes. Conclusion We suggest that, since it targets specifically the cerebellum, ODG may be further evaluated for combination therapies for AD.
Collapse
Affiliation(s)
- İrem KIRIŞ
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, İstanbul,
Turkiye
- Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul,
Turkiye
| | - Merve KARAYEL BAŞAR
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, İstanbul,
Turkiye
| | - Büşra GÜREL
- Nanotechnology Research and Application Center, SUNUM, Sabancı University, İstanbul,
Turkiye
| | - Tomasz MROCZEK
- Chair and Department of Pharmacognosy, Medical University of Lublin, Lublin,
Poland
| | - Ahmet Tarık BAYKAL
- Department of Medical Biochemistry, Faculty of Medicine, Acıbadem Mehmet Ali Aydınlar University, İstanbul,
Turkiye
| |
Collapse
|
16
|
Hong W, Gong P, Pan X, Liu Y, Qi G, Qi C, Qin S. Krüppel-like factor 7 deficiency disrupts corpus callosum development and neuronal migration in the developing mouse cerebral cortex. Brain Pathol 2023; 33:e13186. [PMID: 37401095 PMCID: PMC10467035 DOI: 10.1111/bpa.13186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/16/2023] [Indexed: 07/05/2023] Open
Abstract
Krüppel-like Factor 7 (KLF7) is a zinc finger transcription factor that has a critical role in cellular differentiation, tumorigenesis, and regeneration. Mutations in Klf7 are associated with autism spectrum disorder, which is characterized by neurodevelopmental delay and intellectual disability. Here we show that KLF7 regulates neurogenesis and neuronal migration during mouse cortical development. Conditional depletion of KLF7 in neural progenitor cells resulted in agenesis of the corpus callosum, defects in neurogenesis, and impaired neuronal migration in the neocortex. Transcriptomic profiling analysis indicated that KLF7 regulates a cohort of genes involved in neuronal differentiation and migration, including p21 and Rac3. These findings provide insights into our understanding of the potential mechanisms underlying neurological defects associated with Klf7 mutations.
Collapse
Affiliation(s)
- Wentong Hong
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Pifang Gong
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Xinjie Pan
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Yitong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Guibo Qi
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Congcong Qi
- Department of Laboratory Animal ScienceFudan UniversityShanghaiChina
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
17
|
Nilsson G, Mottahedin A, Zelco A, Lauschke VM, Ek CJ, Song J, Ardalan M, Hua S, Zhang X, Mallard C, Hagberg H, Leavenworth JW, Wang X. Two different isoforms of osteopontin modulate myelination and axonal integrity. FASEB Bioadv 2023; 5:336-353. [PMID: 37554545 PMCID: PMC10405251 DOI: 10.1096/fba.2023-00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 08/10/2023] Open
Abstract
Abnormal myelination underlies the pathology of white matter diseases such as preterm white matter injury and multiple sclerosis. Osteopontin (OPN) has been suggested to play a role in myelination. Murine OPN mRNA is translated into a secreted isoform (sOPN) or an intracellular isoform (iOPN). Whether there is an isoform-specific involvement of OPN in myelination is unknown. Here we generated mouse models that either lacked both OPN isoforms in all cells (OPN-KO) or lacked sOPN systemically but expressed iOPN specifically in oligodendrocytes (OLs-iOPN-KI). Transcriptome analysis of isolated oligodendrocytes from the neonatal brain showed that genes and pathways related to increase of myelination and altered cell cycle control were enriched in the absence of the two OPN isoforms in OPN-KO mice compared to control mice. Accordingly, adult OPN-KO mice showed an increased axonal myelination, as revealed by transmission electron microscopy imaging, and increased expression of myelin-related proteins. In contrast, neonatal oligodendrocytes from OLs-iOPN-KI mice compared to control mice showed differential regulation of genes and pathways related to the increase of cell adhesion, motility, and vasculature development, and the decrease of axonal/neuronal development. OLs-iOPN-KI mice showed abnormal myelin formation in the early phase of myelination in young mice and signs of axonal degeneration in adulthood. These results suggest an OPN isoform-specific involvement, and a possible interplay between the isoforms, in myelination, and axonal integrity. Thus, the two isoforms of OPN need to be separately considered in therapeutic strategies targeting OPN in white matter injury and diseases.
Collapse
Affiliation(s)
- Gisela Nilsson
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Amin Mottahedin
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Aura Zelco
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Volker M. Lauschke
- Department of Physiology and PharmacologyKarolinska InstituteStockholmSweden
- Dr Margarete Fischer‐Bosch Institute of Clinical PharmacologyStuttgartGermany
- University of TübingenTübingenGermany
| | - C. Joakim Ek
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Juan Song
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Henan Key Laboratory of Child Brain InjuryInstitute of Neuroscience and Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Maryam Ardalan
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Sha Hua
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Cardiology, Ruijin Hospital/Luwan Branch, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoli Zhang
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Henan Key Laboratory of Child Brain InjuryInstitute of Neuroscience and Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Carina Mallard
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine & Health, Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Jianmei W. Leavenworth
- Department of NeurosurgeryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Xiaoyang Wang
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Henan Key Laboratory of Child Brain InjuryInstitute of Neuroscience and Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Centre of Perinatal Medicine & Health, Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
18
|
Wang Y, Zhang K, Guo J, Yang S, Shi X, Pan J, Sun Z, Zou J, Li Y, Li Y, Fan T, Song W, Cheng F, Zeng C, Li J, Zhang T, Sun ZS. Loss-of-Function of p21-Activated Kinase 2 Links BMP Signaling to Neural Tube Patterning Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204018. [PMID: 36504449 PMCID: PMC9896034 DOI: 10.1002/advs.202204018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Closure of the neural tube represents a highly complex and coordinated process, the failure of which constitutes common birth defects. The serine/threonine kinase p21-activated kinase 2 (PAK2) is a critical regulator of cytoskeleton dynamics; however, its role in the neurulation and pathogenesis of neural tube defects (NTDs) remains unclear. Here, the results show that Pak2-/- mouse embryos fail to develop dorsolateral hinge points (DLHPs) and exhibit craniorachischisis, a severe phenotype of NTDs. Pak2 knockout activates BMP signaling that involves in vertebrate bone formation. Single-cell transcriptomes reveal abnormal differentiation trajectories and transcriptional events in Pak2-/- mouse embryos during neural tube development. Two nonsynonymous and one recurrent splice-site mutations in the PAK2 gene are identified in five human NTD fetuses, which exhibit attenuated PAK2 expression and upregulated BMP signaling in the brain. Mechanistically, PAK2 regulates Smad9 phosphorylation to inhibit BMP signaling and ultimately induce DLHP formation. Depletion of pak2a in zebrafish induces defects in the neural tube, which are partially rescued by the overexpression of wild-type, but not mutant PAK2. The findings demonstrate the conserved role of PAK2 in neurulation in multiple vertebrate species, highlighting the molecular pathogenesis of PAK2 mutations in NTDs.
Collapse
Affiliation(s)
- Yan Wang
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijing100101China
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijing100049China
| | - Kaifan Zhang
- Institute of Genomic MedicineWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and NutriomicsCapital Institute of PediatricsBeijing100020China
| | - Shuyan Yang
- Beijing Municipal Key Laboratory of Child Development and NutriomicsCapital Institute of PediatricsBeijing100020China
| | - Xiaohui Shi
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijing100101China
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jinrong Pan
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijing100101China
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijing100049China
| | - Zheng Sun
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijing100101China
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jizhen Zou
- Beijing Municipal Key Laboratory of Child Development and NutriomicsCapital Institute of PediatricsBeijing100020China
| | - Yi Li
- Institute of Genomic MedicineWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Yuanyuan Li
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijing100101China
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijing100049China
| | - Tianda Fan
- Institute of Genomic MedicineWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Wei Song
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijing100101China
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijing100049China
| | - Fang Cheng
- Institute of Genomic MedicineWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Cheng Zeng
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijing100101China
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jinchen Li
- Bioinformatics Center & National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410078China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and NutriomicsCapital Institute of PediatricsBeijing100020China
| | - Zhong Sheng Sun
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijing100101China
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijing100049China
- Institute of Genomic MedicineWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Integrated Management of Pest Insects and RodentsChinese Academy of SciencesBeijing100101China
| |
Collapse
|
19
|
Qiu X, Xu H, Wang K, Gao F, Xu X, He H. P-21 Activated Kinases in Liver Disorders. Cancers (Basel) 2023; 15:cancers15020551. [PMID: 36672500 PMCID: PMC9857091 DOI: 10.3390/cancers15020551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The p21 Activated Kinases (PAKs) are serine threonine kinases and play important roles in many biological processes, including cell growth, survival, cytoskeletal organization, migration, and morphology. Recently, PAKs have emerged in the process of liver disorders, including liver cancer, hepatic ischemia-reperfusion injury, hepatitis, and liver fibrosis, owing to their effects in multiple signaling pathways in various cell types. Activation of PAKs promotes liver cancer growth and metastasis and contributes to the resistance of liver cancer to radiotherapy and chemotherapy, leading to poor survival of patients. PAKs also play important roles in the development and progression of hepatitis and other pathological processes of the liver such as fibrosis and ischemia-reperfusion injury. In this review, we have summarized the currently available studies about the role of PAKs in liver disorders and the mechanisms involved, and further explored the potential therapeutic application of PAK inhibitors in liver disorders, with the aim to provide a comprehensive overview on current progress and perspectives of PAKs in liver disorders.
Collapse
Affiliation(s)
- Xun Qiu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hanzhi Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Correspondence: (K.W.); (H.H.)
| | - Fengqiang Gao
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou 310058, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Hong He
- Department of Surgery, University of Melbourne, Austin Health, 145 Studley Rd., Heidelberg, VIC 3084, Australia
- Correspondence: (K.W.); (H.H.)
| |
Collapse
|
20
|
Dobrigna M, Poëa-Guyon S, Rousseau V, Vincent A, Toutain A, Barnier JV. The molecular basis of p21-activated kinase-associated neurodevelopmental disorders: From genotype to phenotype. Front Neurosci 2023; 17:1123784. [PMID: 36937657 PMCID: PMC10017488 DOI: 10.3389/fnins.2023.1123784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Although the identification of numerous genes involved in neurodevelopmental disorders (NDDs) has reshaped our understanding of their etiology, there are still major obstacles in the way of developing therapeutic solutions for intellectual disability (ID) and other NDDs. These include extensive clinical and genetic heterogeneity, rarity of recurrent pathogenic variants, and comorbidity with other psychiatric traits. Moreover, a large intragenic mutational landscape is at play in some NDDs, leading to a broad range of clinical symptoms. Such diversity of symptoms is due to the different effects DNA variations have on protein functions and their impacts on downstream biological processes. The type of functional alterations, such as loss or gain of function, and interference with signaling pathways, has yet to be correlated with clinical symptoms for most genes. This review aims at discussing our current understanding of how the molecular changes of group I p21-activated kinases (PAK1, 2 and 3), which are essential actors of brain development and function; contribute to a broad clinical spectrum of NDDs. Identifying differences in PAK structure, regulation and spatio-temporal expression may help understanding the specific functions of each group I PAK. Deciphering how each variation type affects these parameters will help uncover the mechanisms underlying mutation pathogenicity. This is a prerequisite for the development of personalized therapeutic approaches.
Collapse
Affiliation(s)
- Manon Dobrigna
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Sandrine Poëa-Guyon
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Véronique Rousseau
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Aline Vincent
- Department of Genetics, EA7450 BioTARGen, University Hospital of Caen, Caen, France
| | - Annick Toutain
- Department of Genetics, University Hospital of Tours, UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
- *Correspondence: Jean-Vianney Barnier,
| |
Collapse
|
21
|
Saunders GRB, Wang X, Chen F, Jang SK, Liu M, Wang C, Gao S, Jiang Y, Khunsriraksakul C, Otto JM, Addison C, Akiyama M, Albert CM, Aliev F, Alonso A, Arnett DK, Ashley-Koch AE, Ashrani AA, Barnes KC, Barr RG, Bartz TM, Becker DM, Bielak LF, Benjamin EJ, Bis JC, Bjornsdottir G, Blangero J, Bleecker ER, Boardman JD, Boerwinkle E, Boomsma DI, Boorgula MP, Bowden DW, Brody JA, Cade BE, Chasman DI, Chavan S, Chen YDI, Chen Z, Cheng I, Cho MH, Choquet H, Cole JW, Cornelis MC, Cucca F, Curran JE, de Andrade M, Dick DM, Docherty AR, Duggirala R, Eaton CB, Ehringer MA, Esko T, Faul JD, Fernandes Silva L, Fiorillo E, Fornage M, Freedman BI, Gabrielsen ME, Garrett ME, Gharib SA, Gieger C, Gillespie N, Glahn DC, Gordon SD, Gu CC, Gu D, Gudbjartsson DF, Guo X, Haessler J, Hall ME, Haller T, Harris KM, He J, Herd P, Hewitt JK, Hickie I, Hidalgo B, Hokanson JE, Hopfer C, Hottenga J, Hou L, Huang H, Hung YJ, Hunter DJ, Hveem K, Hwang SJ, Hwu CM, Iacono W, Irvin MR, Jee YH, Johnson EO, Joo YY, Jorgenson E, Justice AE, Kamatani Y, Kaplan RC, Kaprio J, Kardia SLR, Keller MC, Kelly TN, Kooperberg C, Korhonen T, Kraft P, Krauter K, Kuusisto J, Laakso M, Lasky-Su J, Lee WJ, Lee JJ, Levy D, Li L, Li K, Li Y, Lin K, Lind PA, Liu C, Lloyd-Jones DM, Lutz SM, Ma J, Mägi R, Manichaikul A, Martin NG, Mathur R, Matoba N, McArdle PF, McGue M, McQueen MB, Medland SE, Metspalu A, Meyers DA, Millwood IY, Mitchell BD, Mohlke KL, Moll M, Montasser ME, Morrison AC, Mulas A, Nielsen JB, North KE, Oelsner EC, Okada Y, Orrù V, Palmer ND, Palviainen T, Pandit A, Park SL, Peters U, Peters A, Peyser PA, Polderman TJC, Rafaels N, Redline S, Reed RM, Reiner AP, Rice JP, Rich SS, Richmond NE, Roan C, Rotter JI, Rueschman MN, Runarsdottir V, Saccone NL, Schwartz DA, Shadyab AH, Shi J, Shringarpure SS, Sicinski K, Skogholt AH, Smith JA, Smith NL, Sotoodehnia N, Stallings MC, Stefansson H, Stefansson K, Stitzel JA, Sun X, Syed M, Tal-Singer R, Taylor AE, Taylor KD, Telen MJ, Thai KK, Tiwari H, Turman C, Tyrfingsson T, Wall TL, Walters RG, Weir DR, Weiss ST, White WB, Whitfield JB, Wiggins KL, Willemsen G, Willer CJ, Winsvold BS, Xu H, Yanek LR, Yin J, Young KL, Young KA, Yu B, Zhao W, Zhou W, Zöllner S, Zuccolo L, Batini C, Bergen AW, Bierut LJ, David SP, Gagliano Taliun SA, Hancock DB, Jiang B, Munafò MR, Thorgeirsson TE, Liu DJ, Vrieze S. Genetic diversity fuels gene discovery for tobacco and alcohol use. Nature 2022; 612:720-724. [PMID: 36477530 PMCID: PMC9771818 DOI: 10.1038/s41586-022-05477-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/25/2022] [Indexed: 12/12/2022]
Abstract
Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury1-4. These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries5. Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction.
Collapse
Affiliation(s)
| | - Xingyan Wang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Fang Chen
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Seon-Kyeong Jang
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Mengzhen Liu
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Chen Wang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Shuang Gao
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Yu Jiang
- Department of Epidemiology & Population Health at Stanford University, Stanford, CA, USA
| | | | - Jacqueline M Otto
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Clifton Addison
- Jackson Heart Study (JHS) Graduate Training and Education Center (GTEC), Department of Epidemiology and Biostatistics, School of Public Health, Jackson State University, Jackson, MS, USA
| | - Masato Akiyama
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Ocular Pathology and Imaging Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Christine M Albert
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Fazil Aliev
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Donna K Arnett
- Dean's Office and Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Allison E Ashley-Koch
- Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University School of Medicine, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Aneel A Ashrani
- Division of Hematology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Kathleen C Barnes
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Tempus, Chicago, IL, USA
| | - R Graham Barr
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Diane M Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Emelia J Benjamin
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | | | - Jason D Boardman
- Institute of Behavioral Science, University of Colorado Boulder, Boulder, CO, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dorret I Boomsma
- Netherlands Twin Register, Dept Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Meher Preethi Boorgula
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sameer Chavan
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Iona Cheng
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hélène Choquet
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, USA
| | - John W Cole
- Department of Neurology, Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
- Division of Vascular Neurology, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Mariza de Andrade
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Danielle M Dick
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Anna R Docherty
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Virginia, USA
- Huntsman Mental Health Institute, Salt Lake City, UT, USA
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Charles B Eaton
- Department of Family Medicine, Brown University, Providence, RI, USA
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Lilian Fernandes Silva
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Barry I Freedman
- Department of Internal Medicine-Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Maiken E Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Melanie E Garrett
- Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University School of Medicine, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sina A Gharib
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Lung Biology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nathan Gillespie
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Virginia, USA
| | - David C Glahn
- Department of Psychiatry & Behavioral Sciences, Boston Children's Hospital & Harvard Medical School, Boston, MA, USA
| | - Scott D Gordon
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Charles C Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Dongfeng Gu
- Department of Epidemiology and Key Laboratory of Cardiovascular Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jeffrey Haessler
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michael E Hall
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Toomas Haller
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kathleen Mullan Harris
- Department of Sociology and the Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jiang He
- Department of Epidemiology, Tulane University, New Orleans, LA, USA
- Translational Sciences Institute, Tulane University, New Orleans, LA, USA
| | - Pamela Herd
- McCourt School of Public Policy, Georgetown University, Washington, DC, USA
| | - John K Hewitt
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department Of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Ian Hickie
- Youth Mental Health & Technology Team, Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Bertha Hidalgo
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John E Hokanson
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christian Hopfer
- Department of Psychiatry, University of Colorado Anschutz Medical Center, Denver, CO, USA
| | - JoukeJan Hottenga
- Netherlands Twin Register, Dept Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hongyan Huang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yi-Jen Hung
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan
| | - David J Hunter
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Research, Innovation and Education, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Shih-Jen Hwang
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - William Iacono
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Marguerite R Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yon Ho Jee
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric O Johnson
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, NC, USA
- Fellow Program, RTI International, Research Triangle Park, NC, USA
| | - Yoonjung Y Joo
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Institute of Data Science, Korea University, Seoul, South Korea
| | | | - Anne E Justice
- Department of Population Health Sciences, Geisinger, Danville, PA, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Robert C Kaplan
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland - FIMM, University of Helsinki, Helsinki, Finland
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Matthew C Keller
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department Of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University, New Orleans, LA, USA
- Translational Sciences Institute, Tulane University, New Orleans, LA, USA
| | - Charles Kooperberg
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tellervo Korhonen
- Institute for Molecular Medicine Finland - FIMM, University of Helsinki, Helsinki, Finland
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kenneth Krauter
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
- Center for Medicine and Clinical Research, Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Jessica Lasky-Su
- Brigham and Women's Hospital, Department of Medicine, Channing Division of Network Medicine, Boston, MA, USA
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - James J Lee
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Kevin Li
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Yuqing Li
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
| | - Kuang Lin
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Penelope A Lind
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Donald M Lloyd-Jones
- Departments of Preventive Medicine, Medicine, and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sharon M Lutz
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Department of Biostatics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jiantao Ma
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Nutrition Epidemiology and Data Science, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Reedik Mägi
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ravi Mathur
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Nana Matoba
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Genetics, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick F McArdle
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matt McGue
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Matthew B McQueen
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | - Iona Y Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Braxton D Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew Moll
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - May E Montasser
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonella Mulas
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Jonas B Nielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth C Oelsner
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Yukinori Okada
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland - FIMM, University of Helsinki, Helsinki, Finland
| | - Anita Pandit
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - S Lani Park
- Population Sciences of the Pacific Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig Maximilians University Munich, Munich, Germany
- German Centre for Cardiovascular Research, DZHK, Partner Site Munich, Munich, Germany
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Tinca J C Polderman
- Department of Clinical Developmental Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry, Amsterdam UMC, Amsterdam, The Netherlands
| | - Nicholas Rafaels
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Robert M Reed
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alex P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - John P Rice
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nicole E Richmond
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carol Roan
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Michael N Rueschman
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Nancy L Saccone
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - David A Schwartz
- Division of Pulmonary Sciences and Critical Care Medicine; Department of Medicine and Immunology, University of Colorado, Aurora, CO, USA
| | - Aladdin H Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Kamil Sicinski
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, USA
| | - Anne Heidi Skogholt
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, USA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael C Stallings
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department Of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | | | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Xiao Sun
- Department of Epidemiology, Tulane University, New Orleans, LA, USA
| | - Moin Syed
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | | | - Amy E Taylor
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
- National Institute for Health Research Biomedical Research Centre at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marilyn J Telen
- Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University School of Medicine, Durham, NC, USA
| | - Khanh K Thai
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, USA
| | - Hemant Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Tamara L Wall
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Robin G Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Scott T Weiss
- Brigham and Women's Hospital, Department of Medicine, Channing Division of Network Medicine, Boston, MA, USA
| | - Wendy B White
- Jackson Heart Study Undergraduate Training and Education Center, Tougaloo College, Tougaloo, MS, USA
| | - John B Whitfield
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kerri L Wiggins
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gonneke Willemsen
- Netherlands Twin Register, Dept Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Bendik S Winsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Huichun Xu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jie Yin
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, USA
| | - Kristin L Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kendra A Young
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bing Yu
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Sebastian Zöllner
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Luisa Zuccolo
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Health Data Science Centre, Fondazione Human Technopole, Milan, Italy
| | - Chiara Batini
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Andrew W Bergen
- Oregon Research Institute, Springfield, OR, USA
- BioRealm, LLC, Walnut, CA, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Sean P David
- Outcomes Research Network & Department of Family Medicine, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Family Medicine, University of Chicago, Chicago, IL, USA
| | - Sarah A Gagliano Taliun
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- Research Centre, Montréal Heart Institute, Montréal, Québec, Canada
| | - Dana B Hancock
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Bibo Jiang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Marcus R Munafò
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
- National Institute for Health Research Biomedical Research Centre at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK
- School of Psychological Science, University of Bristol, Bristol, UK
| | | | - Dajiang J Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA.
| | - Scott Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
22
|
Chetty AK, Ha BH, Boggon TJ. Rho family GTPase signaling through type II p21-activated kinases. Cell Mol Life Sci 2022; 79:598. [PMID: 36401658 PMCID: PMC10105373 DOI: 10.1007/s00018-022-04618-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
Signaling from the Rho family small GTPases controls a wide range of signaling outcomes. Key among the downstream effectors for many of the Rho GTPases are the p21-activated kinases, or PAK group. The PAK family comprises two types, the type I PAKs (PAK1, 2 and 3) and the type II PAKs (PAK4, 5 and 6), which have distinct structures and mechanisms of regulation. In this review, we discuss signal transduction from Rho GTPases with a focus on the type II PAKs. We discuss the role of PAKs in signal transduction pathways and selectivity of Rho GTPases for PAK family members. We consider the less well studied of the Rho GTPases and their PAK-related signaling. We then discuss the molecular basis for kinase domain recognition of substrates and for regulation of signaling. We conclude with a discussion of the role of PAKs in cross talk between Rho family small GTPases and the roles of PAKs in disease.
Collapse
Affiliation(s)
- Ashwin K Chetty
- Yale College, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Byung Hak Ha
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
23
|
Inka2, a novel Pak4 inhibitor, regulates actin dynamics in neuronal development. PLoS Genet 2022; 18:e1010438. [PMID: 36301793 PMCID: PMC9612522 DOI: 10.1371/journal.pgen.1010438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022] Open
Abstract
The actin filament is a fundamental part of the cytoskeleton defining cell morphology and regulating various physiological processes, including filopodia formation and dendritic spinogenesis of neurons. Serine/threonine-protein kinase Pak4, an essential effector, links Rho GTPases to control actin polymerization. Previously, we identified the Inka2 gene, a novel mammalian protein exhibiting sequence similarity to Inka1, which serves as a possible inhibitor for Pak4. Although Inka2 is dominantly expressed in the nervous system and involved in focal-adhesion dynamics, its molecular role remains unclear. Here, we found that Inka2-iBox directly binds to Pak4 catalytic domain to suppress actin polymerization. Inka2 promoted actin depolymerization and inhibited the formation of cellular protrusion caused by Pak4 activation. We further generated the conditional knockout mice of the Inka2 gene. The beta-galactosidase reporter indicated the preferential Inka2 expression in the dorsal forebrain neurons. Cortical pyramidal neurons of Inka2-/- mice exhibited decreased density and aberrant morphology of dendritic spines with marked activation/phosphorylation of downstream molecules of Pak4 signal cascade, including LIMK and Cofilin. These results uncovered the unexpected function of endogenous Pak4 inhibitor in neurons. Unlike Inka1, Inka2 is a critical mediator for actin reorganization required for dendritic spine development. Actin filaments are an essential part of the cytoskeleton defining cell morphology and regulating various cellular processes, such as cell migration and synapse formation in the brain. Actin polymerization is controlled by the kinase activity of the Pak4 signaling cascade, including LIMK and Cofilin. Previously, we identified the Inka2 gene, which is strongly expressed in the mammalian central nervous system and a similar sequence as Inka1. Inka1 was reported to serve as a Pak4 inhibitor in cancer cell lines; however, the physiological function of Inka2 is unclear. In this study, we found that (i) Inka2 overexpression inhibits the formation of cell-protrusion caused by Pak4 activation; (ii) Inka2 directly binds to the catalytic domain of Pak4 to inhibit intracellular actin polymerization; (iii) Inka2 is specifically expressed in neurons in the forebrain region, including the cerebral cortex and hippocampus that are known to be essential for brain plasticity, such as learning and memory; and (iv) cortical neurons of Inka2-deficient mice showed decreased synapse formation and abnormal spine morphology, probably due to the marked phosphorylation of LIMK and Cofilin. These results indicate that Inka2 is an endogenous Pak4 inhibitor in neurons required for normal synapse formation through the modulation of actin reorganization.
Collapse
|
24
|
Li Y, Lu Q, Xie C, Yu Y, Zhang A. Recent advances on development of p21-activated kinase 4 inhibitors as anti-tumor agents. Front Pharmacol 2022; 13:956220. [PMID: 36105226 PMCID: PMC9465411 DOI: 10.3389/fphar.2022.956220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/20/2022] [Indexed: 12/05/2022] Open
Abstract
The p21-activated kinase 4 (PAK4) is a member of the PAKs family. It is overexpressed in multiple tumor tissues. Pharmacological inhibition of PAK4 attenuates proliferation, migration, and invasion of cancer cells. Recent studies revealed that inhibition of PAK4 sensitizes immunotherapy which has been extensively exploited as a new strategy to treat cancer. In the past few years, a large number of PAK4 inhibitors have been reported. Of note, the allosteric inhibitor KPT-9274 has been tested in phase Ⅰ clinic trials. Herein, we provide an update on recent research progress on the PAK4 mediated signaling pathway and highlight the development of the PAK4 small molecular inhibitors in recent 5 years. Meanwhile, challenges, limitations, and future developmental directions will be discussed as well.
Collapse
Affiliation(s)
- Yang Li
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Lu
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Chenghu Xie
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Yu
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ao Zhang
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Ao Zhang,
| |
Collapse
|
25
|
Scala M, Nishikawa M, Ito H, Tabata H, Khan T, Accogli A, Davids L, Ruiz A, Chiurazzi P, Cericola G, Schulte B, Monaghan KG, Begtrup A, Torella A, Pinelli M, Denommé-Pichon AS, Vitobello A, Racine C, Mancardi MM, Kiss C, Guerin A, Wu W, Gabau Vila E, Mak BC, Martinez-Agosto JA, Gorin MB, Duz B, Bayram Y, Carvalho CMB, Vengoechea JE, Chitayat D, Tan TY, Callewaert B, Kruse B, Bird LM, Faivre L, Zollino M, Biskup S, Striano P, Nigro V, Severino M, Capra V, Costain G, Nagata KI. Variant-specific changes in RAC3 function disrupt corticogenesis in neurodevelopmental phenotypes. Brain 2022; 145:3308-3327. [PMID: 35851598 PMCID: PMC9473360 DOI: 10.1093/brain/awac106] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/01/2022] [Accepted: 03/13/2022] [Indexed: 01/17/2023] Open
Abstract
Variants in RAC3, encoding a small GTPase RAC3 which is critical for the regulation of actin cytoskeleton and intracellular signal transduction, are associated with a rare neurodevelopmental disorder with structural brain anomalies and facial dysmorphism. We investigated a cohort of 10 unrelated participants presenting with global psychomotor delay, hypotonia, behavioural disturbances, stereotyped movements, dysmorphic features, seizures and musculoskeletal abnormalities. MRI of brain revealed a complex pattern of variable brain malformations, including callosal abnormalities, white matter thinning, grey matter heterotopia, polymicrogyria/dysgyria, brainstem anomalies and cerebellar dysplasia. These patients harboured eight distinct de novo RAC3 variants, including six novel variants (NM_005052.3): c.34G > C p.G12R, c.179G > A p.G60D, c.186_188delGGA p.E62del, c.187G > A p.D63N, c.191A > G p.Y64C and c.348G > C p.K116N. We then examined the pathophysiological significance of these novel and previously reported pathogenic variants p.P29L, p.P34R, p.A59G, p.Q61L and p.E62K. In vitro analyses revealed that all tested RAC3 variants were biochemically and biologically active to variable extent, and exhibited a spectrum of different affinities to downstream effectors including p21-activated kinase 1. We then focused on the four variants p.Q61L, p.E62del, p.D63N and p.Y64C in the Switch II region, which is essential for the biochemical activity of small GTPases and also a variation hot spot common to other Rho family genes, RAC1 and CDC42. Acute expression of the four variants in embryonic mouse brain using in utero electroporation caused defects in cortical neuron morphology and migration ending up with cluster formation during corticogenesis. Notably, defective migration by p.E62del, p.D63N and p.Y64C were rescued by a dominant negative version of p21-activated kinase 1. Our results indicate that RAC3 variants result in morphological and functional defects in cortical neurons during brain development through variant-specific mechanisms, eventually leading to heterogeneous neurodevelopmental phenotypes.
Collapse
Affiliation(s)
| | | | | | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Tayyaba Khan
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrea Accogli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Laura Davids
- Department of Human Genetics, Emory Healthcare, Atlanta, GA 30322, USA
| | - Anna Ruiz
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de, Barcelona, Sabadell, Spain
| | - Pietro Chiurazzi
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica Sacro Cuore, Rome, Italy,Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gabriella Cericola
- Neuropediatric Department, Helios-Klinikum Hildesheim, Hildesheim, Germany
| | | | | | | | - Annalaura Torella
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy,Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Michele Pinelli
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Anne Sophie Denommé-Pichon
- INSERM UMR1231 Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, Dijon, France,Laboratoire de Génétique Moléculaire, UF Innovation en diagnostic génomique des maladies rares, Plateau Technique de Biologie, CHU de Dijon Bourgogne, Dijon, France,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon Bourgogne, Dijon, France
| | - Antonio Vitobello
- INSERM UMR1231 Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, Dijon, France,Laboratoire de Génétique Moléculaire, UF Innovation en diagnostic génomique des maladies rares, Plateau Technique de Biologie, CHU de Dijon Bourgogne, Dijon, France
| | - Caroline Racine
- Laboratoire de Génétique Moléculaire, UF Innovation en diagnostic génomique des maladies rares, Plateau Technique de Biologie, CHU de Dijon Bourgogne, Dijon, France,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon Bourgogne, Dijon, France
| | - Maria Margherita Mancardi
- Unit of Child Neuropsychiatry, Department of Medical and Surgical Neuroscience and Rehabilitation, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Courtney Kiss
- Division of Medical Genetics, Department of Pediatrics, Queen’s University, Kingston, ON K7L 2V7, Canada
| | - Andrea Guerin
- Division of Medical Genetics, Department of Pediatrics, Queen’s University, Kingston, ON K7L 2V7, Canada
| | - Wendy Wu
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada,Queen’s University, Kingston, ON, Canada
| | - Elisabeth Gabau Vila
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de, Barcelona, Sabadell, Spain
| | - Bryan C Mak
- Department of Human Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Julian A Martinez-Agosto
- Department of Human Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA,Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Michael B Gorin
- Department of Human Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA,Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, UCLA, Los Angeles 90095, CA, USA,Brain Research Institute, UCLA, Los Angeles 90095, CA, USA
| | - Bugrahan Duz
- Haseki Training and Research Hospital, Istanbul, Turkey
| | - Yavuz Bayram
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Claudia M B Carvalho
- Pacific Northwest Research Institute, Seattle, WA 98122, USA,Baylor College of Medicine, Houston, TX 77030, USA
| | | | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada,Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, and Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Gent, Belgium
| | - Bernd Kruse
- Neuropediatric Department, Helios-Klinikum Hildesheim, Hildesheim, Germany
| | - Lynne M Bird
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA,Genetics/Dysmorphology, Rady Children’s Hospital San Diego, San Diego, CA, USA
| | - Laurence Faivre
- INSERM UMR1231 Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, Dijon, France,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon Bourgogne, Dijon, France
| | - Marcella Zollino
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica Sacro Cuore, Rome, Italy,Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Saskia Biskup
- Praxis für Humangenetik, Tübingen, Germany,CeGaT GmbH, Tübingen, Germany
| | | | | | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy,Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy,Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Valeria Capra
- Correspondence may also be addressed to: Valeria Capra Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy E-mail:
| | - Gregory Costain
- Correspondence may also be addressed to: Gregory Costain Division of Clinical and Metabolic Genetics Department of Pediatrics The Hospital for Sick Children Toronto, Ontario, Canada E-mail:
| | - Koh ichi Nagata
- Correspondence to: Koh-ichi Nagata Department of Molecular Neurobiology Institute for Developmental Research Aichi Human Service Center, 713-8 Kamiya Kasugai, Aichi 480-0392, Japan E-mail:
| |
Collapse
|
26
|
D’Incal C, Broos J, Torfs T, Kooy RF, Vanden Berghe W. Towards Kinase Inhibitor Therapies for Fragile X Syndrome: Tweaking Twists in the Autism Spectrum Kinase Signaling Network. Cells 2022; 11:cells11081325. [PMID: 35456004 PMCID: PMC9029738 DOI: 10.3390/cells11081325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/12/2022] Open
Abstract
Absence of the Fragile X Mental Retardation Protein (FMRP) causes autism spectrum disorders and intellectual disability, commonly referred to as the Fragile X syndrome. FMRP is a negative regulator of protein translation and is essential for neuronal development and synapse formation. FMRP is a target for several post-translational modifications (PTMs) such as phosphorylation and methylation, which tightly regulate its cellular functions. Studies have indicated the involvement of FMRP in a multitude of cellular pathways, and an absence of FMRP was shown to affect several neurotransmitter receptors, for example, the GABA receptor and intracellular signaling molecules such as Akt, ERK, mTOR, and GSK3. Interestingly, many of these molecules function as protein kinases or phosphatases and thus are potentially amendable by pharmacological treatment. Several treatments acting on these kinase-phosphatase systems have been shown to be successful in preclinical models; however, they have failed to convincingly show any improvements in clinical trials. In this review, we highlight the different protein kinase and phosphatase studies that have been performed in the Fragile X syndrome. In our opinion, some of the paradoxical study conclusions are potentially due to the lack of insight into integrative kinase signaling networks in the disease. Quantitative proteome analyses have been performed in several models for the FXS to determine global molecular processes in FXS. However, only one phosphoproteomics study has been carried out in Fmr1 knock-out mouse embryonic fibroblasts, and it showed dysfunctional protein kinase and phosphatase signaling hubs in the brain. This suggests that the further use of phosphoproteomics approaches in Fragile X syndrome holds promise for identifying novel targets for kinase inhibitor therapies.
Collapse
Affiliation(s)
- Claudio D’Incal
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Jitse Broos
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
| | - Thierry Torfs
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
- Correspondence: ; Tel.: +0032-(0)-32-652-657
| |
Collapse
|
27
|
Hu B, Zhang H, Xu M, Li L, Wu M, Zhang S, Liu X, Xia W, Xu K, Xiao J, Zhang H, Ni L. Delivery of Basic Fibroblast Growth Factor Through an In Situ Forming Smart Hydrogel Activates Autophagy in Schwann Cells and Improves Facial Nerves Generation via the PAK-1 Signaling Pathway. Front Pharmacol 2022; 13:778680. [PMID: 35431972 PMCID: PMC9011134 DOI: 10.3389/fphar.2022.778680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Although studies have shown that basic fibroblast growth factor (bFGF) can activate autophagy and promote peripheral nerve repair, the role and the molecular mechanism of action of bFGF in the facial nerve are not clear. In this study, a thermosensitive in situ forming poloxamer hydrogel was used as a vehicle to deliver bFGF for treating facial nerve injury (FNI) in the rat model. Using H&E and Masson’s staining, we found that bFGF hydrogel can promote the functional recovery and regeneration of the facial nerve. Furthermore, studies on the mechanism showed that bFGF can promote FNI recovery by promoting autophagy and inhibiting apoptosis. Additionally, this study demonstrated that the role of hydrogel binding bFGF in nerve repair was mediated through the activation of the PAK1 signaling pathway in Schwann cells (SCs). These results indicated that poloxamer thermosensitive hydrogel loaded with bFGF can significantly restore the morphology and function of the injured facial nerve by promoting autophagy and inhibiting apoptosis by activating the PAK1 pathway, which can provide a promising strategy for FNI recovery.
Collapse
Affiliation(s)
- Binbin Hu
- Department of Otorhinolaryngology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Hanbo Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Menglu Xu
- Department of Otorhinolaryngology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Lei Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Man Wu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Susu Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Xuejun Liu
- Department of Otorhinolaryngology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weidong Xia
- Department of Burn, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jian Xiao, ; Hongyu Zhang, ; Liyan Ni,
| | - Hongyu Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jian Xiao, ; Hongyu Zhang, ; Liyan Ni,
| | - Liyan Ni
- Department of Otorhinolaryngology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jian Xiao, ; Hongyu Zhang, ; Liyan Ni,
| |
Collapse
|
28
|
Li Y, Yao W, Gao Y. Effects of Tang Luo Ning on diabetic peripheral neuropathy in rats revealed by LC-MS metabolomics approach. Biomed Chromatogr 2022; 36:e5374. [PMID: 35302257 DOI: 10.1002/bmc.5374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 11/07/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common complications of diabetes with limited therapies. Tang Luo Ning (TLN), a traditional Chinese medicine compound, has been proved to be effective in the treatment of DPN in clinical and experimental studies. However, the potential metabolic mechanism of TLN for the treatment of DPN is still unclear. Here the therapeutic effect of TLN on DPN was studied, and HPLC-IT-TOF/MS was used to explore the metabolic changes related to DPN and to explore the mechanism of TLN on DPN induced by high glucose. Furthermore, metabolic pathway analysis was used to explore the metabolic changes induced by DPN and TLN. As a result, TLN could improve the peripheral nerve function of DPN rats, and TLN could reduce the demyelination of the sciatic nerve in DPN rats. Metabolomics analysis showed that 14 potential biomarkers (citrate, creatine, fumarate, glyceric acid, glycine, succinate, etc.) of both DPN and TLN treatment were identified. Pathway analysis showed that the changes in these metabolites were mainly related to the citrate cycle (TCA cycle), glycine, serine and threonine metabolism, and glyoxylate and dicarboxylate metabolism.
Collapse
Affiliation(s)
- Yangfan Li
- Department of Traditional Chinese Medcine, Beijing Friendship Hospital, Capital Medical University
| | - Weijie Yao
- Department of pharmacy, Beijing Maternity Hospital, Capital Medical University
| | - Yanbin Gao
- College of Traditional Chinese Medicine, Capital Medical University, No.10, Youanmenwai Xitoutiao, Fengtai District, Beijing, China
| |
Collapse
|
29
|
Nishikawa M, Ito H, Tabata H, Ueda H, Nagata KI. Impaired Function of PLEKHG2, a Rho-Guanine Nucleotide-Exchange Factor, Disrupts Corticogenesis in Neurodevelopmental Phenotypes. Cells 2022; 11:cells11040696. [PMID: 35203342 PMCID: PMC8870177 DOI: 10.3390/cells11040696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Homozygosity of the p.Arg204Trp variation in the Pleckstrin homology and RhoGEF domain containing G2 (PLEKHG2) gene, which encodes a Rho family-specific guanine nucleotide-exchange factor, is responsible for microcephaly with intellectual disability. However, the role of PLEKHG2 during neurodevelopment remains unknown. In this study, we analyzed mouse Plekhg2 function during cortical development, both in vitro and in vivo. The p.Arg200Trp variant in mouse (Plekhg2-RW), which corresponds to the p.Arg204Trp variant in humans, showed decreased guanine nucleotide-exchange activity for Rac1, Rac3, and Cdc42. Acute knockdown of Plekhg2 using in utero electroporation-mediated gene transfer did not affect the migration of excitatory neurons during corticogenesis. On the other hand, silencing Plekhg2 expression delayed dendritic arbor formation at postnatal day 7 (P7), perhaps because of impaired Rac/Cdc42 and p21-activated kinase 1 signaling pathways. This phenotype was rescued by expressing an RNAi-resistant version of wildtype Plekhg2, but not of Plekhg2-RW. Axon pathfinding was also impaired in vitro and in vivo in Plekhg2-deficient cortical neurons. At P14, knockdown of Plekhg2 was observed to cause defects in dendritic spine morphology formation. Collectively, these results strongly suggest that PLEKHG2 has essential roles in the maturation of axon, dendrites, and spines. Moreover, impairment of PLEKHG2 function is most likely to cause defects in neuronal functions that lead to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (M.N.); (H.I.); (H.T.)
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (M.N.); (H.I.); (H.T.)
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (M.N.); (H.I.); (H.T.)
| | - Hiroshi Ueda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan;
| | - Koh-ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (M.N.); (H.I.); (H.T.)
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan
- Correspondence: ; Tel.: +81-568-88-0811
| |
Collapse
|
30
|
The Use of Nanomedicine to Target Signaling by the PAK Kinases for Disease Treatment. Cells 2021; 10:cells10123565. [PMID: 34944073 PMCID: PMC8700304 DOI: 10.3390/cells10123565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
P21-activated kinases (PAKs) are serine/threonine kinases involved in the regulation of cell survival, proliferation, inhibition of apoptosis, and the regulation of cell morphology. Some members of the PAK family are highly expressed in several types of cancer, and they have also been implicated in several other medical disorders. They are thus considered to be good targets for treatment of cancer and other diseases. Although there are several inhibitors of the PAKs, the utility of some of these inhibitors is reduced for several reasons, including limited metabolic stability. One way to overcome this problem is the use of nanoparticles, which have the potential to increase drug delivery. The overall goals of this review are to describe the roles for PAK kinases in cell signaling and disease, and to describe how the use of nanomedicine is a promising new method for administering PAK inhibitors for the purpose of disease treatment and research. We discuss some of the basic mechanisms behind nanomedicine technology, and we then describe how these techniques are being used to package and deliver PAK inhibitors.
Collapse
|
31
|
Zhang H, Li J, Ren J, Sun S, Ma S, Zhang W, Yu Y, Cai Y, Yan K, Li W, Hu B, Chan P, Zhao GG, Belmonte JCI, Zhou Q, Qu J, Wang S, Liu GH. Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell 2021; 12:695-716. [PMID: 34052996 PMCID: PMC8403220 DOI: 10.1007/s13238-021-00852-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
The hippocampus plays a crucial role in learning and memory, and its progressive deterioration with age is functionally linked to a variety of human neurodegenerative diseases. Yet a systematic profiling of the aging effects on various hippocampal cell types in primates is still missing. Here, we reported a variety of new aging-associated phenotypic changes of the primate hippocampus. These include, in particular, increased DNA damage and heterochromatin erosion with time, alongside loss of proteostasis and elevated inflammation. To understand their cellular and molecular causes, we established the first single-nucleus transcriptomic atlas of primate hippocampal aging. Among the 12 identified cell types, neural transiently amplifying progenitor cell (TAPC) and microglia were most affected by aging. In-depth dissection of gene-expression dynamics revealed impaired TAPC division and compromised neuronal function along the neurogenesis trajectory; additionally elevated pro-inflammatory responses in the aged microglia and oligodendrocyte, as well as dysregulated coagulation pathways in the aged endothelial cells may contribute to a hostile microenvironment for neurogenesis. This rich resource for understanding primate hippocampal aging may provide potential diagnostic biomarkers and therapeutic interventions against age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Center for Bioinformation, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
- Sino-Danish Center for Education and Research, Beijing, 101408, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Center for Bioinformation, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Center for Bioinformation, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, 100191, China
- Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Piu Chan
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Guo-Guang Zhao
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | | | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
32
|
Magliozzi JO, Moseley JB. Pak1 kinase controls cell shape through ribonucleoprotein granules. eLife 2021; 10:67648. [PMID: 34282727 PMCID: PMC8318594 DOI: 10.7554/elife.67648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
Fission yeast cells maintain a rod shape due to conserved signaling pathways that organize the cytoskeleton for polarized growth. We discovered a mechanism linking the conserved protein kinase Pak1 with cell shape through the RNA-binding protein Sts5. Pak1 (also called Shk1 and Orb2) prevents Sts5 association with P bodies by directly phosphorylating its intrinsically disordered region (IDR). Pak1 and the cell polarity kinase Orb6 both phosphorylate the Sts5 IDR but at distinct residues. Mutations preventing phosphorylation in the Sts5 IDR cause increased P body formation and defects in cell shape and polarity. Unexpectedly, when cells encounter glucose starvation, PKA signaling triggers Pak1 recruitment to stress granules with Sts5. Through retargeting experiments, we reveal that Pak1 localizes to stress granules to promote rapid dissolution of Sts5 upon glucose addition. Our work reveals a new role for Pak1 in regulating cell shape through ribonucleoprotein granules during normal and stressed growth conditions.
Collapse
Affiliation(s)
- Joseph O Magliozzi
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, United States
| | - James B Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, United States
| |
Collapse
|
33
|
Liaci C, Camera M, Caslini G, Rando S, Contino S, Romano V, Merlo GR. Neuronal Cytoskeleton in Intellectual Disability: From Systems Biology and Modeling to Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22116167. [PMID: 34200511 PMCID: PMC8201358 DOI: 10.3390/ijms22116167] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Intellectual disability (ID) is a pathological condition characterized by limited intellectual functioning and adaptive behaviors. It affects 1–3% of the worldwide population, and no pharmacological therapies are currently available. More than 1000 genes have been found mutated in ID patients pointing out that, despite the common phenotype, the genetic bases are highly heterogeneous and apparently unrelated. Bibliomic analysis reveals that ID genes converge onto a few biological modules, including cytoskeleton dynamics, whose regulation depends on Rho GTPases transduction. Genetic variants exert their effects at different levels in a hierarchical arrangement, starting from the molecular level and moving toward higher levels of organization, i.e., cell compartment and functions, circuits, cognition, and behavior. Thus, cytoskeleton alterations that have an impact on cell processes such as neuronal migration, neuritogenesis, and synaptic plasticity rebound on the overall establishment of an effective network and consequently on the cognitive phenotype. Systems biology (SB) approaches are more focused on the overall interconnected network rather than on individual genes, thus encouraging the design of therapies that aim to correct common dysregulated biological processes. This review summarizes current knowledge about cytoskeleton control in neurons and its relevance for the ID pathogenesis, exploiting in silico modeling and translating the implications of those findings into biomedical research.
Collapse
Affiliation(s)
- Carla Liaci
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Mattia Camera
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Giovanni Caslini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Simona Rando
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Salvatore Contino
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 8, 90128 Palermo, Italy;
| | - Valentino Romano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy;
| | - Giorgio R. Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
- Correspondence: ; Tel.: +39-0116706449; Fax: +39-0116706432
| |
Collapse
|
34
|
Liu H, Liu K, Dong Z. The Role of p21-Activated Kinases in Cancer and Beyond: Where Are We Heading? Front Cell Dev Biol 2021; 9:641381. [PMID: 33796531 PMCID: PMC8007885 DOI: 10.3389/fcell.2021.641381] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The p21-activated kinases (PAKs), downstream effectors of Ras-related Rho GTPase Cdc42 and Rac, are serine/threonine kinases. Biologically, PAKs participate in various cellular processes, including growth, apoptosis, mitosis, immune response, motility, inflammation, and gene expression, making PAKs the nexus of several pathogenic and oncogenic signaling pathways. PAKs were proved to play critical roles in human diseases, including cancer, infectious diseases, neurological disorders, diabetes, pancreatic acinar diseases, and cardiac disorders. In this review, we systematically discuss the structure, function, alteration, and molecular mechanisms of PAKs that are involved in the pathogenic and oncogenic effects, as well as PAK inhibitors, which may be developed and deployed in cancer therapy, anti-viral infection, and other diseases. Furthermore, we highlight the critical questions of PAKs in future research, which provide an opportunity to offer input and guidance on new directions for PAKs in pathogenic, oncogenic, and drug discovery research.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| |
Collapse
|