1
|
Pawlik K, Mika J. Targeting Members of the Chemokine Family as a Novel Approach to Treating Neuropathic Pain. Molecules 2023; 28:5766. [PMID: 37570736 PMCID: PMC10421203 DOI: 10.3390/molecules28155766] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Neuropathic pain is a debilitating condition that affects millions of people worldwide. Numerous studies indicate that this type of pain is a chronic condition with a complex mechanism that tends to worsen over time, leading to a significant deterioration in patients' quality of life and issues like depression, disability, and disturbed sleep. Presently used analgesics are not effective enough in neuropathy treatment and may cause many side effects due to the high doses needed. In recent years, many researchers have pointed to the important role of chemokines not only in the development and maintenance of neuropathy but also in the effectiveness of analgesic drugs. Currently, approximately 50 chemokines are known to act through 20 different seven-transmembrane G-protein-coupled receptors located on the surface of neuronal, glial, and immune cells. Data from recent years clearly indicate that more chemokines than initially thought (CCL1/2/3/5/7/8/9/11, CXCL3/9/10/12/13/14/17; XCL1, CX3CL1) have pronociceptive properties; therefore, blocking their action by using neutralizing antibodies, inhibiting their synthesis, or blocking their receptors brings neuropathic pain relief. Several of them (CCL1/2/3/7/9/XCL1) have been shown to be able to reduce opioid drug effectiveness in neuropathy, and neutralizing antibodies against them can restore morphine and/or buprenorphine analgesia. The latest research provides irrefutable evidence that chemokine receptors are promising targets for pharmacotherapy; chemokine receptor antagonists can relieve pain of different etiologies, and most of them are able to enhance opioid analgesia, for example, the blockade of CCR1 (J113863), CCR2 (RS504393), CCR3 (SB328437), CCR4 (C021), CCR5 (maraviroc/AZD5672/TAK-220), CXCR2 (NVPCXCR220/SB225002), CXCR3 (NBI-74330/AMG487), CXCR4 (AMD3100/AMD3465), and XCR1 (vMIP-II). Recent research has shown that multitarget antagonists of chemokine receptors, such as CCR2/5 (cenicriviroc), CXCR1/2 (reparixin), and CCR2/CCR5/CCR8 (RAP-103), are also very effective painkillers. A multidirectional strategy based on the modulation of neuronal-glial-immune interactions by changing the activity of the chemokine family can significantly improve the quality of life of patients suffering from neuropathic pain. However, members of the chemokine family are still underestimated pharmacological targets for pain treatment. In this article, we review the literature and provide new insights into the role of chemokines and their receptors in neuropathic pain.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Cracow, Poland;
| |
Collapse
|
2
|
Litke C, Hagenston AM, Kenkel AK, Paldy E, Lu J, Kuner R, Mauceri D. Organic anion transporter 1 is an HDAC4-regulated mediator of nociceptive hypersensitivity in mice. Nat Commun 2022; 13:875. [PMID: 35169129 PMCID: PMC8847565 DOI: 10.1038/s41467-022-28357-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/17/2022] [Indexed: 01/26/2023] Open
Abstract
Persistent pain is sustained by maladaptive changes in gene transcription resulting in altered function of the relevant circuits; therapies are still unsatisfactory. The epigenetic mechanisms and affected genes linking nociceptive activity to transcriptional changes and pathological sensitivity are unclear. Here, we found that, among several histone deacetylases (HDACs), synaptic activity specifically affects HDAC4 in murine spinal cord dorsal horn neurons. Noxious stimuli that induce long-lasting inflammatory hypersensitivity cause nuclear export and inactivation of HDAC4. The development of inflammation-associated mechanical hypersensitivity, but neither acute nor basal sensitivity, is impaired by the expression of a constitutively nuclear localized HDAC4 mutant. Next generation RNA-sequencing revealed an HDAC4-regulated gene program comprising mediators of sensitization including the organic anion transporter OAT1, known for its renal transport function. Using pharmacological and molecular tools to modulate OAT1 activity or expression, we causally link OAT1 to persistent inflammatory hypersensitivity in mice. Thus, HDAC4 is a key epigenetic regulator that translates nociceptive activity into sensitization by regulating OAT1, which is a potential target for pain-relieving therapies. Chronic pain is sustained by alterations in gene transcription. Here, the authors show that increased expression of Organic Anionic Transporter 1 in the spinal cord is epigenetically controlled and key to hypersensitivity in pathological pain.
Collapse
Affiliation(s)
- Christian Litke
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Anna M Hagenston
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Ann-Kristin Kenkel
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Eszter Paldy
- Institute of Pharmacology, Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Jianning Lu
- Institute of Pharmacology, Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Staats Pires A, Tan VX, Heng B, Guillemin GJ, Latini A. Kynurenine and Tetrahydrobiopterin Pathways Crosstalk in Pain Hypersensitivity. Front Neurosci 2020; 14:620. [PMID: 32694973 PMCID: PMC7338796 DOI: 10.3389/fnins.2020.00620] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Despite the identification of molecular mechanisms associated with pain persistence, no significant therapeutic improvements have been made. Advances in the understanding of the molecular mechanisms that induce pain hypersensitivity will allow the development of novel, effective, and safe therapies for chronic pain. Various pro-inflammatory cytokines are known to be increased during chronic pain, leading to sustained inflammation in the peripheral and central nervous systems. The pro-inflammatory environment activates additional metabolic routes, including the kynurenine (KYN) and tetrahydrobiopterin (BH4) pathways, which generate bioactive soluble metabolites with the potential to modulate neuropathic and inflammatory pain sensitivity. Inflammation-induced upregulation of indoleamine 2,3-dioxygenase 1 (IDO1) and guanosine triphosphate cyclohydrolase I (GTPCH), both rate-limiting enzymes of KYN and BH4 biosynthesis, respectively, have been identified in experimental chronic pain models as well in biological samples from patients affected by chronic pain. Inflammatory inducible KYN and BH4 pathways upregulation is characterized by increase in pronociceptive compounds, such as quinolinic acid (QUIN) and BH4, in addition to inflammatory mediators such as interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α). As expected, the pharmacologic and genetic experimental manipulation of both pathways confers analgesia. Many metabolic intermediates of these two pathways such as BH4, are known to sustain pain, while others, like xanthurenic acid (XA; a KYN pathway metabolite) have been recently shown to be an inhibitor of BH4 synthesis, opening a new avenue to treat chronic pain. This review will focus on the KYN/BH4 crosstalk in chronic pain and the potential modulation of these metabolic pathways that could induce analgesia without dependence or abuse liability.
Collapse
Affiliation(s)
- Ananda Staats Pires
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Vanessa X. Tan
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Benjamin Heng
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J. Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
4
|
Rojewska E, Ciapała K, Mika J. Kynurenic acid and zaprinast diminished CXCL17-evoked pain-related behaviour and enhanced morphine analgesia in a mouse neuropathic pain model. Pharmacol Rep 2019; 71:139-148. [DOI: 10.1016/j.pharep.2018.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/03/2018] [Accepted: 10/02/2018] [Indexed: 12/23/2022]
|
5
|
Choi SR, Roh DH, Yoon SY, Choi HS, Kang SY, Han HJ, Beitz AJ, Lee JH. Astrocyte D-serine modulates the activation of neuronal NOS leading to the development of mechanical allodynia in peripheral neuropathy. Mol Pain 2019; 15:1744806919843046. [PMID: 30900515 PMCID: PMC6495448 DOI: 10.1177/1744806919843046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/07/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
Spinal D-serine plays an important role in nociception via an increase in phosphorylation of the N-Methyl-D-aspartate (NMDA) receptor GluN1 subunit (pGluN1). However, the cellular mechanisms underlying this process have not been elucidated. Here, we investigate the possible role of neuronal nitric oxide synthase (nNOS) in the D-serine-induced potentiation of NMDA receptor function and the induction of neuropathic pain in a chronic constriction injury (CCI) model. Intrathecal administration of the serine racemase inhibitor, L-serine O-sulfate potassium salt (LSOS) or the D-serine degrading enzyme, D-amino acid oxidase (DAAO) on post-operative days 0-3 significantly reduced the CCI-induced increase in nitric oxide (NO) levels and nicotinamide adenine dinucleotide phosphate-diaphorase staining in lumbar dorsal horn neurons, as well as the CCI-induced decrease in phosphorylation (Ser847) of nNOS (pnNOS) on day 3 post-CCI surgery. LSOS or DAAO administration suppressed the CCI-induced development of mechanical allodynia and protein kinase C (PKC)-dependent (Ser896) phosphorylation of GluN1 on day 3 post-surgery, which were reversed by the co-administration of the NO donor, 3-morpholinosydnonimine hydrochloride (SIN-1). In naïve mice, exogenous D-serine increased NO levels via decreases in pnNOS. D-serine-induced increases in mechanical hypersensitivity, NO levels, PKC-dependent pGluN1, and NMDA-induced spontaneous nociception were reduced by pretreatment with the nNOS inhibitor, 7-nitroindazole or with the NMDA receptor antagonists, 7-chlorokynurenic acid and MK-801. Collectively, we show that spinal D-serine modulates nNOS activity and concomitant NO production leading to increases in PKC-dependent pGluN1 and ultimately contributing to the induction of mechanical allodynia following peripheral nerve injury.
Collapse
Affiliation(s)
- Sheu-Ran Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Dae-Hyun Roh
- Department of Maxillofacial Tissue Regeneration and Research Center for Tooth and Periodontal Tissue Regeneration, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Seo-Yeon Yoon
- College of Korean Medicine, Dongshin University, Naju, Republic of Korea
| | - Hoon-Seong Choi
- Research Animal Resource Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Suk-Yun Kang
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Ho-Jae Han
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Alvin James Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - Jang-Hern Lee
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Ghoreishi-Haack N, Priebe JM, Aguado JD, Colechio EM, Burgdorf JS, Bowers MS, Cearley CN, Khan MA, Moskal JR. NYX-2925 Is a Novel N-Methyl-d-Aspartate Receptor Modulator that Induces Rapid and Long-Lasting Analgesia in Rat Models of Neuropathic Pain. J Pharmacol Exp Ther 2018; 366:485-497. [PMID: 29986951 DOI: 10.1124/jpet.118.249409] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/03/2018] [Indexed: 01/04/2025] Open
Abstract
NYX-2925 [(2S,3R)-3-hydroxy-2-((R)-5-isobutyryl-1-oxo-2,5-diazaspiro[3.4]octan-2-yl)butanamide] is a novel N-methyl-d-aspartate (NMDA) receptor modulator that is currently being investigated in phase 2 clinical studies for the treatment of painful diabetic peripheral neuropathy and fibromyalgia. Previous studies demonstrated that NYX-2925 is a member of a novel class of NMDA receptor-specific modulators that affect synaptic plasticity processes associated with learning and memory. Studies here examined NYX-2925 administration in rat peripheral chronic constriction nerve injury (CCI) and streptozotocin-induced diabetic mechanical hypersensitivity. Additionally, NYX-2925 was examined in formalin-induced persistent pain model and the tail flick test of acute nociception. Oral administration of NYX-2925 resulted in rapid and long-lasting analgesia in both of the neuropathic pain models and formalin-induced persistent pain, but was ineffective in the tail flick model. The analgesic effects of NYX-2925 were blocked by the systemic administration of NMDA receptor antagonist 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid. Microinjection of NYX-2925 into the medial prefrontal cortex of CCI rats resulted in analgesic effects similar to those observed following systemic administration, whereas intrathecal administration of NYX-2925 was ineffective. In CCI animals, NYX-2925 administration reversed deficits seen in a rat model of rough-and-tumble play. Thus, it appears that NYX-2925 may have therapeutic potential for the treatment of neuropathic pain, and the data presented here support the idea that NYX-2925 may act centrally to ameliorate pain and modulate negative affective states associated with chronic neuropathic pain.
Collapse
Affiliation(s)
- Nayereh Ghoreishi-Haack
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| | - Jessica M Priebe
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| | - Jacqueline D Aguado
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| | - Elizabeth M Colechio
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| | - Jeffrey S Burgdorf
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| | - M Scott Bowers
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| | - Cassia N Cearley
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| | - M Amin Khan
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| | - Joseph R Moskal
- Aptinyx, Inc., Evanston, Illinois (N.G.-H., J.M.P., J.D.A., E.M.C., J.S.B., M.S.B., C.N.C., M.A.K., J.R.M.) and Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (J.S.B., M.S.B., J.R.M.)
| |
Collapse
|
7
|
Veres G, Fejes-Szabó A, Zádori D, Nagy-Grócz G, László AM, Bajtai A, Mándity I, Szentirmai M, Bohár Z, Laborc K, Szatmári I, Fülöp F, Vécsei L, Párdutz Á. A comparative assessment of two kynurenic acid analogs in the formalin model of trigeminal activation: a behavioral, immunohistochemical and pharmacokinetic study. J Neural Transm (Vienna) 2016; 124:99-112. [PMID: 27629500 DOI: 10.1007/s00702-016-1615-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/31/2016] [Indexed: 12/20/2022]
Abstract
Kynurenic acid (KYNA) has well-established protective properties against glutamatergic neurotransmission, which plays an essential role in the activation and sensitization process during some primary headache disorders. The goal of this study was to compare the effects of two KYNA analogs, N-(2-N,N-dimethylaminoethyl)-4-oxo-1H-quinoline-2-carboxamide hydrochloride (KA-1) and N-(2-N-pyrrolidinylethyl)-4-oxo-1H-quinoline-2-carboxamide hydrochloride (KA-2), in the orofacial formalin test of trigeminal pain. Following pretreatment with KA-1 or KA-2, rats were injected with subcutaneous formalin solution in the right whisker pad. Thereafter, the rubbing activity and c-Fos immunoreactivity changes in the spinal trigeminal nucleus pars caudalis (TNC) were investigated. To obtain pharmacokinetic data, KA-1, KA-2 and KYNA concentrations were measured following KA-1 or KA-2 injection. Behavioral tests demonstrated that KA-2 induced larger amelioration of formalin-evoked alterations as compared with KA-1 and the assessment of c-Fos immunoreactivity in the TNC yielded similar results. Although KA-1 treatment resulted in approximately four times larger area under the curve values in the serum relative to KA-2, the latter resulted in a higher KYNA elevation than in the case of KA-1. With regard to TNC, the concentration of KA-1 was under the limit of detection, while that of KA-2 was quite small and there was no major difference in the approximately tenfold KYNA elevations. These findings indicate that the differences between the beneficial effects of KA-1 and KA-2 may be explained by the markedly higher peripheral KYNA levels following KA-2 pretreatment. Targeting the peripheral component of trigeminal pain processing would provide an option for drug design which might prove beneficial in headache conditions.
Collapse
Affiliation(s)
- Gábor Veres
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Annamária Fejes-Szabó
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - Dénes Zádori
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - Gábor Nagy-Grócz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary.,Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - Anna M László
- Department of Biometrics and Agricultural Informatics, Faculty of Horticultural Science, Szent Istvan University, Budapest, Hungary
| | - Attila Bajtai
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - István Mándity
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
| | - Márton Szentirmai
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - Zsuzsanna Bohár
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Klaudia Laborc
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary. .,MTA-SZTE Neuroscience Research Group, Szeged, Hungary.
| | - Árpád Párdutz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| |
Collapse
|
8
|
Rojewska E, Piotrowska A, Makuch W, Przewlocka B, Mika J. Pharmacological kynurenine 3-monooxygenase enzyme inhibition significantly reduces neuropathic pain in a rat model. Neuropharmacology 2015; 102:80-91. [PMID: 26524415 DOI: 10.1016/j.neuropharm.2015.10.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/17/2015] [Accepted: 10/27/2015] [Indexed: 12/22/2022]
Abstract
Recent studies have highlighted the involvement of the kynurenine pathway in the pathology of neurodegenerative diseases, but the role of this system in neuropathic pain requires further extensive research. Therefore, the aim of our study was to examine the role of kynurenine 3-monooxygenase (Kmo), an enzyme that is important in this pathway, in a rat model of neuropathy after chronic constriction injury (CCI) to the sciatic nerve. For the first time, we demonstrated that the injury-induced increase in the Kmo mRNA levels in the spinal cord and the dorsal root ganglia (DRG) was reduced by chronic administration of the microglial inhibitor minocycline and that this effect paralleled a decrease in the intensity of neuropathy. Further, minocycline administration alleviated the lipopolysaccharide (LPS)-induced upregulation of Kmo mRNA expression in microglial cell cultures. Moreover, we demonstrated that not only indirect inhibition of Kmo using minocycline but also direct inhibition using Kmo inhibitors (Ro61-6048 and JM6) decreased neuropathic pain intensity on the third and the seventh days after CCI. Chronic Ro61-6048 administration diminished the protein levels of IBA-1, IL-6, IL-1beta and NOS2 in the spinal cord and/or the DRG. Both Kmo inhibitors potentiated the analgesic properties of morphine. In summary, our data suggest that in neuropathic pain model, inhibiting Kmo function significantly reduces pain symptoms and enhances the effectiveness of morphine. The results of our studies show that the kynurenine pathway is an important mediator of neuropathic pain pathology and indicate that Kmo represents a novel pharmacological target for the treatment of neuropathy.
Collapse
Affiliation(s)
- Ewelina Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Anna Piotrowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Barbara Przewlocka
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland.
| |
Collapse
|
9
|
Pacheco DDF, Romero TRL, Duarte IDG. Central antinociception induced by ketamine is mediated by endogenous opioids and μ- and δ-opioid receptors. Brain Res 2014; 1562:69-75. [PMID: 24675031 DOI: 10.1016/j.brainres.2014.03.026] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 11/27/2022]
Abstract
It is generally believed that NMDA receptor antagonism accounts for most of the anesthetic and analgesic effects of ketamine, however, it interacts at multiple sites in the central nervous system, including NMDA and non-NMDA glutamate receptors, nicotinic and muscarinic cholinergic receptors, and adrenergic and opioid receptors. Interestingly, it was shown that at supraspinal sites, ketamine interacts with the μ-opioid system and causes supraspinal antinociception. In this study, we investigated the involvement of endogenous opioids in ketamine-induced central antinociception. The nociceptive threshold for thermal stimulation was measured in Swiss mice using the tail-flick test. The drugs were administered via the intracerebroventricular route. Our results demonstrated that the opioid receptor antagonist naloxone, the μ-opioid receptor antagonist clocinnamox and the δ-opioid receptor antagonist naltrindole, but not the κ-opioid receptor antagonist nor-binaltorphimine, antagonized ketamine-induced central antinociception in a dose-dependent manner. Additionally, the administration of the aminopeptidase inhibitor bestatin significantly enhanced low-dose ketamine-induced central antinociception. These data provide evidence for the involvement of endogenous opioids and μ- and δ-opioid receptors in ketamine-induced central antinociception. In contrast, κ-opioid receptors not appear to be involved in this effect.
Collapse
Affiliation(s)
- Daniela da Fonseca Pacheco
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, CEP 31.270.100, Belo Horizonte, Brazil
| | - Thiago Roberto Lima Romero
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, CEP 31.270.100, Belo Horizonte, Brazil
| | - Igor Dimitri Gama Duarte
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, CEP 31.270.100, Belo Horizonte, Brazil.
| |
Collapse
|
10
|
Fejes-Szabó A, Bohár Z, Vámos E, Nagy-Grócz G, Tar L, Veres G, Zádori D, Szentirmai M, Tajti J, Szatmári I, Fülöp F, Toldi J, Párdutz Á, Vécsei L. Pre-treatment with new kynurenic acid amide dose-dependently prevents the nitroglycerine-induced neuronal activation and sensitization in cervical part of trigemino-cervical complex. J Neural Transm (Vienna) 2014; 121:725-38. [DOI: 10.1007/s00702-013-1146-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/22/2013] [Indexed: 12/31/2022]
|
11
|
Párdutz Á, Fejes A, Bohár Z, Tar L, Toldi J, Vécsei L. Kynurenines and headache. J Neural Transm (Vienna) 2011; 119:285-96. [DOI: 10.1007/s00702-011-0665-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Accepted: 05/20/2011] [Indexed: 12/12/2022]
|
12
|
Fejes A, Párdutz Á, Toldi J, Vécsei L. Kynurenine metabolites and migraine: experimental studies and therapeutic perspectives. Curr Neuropharmacol 2011; 9:376-87. [PMID: 22131946 PMCID: PMC3131728 DOI: 10.2174/157015911795596621] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/14/2010] [Accepted: 04/30/2010] [Indexed: 12/16/2022] Open
Abstract
Migraine is one of the commonest neurological disorders. Despite intensive research, its exact pathomechanism is still not fully understood and effective therapy is not always available. One of the key molecules involved in migraine is glutamate, whose receptors are found on the first-, second- and third-order trigeminal neurones and are also present in the migraine generators, including the dorsal raphe nucleus, nucleus raphe magnus, locus coeruleus and periaqueductal grey matter. Glutamate receptors are important in cortical spreading depression, which may be the electrophysiological correlate of migraine aura. The kynurenine metabolites, endogenous tryptophan metabolites, include kynurenic acid (KYNA), which exerts a blocking effect on ionotropic glutamate and α7-nicotinic acetylcholine receptors. Thus, KYNA and its derivatives may act as modulators at various levels of the pathomechanism of migraine. They can give rise to antinociceptive effects at the periphery, in the trigeminal nucleus caudalis, and may also act on migraine generators and cortical spreading depression. The experimental data suggest that KYNA or its derivatives might offer a novel approach to migraine therapy.
Collapse
Affiliation(s)
- Annamária Fejes
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Árpád Párdutz
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
13
|
Guo S, Vecsei L, Ashina M. The L-kynurenine signalling pathway in trigeminal pain processing: A potential therapeutic target in migraine? Cephalalgia 2011; 31:1029-38. [DOI: 10.1177/0333102411404717] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction: In recent years the kynurenine family of compounds, metabolites of tryptophan, has become an area of intensive research because of its neuroactive properties. Two metabolites of this family have become of interest in relation to migraine and pain processing. Discussion: Experimental studies have shown that kynurenic acid (KYNA) plays an important role in the transmission of sensory impulses in the trigeminovascular system and that increased levels of KYNA decrease the sensitivity of the cerebral cortex to cortical spreading depression. Furthermore, another metabolite of the kynurenine family, L-kynurenine, exerts vasodilating effects similar to nitric oxide by increasing cyclic guanosine monophosphate. Conclusion: This review summarizes current knowledge of the role of kynurenine signalling in trigeminal and central pain processing, including its therapeutic prospects in migraine treatment.
Collapse
Affiliation(s)
- Song Guo
- University of Copenhagen, Denmark
| | | | | |
Collapse
|
14
|
|
15
|
Gong N, Gao ZY, Wang YC, Li XY, Huang JL, Hashimoto K, Wang YX. A series of D-amino acid oxidase inhibitors specifically prevents and reverses formalin-induced tonic pain in rats. J Pharmacol Exp Ther 2011; 336:282-93. [PMID: 20952482 DOI: 10.1124/jpet.110.172353] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have found that mutation of D-amino acid oxidase (DAO) diminished formalin-induced tonic pain. The present research further studied the analgesic effects of a series of DAO inhibitors in this model. 5-Chlorobenzo[d]isoxazol-3-ol (CBIO), 4H-thieno[3,2-b]pyrrole-5-carboxylic acid (compound 8), 5-methylpyrazole-3-carboxylic acid (AS057278), sodium benzoate, and 4-nitro-3-pyrazole carboxylic acid (NPCA) inhibited rat spinal cord-derived DAO activity in a concentration-dependent manner, with maximal inhibition of 100% and potency rank of CBIO > compound 8 > AS057278 > sodium benzoate > NPCA. In rats, intrathecal injections of CBIO, compound 8, AS057278, and sodium benzoate but not NPCA specifically prevented formalin-induced tonic pain but not acute nociception, with the same potency order as in the DAO activity assay. The highly potent analgesia of DAO inhibitors was evidenced by CBIO, which prevented 50% pain at 0.06 μg, approximately 5-fold the potency of morphine. CBIO given after formalin challenge also reversed the established pain state to the same degree as prevention. The antihyperalgesic potencies of these DAO inhibitors were highly correlated to their inhibitions of spinal DAO activity. Maximum inhibition of pain by these compounds was approximately 60%, comparable with that of the N-methyl-D-aspartic acid receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801), suggesting that a larger portion of formalin-induced tonic pain is "DAO-sensitive," whereas the remaining 40% of tonic pain and acute nociception is "DAO-insensitive." These findings, combined with our previous DAO gene mutation and induction results, indicate spinal DAO mediates both induction and maintenance of formalin-induced tonic pain and further validate spinal DAO as a novel and efficacious target molecule for the treatment of chronic pain.
Collapse
Affiliation(s)
- Nian Gong
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, No. 6 Biomedicine Building (Suite 106), 800 Dongchuan Road, Shanghai 2002 40, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
BACKGROUND Diclofenac is a proven, commonly prescribed nonsteroidal anti-inflammatory drug (NSAID) that has analgesic, anti-inflammatory, and antipyretic properties, and has been shown to be effective in treating a variety of acute and chronic pain and inflammatory conditions. As with all NSAIDs, diclofenac exerts its action via inhibition of prostaglandin synthesis by inhibiting cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) with relative equipotency. However, extensive research shows the pharmacologic activity of diclofenac goes beyond COX inhibition, and includes multimodal and, in some instances, novel mechanisms of action (MOA). DATA SOURCES Literature retrieval was performed through PubMed/MEDLINE (through May 2009) using combinations of the terms diclofenac, NSAID, mechanism of action, COX-1, COX-2, and pharmacology. Reference citations resulting from publications identified in the literature search were reviewed when appropriate. METHODS This article reviews the established, putative, and emerging MOAs of diclofenac; compares the drug's pharmacologic and pharmacodynamic properties with other NSAIDs to delineate its potentially unique qualities; hypothesizes why it has been chosen for further recent formulation enhancement; and evaluates the potential effect of its MOA characteristics on safety. DISCUSSION Research suggests diclofenac can inhibit the thromboxane-prostanoid receptor, affect arachidonic acid release and uptake, inhibit lipoxygenase enzymes, and activate the nitric oxide-cGMP antinociceptive pathway. Other novel MOAs may include the inhibition of substrate P, inhibition of peroxisome proliferator activated receptor gamma (PPARgamma), blockage of acid-sensing ion channels, alteration of interleukin-6 production, and inhibition of N-methyl-D-aspartate (NMDA) receptor hyperalgesia. The review was not designed to compare MOAs of diclofenac with other NSAIDs. Additionally, as the highlighted putative and emerging MOAs do not have clinical data to demonstrate that these models are correct, further research is necessary to ascertain if the proposed pathways will translate into clinical benefits. The diversity in diclofenac's MOA may suggest the potential for a relatively more favorable profile compared with other NSAIDs.
Collapse
Affiliation(s)
- Tong J Gan
- Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
17
|
Larsson M. Ionotropic glutamate receptors in spinal nociceptive processing. Mol Neurobiol 2009; 40:260-88. [PMID: 19876771 DOI: 10.1007/s12035-009-8086-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 09/29/2009] [Indexed: 02/07/2023]
Abstract
Glutamate is the predominant excitatory transmitter used by primary afferent synapses and intrinsic neurons in the spinal cord dorsal horn. Accordingly, ionotropic glutamate receptors mediate basal spinal transmission of sensory, including nociceptive, information that is relayed to supraspinal centers. However, it has become gradually more evident that these receptors are also crucially involved in short- and long-term plasticity of spinal nociceptive transmission, and that such plasticity have an important role in the pain hypersensitivity that may result from tissue or nerve injury. This review will cover recent findings on pre- and postsynaptic regulation of synaptic function by ionotropic glutamate receptors in the dorsal horn and how such mechanisms contribute to acute and chronic pain.
Collapse
Affiliation(s)
- Max Larsson
- Department of Anatomy and Centre for Molecular Biology and Neuroscience, University of Oslo, Norway.
| |
Collapse
|
18
|
Vamos E, Pardutz A, Klivenyi P, Toldi J, Vecsei L. The role of kynurenines in disorders of the central nervous system: possibilities for neuroprotection. J Neurol Sci 2009; 283:21-7. [PMID: 19268309 DOI: 10.1016/j.jns.2009.02.326] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The metabolism of tryptophan mostly proceeds through the kynurenine pathway. The biochemical reaction includes both an agonist (quinolinic acid) at the N-methyl-d-aspartate receptor and an antagonist (kynurenic acid). Besides the N-methyl-d-aspartate antagonism, an important feature of kynurenic acid is the blockade of the alpha7-nicotinic acetylcholine receptor and its influence on the alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptor. Kynurenic acid has proven to be neuroprotective in several experimental settings. On the other hand, quinolinic acid is a potent neurotoxin with an additional and marked free radical-producing property. In consequence of these various receptor activities, the possible roles of these substances in various neurological disorders have been proposed. Moreover, the possibility of influencing the kynurenine pathway to reduce quinolinic acid and increase the level of kynurenic acid in the brain offers a new target for drug action designed to change the balance, decreasing excitotoxins and enhancing neuroprotectants. This review surveys both the early and the current research in this field, focusing on the possible therapeutic effects of kynurenines.
Collapse
Affiliation(s)
- Eniko Vamos
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Hungary
| | | | | | | | | |
Collapse
|
19
|
Nishiyama T. Interaction between a NMDA receptor antagonist, AP-5 and an AMPA receptor antagonist, YM 872 in antinociception in the spinal cord. Acta Anaesthesiol Scand 2008; 52:493-8. [PMID: 18339155 DOI: 10.1111/j.1399-6576.2008.01593.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The intrathecal N-methyl-D-aspartate (NMDA) receptor antagonist, AP-5 and the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonist, YM 872 showed inhibition on both acute and facilitated nociception in our previous study. The present study was performed to investigate the interaction between intrathecal AP-5 and YM 872 in antinociception for acute and chronic nociception. METHODS Sprague-Dawley rats with lumbar intrathecal catheters were tested for their thermal tail withdrawal response and for their paw flinches by formalin injection after intrathecal administration of AP-5 or YM 872. The effects of the combination were tested by an isobolographic analysis using 50% effective dose (ED50). Total fractional dose was calculated as (ED50 dose of AP-5 in combination)/(ED50 dose of AP-5 alone)+(ED50 dose of YM 872 in combination)/(ED50 dose of YM 872 alone). RESULTS Intrathecally administered AP-5, YM 872, and their combination produced dose-dependent increases of the tail-flick latency and decreases in the number of flinches in both phase 1 and 2 of the formalin test. The ED50 values of the combination were significantly lower than the calculated additive values (P<0.01). Total fractional dose value was 0.22 in the tail flick test, 0.12 in the phase 1 and 0.14 in the phase 2 of the formalin test. CONCLUSION An NMDA receptor antagonist, AP-5 and an AMPA receptor antagonist, YM 872 had synergistic antinociceptive effects on both acute thermal and inflammatory induced acute and facilitated nociception.
Collapse
Affiliation(s)
- T Nishiyama
- Department of Anesthesiology, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
20
|
Watanabe C, Orito T, Watanabe H, Mizoguchi H, Yonezawa A, Yanai K, Mobarakeh JI, Onodera K, Sakurada T, Sakurada S. Intrathecal high-dose histamine induces spinally-mediated nociceptive behavioral responses through a polyamine site of NMDA receptors. Eur J Pharmacol 2008; 581:54-63. [DOI: 10.1016/j.ejphar.2007.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 10/19/2007] [Accepted: 11/10/2007] [Indexed: 10/22/2022]
|
21
|
Kainate receptors are primarily postsynaptic to SP-containing axon terminals in the trigeminal dorsal horn. Brain Res 2007; 1184:149-59. [PMID: 17964552 DOI: 10.1016/j.brainres.2007.09.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 09/25/2007] [Accepted: 09/26/2007] [Indexed: 02/05/2023]
Abstract
Kainate receptors (KARs) are involved in the modulation and transmission of nociceptive information from peripheral afferents to neurons in the spinal cord and trigeminal dorsal horns. KARs are found at both pre- and postsynaptic sites in the dorsal horn. We hypothesized that KARs and Substance P (SP), a modulatory neuropeptide that is used as a marker of nociceptive afferents, have a complex interactive relationship. To determine the cellular relationship and connectivity between KARs and SP afferents, we used electron microscopic dual immunocytochemical analysis to examine the ultrastructural localization of KAR subunits GluR5, 6 and 7 (GluR5,6,7) in relation to SP within laminae I and II in the rat trigeminal dorsal horn. KARs were distributed both postsynaptically in dendrites and somata (51% of GluR5,6,7 immunoreactive (-ir) profiles) and presynaptically in axons and axon terminals (45%). We also found GluR5,6,7-ir glial profiles (5%). The majority of SP-ir profiles were presynaptic axons and axon terminals. SP-ir dendritic profiles were rare, yet 23% contained GluR5,6,7 immunoreactivity. GluR5,6,7 and SP were also colocalized at presynaptic sites (18% of GluR5,6,7-ir axons and axon terminals contained SP; while 11% of SP-ir axons and axon terminals contained GluR5,6,7). The most common interaction between KARs and SP we observed was GluR5,6,7-ir dendrites contacted by SP-ir axon terminals; 54% of the dendritic targets of SP-ir axon terminals were GluR5,6,7-ir. These results provide anatomical evidence that KARs primarily mediate nociceptive transmission postsynaptic to SP-containing afferents and may also modulate the presynaptic release of SP and glutamate in trigeminal dorsal horn.
Collapse
|
22
|
Horvath G, Kekesi G, Tuboly G, Benedek G. Antinociceptive interactions of triple and quadruple combinations of endogenous ligands at the spinal level. Brain Res 2007; 1155:42-8. [PMID: 17482581 DOI: 10.1016/j.brainres.2007.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 03/30/2007] [Accepted: 04/08/2007] [Indexed: 11/18/2022]
Abstract
A very interesting and rapidly developing field of pain research is related to the roles of different endogenous ligands. This study determined the antinociceptive interactions of triple and quadruple combinations of different endogenous ligands (endomorphin-1, adenosine, agmatine and kynurenic acid) on carrageenan-induced inflammatory pain model at the spinal level. Intrathecal infusion (60 min) of these drugs alone, in double, triple or quadruple combinations, was followed by a 60-min observation period. During the infusion, antihyperalgesic effect of 0.3 microg/min endomorphin-1 was higher in the triple combinations than those in the double combinations. After cessation of drug administration, only the combination of 0.3 microg/min endomorphin-1, 1 microg/min agmatine, and 0.3 microg/min adenosine was more effective than the double combinations. In quadruple combinations, the antinociceptive effects of both 0.1 and 0.3 microg/min endomorphin-1 were significantly potentiated by the otherwise ineffective triple combination of adenosine, agmatine, and kynurenic acid. No side effects could be observed at these doses. These results demonstrate that triple and quadruple combinations of these endogenous ligands caused more effective antihyperalgesia compared with double combinations. Accordingly, the doses of these substances could be further reduced, thus, reinforcing the view that complex activation and/or inhibition of different systems can be sufficiently effective in blocking nociception without adverse effects. Because all of these drugs had effects on various receptors and systems, the possible types of these interactions were discussed.
Collapse
Affiliation(s)
- Gyongyi Horvath
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | | | | | | |
Collapse
|
23
|
Han DW, Kweon TD, Lee JS, Yoo YC, Lee YW, Kim S. The Interaction between Intrathecal NMDA Receptor Antagonist and 5-HT 3Receptor Agonist in the Rat Formalin Test. Korean J Anesthesiol 2007. [DOI: 10.4097/kjae.2007.52.6.694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Dong Woo Han
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Dong Kweon
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Seok Lee
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young Chul Yoo
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Youn-Woo Lee
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - SunChong Kim
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Phillis JW, Horrocks LA, Farooqui AA. Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. ACTA ACUST UNITED AC 2006; 52:201-43. [PMID: 16647138 DOI: 10.1016/j.brainresrev.2006.02.002] [Citation(s) in RCA: 273] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 02/23/2006] [Accepted: 02/24/2006] [Indexed: 01/01/2023]
Abstract
Three enzyme systems, cyclooxygenases that generate prostaglandins, lipoxygenases that form hydroxy derivatives and leukotrienes, and epoxygenases that give rise to epoxyeicosatrienoic products, metabolize arachidonic acid after its release from neural membrane phospholipids by the action of phospholipase A(2). Lysophospholipids, the other products of phospholipase A(2) reactions, are either reacylated or metabolized to platelet-activating factor. Under normal conditions, these metabolites play important roles in synaptic function, cerebral blood flow regulation, apoptosis, angiogenesis, and gene expression. Increased activities of cyclooxygenases, lipoxygenases, and epoxygenases under pathological situations such as ischemia, epilepsy, Alzheimer's disease, Parkinson disease, amyotrophic lateral sclerosis, and Creutzfeldt-Jakob disease produce neuroinflammation involving vasodilation and vasoconstriction, platelet aggregation, leukocyte chemotaxis and release of cytokines, and oxidative stress. These are closely associated with the neural cell injury which occurs in these neurological conditions. The metabolic products of docosahexaenoic acid, through these enzymes, generate a new class of lipid mediators, namely docosatrienes and resolvins. These metabolites antagonize the effect of metabolites derived from arachidonic acid. Recent studies provide insight into how these arachidonic acid metabolites interact with each other and other bioactive mediators such as platelet-activating factor, endocannabinoids, and docosatrienes under normal and pathological conditions. Here, we review present knowledge of the functions of cyclooxygenases, lipoxygenases, and epoxygenases in brain and their association with neurodegenerative diseases.
Collapse
Affiliation(s)
- John W Phillis
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
25
|
Yoshimura M, Yonehara N. Alteration in sensitivity of ionotropic glutamate receptors and tachykinin receptors in spinal cord contribute to development and maintenance of nerve injury-evoked neuropathic pain. Neurosci Res 2006; 56:21-8. [PMID: 16901566 DOI: 10.1016/j.neures.2006.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 04/26/2006] [Accepted: 04/28/2006] [Indexed: 10/24/2022]
Abstract
Allodynia or hyperalgesia induced by peripheral nerve injury may be involved in changes in the sensitivity of neurotransmitters at the spinal cord level. In order to clarify the functional role of neurotransmitters in peripheral nerve injury, we used rats with nerve injury induced by chronic constriction of the sciatic nerve (CCI rat model) and estimated the effects of the intrathecal injection of drugs known to affect glutamate and tachykinin receptors. In sham-operated rats, the NMDA receptor agonist NMDA and AMPA-kinate receptor agonist RS-(5)-bromowillardin reduced withdrawal latency. The non-competitive NMDA receptor antagonist MK-801, competitive NMDA receptor antagonist AP-5 and AMPA-kinate receptor antagonist NBQX increased withdrawal latency. Substance P (SP) increased the withdrawal latency but only transitorily. The NK1 receptor antagonist RP67580 increased withdrawal latency, but the NK2 receptor antagonist SR48968 did not show an effect. In CCI rats, RS-(5)-bromowillardin reduced withdrawal latency, but NMDA did not show an effect. NBQX increased withdrawal latency, while MK-801 and AP-5 showed little or no effect. SP reduced withdrawal latency, and both RP67580 and SR48968 increased it. These results indicate that the alteration in sensitivity of ionotropic glutamate receptors and tachykinin receptors in the spinal cord contribute to development and maintenance of nerve injury-evoked neuropathic pain.
Collapse
MESH Headings
- Alanine/analogs & derivatives
- Alanine/metabolism
- Analgesics/metabolism
- Animals
- Behavior, Animal/physiology
- Benzamides/metabolism
- Dizocilpine Maleate/metabolism
- Excitatory Amino Acid Agonists/metabolism
- Excitatory Amino Acid Antagonists/metabolism
- Indoles/metabolism
- Isoindoles
- Male
- N-Methylaspartate/metabolism
- Pain/metabolism
- Pain Measurement
- Piperidines/metabolism
- Quinoxalines/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, AMPA/agonists
- Receptors, AMPA/antagonists & inhibitors
- Receptors, Kainic Acid/agonists
- Receptors, Kainic Acid/antagonists & inhibitors
- Receptors, Kainic Acid/metabolism
- Receptors, Tachykinin/agonists
- Receptors, Tachykinin/antagonists & inhibitors
- Receptors, Tachykinin/metabolism
- Sciatic Nerve/injuries
- Sciatic Nerve/metabolism
- Sciatic Nerve/surgery
- Spinal Cord/cytology
- Spinal Cord/metabolism
- Substance P/metabolism
- Valine/analogs & derivatives
- Valine/metabolism
Collapse
Affiliation(s)
- Masakazu Yoshimura
- Central Research Laboratory of Maruishi Pharmaceutical Co Ltd, 2-2-18 Imazunaka, Osaka, Japan
| | | |
Collapse
|
26
|
Koizuka S, Obata H, Sasaki M, Saito S, Goto F. Systemic ketamine inhibits hypersensitivity after surgery via descending inhibitory pathways in rats. Can J Anaesth 2005; 52:498-505. [PMID: 15872129 DOI: 10.1007/bf03016530] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
PURPOSE Systemic ketamine suppresses several types of chronic pain. Although ketamine is used as a general anesthetic agent, the analgesic effect of systemic ketamine for early-stage postoperative pain is not clear. We investigated the efficacy and mechanism of systemic ketamine in a rat model of postoperative pain. METHODS An incision was made in the plantar aspect of the left hind paw in male Wistar rats. Mechanical hypersensitivity was measured using calibrated von Frey filaments. The anti-hypersensitivity effect of systemic or intrathecal administration of ketamine was determined every hour after making the incision. We examined the effects of intrathecal pretreatment with yohimbine, an alpha2-adrenoceptor antagonist, and methysergide, a serotonergic receptor antagonist, on the anti-hypersensitivity effect of ketamine. We also examined the effect of systemic ketamine on the c-fos immunoreactivity in the spinal cord. RESULTS Systemic administration of ketamine at doses from 3 to 30 mg.kg(-1) produced anti-hypersensitivity effects in a dose-dependent manner. Intrathecal administration of ketamine had no effect. There was no significant difference between effects of pre- and post-incisional administration. Intrathecal pretreatment with yohimbine (10 microg) or methysergide (15 microg) completely reversed the anti-hypersensitivity effects of systemic ketamine. Systemic ketamine reduced fos expression in laminae I-II in the dorsal horn of the lumbar spinal cord ipsilateral to the paw incision. CONCLUSIONS The results suggest that systemic administration of ketamine perioperatively suppresses early-stage postoperative pain via monoaminergic descending inhibitory pathways.
Collapse
Affiliation(s)
- Shiro Koizuka
- Department of Anesthesiology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | | | | | | | | |
Collapse
|
27
|
Malec D, Poleszak E. Adenosine receptor ligands and dizocilpine-induced antinociception in mice. Int J Neurosci 2005; 115:511-22. [PMID: 15809217 DOI: 10.1080/00207450590519139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Interactions between adenosine receptor ligands and dizocilpine (uncompetitive NMDA receptor antagonist) was studied in antinociceptive, writhing test in mice. Minimal effective, antinociceptive doses of adenosine receptor agonists were: 0.1 mg/kg (NECA--A1/A2 agonist). Generally, these agonists did not potentiate the subthreshold dose of dizocilpine (0.05 mg/kg). Of all adenosine receptor antagonists used, only caffeine (A2 and A2 antagonists) reversed dizocilpine-induced (0.1 mg/kg) antinociception dose-dependently. These findings indicate that dizocilpin-induced antinociception in the writhing test is only partly influenced by adenosine receptor ligands.
Collapse
Affiliation(s)
- Danuta Malec
- Department of Pharmacodynamics, Skubiszewski Medical University of Lublin, Lublin, Poland.
| | | |
Collapse
|
28
|
Soygüder Z. Multiple neurotransmitter receptors contribute to the spinal Fos expression. Brain Res 2005; 1033:202-9. [PMID: 15694925 DOI: 10.1016/j.brainres.2004.11.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2004] [Indexed: 10/25/2022]
Abstract
The aim of this study is to identify the receptors which could potentially mediate the activation of c-Fos. Therefore, the effects of neurotransmitter receptor agonists in the activation of c-Fos in spinal neurons were studied by intrathecal injection of excitatory amino acid (EAA) receptor agonists: N-Methyl-D-Aspartate (NMDA), (S)-alpha-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic acid (AMPA), 2-Carboxyl-3-carboxymethyl-4-isopropenylpyMidine (Kainic acid, KA), (1S-3R)-1-Aminocyclopentane-1, 3-dicarboxylacid (ACPD), and substance-P receptor (neurokinin-1) agonist, [Sar9, Met (O2)11] SP (SarMet-SP). All drugs tested activated the production of c-Fos in spinal dorsal horn neurons. AMPA was found as the most potent agonist tested producing market production of c-Fos particularly in neurons of lamina II at doses of 10 pM per 10-microl injection. At this dose, other agonists were relatively ineffective. At higher doses, AMPA significantly increased the activated cells. NMDA significantly increased c-Fos production to a marked extent only at doses above 10 nM per 10-microl injection. KA and ACPD were least potent of the excitatory amino acid agonists. Injection of SarMet-SP at doses of 1 nM activated Fos selectively in neurons of lamina I. A dose-dependent increase in number of c-Fos-positive cells was observed for AMPA, KA, ACPD, and SarMet-SP, whereas NMDA gave a very strong expression after a high dose with no dose dependency. These finding suggest that multiple neurotransmitter receptors lead to c-Fos production in spinal neurons.
Collapse
Affiliation(s)
- Zafer Soygüder
- University of Yüzüncü Yil, Veterinary Faculty, Department of Anatomy, Van, Turkey.
| |
Collapse
|
29
|
Abstract
Inasmuch as glutamate is the main excitatory neurotransmitter in the central nervous system, strategies aimed at counteracting glutamate excitotoxicity, which is at least partially involved in many acute neurologic, chronic neurodegenerative and psychiatric diseases, are challenging. Blockade of the NMDA receptor was identified as one way of achieving selective antagonism and overcoming glutamate neurotoxicity, yet not without liabilities. Glycine site antagonism of the NMDA receptor in 1987 offered a significant advance in blocking this receptor because such drugs were shown to lack most of the side effects, such as memory impairment, ataxia, lack of motor coordination and psychotomimetic effects, which accompanied competitive and non-competitive NMDA receptor antagonists. To date, much has been done to improve the structure-activity relationship (SAR) of compounds resulting in the synthesis of ACEA 1021. It is unclear, however, whether further chemical substitutions will lead to an improved compound. Many studies have been performed with ACEA 1021 and although there are much in vitro and in vivo data to support its neuroprotective effects and improved safety profile, there is very little published information regarding its clinical pharmacology. In order to properly evaluate the true potential for ACEA 1021 in acute and chronic CNS disorders additional longer term safety and efficacy data in humans are needed.
Collapse
Affiliation(s)
- Margaret A Petty
- CNS Pharmacology, Aventis Pharmaceuticals, Inc., JR2-303A, Bridgewater, NJ 08807-0800, USA.
| | | | | |
Collapse
|
30
|
Kekesi G, Joo G, Csullog E, Peter-Szabo M, Benedek G, Horvath G. Dose-independent antinociceptive interaction of endogenous ligands at the spinal level. Brain Res 2004; 1029:93-102. [PMID: 15533320 DOI: 10.1016/j.brainres.2004.09.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2004] [Indexed: 11/26/2022]
Abstract
Adenosine, agmatine and kynurenic acid are endogenous ligands acting on different (e.g. adenosine, NMDA, alpha(2)-adrenergic and imidazoline) receptors with a potential role in nociception at the spinal level. Their antinociceptive effects have already been investigated as monotherapy, but only a few studies have reported on their effects on the potency of other drugs. The purpose of the present study was carried out to analyse their interactions during continuous intrathecal co-administration in a carrageenan-induced thermal hyperalgesia model in rats. A paw withdrawal test was used for nociceptive testing. The intrathecal infusion (60 min) of these three drugs was administered alone or in combinations (kynurenic acid+adenosine or agmatine; adenosine+agmatine), which was followed by an additional 60-min observation period. Kynurenic acid alone was ineffective, while adenosine and agmatine alone caused a slight increase in pain threshold. However, independently of the applied doses all of the combinations significantly (p<0.05) increased the paw withdrawal latencies on the inflamed side during and after the infusion, but were almost ineffective on the normal side. The adenosine+kynurenic acid combination was the most effective: namely, that it relieved thermal hyperalgesia in all the applied dose combinations. Treatment with the kynurenic acid-containing combinations also caused dose-dependent side-effects (motor impairment and excitation), despite the fact that monotherapy with kynurenic acid in the applied dose (0.1 microg/min) did not result in adverse effects.
Collapse
Affiliation(s)
- Gabriella Kekesi
- Department of Physiology, Faculty of Medicine, University of Szeged, P.O. Box 427, H-6701, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
31
|
Soygüder Z. NMDA and AMPA/KA receptors are involved in the c-Fos expression following mustard oil activation of C-fibres. J Chem Neuroanat 2004; 28:163-9. [PMID: 15482902 DOI: 10.1016/j.jchemneu.2004.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Revised: 02/20/2004] [Accepted: 06/11/2004] [Indexed: 11/17/2022]
Abstract
To examine whether mustard oil application to the skin activated c-Fos via glutamate receptors, a competitive NMDA receptor antagonist, 3-(2-carboxpiperazin-4-yl)propyl-1-phospionic acid (CPP), a selective AMPA/KA receptor antagonist, 6-cyano-2,3-dihydroxy-7-nitro-quinoxaline (CNQX), or both, were used intrathecally 10 min prior to noxious stimulation. Application of mustard oil to left hind foot of the vehicle-injected animals produced c-Fos expression mainly in superficial laminae (laminae I-II) of the dorsal horn on the side ipsilateral to the stimulation. CPP significantly reduced the number of c-Fos-positive nuclei in superficial laminae. But significant reduction of c-Fos expression by CNQX was seen in deeper laminae (laminae III-X). Administration of both CPP and CNQX extensively reduced the number of c-Fos-positive cells in both superficial and deeper laminae. However, they did not greatly change the number of c-Fos-positive cells in lamina I. This experiment revealed that NMDA and AMPA/KA receptors contribute to the mustard oil-induced c-Fos expression in the spinal cord. These data also suggest that other neurotransmitter receptors might be involved in the activation produced by algesic chemical activation of C-fibre primary afferents.
Collapse
Affiliation(s)
- Zafer Soygüder
- Department of Anatomy, Veterinary Faculty, The University of Yüzüncü Yil, Van Turkey.
| |
Collapse
|
32
|
Haseneder R, Kurz J, Dodt HUU, Kochs E, Zieglgänsberger W, Scheller M, Rammes G, Hapfelmeier G. Isoflurane reduces glutamatergic transmission in neurons in the spinal cord superficial dorsal horn: evidence for a presynaptic site of an analgesic action. Anesth Analg 2004; 98:1718-1723. [PMID: 15155334 DOI: 10.1213/01.ane.0000112309.80017.3f] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED The minimum alveolar concentration (MAC) of a volatile anesthetic defines anesthetic potency in terms of a suppressed motor response to a noxious stimulus. Therefore, the MAC of an anesthetic might in part reflect depression of motor neuron excitability. In the present study we evaluated the effect of isoflurane (ISO) on neurons in the substantia gelatinosa driven synaptically by putative nociceptive inputs in an in vitro spinal cord preparation of the rat. Whole-cell patch-clamp recordings were performed in neurons with their soma in the substantia gelatinosa of transverse rat spinal cord slices. We investigated the effect of ISO on excitatory postsynaptic currents (EPSC) evoked by dorsal root stimulation (eEPSC), spontaneous (sEPSC), and miniature (mEPSC) EPSC. ISO reversibly reduced the amplitude of eEPSC to 39% +/- 22% versus control. ISO decreased the frequency of sEPSC and mEPSC to 39% +/- 26% and 63% +/- 7%. Neither the amplitudes nor the kinetics of mEPSC and sEPSC were altered by ISO. We conclude that ISO depresses glutamatergic synaptic transmission of putative nociceptive primary-afferent inputs, presumably by reducing the release of the excitatory transmitter. This effect may contribute to an antinociceptive action of volatile anesthetics at the spinal cord level. IMPLICATIONS The present electrophysiological in vitro experiments provide evidence that the volatile anesthetic isoflurane reduces excitatory transmitter release at the first site of synaptic integration of nociceptive inputs, the spinal cord superficial dorsal horn. This effect may contribute to the anesthetic action of volatile anesthetics at the spinal cord level.
Collapse
Affiliation(s)
- Rainer Haseneder
- From the *Department of Anaesthesiology, Klinikum rechts der Isar, Technische Universität München, and the †Department of Clinical Neuropharmacology, Max-Planck-Institute of Psychiatry, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Verleye M, André N, Heulard I, Gillardin JM. Nefopam blocks voltage-sensitive sodium channels and modulates glutamatergic transmission in rodents. Brain Res 2004; 1013:249-55. [PMID: 15193535 DOI: 10.1016/j.brainres.2004.04.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2004] [Indexed: 11/23/2022]
Abstract
In order to specify the nature of interactions between the analgesic compound nefopam and the glutamatergic system, we examined the effects of nefopam on binding of specific ligands on the three main subtypes ionotropic glutamate receptors: N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), or quisqualic acid (QA) and kainic acid (KA) in rat brain membrane preparations. Functionally, we investigated the effects of nefopam against the seizures induced by agonists of these excitatory glutamate receptors in mice. Since the synaptic release of glutamate mainly depends upon the activation of membrane voltage-sensitive sodium channels (VSSCs), the nature of interactions between nefopam and these ionic channels was studied by evaluating the effects of nefopam on binding of 3H-batrachotoxinin, a specific ligand of the VSSCs in rat brain membrane preparations. The functional counterpart of the binding of nefopam on VSSCs was evaluated by its effects on the 22Na uptake-stimulated by veratridine on human neuroblastoma cells and in the maximal electroshock test in mice. Nefopam showed no affinity for the subtypes of ionotropic glutamate receptors up to 100 microM. On the other hand, nefopam was effective against NMDA, QA and KA induced clonic seizures in mice. Nefopam displaced 3H-batrachotoxinin and inhibited the uptake of 22Na in the micromolar range and it protected mice against electroshock induced seizures. Nefopam may block the VSSCs activity: consequently, at the presynaptic level, this effect led to a reduction of glutamate release and at the postsynaptic level, it led to a decrease of the neuronal excitability following activation of the glutamate receptors.
Collapse
Affiliation(s)
- Marc Verleye
- Laboratoires Biocodex-Service de Pharmacologie-Zac de Mercières, 60200 Compiègne, France.
| | | | | | | |
Collapse
|
34
|
Berrino L, Oliva P, Massimo F, Aurilio C, Maione S, Grella A, Rossi F. Antinociceptive effect in mice of intraperitoneal N-methyl-D-aspartate receptor antagonists in the formalin test. Eur J Pain 2003; 7:131-7. [PMID: 12600794 DOI: 10.1016/s1090-3801(02)00086-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Although the antinociceptive effect of NMDA antagonists in the formalin test is well recognised, these compounds can induce adverse motor effects. The aim of this study was to identify the systemic doses of NMDA antagonists that induce analgesia without causing side effects. Male Swiss mice (30-40g) received a subcutaneous (sc) injection of 1.25% formalin (50 micro l) in the dorsal surface of the right hind-paw and, 15min before or after formalin, an ip injection of one of the following NMDA receptor antagonists: MK 801 (0.01, 0.025, and 0.05mg/kg), memantine (0.1, 0.5, and 1mg/kg), ketamine (0.125, 0.25, and 0.5mg/kg), dextromethorphan (5, 10, and 20mg/kg), and CGP 37849 (4, 6, and 8mg/kg). Pain-related behaviour (licking, lifting, favouring, shaking, and flinching of the treated paw) was recorded at 5-min intervals for 60min. The NMDA receptor antagonists significantly (p<0.01) and dose-dependently reduced, versus controls, nociceptive activity during the second phase of the formalin test (from the 20th to the 60thmin): at the highest doses, 97.6+/-0.1% with MK 801; 90.4+/-0.2% with memantine; 74.7+/-0.3% with ketamine; 92.8+/-0.4% with dextromethorphan; and 80.7+/-0.3% with CGP 37849, without affecting coordination. The rank order potency of antinociceptive activity of NMDA antagonists was: MK801>memantine>ketamine>dextromethorphan>CGP37849. The NMDA antagonists administered after formalin (during the analgesic interval) did not affect the late phase of the formalin test. In conclusion, systemic administration of NMDA receptor antagonists decreases the nociception observed during the late phase of the formalin test.
Collapse
Affiliation(s)
- Liberato Berrino
- Department of Experimental Medicine, Section of Pharmacology 'L. Donatelli', Second University of Naples, via Costantinopoli 16, I-80138, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Sepúlveda J, Ortega A, Zapata G, Contreras E. Acamprosate decreases the induction of tolerance and physical dependence in morphine-treated mice. Eur J Pharmacol 2002; 445:87-91. [PMID: 12065198 DOI: 10.1016/s0014-2999(02)01767-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of acamprosate, a drug thought to interact with N-methyl-D-aspartate (NMDA) receptors in the central nervous system (CNS), were examined on the antinociceptive action of morphine, induction of tolerance to and physical dependence on morphine, and expression of the abstinence syndrome to the opiate in mice. For the induction of tolerance and dependence, morphine (300 mg/kg) was administered by means of a slow-release preparation. Single doses of acamprosate (50, 100, 200, or 400 mg/kg) administered 30 min before a test dose of morphine did not change the antinociceptive effects of morphine in drug-naive mice. The drug was also administered in repeated doses (50, 100, 200, or 400 mg/kg, 30 min before and 12 and 24 h after the priming dose of morphine) in order to evaluate its effects on the induction of tolerance; all doses assayed, except the 400 mg/kg, did not affect the intensity of tolerance. The acute administration of acamprosate (50, 100, 200, or 400 mg/kg, injected 30 min before naloxone to morphine-pretreated mice) did not affect the intensity of the abstinence behavior. However, the repeated administration of 100 mg/kg of acamprosate (30 min before and 12 and 24 h after the priming dose of morphine) decreased the intensity of physical dependence. The results of these studies suggest that acamprosate may have modulatory effects on glutamatergic neurotransmission participating in the adaptive mechanisms induced by chronic morphine treatment.
Collapse
Affiliation(s)
- Jacqueline Sepúlveda
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile.
| | | | | | | |
Collapse
|
36
|
Marvizón JCG, McRoberts JA, Ennes HS, Song B, Wang X, Jinton L, Corneliussen B, Mayer EA. Two N-methyl-D-aspartate receptors in rat dorsal root ganglia with different subunit composition and localization. J Comp Neurol 2002; 446:325-41. [PMID: 11954032 DOI: 10.1002/cne.10202] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors in sensory afferents participate in chronic pain by mediating peripheral and central sensitization. We studied the presence of NMDA receptor subunits in different types of primary afferents. Western blots indicated that rat dorsal root ganglia (DRG) contain NR1, NR2B, NR2C, and NR2D but not NR2A. Real-time RT-PCR showed that NR2B and NR2D were expressed at higher levels than NR2A and NR2C in DRG. Immunofluorescence with an antibody that recognized NR1 and another that recognized NR2A and NR2B showed that NR1 and NR2B colocalized in 90% of DRG neurons, including most A-fibers (identified by the presence of neurofilament 200 kDa). In contrast, an antibody recognizing NR2C and NR2D labeled only neurofilament-negative DRG profiles. This antibody stained practically all DRG cells that contained calcitonin gene-related peptide and neurokinins and those that bound isolectin B4. The percentage of cells immunoreactive for NR1, NR2A/NR2B, and NR2C/NR2D were the same in the T9, T12, L4, and L6 DRG. The intracellular distribution of the NR2 subunits was strikingly different: Whereas NR2A/NR2B immunoreactivity was found in the Golgi apparatus and occasionally at the plasma membrane, NR2C/NR2D immunoreactivity was found in the cytoplasm but not in the Golgi. The NR1 subunit was present throughout the cytoplasm and was more intense in the Golgi. These findings indicate that DRG neurons have two different NMDA receptors, one containing the NR1, NR2D, and possibly the NR2C subunits, found only in C-fibers, and the diheteromer NR1/NR2B, present in the Golgi apparatus of both A- and C-fibers.
Collapse
MESH Headings
- Animals
- Antibody Specificity/immunology
- Calcitonin Gene-Related Peptide/metabolism
- Cell Compartmentation/physiology
- Chronic Disease
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- Lectins/metabolism
- Male
- Nerve Fibers/metabolism
- Nerve Fibers/ultrastructure
- Nerve Fibers, Myelinated/metabolism
- Nerve Fibers, Myelinated/ultrastructure
- Neurofilament Proteins/metabolism
- Neurons, Afferent/cytology
- Neurons, Afferent/metabolism
- Organelles/metabolism
- Organelles/ultrastructure
- Pain/metabolism
- Pain/physiopathology
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley/anatomy & histology
- Rats, Sprague-Dawley/metabolism
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Tachykinins/metabolism
Collapse
Affiliation(s)
- Juan Carlos G Marvizón
- Neuroenteric Disease Program, CURE: Digestive Diseases Research Center, Department of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Gee BY, Tjen-A-Looi SC, Hill JM, Chahal PS, Longhurst JC. Role of spinal NMDA and non-NMDA receptors in the pressor reflex response to abdominal ischemia. Am J Physiol Regul Integr Comp Physiol 2002; 282:R850-7. [PMID: 11832407 DOI: 10.1152/ajpregu.00297.2001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abdominal ischemia induces a pressor reflex caused mainly by C-fiber afferent stimulation. Because excitatory amino acids, such as glutamate, bind to N-methyl-D-aspartate (NMDA) and non-NMDA [dl-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)] receptors and serve as important spinal neurotransmitters, we hypothesized that both receptors play a role in the abdominal ischemia pressor reflex. In chloralose-anesthetized cats, NMDA receptor blockade with 25.0 mM dl-2-amino-5-phosphonopentanoate did not alter the pressor reflex (33 +/- 9 to 33 +/- 7 mmHg, P > 0.05, n = 4), whereas AMPA receptor blockade with 4.0 mM 6-nitro-7-sulfamylbenzo(f)quinoxaline-2,3-dione significantly attenuated the reflex (29 +/- 5 to 16 +/- 4 mmHg, P < 0.05, n = 6). Because several studies suggest that anesthesia masks the effects of glutamatergic receptors, this experiment was repeated on decerebrate cats, and in this group, NMDA receptor blockade with 25.0 mM dl-2-amino-5-phosphonopentanoate significantly altered the pressor reflex (36 +/- 3 to 25 +/- 4 mmHg, P < 0.05, n = 5). Our combined data suggest that spinal NMDA and AMPA receptors play a role in the abdominal ischemia pressor reflex.
Collapse
Affiliation(s)
- B Y Gee
- Department of Medicine, University of California, Irvine, California 92697-4075, USA
| | | | | | | | | |
Collapse
|
38
|
Sakurada T, Watanabe C, Okuda K, Sugiyama A, Moriyama T, Sakurada C, Tan-No K, Sakurada S. Intrathecal high-dose morphine induces spinally-mediated behavioral responses through NMDA receptors. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 98:111-8. [PMID: 11834301 DOI: 10.1016/s0169-328x(01)00332-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous research has demonstrated that intrathecal i.t. morphine in a dose of 60.0 nmol into the spinal subarachnoid space of mice can evoke nociceptive behavioral responses consisting of a severe hindlimb scratching directed toward the flank followed by biting/licking of the hindpaw. The present study was undertaken to examine the involvement of spinal N-methyl-D-aspartate (NMDA) and opioid receptors on the behavioral responses evoked by high-dose i.t. morphine. Pretreatment with naloxone, an opioid receptor antagonist (1.0 and 4.0 mg/kg, s.c.), failed to reverse the morphine-evoked behavioral response, suggesting that the morphine effect is not mediated through the opioid receptors in the spinal cord. The morphine-induced behavior was dose-dependently inhibited by i.t. co-administration of the competitive NMDA receptor antagonists, D(-)-2-amino-5-phosphonovaleric acid (D-APV) (6.25-50.0 pmol) and 3-((+)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) (3.125-25.0 pmol). The characteristic behavior was also reduced by co-administration of (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cycloheptene-5,10-imine maleate (MK-801) (74.1-250 pmol), an NMDA ion-channel blocker. Ifenprodil, a competitive antagonist of the polyamine recognition site of NMDA receptor ion channel complex, produced a dose-related inhibitory effect on the behavioral response to i.t. morphine with less potency than the competitive and non-competitive antagonists examined. High doses of (+)-HA-966, a glycine/NMDA antagonist, induced a dose-dependent inhibition of morphine-induced response. The effective dose of i.t. 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a non-NMDA receptor antagonist, needed to reduce the morphine-induced response, was approximately 10-fold greater than that of D-APV. These results suggest that spinal NMDA receptors, but not non-NMDA receptors, may be largely involved in elicitation of the behavioral episode following i.t. injection of morphine in mice.
Collapse
Affiliation(s)
- Tsukasa Sakurada
- Department of Biochemistry, Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, 815-8511, Fukuoka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Rydh-Rinder M, Kerekes N, Svensson M, Hökfelt T. Glutamate release from adult primary sensory neurons in culture is modulated by growth factors. REGULATORY PEPTIDES 2001; 102:69-79. [PMID: 11730978 DOI: 10.1016/s0167-0115(01)00297-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to examine possible modulatory effects of some trophic molecules, i.e. nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (bFGF), on potassium (K(+))-, bradykinin (BK)- or capsaicin (CAPS)-evoked release of glutamate (GLU) from dorsal root ganglion (DRG) neurons in vitro. BK (0.5 and 1 microM) induced a dramatic and significant increase in glutamate release. Neither CAPS nor K(+) (60 mM) produced any significant increase of GLU release vs. basal levels during a 5-min stimulation. The BK-evoked release of GLU was almost completely blocked by HOE 140, a selective BK2-receptor antagonist at high doses. Basal release of GLU was significantly reduced in cultures grown in the presence of bFGF, whereas BDNF and NGF had no significant effect. Incubation with growth factors generally decreased the BK-stimulated GLU release, an effect most pronounced for bFGF, which completely blocked BK-stimulated release. The rise in intracellular [Ca(2+)] following stimulation with BK (100 nM-1 microM), potassium (60 mM) or ATP (10 microM) was also studied using a Ca(2+)-sensitive indicator, Fura-2, in cultures grown in basal medium with or without bFGF. None of the bFGF-treated cells exhibited strong Ca(2+) responses to BK or ATP stimulation, while 10-20% of the responding cells grown in basal medium exhibited strong responses. The K(+)-induced increase of [Ca(2+)] did not vary between the different groups. The present findings suggest that sensory neurotransmission involving glutamate may be modulated by growth factors and that regulation of intracellular Ca(2+) homeostasis may be a contributing factor.
Collapse
|
40
|
Begon S, Pickering G, Eschalier A, Mazur A, Rayssiguier Y, Dubray C. Role of spinal NMDA receptors, protein kinase C and nitric oxide synthase in the hyperalgesia induced by magnesium deficiency in rats. Br J Pharmacol 2001; 134:1227-36. [PMID: 11704642 PMCID: PMC1573046 DOI: 10.1038/sj.bjp.0704354] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
1. Magnesium (Mg)-deficient rats develop a mechanical hyperalgesia which is reversed by a N-Methyl-D-Aspartate (NMDA) receptor antagonist. Given that functioning of this receptor-channel is modulated by Mg, we wondered whether facilitated activation of NMDA receptors in Mg deficiency state may in turn trigger a cascade of specific intracellular events present in persistent pain. Hence, we tested several antagonists of NMDA and non-NMDA receptors as well as compounds interfering with the functioning of intracellular second messengers for effects on hyperalgesia in Mg-deficient rats. 2. Hyperalgesic Mg-deficient rats were administered intrathecally (10 microl) or intraperitoneally with different antagonists. After drug injection, pain sensitivity was evaluated by assessing the vocalization threshold in response to a mechanical stimulus (paw pressure test) over 2 h. 3. Intrathecal administration of MgSO4 (1.6, 3.2, 4.8, 6.6 micromol) as well as NMDA receptor antagonists such as MK-801 (0.6, 6.0, 60 nmol), AP-5 (10.2, 40.6, 162.3 nmol) and DCKA (0.97, 9.7, 97 nmol) dose-dependently reversed the hyperalgesia. Chelerythrine chloride, a protein kinase C (PKC) inhibitor (1, 10.4, 104.2 nmol) and 7-NI, a specific nitric oxide (NO) synthase inhibitor (37.5, 75, 150 micromol x kg(-1), i.p.) induced an anti-hyperalgesic effect in a dose-dependent manner. SR-140333 (0.15, 1.5, 15 nmol) and SR-48968 (0.17, 1.7, 17 nmol), antagonists of neurokinin receptors, produced a significant, but moderate, increase in vocalization threshold. 4. These results demonstrate that Mg-deficiency induces a sensitization of nociceptive pathways in the spinal cord which involves NMDA and non-NMDA receptors. Furthermore, the data is consistent with an active role of PKC, NO and, to a lesser extent substance P in the intracellular mechanisms leading to hyperalgesia.
Collapse
Affiliation(s)
- Sophie Begon
- EMI INSERM/UdA 9904 – Pharmacologie Fondamentale et Clinique de la Douleur, Laboratoire de Pharmacologie Médicale, Faculté de Médecine, B.P. 38, 63001 Clermont-Ferrand, Cedex 1, France
| | - Gisèle Pickering
- EMI INSERM/UdA 9904 – Pharmacologie Fondamentale et Clinique de la Douleur, Laboratoire de Pharmacologie Médicale, Faculté de Médecine, B.P. 38, 63001 Clermont-Ferrand, Cedex 1, France
- Author for correspondence:
| | - Alain Eschalier
- EMI INSERM/UdA 9904 – Pharmacologie Fondamentale et Clinique de la Douleur, Laboratoire de Pharmacologie Médicale, Faculté de Médecine, B.P. 38, 63001 Clermont-Ferrand, Cedex 1, France
| | - André Mazur
- Unité Maladies métaboliques et Micronutriments, INRA, 63122 St-Genes-Champanelle, France
| | - Yves Rayssiguier
- Unité Maladies métaboliques et Micronutriments, INRA, 63122 St-Genes-Champanelle, France
| | - Claude Dubray
- EMI INSERM/UdA 9904 – Pharmacologie Fondamentale et Clinique de la Douleur, Laboratoire de Pharmacologie Médicale, Faculté de Médecine, B.P. 38, 63001 Clermont-Ferrand, Cedex 1, France
| |
Collapse
|
41
|
Wainai T, Takeuchi T, Seo N, Mishina M. Regulation of acute nociceptive responses by the NMDA receptor GluRepsilon2 subunit. Neuroreport 2001; 12:3169-72. [PMID: 11711849 DOI: 10.1097/00001756-200110290-00005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Heterozygous mice mutant for the NMDA-type glutamate receptor (GluR) epsilon2 subunit with a highly homogeneous genetic background showed exaggerated responses to various acute noxious stimuli in the footshock, tail-flick, hot-plate and tail-pinch tests. Because the noxious stimuli in these behavioral tests were electrical, thermal and mechanical, the reduction of GluRepsilon2 proteins exerted stimulatory effects on acute nociceptive responses across modalities. Previous studies showed that GluRepsilon1 and GluRepsilon4 subunit mutant mice exhibited no alteration in the responses to acute noxious stimuli. Thus, among NMDA receptor subunits, the GluRepsilon2 subunit specifically plays an important role in the regulation of the acute nociceptive responses.
Collapse
Affiliation(s)
- T Wainai
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | |
Collapse
|
42
|
Yashpal K, Fisher K, Chabot JG, Coderre TJ. Differential effects of NMDA and group I mGluR antagonists on both nociception and spinal cord protein kinase C translocation in the formalin test and a model of neuropathic pain in rats. Pain 2001; 94:17-29. [PMID: 11576741 DOI: 10.1016/s0304-3959(01)00337-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Coincident with nociception, both noxious chemical stimulation of the hind paw and chronic constriction injury (CCI) of the sciatic nerve produce an increase in protein kinase C (PKC) translocation in the spinal cord of rats. Noxious stimulus-induced PKC translocation likely depends on glutamate activity at either N-methyl-D-aspartate (NMDA) receptors or group I metabotropic glutamate receptors (mGluR1/5) in the spinal cord dorsal horn. This study compares nociceptive responses to, and the alterations in membrane-associated PKC, induced by noxious chemical stimulation of the hindpaw and CCI of the sciatic nerve, as well as their modulation by both NMDA and mGluR1/5 receptor antagonists. Three groups of rats were given a single intrathecal (i.t.) injection of either vehicle, dizocilpine maleate (MK-801, 60 nmol), an NMDA receptor antagonist, or (S)-4-carboxyphenylglycine (S)-4CPG, (150 nmol), an mGluR1/5 antagonist, 10 min prior to a 50 microl of 2.5% formalin injection into the ventral surface of one hind paw. Another three groups of rats were given twice daily injections of either vehicle, MK-801 (30 nmol) or (S)-4CPG (90 nmol) i.t. for 5 days starting 30 min before CCI or sham injury of the sciatic nerve. Nociceptive responses were assessed for a 60 min period after the formalin injection in the first three groups, and tests of mechanical and cold allodynia were performed on days 4, 8, 12 and 16 after CCI for the latter three groups. Furthermore, changes in the levels of membrane-associated PKC, as assayed by quantitative autoradiography of the specific binding of [3H]-phorbol 12,13-dibutyrate ([3H]-PDBu) in the dorsal horn of the lumbar spinal cord sections, were assessed in formalin-injected rats (at 5, 25 and 60 min) and in neuropathic rats 5 days after CCI, treated (as above) with vehicle, MK-801 or (S)-4CPG. The results indicate that i.t. treatment with MK-801 significantly reduced nociceptive scores in the formalin test and also produced a significant suppression of formalin-induced increases in [3H]-PDBu binding in laminae I-II, III-VI and X of the lumbar spinal cord. In contrast, i.t. treatment with (S)-4CPG failed to significantly affect either nociceptive behaviours in the formalin test or formalin-induced increases in [3H]-PDBu binding in laminae I-II and III-VI of the lumbar spinal cord. On the other hand, i.t. treatment with either MK-801 or (S)-4CPG produced a significant reduction in mechanical and cold hypersensitivity, as well as [3H]-PDBu binding in laminae I-II and III-VI of the lumbar spinal cord, after CCI. These results suggest that while NMDA, but not mGluR1/5, receptors are involved in translocation of PKC and nociception in a model of persistent acute pain, both types of receptors influence the translocation of PKC in dorsal horn and mechanical and cold allodynia in a model of chronic neuropathic pain.
Collapse
Affiliation(s)
- Kiran Yashpal
- Pain Mechanisms Laboratory, Clinical Research Institute of Montreal, McGill University, Montreal, Quebec, Canada H3G 1Y6 Department of Anesthesia, McGill University, Montreal, Quebec, Canada H3G 1Y6 Department of Psychology, McGill University, Montreal, Quebec, Canada H3G 1Y6 Douglas Hospital Research Centre, Verdun, Quebec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
43
|
Hamada F, Noutsuka H, Hamada Y, Goto H. Comparison of the spinal anti-nociceptive effects of ES-242-1 and MK-801, two different NMDA antagonists, in rats. Neurosci Res 2001; 40:61-6. [PMID: 11311406 DOI: 10.1016/s0168-0102(01)00206-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to determine whether ES-242-1, a novel N-methyl-D-aspartate (NMDA) receptor antagonist of microbial origin, has anti-nociception at the spinal level and to evaluate how its anti-nociceptive effect differs from that of MK-801, a non-competitive NMDA receptor antagonist. Agents were injected intrathecally (0.1, 1.0 and 10 microg) through a previously implanted PE tube in rats. Formalin (2%, 100 microl) was injected subcutaneously into the left hindpaw 15 min after each antagonist administration. Licking time as a nociceptive behavior was measured in three stages after formalin-injection, such as early phase (0-9 min), late first phase (10-29 min) and late second phase (30-60 min). In the early phase, the largest dose of ES-242-1 significantly decreased total licking time, although MK-801 did not show any significant reduction. With the treatment of 1.0 and 10 microg MK-801, total licking time in both late first and second phases was significantly suppressed, although the smallest dose (0.1 microg) of ES-242-1 showed a significant reduction in the late second phase. These results indicate that ES-242-1 is highly effective against tonic pain, such as inflammatory pain.
Collapse
Affiliation(s)
- F Hamada
- Department of Otorhinolaryngology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo 160-0023, Japan.
| | | | | | | |
Collapse
|
44
|
Cruz SL, Páez-Martínez N, Pellicer F, Salazar LA, López-Rubalcava C. Toluene increases acute thermonociception in mice. Behav Brain Res 2001; 120:213-20. [PMID: 11182169 DOI: 10.1016/s0166-4328(00)00375-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Toluene is an abused solvent widely used in several commercial products. Recent evidence indicates that this solvent is a non-competitive inhibitor of NMDA receptors. Since NMDA receptors have been implicated in pain, this paper describes studies of the effects of increasing concentrations of inhaled toluene on nociception. Swiss Webster mice were exposed to toluene (500-8000 ppm) in static exposure chambers for 30 min. After completing the exposure period, animals were tested for nociception using the hot plate test. Toluene dose-dependently increased nociception as reflected by shorter latencies for the reflex, paw-lick and escape responses in toluene-treated mice with respect to their controls (animals exposed to air). In order to determine the possible role of opioids in this response, morphine (1-10 mg/kg) was injected before toluene inhalation. Toluene was not able to block morphine-induced antinocieption, however, it produced a shift of the morphine dose-response curve to lower effects, suggesting a physiological antagonism. No potentiation was seen when toluene was administered in combination with naloxone. Present results suggest that toluene increases nociception via neurotransmitter systems others than the glutamatergic.
Collapse
Affiliation(s)
- S L Cruz
- Departmento de Farmacobiología, Cinvestav IPN, Apartado Postal 22026, 14000 Mexico D.F., Mexico.
| | | | | | | | | |
Collapse
|
45
|
Ma QP, Hargreaves RJ. Localization of N-methyl-D-aspartate NR2B subunits on primary sensory neurons that give rise to small-caliber sciatic nerve fibers in rats. Neuroscience 2001; 101:699-707. [PMID: 11113318 DOI: 10.1016/s0306-4522(00)00419-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study we have used immunohistochemical staining and retrograde tracing techniques to investigate the relationship between the N-methyl-D-aspartate receptor NR2B subunits and small-diameter primary afferent dorsal root ganglion neurons that give rise to the sciatic nerve fibers. Three days after an intra-sciatic nerve injection of tetramethyl rhodamine isothiocyanate-conjugated wheat germ agglutinin which labels small-diameter primary afferents, many NR2B and wheat germ agglutinin-double-labeled cells ( approximately 70% of wheat germ agglutinin-labeled neurons) were observed in the L5 dorsal root ganglia. Three days after an intra-sciatic nerve injection of fluorescein isothiocyanate-conjugated Bandeiraea simplicifolia agglutinin isolectin B4 which labels predominantly non-peptidergic C-fiber primary afferents, NR2B and Bandeiraea simplicifolia agglutinin isolectin B4 double-labeled neurons ( approximately 90% of Bandeiraea simplicifolia agglutinin isolectin B4-labeled neurons) were also observed in the L5 dorsal root ganglion. Three days after an intra-sciatic nerve injection of fluorescein isothiocyanate-conjugated cholera toxin B subunit, only approximately 40% of cholera toxin B subunit-labeled neurons were NR2B positive and those labeled neurons tended to be small-sized. When calcitonin gene-related peptide and NR2B were labeled by a double immunofluorescent staining technique, we found that the majority of calcitonin gene-related peptide-positive neurons was NR2B immunoreactive (>90% of calcitonin gene-related peptide-positive neurons, and approximately 60% of NR2B-positive neurons) as well. Size frequency analysis also demonstrated that NR2B subunits were predominantly localized on the small and medium-sized neurons. These results suggest that NR2B subunits are predominantly expressed on small diameter primary afferents, and these NR2B containing N-methyl-D-aspartate receptors may play a role in the modulation of neurotransmitter release from primary afferent terminals.
Collapse
Affiliation(s)
- Q P Ma
- Department of Pharmacology, Merck Sharp & Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, CM20 2QR, Harlow, UK.
| | | |
Collapse
|
46
|
The Analgesic Interaction Between Intrathecal Clonidine and Glutamate Receptor Antagonists on Thermal and Formalin-Induced Pain in Rats. Anesth Analg 2001. [DOI: 10.1213/00000539-200103000-00033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Nishiyama T, Gyermek L, Lee C, Kawasaki-Yatsugi S, Yamaguchi T, Hanaoka K. The analgesic interaction between intrathecal clonidine and glutamate receptor antagonists on thermal and formalin-induced pain in rats. Anesth Analg 2001; 92:725-32. [PMID: 11226109 DOI: 10.1097/00000539-200103000-00033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED Clonidine, an alpha(2) adrenergic receptor agonist, inhibits glutamate release from the spinal cord. We studied the interaction of intrathecally administered clonidine and glutamate receptor antagonists on acute thermal or formalin induced nociception. Sprague-Dawley rats with lumbar intrathecal catheters were tested for their tail withdrawal response by the tail flick test and paw flinches produced by formalin injection after intrathecal administration of saline, clonidine, AP-5 (a N-methyl-D-aspartate receptor antagonist), or YM872 (an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist). The combinations of clonidine and the other two agents were also tested by isobolographic analyses. Motor disturbance and behavioral changes were observed as side effects. The ED(50) values of clonidine decreased from 0.26 microg (tail flick), 0.12 microg (Phase 1) and 0.13 microg (Phase 2) to 0.036 microg, 0.006 microg, and 0.013 microg with AP-5, and 0.039 microg, 0.057 microg, and 0.133 microg with YM872, respectively. Side effects were attenuated in both combinations. In conclusion, spinally administered clonidine and AP-5 or YM872 exhibited potent synergistic analgesia on acute thermal and formalin-induced nociception with decreased side effects in rats. IMPLICATIONS Combinations of a spinally administered alpha(2) adrenergic receptor agonist and an a N-methyl-D-aspartate receptor antagonist or an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist exhibited potent synergistic analgesia in acute thermal and inflammatory-induced nociception with decreased side effects.
Collapse
Affiliation(s)
- T Nishiyama
- Department of Anesthesiology, Harbor-University of California, Los Angeles Medical Center, Torrance, California, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Nishiyama T, Gyermek L, Lee C, Kawasaki-Yatsugi S, Yamaguchi T. Synergistic analgesic effects of intrathecal midazolam and NMDA or AMPA receptor antagonists in rats. Can J Anaesth 2001; 48:288-94. [PMID: 11305832 DOI: 10.1007/bf03019761] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To investigate the interaction of midazolam and N-methyl-D-aspartate (NMDA) receptor or -amino-3-hydroxy-5-methyl isoxazole-4-propionic acid (AMPA) receptor antagonist on the effects of persistent inflammatory nociceptive activation. METHODS Male Sprague-Dawley rats were implanted with lumbar intrathecal catheters and were tested for their responses to subcutaneous formalin injection into the hindpaw. Saline, midazolam (1 to 100 microg), AP-5 (I to 30 microg), a NMDA receptor antagonist, or YM872 (0.3 to 30 microg), an AMPA receptor antagonist was injected intrathecally 10 min before formalin injection. The combinations of midazolam and AP-5 or YM872 in a constant dose ratio based on the 50% effective dose (ED50) were also tested and were analysed with an isobologram. RESULTS Dose-dependent effects were observed with midazolam (ED50 was 1.34 microg and 1.21 microg in phase 1 and 2 of the formalin test, respectively), AP-5 (7.64 microg and 1.4 microg) and YM872 (0.24 microg and 0.21 microg). Synergistic effects in both phases were obtained when combining midazolam with AP-5 or YM872. The ED50 of midazolam decreased to 0.012 microg (phase 1) and 0.27 microg (phase 2) with AP-5 and to 0.09 microg (phase 1) and 0.35 microg (phase 2) with YM872 (P < 0.01). CONCLUSIONS These results suggest a functional coupling of benzodiazepine-aminobutyric acid (GABA)A receptor with NMDA and AMPA receptors in acute and persistent inflammatory nociceptive mechanisms in the spinal cord.
Collapse
Affiliation(s)
- T Nishiyama
- Department of Surgical Center, Institute of Medical Science, University of Tokyo, Japan.
| | | | | | | | | |
Collapse
|
49
|
Malmberg AB. Protein kinase subtypes involved in injury-induced nociception. PROGRESS IN BRAIN RESEARCH 2001; 129:51-9. [PMID: 11098681 DOI: 10.1016/s0079-6123(00)29005-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- A B Malmberg
- Neurobiology Unit, Roche Bioscience, Palo Alto, CA 94304, USA.
| |
Collapse
|
50
|
Rydh-Rinder M, Berge OG, Hökfelt T. Antinociceptive effects after intrathecal administration of phosphodiester-, 2'-O-allyl-, and C-5-propyne-modified antisense oligodeoxynucleotides targeting the NMDAR1 subunit in mouse. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 86:23-33. [PMID: 11165368 DOI: 10.1016/s0169-328x(00)00248-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the present study, we have compared the antinociceptive effect of three different types of antisense oligodeoxynucleotides targeting the N-methyl-D-aspartate (NMDA) R1-subunit in mice. The probes were administrated intrathecally three times during a period of 5 days (1, 5 or 25 microg/injection), followed by evaluation using the formalin test. The antinociceptive effect was correlated to in vitro receptor binding in spinal cord sections. The tissue distribution was studied after a single injection of fluorescein-conjugated probes. The phosphodiester probe showed superficial tissue penetration after 30 min and disappeared within 2 h. The probe did, however, significantly reduce both receptor binding in laminae I and II (by 36-44% compared to saline) as well as pain behavior (32% compared to saline), without apparent side effects. The mismatched probe was ineffective at 25 microg, while some reductions in receptor binding and pain behavior were seen after 5 microg. The C-5-propyne-modified phosphorothioate probe showed pronounced tissue penetration and cellular uptake as soon as 30 min after injection which was still detectable after 24 h. Immediately after injection of the highest dose, long-lasting hind-limb paralysis was observed. Receptor binding was reduced but not in a dose-related manner. Pain behavior was significantly reduced by 40% following 25 microg of antisense probe but not after lower doses or 25 microg of mismatched probe. The 2'-O-allyl-modified probe did not significantly reduce receptor binding or pain behavior. Thus, only the phosphodiester probe showed a significant correlation between reduction in pain behavior and receptor binding. These findings demonstrate that antisense technology is associated with specificity problems, but still could provide a valuable tool to study the role of different target proteins in the drug discovery process.
Collapse
|