1
|
Snelson M, Muralitharan RR, Liu CF, Markó L, Forslund SK, Marques FZ, Tang WHW. Gut-Heart Axis: The Role of Gut Microbiota and Metabolites in Heart Failure. Circ Res 2025; 136:1382-1406. [PMID: 40403109 PMCID: PMC12101525 DOI: 10.1161/circresaha.125.325516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 05/24/2025]
Abstract
Heart failure is a global health issue with significant mortality and morbidity. There is increasing evidence that alterations in the gastrointestinal microbiome, gut epithelial permeability, and gastrointestinal disorders contribute to heart failure progression through various pathways, including systemic inflammation, metabolic dysregulation, and modulation of cardiac function. Moreover, several medications used to treat heart failure directly impact the microbiome. The relationship between the gastrointestinal tract and the heart is bidirectional, termed the gut-heart axis. It is increasingly understood that diet-derived microbial metabolites are key mechanistic drivers of the gut-heart axis. This includes, for example, trimethylamine N-oxide and short-chain fatty acids. This review discusses current insights into the interplay between heart failure, its associated risk factors, and the gut microbiome, focusing on key metabolic pathways, the role of dietary interventions, and the potential for gut-targeted therapies. Understanding these complex interactions could pave the way for novel strategies to mitigate heart failure progression and improve patient outcomes.
Collapse
Affiliation(s)
- Matthew Snelson
- Hypertension Research Laboratory, Department of Pharmacology, Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Rikeish R. Muralitharan
- Hypertension Research Laboratory, Department of Pharmacology, Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Chia-Feng Liu
- Center for Microbiome and Human Health, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland OH, USA
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland OH, USA
| | - Lajos Markó
- Charité – Universitätsmedizin Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center ( ECRC), Berlin, Germany
| | - Sofia K. Forslund
- Charité – Universitätsmedizin Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center ( ECRC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Francine Z. Marques
- Hypertension Research Laboratory, Department of Pharmacology, Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- Victorian Heart Institute, Monash University, Melbourne, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - W. H. Wilson Tang
- Center for Microbiome and Human Health, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland OH, USA
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland OH, USA
| |
Collapse
|
2
|
Huang L, Liu W, Lv X, Ge X, He Z, Yang Y, Tang Y, Wang L, Zeng J, Cheng P. Rational design, synthesis and anti-inflammatory activity of 6-substituted dihydrobenzophenanthridine derivatives. Bioorg Med Chem 2025; 122:118145. [PMID: 40056889 DOI: 10.1016/j.bmc.2025.118145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
a series of 6-substituted dihydrobenzophenanthridine alkaloids were synthesized by introduction of different functional groups to C-6 of dihydrobenzophenanthridine backbone. The preliminary anti-inflammatory activities of all compounds were screened by investigating the inhibitory ability on NO production in LPS-stimulated RAW 264.7 cells. Among synthesized compounds, 6-(N-phenyl)-aminocarbonyl methyl dihydrochelerythrine (compound 12b) showed increased anti-inflammatory ability and decreased cytotoxicity and could inhibit the expression of pro-inflammatory factors TNF-α and IL-6 in RAW 264.7 macrophages. The anti-inflammatory ability of compound 12b was further evaluated using DSS-induced mice colitis models based on colonic tissue damage assessment, histopathological assessment and immunohistochemical analysis. In vivoexperiment revealed that compound 12b had good alleviating effect on acute colitis in mice. In conclusion, compound 12b may be a promising anti-inflammatory lead compound.
Collapse
Affiliation(s)
- Lei Huang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Wei Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Xinye Lv
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Xiaomei Ge
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Zhehao He
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Yingxue Yang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Yuhui Tang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Lin Wang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China.
| | - Pi Cheng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Chinese Medicinal Materials Breeding Innovation Center of Yuelushan Laboratory, Changsha 410128, Hunan, China.
| |
Collapse
|
3
|
Ouyang C, Tu T, Yu H, Wang L, Ni Z, Yang J, Dong Y, Zou X, Zhou W, Liu J, Chen D, Wang Y, Wu X, Yi H, Yuan X, Liu Z, Lu H. One-Step Formed Janus Hydrogel with Time-Space Regulating Properties for Suture-Free and High-Quality Tendon Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411400. [PMID: 39921433 PMCID: PMC11967842 DOI: 10.1002/advs.202411400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/05/2024] [Indexed: 02/10/2025]
Abstract
Janus hydrogels have promising applications in tendon healing and anti-peritendinous adhesions. However, their complicated preparation methods, weak mechanical properties, and unstable adhesion interfaces have severely limited their application in suture-free and high-quality tendon healing. In this work, by controlling the interfacial distribution of free -COOH groups and cationic-π structures on both sides of the hydrogels, a series of PZBA-EGCG-ALC Janus hydrogels with varying degrees of asymmetric properties are successfully prepared using a simple and efficient one-step synthesis method. The tensile strength and elongation at the break of the Janus hydrogel are as high as 0.51 ± 0.04 MPa and 922.89 ± 28.59%. In addition, the Janus hydrogel can achieve a high difference in adhesion strength (nearly 20-fold) while maintaining a strong adhesion strength on their bottom sides (up to 524.8 ± 33.1 J m-2). In the spatial dimension, its excellent mechanical compliance and one-sided adhesion behavior can provide effective mechanical support and physical barriers for the injured Achilles tendons. More importantly, the Janus hydrogel can also minimize early inflammation generation in the time dimension via its ROS-responsive PZBA-EGCG prodrug macromolecules. This study provided a more effective and convenient suture-free strategy for constructing Janus hydrogels to promote high-quality tendon healing.
Collapse
Affiliation(s)
- Chenguang Ouyang
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhouZhejiang310058China
| | - Tian Tu
- Department of plastic and aestheticThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310003China
| | - Haojie Yu
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhouZhejiang310058China
| | - Li Wang
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhouZhejiang310058China
| | - Zhipeng Ni
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhouZhejiang310058China
| | - Jian Yang
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhouZhejiang310058China
| | - Yanzhao Dong
- Department of OrthopedicsThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310003China
| | - Xiaodi Zou
- Department of OrthopedicsThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310003China
| | - Weijie Zhou
- Department of OrthopedicsThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310003China
| | - Jinyi Liu
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhouZhejiang310058China
| | - Dingning Chen
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhouZhejiang310058China
| | - Yu Wang
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhouZhejiang310058China
| | - Xudong Wu
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhouZhejiang310058China
| | - Hong Yi
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhouZhejiang310058China
| | - Xunchun Yuan
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhouZhejiang310058China
| | - Zhenfeng Liu
- Department of Nuclear MedicineThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310003China
| | - Hui Lu
- Department of OrthopedicsThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310003China
| |
Collapse
|
4
|
Tang Y, Gong D, Chen Y, Tao S, Docimo L, Lauro A, Liao X, Mongardini FM. Colonic Diaphragmatic Disease: The Concerning Dark Depths of NSAIDs. Dig Dis Sci 2025; 70:1305-1315. [PMID: 40042563 DOI: 10.1007/s10620-025-08939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 04/06/2025]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs), widely used for their therapeutic benefits, are associated with significant gastrointestinal complications, including the rare occurrence of colonic diaphragm disease (CDD). Characterized by diaphragm-like fibrotic strictures that narrow the intestinal lumen, CDD often leads to symptoms such as chronic anemia, bowel obstruction, and gastrointestinal bleeding. This report discusses a case of NSAID-induced CDD in a 58-year-old male with a history of prolonged NSAID use for osteoarthritis. The patient's clinical course was marked by progressive fatigue, melena, and intestinal obstruction, necessitating multiple hospitalizations and interventions. Our findings underscore the frequent association of CDD with prolonged NSAID use, particularly enteric-coated formulations, and the predominance of lesions in the right colon. Furthermore, we conducted a comprehensive review of the literature, summarizing 53 reported cases of NSAID-induced colonic diaphragm disease. This review highlights the common clinical manifestations, diagnostic challenges, and therapeutic strategies for this rare condition. Despite medical management and endoscopic interventions, the patient required subtotal colectomy due to recurrent strictures and complications. This case underscores the diagnostic challenges posed by CDD, particularly its overlap with inflammatory bowel disease. Surgical exploration and histological evaluation were essential for diagnosing CDD and guiding appropriate management. This case highlights the importance of recognizing NSAID-induced enteropathy in the differential diagnosis of patients with unexplained gastrointestinal symptoms, emphasizing the need for a thorough drug history and tailored therapeutic strategies. Advanced surgical techniques and novel treatments continue to improve the management of gastrointestinal complications, bettering patient outcomes, and quality of life.
Collapse
Affiliation(s)
- Yang Tang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dongge Gong
- Department of Colorectal Surgery, Quzhou Second People's Hospital, Quzhou, Zhejiang, China
| | - Yan Chen
- Center for Inflammatory Bowel Diseases, Department of Gastroenterology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Siqi Tao
- Department of Pathology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ludovico Docimo
- Division of General, Oncological, Mini-Invasive and Obesity Surgery, University of Study of Campania "Luigi Vanvitelli", Naples, Italy
| | - Augusto Lauro
- Department of Surgery, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Xiujun Liao
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Federico Maria Mongardini
- Division of General, Oncological, Mini-Invasive and Obesity Surgery, University of Study of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
5
|
Zhang N, Wang X, Zhu C, Noraddin A, Yu Y, Wang X, Shi Y, Chen K, Liu X, Zhang Y, Yu Z. Synthesis and biological evaluation of new dual APN/NEP inhibitors as potent analgesics. Bioorg Chem 2025; 156:108210. [PMID: 39879827 DOI: 10.1016/j.bioorg.2025.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
An alternative approach for the management of acute and chronic pains involves prolonging the half-life of endogenous opiates, such as enkephalins that are released in response to nociceptive stimuli. This can be achieved through the inhibition of enzymatic pathways responsible for the hydrolysis of these peptides, particularly targeting Aminopeptidase N (APN) and Neutral Endopeptidase (NEP). In this study, we designed and synthesized a series of dual enkephalinase inhibitors (DENKIs) targeting both APN and NEP as novel analgesic treatments. Notably, SDUY812, SDUY816 and SDUY817 exhibited potent inhibition of APN activity with IC50 values of 0.38 µM, 0.68 µM and 0.29 µM, respectively, whereas their IC50 values against NEP were 6.9 µM, 6.9 µM and 7.4 µM, separately. In in-vivo antinociceptive assays, SDUY816 and SDUY817 demonstrated superior analgesic efficacy compared to Thiorphan and Bestatin in mice models of acute, inflammatory and neuropathic pains with jumping latencies exceeding 100 s and withdrawal thresholds more than 0.13 g. Moreover, the analgesic activity of these inhibitors was significantly diminished by a potent opioid antagonist, naloxone, indicating the contribution of opioid receptors to the robust analgesic properties of these newly developed DENKIs. In addition, SDUY816 and SDUY817 exerted the analgesic activity in a concentration- and time-dependent manner with SDUY816 possessing acceptable pharmacokinetic properties (t1/2 = 4.02 h and F = 27 %) and low toxicity. These findings provide alternative analgesic therapeutics that are potentially devoid of opioid-associated side effects.
Collapse
Affiliation(s)
- Naining Zhang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xinyue Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Chengchun Zhu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Amina Noraddin
- Immagina Biotechnology S.r.l, Viale dell'Industria 47, 38057 Pergine Valsugana, TN, Italy; Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Yan Yu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiao Wang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ying Shi
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Kai Chen
- Center for New Drug Evaluation, Shandong Academy of Pharmaceutical Sciences, Jinan 250000, China
| | - Xiaoyu Liu
- Center for New Drug Evaluation, Shandong Academy of Pharmaceutical Sciences, Jinan 250000, China
| | - Yan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Zhiyi Yu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
6
|
Zhang M, Xia S, Feng L, Han X, Zhang Y, Huang Y, Liu Y, Zhao K, Guan J, Tian D, Liao J, Yu Y. Enteric-Coated Aspirin Induces Small Intestinal Injury via the Nrf2/Gpx4 Pathway: A Promising Model for Chronic Enteropathy. Drug Des Devel Ther 2025; 19:891-910. [PMID: 39959119 PMCID: PMC11829608 DOI: 10.2147/dddt.s493049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/24/2025] [Indexed: 02/18/2025] Open
Abstract
Background Aspirin is widely used to prevent and treat cardiovascular diseases. The most common side effect is gastrointestinal damage. In recent years, aspirin-associated enteropathy has received increasing attention. This study aimed to establish a chronic model of aspirin-associated enteropathy, investigate the effect of enteric-coated aspirin on the intestinal flora, and explore the specific molecular mechanism of small intestinal damage. Methods C57BL/6J mice were given aspirin for 45 days to induce chronic small intestinal injury. The intestinal mucosal injury was observed macroscopically and microscopically. Intestinal mucus levels were assessed by PAS staining. The intestinal permeability was measured by FD4. The oxidative stress levels of the small intestine were detected by immunofluorescence and immunohistochemistry. The mRNA and protein levels of inflammatory factors, tight junctions, and antioxidant defense-related genes were measured by qRT-PCR and Western Blot. The MPO activity, SOD activity and MDA content in serum were measured. The mitochondrial morphology and paracellular space were observed under transmission electron microscopy. The fecal samples were analyzed by high-throughput sequencing of 16S rRNA V3-V4 amplicons. Results Aspirin induced weight loss, reduced food intake and increased faecal occult blood in mice. Aspirin led to a shortened small intestine, macroscopic and microscopic damage to the intestinal mucosa, and local inflammation. Aspirin disrupted the intestinal barriers and increased the permeability of the small intestine. Aspirin destroyed mitochondrial structure and damaged antioxidant capacity, and aspirin may induce oxidative stress through Nrf2/Gpx4 signaling pathway. Intestinal flora analysis showed that aspirin could induce changes in the abundance of Akkermansia and Lactobacillus. Conclusion Long-term administration of enteric-coated aspirin successfully established a chronic small intestinal injury model in mice. It increased oxidative stress in the small intestine by disrupting mitochondrial structure and impairing antioxidant capacity. This damaged the intestinal mucosal barrier, increased intestinal permeability, and triggered gut microbial dysbiosis and inflammation.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People’s Republic of China
| | - Suhong Xia
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People’s Republic of China
| | - Lina Feng
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People’s Republic of China
| | - Xu Han
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People’s Republic of China
| | - Yu Zhang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People’s Republic of China
| | - Yujie Huang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People’s Republic of China
| | - Yiran Liu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People’s Republic of China
| | - Kai Zhao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People’s Republic of China
| | - Jialun Guan
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People’s Republic of China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People’s Republic of China
| | - Jiazhi Liao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People’s Republic of China
| | - Yan Yu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People’s Republic of China
| |
Collapse
|
7
|
Klein JA, Heidmann JD, Kiyota T, Fullerton A, Homan KA, Co JY. The differentiation state of small intestinal organoid models influences prediction of drug-induced toxicity. Front Cell Dev Biol 2025; 13:1508820. [PMID: 39917568 PMCID: PMC11799252 DOI: 10.3389/fcell.2025.1508820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/03/2025] [Indexed: 02/09/2025] Open
Abstract
Drug-induced intestinal toxicity (GIT) is a frequent dose-limiting adverse event that can impact patient compliance and treatment outcomes. In vivo, there are proliferative and differentiated cell types critical to maintaining intestinal homeostasis. Traditional in vitro models using transformed cell lines do not capture this cellular complexity, and often fail to predict intestinal toxicity. Primary tissue-derived intestinal organoids, on the other hand, are a scalable Complex in vitro Model (CIVM) that recapitulates major intestinal cell lineages and function. Intestinal organoid toxicity assays have been shown to correlate with clinical incidence of drug-induced diarrhea, however existing studies do not consider how differentiation state of the organoids impacts assay readouts and predictivity. We employed distinct proliferative and differentiated organoid models of the small intestine to assess whether differentiation state alone can alter toxicity responses to small molecule compounds in cell viability assays. In doing so, we identified several examples of small molecules which elicit differential toxicity in proliferative and differentiated organoid models. This proof of concept highlights the need to consider which cell types are present in CIVMs, their differentiation state, and how this alters interpretation of toxicity assays.
Collapse
Affiliation(s)
- Jessica A. Klein
- Complex In Vitro Systems, Translational Safety, Genentech Inc., South San Francisco, CA, United States
| | - Julia D. Heidmann
- Investigative Toxicology, Translational Safety, Genentech Inc., South San Francisco, CA, United States
| | - Tomomi Kiyota
- Investigative Toxicology, Translational Safety, Genentech Inc., South San Francisco, CA, United States
| | - Aaron Fullerton
- Investigative Toxicology, Translational Safety, Genentech Inc., South San Francisco, CA, United States
| | - Kimberly A. Homan
- Complex In Vitro Systems, Translational Safety, Genentech Inc., South San Francisco, CA, United States
| | - Julia Y. Co
- Complex In Vitro Systems, Translational Safety, Genentech Inc., South San Francisco, CA, United States
| |
Collapse
|
8
|
Baba Y, Kawano S, Takaki A, Kono Y, Horii J, Takahashi S, Kawai D, Kobayashi S, Okada H. Relevance of oxidative stress for small intestinal injuries induced by nonsteroidal anti-inflammatory drugs: A multicenter prospective study. Medicine (Baltimore) 2024; 103:e40849. [PMID: 39686450 PMCID: PMC11651428 DOI: 10.1097/md.0000000000040849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Several reports revealed that oxidative stress was involved in the mouse model of nonsteroidal anti-inflammatory drug (NSAIDs)-induced small intestinal mucosal injuries. Thus, we aimed to investigate in the prospective clinical study, that the relevance of oxidative stress balance in small intestinal mucosal injury in NSAIDs users. We prospectively included 60 patients who had been taking NSAIDs continuously for more than 3 months and exhibited obscure gastrointestinal bleeding (number UMIN 000011775). Small intestinal mucosal injuries were assessed by capsule endoscopy (CE), and reactive oxygen metabolites (d-ROMs) levels and oxidant capacity (OXY) adsorbent test were performed to investigate the relevance of oxidative stress balance. More than half of the patients (N = 32, 53%) had small intestinal mucosal injuries by CE, and 14 patients (24%) had ulcers. The incidence of ulcers was relatively higher in nonaspirin users. Serum OXY levels were significantly lower in the mucosal injury group (P = .02), and d-ROM levels were significantly higher in the ulcer group (P < .01). In aspirin users, d-ROM and OXY levels did not differ significantly with respect to mucosal injuries or ulcers. However, in nonaspirin users, OXY level was significantly lower in the mucosal injury group (P = .04), and d-ROM levels were significantly higher in the ulcer group (P = .02). Nonaspirin NSAIDs-induced intestinal mucosal injury is associated with antioxidant systems, resulting in increased oxidative stress.
Collapse
Affiliation(s)
- Yuki Baba
- Department of Internal Medicine, Japanese Red Cross Himeji Hospital, Himeji, Japan
| | - Seiji Kawano
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshiyasu Kono
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Joichiro Horii
- Department of Gastroenterology, National Hospital Organization Fukuyama Medical Center, Fukuyama, Japan
| | - Sakuma Takahashi
- Department of Gastroenterology, Kagawa Prefectural Central Hospital, Kagawa, Japan
| | - Daisuke Kawai
- Department of Internal Medicine, Okayama Saiseikai General Hospital, Okayama, Japan
| | - Sayo Kobayashi
- Department of Internal Medicine, Fukuyama City Hospital, Fukuyama, Japan
| | - Hiroyuki Okada
- Department of Internal Medicine, Japanese Red Cross Himeji Hospital, Himeji, Japan
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
9
|
Wangrattanapranee P, Khrucharoen U, Jensen DM, Jensen ME. Long-Term Natural History of Presumptive Diverticular Hemorrhage. Am J Gastroenterol 2024; 119:2510-2515. [PMID: 38989865 PMCID: PMC11636640 DOI: 10.14309/ajg.0000000000002957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION The natural history of patients with well-documented presumptive diverticular hemorrhage (TICH) is unknown. Our aims are to report (i) rebleeding rates and clinical outcomes of presumptive TICH patients with and without rebleeding, (ii) conversion to definitive TICH during long-term follow-up (F/U), and (iii) risk factors of presumptive diverticular (TIC) rebleeding. METHODS This was a retrospective cohort study of prospectively collected results of presumptive TICH patients from 1994 to 2023. Presumptive TICH was diagnosed for patients with TICs without stigmata of recent hemorrhage and no other cause of bleeding found on anoscopy, enteroscopy, capsule endoscopy, computed tomography angiography, or tagged red blood cell scan. Patients with ≤6 months of F/U were excluded. RESULTS Of 139 patients with presumptive TICH, 104 were male and 35 female. The median age was 76 years. There were no significant differences in baseline demographics of rebleeders and non-rebleeders. During long-term median F/U of 73 months, 24.5% (34/139) rebled. A total of 56% (19/34) of rebleeders were diagnosed as definitive TICH, and they had significantly higher rates of readmission ( P < 0.001), reintervention ( P < 0.001), and surgery ( P < 0.001). During F/U, there were significantly higher rates of newly diagnosed hypertension and/or atherosclerotic cardiovascular disease in rebleeders ( P = 0.033 from a logistic model). All-cause mortality was 42.8%, but none was from TICH. DISCUSSION For presumptive TICH during long-term F/U, (i) 75.5% did not rebleed and 24.5% rebled. (ii) 56% of rebleeders were diagnosed as definitive TICH. (iii) New development of hypertension and atherosclerotic cardiovascular disease were risk factors of TIC rebleeding.
Collapse
Affiliation(s)
- Peerapol Wangrattanapranee
- VA GI Hemostasis Research Unit, Los Angeles, CA
- Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Usah Khrucharoen
- VA GI Hemostasis Research Unit, Los Angeles, CA
- Gastroenterology Division, Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, CA
- David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Dennis M. Jensen
- VA GI Hemostasis Research Unit, Los Angeles, CA
- Gastroenterology Division, Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, CA
- David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Mary Ellen Jensen
- VA GI Hemostasis Research Unit, Los Angeles, CA
- Gastroenterology Division, Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, CA
- David Geffen School of Medicine at University of California, Los Angeles, CA
| |
Collapse
|
10
|
Burlacu R, Bourdin V, Blin P, Camaioni F, Clairaz B, Lantéri-Minet M, Laroche F, Raineri F, Perrot S, Stahl JP, Thurin NH, Mouly S. [Over-the-counter non-steroidal anti-inflammatory medications: Focus on the management of acute pain]. Therapie 2024:S0040-5957(24)00177-X. [PMID: 39532557 DOI: 10.1016/j.therap.2024.10.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/27/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are the second most widely used class of analgesics in France, after paracetamol. Some NSAIDs are available over the counter (OTC), without a prescription, on the advice of a pharmacist. NSAIDs have recently been the subject of safety alerts from France's Agence nationale de sécurité du médicament et des produits de santé (ANSM), highlighting a risk of worsening certain bacterial infections. This signal has not been confirmed by the European Medicines Agency (EMA) although a "risk of complications due to masking of symptoms of infection" has not been ruled out. These divergent messages can be confusing for healthcare professionals. This literature review, based on an analysis of nearly 200 scientific publications, considers the place of NSAIDs in the OTC management of migraine, tension headaches, postoperative analgesia, acute musculoskeletal and joint pain, dysmenorrhea, viral respiratory infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and their toxicity. The role of the pharmacist in dispensing NSAIDs without a prescription is also addressed. NSAIDs offer rapid and effective pain management in a context of increasingly challenging access to care. Their safety profile is reassuring and generally well established but could be strengthened by conducting an ad hoc study to rule on the safety signal issued by the ANSM definitively. Pharmacists have the knowledge and tools to ensure the safe dispensing and rational use of NSAIDs, with or without a prescription. The introduction of risk minimization measures, such as decision-support tools, could enable further progress in ensuring the safe dispensing of OTC NSAIDs.
Collapse
Affiliation(s)
- Ruxandra Burlacu
- Inserm UMR-S 1144, département de médecine interne, département médico-universitaire INVICTUS, hôpital Lariboisière, Nord - université Paris-Cité, Assistance publique-Hôpitaux de Paris (AP-HP), 2, rue Ambroise-Paré, 75010 Paris, France
| | - Venceslas Bourdin
- Inserm UMR-S 1144, département de médecine interne, département médico-universitaire INVICTUS, hôpital Lariboisière, Nord - université Paris-Cité, Assistance publique-Hôpitaux de Paris (AP-HP), 2, rue Ambroise-Paré, 75010 Paris, France
| | - Patrick Blin
- Inserm CIC-P 1401, Bordeaux PharmacoEpi, université de Bordeaux, 33000 Bordeaux, France
| | - Fabrice Camaioni
- Fédération des syndicats pharmaceutiques de France (FSPF), 75009 Paris, France
| | - Béatrice Clairaz
- Société francophone des sciences pharmaceutiques officinales (SFSPO), 91570 Bièvres, France
| | - Michel Lantéri-Minet
- Département d'évaluation et traitement de la douleur et Fédération hospitalo-universitaire InovPain, centre hospitalo-universitaire de Nice, université Côte d'Azur, 06000 Nice, France; Inserm U1107, migraine et douleur trigéminale, Auvergne université, 63100 Clermont-Ferrand, France
| | - Françoise Laroche
- Inserm U 987, centre de la douleur, Sorbonne université, AP-HP, 75012 Paris, France
| | - François Raineri
- Société française de médecine générale, 92130 Issy-les-Moulineaux, France
| | - Serge Perrot
- Inserm U987, Centre de la douleur, hôpital Cochin, université Paris-Cité, 75000 Paris, France
| | - Jean-Paul Stahl
- Infectiologie, université Grenoble-Alpes, 38000 Grenoble, France
| | - Nicolas H Thurin
- Inserm CIC-P 1401, Bordeaux PharmacoEpi, université de Bordeaux, 33000 Bordeaux, France
| | - Stéphane Mouly
- Inserm UMR-S 1144, département de médecine interne, département médico-universitaire INVICTUS, hôpital Lariboisière, Nord - université Paris-Cité, Assistance publique-Hôpitaux de Paris (AP-HP), 2, rue Ambroise-Paré, 75010 Paris, France.
| |
Collapse
|
11
|
Acharya B, Tofthagen M, Maciej-Hulme ML, Suissa MR, Karlsson NG. Limited support for a direct connection between prebiotics and intestinal permeability - a systematic review. Glycoconj J 2024; 41:323-342. [PMID: 39287885 PMCID: PMC11522178 DOI: 10.1007/s10719-024-10165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
The intestinal barrier is a selective interface between the body´s external and the internal environment. Its layer of epithelial cells is joined together by tight junction proteins. In intestinal permeability (IP), the barrier is compromised, leading to increased translocation of luminal contents such as large molecules, toxins and even microorganisms. Numerous diseases including Inflammatory Bowel Disease (IBD), Coeliac disease (CD), autoimmune disorders, and diabetes are believed to be associated with IP. Dietary interventions, such as prebiotics, may improve the intestinal barrier. Prebiotics are non-digestible food compounds, that promote the growth and activity of beneficial bacteria in the gut. This systematic review assesses the connection between prebiotic usage and IP. PubMed and Trip were used to identify relevant studies conducted between 2010-2023. Only six studies were found, which all varied in the characteristics of the population, study design, and types of prebiotics interventions. Only one study showed a statistically significant effect of prebiotics on IP. Alteration of intestinal barrier function was measured by lactulose/mannitol, chromium-labelled Ethylenediaminetetraacetic acid (51Cr-EDTA), lactulose/rhamnose, and sucralose/erythritol excretion as well as zonulin and glucagon-like peptide 2 levels. Three studies also conducted gut microbiota assessment, and one of them showed statistically significant improvement of the gut microbiome. This study also reported a decrease in zonulin level. The main conclusion from this review is that there is a lack of human studies in this important field. Futhermore, large population studies and using standardized protocols, would be required to properly assess the impact of prebiotic intervention and improvement on IP.
Collapse
Affiliation(s)
- Binayak Acharya
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway
| | - Marthe Tofthagen
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway
| | - Marissa L Maciej-Hulme
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway
| | - Michal Rachel Suissa
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway
| | - Niclas G Karlsson
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway.
| |
Collapse
|
12
|
Proft F, Duran TI, Ghoreschi K, Pleyer U, Siegmund B, Poddubnyy D. Treatment strategies for Spondyloarthritis: Implementation of precision medicine - Or "one size fits all" concept? Autoimmun Rev 2024; 23:103638. [PMID: 39276959 DOI: 10.1016/j.autrev.2024.103638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Spondyloarthritis (SpA) is a term to describe a group of chronic inflammatory rheumatic diseases, which have common pathophysiological, genetic, and clinical features. Under the umbrella term SpA, two main groups are subsumed: axial SpA (radiographic axSpA and non-radiographic axSpA) and peripheral SpA (with the leading representative being psoriatic arthritis (PsA) but also arthritis associated with inflammatory bowel disease (IBD), reactive arthritis, and undifferentiated pSpA). The key clinical symptom in axSpA is chronic back pain, typically with inflammatory characteristics, which starts in early adulthood, while the leading clinical manifestations of peripheral SpA (pSpA) are arthritis, enthesitis, and/or dactylitis. Furthermore, extra-musculoskeletal manifestations (EMMs) (acute anterior uveitis, psoriasis, and IBD) can accompany axial or peripheral symptoms. All these factors need to be taken into account when making treatment decisions in SpA patients. Despite the major advances in the treatment landscape over the past two decades with the introduction of biological disease-modifying anti-rheumatic drugs (bDMARDs) and most recently targeted synthetic DMARDs (tsDMARDs), a relevant proportion of patients still does not achieve the desired state of remission (=absence of disease activity). With this implementation of new treatment modalities, clinicians now have more choices to make in the treatment algorithms. However, despite generalized treatment recommendations, all factors need to be carefully considered when deciding on the optimal treatment strategy for an individual patient in clinical practice, aiming at an important first step towards personalized treatment strategies in SpA. In this narrative review, we focus on the efficacy of approved and emerging treatment options in axSpA and PsA as the main representative of pSpA and discuss their selective effect on the different manifestations associated with SpA to provide guidance on drivers of treatment decisions in specific situations.
Collapse
Affiliation(s)
- Fabian Proft
- Department of Gastroenterology, Infectiology and Rheumatology (including Nutrition Medicine), Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Tugba Izci Duran
- Department of Gastroenterology, Infectiology and Rheumatology (including Nutrition Medicine), Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Clinic of Rheumatology, Denizli State Hospital, Denizli, Turkey
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Uwe Pleyer
- Department of Ophthalmology Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Berlin, Germany and (5)Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectiology and Rheumatology (including Nutrition Medicine), Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Denis Poddubnyy
- Department of Gastroenterology, Infectiology and Rheumatology (including Nutrition Medicine), Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Epidemiology unit, German Rheumatism Research Centre, Berlin, Germany; Division of Rheumatology, Department of Medicine, University Health Network and University of Toronto, Toronto, Canada
| |
Collapse
|
13
|
Sample JW, Solanki MH, Thiels C, Bingener J. Nonsteroidal anti-inflammatory drug-induced small bowel strictures (diaphragm disease) - an under-recognized cause of small bowel obstruction. J Gastrointest Surg 2024; 28:1430-1435. [PMID: 38871074 DOI: 10.1016/j.gassur.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Small bowel obstruction is a major source of morbidity and mortality that carries a significant economic burden. Recurrent small bowel obstruction may be secondary to circumferential strictures (small bowel diaphragm disease), an under-recognized entity secondary to long-term nonsteroidal anti-inflammatory drug (NSAID) use. We aimed to describe the sensitivity of preoperative computed tomography (CT) enterography in patients with surgically treated small bowel diaphragm disease. METHODS We retrospectively reviewed adult patients who underwent elective small bowel resection for small bowel obstruction performed by a single minimally invasive surgeon between 2010 and 2023. Patient history, radiographic, endoscopic, operative, and pathology reports were reviewed for reference to NSAID use, small bowel strictures, diaphragms, and enteropathy. Exclusion criteria were prior radiation, inflammatory bowel disease, malignancy, adhesive disease, and anastomotic strictures. RESULTS A total of 225 patients were identified, 22 (10%) of whom met the inclusion criteria. The mean age was 60.7 years (range 29-78), with 15 women (68%). All patients underwent minimally invasive small bowel resection for obstruction with histopathologic evidence of stricture without evidence of transmural inflammation, granuloma, or dysplasia and confirmed NSAID use (n = 22, 100%). Anemia was present in 36% (n = 8). Preoperative CT or magnetic resonance (MR) enterography was performed in 18 patients (82%), of which stricturing was reported in 13 (72%). Intraoperatively, palpation identified strictures in all patients. CONCLUSION NSAID-induced small bowel injury is an under-recognized condition that, in severe cases, can present as small bowel obstruction. Surgeons should consider diaphragm disease in patients with obstruction and NSAID use, in which preoperative CT or MR enterography may be useful but cannot rule out disease.
Collapse
Affiliation(s)
- Jack W Sample
- Department of Surgery, Mayo Clinic Rochester, Minnesota, United States.
| | - Malvika H Solanki
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Minnesota, United States
| | - Cornelius Thiels
- Department of Surgery, Mayo Clinic Rochester, Minnesota, United States
| | - Juliane Bingener
- Department of Surgery, Mayo Clinic Rochester, Minnesota, United States
| |
Collapse
|
14
|
Nesiama E, Mirembe L, Weber K, Isaac S, Trammell D, Obokhare I. Massive Gastrointestinal Bleeding Related to NSAID Use in a Patient with Ileorectal Anastomosis. Case Rep Surg 2024; 2024:4619458. [PMID: 39247149 PMCID: PMC11379504 DOI: 10.1155/2024/4619458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 06/23/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used to reduce pain and inflammation in over 30 million individuals daily. Gastrointestinal bleeding (GIB) associated with NSAID consumption has been well documented in gastric and duodenal bleeding; however, NSAID-associated GIB distal to the duodenum lacks extensive documentation. This report highlights small bowel occult bleeding related to NSAID use in a patient with a surgical history of robotic total colectomy with ileorectal anastomosis completed 1 year prior. In the case of bright red blood per rectum with associated NSAID use, we recommend NSAID cessation followed by an individualized treatment plan, such as upper/lower endoscopy and/or angioembolization.
Collapse
Affiliation(s)
- Esere Nesiama
- University of South Carolina School of Medicine/Prisma Health Department of Orthopaedic Surgery, Columbia, USA
| | - Letisha Mirembe
- Texas Tech University Health Sciences Center Amarillo Department of Surgery, Amarillo, USA
| | - Kierra Weber
- University of Florida College of Pharmacy, Jacksonville, USA
| | - Sruthy Isaac
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, USA
| | - Deborah Trammell
- Texas Tech University Health Sciences Center Amarillo Department of Surgery, Amarillo, USA
| | - Izi Obokhare
- Texas Tech University Health Sciences Center Amarillo Department of Surgery, Amarillo, USA
| |
Collapse
|
15
|
Wirth T, Lafforgue P, Pham T. NSAID: Current limits to prescription. Joint Bone Spine 2024; 91:105685. [PMID: 38159794 DOI: 10.1016/j.jbspin.2023.105685] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly prescribed to alleviate pain and inflammation in conditions like arthritis, migraines, and post-operative recovery. Their mechanism involves inhibiting prostaglandins that contribute to inflammation. NSAIDs are categorized based on their structure, selectivity for COX-1 and COX-2 enzymes, and plasma half-life. They are effective in treating osteoarthritis, spondyloarthritis, and rheumatoid arthritis but might carry an elevated risk of adverse events. Despite their effectiveness, NSAIDs have limitations and risks that warrant cautious consideration. Extensive research has investigated their side effects, and this review aims to examine the current limitations of oral NSAID therapy, including safety profiles, specific scenarios where their use may not be appropriate, and gaps in knowledge. By critically evaluating these aspects, healthcare practitioners can make informed decisions about prescribing NSAIDs, optimizing patient outcomes while minimizing potential risks. This narrative review summarizes existing knowledge and underscores the importance of risk-benefit assessments in NSAID prescribing. Ultimately, the goal is to enhance the rational use of NSAIDs, maximizing benefits while mitigating adverse effects.
Collapse
Affiliation(s)
- Theo Wirth
- Service de rhumatologie, AP-HM, CHU Sainte-Marguerite, Aix-Marseille University, boulevard Sainte-Marguerite, 13009 Marseille, France; Autoimmune Arthritis Laboratory, Inserm UMRs1097, Aix-Marseille University, Marseille, France
| | - Pierre Lafforgue
- Service de rhumatologie, AP-HM, CHU Sainte-Marguerite, Aix-Marseille University, boulevard Sainte-Marguerite, 13009 Marseille, France
| | - Thao Pham
- Service de rhumatologie, AP-HM, CHU Sainte-Marguerite, Aix-Marseille University, boulevard Sainte-Marguerite, 13009 Marseille, France.
| |
Collapse
|
16
|
Kerins A, Butler P, Riley R, Koszyczarek M, Smith C, Cruickshank F, Madgula V, Naik N, Redinbo MR, Wilson ID. In vitro and in vivo studies on the metabolism and pharmacokinetics of the selective gut microbial β-glucuronidase targeting compound Inh 1. Xenobiotica 2024; 54:304-315. [PMID: 38794972 DOI: 10.1080/00498254.2024.2357765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/27/2024]
Abstract
In vitro studies using rat, mouse, and human microsomes and hepatocytes on the bacterial β-glucuronidase inhibitor 1-((6,8-dimethyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl)-3-(4-ethoxyphenyl)-1-(2-hydroxyethyl)thiourea) (Inh 1) revealed extensive metabolism in all species.The intrinsic clearances of Inh 1 in human, mouse, and rat hepatic microsomes were 30.9, 67.8, and 201 µL/min/mg, respectively. For intact hepatocytes intrinsic clearances of 21.6, 96.0, and 129 µL/min/106 cells were seen for human, mouse and rat, respectively.The metabolism of Inh 1 involved an uncommon desulphurisation reaction in addition to oxidation, deethylation, and conjugation reactions at multiple sites. Six metabolites were detected in microsomal incubations in human and rat, and seven for the mouse. With hepatocytes, 18 metabolites were characterised, 9 for human, and 11 for mouse and rat.Following IV administration to mice (3 mg/kg), plasma concentrations of Inh 1 exhibited a monophasic decline with a terminal elimination half-life of 0.91 h and low systemic clearance (11.8% of liver blood flow). After PO dosing to mice (3 mg/kg), peak observed Inh 1 concentrations of 495 ng/mL were measured 0.5 h post dose, declining to under 10 ng/mL at 8 h post dose. The absolute oral bioavailability of Inh 1 in the mouse was ca. 26%.
Collapse
Affiliation(s)
| | | | - Rob Riley
- Cyprotex Discovery, Macclesfield, UK
| | | | | | | | - Vamsi Madgula
- DMPK and Toxicology, Sai Life Sciences Limited, DS-7, ICICI Knowledge Park, Hyderabad, India
| | - Nilkanth Naik
- DMPK and Toxicology, Sai Life Sciences Limited, DS-7, ICICI Knowledge Park, Hyderabad, India
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Ian D Wilson
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, London, UK
| |
Collapse
|
17
|
Lee FS, Nguyen UN, Munns EJ, Wachs RA. Identification of compounds that cause axonal dieback without cytotoxicity in dorsal root ganglia explants and intervertebral disc cells with potential to treat pain via denervation. PLoS One 2024; 19:e0300254. [PMID: 38696450 PMCID: PMC11065314 DOI: 10.1371/journal.pone.0300254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/23/2024] [Indexed: 05/04/2024] Open
Abstract
Low back pain, knee osteoarthritis, and cancer patients suffer from chronic pain. Aberrant nerve growth into intervertebral disc, knee, and tumors, are common pathologies that lead to these chronic pain conditions. Axonal dieback induced by capsaicin (Caps) denervation has been FDA-approved to treat painful neuropathies and knee osteoarthritis but with short-term efficacy and discomfort. Herein, we propose to evaluate pyridoxine (Pyr), vincristine sulfate (Vcr) and ionomycin (Imy) as axonal dieback compounds for denervation with potential to alleviate pain. Previous literature suggests Pyr, Vcr, and Imy can cause undesired axonal degeneration, but no previous work has evaluated axonal dieback and cytotoxicity on adult rat dorsal root ganglia (DRG) explants. Thus, we performed axonal dieback screening using adult rat DRG explants in vitro with Caps as a positive control and assessed cytotoxicity. Imy inhibited axonal outgrowth and slowed axonal dieback, while Pyr and Vcr at high concentrations produced significant reduction in axon length and robust axonal dieback within three days. DRGs treated with Caps, Vcr, or Imy had increased DRG cytotoxicity compared to matched controls, but overall cytotoxicity was minimal and at least 88% lower compared to lysed DRGs. Pyr did not lead to any DRG cytotoxicity. Further, neither Pyr nor Vcr triggered intervertebral disc cell death or affected cellular metabolic activity after three days of incubation in vitro. Overall, our findings suggest Pyr and Vcr are not toxic to DRGs and intervertebral disc cells, and there is potential for repurposing these compounds for axonal dieback compounds to cause local denervation and alleviate pain.
Collapse
Affiliation(s)
- Fei San Lee
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska United States of America
| | - Uyen N. Nguyen
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska United States of America
| | - Eliza J. Munns
- Department of Electrical, Computer, and Biomedical Engineering, Union College, Schenectady, New York, United States of America
| | - Rebecca A. Wachs
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska United States of America
| |
Collapse
|
18
|
Fatima R, Prasher P, Sharma M, Singh SK, Gupta G, Dua K. The contemplation of amylose for the delivery of ulcerogenic nonsteroidal anti-inflammatory drugs. Future Med Chem 2024; 16:791-809. [PMID: 38573051 PMCID: PMC11221539 DOI: 10.4155/fmc-2024-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
This manuscript proposes an innovative approach to mitigate the gastrointestinal adversities linked with nonsteroidal anti-inflammatory drugs (NSAIDs) by exploiting amylose as a novel drug delivery carrier. The intrinsic attributes of V-amylose, such as its structural uniqueness, biocompatibility and biodegradability, as well as its capacity to form inclusion complexes with diverse drug molecules, are meticulously explored. Through a comprehensive physicochemical analysis of V-amylose and ulcerogenic NSAIDs, the plausibility of amylose as a protective carrier for ulcerogenic NSAIDs to gastrointestinal regions is elucidated. This review further discusses the potential therapeutic advantages of amylose-based drug delivery systems in the management of gastric ulcers. By providing controlled release kinetics and enhanced bioavailability, these systems offer promising prospects for the development of more effective ulcer therapies.
Collapse
Affiliation(s)
- Rabab Fatima
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Center in Complementary & Integrative Medicine, University of Technology Sydney, Sydney, Ultimo, NSW, 2007, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary & Integrative Medicine, University of Technology Sydney, Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
19
|
Feng Z, Wei Y, Zhang Z, Li M, Gu R, Lu L, Liu W, Qin H. Wheat peptides inhibit the activation of MAPK and NF-κB inflammatory pathways and maintain epithelial barrier integrity in NSAID-induced intestinal epithelial injury. Food Funct 2024; 15:823-837. [PMID: 38131381 DOI: 10.1039/d3fo03954d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The use of non-steroidal anti-inflammatory drugs (NSAIDs) has negative effects on the gastrointestinal tract, but the proton pump inhibitors currently in use only protect against gastrointestinal disease and may even make NSAID-induced enteropathy worse. Therefore, new approaches to treating enteropathy are required. This study aimed to investigate the protective effect of wheat peptides (WPs) against NSAID-induced intestinal damage in mice and their mechanism. Here, an in vivo mouse model was built to investigate the protective and reparative effects of different concentrations of WPs on NSAID-induced intestinal injury. WPs ameliorated NSAID-induced weight loss and small intestinal tissue damage in mice. WP treatment inhibited NSAID-induced injury leading to increased levels of oxidative stress and expression levels of inflammatory factors. WPs protected and repaired the integrity and permeability injury of the intestinal tight junction induced by NSAIDs. An in vitro Caco-2 cell model was built with lipopolysaccharide (LPS). WP pretreatment inhibited LPS-induced changes in the Caco-2 cell permeability and elevated the levels of oxidative stress. WPs inhibited LPS-induced phosphorylation of NF-κB p65 and mitogen-activated protein kinase (MAPK) signaling pathways and reduced the expression of inflammatory factors. In addition, WPs increased tight junction protein expression, which contributed to improved intestinal epithelial dysfunction. Our results suggest that WPs can ameliorate NSAID-induced impairment of intestinal barrier functional integrity by improving intestinal oxidative stress levels and reducing inflammatory factor expression through inhibition of NF-κB p65 and MAPK signaling pathway activation. WPs can therefore be used as potential dietary supplements to reduce NSAID-induced injury of the intestine.
Collapse
Affiliation(s)
- Zhiyuan Feng
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area, Tianjin, China.
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, 100015, China
| | - Ying Wei
- Department of Food Science and Engineering, Beijing University of Agriculture, Beijing, China.
| | - Zhuoran Zhang
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, 100015, China
| | - Mingliang Li
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, 100015, China
| | - Ruizeng Gu
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, 100015, China
| | - Lu Lu
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, 100015, China
| | - Wenying Liu
- Department of Food Science and Engineering, Beijing University of Agriculture, Beijing, China.
| | - Huimin Qin
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area, Tianjin, China.
| |
Collapse
|
20
|
Park SJ, Sharma A, Lee HJ. An Update on the Chemical Constituents and Biological Properties of Selected Species of an Underpinned Genus of Red Algae: Chondrus. Mar Drugs 2024; 22:47. [PMID: 38248672 PMCID: PMC10817618 DOI: 10.3390/md22010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Macroalgae, particularly red seaweeds, have attracted significant attention due to their economic and health benefits. Chondrus, a red algae genus, despite its economic importance, seems to be undervalued. Among all its species, Chondrus crispus has been meticulously documented for its biological properties, and little is known about other species. No comprehensive review of the biological properties of this genus has been acknowledged. Thus, this review aimed to summarize the available information on the chemical constituents and biological properties of a few selected species, including Chondrus crispus, Chondrus ocellatus, Mazzaella canaliculata, and Chondrus armatus. We compiled and discovered that the genus is offering most of the important health-promoting benefits evidenced from in vitro and in vivo studies focused on antimicrobial, immunomodulation, neuroprotection, anti-atopic, anti-inflammatory, anti-viral, anti-diabetic, cytoprotective, antioxidant, anti-coagulation, nephroprotective, anti-tumor, and anti-venom activity, which speaks about the potential of this genus. Data on clinical studies are limited. Further, around 105 chemical constituents have been reported from Chondrus spp. Given its significance, further investigation is warranted, in the form of meticulously planned cell, animal, and clinical studies that concentrate on novel health-enhancing endeavors, in order to unveil the full potential of this genus. The review also outlines challenges and future directions.
Collapse
Affiliation(s)
- Seon-Joo Park
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Science and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
21
|
Saeed K, Rafiq M, Khalid M, Hussain A, Siddique F, Hanif M, Hussain S, Mahmood K, Ameer N, Ahmed MM, Ali Khan M, Yaqub M, Jabeen M. Synthesis, characterization, computational assay and anti-inflammatory activity of thiosemicarbazone derivatives: Highly potent and efficacious for COX inhibitors. Int Immunopharmacol 2024; 126:111259. [PMID: 37992446 DOI: 10.1016/j.intimp.2023.111259] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Multiple studies in the literature have demonstrated that synthetic compounds containing heterocyclic rings possess a reparative potential against acute and chronic inflammation. In the present study, two novel thiosemicarbazone derivatives based on l-ethyl-6-(thiophen-2-yl)indoline-2,3-dione with different phenyl substituted thiosemicarbazides were synthesized by condensation reaction and the structures of proposed target compounds (KP-2 and KP-5) were confirmed by UV-VIS, FTIR, 1H-NMR and 13C-NMR. In-vitro anti-inflammatory behavior of KP-2 and KP-5 was confirmed by bovine serum albumin (BSA) and ovine serum albumin (OSA) analysis. Acute and chronic anti-inflammatory potential of synthesized compounds were evaluated by using carrageenan and complete Freund's adjuvant (CFA) as inflammation-inducing agents, respectively. Inhibition of pro-inflammatory mediators and prevention of protein denaturation owing to synchronization of more electronegative flouro-groups substituted on phenyl rings along with heterocyclic indoline ring provides anti-inflammatory effects and are corroborated by radiological, histopathological analysis. Additional support was provided through density functional theory (DFT) and molecular docking. KP-5 exhibited excellent lead-likeness based on its physicochemical parameters, making it a viable drug candidate. The synthesized compounds also showed promising ADMET properties, enhancing their potential as therapeutic agents. These findings emphasize the pivotal role of new compounds for drug design and development.
Collapse
Affiliation(s)
- Kinza Saeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Rafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Pakistan
| | - Muhammad Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Saghir Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Nabeela Ameer
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Muhammad Ali Khan
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Yaqub
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Mehreen Jabeen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Pakistan
| |
Collapse
|
22
|
Dash S, Singh PA, Bajwa N, Choudhury A, Bisht P, Sharma R. Why Pharmacovigilance of Non-steroidal Anti-inflammatory Drugs is Important in India? Endocr Metab Immune Disord Drug Targets 2024; 24:731-748. [PMID: 37855282 DOI: 10.2174/0118715303247469230926092404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/15/2023] [Accepted: 08/18/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Non-steroidal Anti-Inflammatory Drugs (NSAIDs) are among the drugs that are most regularly administered to manage inflammation and pain. Over-the-Counter (OTC) NSAIDs are widely accessible, particularly in developing countries like India. This casual approach to using NSAIDs may operate as a magnet for NSAID-related adverse drug reactions (ADRs) among patients. OBJECTIVES As patients in India are less informed about the appropriate use of NSAIDs and consumption patttern, adverse drug reactions, and the importance of reporting ADRs, the current study's objective is to promote patient safety by using pharmacovigilance as a tool to educate patients. METHODS A targeted literature methodology was utilized to gather the data pertaining to NSAIDs, their ADRs and their pharmacovigilance. Different scientific databases, such as Science Direct, PubMed, Wiley Online Library, Springer, and Google Scholar, along with authentic textbooks, were explored as reference literature. RESULTS In general, NSAIDs consumption pattern depends upon the different age groups. Around 1.6 billion tablets of NSAIDs are consumed in India for ailments, such as headaches, arthritis, menstrual cramps, osteoarthritis, back pain, rheumatoid arthritis, gout, osteoporosis, tendinitis, cancer pain and chronic pain. Common ADRs of NSAIDs include nausea, vomiting, headache, gastritis, abdominal pain, and diarrhoea. Also, they can cause renal damage and cardiovascular problems if not consumed in a dose-dependent manner. However, Diclofenac and Ibuprofen have both been linked to depression and dementia. There have been reports of aplastic anaemia, agranulocytosis linked to phenylbutazone, Stevens-Johnson, and Lyell's syndrome linked to isoxicam and piroxicam, as well as the vulnerability of new-borns to Reye's syndrome after aspirin use. Lack of awareness, time constraints and unpredictability, poor training in ADRs identification, etc., are some of the reasons for the under-reporting of ADR of NSAIDs in India. CONCLUSION In order to rationally prescribe NSAIDs, it is essential to be aware of probable ADR's and establish prescription guidelines. Prescribers' behaviour can be changed toward excellent prescribing practices by conducting routine prescription assessments dealing with NSAIDs and providing feedback. In the near future, it will be critical to strengthen ADR data management and expand the reach of pharmacovigilance programs, ADR monitoring centers, and healthcare professionals' especially pharmacists' training in rural locations.
Collapse
Affiliation(s)
- Subhransu Dash
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali, 140413, Punjab, India
| | - Preet Amol Singh
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali, 140413, Punjab, India
| | - Neha Bajwa
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali, 140413, Punjab, India
| | - Abinash Choudhury
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali, 140413, Punjab, India
| | - Preeti Bisht
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali, 140413, Punjab, India
| | - Rajiv Sharma
- College of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab, India
| |
Collapse
|
23
|
Johnson N, Solkar M, Sehgal R, Riyad K. Non-steroidal anti-inflammatory drug induced intestinal stricturing: diaphragm disease. J Surg Case Rep 2024; 2024:rjad489. [PMID: 38250134 PMCID: PMC10799247 DOI: 10.1093/jscr/rjad489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/13/2023] [Indexed: 01/23/2024] Open
Abstract
Diaphragm disease (DD) is a rare small bowel enteropathy associated with non-steroidal anti-inflammatory drug use. Since the first description there have only been approximately 100 cases of DD reported in the literature. Stricturing webs or 'diaphragms' form in the bowel, causing non-specific abdominal symptoms that can ultimately lead to bleeding and obstruction. Diagnosis is notoriously challenging as there is no single gold standard investigation. We present two cases of DD both of which were ultimately diagnosed by surgical resection. We also propose a novel flow algorithm that can be utilized for working up patients with suspected DD.
Collapse
Affiliation(s)
- Nathan Johnson
- John Goligher Colorectal Surgery Unit, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Maseera Solkar
- John Goligher Colorectal Surgery Unit, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Rishabh Sehgal
- John Goligher Colorectal Surgery Unit, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Kallingal Riyad
- John Goligher Colorectal Surgery Unit, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| |
Collapse
|
24
|
Okamoto T, Okamoto S, Yamamoto K, Takasu A, Murashima Y, Fukui S, Fukuda K. Bulbar and post-bulbar duodenal ulcers: characteristics based on location. Eur J Gastroenterol Hepatol 2023; 35:955-961. [PMID: 37395188 DOI: 10.1097/meg.0000000000002585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
OBJECTIVES Most research on duodenal ulcers has focused on bulbar ulcers; details on post-bulbar ulcers remain largely unknown. This study was conducted to determine the characteristics of patients with post-bulbar duodenal ulcers depending on their location. METHODS AND MATERIALS We conducted a retrospective study of hospitalized patients newly diagnosed with duodenal ulcers on endoscopy at a tertiary referral center in Japan between April 2004 and March 2019. Five hundred fifty-one patients diagnosed with duodenal ulcers were extracted for analysis. RESULTS Ulcers were observed only in the bulbus in 383 cases, only in the post-bulbar duodenum in 82 cases, and were co-existing in both areas in 86 cases. The Bulbar group had less comorbidities and was more likely to have atrophic gastritis, while the Post-bulbar and Co-existing groups were more likely to be admitted for non-gastrointestinal conditions. Regular acid suppressant use was more common in the post-bulbar group than in the Bulbar group. Bulbar ulcers were associated with a shorter length of stay relative to post-bulbar and co-existing ulcers, but ulcer location was not an independent predictor of length of stay. Patients with co-existing bulbar and post-bulbar ulcers have characteristics similar to those with post-bulbar ulcers alone. CONCLUSION Patients with post-bulbar ulcers and those with co-existing bulbar and post-bulbar ulcers have different characteristics and outcomes relative to patients with bulbar ulcers.
Collapse
Affiliation(s)
- Takeshi Okamoto
- Department of Gastroenterology, St. Luke's International Hospital
- Division of Hepato-Biliary-Pancreatic Medicine, Department of Gastroenterology, Cancer Institute Hospital of Japanese Foundation for Cancer Research
| | | | - Kazuki Yamamoto
- Department of Gastroenterology, St. Luke's International Hospital
| | - Ayaka Takasu
- Department of Gastroenterology, St. Luke's International Hospital
| | - Yuko Murashima
- Department of Gastroenterology, St. Luke's International Hospital
| | - Sho Fukui
- Emergency and General Medicine, Kyorin University Hospital, Tokyo, Japan
| | - Katsuyuki Fukuda
- Department of Gastroenterology, St. Luke's International Hospital
| |
Collapse
|
25
|
Macpherson AJ, Pachnis V, Prinz M. Boundaries and integration between microbiota, the nervous system, and immunity. Immunity 2023; 56:1712-1726. [PMID: 37557080 DOI: 10.1016/j.immuni.2023.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
The enteric nervous system is largely autonomous, and the central nervous system is compartmentalized behind the blood-brain barrier. Yet the intestinal microbiota shapes gut function, local and systemic immune responses, and central nervous system functions including cognition and mood. In this review, we address how the gut microbiota can profoundly influence neural and immune networks. Although many of the interactions between these three systems originate in the intestinal mucosa, intestinal function and immunity are modulated by neural pathways that connect the gut and brain. Furthermore, a subset of microbe-derived penetrant molecules enters the brain and regulates central nervous system function. Understanding how these seemingly isolated entities communicate has the potential to open up new avenues for therapies and interventions.
Collapse
Affiliation(s)
- Andrew J Macpherson
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Vassilis Pachnis
- Nervous System Development and Homeostasis Laboratory, The Francis Crick Institute, London, UK
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Faculty of Medicine, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
26
|
Micheli L, Di Cesare Mannelli L, Mosti E, Ghelardini C, Bilia AR, Bergonzi MC. Antinociceptive Action of Thymoquinone-Loaded Liposomes in an In Vivo Model of Tendinopathy. Pharmaceutics 2023; 15:1516. [PMID: 37242757 PMCID: PMC10222138 DOI: 10.3390/pharmaceutics15051516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Tendinopathies represent about 45% of musculoskeletal lesions and they are a big burden in clinics characterized by activity-related pain, focal tendon tenderness and intra-tendinous imaging changes. Many approaches have been proposed for tendinopathies' management (e.g., nonsteroidal anti-inflammatory drugs, corticosteroids, eccentric exercises, laser therapy), unfortunately with very little support of efficacy or serious side effects, thus making the identification of new treatments fundamental. The aim of the study was to test the protective and pain reliever effect of thymoquinone (TQ)-loaded formulations in a rat model of tendinopathy induced by carrageenan intra-tendon injection (20 µL of carrageenan 0.8% on day 1). Conventional (LP-TQ) and hyaluronic acid (HA)-coated TQ liposomes (HA-LP-TQ) were characterized and subjected to in vitro release and stability studies at 4 °C. Then, TQ and liposomes were peri-tendon injected (20 µL) on days 1, 3, 5, 7 and 10 to evaluate their antinociceptive profile using mechanical noxious and non-noxious stimuli (paw pressure and von Frey tests), spontaneous pain (incapacitance test) and motor alterations (Rota rod test). Liposomes containing 2 mg/mL of TQ and covered with HA (HA-LP-TQ2) reduced the development of spontaneous nociception and hypersensitivity for a long-lasting effect more than the other formulations. The anti-hypersensitivity effect matched with the histopathological evaluation. In conclusion, the use of TQ encapsulated in HA-LP liposomes is suggested as a new treatment for tendinopathies.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy; (L.M.); (L.D.C.M.); (C.G.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy; (L.M.); (L.D.C.M.); (C.G.)
| | - Elena Mosti
- Department of Chemistry Ugo Schiff, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (E.M.); (A.R.B.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy; (L.M.); (L.D.C.M.); (C.G.)
| | - Anna Rita Bilia
- Department of Chemistry Ugo Schiff, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (E.M.); (A.R.B.)
| | - Maria Camilla Bergonzi
- Department of Chemistry Ugo Schiff, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (E.M.); (A.R.B.)
| |
Collapse
|
27
|
Sohail R, Mathew M, Patel KK, Reddy SA, Haider Z, Naria M, Habib A, Abdin ZU, Razzaq Chaudhry W, Akbar A. Effects of Non-steroidal Anti-inflammatory Drugs (NSAIDs) and Gastroprotective NSAIDs on the Gastrointestinal Tract: A Narrative Review. Cureus 2023; 15:e37080. [PMID: 37153279 PMCID: PMC10156439 DOI: 10.7759/cureus.37080] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used for their anti-inflammatory, antipyretic, and analgesic properties. However, their use is often associated with gastrointestinal tract (GIT) side effects due to the inhibition of both cyclooxygenase (COX)-1 and COX-2 enzymes, leading to a decrease in gastroprotective prostaglandins (PG). To minimize these adverse effects, various approaches have been explored, including selective COX-2 inhibitors, NO-NSAIDs (nitric oxide-releasing NSAIDs), and dual COX/LOX (lipoxygenase) NSAIDs. However, the effects of these gastroprotective NSAIDs on the GIT and their efficacy remains uncertain. This review aims to provide an overview of the current understanding of the effects of traditional NSAIDs and gastroprotective NSAIDs on GIT. We discuss the underlying mechanisms of GIT damage caused by NSAIDs, including mucosal injury, ulceration, and bleeding, and the potential of gastroprotective NSAIDs to mitigate these effects. We also summarize recent studies on the efficacy and safety of various gastroprotective NSAIDs and highlight the limitations and challenges of these approaches. The review concludes with recommendations for future research in this field.
Collapse
Affiliation(s)
- Rohab Sohail
- Internal Medicine, Quaid-e-Azam Medical College, Bahawalpur, PAK
| | - Midhun Mathew
- Department of Internal Medicine, Pennsylvania Hospital, Philadelphia, USA
| | - Khushbu K Patel
- Internal Medicine, Index Medical College Hospital & Research Center, Indore, IND
| | - Srija A Reddy
- Internal Medicine, Malla Reddy Institute of Medical Sciences, Hyderabad, IND
| | - Zaroon Haider
- Internal Medicine, Combined Military Hospital (CMH) Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | - Mansi Naria
- Internal Medicine, American University of Barbados, Bridgetown, BRB
| | - Ayesha Habib
- Internal Medicine, Punjab Medical College, Faisalabad, PAK
| | - Zain U Abdin
- Medicine, District Head Quarter Hospital, Faisalabad, PAK
| | | | - Anum Akbar
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, USA
| |
Collapse
|
28
|
Ang D, Kendall R, Atamian HS. Virtual and In Vitro Screening of Natural Products Identifies Indole and Benzene Derivatives as Inhibitors of SARS-CoV-2 Main Protease (M pro). BIOLOGY 2023; 12:biology12040519. [PMID: 37106720 PMCID: PMC10135783 DOI: 10.3390/biology12040519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 04/29/2023]
Abstract
The rapid spread of the coronavirus disease 2019 (COVID-19) resulted in serious health, social, and economic consequences. While the development of effective vaccines substantially reduced the severity of symptoms and the associated deaths, we still urgently need effective drugs to further reduce the number of casualties associated with SARS-CoV-2 infections. Machine learning methods both improved and sped up all the different stages of the drug discovery processes by performing complex analyses with enormous datasets. Natural products (NPs) have been used for treating diseases and infections for thousands of years and represent a valuable resource for drug discovery when combined with the current computation advancements. Here, a dataset of 406,747 unique NPs was screened against the SARS-CoV-2 main protease (Mpro) crystal structure (6lu7) using a combination of ligand- and structural-based virtual screening. Based on 1) the predicted binding affinities of the NPs to the Mpro, 2) the types and number of interactions with the Mpro amino acids that are critical for its function, and 3) the desirable pharmacokinetic properties of the NPs, we identified the top 20 candidates that could potentially inhibit the Mpro protease function. A total of 7 of the 20 top candidates were subjected to in vitro protease inhibition assay and 4 of them (4/7; 57%), including two beta carbolines, one N-alkyl indole, and one Benzoic acid ester, had significant inhibitory activity against Mpro protease. These four NPs could be developed further for the treatment of COVID-19 symptoms.
Collapse
Affiliation(s)
- Dony Ang
- Computational and Data Sciences Program, Chapman University, Orange, CA 92866, USA
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Riley Kendall
- Computational and Data Sciences Program, Chapman University, Orange, CA 92866, USA
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Hagop S Atamian
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
- Biological Sciences Program, Chapman University, Orange, CA 92866, USA
| |
Collapse
|
29
|
Dawra S, Behl P, Srivastava S, Manrai M, Chandra A, Kumar A, Kumar A, Tevatia MS. Non-neoplastic disorders in an aging gut: concise review. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2023; 35:7. [DOI: 10.1186/s43162-023-00189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/15/2023] [Indexed: 01/31/2023] Open
Abstract
AbstractThe spectrum of gastrointestinal (GI) issues in the older population varies from common physiological age-related changes to devastating, less common sinister pathological illness. GI system has direct exposure to external environment. Thus, it is modeled to embrace the pathophysiological changes that occur due to interaction with external factors. Gastrointestinal tract (GIT) per se is more resilient to aging as compared to other organ systems. On the other hand, elderly may present with a large plethora of GI symptoms. This presents a challenge to all echelons of medical consultation for accurate attribution for the aging process or pathophysiological causation of GI symptoms. This dichotomy leads to hindrance in adequate and appropriate treatment of GI ailments. In GI system, non-neoplastic disorders are far more common than neoplastic disorders. Hence, it becomes imperative to understand the aging evolution of the GI system and management of GI disorders in the older population.
Collapse
|
30
|
Alabbas SY, Giri R, Oancea I, Davies J, Schreibner V, Florin TH, Begun J. Gut inflammation and adaptive immunity amplify acetaminophen toxicity in bowel and liver. J Gastroenterol Hepatol 2023; 38:609-618. [PMID: 36598244 DOI: 10.1111/jgh.16102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/21/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIM Prevention of liver failure arising from accidental or deliberate paracetamol (acetaminophen [APAP]) overdose remains a vexed health problem despite well-publicized guidelines for its early detection and treatment. It is recognized that the gut may aggravate liver pathology, via the gut-liver axis. The main aim of this study was to assess the role of the colon in APAP-induced liver toxicity. METHODS Liver necrosis and colitis were studied following sublethal doses of APAP administered intraperitoneally to C57Bl/6 wild-type (WT) mice, as well as to C57Bl/6 Winnie mice, which develop a spontaneous colitis caused by a SNP in Muc2, and WT mice with acute DSS-induced colitis. Repeated APAP exposure was studied in WT and Rag1 ko mice that lack mature T and B lymphocytes. RESULTS APAP overdose resulted in significant colonic injury in WT mice (P < 0.05), which resolved by 24 h. Underlying colitis was not associated with liver necrosis, but colitis exacerbated APAP-induced liver injury and extended APAP-colonic injury. Prior APAP exposure exacerbated both APAP-liver and APAP-colonic injury more so in WT than Rag1 ko mice. APAP impaired barrier function with increased intestinal permeability and associated bacterial translocation to the liver and spleen in mice with the Winnie phenotype. CONCLUSIONS This study identifies novel roles for APAP in causing colitis, the amplification of APAP-liver toxicity where there is underlying colitis, and involvement of immune memory in APAP-toxicity. The latter could be key for decoding the poorly understood but important clinical entity of chronic APAP liver failure.
Collapse
Affiliation(s)
- Saleh Y Alabbas
- Mater Research, University of Queensland, Translational Research Institute, South Brisbane, Australia
| | - Rabina Giri
- Mater Research, University of Queensland, Translational Research Institute, South Brisbane, Australia
| | - Iulia Oancea
- Medical School, University of Queensland, Brisbane, Australia
| | - Julie Davies
- Mater Research, University of Queensland, Translational Research Institute, South Brisbane, Australia
| | - Veronika Schreibner
- Mater Research, University of Queensland, Translational Research Institute, South Brisbane, Australia
| | - Timothy H Florin
- Mater Research, University of Queensland, Translational Research Institute, South Brisbane, Australia
| | - Jakob Begun
- Mater Research, University of Queensland, Translational Research Institute, South Brisbane, Australia
| |
Collapse
|
31
|
McKenna ZJ, Ducharme JB, Berkemeier QN, Specht JW, Fennel ZJ, Gillum TL, Deyhle MR, Amorim FT, Mermier CM. Ibuprofen Increases Markers of Intestinal Barrier Injury But Suppresses Inflammation at Rest and After Exercise in Hypoxia. Med Sci Sports Exerc 2023; 55:141-150. [PMID: 36069803 DOI: 10.1249/mss.0000000000003032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the effects of acute ibuprofen consumption (2 × 600-mg doses) on markers of enterocyte injury, intestinal barrier dysfunction, inflammation, and symptoms of gastrointestinal (GI) distress at rest and after exercise in hypobaric hypoxia. METHODS Using a randomized double-blind placebo-controlled crossover design, nine men (age, 28 ± 3 yr; weight, 75.4 ± 10.5 kg; height, 175 ± 7 cm; body fat, 12.9% ± 5%; V̇O 2 peak at 440 torr, 3.11 ± 0.65 L·min -1 ) completed a total of three visits including baseline testing and two experimental trials (placebo and ibuprofen) in a hypobaric chamber simulating an altitude of 4300 m. Preexercise and postexercise blood samples were assayed for intestinal fatty acid binding protein (I-FABP), ileal bile acid binding protein, soluble cluster of differentiation 14, lipopolysaccharide binding protein, monocyte chemoattractant protein-1, tumor necrosis factor α (TNF-α), interleukin-1β, and interleukin-10. Intestinal permeability was assessed using a dual sugar absorption test (urine lactulose-to-rhamnose ratio). RESULTS Resting I-FABP (906 ± 395 vs 1168 ± 581 pg·mL -1 ; P = 0.008) and soluble cluster of differentiation 14 (1512 ± 297 vs 1642 ± 313 ng·mL -1 ; P = 0.014) were elevated in the ibuprofen trial. Likewise, the urine lactulose-to-rhamnose ratio (0.217 vs 0.295; P = 0.047) and the preexercise to postexercise change in I-FABP (277 ± 308 vs 498 ± 479 pg·mL -1 ; P = 0.021) were greater in the ibuprofen trial. Participants also reported greater upper GI symptoms in the ibuprofen trial ( P = 0.031). However, monocyte chemoattractant protein-1 ( P = 0.007) and TNF-α ( P = 0.047) were lower throughout the ibuprofen trial compared with placebo (main effect of condition). CONCLUSIONS These data demonstrate that acute ibuprofen ingestion aggravates markers of enterocyte injury and intestinal barrier dysfunction at rest and after exercise in hypoxia. However, ibuprofen seems to suppress circulating markers of inflammation.
Collapse
Affiliation(s)
- Zachary J McKenna
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM
| | - Jeremy B Ducharme
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM
| | - Quint N Berkemeier
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM
| | - Jonathan W Specht
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM
| | - Zachary J Fennel
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM
| | - Trevor L Gillum
- Department of Kinesiology, California Baptist University, Riverside, CA
| | - Michael R Deyhle
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM
| | - Fabiano T Amorim
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM
| | - Christine M Mermier
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM
| |
Collapse
|
32
|
Hussain Z, Thu HE, Khan S, Sohail M, Sarfraz RM, Mahmood A, Abourehab MA. Phytonanomedicines, a state-of-the-art strategy for targeted delivery of anti-inflammatory phytochemicals: A review of improved pharmacokinetic profile and therapeutic efficacy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
33
|
Muradian AA, Sychev DA, Blagovestnov DA, Petrov DI, Skukin DS, Epifanova IP, Sozaeva ZA, Kachanova AA, Denisenko NP, Abdullaev SP, Grishina EA. Influence of PTGS1 gene polymorphisms on efficiency and safety of post-operative Ketorolac treatment of uncomplicated acute calculus cholecystitis. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2022:112-118. [DOI: 10.31146/1682-8658-ecg-200-4-112-118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Affiliation(s)
- A. A. Muradian
- Federal State Budgetary Educational Institution of Further Professional Education “Russian Medical Academy of Continuous Professional Education” of the Ministry of Healthcare of the Russian Federation
| | - D. A. Sychev
- Federal State Budgetary Educational Institution of Further Professional Education “Russian Medical Academy of Continuous Professional Education” of the Ministry of Healthcare of the Russian Federation
| | - D. A. Blagovestnov
- Federal State Budgetary Educational Institution of Further Professional Education “Russian Medical Academy of Continuous Professional Education” of the Ministry of Healthcare of the Russian Federation
| | - D. I. Petrov
- Federal State Budgetary Educational Institution of Further Professional Education “Russian Medical Academy of Continuous Professional Education” of the Ministry of Healthcare of the Russian Federation
| | - D. S. Skukin
- N. V. Sklifosovsky Research Institute for Emergency Medicine of Moscow Health Department
| | - I. P. Epifanova
- Federal State Budgetary Educational Institution of Further Professional Education “Russian Medical Academy of Continuous Professional Education” of the Ministry of Healthcare of the Russian Federation
| | - Z. A. Sozaeva
- Federal State Budgetary Educational Institution of Further Professional Education “Russian Medical Academy of Continuous Professional Education” of the Ministry of Healthcare of the Russian Federation
| | - A. A. Kachanova
- Federal State Budgetary Educational Institution of Further Professional Education “Russian Medical Academy of Continuous Professional Education” of the Ministry of Healthcare of the Russian Federation
| | - N. P. Denisenko
- Federal State Budgetary Educational Institution of Further Professional Education “Russian Medical Academy of Continuous Professional Education” of the Ministry of Healthcare of the Russian Federation
| | - S. P. Abdullaev
- Federal State Budgetary Educational Institution of Further Professional Education “Russian Medical Academy of Continuous Professional Education” of the Ministry of Healthcare of the Russian Federation
| | - E. A. Grishina
- Federal State Budgetary Educational Institution of Further Professional Education “Russian Medical Academy of Continuous Professional Education” of the Ministry of Healthcare of the Russian Federation
| |
Collapse
|
34
|
Lee FS, Ney KE, Richardson AN, Oberley-Deegan RE, Wachs RA. Encapsulation of Manganese Porphyrin in Chondroitin Sulfate-A Microparticles for Long Term Reactive Oxygen Species Scavenging. Cell Mol Bioeng 2022; 15:391-407. [PMID: 36444349 PMCID: PMC9700555 DOI: 10.1007/s12195-022-00744-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Oxidative stress due to excess reactive oxygen species (ROS) is related to many chronic illnesses including degenerative disc disease and osteoarthritis. MnTnBuOE-2-PyP5+ (BuOE), a manganese porphyrin analog, is a synthetic superoxide dismutase mimetic that scavenges ROS and has established good treatment efficacy at preventing radiation-induced oxidative damage in healthy cells. BuOE has not been studied in degenerative disc disease applications and only few studies have loaded BuOE into drug delivery systems. The goal of this work is to engineer BuOE microparticles (MPs) as an injectable therapeutic for long-term ROS scavenging. Methods Methacrylated chondroitin sulfate-A MPs (vehicle) and BuOE MPs were synthesized via water-in-oil polymerization and the size, surface morphology, encapsulation efficiency and release profile were characterized. To assess long term ROS scavenging of BuOE MPs, superoxide scavenging activity was evaluated over an 84-day time course. In vitro cytocompatibility and cellular uptake were assessed on human intervertebral disc cells. Results BuOE MPs were successfully encapsulated in MACS-A MPs and exhibited a slow-release profile over 84 days. BuOE maintained high potency in superoxide scavenging after encapsulation and after 84 days of incubation at 37 °C as compared to naked BuOE. Vehicle and BuOE MPs (100 µg/mL) were non-cytotoxic on nucleus pulposus cells and MPs up to 23 µm were endocytosed. Conclusions BuOE MPs can be successfully fabricated and maintain potent superoxide scavenging capabilities up to 84-days. In vitro assessment reveals the vehicle and BuOE MPs are not cytotoxic and can be taken up by cells. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-022-00744-w.
Collapse
Affiliation(s)
- Fei San Lee
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 4240 Fair St, Lincoln, NE 68583-0900 USA
| | - Kayla E. Ney
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 4240 Fair St, Lincoln, NE 68583-0900 USA
| | - Alexandria N. Richardson
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 4240 Fair St, Lincoln, NE 68583-0900 USA
| | - Rebecca E. Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Rebecca A. Wachs
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 4240 Fair St, Lincoln, NE 68583-0900 USA
| |
Collapse
|
35
|
Freedman BR, Kuttler A, Beckmann N, Nam S, Kent D, Schuleit M, Ramazani F, Accart N, Rock A, Li J, Kurz M, Fisch A, Ullrich T, Hast MW, Tinguely Y, Weber E, Mooney DJ. Enhanced tendon healing by a tough hydrogel with an adhesive side and high drug-loading capacity. Nat Biomed Eng 2022; 6:1167-1179. [PMID: 34980903 PMCID: PMC9250555 DOI: 10.1038/s41551-021-00810-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 09/13/2021] [Indexed: 12/14/2022]
Abstract
Hydrogels that provide mechanical support and sustainably release therapeutics have been used to treat tendon injuries. However, most hydrogels are insufficiently tough, release drugs in bursts, and require cell infiltration or suturing to integrate with surrounding tissue. Here we report that a hydrogel serving as a high-capacity drug depot and combining a dissipative tough matrix on one side and a chitosan adhesive surface on the other side supports tendon gliding and strong adhesion (larger than 1,000 J m-2) to tendon on opposite surfaces of the hydrogel, as we show with porcine and human tendon preparations during cyclic-friction loadings. The hydrogel is biocompatible, strongly adheres to patellar, supraspinatus and Achilles tendons of live rats, boosted healing and reduced scar formation in a rat model of Achilles-tendon rupture, and sustainably released the corticosteroid triamcinolone acetonide in a rat model of patellar tendon injury, reducing inflammation, modulating chemokine secretion, recruiting tendon stem and progenitor cells, and promoting macrophage polarization to the M2 phenotype. Hydrogels with 'Janus' surfaces and sustained-drug-release functionality could be designed for a range of biomedical applications.
Collapse
Affiliation(s)
- Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Andreas Kuttler
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Sungmin Nam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Daniel Kent
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | | | | | - Nathalie Accart
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Anna Rock
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada
| | - Markus Kurz
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Andreas Fisch
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Thomas Ullrich
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Michael W Hast
- Biedermann Lab for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Yann Tinguely
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Eckhard Weber
- Novartis Institutes for Biomedical Research, Basel, Switzerland.
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
36
|
Decreased fecal calprotectin levels in Spondyloarthritis patients colonized by Blastocystis spp. Sci Rep 2022; 12:15840. [PMID: 36151228 PMCID: PMC9508226 DOI: 10.1038/s41598-022-18308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 08/09/2022] [Indexed: 11/08/2022] Open
Abstract
Spondyloarthritis (SpA) is a group of chronic inflammatory systemic diseases mainly characterized by inflammation in the spine and/or peripheral joints. Although a link between SpA-pathogenesis, intestinal inflammation and gut dysbiosis has been proposed, studies have been focused on bacteria-host interactions and very little has been reported regarding intestinal parasites. Here, intestinal parasitic infection of 51 SpA-patients were evaluated and compared to healthy control individuals. No significant differences in the frequency of any parasite between SpA-patients and control individuals were found. Significantly higher levels of fecal calprotectin (FCP) were found in the SpA-patients compared to the control individuals. However, FCP levels were the same when comparing SpA-patients and control individuals, both colonized by Blastocystis spp. On the other hand, when comparing Blastocystis spp. colonized and Blastocystis spp. free SpA-patients, FCP levels were significantly higher in those Blastocystis spp. free. Without ignoring the small sample size as a study limitation, the results showed that in the SpA-patients colonized by Blastocystis spp., the FCP levels were significantly lower than those in the Blastocystis spp. free group and comparable to those in the control group. These findings seem to suggest a relationship between Blastocystis spp. and intestinal inflammation in SpA-patients, but studies intended to explore that interaction specifically should be designed.
Collapse
|
37
|
Al-Shudiefat AARS, AM Alzyoud J, Al Najjar SA, Talat S, Bustanji Y, Abu-Irmaileh B. The effects of some natural products compared to synthetic products on the metabolic activity, proliferation, viability, migration, and wound healing in sheep tenocytes. Saudi J Biol Sci 2022; 29:103391. [PMID: 35942163 PMCID: PMC9356204 DOI: 10.1016/j.sjbs.2022.103391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022] Open
Abstract
Background Tendinopathy or tendon injuries can affect many people, causing a huge impact on their movements and maintaining standing posture. Treatment options include physiotherapy, anti-inflammatory drugs, and alternative medicine. The use of physiotherapy or anti-inflammatory drugs may cause some side effects like pain and liver failure, respectively, therefore, alternative medicine will be a better choice. Method Tenocytes were isolated from sheep Achilles tendon and used in Alamar blue assay to assess the metabolic activity, proliferation, and viability of tenocytes over 24 hrs. and 48 hrs., using natural and synthetic products [i.e., olive oil, oleic acid, corn oil, Inula viscosa oil, Inula viscosa extract, Nigella sativa oil, naproxen sodium, and paracetamol and LED photobiomodulation]. Furthermore, tenocytes viability was assessed by FDA/PI stain. For migration and healing of a wound, the scratch assay was used. Results Alamar blue assay over 24 hrs. showed that Nigella sativa oil increased the metabolic activity, proliferation, and viability of tenocytes significantly, while Alamar blue over 48 hrs. showed that oleic acid, LED, and their combination increased these parameters for tenocytes significantly. Olive oil increased the viability of tenocytes significantly using FDA/PI stains. Scratch assay revealed that Inula viscosa oil, Inula viscosa extract, and paracetamol increased tenocyte migration and healing significantly. Conclusion Nigella sativa oil, olive oil, oleic acid, Inula viscosa oil, and Inula viscosa extract may be used as an alternative therapy for tendinopathy with less side effects.
Collapse
Affiliation(s)
- Abd Al-Rahman Salem Al-Shudiefat
- Department of Medical, Laboratory Sciences Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
- Corresponding author at: Department of Medical Laboratory Sciences Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan.
| | - Jihad AM Alzyoud
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Saleh A Al Najjar
- Jordan University Hospital, The University of Jordan, Amman 11942, Jordan
| | - Seham Talat
- Department of Medical laboratory Sciences , College of science, Mutah University, Karak 61710, Jordan
| | - Yasser Bustanji
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Bashaer Abu-Irmaileh
- Hamdi Mango Centre for Scientific Research, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
38
|
Kerins A, Koszyczarek M, Smith C, Butler P, Riley R, Madgula V, Naik N, Redinbo MR, Wilson ID. The in vitro metabolism and in vivo pharmacokinetics of the bacterial β-glucuronidase inhibitor UNC10201652. Xenobiotica 2022; 52:904-915. [PMID: 36149349 PMCID: PMC10044449 DOI: 10.1080/00498254.2022.2128468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 01/19/2023]
Abstract
In vitro incubation of the bacterial β-glucuronidase inhibitor UNC10201652 (4-(8-(piperazin-1-yl)-1,2,3,4-tetrahydro-[1,2,3]triazino[4',5':4,5]thieno[2,3-c]isoquinolin-5-yl)morpholine) with mouse, rat, and human liver microsomes and hepatocytes generated metabolites at multiple sites via deethylations, oxidations and glucuronidation.Two UNC10201652 metabolites were detected in human, and four in mouse and rat liver microsomal incubations. Intrinsic clearances of UNC10201652 in human, mouse, and rat liver microsomes were 48.1, 115, and 194 µL/min/mg respectively.Intrinsic clearances for human, mouse, and rat hepatocytes were 20.9, 116, and 140 µL/min/106 cells respectively and 24 metabolites were characterised: 9 for human and 11 for both rodent species.Plasma clearance was 324.8 mL/min/kg with an elimination half-life of 0.66 h following IV administration of UNC10201652 to Swiss Albino mice (3 mg/kg). Pre-treatment with 1-aminobenzotriazole (ABT) decreased clearance to 127.43 mL/min/kg, increasing the t1/2 to 3.66 h.Comparison of profiles after oral administration of UNC10201652 to control and pre-treated mice demonstrated a large increase in Cmax (from 15.2 ng/mL to 184.0 ng/mL), a delay in Tmax from 0.25 to 1 h and increased AUC from 20.1 to 253 h ng/ml. ABT pre-treatment increased oral bioavailability from 15% to >100% suggesting that CYP450's contributed significantly to UNC10201652 clearance in mice.
Collapse
Affiliation(s)
| | | | | | | | - Rob Riley
- Cyprotex Discovery, Macclesfield, UK
| | - Vamsi Madgula
- DMPK and Toxicology, Sai Life Sciences Limited, Hyderabad, India
| | - Nilkanth Naik
- DMPK and Toxicology, Sai Life Sciences Limited, Hyderabad, India
| | - Matthew R. Redinbo
- Departments of Chemistry, Biochemistry & Biophysics, and Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ian D. Wilson
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, London, UK
| |
Collapse
|
39
|
Yen EF, Amusin DB, Yoo J, Ture A, Gentile NM, Goldberg MJ, Goldstein JL. Nonsteroidal anti-inflammatory drug exposure and the risk of microscopic colitis. BMC Gastroenterol 2022; 22:367. [PMID: 35907802 PMCID: PMC9338644 DOI: 10.1186/s12876-022-02438-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Medication consumption has been suggested as a risk factor for microscopic colitis (MC), but studies of varying design have yielded inconsistent results. Our aim was to evaluate the association between medications and MC. METHODS A hybrid cohort of prospectively identified patients undergoing colonoscopy with biopsies for suspicion of MC (N = 144) and patients with MC enrolled within three months of diagnosis into an MC registry (N = 59) were surveyed on medication use. Medication use was compared between patients with and without diagnosis of MC by chi-squared test and binomial logistic regression adjusted for known risk factors of MC: age and gender. RESULTS In total, 80 patients with MC (21 new, 59 registry) were enrolled. Patients with MC were more likely to be older (p = 0.03) and female (p = 0.01) compared to those without MC. Aspirin and other non-steroidal anti-inflammatory drugs were more commonly used among patients who developed MC (p < 0.01). After controlling for age and gender, these medications remained independent predictors of MC with odds ratio for any non-steroidal anti-inflammatory drug use of 3.04 (95% CI: 1.65-5.69). No association between MC and other previously implicated medications including proton pump inhibitors and selective serotonin reuptake inhibitors was found. CONCLUSIONS In this cohort of patients with chronic diarrhea, we found use of aspirin and non-steroidal anti-inflammatory drugs, but not other implicated medications to be associated with the development of MC. Whether these drugs trigger colonic inflammation in predisposed hosts or worsen diarrhea in undiagnosed patients is unclear. However, we feel that these findings are sufficient to discuss potential non-steroidal anti-inflammatory drug cessation in patients newly diagnosed with MC.
Collapse
Affiliation(s)
- Eugene F Yen
- Division of Gastroenterology, NorthShore University HealthSystem, Evanston, IL, USA.
| | - Daniel B Amusin
- Division of Gastroenterology, NorthShore University HealthSystem, Evanston, IL, USA
| | - Janet Yoo
- Rush University College of Nursing, Chicago, IL, USA
| | - Asantewaa Ture
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nicole M Gentile
- Division of Gastroenterology, NorthShore University HealthSystem, Evanston, IL, USA
| | - Michael J Goldberg
- Division of Gastroenterology, NorthShore University HealthSystem, Evanston, IL, USA
| | - Jay L Goldstein
- Division of Gastroenterology, NorthShore University HealthSystem, Evanston, IL, USA
| |
Collapse
|
40
|
Gupta S, Allegretti JR. Mimics of Crohn's Disease. Gastroenterol Clin North Am 2022; 51:241-269. [PMID: 35595413 DOI: 10.1016/j.gtc.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Crohn's disease is a chronic inflammatory disease that can affect any portion of the gastrointestinal tract. Associated symptoms can vary based on the severity of disease, extent of involvement, presence of extraintestinal manifestations, and development of complications. Diagnosis is based on a constellation of findings. Many diseases can mimic Crohn's disease and lead to diagnostic conundrums. These include entities associated with the gastrointestinal luminal tract, vascular disease, autoimmune processes, various infections, malignancies and complications, drug- or treatment-induced conditions, and genetic diseases. Careful consideration of possible causes is necessary to establish the correct diagnosis.
Collapse
Affiliation(s)
- Sanchit Gupta
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, 850 Boyslton Street, Suite 201, Chestnut Hill, MA 02467, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Jessica R Allegretti
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, 850 Boyslton Street, Suite 201, Chestnut Hill, MA 02467, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
41
|
Ho WJ, Smith JNP, Park YS, Hadiono M, Christo K, Jogasuria A, Zhang Y, Broncano AV, Kasturi L, Dawson DM, Gerson SL, Markowitz SD, Desai AB. 15-PGDH regulates hematopoietic and gastrointestinal fitness during aging. PLoS One 2022; 17:e0268787. [PMID: 35587945 PMCID: PMC9119474 DOI: 10.1371/journal.pone.0268787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/08/2022] [Indexed: 11/30/2022] Open
Abstract
Emerging evidence implicates the eicosanoid molecule prostaglandin E2 (PGE2) in conferring a regenerative phenotype to multiple organ systems following tissue injury. As aging is in part characterized by loss of tissue stem cells' regenerative capacity, we tested the hypothesis that the prostaglandin-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH) contributes to the diminished organ fitness of aged mice. Here we demonstrate that genetic loss of 15-PGDH (Hpgd) confers a protective effect on aging of murine hematopoietic and gastrointestinal (GI) tissues. Aged mice lacking 15-PGDH display increased hematopoietic output as assessed by peripheral blood cell counts, bone marrow and splenic stem cell compartments, and accelerated post-transplantation recovery compared to their WT counterparts. Loss of Hpgd expression also resulted in enhanced GI fitness and reduced local inflammation in response to colitis. Together these results suggest that 15-PGDH negatively regulates aged tissue regeneration, and that 15-PGDH inhibition may be a viable therapeutic strategy to ameliorate age-associated loss of organ fitness.
Collapse
Affiliation(s)
- Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Julianne N. P. Smith
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Young Soo Park
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Matthew Hadiono
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kelsey Christo
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Alvin Jogasuria
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yongyou Zhang
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Alyssia V. Broncano
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Lakshmi Kasturi
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Dawn M. Dawson
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Stanton L. Gerson
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
- University Hospitals Seidman Cancer Center, Cleveland, Ohio, United States of America
| | - Sanford D. Markowitz
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
- University Hospitals Seidman Cancer Center, Cleveland, Ohio, United States of America
| | - Amar B. Desai
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
42
|
Novel 18β-glycyrrhetinic acid derivatives as a Two-in-One agent with potent antimicrobial and anti-inflammatory activity. Bioorg Chem 2022; 122:105714. [DOI: 10.1016/j.bioorg.2022.105714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/01/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022]
|
43
|
Ceniti C, Costanzo N, Morittu VM, Tilocca B, Roncada P, Britti D. Review: Colostrum as an Emerging food: Nutraceutical Properties and Food Supplement. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2034165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carlotta Ceniti
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Nicola Costanzo
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Valeria Maria Morittu
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Bruno Tilocca
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Paola Roncada
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| |
Collapse
|
44
|
Di Pasqua LG, Cagna M, Berardo C, Vairetti M, Ferrigno A. Detailed Molecular Mechanisms Involved in Drug-Induced Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis: An Update. Biomedicines 2022; 10:194. [PMID: 35052872 PMCID: PMC8774221 DOI: 10.3390/biomedicines10010194] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are some of the biggest public health challenges due to their spread and increasing incidence around the world. NAFLD is characterized by intrahepatic lipid deposition, accompanied by dyslipidemia, hypertension, and insulin resistance, leading to more serious complications. Among the various causes, drug administration for the treatment of numerous kinds of diseases, such as antiarrhythmic and antihypertensive drugs, promotes the onset and progression of steatosis, causing drug-induced hepatic steatosis (DIHS). Here, we reviewed in detail the major classes of drugs that cause DIHS and the specific molecular mechanisms involved in these processes. Eight classes of drugs, among the most used for the treatment of common pathologies, were considered. The most diffused mechanism whereby drugs can induce NAFLD/NASH is interfering with mitochondrial activity, inhibiting fatty acid oxidation, but other pathways involved in lipid homeostasis are also affected. PubMed research was performed to obtain significant papers published up to November 2021. The key words included the class of drugs, or the specific compound, combined with steatosis, nonalcoholic steatohepatitis, fibrosis, fatty liver and hepatic lipid deposition. Additional information was found in the citations listed in other papers, when they were not displayed in the original search.
Collapse
Affiliation(s)
- Laura Giuseppina Di Pasqua
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Marta Cagna
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Clarissa Berardo
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Mariapia Vairetti
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Andrea Ferrigno
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
45
|
Mahdian-Shakib A, Hashemzadeh MS, Anissian A, Oraei M, Mirshafiey A. Evaluation of the acute and 28-day sub-acute intravenous toxicity of α-l-guluronic acid (ALG; G2013) in mice. Drug Chem Toxicol 2022; 45:151-160. [PMID: 31533489 DOI: 10.1080/01480545.2019.1665679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
α-l-Guluronic acid (ALG; G2013) has been previously introduced as a new anti-inflammatory agent with promising therapeutic effects. Thus, in the present study, we aimed to evaluate the acute and sub-acute toxicity of ALG through intravenous (i.v.) administration in Balb/C mice. ALG was administrated i.v. to the mice with doses of 300, 600, and 1000 mg/kg of body weight to investigate acute toxicity (single dose) and with doses of 25, 50, and 100 mg/kg of body weight to sub-acute toxicity study (daily injections for a period of 28 days). The mortality rate, food and water intake, behavior, body weight, gross necropsy, hematological and biochemical parameters as well as histopathological presentations of the vital organs (kidneys, liver, lungs, spleen, and heart) were examined in treated groups and compared to the healthy controls. The results of both acute and sub-acute studies showed that i.v. administrations of ALG did not affect the investigated parameters in both sexes, indicating that the LD50 of ALG was higher than 1000 mg/kg of body weight. As no difference was observed in toxicity profiles of investigated doses, no-observed-adverse-effect-level for i.v. administration of ALG in the sub-acute study was greater than 100 mg/kg body weight in both female and male mice. According to the finding, i.v. administration of ALG did not lead to any clinical sign in abovementioned doses, suggesting that ALG was well tolerated up to 1000 mg/kg. These pre-clinical findings support the application of ALG in the future clinical trials.
Collapse
Affiliation(s)
- Ahmad Mahdian-Shakib
- Applied Virology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Ali Anissian
- Veterinary Pathology Department, Islamic Azad University, Abhar, Iran
| | - Mona Oraei
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Brannon ER, Guevara MV, Pacifici NJ, Lee JK, Lewis JS, Eniola-Adefeso O. Polymeric particle-based therapies for acute inflammatory diseases. NATURE REVIEWS. MATERIALS 2022; 7:796-813. [PMID: 35874960 PMCID: PMC9295115 DOI: 10.1038/s41578-022-00458-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 05/02/2023]
Abstract
Acute inflammation is essential for initiating and coordinating the body's response to injuries and infections. However, in acute inflammatory diseases, inflammation is not resolved but propagates further, which can ultimately lead to tissue damage such as in sepsis, acute respiratory distress syndrome and deep vein thrombosis. Currently, clinical protocols are limited to systemic steroidal treatments, fluids and antibiotics that focus on eradicating inflammation rather than modulating it. Strategies based on stem cell therapeutics and selective blocking of inflammatory molecules, despite showing great promise, still lack the scalability and specificity required to treat acute inflammation. By contrast, polymeric particle systems benefit from uniform manufacturing at large scales while preserving biocompatibility and versatility, thus providing an ideal platform for immune modulation. Here, we outline design aspects of polymeric particles including material, size, shape, deformability and surface modifications, providing a strategy for optimizing the targeting of acute inflammation.
Collapse
Affiliation(s)
- Emma R. Brannon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI USA
| | | | - Noah J. Pacifici
- Department of Biomedical Engineering, University of California, Davis, CA USA
| | - Jonathan K. Lee
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Jamal S. Lewis
- Department of Biomedical Engineering, University of California, Davis, CA USA
| | | |
Collapse
|
47
|
Novel (quinolin-8-yl-oxy)-pyrazole/thiophene derivatives: Synthesis, characterization and their pharmacological evaluation. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2021.100281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
48
|
NSAID-Induced Enteropathy Affects Regulation of Hepatic Glucose Production by Decreasing GLP-1 Secretion. Nutrients 2021; 14:nu14010120. [PMID: 35010994 PMCID: PMC8746549 DOI: 10.3390/nu14010120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND/AIM Given their widespread use and their notorious effects on the lining of gut cells, including the enteroendocrine cells, we explored if chronic exposure to non-steroidal anti-inflammatory drugs (NSAIDs) affects metabolic balance in a mouse model of NSAID-induced enteropathy. METHOD We administered variable NSAIDs to C57Blk/6J mice through intragastric gavage and measured their energy balance, glucose hemostasis, and GLP-1 levels. We treated them with Exendin-9 and Exendin-4 and ran a euglycemic-hyperinsulinemic clamp. RESULTS Chronic administration of multiple NSAIDs to C57Blk/6J mice induces ileal ulcerations and weight loss in animals consuming a high-fat diet. Despite losing weight, NSAID-treated mice exhibit no improvement in their glucose tolerance. Furthermore, glucose-stimulated (glucagon-like peptide -1) GLP-1 is significantly attenuated in the NSAID-treated groups. In addition, Exendin-9-a GLP-1 receptor antagonist-worsens glucose tolerance in the control group but not in the NSAID-treated group. Finally, the hyper-insulinemic euglycemic clamp study shows that endogenous glucose production, total glucose disposal, and their associated insulin levels were similar among an ibuprofen-treated group and its control. Exendin-4, a GLP-1 receptor agonist, reduces insulin levels in the ibuprofen group compared to their controls for the same glucose exchange rates. CONCLUSIONS Chronic NSAID use can induce small intestinal ulcerations, which can affect intestinal GLP-1 production, hepatic insulin sensitivity, and consequently, hepatic glucose production.
Collapse
|
49
|
Kim YE, Kim J. ROS-Scavenging Therapeutic Hydrogels for Modulation of the Inflammatory Response. ACS APPLIED MATERIALS & INTERFACES 2021; 14:23002-23021. [PMID: 34962774 DOI: 10.1021/acsami.1c18261] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although reactive oxygen species (ROS) are essential for cellular processes, excessive ROS could be a major cause of various inflammatory diseases because of the oxidation of proteins, DNA, and membrane lipids. It has recently been suggested that the amount of ROS could thus be regulated to treat such physiological disorders. A ROS-scavenging hydrogel is a promising candidate for therapeutic applications because of its high biocompatibility, 3D matrix, and ability to be modified. Approaches to conferring antioxidant properties to normal hydrogels include embedding ROS-scavenging catalytic nanoparticles, modifying hydrogel polymer chains with ROS-adsorbing organic moieties, and incorporating ROS-labile linkers in polymer backbones. Such therapeutic hydrogels can be used for wound healing, cardiovascular diseases, bone repair, ocular diseases, and neurodegenerative disorders. ROS-scavenging hydrogels could eliminate oxidative stress, accelerate the regeneration process, and show synergetic effects with other drugs or therapeutic molecules. In this review, the mechanisms by which ROS are generated and scavenged in the body are outlined, and the effects of high levels of ROS and the resulting oxidative stress on inflammatory diseases are described. Next, the mechanism of ROS scavenging by hydrogels is explained depending on the ROS-scavenging agents embedded within the hydrogel. Lastly, the recent achievements in the development of ROS-scavenging hydrogels to treat various inflammation-associated diseases are presented.
Collapse
Affiliation(s)
- Ye Eun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
50
|
Poláková L, Raus V, Cuchalová L, Poręba R, Hrubý M, Kučka J, Větvička D, Trhlíková O, Sedláková Z. SHARP hydrogel for the treatment of inflammatory bowel disease. Int J Pharm 2021; 613:121392. [PMID: 34933083 DOI: 10.1016/j.ijpharm.2021.121392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
Inflammatory bowel disease (IBD) is a relapsing and remitting inflammatory disease affecting millions of people worldwide. The active phase of IBD is characterized by excessive formation of reactive oxygen species (ROS) in the intestinal mucosa, which further accelerates the inflammatory process. A feasible strategy for the IBD treatment is thus breaking the oxidation-inflammation vicious circle by scavenging excessive ROS with the use of a suitable antioxidant. Herein, we have developed a novel hydrogel system for oral administration utilizing sterically hindered amine-based redox polymer (SHARP) incorporating covalently bound antioxidant SHA groups. SHARP was prepared via free-radical polymerization by covalent crosslinking of 2-hydroxyethyl methacrylate (HEMA), poly(ethylene oxide) methyl ether methacrylate (PEGMA) and a SHA-based monomer, N-(2,2,6,6-tetramethyl-piperidin-4-yl)-methacrylamide. The SHARP hydrogel was resistant to hydrolysis and swelled considerably (∼90% water content) under the simulated gastrointestinal tract (GIT) conditions, and exhibited concentration-dependent antioxidant properties in vitro against different ROS. Further, the SHARP hydrogel was found to be non-genotoxic, non-cytotoxic, non-irritating, and non-absorbable from the gastrointestinal tract. Most importantly, SHARP hydrogel exhibited a statistically significant, dose-dependent therapeutic effect in the mice model of dextran sodium sulfate (DSS)-induced acute colitis. Altogether, the obtained results suggest that the SHARP hydrogel strategy holds a great promise with respect to IBD treatment.
Collapse
Affiliation(s)
- Lenka Poláková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic.
| | - Vladimír Raus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Lucie Cuchalová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Rafał Poręba
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Jan Kučka
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - David Větvička
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovská 1, 120 00 Prague 2, Czech Republic
| | - Olga Trhlíková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Zdeňka Sedláková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|