1
|
Schall KA, Thornton ME, Isani M, Holoyda KA, Hou X, Lien CL, Grubbs BH, Grikscheit TC. Short bowel syndrome results in increased gene expression associated with proliferation, inflammation, bile acid synthesis and immune system activation: RNA sequencing a zebrafish SBS model. BMC Genomics 2017; 18:23. [PMID: 28118819 PMCID: PMC5264326 DOI: 10.1186/s12864-016-3433-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/19/2016] [Indexed: 01/19/2023] Open
Abstract
Background Much of the morbidity associated with short bowel syndrome (SBS) is attributed to effects of decreased enteral nutrition and administration of total parenteral nutrition (TPN). We hypothesized that acute SBS alone has significant effects on gene expression beyond epithelial proliferation, and tested this in a zebrafish SBS model. Methods In a model of SBS in zebrafish (laparotomy, proximal stoma, distal ligation, n = 29) or sham (laparotomy alone, n = 28) surgery, RNA-Seq was performed after 2 weeks. The proximal intestine was harvested and RNA isolated. The three samples from each group with the highest amount of RNA were spiked with external RNA controls consortium (ERCC) controls, sequenced and aligned to reference genome with gene ontology (GO) enrichment analysis performed. Gene expression of ctnnb1, ccnb1, ccnd1, cyp7a1a, dkk3, ifng1-2, igf2a, il1b, lef1, nos2b, saa1, stat3, tnfa and wnt5a were confirmed to be elevated in SBS by RT-qPCR. Results RNA-seq analysis identified 1346 significantly upregulated genes and 678 significantly downregulated genes in SBS zebrafish intestine compared to sham with Ingenuity analysis. The upregulated genes were involved in cell proliferation, acute phase response signaling, innate and adaptive immunity, bile acid regulation, production of nitric oxide and reactive oxygen species, cellular barrier and coagulation. The downregulated genes were involved in folate synthesis, gluconeogenesis, glycogenolysis, fatty-acid oxidation and activation and drug and steroid metabolism. RT-qPCR confirmed gene expression differences from RNA-Sequencing. Conclusion Changes of gene expression after 2 weeks of SBS indicate complex and extensive alterations of multiple pathways, some previously implicated as effects of TPN. The systemic sequelae of SBS alone are significant and indicate multiple targets for investigating future therapies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3433-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kathy A Schall
- Division of Pediatric Surgery and Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and USC Keck School of Medicine, Los Angeles, CA, 90027, USA
| | - Matthew E Thornton
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Saban Research Institute, Children's Hospital Los Angeles and USC Keck School of Medicine, Los Angeles, CA, 90027, USA
| | - Mubina Isani
- Division of Pediatric Surgery and Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and USC Keck School of Medicine, Los Angeles, CA, 90027, USA
| | - Kathleen A Holoyda
- Division of Pediatric Surgery and Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and USC Keck School of Medicine, Los Angeles, CA, 90027, USA
| | - Xiaogang Hou
- Division of Pediatric Surgery and Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and USC Keck School of Medicine, Los Angeles, CA, 90027, USA
| | - Ching-Ling Lien
- Division of Cardiothoracic Surgery, Saban Research Institute, Children's Hospital Los Angeles and USC Keck School of Medicine, Los Angeles, CA, 90027, USA
| | - Brendan H Grubbs
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Saban Research Institute, Children's Hospital Los Angeles and USC Keck School of Medicine, Los Angeles, CA, 90027, USA
| | - Tracy C Grikscheit
- Division of Pediatric Surgery and Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and USC Keck School of Medicine, Los Angeles, CA, 90027, USA. .,Department of Surgery, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 100, Los Angeles, CA, 90027, USA.
| |
Collapse
|
2
|
Rubin DC, Levin MS. Mechanisms of intestinal adaptation. Best Pract Res Clin Gastroenterol 2016; 30:237-48. [PMID: 27086888 PMCID: PMC4874810 DOI: 10.1016/j.bpg.2016.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/03/2016] [Accepted: 03/05/2016] [Indexed: 01/31/2023]
Abstract
Following loss of functional small bowel surface area due to surgical resection for therapy of Crohn's disease, ischemia, trauma or other disorders, the remnant gut undergoes a morphometric and functional compensatory adaptive response which has been best characterized in preclinical models. Increased crypt cell proliferation results in increased villus height, crypt depth and villus hyperplasia, accompanied by increased nutrient, fluid and electrolyte absorption. Clinical observations suggest that functional adaptation occurs in humans. In the immediate postoperative period, patients with substantial small bowel resection have massive fluid and electrolyte loss with reduced nutrient absorption. For many patients, the adaptive response permits partial or complete weaning from parenteral nutrition (PN), within two years following resection. However, others have life-long PN dependence. An understanding of the molecular mechanisms that regulate the gut adaptive response is critical for developing novel therapies for short bowel syndrome. Herein we present a summary of key studies that seek to elucidate the mechanisms that regulate post-resection adaptation, focusing on stem and crypt cell proliferation, epithelial differentiation, apoptosis, enterocyte function and the role of growth factors and the enteric nervous system.
Collapse
Affiliation(s)
- Deborah C Rubin
- Departments of Medicine and Developmental Biology, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, Box 8124, Saint Louis, MO, 63141, USA.
| | - Marc S Levin
- Veteran's Administration, St. Louis Health Care System and Department of Medicine, Divisions of Gastroenterology and VA Medicine, Washington University in St. Louis School of Medicine, 660 South Euclid Avenue, Box 8124, Saint Louis, MO, 63141, USA.
| |
Collapse
|
3
|
Promoting intestinal adaptation by nutrition and medication. Best Pract Res Clin Gastroenterol 2016; 30:249-61. [PMID: 27086889 DOI: 10.1016/j.bpg.2016.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/01/2016] [Indexed: 01/31/2023]
Abstract
The ultimate goal in the treatment of short bowel syndrome is to wean patients off parenteral nutrition, by promoting intestinal adaptation. Intestinal adaptation is the natural compensatory process that occurs after small bowel resection. Stimulating the remaining bowel with enteral nutrition can enhance this process. Additionally, medication can be used to either reduce factors that complicate the adaptation process or to stimulate intestinal adaptation, such as antisecretory drugs and several growth factors. The aim of this review was to provide an overview of the best nutritional strategies and medication that best promote intestinal adaptation.
Collapse
|
4
|
Schall KA, Holoyda KA, Grant CN, Levin DE, Torres ER, Maxwell A, Pollack HA, Moats RA, Frey MR, Darehzereshki A, Al Alam D, Lien C, Grikscheit TC. Adult zebrafish intestine resection: a novel model of short bowel syndrome, adaptation, and intestinal stem cell regeneration. Am J Physiol Gastrointest Liver Physiol 2015; 309:G135-45. [PMID: 26089336 PMCID: PMC4525108 DOI: 10.1152/ajpgi.00311.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 05/28/2015] [Indexed: 01/31/2023]
Abstract
Loss of significant intestinal length from congenital anomaly or disease may lead to short bowel syndrome (SBS); intestinal failure may be partially offset by a gain in epithelial surface area, termed adaptation. Current in vivo models of SBS are costly and technically challenging. Operative times and survival rates have slowed extension to transgenic models. We created a new reproducible in vivo model of SBS in zebrafish, a tractable vertebrate model, to facilitate investigation of the mechanisms of intestinal adaptation. Proximal intestinal diversion at segment 1 (S1, equivalent to jejunum) was performed in adult male zebrafish. SBS fish emptied distal intestinal contents via stoma as in the human disease. After 2 wk, S1 was dilated compared with controls and villus ridges had increased complexity, contributing to greater villus epithelial perimeter. The number of intervillus pockets, the intestinal stem cell zone of the zebrafish increased and contained a higher number of bromodeoxyuridine (BrdU)-labeled cells after 2 wk of SBS. Egf receptor and a subset of its ligands, also drivers of adaptation, were upregulated in SBS fish. Igf has been reported as a driver of intestinal adaptation in other animal models, and SBS fish exposed to a pharmacological inhibitor of the Igf receptor failed to demonstrate signs of intestinal adaptation, such as increased inner epithelial perimeter and BrdU incorporation. We describe a technically feasible model of human SBS in the zebrafish, a faster and less expensive tool to investigate intestinal stem cell plasticity as well as the mechanisms that drive intestinal adaptation.
Collapse
Affiliation(s)
- K. A. Schall
- 1Division of Pediatric Surgery, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California;
| | - K. A. Holoyda
- 1Division of Pediatric Surgery, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California;
| | - C. N. Grant
- 1Division of Pediatric Surgery, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California;
| | - D. E. Levin
- 1Division of Pediatric Surgery, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California;
| | - E. R. Torres
- 1Division of Pediatric Surgery, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California;
| | - A. Maxwell
- 2Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California;
| | - H. A. Pollack
- 3Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California;
| | - R. A. Moats
- 3Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California;
| | - M. R. Frey
- 2Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California; ,4Department of Pediatrics and Department of Biochemistry and Molecular Biology, Keck School of Medicine at University of Southern California, Los Angeles, California; and
| | - A. Darehzereshki
- 2Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California;
| | - D. Al Alam
- 1Division of Pediatric Surgery, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California;
| | - C. Lien
- 2Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California; ,5Department of Cardiothoracic Surgery, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California
| | - T. C. Grikscheit
- 1Division of Pediatric Surgery, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California; ,2Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California;
| |
Collapse
|
5
|
Abstract
Intestinal adaptation is a natural compensatory process that occurs following extensive intestinal resection, whereby structural and functional changes in the intestine improve nutrient and fluid absorption in the remnant bowel. In animal studies, postresection structural adaptations include bowel lengthening and thickening and increases in villus height and crypt depth. Functional changes include increased nutrient transporter expression, accelerated crypt cell differentiation, and slowed transit time. In adult humans, data regarding adaptive changes are sparse, and the mechanisms underlying intestinal adaptation remain to be fully elucidated. Several factors influence the degree of intestinal adaptation that occurs post resection, including site and extent of resection, luminal stimulation with enteral nutrients, and intestinotrophic factors. Two intestinotrophic growth factors, the glucagon-like peptide 2 analog teduglutide and recombinant growth hormone (somatropin), are now approved for clinical use in patients with short bowel syndrome (SBS). Both agents enhance fluid absorption and decrease requirements for parenteral nutrition (PN) and/or intravenous fluid. Intestinal adaptation has been thought to be limited to the first 1-2 years following resection in humans. However, recent data suggest that a significant proportion of adult patients with SBS can achieve enteral autonomy, even after many years of PN dependence, particularly with trophic stimulation.
Collapse
Affiliation(s)
- Kelly A Tappenden
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
6
|
Siggers RH, Siggers J, Thymann T, Boye M, Sangild PT. Nutritional modulation of the gut microbiota and immune system in preterm neonates susceptible to necrotizing enterocolitis. J Nutr Biochem 2010; 22:511-21. [PMID: 21193301 DOI: 10.1016/j.jnutbio.2010.08.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Accepted: 08/23/2010] [Indexed: 02/07/2023]
Abstract
The gastrointestinal inflammatory disorder, necrotizing enterocolitis (NEC), is among the most serious diseases for preterm neonates. Nutritional, microbiological and immunological dysfunctions all play a role in disease progression but the relationship among these determinants is not understood. The preterm gut is very sensitive to enteral feeding which may either promote gut adaptation and health, or induce gut dysfunction, bacterial overgrowth and inflammation. Uncontrolled inflammatory reactions may be initiated by maldigestion and impaired mucosal protection, leading to bacterial overgrowth and excessive nutrient fermentation. Tumor necrosis factor alpha, toll-like receptors and heat-shock proteins are identified among the immunological components of the early mucosal dysfunction. It remains difficult, however, to distinguish the early initiators of NEC from the later consequences of the disease pathology. To elucidate the mechanisms and identify clinical interventions, animal models showing spontaneous NEC development after preterm birth coupled with different forms of feeding may help. In this review, we summarize the literature and some recent results from studies on preterm pigs on the nutritional, microbial and immunological interactions during the early feeding-induced mucosal dysfunction and later NEC development. We show that introduction of suboptimal enteral formula diets, coupled with parenteral nutrition, predispose to disease, while advancing amounts of mother's milk from birth (particularly colostrum) protects against disease. Hence, the transition from parenteral to enteral nutrition shortly after birth plays a pivotal role to secure gut growth, digestive maturation and an appropriate response to bacterial colonization in the sensitive gut of preterm neonates.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Enterocolitis, Necrotizing/etiology
- Enterocolitis, Necrotizing/immunology
- Enterocolitis, Necrotizing/microbiology
- Gastrointestinal Tract/growth & development
- Gastrointestinal Tract/immunology
- Gastrointestinal Tract/microbiology
- Heat-Shock Proteins/metabolism
- Humans
- Immune System/immunology
- Infant Nutritional Physiological Phenomena
- Infant, Newborn
- Infant, Premature
- Infant, Premature, Diseases/etiology
- Infant, Premature, Diseases/immunology
- Infant, Premature, Diseases/microbiology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/microbiology
- Intestine, Small/metabolism
- Metagenome/physiology
Collapse
Affiliation(s)
- Richard H Siggers
- Department of Human Nutrition, Faculty of Life Sciences, University of Copenhagen, 30 Rolighedsvej, DK-1958 Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
7
|
McMellen ME, Wakeman D, Longshore SW, McDuffie LA, Warner BW. Growth factors: possible roles for clinical management of the short bowel syndrome. Semin Pediatr Surg 2010; 19:35-43. [PMID: 20123272 PMCID: PMC2891767 DOI: 10.1053/j.sempedsurg.2009.11.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The structural and functional changes during intestinal adaptation are necessary to compensate for the sudden loss of digestive and absorptive capacity after massive intestinal resection. When the adaptive response is inadequate, short bowel syndrome (SBS) ensues and patients are left with the requirement for parenteral nutrition and its associated morbidities. Several hormones have been studied as potential enhancers of the adaptation process. The effects of growth hormone, insulin-like growth factor-1, epidermal growth factor, and glucagon-like peptide 2 on adaptation have been studied extensively in animal models. In addition, growth hormone and glucagon-like peptide 2 have shown promise for the treatment of SBS in clinical trials in human beings. Several lesser studied hormones, including leptin, corticosteroids, thyroxine, testosterone, and estradiol, are also discussed.
Collapse
Affiliation(s)
- Mark E. McMellen
- Division of Pediatric Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Derek Wakeman
- Division of Pediatric Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Shannon W. Longshore
- Department of Surgery, University of California, Davis Medical Center, Sacramento, CA, USA
| | - Lucas A. McDuffie
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Brad W. Warner
- Division of Pediatric Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA,Correspondence: Brad W. Warner, MD Division of Pediatric Surgery St. Louis Children's Hospital, One Children's Place Suite 5S40, St. Louis, MO 63110 Tel.: 1 314 454 6022 Fax: 1 314 454 2442
| |
Collapse
|
8
|
McElroy SJ, Frey MR, Yan F, Edelblum KL, Goettel JA, John S, Polk DB. Tumor necrosis factor inhibits ligand-stimulated EGF receptor activation through a TNF receptor 1-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 2008; 295:G285-93. [PMID: 18467504 PMCID: PMC2519857 DOI: 10.1152/ajpgi.00425.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tumor necrosis factor (TNF) and epidermal growth factor (EGF) are key regulators in the intricate balance maintaining intestinal homeostasis. Previous work from our laboratory shows that TNF attenuates ligand-driven EGF receptor (EGFR) phosphorylation in intestinal epithelial cells. To identify the mechanisms underlying this effect, we examined EGFR phosphorylation in cells lacking individual TNF receptors. TNF attenuated EGF-stimulated EGFR phosphorylation in wild-type and TNFR2(-/-), but not TNFR1(-/-), mouse colon epithelial (MCE) cells. Reexpression of wild-type TNFR1 in TNFR1(-/-) MCE cells rescued TNF-induced EGFR inhibition, but expression of TNFR1 deletion mutant constructs lacking the death domain (DD) of TNFR1 did not, implicating this domain in EGFR downregulation. Blockade of p38 MAPK, but not MEK, activation of ERK rescued EGF-stimulated phosphorylation in the presence of TNF, consistent with the ability of TNFR1 to stimulate p38 phosphorylation. TNF promoted p38-dependent EGFR internalization in MCE cells, suggesting that desensitization is achieved by reducing receptor accessible to ligand. Taken together, these data indicate that TNF activates TNFR1 by DD- and p38-dependent mechanisms to promote EGFR internalization, with potential impact on EGF-induced proliferation and migration key processes that promote healing in inflammatory intestinal diseases.
Collapse
Affiliation(s)
- Steven J. McElroy
- Departments of Pediatrics and Cell Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mark R. Frey
- Departments of Pediatrics and Cell Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Fang Yan
- Departments of Pediatrics and Cell Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Karen L. Edelblum
- Departments of Pediatrics and Cell Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jeremy A. Goettel
- Departments of Pediatrics and Cell Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Sutha John
- Departments of Pediatrics and Cell Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - D. Brent Polk
- Departments of Pediatrics and Cell Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
9
|
Kim JH, Jung WS, Choi NJ, Kim DO, Shin DH, Kim YJ. Health-promoting effects of bovine colostrum in Type 2 diabetic patients can reduce blood glucose, cholesterol, triglyceride and ketones. J Nutr Biochem 2008; 20:298-303. [PMID: 18602824 DOI: 10.1016/j.jnutbio.2008.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 03/28/2008] [Accepted: 04/01/2008] [Indexed: 11/16/2022]
Abstract
Bovine colostrum (BC) has been reported to enhance immune function, reduce fat accumulation and facilitate the movement of glucose to the muscle. However, very few attempts have been made to examine its anti-diabetic effects in diabetes patients. The aim of this study was to evaluate whether BC decreases blood glucose, as well as cholesterol, triglyceride (TG) and ketones levels, which can be elevated by obesity and stress in Type 2 diabetic patients. Sixteen patients (men=8, women=8) with Type 2 diabetes were randomized into the study. Each ingested 5 g of BC on an empty stomach every morning and night for 4 weeks. Blood glucose, ketones (beta-hydroxybutyric acid), total cholesterol and TGs were measured every week. In both the men and women, blood glucose levels at 2 and 8 h postprandial decreased continually during the experimental period. The rate of decrease in blood glucose at 8 h postprandial was not different between the men and women, but was higher in the women (14.25+/-2.66) than in the men (10.96+/-1.82%) at 2 h postprandial. Total cholesterol and TG levels decreased significantly in both the men and women after 4 weeks. Also, beta-hydroxybutyric acid level decreased with BC ingestion, but this was not significant. These results suggest that BC can decrease levels of blood glucose and ketones, as well as reduce cholesterol and TGs, all of which may cause complications in Type 2 diabetic patients.
Collapse
Affiliation(s)
- Jun Ho Kim
- Department of Food and Biotechnology, Korea University, Jochiwon, Chungnam 339-700, South Korea
| | | | | | | | | | | |
Collapse
|
10
|
Parvadia JK, Keswani SG, Vaikunth S, Maldonado AR, Marwan A, Stehr W, Erwin C, Uzvolgyi E, Warner BW, Yamano S, Taichman N, Crombleholme TM. Role of VEGF in small bowel adaptation after resection: the adaptive response is angiogenesis dependent. Am J Physiol Gastrointest Liver Physiol 2007; 293:G591-8. [PMID: 17585015 DOI: 10.1152/ajpgi.00572.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous work in our group has demonstrated that mouse salivary gland has the highest concentration of salivary-derived VEGF protein compared with other organs and is essential for normal palatal mucosal wound healing. We hypothesize that salivary VEGF plays an important role in maintaining the integrity of the gastrointestinal mucosa following small bowel resection (SBR). Thirty-five 8- to 10-wk-old C57BL/6 female mice were divided into seven treatment groups: 1) sham (transaction and anastomosis, n = 5); 2) SBR (n = 8); 3) sialoadenectomy and small bowel resection (SAL+SBR, n = 8); 4) sialoadenectomy and small bowel resection with EGF supplementation (SAL+SBR+EGF, n = 9); 5) sialoadenectomy and small bowel resection with VEGF supplementation (SAL+SBR+VEGF, n = 9); 6) sialoadenectomy and small bowel resection supplemented with EGF and VEGF (SAL+ SBR+VEGF+EGF, n = 6); 7) selective inhibition of VEGF in the submandibular gland by Ad-VEGF-Trap following small bowel resection (Ad-VEGF-Trap+SBR, n = 7). Adaptation was after 3 days by ileal villus height and crypt depth. The microvascular response was evaluated by CD31 immunostaining and for villus-vessel area ratio by FITC-labeled von Willebrand factor immunostaining. The adaptive response after SBR was significantly attenuated in the SAL group in terms of villus height (250.4 +/- 8.816 vs. 310 +/- 19.35, P = 0.01) and crypt depth (100.021 +/- 4.025 vs. 120.541 +/- 2.82, P = 0.01). This response was partially corrected by orogastric VEGF or EGF alone. The adaptive response was completely restored when both were administered together, suggesting that salivary VEGF and EGF both contribute to intestinal adaptation. VEGF increases the vascular density (6.4 +/- 0.29 vs. 6.1 +/- 0.29 vs. 5.96 +/- 0.20) and villus-vessel area ratio (0.713 +/- 0.01 vs. 0.73 +/- 0.01) in the adapting bowel. Supplementation of both EGF and VEGF fully rescues adaptation, suggesting that the adaptive response may be dependent on VEGF-driven angiogenesis. These results support a previously unrecognized role for VEGF in the small bowel adaptive response.
Collapse
Affiliation(s)
- Jignesh K Parvadia
- Center for Molecular and Fetal Therapy, Division of Pediatric General, Thoracic, and Fetal Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Warner BW, Erwin CR. Critical roles for EGF receptor signaling during resection-induced intestinal adaptation. J Pediatr Gastroenterol Nutr 2006; 43 Suppl 1:S68-73. [PMID: 16819405 DOI: 10.1097/01.mpg.0000226393.87106.da] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The adaptation response of the remnant gut to massive intestinal resection represents a mitogenic signal involving all bowel wall layers. In the mucosa, this response results in taller villi, deeper crypts, and enhanced enterocyte turnover as gauged by greater rates of both proliferation and apoptosis. Although the exact mechanisms and mediators of this important compensatory response remain incompletely understood, work from this laboratory over the past decade has illuminated a crucial role for intact receptor signaling for a robust response. Using a murine model for intestinal resection, transgenic, null and mutant mouse strains have provided unique experimental paradigms to dissect molecular mechanisms for epidermal growth factor (EGF) receptor-directed influence on adaptation. Stimulation of this receptor is linked with a magnified adaptation response, whereas attenuation of the activity of this receptor is associated with impaired adaptation. EGF receptor activation and expression are both elevated in enterocytes after resection, and salivary levels of EGF-the major ligand for the EGF receptor-are increased. In addition to stimulation of enterocyte proliferation, EGF receptor signaling prevents the typical increase in rates of enterocyte apoptosis, probably by affecting the ratio of expression of both pro- and anti-apoptotic Bcl-2 family members. The key to optimizing care for patients with short gut syndrome will necessarily follow a thorough understanding of intestinal adaptation responses.
Collapse
Affiliation(s)
- Brad W Warner
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, OH 45229-3039, USA.
| | | |
Collapse
|
12
|
Pereira PM, Bines JE. New growth factor therapies aimed at improving intestinal adaptation in short bowel syndrome. J Gastroenterol Hepatol 2006; 21:932-40. [PMID: 16724975 DOI: 10.1111/j.1440-1746.2006.04351.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Short bowel syndrome (SBS) is used to describe a condition of malabsorption and malnutrition resulting from the loss of absorptive area following massive small bowel resection. The key to improved clinical outcome after massive small bowel resection is the ability of the residual bowel to adapt. Although still in experimental stages, a major goal in the management of SBS may be the augmented use of growth factors to promote increased adaptation. A number of growth factors have been implicated in promoting the adaptation process. The best-described growth factors are reviewed: glucagon-like peptide-2 (GLP-2), epidermal growth factor (EGF), and growth hormone (GH). This article reviews the ability of recombinant GLP-2, EGF and GH to modulate structural and functional aspects of intestinal adaptation following small bowel resection. Although these growth factors have shown promise, small sample size, inconsistent measurement parameters and uncontrolled study designs have hampered the acquisition of strong data advocating the use of growth factor treatment for SBS. Multicenter trials using well-defined outcome measures to assess clinical efficacy are needed to direct the clinical indications, timing and duration of therapy and assess potential risks associated with growth factor therapies.
Collapse
Affiliation(s)
- Prue M Pereira
- Murdoch Children's Research Institute, Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Flemington Road, Parkville, Melbourne, Victoria 3052, Australia.
| | | |
Collapse
|
13
|
Abstract
Short bowel syndrome occurs when there is insufficient length of the small intestine to maintain adequate nutrition and/or hydration status without supplemental support. This syndrome most frequently occurs following extensive surgical resection of the intestine, and the extent of adaptation depends on the anatomy of the resected bowel and the amount of bowel remaining. Following resection, the intestinal tissue undergoes morphologic and functional changes to compensate for the lost function of the resected bowel. These changes are mediated by multiple interactive factors, including intraluminal and parenteral nutrients, gastrointestinal secretions, hormones, cytokines, and growth factors, many of which have been well characterized in animal models. The amount of small bowel remaining is the most important predictor of adaptive potential; neither structural nor functional adaptative changes have been demonstrated in humans or animal models with more extreme resections resulting in an end-jejunostomy. The current understanding of these processes has led to the recent use of supplemental hormones, such as growth hormone and glucagon-like peptide 2, in intestinal rehabilitation programs and may lead to the development of pharmacologic agents designed to augment the innate adaptive response.
Collapse
Affiliation(s)
- Jason J Cisler
- Division of Gastroenterology, Feinburg School of Medicine, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
14
|
Abstract
BACKGROUND To evaluate whether L-Arginine has an effect on endogenous epidermal growth factor secretion and intestinal adaptation in massive small bowel resection an experimental study was performed. METHODS Fourteen albino Wistar rats weighing 250-300 g were used for the study. After performing 50% small bowel resection and anastomosis the rats were randomly divided into two groups. The first group received 500 mg/kg/day of L-Arginine intraperitoneally for 14 days just after the surgical procedure. The control group received isotonic saline instead. Body weight measurement was preformed daily. At the end of the second postoperative week all rats underwent relaparotomy. Small bowel was resected for histopathological examination. Levels of epidermal growth factor were measured by enzyme-linked immunosorbent assay in serum, saliva, and urine at the end of second postoperative week in both groups. RESULTS The weight gain was higher in the L-Arginine treated group (P < 0.05). Serum, saliva and urinary epidermal growth factor levels were significantly higher at the end of the second week compared to the control group (P < 0.05). The villus height was higher on histopathological examination in L-Arginine treated group compared to the control group (P < 0.05). CONCLUSION L-Arginine resulted in a better intestinal adaptation after massive bowel resection. The high levels of epidermal growth factor in body fluids of L-Arginine treated rats could be the explanation for this effect.
Collapse
Affiliation(s)
- Alparslan Camli
- Department of Paediatric Surgery, Ankara University, School of Medicine, Ankara 06100, Turkey
| | | | | |
Collapse
|
15
|
Iskit SH, Tugtepe H, Ayyildiz SH, Kotiloglu E, Dagli TE, Yeğen BC. Epidermal growth factor and bombesin act synergistically to support intestinal adaptation in rats with massive small bowel resection. Pediatr Surg Int 2005; 21:436-40. [PMID: 15891892 DOI: 10.1007/s00383-005-1430-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2005] [Indexed: 11/28/2022]
Abstract
Intestinal adaptation is the most important event in short bowel syndrome following a massive small bowel resection. Effects of various growth factors and their synergism have been well documented in intestinal adaptation. This study aimed to compare the effect of two different trophic agents, epidermal growth factor (EGF) and bombesin (BBS), on intestinal adaptation following massive intestinal resection. Sprague-Dawley male rats were assigned to one of four groups after a 75% small bowel resection. Either EGF (90 microg/kg), BBS (10 microg/kg), EGF+BBS, or bovine serum albumin (BSA) were injected subcutaneously three times a day. The animals were killed 10 days after the operation. Weight loss and morphologic parameters such as mucosal thickness, villus height, crypt depth, villus-to-crypt ratio, and muscularis propria height were measured. In the EGF+BBS group, mucosal thickness was found to be significantly increased compared with the other study groups (p<0.05). Similarly, villus height was significantly increased only in the EGF+BBS group (p<0.05). In the BBS group, both villus height and mucosal thickness showed a slight increase, but the values were not statistically significant compared with the vehicle-treated group. There were no significant differences in any of the remaining parameters between the groups. The results of this study indicate that the gut hormones EGF and BBS act synergistically in facilitating the adaptive response of the remnant ileum to massive intestinal resection.
Collapse
Affiliation(s)
- Serdar H Iskit
- Department of Pediatric Surgery, Marmara University School of Medicine, Mazharbey Evsan Sok., Aytac Ap. No: 20/6, Goztepe, 34724 Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
16
|
Sigalet DL, Martin GR, Butzner JD, Buret A, Meddings JB. A pilot study of the use of epidermal growth factor in pediatric short bowel syndrome. J Pediatr Surg 2005; 40:763-8. [PMID: 15937810 DOI: 10.1016/j.jpedsurg.2005.01.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND This study examined the effects of enterally administered epidermal growth factor (EGF) on nutrient absorption and tolerance of enteral feeds in pediatric patients with short bowel syndrome (SBS). METHODS Patients identified with severe SBS (<25% bowel length predicted for age) were prospectively enrolled in treatment using human recombinant EGF (1-53); 100 microg/kg per day given mixed with enteral feeds and patients were treated for 6 weeks. End points followed were patient weight, tolerance of enteral feeds, nutrient absorption, and intestinal permeability as determined using carbohydrate probes and hematologic values for liver function parameters. RESULTS Five patients were treated with EGF; all showed a significant improvement in carbohydrate absorption (3-0 methylglucose): absorption 24.7% +/- 9.7% pretreatment vs 34.1% +/- 13.8% posttreatment and improved tolerance of enteral feeds (enteral energy as % of total energy, 25% +/- 28% pretreatment vs 36% +/- 24% posttreatment; mean +/- SD; P < .05 by Wilcoxon's signed rank test). Epidermal growth factor treatment was not associated with significant changes in intestinal permeability, the rate of weight gain, or liver function tests. During the treatment phase, no patients developed episodes of sepsis; however, within 2 weeks of discontinuation of EGF treatment, 3 patients developed septic episodes. No adverse effects of EGF administration were noted. CONCLUSIONS These results suggest that enteral treatment with EGF in pediatric SBS improves nutrient absorption, increases tolerance with enteral feeds, and may improve the infection rate. Further studies exploring treatment strategies including the timing and duration of EGF administration are indicated.
Collapse
Affiliation(s)
- David L Sigalet
- GI Research Group, University of Calgary, Calgary, Alberta, Canada TZT SC7.
| | | | | | | | | |
Collapse
|
17
|
Avissar NE, Ziegler TR, Toia L, Gu L, Ray EC, Berlanga-Acosta J, Sax HC. ATB0/ASCT2 expression in residual rabbit bowel is decreased after massive enterectomy and is restored by growth hormone treatment. J Nutr 2004; 134:2173-7. [PMID: 15333700 DOI: 10.1093/jn/134.9.2173] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two weeks after 70% enterectomy, glutamine (Gln) transport is downregulated in rabbit residual bowel due to a decrease in system B(0) activity. Providing epidermal growth factor (EGF) and growth hormone (GH) restores Gln transport by increasing systems A and B(0,+) activities. We hypothesized that changes in Na(+)-dependent broad-spectrum neutral amino acid transporter (ATB(0)/ASCT2) protein and mRNA expression correlate with system B(0) activity. New Zealand White rabbits underwent 70% jejunoileal resection or no resection. Resected rabbits immediately received parenteral EGF, GH, both, or neither agent for 2 wk. Tissues harvested from jejunum, ileum, and colon were subjected to Western and Northern blot analyses for ATB(0)/ASCT2 protein and mRNA. In all tissues, ATB(0)/ASCT2 mRNA was reduced by approximately 50% in resected rabbits compared with nonresected controls. Similar reductions in protein amount occurred in the ileum and cecum. None of the growth factor treatments restored ATB(0)/ASCT2 protein, but GH treatment increased ATB(0)/ASCT2 mRNA abundance 250% in the residual ileum. Because changes in the ATB(0)/ASCT2 protein amount paralleled those in the system B(0) activity in this model, it is likely that this is the protein responsible for this transport system. The increase in mRNA abundance in rabbits treated with GH for 2 wk may be a harbinger of subsequent increases in transporter protein and activity. Unlike reported upregulation of transporters in human colon after small bowel resection, ATB(0)/ASCT2 protein and mRNA expression in rabbit colon are decreased, suggesting different regulatory pathways.
Collapse
Affiliation(s)
- Nelly E Avissar
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Chung BM, Wallace LE, Winkfein RK, O'Loughlin EV, Hardin JA, Gall DG. The effect of massive small bowel resection and oral epidermal growth factor therapy on SGLT-1 distribution in rabbit distal remnant. Pediatr Res 2004; 55:19-26. [PMID: 14561780 DOI: 10.1203/01.pdr.0000098500.94041.9b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Small bowel resection decreases brush border membrane (BBM) glucose uptake kinetics. Oral epidermal growth factor (EGF) returns net glucose transport across intact tissue to control levels despite persistence of a defect in BBM glucose uptake. The purpose of this study was to examine the effects of resection and EGF treatment on sodium-dependent glucose cotransporter 1 (SGLT-1) expression in distal remnant tissue. New Zealand White rabbits (1 kg) underwent 70% small bowel resection (R). One group of resected animals (R-EGF) received oral EGF (40 microg/kg, days 3-8). Distal remnant tissue was harvested 10 d after surgery, and compared with controls (C). Mucosal SGLT-1 mRNA was measured by Northern blot, BBM SGLT-1 content by Western blot, and villus distribution of SGLT-1 protein and mRNA by immunofluorescence and in situ hybridization. Western blot indicated BBM from both resected and EGF-treated tissue had decreased SGLT-1 content (C, 0.55 +/- 0.04; R, 0.35 +/- 0.04; R-EGF, 0.35 +/- 0.03 trace OD; n = 5; p < 0.05). Northern blot revealed no alterations in mucosal SGLT-1 mRNA content in any group. SGLT-1 protein and mRNA localization in control tissues was characterized by a gradual increase in stain intensity from the base of the villus to the villus tip. Resection altered SGLT-1 protein and mRNA expression along the villus axis with intensity being strongest in the mid-villus region and little expression at the tip of the villus. Oral EGF normalized SGLT-1 protein and mRNA expression to control patterns. Resection alters SGLT-1 protein and mRNA expression along the villus axis, despite no change in total mucosal SGLT-1 mRNA content. EGF normalized villus SGLT-1 protein and mRNA distribution, without altering overall BBM SGLT-1 content or mucosal mRNA levels.
Collapse
Affiliation(s)
- Brian M Chung
- Department of Pediatrics, Faculty of Medicine, University of Calgary, 3330 University Calgary, Alberta T2N 4N1, Canada.
| | | | | | | | | | | |
Collapse
|
19
|
Thomas RP, Slogoff M, Smith FW, Evers BM. Effect of aging on the adaptive and proliferative capacity of the small bowel. J Gastrointest Surg 2003; 7:88-95. [PMID: 12559189 DOI: 10.1016/s1091-255x(02)00128-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our society is aging at a rapid rate; the effects of aging on physiologic functions (e.g., small bowel adaptation) are poorly understood. The purpose of this study was to determine the ability of the aged small bowel mucosa to adapt after resection. Young (2-month-old) and aged (24-month-old) F344 rats underwent massive (70%) proximal small bowel resection (SBR) or sham operation; rats were killed at 9 or 16 days after surgery. The remnant small bowel and corresponding sham segments were harvested, weighed, and analyzed for DNA content and villus height. To determine whether the adaptive response after SBR could be enhanced, aged rats underwent SBR or sham operation and were treated with either neurotensin or saline solution (control). SBR resulted in adaptive hyperplasia in the remaining small bowel remnant in both young and aged rats at 9 and 16 days compared with sham animals. At 9 days, significant increases were noted in weight, villus height, and DNA content of the distal remnant in young and aged rats after SBR; the increases were similar in both young and aged rats. At 16 days, both young and aged rats displayed significant increases in remnant weight after SBR. Administration of neurotensin increased the weight of the remnant intestine in aged rats after SBR compared with saline treatment. Our findings demonstrate that aged small bowel mucosa exhibits a proliferative and adaptive capacity in response to SBR that was similar to that of the young animals. In addition, neurotensin administration enhanced the normal adaptive response of the small bowel in aged rats, providing further evidence that neurotensin may be therapeutically useful to augment mucosal regeneration in the early periods after massive SBR.
Collapse
Affiliation(s)
- Robert P Thomas
- Department of Surgery, The University of Texas Medical Branch, 301 University Blvd., 77555-0536, Galveston, TX
| | - Michele Slogoff
- Department of Surgery, The University of Texas Medical Branch, 301 University Blvd., 77555-0536, Galveston, TX
| | - Farin W Smith
- Department of Surgery, The University of Texas Medical Branch, 301 University Blvd., 77555-0536, Galveston, TX
| | - B Mark Evers
- Department of Surgery, The University of Texas Medical Branch, 301 University Blvd., 77555-0536, Galveston, TX.
| |
Collapse
|
20
|
Bines JE, Taylor RG, Justice F, Paris MCJ, Sourial M, Nagy E, Emselle S, Catto-Smith AG, Fuller PJ. Influence of diet complexity on intestinal adaptation following massive small bowel resection in a preclinical model. J Gastroenterol Hepatol 2002; 17:1170-9. [PMID: 12453276 DOI: 10.1046/j.1440-1746.2002.02872.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AIMS To investigate the effect of dietary complexity on intestinal adaptation using a preclinical model. METHODS Four-week-old piglets underwent a 75% proximal small bowel resection or transection operation (control). Post-operatively, animals received either pig chow (n = 15), polymeric formula (n = 9), polymeric formula plus fiber (n = 6), or elemental formula (n = 7). RESULTS The weight gain of all groups was reduced compared with controls that were fed the same diet. Animals that had a resection, which were fed elemental formula, had significantly reduced weight gain compared with the other groups (4.7 4.2 vs 30.7 7.1 kg chow and 11.5 1.3 kg polymeric formula). Villus height was increased in the jejunum, ileum and terminal ileum of resected animals compared with controls in animals fed with pig chow, polymeric formula and elemental formula. The animals that had a resection had a significant reduction in the transepithelial conductance (10.4 5.5 vs 25.4 6.5 mS/cm2) and 51Chromium-EDTA flux (2.8 1.9 vs 4.8 4.9 microL/h per cm2) compared with the controls. CONCLUSIONS A complex diet was found to be superior to an elemental diet in terms of the morphological and functional features of adaptation following massive small bowel resection.
Collapse
Affiliation(s)
- Julie E Bines
- Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sham J, Martin G, Meddings JB, Sigalet DL. Epidermal growth factor improves nutritional outcome in a rat model of short bowel syndrome. J Pediatr Surg 2002; 37:765-9. [PMID: 11987096 DOI: 10.1053/jpsu.2002.32273] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND/PURPOSE This study investigates the effect of epidermal growth factor (EGF) on nutrient absorption in a rat model of short bowel syndrome (SBS). METHODS Male juvenile rats underwent either transection (Sham) or ileocecal resection leaving a 20-cm jejunal remnant. Animals underwent follow-up for 10 days, and resected animals were treated with placebo or recombinant human EGF (1-53). Animals were pair fed; in vivo nutrient absorption, intestinal permeability, morphology, and total intestinal DNA and protein content were measured. RESULTS Resected EGF-treated animals lost significantly less weight than those in the placebo group (-4.2 +/- 3 v -13.7 +/- 6.9%), absorbed significantly more 3-0 methylglucose (76.8 +/- 6.6 v 64.9 +/- 10.1%), and had reduced permeability (lactulose/mannitol ratio, 0.35 +/- 0.19 v 0.60 +/- 0.20; P <.05 for all comparisons). CONCLUSIONS These findings show that treatment of short bowel syndrome animals with EGF reduced weight loss and improved carbohydrate absorption and intestinal permeability. These findings suggest that enteral EGF may be a useful therapy for short bowel syndrome; further studies are indicated.
Collapse
|
22
|
Abstract
Regaining enteral autonomy after extensive small bowel resection is dependent on intestinal adaptation. This adaptational process is characterized by hyperplastic growth of the remaining gut, which is accompanied by both an increase of cell division at the level of the crypt cells and by an increased rate of programmed cell death (apoptosis). Apart from the absorptive function, the small bowel also has a barrier function and plays an important role in interorgan metabolism. Also, these functions are greatly affected by a massive intestinal resection and subsequent recovery by intestinal adaptation. This review aims to give an overview of the debilitating effects of massive intestinal resection on gut function and subsequently discusses intestinal adaptation and possible factors stimulating adaptation.
Collapse
Affiliation(s)
- Carlo F M Welters
- Department of Surgery, Academic Hospital and University of Maastricht, The Netherlands
| | | | | | | |
Collapse
|
23
|
Abstract
The surgeon is invariably the primary specialist involved in managing patients with short bowel syndrome. Because of this they will play an important role in co-ordinating the management of these patients. The principal aims at the initial surgery are to preserve life, then to preserve gut length, and maintain its continuity. In the immediate postoperative period, there needs to be a balance between keeping the patient alive through the use of TPN and antisecretory agents and promoting gut adaptation with the use of oral nutrition. If the gut fails to adapt during this period, then the patient may require therapy with more specific agents to promote gut adaptation such as growth factors and glutamine. If following this, the patient still has a short gut syndrome, then the principal options remain either long term TPN, or intestinal transplantation which remains a difficult and challenging procedure with a high mortality and morbidity due to rejection.
Collapse
Affiliation(s)
- Cameron F E Platell
- Department of Surgery, The University of Western Australia, Perth, Australia.
| | | | | | | |
Collapse
|
24
|
Xu R, Sangild P, Zhang Y, Zhang S. Chapter 5 Bioactive compounds in porcine colostrum and milk and their effects on intestinal development in neonatal pigs. BIOLOGY OF GROWING ANIMALS 2002. [DOI: 10.1016/s1877-1823(09)70121-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
25
|
Reindel JF, Gough AW, Pilcher GD, Bobrowski WF, Sobocinski GP, de la Iglesia FA. Systemic proliferative changes and clinical signs in cynomolgus monkeys administered a recombinant derivative of human epidermal growth factor. Toxicol Pathol 2001; 29:159-73. [PMID: 11421483 DOI: 10.1080/019262301317052431] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Epidermal growth factor (EGF) effects have been explored extensively in vivo in rodents, but little is known about trophic responses in nonhuman primates. A previous publication reports the hyperplastic epithelial/parenchymal changes noted in the digestive tract (tongue, esophagus, stomach, intestine, liver, gallbladder, pancreas, and salivary glands) of adult cynomolgus monkeys treated with recombinant human EGF(1-48) (rhEGF(1-48)). This report documents clinical findings and structural effects in the remaining epithelium-containing tissues of these animals. Two monkeys/sex/dose received rhEGF(1-48) by intravenous bolus at 0 (vehicle), 10, 100, 500 (females only), or 1,000 microg/kg/day (males only) daily for up to 2 weeks. Treatment- and dose-related clinical findings included emesis, fecal alterations (soft feces and diarrhea), lacrimation, nasal discharge, hypoactivity, transient hypotension, and salivation after dosing. Male monkeys administered 1,000 microg/kg became moribund after 5 days of treatment and were necropsied. All other monkeys completed the 2-week treatment period. Necropsy findings in nongastrointestinal tissues were: enlarged, pale kidneys at 100 microg/kg and greater; small thymuses seen sporadically at all doses; and enlarged adrenals and small thyroids in males at 1,000 microqg/kg. Respective organ-to-brain weight ratios at 500 and 1,000 microg/kg for kidneys were 1.5- and 2.6-fold greater and for heart were 1.7- and 1.3-fold greater than controls. Microscopically, pronounced dose-related epithelial hypertrophy and hyperplasia were evident in kidney, urinary bladder, skin (epidermis and adnexa), mammary gland, prostate, seminal vesicles, epididymis, uterus, cervix, vagina, thyroid, thymus, tonsillar crypts, cornea, trachea, and pulmonary airways. Epitheliotrophic effects were conspicuous in many tissues at 100 to 1,000 microg/kg. Changes to renal collecting ducts were present at 10 microg/kg, suggesting that kidneys were a relatively sensitive target. Proliferative alterations were not apparent in testes, intraocular structures, brain ependyma and choroid plexus at any dose. Aside from the noted exceptions, rhEGF(1-48) was a pantrophic epithelial mitogen in cynomolgus monkeys when used intravenously at suprapharmacologic doses.
Collapse
Affiliation(s)
- J F Reindel
- Drug Safety Evaluation, Pfizer Global Research and Development, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | |
Collapse
|
26
|
Stern LE, Erwin CR, O'Brien DP, Huang F, Warner BW. Epidermal growth factor is critical for intestinal adaptation following small bowel resection. Microsc Res Tech 2000. [PMID: 11054864 DOI: 10.1002/1097-0029(20001015)51:2%3c138::aid-jemt5%3e3.0.co;2-t] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The loss of small intestinal mucosal surface area is a relatively common clinical situation seen in both the pediatric and adult population. The most frequent causes include mesenteric ischemia, trauma, inflammatory bowel disease, necrotizing enterocolitis, and volvulus. Following surgical resection, the remnant intestine compensates or adapts to the loss of native bowel by increasing its absorptive surface area and functional capacity. Unfortunately, many patients fail to adapt adequately, and are relegated to lifelong intravenous nutrition. Research into intestinal adaptation following small bowel resection (SBR) has evolved only recently from the gross and microscopic level to the biochemical and genetic level. As understanding of this process has increased, numerous therapeutic strategies to augment adaptation have been proposed. Epidermal growth factor (EGF) is an endogenous peptide that is secreted into the gastrointestinal tract and able to influence gut ontogeny, as well as mucosal healing. Early studies have demonstrated its ability to augment the adaptive process. Focusing on a murine model of massive intestinal loss, the morphological, structural, biochemical, and genetic changes that occur during the intestinal adaptive process will be reviewed. The role of EGF and its receptor as critical mediators of the adaptive process will be discussed. Additionally, the ability of EGF to augment intestinal proliferation and diminish programmed cell death (apoptosis) following SBR will be examined. Enhancing adaptation in a controlled manner may allow patients to transition off parenteral nutrition to enteral feeding and, thereby, normalize their lifestyle.
Collapse
Affiliation(s)
- L E Stern
- Division of Pediatric Surgery, Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | |
Collapse
|
27
|
Stern LE, Erwin CR, O'Brien DP, Huang F, Warner BW. Epidermal growth factor is critical for intestinal adaptation following small bowel resection. Microsc Res Tech 2000; 51:138-48. [PMID: 11054864 DOI: 10.1002/1097-0029(20001015)51:2<138::aid-jemt5>3.0.co;2-t] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The loss of small intestinal mucosal surface area is a relatively common clinical situation seen in both the pediatric and adult population. The most frequent causes include mesenteric ischemia, trauma, inflammatory bowel disease, necrotizing enterocolitis, and volvulus. Following surgical resection, the remnant intestine compensates or adapts to the loss of native bowel by increasing its absorptive surface area and functional capacity. Unfortunately, many patients fail to adapt adequately, and are relegated to lifelong intravenous nutrition. Research into intestinal adaptation following small bowel resection (SBR) has evolved only recently from the gross and microscopic level to the biochemical and genetic level. As understanding of this process has increased, numerous therapeutic strategies to augment adaptation have been proposed. Epidermal growth factor (EGF) is an endogenous peptide that is secreted into the gastrointestinal tract and able to influence gut ontogeny, as well as mucosal healing. Early studies have demonstrated its ability to augment the adaptive process. Focusing on a murine model of massive intestinal loss, the morphological, structural, biochemical, and genetic changes that occur during the intestinal adaptive process will be reviewed. The role of EGF and its receptor as critical mediators of the adaptive process will be discussed. Additionally, the ability of EGF to augment intestinal proliferation and diminish programmed cell death (apoptosis) following SBR will be examined. Enhancing adaptation in a controlled manner may allow patients to transition off parenteral nutrition to enteral feeding and, thereby, normalize their lifestyle.
Collapse
Affiliation(s)
- L E Stern
- Division of Pediatric Surgery, Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | |
Collapse
|
28
|
Chen DL, Wang WZ, Wang JY. Epidermal growth factor prevents gut atrophy and maintains intestinal integrity in rats with acute pancreatitis. World J Gastroenterol 2000; 6:762-765. [PMID: 11819691 PMCID: PMC4688860 DOI: 10.3748/wjg.v6.i5.762] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
29
|
Postnatal adaptation of the gastrointestinal tract in neonatal pigs: a possible role of milk-borne growth factors. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0301-6226(00)00217-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Playford RJ, Macdonald CE, Johnson WS. Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders. Am J Clin Nutr 2000; 72:5-14. [PMID: 10871554 DOI: 10.1093/ajcn/72.1.5] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Colostrum is the specific first diet of mammalian neonates and is rich in immunoglobulins, antimicrobial peptides, and growth factors. In this article we review some of these constituents of human and bovine colostrum in comparison with those of mature milk. Recent studies suggest that colostral fractions, or individual peptides present in colostrum, might be useful for the treatment of a wide variety of gastrointestinal conditions, including inflammatory bowel disease, nonsteroidal antiinflammatory drug-induced gut injury, and chemotherapy-induced mucositis. We therefore discuss the therapeutic possibilities of using whole colostrum, or individual peptides present in colostrum, for the treatment of various gastrointestinal diseases and the relative merits of the 2 approaches.
Collapse
Affiliation(s)
- R J Playford
- Department of Gastroenterology, Imperial College School of Medicine, Hammersmith Hospital, London, UK.
| | | | | |
Collapse
|
31
|
Stern LE, Falcone RA, Kemp CJ, Braun MC, Erwin CR, Warner BW. Salivary epidermal growth factor and intestinal adaptation in male and female mice. Am J Physiol Gastrointest Liver Physiol 2000; 278:G871-7. [PMID: 10859216 DOI: 10.1152/ajpgi.2000.278.6.g871] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Salivary epidermal growth factor (sEGF) levels are increased in male mice after small bowel resection (SBR) and may be important during intestinal adaptation. Since males have greater sEGF than females, the influence of sex on postresection adaptation was tested. Females had lower sEGF; however, sEGF substantially increased in both sexes after a massive (50%) SBR. Adaptive increases in DNA and protein content, villus height, and crypt depth, as well as crypt cell proliferation rates in the remnant ileum, were not different between males and females. Although significant postresection increases in sEGF were identified, EGF mRNA and protein did not change within the submandibular gland. Glandular kallikrein-13 and ileal EGF receptor expression were greater after SBR in female mice. Intestinal adaptation is equivalent in female and male mice after SBR. Despite lower sEGF, females demonstrated increased expression of a kallikrein responsible for sEGF precursor cleavage as well as amplified ileal EGF receptor expression. These results endorse an important differential response between sexes regarding sEGF mobilization and intestinal receptor availability during adaptation.
Collapse
Affiliation(s)
- L E Stern
- Division of Pediatric Surgery, Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | |
Collapse
|
32
|
Falcone RA, Stern LE, Kemp CJ, Erwin CR, Warner BW. Intestinal adaptation occurs independent of transforming growth factor-alpha. J Pediatr Surg 2000; 35:365-70. [PMID: 10693698 DOI: 10.1016/s0022-3468(00)90042-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND/PURPOSE Signal transduction via the epidermal growth factor receptor (EGFR) is critical for intestinal adaptation after massive small bowel resection (SBR). Although it has been assumed that the major ligand for the EGFR during adaptation is EGF, the role for transforming growth factor-alpha (TGF-alpha), another major ligand for the EGFR is unknown. The purpose of this study was to test the hypothesis that TGF-alpha is an important ligand for the EGFR during intestinal adaptation. METHODS Wild-type mice (C57BI/6) underwent a 50% proximal SBR or sham operation (bowel transection or reanastomosis) and were then assigned randomly to receive either intraperitoneal TGF-alpha or placebo. In a separate experiment, SBR or sham operations were performed in mice lacking TGF-alpha (Waved-1). After 3 days, adaptation was measured in the ileum. RESULTS Exogenous TGF-alpha enhanced intestinal adaptation in the wild-type mice after SBR as shown by increased ileal wet weight and DNA content. Normal adaptation occurred in the mice lacking TGF-alpha as shown by increased ileal wet weight, protein and DNA content, proliferation, villus height, and crypt depth. CONCLUSIONS Although exogenous TGF-alpha enhanced adaptation after massive SBR, adaptation was preserved in TGF-alpha-absent mice. These results refute TGF-alpha as an essential ligand for EGFR signaling during intestinal adaptation.
Collapse
Affiliation(s)
- R A Falcone
- Department of Surgery, University of Cincinnati College of Medicine, OH, USA
| | | | | | | | | |
Collapse
|
33
|
Heemskerk VH, van Heurn LW, Farla P, Buurman WA, Piersma F, ter Riet G, Heineman E. A successful short-bowel syndrome model in neonatal piglets. J Pediatr Gastroenterol Nutr 1999; 29:457-61. [PMID: 10512408 DOI: 10.1097/00005176-199910000-00016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND With the higher survival rate of premature neonates as a result of improved neonatal intensive care, the incidence of necrotizing enterocolitis, and thus the incidence of short-bowel syndrome, is increasing. An appropriate animal model resembling the (premature) neonate with short-bowel syndrome suitable for clinically relevant neonatal bowel adaptation and intervention studies, is not available at present. The purpose of this study was the development of a short-bowel syndrome model that mimics the clinical state of the affected neonatal patient. METHODS Sixteen 7-day-old piglets received either a small bowel transection (group A) or a 75% resection (group B). The piglets were fed 125 kcal/kg body weight per day, including additional electrolytes. The animals were weighed daily and were killed 28 days after surgery. Bowel samples were obtained at both time points. RESULTS Mortality rates in groups A and B were 0% and 8%, respectively. Body weight gain was significantly higher in group A than in group B (156% vs. 93%; P = 0.01). Jejunal villus length was higher in group B than in group A (74% vs. -2%; P = 0.006), and crypt depth was higher in group B in both jejunum (201% vs. 67%; P = 0.001) and ileum, (197% vs. 20%; P = 0.001), than in group A. CONCLUSIONS In 7-day-old piglets 75% small bowel resection leads to a clinical short-bowel syndrome, demonstrated by reduced weight gain and typical changes in bowel adaptation parameters. The excellent survival of the animals provides a possibility for the study of bowel adaptation in a neonatal model as well as in intervention studies.
Collapse
Affiliation(s)
- V H Heemskerk
- Department of Surgery, University of Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
34
|
Falcone RA, Shin CE, Stern LE, Wang Z, Erwin CR, Soleimani M, Warner BW. Differential expression of ileal Na(+)/H(+) exchanger isoforms after enterectomy. J Surg Res 1999; 86:192-7. [PMID: 10534423 DOI: 10.1006/jsre.1999.5720] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Na(+)/H(+) exchangers (NHE) are transporters involved in the absorption of NaCl along the gastrointestinal tract. The aim of this study was to determine the expression pattern of the intestinal brush border NHE isoforms 2 and 3 following massive small bowel resection (SBR). Additionally, the effect of epidermal growth factor (EGF) and salivarectomy (removal of the primary source of EGF) on the expression pattern was studied. MATERIALS AND METHODS ICR mice underwent a proximal SBR or sham surgery and then received either orogastric saline or EGF (50 microg/kg/day). In separate experiments mice underwent salivarectomy followed by SBR or sham. Postoperatively the remaining ileum was isolated and levels of NHE-2 and NHE-3 mRNA and protein were resolved. RESULTS Following SBR, the expression of both mRNA and protein for NHE-3 increased by approximately 2.5-fold. Treatment with EGF enhanced NHE-3 mRNA in sham animals with further elevation following SBR. The expression of NHE-2 mRNA demonstrated minimal change while protein marginally increased (40%) following SBR. EGF did not affect the expression of NHE-2 mRNA. Salivarectomy did not influence NHE-2 protein expression and inhibited the increased NHE-3 protein expression following SBR. CONCLUSIONS Following SBR, the expression pattern for brush border NHE isoforms is distinctive. Increased expression of NHE-3 secondary to SBR and/or EGF treatment with loss of this increase following salivarectomy implies a common mechanism to enhance enterocyte proliferation and luminal absorption of NaCl and water. These results suggest that NHE-3 is an important ileal exchanger following SBR.
Collapse
Affiliation(s)
- R A Falcone
- Department of Surgery, Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Erwin CR, Helmrath MA, Shin CE, Falcone RA, Stern LE, Warner BW. Intestinal overexpression of EGF in transgenic mice enhances adaptation after small bowel resection. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:G533-40. [PMID: 10484377 DOI: 10.1152/ajpgi.1999.277.3.g533] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effect of direct intestinal overexpression of epidermal growth factor (EGF) on postresection adaptation has been investigated by the production of transgenic mouse lines. A murine pro-EGF cDNA construct was produced, and expression of the EGF construct was targeted to the small intestine with the use of the rat intestinal fatty acid-binding protein promoter. An approximately twofold increase in intestinal EGF mRNA and protein was detected in heterozygous mice. No changes in serum EGF levels were noted. Except for a slightly shortened small intestine, no other abnormal phenotype was observed. Intestinal adaptation (increases in body weight, DNA, protein content, villus height, and crypt depth) was markedly enhanced after a 50% proximal small bowel resection in transgenic mice compared with nontransgenic littermates. This transgenic mouse model permits the study of intestinal adaptation and other effects of EGF in the small intestine in a more physiological and directed manner than has been previously possible. These results endorse a direct autocrine/paracrine mechanism for EGF on enterocytes as a means to enhance adaptation.
Collapse
Affiliation(s)
- C R Erwin
- Department of Surgery, Division of Pediatric Surgery, Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The primary factors in feeding premature infants are dependent on the development and maturation of digestion and absorption. The maturation of digestive and absorptive functions of carbohydrates, proteins, fats, minerals, and vitamins in the young premature infant were determined in relation to availability of hydrolytic enzymes, such as lipases, proteases, amylases, glucosidases, and lactase. The feeding is dependent on the ability of the premature infant to secrete salivary enzymes, gastric acid, pepsin, pancreatic exocrine enzymes, the presence of enterohepatic circulation, and the hydrolytic and absorptive capacity of the entercocyte. To evaluate the complexity of the gut maturation process, we proposed a unified concept where the ontogeny of the gastrointestinal system is the result of the following four major determinants: genetic endowment, intrinsic developmental and biological clock, endogenous regulatory mechanisms, and environmental influences. The developmental clock represents a predetermined temporal sequence of happenings in ontogeny that is inherently controlled. By 20 weeks of gestation, the anatomic differentiation of the fetal gut has progressed to the extent that it resembles that of a newborn. Secretory and absorptive functions, however, develop at different rates; the intestinal absorptive process is only partially available before 26 weeks of gestation, whereas gastric and pancreatic secretion is only basal and can be stimulated only partially even in the full-term newborn period. Regulatory mechanisms control the expression of the genetic endowment at various stages in gastrointestinal development. Neural-hormonal factors play major roles in the ontogeny of the gut. Adrenalectomy, hypophysectomy, and thyroidectomy delay the development of the gut. Administration of glucocorticoids or thyroxine at the critical stage in maturation causes early appearance of enzymes within the intestine. Other hormones that are potentially important in regulating gastrointestinal development include cholecystokinin, gastrin, secretin, which have trophic effects on the gastrointestinal tract, and insulin, insulin-like growth factors, and epidermial growth factor. The development of gastrointestinal secretory function, particularly in response to hormonal stimulation, has received considerable attention. The degree of response of the target cell is determined not only by the amount of effective hormone reaching it but also by the number and affinity of receptors on its surface. Human newborns have high levels of gastrin in their sera, yet have low acid output. Exogenous gastrin is an ineffective stimulant despite the presence of seemingly "anatomically developed" parietal cells. It seems that neither endogenous nor exogenous gastrin has an effect on the target cell. If one accepts the role of circulating gastrin levels in the regulation of its own receptor, one can hypothesize the absence of a regulatory effect of gastrin in the newborn period. It was shown that hormonal regulation of migrating activity by motilin is also absent in the preterm and term infant. Plasma levels of motilin in neonates are comparable to those found in adults, but migrating motor complexes occur in the absence of cycling of plasma concentrations. Interestingly, however, the motilin receptor appears to be present. In conclusion, the feeding mode content, concentration, and volume of the very young premature infant can be assessed by the development of digestive and absorptive capacity and gut motility. The concomitant changes in gut hormones and regulatory peptides during ontogeny and feeding will add a new dimension in the understanding of when, what, and how to feed the very young premature infant.
Collapse
Affiliation(s)
- A Lebenthal
- Department of Pediatrics, Mt Scopus, Hadassah University Hospital, Jerusalem, Israel
| | | |
Collapse
|
37
|
Wong WM, Wright NA. Epidermal growth factor, epidermal growth factor receptors, intestinal growth, and adaptation. JPEN J Parenter Enteral Nutr 1999; 23:S83-8. [PMID: 10483903 DOI: 10.1177/014860719902300521] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Epidermal growth factor (EGF) is an important constituent of several gastrointestinal secretions. Many studies in both animals and humans have shown EGF to have multiple effects upon gut epithelial cells. These include cytoprotection, stimulatory effects on cell proliferation and migration, induction of gene expression such as mucosal enzymes and trefoil proteins, and inhibitory effects on gastric acid secretion. The main conundrum associated with EGF action is the disparity between experimental studies on its luminal and systemic actions. Opinion is sharply divided as to whether or not EGF has any action when given luminally and on the site of the EGF receptors on gut epithelial cells. Most studies agree that the EGF receptors are located on the basolateral surface, in which case EGF should only be active if surface ulceration has occurred--unless there is translocation across the epithelium. There are several clinical situations in which EGF might be useful in cytoprotection and in stimulating repair and regeneration in the gut. These include necrotizing enterocolitis and mucositis, and it is to be hoped that the solid basis of experimental studies on EGF might stimulate work on this topic.
Collapse
Affiliation(s)
- W M Wong
- Department of Histopathology, Imperial College of Science, Technology and Medicine, London, England, UK
| | | |
Collapse
|
38
|
Abstract
Because epidermal growth factor (EGF) has multiple effects on the intestinal epithelium and endogenous EGF plays an important role in maintaining normal intestinal structure and the response to injury, EGF should be important in the intestinal adaptive response to resection. The accumulated data in the literature support a role for endogenous EGF in the intestinal adaptive response. Endogenous EGF is increased in saliva and diminished in urine after intestinal resection. This suggests increased tissue utilization of endogenous EGF during adaptation. Intestinal EGF receptor activity is increased after resection. Intestinal adaptation is impaired in animals with defective EGF receptors. Thus EGF receptor activity also is important during adaptation. The results of experimental studies suggest that EGF administered at the time of resection enhances the intestinal adaptive response. Both structural and functional adaptation are augmented. The route, dose, and timing of EGF administration are important factors. EGF has additive effects with glutamine and growth hormone on adaptation. Several observations from these reports have relevance to the potential clinical application of EGF therapy: (1) EGF should be given soon after resection; (2) early transient administration may lead to a substantial effect on adaptation; (3) both systemic and enteral therapy may be effective; (4) luminal nutrients are important but not essential in mediating EGF-stimulated adaptation; and (5) combined therapy with other nutrients and growth factors may have merit. In conclusion, endogenous EGF plays an important role in intestinal adaptation. Furthermore, experimental results suggest the potential clinical usefulness of EGF to stimulate intestinal adaptation after massive intestinal resection. There is currently no evidence to support the use of EGF in patients with well-adapted short bowel syndrome.
Collapse
Affiliation(s)
- J S Thompson
- Department of Surgery, University of Nebraska Medical Center, and Omaha VA Medical Center, 68198-3280, USA
| |
Collapse
|
39
|
Falcone RA, Shin CE, Erwin CR, Warner BW. The adaptive intestinal response to massive enterectomy is preserved in c-SRC-deficient mice. J Pediatr Surg 1999; 34:800-4. [PMID: 10359184 DOI: 10.1016/s0022-3468(99)90376-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND/PURPOSE The Src family of protein tyrosine kinases has been implicated in the downstream mitogenic signaling of several ligands including epidermal growth factor (EGF). Because EGF likely plays a role in adaptation after massive small bowel resection (SBR), we tested the hypothesis that c-src is required for this important response. METHODS A 50% proximal SBR or sham operation (bowel transection or reanastomosis alone) was performed on c-src-deficient (n = 14) or wild-type (C57bl/6) mice (n = 20). The ileum was harvested on postoperative day 3 and adaptive parameters determined as changes in ileal wet weight, protein and DNA content, proliferation index, villus height, and crypt depth. Comparisons were done using analysis of variance (ANOVA), and a Pvalue less than .05 was considered significant. Values are presented as mean +/- SEM. RESULTS The activity of c-src was increased in the ileum of wild-type mice after SBR but remained unchanged in c-src-deficient mice. Despite this lack of increase, adaptation occurred after SBR in the c-src-deficient mice as demonstrated by increased ileal wet weight, protein and DNA content, proliferation index, villus height, and crypt depth similar to wild-type mice. CONCLUSIONS The adaptive response of the intestine to massive SBR is preserved despite reduced activity of the c-src protein. The mitogenic signaling that characterizes intestinal adaptation and is associated with receptor activation by EGF or other growth factors probably occurs by mechanisms independent of c-src protein tyrosine kinase.
Collapse
Affiliation(s)
- R A Falcone
- Children's Hospital Medical Center, and the Department of Surgery, University of Cincinnati College of Medicine, OH 45229-3039, USA
| | | | | | | |
Collapse
|
40
|
Falcone RA, Shin CE, Erwin CR, Warner BW. The effect of epidermal growth factor on differentiation of isolated enterocytes after small bowel resection. J Pediatr Surg 1999; 34:209-13. [PMID: 10022174 DOI: 10.1016/s0022-3468(99)90259-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND/PURPOSE In previous studies using mucosal scrapings or whole-bowel homogenates, epidermal growth factor (EGF) augments adaptation after massive small bowel resection (SBR). The purpose of this study was to determine directly the effect of adaptation and EGF on enterocyte differentiation using an explicit enterocyte cell population. METHODS Male ICR mice underwent 50% proximal SBR or sham (bowel transection-reanastomosis) and were selected randomly to either orogastric saline or EGF (50 microg/kg/d). After 3 days, enterocytes were isolated from the remnant ileum by mechanical vibration and assayed for DNA and protein content as well as sucrase and alkaline phosphatase (AlkP) activity. RESULTS Ileal wet weight, enterocyte protein, and DNA content were increased significantly after SBR and boosted even further with EGF. When normalized for protein, SBR caused an increase in AlkP and sucrase activity, and EGF treatment caused AlkP and sucrase activity to return to baseline. CONCLUSIONS EGF enhances adaptation; however, when normalized for protein, the activity of two enterocyte-specific enzymes was not significantly altered by EGF. This analysis of an explicit enterocyte population supports the notion that the beneficial effects of EGF are more likely caused by increased numbers of enterocytes rather than an increase in the functional activity of each individual cell.
Collapse
Affiliation(s)
- R A Falcone
- Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, OH 45229-3039, USA
| | | | | | | |
Collapse
|
41
|
Shin CE, Falcone RA, Duane KR, Erwin CR, Warner BW. The distribution of endogenous epidermal growth factor after small bowel resection suggests increased intestinal utilization during adaptation. J Pediatr Surg 1999; 34:22-6. [PMID: 10022137 DOI: 10.1016/s0022-3468(99)90222-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND/PURPOSE Although exogenous epidermal growth factor (EGF) amplifies adaptation after massive small bowel resection (SBR), the role for endogenous EGF is unclear. The authors sought to determine whether SBR was associated with changes in the levels of EGF in the serum, saliva, or urine and EGF receptor (EGF-R) signaling in the ileum. METHODS Male ICR mice underwent 50% proximal SBR or sham surgery bowel transection/reanastomosis). After 3 days, levels of EGF were measured by enzyme-linked immunosorbent assay (ELISA) in the serum, saliva, and urine. EGF-R activation was measured in isolated ileal enterocytes by probing an EGF-R immunoprecipitate with an antibody to phosphotyrosine. RESULTS When compared with sham, SBR resulted in no change in serum, increased salivary (2209+/-266 nmol SBR v 1183+/-119 nmol sham, P<.05) and decreased urinary (417+/-58 nmol SBR v 940+/-143 nmol sham; P<.05) EGF levels. EGF-R activation increased 2.5-fold after SBR. CONCLUSIONS Increased salivary and reduced urinary EGF linked with enhanced EGF-R activation suggests increased ileal utilization of EGF during adaptation. This observation, along with the known beneficial effects of exogenous EGF, infers a crucial role for endogenous EGF in the pathogenesis of intestinal adaptation after SBR.
Collapse
Affiliation(s)
- C E Shin
- Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, OH 45229-3039, USA
| | | | | | | | | |
Collapse
|
42
|
Helmrath MA, Shin CE, Fox JW, Erwin CR, Warner BW. Adaptation after small bowel resection is attenuated by sialoadenectomy: the role for endogenous epidermal growth factor. Surgery 1998. [PMID: 9823398 DOI: 10.1016/s0039-6060(98)70008-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Epidermal growth factor (EGF) is likely involved during adaptation after small bowel resection (SBR) because some studies have shown enhanced adaptation by EGF administration. Because the major source of endogenous EGF in mice is the submandibular glands, we sought to determine the effect of submandibular gland excision (SAL) and luminal or systemic EGF replacement on adaptation after SBR. METHODS A 50% proximal SBR or Sham-SBR (bowel transection and reanastomosis) was performed on male C57BL/6 mice after either SAL or gland mobilization only. Additional mice underwent both SBR and SAL and then received daily EGF or saline solution by intraperitoneal or orogastric administration. At 1 week, adaptation was characterized in the ileum as changes in villus height, DNA, and protein content. RESULTS SAL significantly attenuated the increase in ileal villus height, total protein, and DNA content after SBR. Both systemic and oral EGF reversed these findings equally and significantly augmented all parameters of intestinal adaptation after SAL. CONCLUSIONS Submandibular EGF is important for the adaptive response to massive SBR. As both luminal and systemic EGF equally reversed the findings following SAL and SBR, the specific site of action for endogenous EGF during adaptation is either the luminal or basolateral surface of the enterocyte.
Collapse
Affiliation(s)
- M A Helmrath
- Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Ohio 45229-3039, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
Short bowel syndrome has significant morbidity and is potentially lethal especially when intestinal loss is extensive. The pathophysiology of short bowel syndrome, its aetiology, prognosis and our understanding of the mechanisms of adaptation are reviewed. Management by a multi-disciplinary nutritional care team is advocated and should be directed to the maintenance of growth and development, the promotion of intestinal adaptation, the prevention of complications and the establishment of enteral nutrition. The choice of enteral feed, the role of drugs and the use of pro-adaptive nutrients and agents are discussed. Complications including cholestasis and catheter related sepsis are outlined with strategies to reduce them. Finally the roles of secondary surgical interventions including transplantation are discussed.
Collapse
Affiliation(s)
- I W Booth
- Institute of Child Health, University of Birmingham, UK
| | | |
Collapse
|
44
|
Kato Y, Hamada Y, Ito S, Okumura T, Hioki K. Epidermal growth factor stimulates the recovery of glucose absorption after small bowel transplantation. J Surg Res 1998; 80:315-9. [PMID: 9878331 DOI: 10.1006/jsre.1998.5465] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epidermal growth factor (EGF) has been reported to enhance adaptation in damaged intestines following massive intestinal resection. Studies were performed to determine whether EGF influences the recovery of intestinal function after small bowel transplantation in rats. Recipient Lewis rats underwent resection of the distal 80% of the small bowel, which was replaced with a 20-cm isograft. EGF (30 microg/kg/day) or its vehicle (control) was infused intraperitoneally for 3 days after transplantation. After 7 days, the graft was isolated for morphologic studies and was used for analysis of glucose and water absorption and the expression of sodium glucose cotransporter (SGLT1). These were used as indicators of functional adaptation. The EGF-treated group exhibited significantly increased mucosal villous height, crypt cell proliferation, glucose and water absorption, and expression of SGLT1 protein compared to the control group. No significant differences were found in body weight change or crypt depth between the two groups. These results demonstrate that EGF augments structural and functional adaptation of intestinal grafts in rats. EGF may be useful after intestinal transplantation in patients with short bowel syndrome.
Collapse
Affiliation(s)
- Y Kato
- Second Department of Surgery, Kansai Medical University, Osaka, 570-0075l, Japan
| | | | | | | | | |
Collapse
|
45
|
Buret A, Olson ME, Gall DG, Hardin JA. Effects of orally administered epidermal growth factor on enteropathogenic Escherichia coli infection in rabbits. Infect Immun 1998; 66:4917-23. [PMID: 9746597 PMCID: PMC108608 DOI: 10.1128/iai.66.10.4917-4923.1998] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The increased intestinal absorption induced by epidermal growth factor (EGF) is associated with diffuse lengthening of brush border microvilli. The aim of this study was to examine the in vivo effects of oral administration of EGF during infection with enteropathogenic Escherichia coli. New Zealand White rabbits (4 weeks old) received orogastric EGF daily starting 3 days prior to infection with enteropathogenic E. coli RDEC-1 and were compared with sham-treated infected animals and uninfected controls. Weight gain, food intake, fecal E. coli, and stool consistency were assessed daily. On day 10, segments of jejunum, ileum, proximal, and distal colon were assessed for gram-negative bacterial colonization, disaccharidase activities, and epithelial ultrastructure. Effects of EGF on E. coli RDEC-1 proliferation were studied in vitro. E. coli RDEC-1 caused diarrhea and reduced weight gain. Seven days postinfection, the small and large intestines were colonized with numerous bacteria, brush border microvilli were disrupted, and maltase and sucrase activities were significantly reduced in the jejunum. Daily treatment with EGF prevented the occurrence of diarrhea and reduction of weight gain. These effects were associated with significant inhibition of E. coli colonization in the small and large intestine, improved jejunal maltase and sucrase activities and reduced microvillous injury. EGF did not affect the proliferation of E. coli in vitro. The findings suggest that EGF protects the gastrointestinal tract against colonization by enteropathogenic E. coli.
Collapse
Affiliation(s)
- A Buret
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4.
| | | | | | | |
Collapse
|
46
|
Rubin DC, Swietlicki EA, Wang JL, Levin MS. Regulation of PC4/TIS7 expression in adapting remnant intestine after resection. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G506-13. [PMID: 9724262 DOI: 10.1152/ajpgi.1998.275.3.g506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The adaptive response of the small intestine to loss of functional surface area includes enhanced crypt cell proliferation and enterocyte differentiation. To better define the underlying molecular and cellular mechanisms, we have cloned rat genes that are specifically regulated in the adaptive gut after 70% small intestinal resection. One of these is the immediate early gene PC4/TIS7. Compared with sham-resected control ileum, PC4/TIS7 mRNA levels in the adaptive remnant ileum were markedly increased at 16 and 48 h but not 1 wk after resection. Greater augmentation of PC4/TIS7 mRNA levels occurred in the ileum compared with the duodenum and proximal jejunum. After resection, the changes in intestinal PC4/TIS7 mRNA levels also exceeded changes in extraintestinal levels. The demonstration by in situ hybridization that villus-associated, but not crypt, cells express PC4/TIS7 mRNA is consistent with a role in regulating cytodifferentiation. The pattern of expression in the Caco-2 cell line is also consistent with such a role. Although the precise function of PC4/TIS7 in adaptation remains unclear, the early and intestine-specific changes in mRNA levels after 70% resection suggest that it might augment the adaptive response by stimulating the production of differentiated enterocytes.
Collapse
MESH Headings
- Acclimatization
- Anastomosis, Surgical
- Animals
- Cell Line
- Cloning, Molecular
- DNA, Complementary
- Epidermal Growth Factor/pharmacology
- Gene Expression Regulation
- Gene Library
- Genes, Tumor Suppressor
- Ileum/physiology
- Ileum/surgery
- Immediate-Early Proteins/biosynthesis
- Immediate-Early Proteins/genetics
- In Situ Hybridization
- Intestine, Small/physiology
- Intestine, Small/surgery
- Jejunum/physiology
- Jejunum/surgery
- Kinetics
- Male
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Recombinant Proteins/biosynthesis
- Time Factors
- Transcription, Genetic
Collapse
Affiliation(s)
- D C Rubin
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
47
|
Helmrath MA, Shin CE, Erwin CR, Warner BW. Intestinal adaptation is enhanced by epidermal growth factor independent of increased ileal epidermal growth factor receptor expression. J Pediatr Surg 1998; 33:980-4; discussion 984-5. [PMID: 9694081 DOI: 10.1016/s0022-3468(98)90518-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND/PURPOSE Intestinal adaptation after massive small bowel resection (SBR) is augmented by epidermal growth factor (EGF) via an unknown mechanism. We recently have observed that EGF increases the expression of EGF receptor mRNA and protein content in the remnant ileum after SBR. The purpose of this study was to determine whether the magnitude of EGF-induced receptor expression correlates with intestinal adaptation. METHODS A 50% proximal SBR or sham operation (bowel transection with reanastomosis) was performed on male ICR mice. Animals from each group were then selected randomly to receive either human recombinant EGF (150 microg/kg/d) or saline by twice daily intraperitoneal injections. The remnant ileum was harvested at 1 week, and parameters of adaptation measured as changes in protein content. Ileal EGF receptor mRNA was quantitated using a ribonuclease protection assay. Changes in the expression ileal EGF receptor protein were determined by Western blot after immunoprecipitation. Comparisons of mean values between groups was performed using analysis of variance (ANOVA) and a P value of less than .05 was considered significant. Values are presented as mean +/- SEM. RESULTS EGF was mitogenic to the ileum after sham operation as monitored by increases in ileal protein content (2.21 +/- 0.002 mg/cm Sham v 2.97 +/- 0.25 mg/cm Sham +/- EGF; P < .05). After SBR, adaptation resulted in increased ileal protein content (4.45 +/- 0.27 mg/cm), which was substantially boosted by EGF (5.98 +/- 0.39 mg/cm; P < .05). No differences were detected in ileal EGF receptor mRNA or protein expression between Sham or SBR groups that did not receive EGF. However, EGF significantly enhanced the expression of ileal EGF receptor mRNA to an equal extent after both sham and SBR (approximately threefold). The magnitude of this increase in EGF receptor protein (four- to sixfold) was similar in both EGF groups as shown by Western blotting. CONCLUSIONS Changes in ileal EGF receptor expression are not mandatory for adaptation to occur. EGF upregulates the expression of mRNA and protein for its own intestinal receptor in vivo. Because EGF-induced receptor expression was comparable after both SBR and Sham operation, the beneficial effect of EGF during adaptation is likely caused by other factors in addition to increased receptor expression.
Collapse
Affiliation(s)
- M A Helmrath
- Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Ohio 45229-3039, USA
| | | | | | | |
Collapse
|
48
|
Helmrath MA, Shin CE, Erwin CR, Warner BW. The EGF\EGF-receptor axis modulates enterocyte apoptosis during intestinal adaptation. J Surg Res 1998; 77:17-22. [PMID: 9698526 DOI: 10.1006/jsre.1998.5362] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Adaptation after small bowel resection (SBR) is characterized by a new set point in the balance of enterocyte proliferation and apoptosis. Since epidermal growth factor (EGF) augments both proliferation and adaptation, we sought to determine the effect of EGF receptor manipulation on apoptosis following SBR. MATERIALS AND METHODS Male ICR mice underwent 50% SBR or sham operation (bowel transection with reanastomosis) and then were given EGF (50 microg/kg/day) or saline by orogastric gavage. At 1 week, a proliferation index (PI) was measured in the ileum by BrdU uptake and an apoptosis index in crypts (cAI) and villi (vAI) scored by counting apoptotic bodies in enterocytes. In other experiments, AI was scored after SBR in mice with defective receptors (waved-2). Results are expressed as means +/- SE and evaluated statistically using ANOVA. # denotes P < 0.001. RESULTS Following SBR, EGF increased PI (40 +/- 2% vs 50 +/- 1% BrdU + cells; #), villus height (252 +/- 4 micro(m) vs 401 +/- 15 micro(m); #), and crypt depth (77.3 +/- 1.5 micro(m) vs 120.8 +/- 5 micro(m); #). When compared with sham, SBR resulted in increased cAI (0.3 +/- 0.02 vs 2.0 +/- 0.1; #) and vAI (0.4 +/- 0.05 vs 1.1 +/- 0.1; #). EGF attenuated both cAI (0.5 +/- 0. 04) and vAI (0.5 +/- 0.03) following SBR. In the waved-2 mice, the highest levels of cAI (3.1 +/- 0.2) and vAI (3.6 +/- 0.3) were noted after SBR. CONCLUSIONS Enterocyte apoptosis during adaptation is attenuated by EGF and exaggerated when the EGF receptor is defective. In addition to enhancing proliferation, suppression of apoptosis may provide a previously unrecognized mechanism for the beneficial effect of EGF during intestinal adaptation.
Collapse
Affiliation(s)
- M A Helmrath
- Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229-3039, USA
| | | | | | | |
Collapse
|
49
|
Shin CE, Helmrath MA, Falcone RA, Fox JW, Duane KR, Erwin CR, Warner BW. Epidermal growth factor augments adaptation following small bowel resection: optimal dosage, route, and timing of administration. J Surg Res 1998; 77:11-6. [PMID: 9698525 DOI: 10.1006/jsre.1998.5336] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND In assorted animal models of small bowel resection (SBR), exogenous epidermal growth factor (EGF) has been shown to augment intestinal adaptation. This study was designed to elucidate the optimal dose, route, and timing of exogenous EGF to boost adaptation in our murine model of SBR. METHODS Male ICR mice underwent either 50% proximal SBR or sham surgery (bowel transection with reanastomosis) and then randomized to receive either saline or human recombinant EGF (5, 50, 150, or 300 microg/kg/day) by twice daily intraperitoneal (i.p.) injection or orogastric gavage (o.g.). At 7 days, protein and DNA content, crypt depth, and villus height were determined in the ileum. The premium dose and route was then given for 1 week either during (1 week after SBR) or after the adaptive phase (1 month after SBR). Differences between group means were analyzed using ANOVA. A P < 0.05 was considered significant. RESULTS EGF enhanced DNA and protein content, crypt depth, and villus height to the greatest extent at a dosage of 50 microg/kg/day by the o.g. route. EGF had no significant effect on enhancing adaptation when given after the adaptive response had already occurred. CONCLUSIONS Intestinal adaptation is optimally enhanced by a specific dose and route of EGF. Exogenous EGF enhances adaptation only during the adaptive response to SBR and not after it has already taken place. Determination of the best circumstances for EGF administration will permit a systematic approach toward understanding a mechanism for the beneficial effect of EGF during intestinal adaptation.
Collapse
Affiliation(s)
- C E Shin
- Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229-3039, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Helmrath MA, Shin CE, Erwin CR, Warner BW. Epidermal growth factor upregulates the expression of its own intestinal receptor after small bowel resection. J Pediatr Surg 1998; 33:229-34. [PMID: 9498392 DOI: 10.1016/s0022-3468(98)90437-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND/PURPOSE Epidermal growth factor (EGF) binds to its enterocyte receptor and enhances intestinal adaptation after massive small bowel resection (SBR). To ascertain the mechanism for enhanced adaptation by EGF, we sought to determine the effect of EGF administration on in vivo expression of the intestinal EGF receptor after SBR. METHODS Male ICR mice underwent a 50% proximal SBR and then were assigned randomly to EGF (150 microg/kg/d) or saline by twice daily intraperitoneal injection. After 3 days, the ileum was harvested and total protein and DNA content were measured. Northern hybridization and a ribonuclease protection assay were used to detect qualitative and quantitative expression of EGF receptor mRNA. The remaining ileum was pooled for each group and Western blotting used to determine expression of EGF receptor protein. RESULTS EGF augmented adaptation after SBR as monitored by significant increases in ileal protein (2.7+/-0.08 saline versus 3.9+/-0.17 mg/cm EGF; P<.001) and DNA (55.8+/-1.6 saline versus 104+/-8.4 microg/cm EGF; P<.001) content. Northern blotting results showed a marked (>fivefold) increase in ileal EGF receptor mRNA, which was confirmed with the ribonuclease protection assay. Administration of EGF after SBR induced a similar expression of EGF receptor protein. CONCLUSIONS EGF enhanced intestinal adaptation after SBR. This augmented response is associated with increased ileal expression of EGF receptor mRNA and protein. Increased EGF receptor expression and subsequent enhanced ligand/ receptor activity may be one important mechanism for the beneficial effect of EGF administration during intestinal adaptation.
Collapse
Affiliation(s)
- M A Helmrath
- Children's Hospital Medical Center, Department of Surgery, University of Cinncinnati College of Medicine, OH 45229-3039, USA
| | | | | | | |
Collapse
|